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Omslag: Intensiteitsverdeling van een laserbundel bij interne reflectie aan een glas-vacuiim
overgang met een hoek van inval groter dan de kritische hoek. Er zijn verschillende effecten
te zien. Aan de glaszijde, onder de witte lijn, zijn de inkomende en de gereflecteerde bundel
zichtbaar, de invallende bundel is iets intenser dan de gereflecteerde. Door de fasesprong
bij de reflectie heeft het interferentie-patroon geen maximum of minimum op het oppervlak.
Er zijn dispersie-effecten zichtbaar: de bundel is divergent met de waist op het oppervlak
en het interferentie-patroon is niet parallel aan het oppervlak. Verder is de Goos-Hanchen
shift zichtbaar: de gereflecteerde bundel is verschoven ten opzichte van de speculaire reflectie,
d.w.z. het snijpunt van de inkomende en de gereflecteerde bundel ligt boven het glasoppervlak.
Aan de vacuumzijde, boven de witte lijn, is de intensiteitsverdeling van het evanescente veld
weergegeven. Dit deel is vijf keer uitgerekt in verticale richting. Het plaatje is berekend met
de vergelijkingen uit paragraaf 2.2. De hoek van inval is 5.7° groter dan de kritische hoek
en de waist is 1.6 pum, resulterend in een bundeldivergentie van 7°. Door de extreem kleine
bundeldiameter zijn al deze effecten in één plaatje zichtbaar.
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]_ General introduction

This thesis exploits the possibilities of optical evanescent fields
as tools to manipulate cold atoms. An evanescent wave (EW)
appears when a light wave undergoes total internal reflection
at the surface of a dielectric. At the vacuum side of this
surface an optical field exists that decays exponentially on a
length scale comparable to the optical wavelength. There are
many applications of EWs in combination with cold atoms. It
can be used as a mirror for cold atoms. Scattering evanescent
photons can lead to further cooling of the atoms. A com-
bination of more EWs can lead to low-dimensional traps for
cold atoms. Finally, they enable us to probe atoms in close
proximity to a dielectric surface. Our samples of cold atoms
are prepared using conventional laser-cooling techniques. This
chapter will briefly review the major developments in the field
of cold atoms, focussing in particular on the interaction of cold
atoms with evanescent fields.



2 General introduction

1.1 Laser cooling

The development of laser-cooling techniques in the 1980s quickly resulted in atomic
samples with high phase-space densities and adopted quantum degeneracy as a goal.
In particular the development of the magneto-optical trap that was proposed by
Dalibard (according to [1]) and realized by Chu and co-workers [2] was a major
breakthrough. This system provides an easy way to collect several millions of atoms
and cool them to temperatures of less than a milli-Kelvin. Even lower temperatures
can be achieved by applying techniques like polarization-gradient cooling. Both
techniques are currently employed in hundreds of experiments worldwide. They are
used to collect and cool numerous gaseous atomic species to relatively high densities
and low temperatures. In 1997 S. Chu, C. Cohen-Tannoudji, and W. Phillips were
awarded the Nobel prize for development of methods to cool and trap atoms with laser
light [1, 3, 4]. The phase-space density that can be achieved by these techniques is
ultimately limited by re-absorption of the spontaneously emitted secondary photons.

Far off-resonant dipole potentials created by far-detuned laser beams are very
well suited to act as conservative traps for atoms. The scattering rate can be made
arbitrarily small when sufficient laser power is available, as will be discussed in
chapter 2. Since laser beams can be focussed, and multiple beams can be crossed,
it is possible to create traps of almost any geometry. However, trapping atoms in
these traps does not result in an increase of the phase-space density.

More advanced laser-cooling techniques, combining dipole traps with dissipa-
tive laser cooling, has resulted in a further increase of the phase-space density. In
particular low-dimensional geometries are interesting, since these provide a large
solid angle for secondary photons to escape, so that the problem of re-absorption is
reduced. The highest phase-space densities obtained are for Cs for which a phase-
space density of 1/30 has been realized using Raman sideband cooling [5], and for
Sr, where a sample of 4 x 10* atoms has been cooled to a phase-space density of
1/10 using Doppler cooling on a narrow, spin-forbidden optical transition, while the
atoms were trapped in a far off-resonance dipole trap [6].

1.2 Manipulating atoms using evanescent waves

An EW that is far detuned from an atomic transition such that it becomes a repulsive
potential acts as a mirror for atoms. Such a mirror was proposed by Cook and
Hill [7]. It was first demonstrated with an atomic beam at grazing incidence by
Balykin et al. [8] and later with cold atoms at normal incidence by Kasevich et
al. [9].

An atom can undergo a Raman transition to another internal state when it
reflects from an EW mirror. This dissipative process leads to a loss of energy of the
atom. Atoms that have made such a transition will bounce inelastically, i.e. to a
lower height. This process will also lead to cooling of the sample of atoms, which was
first demonstrated by Laryushin et al. [10]. This feature is used in the gravito-optical
surface trap (GOST) by Ovchinikov et al. [11] where multiple inelastic bounces led
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to a significant increase of the phase-space density.

The combination of an attractive and a repulsive EW potential can lead to a
trapping configuration. This is called a double EW trap (DEWT) and was proposed
by Ovchinikov et al. [12]. Hammes et al. [13] have successfully demonstrated loading
a DEWT trap from a GOST trap combined with a “dimple potential”, trapping
20 000 Cs atoms at a temperature of 100 nK.

EWs also provide a tool to selectively detect atoms in close proximity to a dielec-
tric surface. This is useful to detect atoms that are trapped close to such a surface.
Aspect et al [14] have proposed a technique to detect atoms close to a surface in
a non-destructive manner by detecting the phase change of a far detuned EW. In
chapter 6 we present a novel technique to probe atoms at distances on the order of
an optical wavelength from a dielectric surface, by measuring the absorption of a
resonant EW. The approach is tested using cold atoms that are dropped onto the
surface [15]. The possibility to detect atoms at these distances from a dielectric sur-
face gives access to measuring cavity QED effects. An experiment that measures the
effect of a nearby surface on the linewidth of the atoms was recently published [16].

1.3 Loading scheme for evanescent-wave traps

The phase-space densities obtained by laser cooling fuelled the hope that Bose-
Einstein condensation could be realized using these techniques. The theory of
Bose-Einstein statistics [17, 18, 19] predicts that for non-interacting atoms with
sufficiently low temperature a large fraction of the atoms accumulate in the lowest
energy quantum state. This happens when the de Broglie wavelength A\4g becomes
larger than the mean interparticle separation n /3, or better nA3g > 2.61. All these
atoms are in the same quantum state and thus form a macroscopically sized quan-
tum system. Such a system is called a Bose-Einstein condensate (BEC). However,
this has not been achieved using laser cooling until today.

EWs are common in schemes for further increasing the phase-space density in
a fully dissipative optical way. During the reflection of a sample of atoms from
an EW mirror the density in the turning point is significantly increased. This
density increase can be employed by making use of the highly localized scattering
properties of EWs. A Raman transfer, induced by scattering an evanescent photon,
to an internal state that no longer interacts with the repelling evanescent field, but
does interact with a tightly confining trapping potential will lead to an increase of
the phase-space density [20]. The low dimensionality automatically deals with the
problem of the re-absorption of the secondary photon.

Gauck et al. [21] have demonstrated the proof of principle of this loading scheme
using metastable Ar* atoms. Their attempts were restricted by the metastable
character of the Ar* atoms, which enables Penning ionization and therefore excludes
high densities. For sufficiently high phase-space densities the transfer into a single
state of the trap will be enhanced due to the bosonic nature of the atoms [22],
which corresponds to the stimulated emission process of a laser. Inouye et al. [23]
demonstrated this effect in free space using condensed samples.
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Chapters 6 and 7 discuss our efforts to implement this method for " Rb atoms.
These atoms are advantageous because they are trapped in the ground state and
therefore do not suffer from Penning ionization. On the other hand the energy
separation between the bouncing and trapped state is too small to decouple the
trapped atoms from the repelling evanescent field. Spreeuw et al. [20] discuss a
dark-state trap that should by-pass this problem.

In chapter 6 the atoms are trapped in a standing-wave dipole trap after their
transfer. Due to the highly localized scattering of an EW all atoms are concentrated
in just a few potential minima of this trap. The evanescent probing technique was
used to detect the trapped atoms. Chapter 7 discusses the EW dark state trap
proposed in [20] in more detail. Several geometries are discussed. Within the range
of experimentally realistic parameters, optimum values for these parameters are
derived from a numerical analysis of the experiment. The actual implementation of
the experiment was prevented by technical problems, which are also discussed.

1.4 Bose-Einstein condensation

In 1995 Bose-Einstein condensation was realized using evaporative cooling of mag-
netically trapped atoms in Boulder [24], MIT [25], and at Rice university [26, 27].
Laser cooling was only used as the initial step to prepare a sample of atoms that
was loaded in a magnetic trap. A subsequent phase of forced evaporation led to an
increase of the phase-space density until the quantum degeneracy limit was reached.
By outcoupling atoms from a BEC, atom lasers have been realized [28, 29, 30, 31, 32].
However, because the condensate is depleted their output is pulsed. In 2001 E.
Cornell, W. Ketterle, and C. Wieman were awarded the Nobel prize for the achieve-
ment of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates [33, 34]. Since the first
realization of a BEC, it has been realized for many atomic species, and diatomic
molecules [35, 36, 37]. Furthermore several trapping geometries are commonly used
nowadays and BEC is for instance achieved for atoms trapped in micro-structured
atom chips [38, 39].

Bose-Einstein condensation of atoms trapped in far off-resonance dipole traps
has also been realized [40, 41]. The phase-space density density is, however, still
increased by means of forced evaporation while the atoms remain trapped in a
conservative potential. So far these experiments were only successful for dipole traps
created by COs lasers with a wavelength of 10.6 um. Chapter 3 discusses a possible
extension for obtaining BEC in a far off-resonance dipole trap. It investigates the
possibility to use an alternative, experimentally more practical wavelength in order
to accomplish the same goal.

There are other experiments that aim at or have realised high phase-space densi-
ties using EWs. However they all make use of an evaporative cooling stage. Colombe
et al. [42] are working towards loading a DEW'T surface trap from a 3D 8’Rb BEC.
Rychtarik et al. [43] have created a two-dimensional BEC of Cs atoms, by trapping
thermal atoms in a GOST, increasing the density using a dimple potential [44], and
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a subsequent evaporative cooling stage.

Even though BEC has been realized, it is still interesting to investigate the
possibility of realizing a quantum degenerate system in a fully dissipative, optical
way. One reason is that this could open routes to reaching quantum degeneracy
for atomic species with unfavorable s-wave scattering lengths, for which evaporative
cooling can not be applied. Another reason is that it is possible to create quantum
degenerate samples in excited vibrational states of the trap. With a thermal process
like evaporative cooling, only condensation to the ground state is possible. Finally
these systems may lead to cw atom lasers. Even before BEC was realized several
schemes to realize this have been proposed, e.g. [22, 45].

1.5 Interferometry

Chapter 8 describes a novel type of interferometer and addresses the question whether
spontaneous emission can perform the role of the beam splitter. Atoms that bounce
inelastically from an EW mirror have made a transition to another internal state
during their reflection, see e.g. [46]. This transition can occur on the ingoing or
the outgoing part of the trajectory, and the two possible paths follow a different
trajectory through phase space. Since this transition is a spontaneous Raman tran-
sition, which is generally considered to be an incoherent process, the question arises
whether these paths could give rise to interference. This thesis ends with an unam-
biguous and surprising answer to this fairly general question by numerically solving
the Schrodinger equation.
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2 Theory

This chapter provides the theoretical background needed for
the rest of this thesis. The first section deals with the descrip-
tion of light in general and evanescent waves in particular.
A generalized expression for the intensity of light is derived,
that can also be applied to evanescent waves. Subsequently,
some equations for dealing with diffraction limited, finite-size
beams are presented

The third section focuses on the interaction of atoms with
light. Special attention is paid to the description of multi-
level atoms and the different conventions used in the liter-
ature. The spontaneous light pressure force and the dipole
force are introduced. Accurate information of the Rb D
lines is given. The last section deals briefly with the Van
der Waals interaction of atoms in the vicinity of a dielectric
surface.
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2.1 Propagating and evanescent light

This section focuses on the description of light fields as they occur in our experi-
ment. The main result will be the derivation of some characteristics of evanescent
waves. Since an evanescent wave is not a propagating wave and the energy flux
perpendicular to the surface is imaginary, we have to modify the usual expression
for the intensity. Since many of the equations dealing with the interaction of atoms
with light are expressed in terms of the light intensity, they are not straightfor-
wardly applicable to the case of atoms interacting with evanescent waves. In the
first parts of this section we will deal with plane waves and an effective intensity is
defined that is generally usable for describing the interaction of atoms with electro-
magnetic waves. Subsequently some basic concepts of evanescent waves are defined
and we will introduce the concept of the evanescent-wave intensity. Finally we will
focus on some effects specific for circularly-polarized evanescent waves.

2.1.1 Plane waves, definitions and refraction phenomena

We consider a plane monochromatic light wave with an electric-field component
E(x,t) at position x and time ¢. It is described by

E(x,t) = R (Eeiﬂ('x—w”) , (2.1)

with angular frequency w, wavevector k, and E a complex vector describing the
amplitude and the polarization of the wave. The symbol R(-) denotes the real
part of an expression. The frequency w and the amplitude &k of the wavevector k
are proportional k& = (n/c)w. Here c is the velocity of light in vacuum and n the
refractive index of the medium in which the wave propagates; the fraction ¢/n is
the velocity of light in this medium. Since we consider monochromatic light we can
consider n to be constant. The wavevector k is parallel to the propagation direction
of the wave. The wavelength A is defined by A = 27/k. In vacuum, with n = 1, we
define the free space wavevector kg = w/c and the free space wavelength \g = 27/ ky.

When this plane wave hits a boundary, separating two media with different
optical properties, it will be partially reflected and partially transmitted. In this
section we consider a plane wave, incident at an angle ; with respect to the surface
normal, as is shown in Fig. 2.1. This figure also shows the geometry in which we
will describe this problem. The surface boundary is in the Oxy plane and the plane
of incidence of the wave is in the Oxz plane. The angle of the reflected wave 6, is
equal to 6;, and the angle of the transmitted wave 6; is given by Snell’s law

sinf, ny

= —. 2.2
sin 91 o ( )

The wavevector k; of the incident wave in this geometry is given by

k; = niko (sin6;, 0, cos 6;) , (2.3)
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Figure 2.1: Schematic representation of the geometry of a beam reflected and refracted from a surface
boundary between two media with refractive indices n; and n,. Since the refracted angle 6, is larger

than the angle of incidence 6;, ny > ny for this example.

and the electric-field amplitude E; of this wave is now
E; = (—E™ cos6;, EM"e’?, EM sin6)) . (2.4)

Here EM™ and ET® represent the components of the electric-field vector parallel
respectively perpendicular to the plane of incidence Oxz. The exponent exp(ip)
describes the phase difference between the TE and TM-polarized components. Simi-
lar equations hold for the wavevector of the reflected field k, and the transmitted
field kg, and for the reflected electric field E,(x,t) and the transmitted electric field
E.(x,1).

For these plane waves the corresponding magnetic field is given by

~ -k~
H=,/——xE 2.
/o5 <E (25)

with ¢ the electric, and p the magnetic permeability of the medium.

2.1.2 Energy density and energy flow

The time-averaged energy density u of a wave or field that obeys Maxwell’s equations
is in general defined by

1 * ~  ~x%
u:Z<E-D +B-H>, (2.6)

where we have introduced the electric displacement D = ¢E and the magnetic
induction B = pH. Here we follow the terminology of Jackson [47]. Unless specified
otherwise, we will work in S.I. units throughout this thesis. The first term is called
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the time-averaged energy density of the electric field ug and the second term is the
time-averaged energy density of the magnetic field ug. From Egs. (2.5) and (2.6) it
is obvious that the electric and magnetic-field energy densities are equal for a plane
wave. For the specific case of a plane wave, the total time-averaged energy density
reduces to

1 ~
e = 5= B, (2.7)

where the subscript “pw” denotes plane wave.
The time-averaged energy flow is in general defined by Poynting’s vector S

ExH, (2.8)

which for a plane wave, by substituting Eq. (2.5), reduces to

k
.

Spw = = jiv)|2

= (2.9)

The amplitude [S,y| is equal to the intensity I of the wave and it points in
the direction of propagation. This intensity I can also be defined from the energy
density (2.7) .

I = Upw - (2.10)

The main reason why we are interested in the intensity of light is because we
want to determine its interaction with atoms, which we will examine in more detail
in section 2.3. This interaction is, however, almost completely dominated by the
electric-field component of the light. For plane waves the intensity [ is a valid
parameter to describe this interaction because the energy densities of the electric
and magnetic fields are equal under all circumstances. It is commonly used because
it is an experimentally convenient quantity. A more generally applicable quantity
would be the electric energy density ug, or the electric-field energy flux density
ugc/n. Based on this we can define an effective intensity I.g, which is generally
valid for describing the interaction of atoms with light

lyg=—ug=—E-E. 2.11
T b 2n ( )
In the remainder of this thesis we will drop the subscript “eft”. For virtually all
optical materials 1 = pg is satisfied and the pre factor ec/2n in Egs. (2.9) and (2.11)

can be replaced by nege/2.

2.1.3 Evanescent waves

When a light wave is refracted from a medium with a higher index of refraction n;
to a medium with a lower index of refraction ny < ny, the refracted wave propagates
more parallel to the surface. Using Snell’s law (2.2) we can determine a critical
angle 6,

0; = 0. = arcsin @, (2.12)
ny
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at which the refracted wave propagates parallel to this surface, §; = w/2. For
even larger angles of incidence 6;, Eq. (2.2) yields a complex value for 6;, which
is associated with the appearance of an evanescent wave. In the remainder of this
section and the rest of this thesis we will consider evanescent waves in vacuum, thus
ny = 1, near a dielectric medium with n; = n. The general result can be obtained
by replacing n with n;/ns and ko with kq/no.

For this case with 6; > 6. it is convenient to write the Fresnel equations [48, 49]

as follows
o :nCOSQi—i\/nQSirP@i—l’ (2.13)
ncos®; +iv/n2sin?6; — 1
- cos 0, — iny/n2sin? 6, — 17 (2.14)
cos b + iny/n2sin?6; — 1
2 0;
T neos , (2.15)
ncosf; +iv/n2sin?6; — 1
2 0,
n cos (2.16)

trm = : — .
cos b + iny/n2sin“ 6; — 1

These Fresnel equations give us the reflected amplitudes EI® = rpp ETE and EI™M =
TTMEiTM, and refracted amplitudes EtTE = tTEEiTE and EtT M _ tTMEiTM of the TE
and TM-polarized electric-field components, directly at the surface. They show that
|rrE| = |rem| = 1 for 6; > 6., which is called total internal reflection. The field on
the transmission side is called an evanescent wave. Although this is not a plane
wave, we can derive some properties by substituting the complex value of 6; in the
plane wave results of sections 2.1.1 and 2.1.2.

For example the wavevector k; can be written similar to Eq. (2.3) with 6; replaced
by 6. By rewriting the sin §; and cos 6 terms with use of Eq. (2.2) this results in

k, = ko <n sin 6;, 0, +i\/n? sin? 6; — 1) , (2.17)

from which is obvious that the component perpendicular to the surface has become
imaginary. The field

Et (X, t) —R (Etei(kt-xfwt)> - R (Etefﬁzeikonsin&zefiwt) ’ (218)

with & = ko\/n2sin® f; — 1, represents a non-homogeneous wave propagating along
the boundary and whose amplitude varies exponentially in the direction perpendic-
ular to the boundary. It is obvious that in this case the plus sign needs to be used
in Eq. (2.17) otherwise Eq. (2.18) would diverge for z — co. The decay length & of
this evanescent wave is given by

1 X 1

6:—:— .
Ko 27\ /n2sin®6; — 1

This decay length is typically on the order of Aq.

(2.19)
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2.1.4 Effective evanescent-wave intensity

By substitution of the complex value of #;, the electric and magnetic-field vectors
E(x,t) and Hy(x,t) become

E, = (—z’EtTM\/ n2sin?0; — 1, EMe™ EM™n sin 01> : (2.20)
H, = =< (—iEtTE\/ n2sing; — 1", —E™M EMnsin Oiew> , (2.21)
n

where H; is defined analogous to E; in Eq. (2.18). The fields E¢(x,t) and H¢(x,?)
are still orthogonal as in the plane wave case, and they are both orthogonal to k;
and the total energy density u is still independent of the polarization. However, the
electric and magnetic energy densities ug and uy are no longer equal, and their ratio
depends on the polarization. Since the z component of the energy flow S becomes
imaginary [47, 48] it is not possible to define an intensity for this evanescent wave in
the usual way. However, in order to describe the interaction with atoms, an effective
intensity based on Eq. (2.11) can still be defined.

We now introduce transmissivity coefficients TTF and T™ for the effective
evanescent-wave intensities for the TE and TM-polarized components as

I T|ENP 1

™ 2 . 9 *
ITE 1 |ETM|2 1
TE t r *
Tew =7 = [ETV2 et (223)

i

where in the last step Eq. (2.20) and the substitutions for E™ and E® have been
used. The transmissivities have been explicitly evaluated. By substituting Egs.
(2.15) and (2.16) in Egs. (2.22) and (2.23), these transmissivities become

4n cos? 0;(2n? sin® 6; — 1)

TIM — 2.24

W cos? 65 4 n2(n2sin 6 — 1)’ (224)
4n cos? b;

TiE = ——— 2.25

2.1.5 Elliptically and circularly-polarized evanescent waves

From Egs. (2.20) and (2.21) it is clear that a TM-polarized incident wave leads to an
“elliptically-polarized” and a TE-polarized incident wave to a “linearly-polarized”
electric field at the vacuum side of the surface. In the latter case, however, the
magnetic field has a similar “elliptical polarization” as the electric field in the first
case. The fact that the “polarizations” of the electric and magnetic fields are dif-
ferent is another striking difference between the evanescent and the more common
propagating light fields. The aspect ratio of this elliptical polarization depends on
the angle of incidence of the incident wave. In the limit of 6; approaching the critical
angle 6., the polarization tends to linear.
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Figure 2.2: The tilt angle x of the plane of circular polarization versus the angle of incidence 6, for a

medium with n = 1.5.

With ¢ = +7/2 and E* = EI™ Eq. (2.20) represents a circularly-polarized
evanescent wave. The plane of polarization is however not perpendicular to the real
part of the k vector R(k) as in the case of a propagating wave. Instead it makes
an angle in the Ozy plane with R(k) of Y = arctan(y/n2?sin®6; — 1). This angle
is equal to the angle between the Poynting vector and R(k). Fig. 2.2 shows this
angle x as a function of the angle of incidence 6; for a medium with n = 1.5. For
0; = 6.+ 20 mrad this tilt angle is 12° and it increases up to 48° when 6; approaches
/2.

2.2 Description of diffraction limited beams

The description of light beams presented in the previous section is valid for plane
waves. Many features of a physically realistic beam with a finite beam diameter
can be properly described by a plane wave. However, this is not sufficient e.g. in
the case of total internal reflection, for angles of incidence very close to the critical
angle. This is important for the analysis of experiments where atoms are probed
using evanescent fields, that is presented in chapter 6. In the first part of this section
is derived how a diffraction limited beam can be treated as a coherent superposition
of plane waves. The second part of this section describes how the reflected and
transmitted fields can be calculated. Also a method to determine the effective EW
intensity is presented.

2.2.1 Propagating beam equations

A plane wave propagating in the xz plane at an angle 6 with the z axis is described
by exp(ik,(0)x)exp(ik,(f)z), as is obvious from Eq. (2.1), with k,(0) = nkysiné
and k.(0) = nkocosf. Here n is the index of refraction of the medium. A Gaussian
beam can be described as a coherent sum over several propagation directions 6.



14 Theory

These are normally distributed around a central value 6y and the distribution has
a 1/e width of ¢. From the theory of Gaussian beams [49, 50|, we know that the
far field divergence of a beam is equal to Ag/mnwg, with Ag the wavelength of the
light and wy the waist (minimum 1/e radius of the electric field distribution) of the
beam. This divergence is equal to the angular spread ¢

Ao

O = S— (2.26)

The electric field distribution of a propagating beam is now given by
2m
B(z,2) = i/ eik:z(O)xeikz(9)zeinkd(9—90)2/2e—(9—60)2/¢2de’ (2.27)
¢ Jo

where the factor exp(inkd (0 — 6,)* /2) displaces the waist by a distance d along the
propagation direction of the beam. The integral is normalized such that |E]* = 1
in the waist of the incident beam. Eq. (2.27) is completely similar to the more
common notation in the literature where the integration is over the wavevector [50],
instead of over the angle of the wavevector with an interface.

2.2.2 Reflection and transmission

The reflection of a propagating wave given by Eq. (2.27) from a boundary at z =0
between a medium with index of refraction n; = n and a medium with index of
refraction ny = 1, as depicted in Fig. 2.1, is described by

1 /2

E,(z, 2) T(Q)ez‘kx(e)e—z‘kz(0)zeink0d(0—00)2/2€—(0—00)2/¢2d6)7 (2.28)

B 7T_¢ —7/2
where r(0) is a Fresnel reflection coefficient rrg () or rrv(f), as defined by Egs.
(2.13) and (2.14), depending on the polarization of the light. Obviously only the
vector k, has changed sign with respect to Eq. (2.27). We have restricted the angle
of incidence 6y here to —m/2 < 0y < 7/2.

The propagating part of the wave that is transmitted through this boundary is
described by

1 [%

_ t(@)ezk; (0)x ik (8)z ginkod(0—60)* /2 ,—(0—00)* /& de, (2.29)
7T¢ —7/2

Ei(z, z)

where ¢(0) is a Fresnel transmission coefficients t1g(0) or ttam(6), as defined by Eqs.
(2.15) and (2.16), depending on the polarization of the light. The wavevectors k.,

and k! are defined by k., = nkosin6 and £k’ = kgy/1 — n2sin® §. The evanescent part
of the transmitted field is described by
1 /2 1./ ; 2 2 /42
Few(z,2) = _/ t(g)elkag(9)3?6—»2/5(9)61%061(9—90) /2=(0-00)7/¢ do, (2.30)
¢ Jo,

where the decay length £(0) is defined by Eq. (2.19).
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In order to calculate the effective intensity of the evanescent field one needs to
take care of the extra pre factors of Egs. (2.22) and (2.23). This is done by replacing
the Fresnel transmission coefficient ¢(6) by the square root of the corresponding
evanescent-wave transmissivity /Tew(f), as defined by Eqgs. (2.24) and (2.25).
The absolute value of the square of the resulting integral scales with the intensity.
Due to the special normalization of Eq. (2.27), the EW intensity distribution is now
given by

2

w/2
Iew(z,2) = I iqb/ . /TEW(Q)Qikz(e)xe—z/f(e)ei”kod(e—eo)2/26—(9—90)2/¢>2dg
T 0

(2.31)
with I; the maximum intensity of the incident beam at the boundary.

2.3 Atoms and their interaction with light

In this section we describe the interaction of atoms with monochromatic light. We
will focus mainly on mechanical effects on the atom. In the first part we will describe
the hypothetical situation of a two-level atom to demonstrate the two different forces
acting on an atom. In the second part we will extend this to multi-level atoms and
finally we will apply it to the case of 8"Rb atoms.

2.3.1 Two-level atoms

For a two-level atom with a resonance frequency wy we denote the ground state by
lg) and the excited state by |e). The excited state has a lifetime 7 = 1/T", where I"
is the the decay rate or the linewidth of the transition.

When this atom interacts with a light field with frequency w and intensity I,
two physically different contributions of the force acting on the atoms can be dis-
tinguished. A force associated with the scattering (absorption and spontaneous
emission) of photons, and a force associated with the interaction of the electric field
of the light with the electric dipole that is induced in the atom. A beautiful deriva-
tion of these two forces is shown in [51] section V.C.2. In the following discussion
we will, however, follow a more intuitive approach.

Near resonance effects I - spontaneous light pressure force This effect is
particularly important for relatively small detunings, 0 = w — wy. The process of
absorption of a photon from the light field and spontaneously emitting it in another
mode is then the dominant process.

The atom receives a momentum kick of hk for every absorbed photon. A sub-
sequent stimulated emission process results in a momentum change —hk,,;. Due to
the random character of a spontaneous emission process, the momentum change due
to this process averages out over many absorption-emission cycles and only results
in heating. This yields a net momentum change of hk per cycle. The average force
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encountered by the atom, which is called the spontaneous light pressure force, is thus
F,, = k", (2.32)

with I the scattering rate, which is the product of the excited state population and
the decay rate I'. For a constant intensity the scattering rate tends to a steady state
value

' s
IM=— 2.33
2s+1’ (2.33)
here s is the so called saturation parameter
1 I
L+ () 1o
with
Iy = hiTw®/127c? (2.35)

the saturation intensity of the transition.

Near resonance effects II - Doppler cooling For a moving atom the effec-
tive detuning of the light beams depends on the velocity v of the atoms due to the
Doppler shift p = —k - v. For two counterpropagating laser beams, with wavevec-
tors £k and equal detuning ¢, the interaction of a moving atom with the beams
is different due to the difference in Doppler shift. Naturally the direction of the
radiation pressure is in opposite directions. The net force acting on the atom is now

FD = (FSp)5—>5—k-v - (FSP)5_>5+k.V ) (236)

with Fg, defined by Eq. (2.32)-(2.35). The subscripts § — ¢ £ k - v denote that
the Doppler shift needs to be incorporated in the detuning in Eq. (2.34). For small
saturation, such that IV ~ sI'/2 and |v| < |d|/ko this force is approximated, to
second order in |v|, by

Fo—sikll Vo 4y 9.37
07T
0

T

For small red detunings 6 ~ —I'/2 and small atomic velocities |v| this force is a
substantial damping force resulting in cooling of the atom, which is called Doppler
cooling. The lower bound of the temperature is determined by the random nature of
the spontaneous emission process. This lowest reachable temperature is the Doppler
temperature Tp = hI'/2kg, with kg Boltzmann’s constant.

Far off-resonance effects - dipole force For large detunings [6] > I, the
off-resonant driving of the atom induces a dipole d = aE in the atom, with «
the polarizability of the atom. When [§] > Qg, with Qr = d - E/h the Rabi
frequency, and A Plank’s constant, the spontaneous light pressure force is no longer
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the dominant force that acts on the atom. The time-averaged potential energy of
the induced dipole d in the applied field E is called the light shift and is given by
1 ~ 1 =~ hs

U =~ (d-B) = ol ~ 2, (2.39)
where (-) denotes taking the time average over an optical period, and E is the
electric field as defined in Eq. (2.1). When the transition is driven above (below)
the resonance frequency w, the polarizability « is negative (positive), and thus the
resulting potential is repulsive (attractive). Such a light field with 6 > 0 (§ < 0)
is called blue detuned (red detuned). The dipole force acting on the atom is now
given by Fgi, = —VUgip. The scattering rate in the limit of large detunings and low
saturation is given by

r
=" (2.39)
2
From the ratio of the scattering rate I and the light shift Uy,
R T
= — 2.40

it is clear that for a large detuning ¢ and a sufficiently large intensity, so that the
light shift Ugip remains constant, the scattering rate becomes negligibly small, and
the potential Ug;, becomes conservative.

2.3.2 Multi-level atoms

The results of the previous section are generalized to the case of realistic multi-level
atoms. First, the formalism which is used to describe these atoms and the transitions
between different levels is explained. Subsequently, the results for small detunings
are briefly described. The effects for large detunings will be treated somewhat more
extensively because of their importance for the remainder of this thesis.

Formalism In realistic, multi-level atoms, transitions between different states
have different probabilities or transition strengths. The transition strength of the

transition between the initial state |F'm,) and the final state |F'm/) is described by

its dipole matrix element (F'm/|D|Fm), with D = ex the dipole operator. F and
F’ are the total angular momentum quantum numbers of this initial and final state
respectively, and m and m’ are the magnetic quantum numbers of the initial and fi-
nal magnetic sub-states respectively. Using the Wigner-Eckart theorem [52, 53, 54],
this element can be written as

(F'm!/|D|Fm) = (F'|[D||F){Fmlq|F'm), (2.41)

where the first factor is the reduced dipole matrix element, which is independent of
the level sub-structure and of the polarization of the light, and the second factor
is a Clebsch-Gordan coefficient, which describes the coupling between the magnetic
sub-levels for a particular polarization of the light.
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It will turn out to be convenient to project the polarization € = E/|E| of the light
on a coordinate system of spherical polarizations €, with ¢ = —1,0, +1 denoting o~
m and ot-polarized light respectively, all with respect to a chosen quantization axis.
The subscript ¢ is the same that appears in the Clebsch-Gordan coefficient of Eq.
(2.41).

We have to be aware of the fact that many textbooks on quantum theory of angu-
lar momentum [52, 53, 54] use an alternative definition of the reduced dipole matrix
which is v/2F" + 1 times larger. One can distinguish between the two definitions
by examining the notation of the Wigner-Eckart theorem. To reduce confusion,
throughout this thesis we will denote this alternative definition with parentheses
(|| - ||-) instead of angular brackets (-|| - ||-}. This alternative definition is some-
times convenient since it satisfies (F'||D||F) = (F||D||F’) and it will therefore be
used in the next chapter. Moreover the notation in most textbooks is chosen such
that it most straightforwardly describes emission processes, which is convenient for
spectroscopic purposes.

The reduced dipole matrix element can be further simplified by applying the
expression [52, 53, 54]

(F'|D||F) = dpe (J'| D] J), (2.42)
where J and J’ are total electronic angular momentum quantum numbers, and
/
dppr = (—1)PH S0 F 1)(2F +1) { L } L (243)
6j

Here {:’}¢; denotes the Racah 6j symbol, and I is the nuclear spin. The reduced
dipole matrix for J can, analogously, be further simplified by applying

(J'|D||J) = dy(L'|D| L), (2.44)

where L and L’ are orbital angular momentum quantum numbers, and

doy = ()P SNRTIIETA D] 1, ] ) )
63

with S the intrinsic electronic spin quantum number.

Special case - alkali atoms For the D; and D, lines of alkali atoms we will use
subscripts g and e for the ground-state and excited-state properties, respectively.
The factor |dj,.| = 1, since Ly = 0, L, = 1, and S = 1. For the transition
from the F, = Fypax = Lg + 5 +1 = % + I ground-state hyperfine level to the
Fo = Fomax = Le+S+1 = %+[ excited state hyperfine level of the Ds line, the value
for |dp,r,| = 1, for every integer and half-integer value of /. Furthermore, for every
integer and half-integer value of Fy, the Clebsch-Gordan coefficient (Fy, £mg, 1,9 =
+1|F, = F, +1,m. = £(my + 1)) = 1. By combining the above information with
Eqgs. (2.41)-(2.45) we can deduce

|<}7e,max>7nFe = iFe,max|D|Fg,maxa mFg - :l:Fg,max>| - |<Le = 1||D||Lg - 0>|
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Since this is a closed transition the value of this matrix element equals the value of
the dipole moment D of a two-level transition

. 3megc3hl’
D = ’<Fe,max7 Me = j:Fe,maX‘D‘Fg:maxa Mg = ZEFg,max>| = 771-602 . (246)
Wo
Using Eq. (2.46), Egs. (2.41)-(2.45) can be simplified to
(Fymp,|D|Fump,) = (Famp, |D|Fymp,) = Ddp,p, (Fymglq| Fam,). (2.47)

This expression is valid for all transitions of the alkali D lines.

Near resonance effects Near-resonant phenomena like laser cooling in multi-
level atoms results in effects like polarization-gradient cooling and velocity selective
coherent population trapping (VSCPT). For a description of these effects we refer
to [55]. The Doppler temperature T is no longer the lower bound for the obtainable
temperatures. The new lower boundary for polarization-gradient cooling is the recoil
temperature 7, which is the temperature associated with the kinetic energy due to
the recoil of one photon, while with VSCPT even lower temperatures can be reached.
In practice atomic density induced effects like photon re-absorption will also limit
the achievable temperatures.

Far off-resonance effects In order to calculate the light shift of a certain level
|F'm), the contributions of the coupling to the various intermediate states |F'm/') to
the polarizability must be taken into account. Furthermore due to the substructure
of the state F', the polarizability «, introduced as a scalar for two-level atoms, has to
be described by a tensor a. Its indices are the initial and final magnetic substates
m and m” and the polarizations ¢ and ¢’ of the absorbed and emitted photons,
necessary to make the Raman transition.

In the case of low saturation and large detuning from resonance |[0pp| > T, so
that spontaneous emission processes can be neglected, we can derive an expression
for the polarizability tensor, using time dependent perturbation theory

F //f)F/ N(EY /ﬁF
a:2<m| [F'm/) (F'm/|D[F'm)

24
h(SFF/ Y ( 8)

’ /
F''m

where dppr denotes the detuning of the light with respect to the transition frequency
wrp between the initial state |F') and the intermediate state |F”’). We have assumed
Opp < wppr, so that the rotating wave approximation can be applied. The light
shift operator Ug;, is written analogously to Eq. (2.38) as
1. T =

Udip:—§<E 'a'E> :—ZE 'a‘E7 (249)
where the contractions are over the polarization states of the photons, and (-) again
denotes averaging over an optical period. Uy, is a tensor whose indices are the
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initial and final magnetic substates m and m”. Its eigenvalues are the light shifts of
the various magnetic sub-levels of state F'.

When the frequency of the applied optical field is much closer to the D lines
than to other transitions in the spectrum, only the coupling to the D lines needs to
be considered. This significantly simplifies the calculation. Combining Eqs. (2.49)
and (2.48), while substituting Eq. (2.47) yields

UF = th ] d%gFe

g

—— (€' - (Fym1q'|Fume)(Fymglq|Fume) - €) (2.50)
8 Iy~ Opr,

where the intensity I, the saturation intensity I, and the dipole D are used, as
defined in Eqs. (2.9), (2.35), and (2.47) respectively. Again the notation € = E/|E|
is used for the polarization of light.

2.3.3 Rubidium

The element Rb has two naturally occurring isotopes. The 8Rb isotope is a stable
isotope with a natural abundance of 72.17% [56]. The 3"Rb isotope has a nuclear
lifetime of 4.88 x 10' yr [56], making it a stable isotope for all our purposes. It
has a natural abundance of 27.83(2)% [56]. For atomic physics experiments aiming
at quantum degeneracy 8"Rb is the favorite isotope due to its favorable collisional
properties.

All experiments described in this thesis are performed with 8"Rb atoms. The
useful transitions are the D; line around Ao = 795.0 nm and the D5 line around
Ao = 780.2 nm. The energy levels, including the hyperfine splittings of these tran-
sitions, are shown in Fig. 2.3. Fig. 2.4 shows the relative transition strengths
3, g, (Fymglq|Feme)? between all the magnetic sub-levels of the D; and the Dy
lines. According to Eq. (2.46), the transition dipole moment D in Eq. (2.47) is
D = 2.534(3) x 1072 Cm.

In Table 2.1 some general information of Rb is presented. In many instances the
closed |2,42) — |3,4£3) transition of the D, line can be considered as an effective
two-level system. Some parameters associated with laser cooling are also given for
this transition. An extensive overview of Rb parameters is presented by Steck [57].

2.4 Van der Waals interaction

The experiments described in this thesis will all involve atoms in close proximity of
a dielectric surface. At these small distances the Van der Waals potential has to
be taken into account. The Van der Waals potential for an atom in vacuum at a
distance z from a flat medium with index of refraction n is given by

n—1 1 D?

- 2.51
n2? 4+ 148mrey 23’ (2:51)

UVdW =

which is derived in [58], Eq. (37). The factor D? is the variance of the atomic
electric dipole in the atomic state under consideration. Eq. (2.51) is only valid if
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this state has no quadrupolar component. An expression for D? is derived in [58]
section III.A.3. By using this expression the quantum mechanical expression Eq.
(2.51) approaches the common expression for the Van der Waals potential, which is

given by
3n2—1/1Y\°
Updw = — — — ) ar, 2.52
aw 16n? +1 <koz) (2:52)

to approximately 10%. For ko and I' the values of the dominant D, transition of
Rb atoms should be used. The experiments in [59, 60] show that this is a good
approximation.

general information on *"Rb

mass m [56] 86.90918 u
7 1.443 x107% kg
natural abundance 56] 27.83(2) %0
nuclear spin [ 3/2
general parameters D; line 553257, — 5p 2P /2
optical frequency w [61] 3771 X2m THz
wavelength in vacuum )\ 2me/w 795.0 nm
natural lifetime 7 63] 27.70(4) ns
natural linewidth I'/27 /T 5.746(8) MHz
saturation intensity Iy hlw? /127 c? 14.9 pW /mm?
(J¢ D]l Je) [63] 3.587(3) x1072° Cm
general parameters D, line 553257/ — 5p P55
optical frequency w [62] 384.2 2w THz
wavelength in vacuum  Ag 2me/w 780.2 nm
natural lifetime 7 63] 26.24(4) ns
natural linewidth I'/27 /7 6.065(9) MHz
saturation intensity I hTw3 /127 c? 16.7 uW /mm?
(Jo D]l Je) [63] 5.068(3) x1072 Cm

Dipole moment

2,42) — [3,43) D | \/3meoPhl/jwd | 2.534(3) %1072 Cm

laser cooling parameters D, line

Doppler temperature Tp hI'/2kg 146 pK
recoil temperature T} (hko)? /mkg 361 nK
recoil velocity v, hkqo/m 5.88 mm/s

Table 2.1: Some parameters of 8Rb.
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Figure 2.3: The hyperfine levels of the D; and D, line of 8Rb. Indicated are the splittings between the
several (hyper)fine-structure levels. The fine-structure splitting of the D; and D, lines is from [61] and
[62] respectively. The corresponding wavelengths are calculated from these values using Ao = 27c/w.
The lifetimes 7 of the 5p2P1/2 and 5p2P3/2 excited states are from [63], and the corresponding decay
rates are calculated from these values by I' = 1/7. The ground state hyperfine splittings are from [64]
and the 5p 2Py, and 5p?P;, excited state hyperfine splittings are from [65] and [62] respectively.
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Figure 2.4: Relative transition strengths 6OdﬁgFe(Fgm;:glq|Fem;:e>2 for transitions between all magnetic
sub-levels of the D; and the D5 lines.
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Feasibility study for dipole traps
at alternative wavelengths

We present a pre-study of alternatives for the CO, laser wave-
length to produce a Bose-Einstein condensate of ’Rb in a
strongly focused dipole trap [40, 41, 66]. In these experiments
the atoms are transferred from a magneto-optic trap to a far
off-resonance dipole trap. Based on a calculation, we show
that the light shift behavior of the Rb 5s35] » ground state
and 5p 2P 5 excited state for optical frequencies corresponding
to wavelengths larger than 1.6 pum is similar to their behav-
ior at the CO, laser wavelength of 10.6 pum. In particular
laser light around a wavelength of 2 ym has several practical
advantages over a CO, laser. Sufficiently high power lasers
recently became available at this wavelength.
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3.1 Introduction

Recently there have been several experiments where Bose-Einstein condensation
(BEC) was observed using all-optical techniques. The atoms are trapped in a far
off-resonance dipole trap (FORT) or a quasi electro-static trap (QUEST) and a
subsequent phase of forced evaporation results in phase-space densities larger than
one. The difference between the two types of traps is somewhat arbitrary, since
they are both far detuned dipole traps. A QUEST is by definition a dipole trap
where the laser frequency is less then half the frequency of the first allowed electric
dipole resonance [67]. Some of these experiments load a QUEST from atoms in a
magneto-optic trap. BEC is then only achieved when the trap was created by a
tightly focussed COs laser. Equivalent approaches with neither Nd:YAG lasers, nor
Ti:Sapphire lasers were successful.

In the first section of this chapter we will show that this is very likely due to the
light shifts of the atomic levels in the field of the CO4 laser. In the next section we
will derive expressions that will enable us to calculate these light shifts for arbitrary
atomic levels. Subsequently we will test the accuracy of these expressions by a
comparison with experimental results for Rb. Finally we will use them to find other
wavelengths that give rise to similar light shifts as a CO, laser.

3.2 Earlier QUEST experiments

Since the first results in laser cooling and trapping people have attempted to reach
Bose-Einstein condenstation (BEC) using these, all optical, techniques. Presently,
quantum degenerate samples of atoms have been created by all optical means, for
several atomic species 8"Rb [40, 41, 66], ™Y [68], 33Cs [43, 69]. Also a degenerate
Fermi gas of 5Li atoms has been created in an all-optical way [70]. However, no
dissipative laser-cooling techniques were used, instead the atoms are trapped in
a (quasi) conservative FORT or QUEST trap. The subsequent process of forced
evaporation, similar to what is used in conventional, magnetically confined BEC
experiments [33, 34| resulted in a sufficient increase of phase-space density to reach
the BEC threshold.

The general loading procedure is similar for virtually all experiments. In the
first stage several million atoms are collected and pre-cooled in a magneto-optic trap
(MOT). In the next stage the detuning of the cooling lasers is increased to ~ —20T"
and the repumper power is significantly reduced, thus creating a so called temporal
dark-MOT. During this phase atoms can be collected in a state that is decoupled
from the cooling process. In this state atoms can be collected in the potential
minimum of the QUEST at higher densities than achievable with straightforward
laser cooling. Adams et al. [71] first presented this technique to achieve high densities
in a FORT. Kuppens et al. [72] present a thorough investigation of the loading
process of a FORT. However they focus on traps with a detuning of a few nanometers
and therefore disregard effects of the excited-state light shift.

All BEC experiments that use the above described loading scheme report a
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remarkably high density immediately after loading the QUEST. Several explanations
have been suggested. They do not exclude each other and more processes may play a
role. Barrett et al. [40] propose a local dark-MOT; the light shift due to the strongly
focussed, crossed COy beams causes the repumper to be locally off resonant. For
a crossed-beam geometry there seems to be consensus that these high densities are
likely due to elastic atom-atom collisions from atoms that are trapped in either of
the two beams and one of the two ending up in the potential well of the crossed
region. This process is similar to the loading of the “dimple trap” [73]. This line
of thought is confirmed by [74] where several istopes of Yb atoms are first loaded
from a MOT in a single-beam FORT and subsequently a second FORT is switched
on after the MOT is switched off. The fraction of atoms in the crossed region is
observed to increase significantly with time for the bosonic isotopes, while for the
fermionic isotopes this increase is much smaller.

Similar compression effects, although in a completely different geometry, have
been observed in the Cs experiments [43, 69]. In Ref. [69] the atoms are pre-cooled to
a high phase-space density and subsequently transferred to a large volume, shallow
crossed CO, QUEST. Switching on a tightly focused YAG laser results in trapping
of a substantial fraction (= 15%) in the YAG FORT while the phase-space density is
increased by an order of magnitude. In Ref. [43] atoms are trapped near a dielectric
surface in a gravito-optical surface trap (GOST). Adding a strongly focused YAG
beam yielded a 300 times density increase [44].

A comparison of single-beam and crossed-beam BEC experiments, performed by
Cennini et al. [41], does however not show a remarkable difference in results. The
density after transfer to the QUEST and thermalization of the sample shows an even
higher density in the single-beam experiment than in the crossed-beam experiment.
However, also the temperature is higher in the single-beam case, resulting in a lower
phase-space density.

In the case of loading a QUEST directly from a MOT other processes must
play a role. The density increase observed in experiments where CO, lasers were
employed was not observed in experiments where the trap was created by a YAG
laser. Experiments by Adams et al. [71] illustrate this point. In e.g. [75], where a
CO2 QUEST was used, this density increase was observed although in their case it
was probably limited by the small number of atoms in their MOT and the relatively
large CO5 beam waist.

Cennini et al. [66] propose another explanation for the difference between the
loading of YAG and COj traps from a MOT. They note that although the light shift
due to a YAG laser is attractive for ground-state Rb atoms, it is repulsive for the
excited state used in laser cooling. This has two consequences. Firstly the atoms
are pushed out of the trapping region when they are in the excited state. Since the
near-resonant laser-cooling beams are still on, the excited state is macroscopically
populated even though the repumper intensity is decreased at the end of the FORT
loading process. Secondly the light shifts of the ground and excited states increase
the energy difference between these two states. This results in a larger detuning
of the cooling lasers, and thus less efficient laser cooling in the FORT trapping
region. In the case of a CO4 trap both these effects work constructively. The light
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Adams et al. [71]

Friebel et al. [75]

element 2Na 8Rb
trap type crossed YAG standing-wave COq
MOT /molasses
MOT dmor —24 MHz —-40 T
dark-MOT  dqmoT —108 MHz -18.0 T
# atoms in MOT  Nyor 106
dipole trap parameters
power per beam P 4 W 10 W
trap frequencies w/2m (0.72,0.72,15) kHz
beam waist w 15 pm ~ 100 um
FORT level shifts
28, /5 shift Uy -9 MHz -8 MHz -13 T
2P3/2 shift ~+9 MHz —-20 MHz -33 T
differential shift ~ +18 MHz —12 MHz -20 T
FORT info
# trapped atoms NgorT
temperature Tgorr 140 pK
density nporT 478 %102 em™? 3.1x10" cm™3
phase-space dens. PSD
Barrett et al. [40] [ Cennini et al. [41, 66] |
element 8TRb 8TRb
trap type crossed COq single-beam COo
MOT /molasses
MOT dmor —-15 MHz -25 T —-18 MHz -30 T
dark-MOT  dqmoT —140 MHz -233 T —-160 MHz -26.7 T
# atoms in MOT  Nyor 3. x 107 6. x 107
dipole trap parameters
power per beam P 12 W 28 W
trap frequencies w/2m 1.5 kHz (4.8,4.8,0.35) kHz
beam waist w ~ 50 pm 27  pm
FORT level shifts
25’1/2 shift Uy -93 MHz -15 T -35 MHz 58 T
2Py 5 shift —25.1 MHz —42 T —-95 MHz —158 T
differential shift —15.8 MHz -26 T —-60 MHz -100 T
FORT info
# trapped atoms  NpoRrT 6.7 x 10°
temperature TgorT 38 uK 140 pK
density nporT 2. x 10"  c¢m™3 1.2 x 101 cm™3
phase-space dens. PSD 75/3 1.2 x 1074/3

Table 3.1: A comparison of some experiments where a FORT is loaded directly from a MOT. The

achieved densities, temperatures and phase-space densities in the FORT are given for a sample in
thermal equilibrium. They should be compared with typical values for a MOT. Note that the FORT
level shifts are significant with respect to the applied detunings of the MOT laser.
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shifts of atomic levels due to the CO, laser light can be approximated by the DC
polarizabilities of these levels. The excited-state light shift is 2.7 times larger than
the ground-state light shift. The excited-state atoms are therefore even more deeply
trapped than the ground-state atoms. Furthermore the energy difference between
the ground state and the excited state becomes smaller which results in more efficient
laser cooling in the QUEST trapping region.

The reported Cs experiments are not sensitive for the excited-state light shifts,
since the atoms are transferred from a conservative trap to a FORT. The excited
state is not populated in this scenario and high densities can be realized even using
a YAG laser.

Table 3.1 shows a comparison of four experiments where a FORT or QUEST
is loaded directly from a MOT. The achieved densities, temperatures and phase-
space densities in the trap are quoted values after the sample has reached thermal
equilibrium. These values should be compared with values for a MOT, where the
density is typically ~ 10" cm™ and the phase-space density is typically ~ 1075,
Note that the level shifts are significant with respect to the applied detunings of the
MOT laser. During the MOT phase the cooling laser will be even blue detuned in
the center of the QUEST. In order to be able to load a deep QUEST it is clearly
important to use a sufficiently large detuning of the cooling laser during the dark-
MOT phase.

3.3 Dipole polarizability tensor

In order to calculate the light shift of a particular level for a particular choice of
the optical frequency we need to know its polarizability at this frequency. Experi-
mentally little is known about Rb polarizabilities. Most experiments have been
performed using static electric fields, determining values for the DC polarizabilities.
The Rb (phase-space) density increase has so far been reported in experiments using
COs lasers. Their frequency is so low that the polarizabilities at this wavelength are
well approximated by the (experimentally determined) DC polarizabilities. When
we are looking for similar effects for other, higher frequencies of the light we need
to rely on calculations.

The first part of this section describes how the level shifts can be calculated
using known values of the polarizability. The next part focusses on deriving general
equations to calculate the dipole polarizability tensor. Finally some approximations
are performed to achieve equations that are practically usable.

3.3.1 Light shift
Similar to Eq. (2.49) the light shift of a certain atomic level can be calculated by

1~ 1~ -
Udip:_§<ET'd> :—ZET-a-E. (3.1)

The indices of the tensor U are the initial and final magnetic sub-states of this
atomic level. The eigenvalues of U are the light shifts of the various magnetic sub-
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levels. The last part of Eq. (3.1) is valid when the induced dipole d is proportional
to the applied electric field E. Moments with even powers of E are zero, because
the relation d(E) = —d(—E) is not fulfilled. This relation should be fulfilled in the
case of atoms, since these are symmetrical. For non-symmetrical particles, such as
molecules, even powers of E can appear. Higher moments with odd powers of |E|
are only significant for very high laser powers (non-linear optics). The brackets (-)
denote averaging over a period of the optical field. Bonin and Kadar-Kallen [76, 77]
present a general description to calculate d, although they do not always give a
complete derivation of their equations or references thereof.

3.3.2 Dipole polarizability tensor

Contrary to the treatment of the polarizability tensor e in chapter 2, we can now
not limit ourselves to the case where the detunings of the applied fields with respect
to the transition frequencies are small; so that the rotating wave approximation can
no longer be applied. For |§| > I' and low saturation (so that spontanecous emission
processes can be neglected) the polarizability tensor becomes

o ({FmDIFw) (FwDIFm)  (Fm D) (F'm'| D | Fm)
T o h(wpp — w) N h(wppr +w)
(3.2)

It has the same indices as the polarizability tensor derived in chapter 2: the initial
and final magnetic substates m and m” and the polarizations g and ¢’ of the absorbed
and emitted photons, necessary to make this Raman transition. The symbol S
denotes summation over discrete indices and integration over continuum states, and
D denotes the dipole operator. The frequency difference between the states |F') and
|F") is wppr, and w is the frequency of the driving field.

It is customary in the literature [76, 77] to expand the polarizability tensor as
follows

3(F,F; + F;F,) — F(F +1)d,

aij = aogij — 7 (]/_:'\‘,]/5\‘] — f‘jf‘l) —+ (0D)] F(2F — 1) s

(3.3)

with 4,7 denoting cartesian coordinates, Sl-j the identity operator, and ﬁz the an-
gular momentum operator. It is written as an operator, but squeezed between an
initial state |F'm) and a final state |F'm”), it is equal to Eq. (3.2). The scalar polar-
izability aq describes e.g. the index of refraction of a vapor of atoms with randomly
oriented spin directions. The vector polarizability a; can give a contribution for
states with F' > %, and describes phenomena like paramagnetic Faraday rotation of
plane polarized light by spin polarized atomic vapors. The tensor polarizability oy
can give a contribution for states with F' > 1, and describes e.g. birefringence of a
vapor of spin-aligned atoms.

The frequency-dependent scalar, vector, and tensor polarizabilities are defined
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by
@0 = 3h(2}3’ n 1)§/¢O£f L)ZgF (FIDIF),
= e § s (PIDIFR 3.9
@2 = 3h(2]3’ T1)F (bi(é;F L)ZI’:F (FIDIE).

A difference in frequency dependence occurs because the scalar and tensor polariza-
bilities are the symmetric part of the polarizability tensor (a + a')/2, while the
vector polarizability is the anti-symmetric part (o — ) /2. Since a; is proportional
to w whereas o and ay are proportional to wpps, the vector polarizability will become
less important with respect to the other contributions for larger wavelengths of the
driving field. For DC fields it is equal to zero.

The factor (F'||D||F) denotes the reduced dipole matrix element as defined in
the previous chapter. Because it is more convenient in this case and more general
in the literature the alternative definition of the reduced dipole matrix elements
mentioned in section 2.3.2 will be used in this chapter. The distinction between the
two definitions is maintained by using a notation with parentheses (-||-||-) instead of
the notation with angular brackets (-|| - ||-) which was used in the previous chapter.
The reduced matrix elements for the hyperfine structure levels can be simplified
using a transformation similar to Eqgs. (2.42) and (2.43)

RS 2 / F F' 1 ? AR 2
(F|D[|F)" = QF +2)2F+1)9 & 5 ;¢ (JID[J) (3.5)
6]
The factors ¢o(F, F'), ¢1(F, F'), and ¢o(F, ') are given by
gbo(F, F/) :5F’,F—1+5F’,F+5F’,F+1, (36)
1 1
FFY=——0pp 14— ——0p O
&1 (F, F') OF F(F+1)F,F+F+1F,F+17
2F —1 F(2F —1)
FF)=—0pp_ — g — S
o (F, F') F'\F 1+F—|—1 F'F (F+1)(2F+3)F,F+17

where d,,, represents the Kronecker delta. For DC fields a thorough derivation of
the scalar and tensor polarizability pre-factors is presented in [78, 79].

As will be obvious in the next section, it is sometimes convenient to work with
oscillator strengths instead of dipole matrix elements. The dimensionless oscillator
strength frp is defined by

2me Wrppr

Jrr = Sp s+
It will be especially useful to express the scalar polarizability in terms of the oscillator
strength

|(F'|D||F)P. (3.7)

_ @ GOlEF) e

Qg =
M F whp — w?

(3.8)
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3.3.3 Approximations of polarizability tensor

During the loading of the QUEST trap also the MOT lasers and the quadrupole
magnetic field are present. These might influence the effectiveness of the QUEST
trap. If we compare the QUEST light shifts mentioned in Table 3.1 with the Zeeman
shift of a typical MOT magnetic field gradient of 10 G/cm over a typical trap width,
we see that the former is much larger than the latter. The presence of the MOT
magnetic field thus doesn’t influence the QUEST trap in the parameter range that
we consider. The presence of the MOT beams mainly result in the destruction of the
spin alignment of the atoms due to scattering. However, the typical scattering rate
of 100 kHz is very low compared to the frequency with which an atomic dipole aligns
with the applied electric field. We therefore conclude that even in the presence of a
MOT, the description of the light shift in a QUEST trap as derived in this section
is valid.

For linearly polarized light only the @, component of the polarizability ten-
sor needs to be considered. Furthermore if the quantization axis of the atom is
taken parallel to this polarization, the off-diagonal elements (F'm”|a,,|F'm) are zero.
Therefore (F'm|a,,|F'm) are the eigenvalues of the &,, operator. Egs. (3.3), (3.4),
and (3.6) then reduce to

3m?* — F(F+1)
FF — 1)

vz = (F'm|a.:[Fm) = ag + a (3.9)
This is an expression that is generally found throughout the literature [80, 81]. From
this expression we can understand the pre-factor of the tensor polarizability term. It
is chosen such that in this particular approximation of the polarizability it becomes
equal to 1 for states with m = F'.

3.4 Specific situation for rubidium

3.4.1 Discussion of unit systems

The S.I. unit of polarizability is Cm?/V. The equations presented in section 3.3 also
require S.I. units. In the literature however, experimental values are often specified
in cgs units of cm® or A% = 1072* cm?, whereas theoretical values tend to be given
in a, with ao the Bohr radius. Values can be converted between these unit systems
by the following relations.

alem®] = 10%galay] = 1.48184 x 10~*°alay],
a[Cm?/V] = 4710 %gpafem?] = 1.11265 x 10~ Pafcm?], (3.10)
a[Cm?/V] = dregaialal] = 1.64878 x 10~ afag).

The S.I. unit Cm?/V is equivalent to J/(V/m)? from which is clear that it can be
convenient to express the polarizability as «/h, which has a unit Hz/(V/m)? and
gives rather straightforwardly the level shift for a given electric field. The S.I. unit
for a dipole d or a reduced dipole matrix element is Cm.
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Rb transition (n'J'||D||nJ) (eao) for Ao
calculated | experimental (1073) (nm)
55215 — bp2Py | 4221 1231(3) | 341.8(5) | 794.979
552512 — bp?Pyo 5.956 5.977(4) 694.9(5) 780.242
552810 — 6p°Prjp | 0.333 3.99 421,672
552515 — 6p2Pyy | 0.541 10.6 420.298
553512 — Tp?Pi 2 0.115 0.559 359.259
553512 — Tp?Pso 0.202 1.73 358.807
553512 — 8p?Pi 2 0.059 0.158 335.178
552512 — 8p°Py)s 0.111 0.558 334.968
5p?Prjy — 555, | 4221 1231(3) | —341.8(5) | 794.979
5p2Pr sy — 6575, | 4119 0.1945 | 1323.879
5p2Pijs — T5°S1 2 0.954 19.0 728.2003
5p2Pi /2 — 85251/ 0.504 6.35 607.2436
5p2Prjs — 4d?Dyp | 7.847 633.3 1475.644
5p2Prjy — 5d°Dypn | 1.616 52.01 762.1030
5p?Pij2 — 6d?Ds;s | 1180 34.04 620.8026
5p?Pys — 552515 | 5.956 5.077(4) | —347.5(5) | 780.242
5p 2Py /o — 65251/ 6.013 200.8 1366.875
5p2Pys — 7521, | 1.352 18.72 741.0214
5p2Pys — 8521, | 0.710 6.21 616.1331
5p2Pys — 4d?Dys | 3540 62.19 1529.261
5p2Py)s — Ad?Ds)s | 10.634 561.12 | 1529.366
5p2Pys — 5d2Ds;y | 2334 53.28 T75.9786
5p2Ps /5 — 6d*Ds )5 0.558 3.75 630.0966
5p2Ps /5 — 6d*Ds s 1.658 33.11 630.0067

Table 3.2: Data of some relevant transitions. Reduced dipole matrix elements in atomic units as
calculated by Safronova et al. [82, 83]. The experimental matrix elements of the D; and the D; lines
are from [63]. The values can be converted to S.I. units by multiplication by eag = 8.47836 x 10730 Cm.
The oscillator strengths f;; of these transitions are calculated from the experimental reduced dipole
matrix elements whenever available and from the calculated elements otherwise. The wavelengths g

of the transitions are from [84]

For the reduced dipole matrix elements of the transitions in Rb mainly theoretical
values are reported. They are specified in atomic units. These can be converted to
S.I. units by

d[Cm] = eapd[eag] = 8.47835 x 10~ d[eqy). (3.11)

3.4.2 Dipole matrix elements and transition energies

In order to calculate polarizabilities we need values for the reduced dipole matrix
elements of the transitions in Rb and values for the energy differences between
particular levels. Only for the 5s25; /2 — 5p ’p, /2 and 5s 23, /2 — dp ’p, /2 transitions
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Figure 3.1: Grotrian diagram of the spectrum of Rb. The wavelength values are from [84] and are
assigned to a particular transition by comparison with the less accurate data from [85]. The ionization
energy is also from [84].
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experimental values are known [63]. In this paper a measurement of the line strength
S of the 5s — bp transition is presented. The value of § can be converted to a
reduced dipole matrix element using the relation (Ls,||D||Lss) = /Sss—sp/(25 + 1),
[52]. By means of Eqgs. (2.44) and (2.45) the reduced dipole matrix elements of the
Dy and the D, lines can be derived, which results in 4.231(3) eap and 5.977(4)
eay respectively. For several other transitions Safronova et al. have calculated
values [82, 83]. For convenience, the values which will be used to calculate the
polarizability are given in Table 3.2. Values for the energy differences between two
levels are derived from wavelength data taken from [84]. The wavelengths in this
reference are assigned to a particular transition by comparison with the less accurate
data from [85]. These data are shown in a Grotrian diagram in Fig. 3.1. Only the
transitions which are shown in solid lines are used in the calculations, limited by the
availability of known reduced dipole matrix elements. Transitions indicated with
dashed lines are not used in the calculations.
For an effective one electron system, the sum rule

> fir=1 (3.12)
7

applies for the oscillator strength as defined by Eq. (3.7). With this rule we can
check whether the important transitions from a certain initial state are taken into
account. In order to calculate the light shift of the 5525 /5 ground state, sufficient
levels are taken into account, since the oscillator strengths of this level, shown in
table 3.2, indeed add up to approximately one. For the 5p 2P /2 and Sp 2py /2 excited
states the oscillator strengths add up to 0.597 and 0.600 respectively. It seems that
many important transitions are lacking. Although these are all highly excited and
continuum states, and we thus expect their influence on the polarizabilities in the
infrared range we are interested in to be limited, we will try incorporate this missing
oscillator strength.

Since we are interested in a wavelength range that is far detuned with respect
from the missing transitions, it is reasonable to introduce a fictitious extra level at
the ionization energy. We will take the oscillator strength of the transition between
this extra level and either of the 5p2P;» and 5p?Ps), states equal to the lacking
oscillator strength f.. We can not attribute sub-structure to this extra level, so we
will only determine the contribution of this fictitious level to the scalar polarizability.
Analogous to Eq. (3.8) this contribution consists of the addition of an extra term

et fo
27

Me w2, — w

(3.13)

Qe =

with fiw. is the ionization energy of either of the 5p 2P 5 or 5p2Pss states.

Apart from the contribution of the valence electron, there is a contribution from
the core (non-valence electrons). Also these electrons are coupled to excited states
and give a contribution to the polarizability. Johnson et al. [86] calculate this
contribution to the scalar polarizability to be 9.3 a} = 1.5 x 107 Cm?/V. Since
these are deeply-bound electrons, we assume it to be independent of the frequency
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of the light, an assumption also made by Safronova et al. [83]. They also estimate
the contribution of the not-incorporated levels and the continuum to the 5s25; 12 DC
scalar polarizability to be < 1%.

3.4.3 Comparison with experimental polarizability values

In the literature experimental and theoretical values of the scalar polarizability ag
and the tensor polarizability s are given for some Rb levels for DC electric fields.
A summary of these values, converted to S.I. values, is shown in Table 3.3.

In order to test the accuracy of our calculations and of our method to take
the missing oscillator strength into account, we have attempted to reproduce these
experimental polarizabilities. Fine-structure polarizabilities can be calculated by
replacing all F' and F’ by J and J’ respectively in Eqs. (3.3)-(3.9); Eq. (3.5) does
not apply. The theoretical reduced dipole matrix elements of Table 3.2 have been
used, except for the Dy and the D, lines for which the experimental values were used.
The results of these calculations are presented in the last two columns of Table 3.3.
The core polarizability which is discussed in section 3.4.2 has been incorporated in
the calculation of ag. It is obvious that our calculations without the correction term
a. yield systematically lower results while the experimental values are reproduced
well when the correction term . is added to the polarizability.

Due to the limited number of (especially short wavelength) transitions which are
taken into account in the calculations we expect a breakdown of the calculations for
the 5525 /2 state below 400 nm, and for the 5p?P 5 and 5p?Ps ), states below 700
nm. For wavelengths above 1 pym, however, we do not expect problems.

3.5 Alternative QUEST wavelengths

Using Eqgs. (3.9) and (3.4)-(3.6) and the reduced dipole matrix elements from Table
3.2 the entire spectra of the polarizabilities a of the 553515, F = 1,2 states and
the 5p 2P3/2, I = 3 state have been calculated for wavelengths A\g of 700 nm and

experimental calculated polarizability

level polarizability values || without a. | with a.

& 1073 10737 1073

frequency Cm?/V ref. Cm?/V Cm?/V
a(5s%512) (DC) 5.3 (1) [87] 5.25 5.25
a(5s3S1/2) (1064 nm) || 12.7 (1.0) | [76] 11.34 11.34
a(5p?P12) (DC) 134 (1) [88] 12.40 13.11
o (5p?Ps2) (DC) 14.13 (17) [81] 13.39 14.12

s (5p?Ps ) (DC) —2.69 (6) [81] —2.6 —2.6

Table 3.3: Experimental DC values of polarizabilities of some Rb levels including references. All values
have been converted to S.I. units. The calculated values are shown without and with the correction

term ac.



3.5 Alternative QUEST wavelengths 37

higher. The correction term «. has been taken into account in the calculations of
the latter spectrum. The results are shown in Figs. 3.2(a) and (b). The tails at
the long wavelength side gradually tend to the DC polarizability values. The solid
lines are the scalar polarizabilities. For the 5s 25, /2 ground state, the polarizability
is equal for both hyperfine levels and the tensor polarizability vanishes.

Examining the spectra with the criterion that both the ground and excited-state
polarizabilities must be positive, so that both states are in an attractive potential
gives two wavelength regions for which this criterium is fulfilled. The first is between
the excited-state resonance with the 6525 /2 state at 1366 nm and the zero crossing
at approximately 1400 nm. The second is for wavelengths larger than that of the
excited-state resonance with the 4d 2Dy /2,5/2 states at 1529 nm.

The first region is a rather narrow window where the excited-state polarizability
depends strongly on the wavelength. Using a tunable laser in this wavelength region
would thus allow us to change the local laser-cooling efficiency in the QUEST region,
while keeping the QUEST trap depth, the 5s 51 /5 polarizability constant. There are,

9 - 0.15
< B ~
< 6L 4 01 PN
£ ~|E
O . 4005 T|X
% b
3 0 o D
N
Q-3 F - 0055
7 7|
0 -6 | 4-01g
3 - 8
3
—9 |-
I I I I I I I I I ] -015
750. 1000. 1250. 1500. 1750. 2000. 2250. 2500. 2750. 3000.
Ag (NmM)
; T I\\ \\l T T T B I_ 06 /-T\.
< ~. N —
NE o \;--_.___\_: ..... N g
s A T~ e 04 T |2
3 s VT 2
o ~—
) o &
& I
Llll_ ----------- m= 0 |7 -0.24-
eIl I 17 472 N N | N (it m=+1 Q=
& m=x2 |4 048
a +
T9) ————— m=+3 w
Kt - -06
S 1 1 1 1 1 1 1 RS
750. 1000. 1250. 1500. 1750. 2000. 2250. 2500. 2750. 3000.

Ao (NM)
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curve.
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Figure 3.3: The difference in polarizability between the ground-state and excited-state sub-state relative
to the ground-state polarizability versus wavelength A\y. This graph is useful to determine the differential
light shift for a given value of the FORT trap depth.

however, no lasers available in this wavelength region with sufficient power.

In the second wavelength region, lasers have recently become available that are
suitable for these purposes. There are e.g. erbium and thulium fiber lasers, which
operate between 1530 to 1620 nm and 1750 to 2200 nm respectively. Both are
available up to 150 W CW output power in a single spatial mode, M? < 1.1. The
linewidth of these lasers is however rather large, specified to be smaller than 1.0 nm,
which corresponds to a coherence length of a few millimeters. These wavelengths
have some favorable properties compared to the CO, laser wavelength of 10.6 pm
from an experimentalist point of view. Most standard optical materials, such as
BK7, flint glasses, and quartz (fused silica), are still transparent for these wave-
lengths. So no special vacuum windows are needed, and even a quartz cell can be
used to perform the experiment, which enables one to keep the lenses outside the
vacuum. Furthermore, it is easier to create small foci at a wavelength of 2 ym. A
disadvantage of these wavelengths is the presence of a minor absorption peak of wa-
ter around a wavelength of 2000 nm. This will, however, pose no serious limitations.
For wavelengths that are too close to the 1529 nm resonance the excited-state light
shift becomes very large, which would require an uncomfortably large detuning of
the cooling lasers in order to keep them red detuned from the cooling transition.

Fig. 3.3 shows the difference in polarizability for the ground state and the
magnetic sub-states of the excited state relative to the ground-state polarizability.
This graph is very useful to determine the differential light shift between the excited
and the ground state for a given QUEST trap depth. The long wavelength tail
gradually decreases to the DC value of 1.68 for the 5p 2P3/2 scalar polarizability
(which overlaps with the m = £2 curve) or to 1.19 for the 5p®Psy F = £m = 3
magnetic sub-state.

At a wavelength of 2 pm the polarizability of the 5525 /o state is 6.18 x 10~
Cm?/V. The scalar polarizability of the 5p2Ps s state is 3.28 x 107%% Cm?/V, while
the total polarizability of the ' = +m = 3 magnetic sub-state is 2.63 x 1073
Cm?/V. This leads to values of the relative polarizability difference of 4.32 and 3.26
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respectively. For a moderate trap depth of 10 MHz as in the experiment by Barrett
et al. [40], the differential light shift of the MOT cooling transition is 33 MHz. For
tightly focussed QUEST beams with very deep trap depth of 30 MHz, so that the
parameters of Cennini et al. [41, 66] are approached, the differential light shift of the
MOT cooling transition will be 98 MHz. The detuning of the cooling lasers during
the dark-MOT phase should be considerably larger than these values.

3.6 Conclusions

A wavelength of 2 pym is very promising for creating a QUEST. We predict that
a 2 pum laser will show similar behavior as a COs laser when it is used as a far
off-resonance dipole trap for Rb. Both wavelengths create a confining potential for
both the ground and the excited state of the 5s3S;/, — 5p?Pys transition, which is
used for laser cooling.

A QUEST at 2 um has some experimental advantages over a CO, laser QUEST.
No special vacuum windows are needed and the experiment can even be performed
in a quartz cell, which makes it possible to put the lenses outside the vacuum.
Furthermore it is easier to create small foci at a wavelength of 2 um. A slight
disadvantage is that a larger detuning of the laser-cooling light is needed during the
dark-MOT phase, in order to prevent the laser-cooling beams to be effectively blue
detuned in the QUEST trap center. This is because the differential light shift for a
given trap depth for a 2 pum laser is 2.68 times larger than the DC differential light
shift.



40

Feasibility study for dipole traps at alternative wavelengths




4: Experimental setup

We discuss the several components of our experimental setup.
The preparation of the laser beams with different frequencies
is discussed and experimental parameters are presented. It
is explained how these beams are used in the experiments.
A very accurate method to determine the critical angle of
a laser beam is presented. The vacuum system is discussed
extensively insofar it has been altered with respect to previous
descriptions of the setup [89, 90]. This concerns an alternative
prism geometry, a quartz cell to provide optical access for the
numerous laser beams used in the experiments, and the use
of a dispenser that is used as the Rb source.
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4.1 Laser park

This section discusses the laser setup that is used in the experiments described in
this thesis. Several laser frequencies are necessary in the experiments. An overview
of these is shown in Fig. 4.1. The purpose of these lasers will be explained in the
following sub-sections. Fig. 4.2 schematically shows the setup of the lasers that are
used near an atomic resonance.

4.1.1 Frequency locked diode lasers: master and repumper

There are two diode lasers locked to a 8"Rb spectral feature. One to the FF = 2 —
F' = (1, 3) cross-over of the Dy line, and the other to the F' =1 — F’ = 2 transition
of the D; line. Both lasers are 50 mW diode lasers with grating feedback [91, 92] in
Littrow configuration [93]. A small fraction of the available optical power is used to
obtain a Doppler-free saturation spectroscopy signal.

In order to frequency lock these laser diodes to a spectral feature a small RF
signal is added to the laser current, which results in frequency sidebands on the laser
light. A dispersive spectroscopy signal is obtained by mixing the spectroscopy signal
with the RF oscillator [94, 95]. The resulting signal is used as feedback to the laser
current in order to compensate for fast fluctuations. Furthermore it is integrated
and sent to the piezo on which the grating is mounted, in order to compensate for
long term drift.

The laser that is locked to the Dy line is called the master laser, and is used as
a frequency reference for two laser diodes that will be injection locked. These will
be discussed in the next two sub-sections. The laser that is locked to the D; line
is called the repumper, and is used to prevent atoms from ending up in the F' =1
ground state during the MOT and molasses stages of the experiment. Later in an
experimental run it can also be used to pump all atoms to the F' = 2 state by pulsing
it on for a short time. A total power of 8 mW was obtained behind a single-mode
(SM) optical fiber. It can be switched on and off within 100 us by a mechanical
shutter (Vincent Associates, Uniblitz, 1.52T2), which is placed in the focus of a 1:1
telescope, in order to reduce the switching time.

4.1.2 MOT /molasses

Some light of the master laser is frequency shifted using a double-pass AOM setup.
The frequency shifted light is injected into a the MOT/molasses laser diode through
the unused output port of the second polarizing beam splitter (PBS) of the optical
isolator behind this diode laser. We adjust the AOM frequency such that the injec-
tion locked laser diode operates at an optical frequency suitable for magneto-optic
trapping (6 ~ —1.5 ' with respect to the F' = 2 — F’ = 3 transition of the D5 line)
or for polarization-gradient cooling (§ ~ —10 I" with respect to the same transition).
The final power of the beam can be reduced by the combination of an electro-optic
modulator with a PBS. This combination has an extinction ratio of ~ 1073. To
fully extinguish the beam a mechanical shutter is used. Just as mentioned before, it
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Figure 4.1: Overview of the laser frequencies used in the experiment.

is placed in the focus of a 1:1 telescope in order to reduce the switching time. The
beam is finally injected into a SM optical fiber.

Initially we used a 50 mW laser diode [89]. This concerns the experiments
described in chapter 6. Typically 100 uW of frequency shifted light was necessary
for injection locking. A maximum power of 17 mW was realised behind the SM fiber.
The fiber output was collimated to a waist of 4 mm. The beam is split in 3 parts. The
6 MOT beams were created by retro reflecting the original 3 beams. A disadvantage
of this setup is that there is a power imbalance between the retro-reflected beams,
both by the reflections from the glass cell surfaces and the absorption of the cloud
of cold atoms, but it is very economical in terms of laser power.

In later experiments (chapter 7) the 50 mW diode was replaced by a 150 mW
diode (Semiconductor Laser International corporation, SLI-CW-9mm-C1-783-0.15s-
PD). Although this device was specified as SM, all tested specimen were multi mode,
both spectrally and spatially. The spectral multi-mode behavior was removed by
injection locking it with ~ 3 mW of frequency shifted light from the master laser.
The spatial multi-mode character limited the incoupling efficiency of the polarization
maintaining (PM) fiber to ~ 45%, which corresponds to ~ 40 mW behind the fiber.
This is sufficient to create 6 independent beams with a waist of 4.5 mm. This way
the power imbalance between the beams is solved.

The MOT is loaded from the background 8"Rb pressure for 3 s. During the
loading stage two coils in anti-Helmholtz configuration produce a magnetic field
gradient of approximately 10 G/cm. The 6 MOT beams are circularly polarized,
the beams that propagate perpendicular to the coil axis are orthogonally polarized
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from the beams that propagate parallel to the coil axis. The repumper light is
overlapped with 2 of the 3 sets of counterpropagating MOT beams. When the MOT
is saturated, the temperature of the trapped cloud of atoms is further decreased by
a short period of 3 ms polarization-gradient cooling. During this stage the magnetic
field coils are switched off, the detuning of the MOT light is increased to d ~ —10 "
with respect to the FF = 2 — F’ = 3 transition of the D5 line and the power of the
beams is decreased to approximately half the initial power by the EOM and PBS
combination.

Typically 2 x 107 atoms were trapped and cooled to 7' ~ 5 pK. In order to
reach these low temperatures it proved very important to cancel all stray magnetic
fields in the trapping region. This was done by three pairs of Helmholtz coils. After
the molasses stage all light beams are switched off and the atoms fall ballistically
towards the prism that is mounted inside the vacuum under the trapping region.

4.1.3 Probe and depumper

The probe/depumper laser diode is injection locked directly with light from the
master laser. Its light is split in two beams and each is frequency shifted by a
double-pass AOM setup and subsequently coupled into a SM fiber.

One of the beams is frequency shifted to the F' = 2 — F’ = 2 transition of the
Ds line and is called the depumper. It will be totally internally reflected from one of
the 45° surfaces of the prism that is mounted inside our vacuum system. The two
prism configurations that are used are best visible in Figs. 4.5 and 4.7. This way
the depumper beam will propagate vertically upwards, along the trajectory of cold
atoms falling towards the surface. A short pulse of ~ 1 ms duration and a power of
100 W is sufficient to pump all atoms to the F' = 1 ground state by a spontaneous
Raman process.

The second beam is frequency shifted close to the F' =2 — F’ = 3 transition of
the Dy line and will be called the probe. It is used for all probing purposes in the
experiment: e.g. the evanescent-wave probing technique that will be discussed in
chapter 6, but also for absorption imaging [89, 90, 96] in order to characterize the
cloud of falling atoms.

4.1.4 Non-resonant lasers

Several higher power lasers are used in the experiments. These lasers are not fre-
quency locked, since their detuning from an atomic resonance is relatively large and
their frequency drift is sufficiently slow to be able to compensate manually.

We use a tapered amplifier system (7optica, TA100) that is used to create a
repulsive EW potential to load a standing-wave (SW) dipole trap in experiments
described in chapter 6. The tapered amplifier gives powers up to 300 mW behind
an optical isolator, but due to a bad spatial profile only approximately 100 mW is
transferred through a SM optical fiber. In these experiments it is blue detuned by
0.2-1 GHz with respect to the F' =1 — F’ = 2 transition of the D; line.
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The SW laser is a Ti:sapphire laser (Coherent, MBR-110) that is pumped by a
10 W Verdi laser (Coherent). This system gives up to 1.4 W of optical power near
the D5 line and is red detuned by 85 GHz in these experiments. In the experiments
described in chapter 7 this Ti:sapphire laser is used for the EW dark-state trap,
where it is tuned close to the D; line. This wavelength is closer to the optimum
wavelength of the mirror set we use, which results in a power up to 1.8 W.

4.2 Evanescent wave alignment procedure

In order to accurately adjust the decay length of an evanescent wave, the angle
of incidence of the incident beam must be carefully controlled. This is especially
important for angles of incidence close to the critical angle, since the dependence
of the decay length on the angle of incidence is very steep as is obvious from Eq.
(2.19).

The setup with which we control the angle of incidence is depicted in Fig. 4.3.
Two lenses L1 and L2, both with focal distance f, are separated by a distance 2f.
Also the distance from lens L2 to the top surface of prism P is 2f. The lens L2
images the beam at the position of L1 on the prism surface. If the height of lens L1
is changed, the angle of incidence of the beam is changed, but its position on the
prism surface remains unaltered.

The angle of incidence 6; as a function of the lens displacement d is given by

s (1. d—d
0;(d) = 1 + arcsin (ﬁ sin (90 — arctan 7 0)) : (4.1)

with n the index of refraction of the prism and 6, an angle to compensate for the
angle of mirror M. The term dj is the lens position for which 6;(dy) = 0..

In order to calibrate the lens position dy, we need to describe the incident beam
as a diffraction limited beam, as described in section 2.2. The transmitted power,
light coupling out of the prism at grazing angles, is compared with a calculation
based on Egs. (2.29) and (4.1) for different positions of the micrometer on which

Figure 4.3: The setup used to control the angle of incidence. The distance between lenses L1 and L2
and between lens L2 and the top surface of the prism P is 2f, with f the focal distance of the lenses.
Lens L2 images the position L1 on the prism surface. If the height of lens L1 is changed, the angle of

incidence of the beam is changed, but its position on the prism surface remains unaltered.
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Figure 4.4: Measured (0J) and calculated (line) transmission versus the vertical position of the first
lens as shown in Fig. 4.3 for a TE polarized beam with a waist w = 500 um and lens focal distance
f =80 mm. The calculation is based on Egs. (2.29) and (4.1). The angle of incidence 6; of the beam
is equal to the critical angle 6. for a lens position of dy = 4.89 mm.

lens L1 is mounted. The result for a TE polarized beam with a waist w = 500
pm and lens focal distance f = 80 mm is shown in Fig. 4.4. From this it is clear
that in this case dy = 4.89 mm. Note that only dy has been optimized and that no
vertical scaling is applied. This method is very sensitive to alignment errors. If one
of the lenses is not positioned accurately, or a lens is tilted, the shape of the graph
is compressed or stretched in the horizontal direction.

The accuracy with which the lens height d can be adjusted is approximately 5
pm. The accuracy with which the lens position dy can be determined from the fit,
as shown in Fig. 4.4 is approximately 10 gm. Combining this with Eq. (4.1), leads
to a maximum value for the accuracy of the angle of 120 prad. This is below the
divergence angle of 500 urad of a diffraction limited beam with an experimentally
realistic diameter of 0.5 mm.

4.3 Vacuum setup

The experiments described in this thesis have been performed in two similar vacuum
setups. The experiments described in chapter 6 are performed in a setup described
extensively in [89]. Therefore this setup will be only briefly discussed in this section.
The experiments described in chapter 7 are performed in a modified version of this
setup. This setup will be discussed in more detail.

4.3.1 Setup for EW absorption experiments (chapter 6)

The main part of the vacuum setup is an uncoated glass vacuum cell with outside
dimensions 42 x 42 x 130 mm?® and a wall thickness of 4 mm. It is glued to a stain-



48 Experimental setup

Figure 4.5: Cuvet and prism of the setup used in (a) chapter 6 and (b) chapter 7.

less steel platform, using low vapor pressure epoxy resin (Varian, TorrSeal). This
platform is connected to a CF40 flange. This glued connection limits the bakeout
temperature of the system to approximately 115 °C, which subsequently limits the
achievable pressure in the system. This configuration provides us with excellent
optical access for the numerous laser beams that are used in the experiments.

Inside this cuvet an uncoated BK7 glass prism, with dimensions 10 x 10 x 4 mm?
(Melles Griot, 01PRB009, cut in half) is mounted. Fig. 4.5(a) shows a picture of
this prism mounted in the glass cell. The surface flatness is specified to be better
then \/8 at a wavelength of 632.8 nm, with a surface quality of 20-10 scratch-dig.
The 45° face of this prism is used as the entry face for the beams that will create
the evanescent fields, as discussed in section 4.2.

During the experiments a low pressure of Rb atoms is maintained in the cell. In
order to get the Rb vapor into the system, a small oven containing a Rb reservoir
is heated. This oven can be sealed off from the main vacuum by means of an UHV
valve when the Rb pressure in the cell is sufficiently high. The vacuum is maintained
by a continuously pumping ion pump with a pumping speed of 15 1/s (Ng). This
creates a background pressure of 10~ mbar. In order to prevent the Rb from being
pumped away too quickly during the experiments, the cell is differentially pumped
through an aperture with a diameter of 1.5 mm. This allowed for experiment runs
up to several hours without a noticeable decrease of the Rb pressure.
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4.3.2 Setup for EW trapping experiments (chapter 7)

The experiments described in chapter 7 are performed in a modified/ improved setup.
An outline of this vacuum system is presented. The elements that are altered with
respect to the setup described in [89] are discussed in more detail.

General vacuum setup Drawings of the setup are shown in Fig. 4.6(a). The
central part of the vacuum system is the “5-cross”, all major components are con-
nected to this cross. On the top port a hexagonal section (Kimball physics, spherical
hexagon, MCF275-SH206C-B) and a cell, to provide optical access for the experi-
ments, are mounted. The four side flanges of the “5-cross” will be discussed counter
clockwise. One of the side ports is used for roughing the system. A turbo-molecular
pump can be connected to this port in order to pump down from atmospheric pres-
sure. It is usually sealed off by a UHV valve (Granville Phillips, gold seal type
204), so that the turbo-molecular pump can be detached from the system. To the
second flange an ion pump (Varian, Vaclon Plus20 StarCell with ferrite magnets,
151/s Ny) is connected. A “T-cross” is placed in between the “5-cross” and the ion
pump to reduce the ion pumps magnetic field in the cell region. The ion pump can
be sealed off by a gate valve (VAT, series 010 mini UHV gate valve DN40, manual
actuator) so that the ion pump is not exposed to atmospheric pressure when the
system is vented. The third flange on the “T-cross” is used for an ion gauge ( Varian,
Bayard-Alpert type UHV-24p). The third flange of the “5-cross” is closed with a
blind flange, to be used in the future to connect a titanium sublimation pump. The
last port is used for electric feedthroughs. Two 100 W halogen lamps are connected
to this using wires of OFHC copper. They are carefully positioned in the centers of
the “5-cross” and the “T-cross”, as shown in the photograph in Fig. 4.6(c). There
is also an electric feedthrough in the hexagonal section. A 100 W halogen lamp
positioned in the center of the hexagon is connected to it. These lamps are used for
baking the system from inside, instead of wrapping heater tapes around the setup.

Cell The glass cell is replaced by a rectangular quartz cell (Optiglass, custom
made) with outside dimensions 30 x 30 x 120 mm? and a wall thickness of 4 mm.
A “wide angle” anti-reflection coating for 780 nm is applied to the outside surfaces.
It is shown in Fig. 4.5(b). An UHV vacuum tight connection between the cell
and the stainless steel of the rest of the vacuum was obtained using a Helicoflex A
gasket (Le Carbonne-Lorraine, type HNV200A (DN25), spring Nimonic 90, lining
aluminium/Inconel600). This connection and a successful test are extensively de-
scribed in [89]. The quartz cell is mounted on two rings of increasing diameter of the
same material. The bottom surface of the lowest ring is polished. This construction
is connected to a specially prepared stainless steel CF40 flange with a polished top
surface and fine thread of 1.2 mm/turn on its outer surface. A Helicoflex A gasket
is placed between the two polished surfaces. The system is subsequently compressed
with a single compression nut screwed on the threads on the flange. This connection
allowed for much higher baking temperatures than using the previously used glued
cell. Pressures below 107!° mbar are realized in this system.
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Figure 4.7: Top, front and side view of the prism used in the experiments described in chapter 7.

Prism The second major change is the geometry of the prism. Top and side views
of this prism are shown in Fig. 4.7 and a photograph can be seen in Fig. 4.5(b).
Although the shape of this structure does not resemble the geometrical shape of a
prism, it will be called a prism throughout this chapter and chapter 7. It is effectively
a pyramid that is cut in half and put upside down. The result is that it has three
entrance faces at 45° with respect to the top surface, through which beams can enter
that will totally internally reflect from the top surface and thus create evanescent
waves ‘propagating” in different directions. The remaining entrance face, which is
at 90° with respect to the top surface, can be used for a beam that will be internally
reflected from the opposing 45° surface, which results in a beam propagating upwards
through the top surface of the prism. The prism is created from the same basic
rectangular prism (Melles Griot, 01PRB009) as the prism discussed in section 4.3.1.
It is cut in half and an extra 45° face is grinded on one of the non-optical surfaces.
Both the new 45° surface and the opposing 90° surface are subsequently polished.
The resulting flatness of these surfaces is estimated to be A\. The prism is clamped at
its four corners. Using a construction with several rods the prism is mounted using
“groove grabbers” (Kimball physics, split axial clamping groove grabbers, MCF275-
GG-CS03-A) in the hexagonal section. This is visible in the photograph in Fig.
4.6(b).

Dispenser The Rb oven is replaced by a Rb dispenser (SAES getters, RB/NF/
3.4/12 FT 10+410). This is a small metal container that contains a mixture of ru-
bidium chromates (RbyCrOy4) with a reducing agent. The narrow exit slit of the dis-
penser is partially obstructed by a metal wire to shield the escape of loose particles.
By (resistively) heating it, the reduction reaction is initiated above a threshold tem-
perature of about ~400°C and the rubidium will be released. Dispensers were first
mentioned as an atom source for laser-cooling experiments in [97]. A description of
how to handle these dispensers more sophisticatedly in atomic physics experiments
is discussed in [98]. Recently a method was described to reduce the background
pressure while operating a dispenser by collecting the atoms that are too hot to be
trapped on a thermo-electrically cooled copper plate [99].
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We have mounted the dispenser in a small tray made of a ceramic material
(MACOR, Al;O3), that is screwed against the prism mount. This is visible in the
photograph of Fig. 4.6(b). The MOT loading region is blocked from the line of sight
of the dispenser by the prism, so that hot atoms emerging from it do not collide
with atoms trapped in the MOT. The dispenser is electrically connected to the
electric feedthrough in the hexagonal section using OFHC copper wires. During the
three seconds MOT loading process, a current of ~6 A is run through the dispenser
for the first two seconds. According to [98] the dispenser cools mainly by thermal
radiation. During the short time that the current is switched off the temperature
will not decrease significantly, so that the temperature will tend to a constant value,
which results in a constant input rate of Rb atoms. During the experiments the
pressure increased up to 5 x 107 mbar measured on the ion gauge. We switch the
dispenser current off in order to get rid of the magnetic fields due to this current.
This spurious magnetic field is especially important during the polarization-gradient
cooling stage and the actual experiments.



Power-efficient frequency
switching of a locked laser

This chapter has been published as:

R.A. Cornelussen, T.N. Huussen, R.J.C. Spreeuw,
and H.B. van Linden van den Heuvell,
Appl. Phys. B 78, 19 (2004).

We demonstrate a new and efficient laser-locking technique
that enables making large frequency jumps while keeping
the laser in lock. A diode laser is locked at a variable off-
set from a Doppler-free spectral feature of rubidium vapor.
This is done by frequency shifting the laser before sending
the light to a spectroscopy cell with an acousto-optic modu-
lator (AOM). The frequency of the locked laser is switched
quasi-instantaneously over much more than the width of the
spectral features, i.e. the usual locking range. This is done
by simultaneously switching the AOM frequency and apply-
ing feedforward to the laser current. The advantage of our
technique is that power loss and beam walk caused by the
AOM do not affect the main output beam, but only the small
fraction of light used for the spectroscopy. The transient ex-
cursions of the laser frequency are only a few MHz and last
approximately 0.2 ms, limited by the bandwidth of our locking
electronics. We present equations that describe the transient
behavior of the error signal and the laser frequency quantita-
tively. They are in good agreement with the measurements.
The technique should be applicable to other types of lasers.*
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5.1 Introduction

For the purpose of nowadays ubiquitous laser-cooling experiments [1, 3, 4] lasers
are routinely locked to a Doppler-free absorption feature of an atomic transition.
In a typical experimental time sequence one would first accumulate atoms into a
magneto-optical trap (MOT) followed by a phase of e.g. polarization-gradient cool-
ing. Both phases require different detunings of the laser light. The required switch-
ing of the frequency has been solved in several ways. However the existing solutions
have some disadvantages, especially in terms of efficiency of laser power.

An existing and straightforward method is to lock the laser to a fixed detuning
away from resonance and shift the laser frequency towards resonance by a variable
amount, using an acousto-optic modulator (AOM). Usually the AOM is used in
double-pass configuration to cancel beam walk associated with frequency shifting,
resulting in a limited efficiency, typically lower than 65%. Moreover the beam walk
compensation is imperfect.

Both the loss of laser power and the residual beam walk can be a problem when
the light is used directly in an experiment, or when high-power multi-mode ampli-
fier lasers are used, such as a broad-area laser (BAL) [101, 102] or a semiconductor
tapered-amplifier laser (TA) [103]. With more seeding power such amplifiers per-
form better in terms of spectral purity and output power. Moreover they impose
strict requirements on the beam pointing stability of the injection beam. The latter
problem could be solved by first amplifying the light before frequency shifting it,
providing the amplifier with sufficient power and a stably aligned injection beam.
However power loss and beam walk now occur in the amplified beam.

Another solution is to injection lock [104, 105, 106] a second single-mode diode
laser with the frequency shifted light, since this puts less stringent requirements
on injection power and beam pointing stability. This injection-locked diode laser
can subsequently be used to seed a BAL or TA laser [102]. A drawback is that
this solution requires a significant amount of extra equipment. Furthermore, it is
not possible to implement this solution in commercial BAL or TA systems without
making major adjustments to the system, because the master laser is integrated in
the system.

In this paper we demonstrate our method which is both efficient in its use of
laser power and rigorously eliminates the beam walk due to the AOM frequency
switching. We lock our laser using Doppler-free saturation spectroscopy in a vapor
cell of rubidium. The laser is frequency shifted by an AOM before sending it through
the spectroscopy cell. Thus, instead of shifting a fixed-frequency laser by a variable
amount, we lock the laser at a variable frequency. This is only possible if the laser
can follow the change in lock point associated with a change in the AOM frequency.
This is a problem if the frequency jump is larger than the locking range set by the
width of the Doppler-free features in the spectrum. We solved this by providing the
laser with a feedforward signal, causing the laser to jump to within the locking range
of the shifted lock point. We analyze the transient behavior of the laser frequency
when making these jumps.
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Figure 5.1: Schematic representation of the spectroscopy setup. The spectroscopy beam is sent
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through a double pass AOM setup to a saturated absorption section. This allows locking of the laser
to an arbitrary frequency in the vicinity of an atomic transition. AL: aspheric lens, AOM: acousto-optic
modulator, APP: anamorphic prism pair, BAL: broad area laser, BS: beam splitter, CL: cylinder lens,
G: grating, L: lens, LD: laserdiode, M: mirror, Ol: optical isolator, P: periscope, PBS: polarizing beam
splitter, PD: photodiode, PZT: piezo transducer, Rb: cell with rubidium vapor.

5.2 Experimental implementation

In our experiment we work with 8Rb which has a natural linewidth of T'/2r =
6 MHz on the 55,2 — 5P3/, resonance line (Do, 780 nm). The laser detunings
needed for the MOT and the molasses phase are —1.5I" and —10I" with respect to
the FF =2 — F’ = 3 component of the Dy line. In view of the frequency range of our
AOM we lock the spectroscopy beam to the F' = 2 — F' = (1,3) cross-over. The
detunings with respect to this transition are 203 MHz and 152 MHz, respectively.
The desired frequency jump of ~ 50 MHz is thus much larger than the locking range
of about I'/27.

We use a commercial laser system (Toptica, PDL100) consisting of an extended
cavity diode laser [91, 92] in Littrow configuration [93], which injection locks a BAL.
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Figure 5.2: Schematic representation of the locking electronics. We employ FM spectroscopy to obtain
a dispersive signal. This signal is used for integrational feedback to the PZT, and for proportional
feedback to the laser current. The AOM frequency is generated by a VCO. The voltage driving the
VCO is amplified and used as feedforward to the laser current in order to compensate the spectroscopy
frequency for the frequency change of the AOM. On the left side of the dashed line the locking electronics
is shown, on the right side the 'optical’ components that can also be found in Fig. 5.1 are visible.

The grating of the extended cavity is mounted on a piezo stack (PZT) in order to
scan the frequency. The setup is shown in Fig. 5.1. Behind the 60 dB optical
isolator, 35 mW of power is left. The beam splitter reflects 10% to the spectroscopy
setup. The spectroscopy beam first passes an anamorphic prism pair to circularize
the elliptic beam shape. It then goes to a double pass AOM setup and finally to a
Doppler-free spectroscopy section.

Fig. 5.2 shows a schematic representation of the electronics to lock the laser fre-
quency. We employ FM spectroscopy [94, 95] to lock the laser. A small modulation
with a radio frequency (RF) of 33 MHz is added to the laser current by means of a
bias-T. The photodiode signal of the Doppler-free spectroscopy is phase shifted and
mixed with the RF frequency resulting in a dispersive error signal, which is amplified
with a measured bandwidth wepe /27 &~ 20 kHz. This signal is integrated and sent
to the PZT in order to lock the laser to a spectral feature. Proportional current
feedback is also applied to suppress fast fluctuations of the laser frequency. The
AOM frequency is generated by a voltage controlled oscillator (VCO). The voltage
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driving the VCO is generated by a 12 bit digital to analog convertor (DAC), which is
subsequently converted to the correct voltage range. This last step has a measured
bandwidth wy /27 = 2.6 kHz.

Fig. 5.3(a) shows FM spectra measured by scanning the PZT for two AOM
detunings dronm, which are close to the frequencies used in a typical lasercooling
experiment: dy/27 = —186.2 MHz and (d + 61)/27 = —137.4 MHz. The jump in
frequency is clearly larger than the half-width of the dispersive features, so that the
locking electronics will not be able to keep the laser locked to the same line when this
frequency jump is made. When this shift is compensated by applying a feedforward
jump to the laser current the spectroscopy beam will not change frequency and
the laser will stay locked. Experimentally this is done by attenuating the voltage
driving the VCO (measured bandwidth of the attenuator wg/2m = 125 kHz) and
feeding this as feedforward to the modulation input of the current controller, which
has a specified bandwidth wy,; /27 = 100 kHz. Ideally the frequency change due
to feedforward g and the AOM detuning dxonm should cancel. In reality the two
frequencies are only approximately equal:

5¢ = —Céaoum, (5.1)

with C' = 1. The parameter C'is coarsely adjusted to 1 by optimizing the overlap of
the two spectra. The accuracy is limited by the noise on the curves. Spectra with C'
adjusted to 1 by this method are shown in Fig. 5.3(b). When using the feedforward
on the laser current, we observe that the laser remains locked while jumping. In
the next section the transient behavior of the error signal will be discussed. A more
accurate method to optimize C will be demonstrated in section 5.4.

5.3 Analysis of transient behavior

In this section an equation will be derived describing the transient behavior of the
error signal. When the laser is locked to a dispersive spectral feature and the fre-
quency excursions are small with respect to the width of this feature, the error signal
e(t) can be approximated by

e(t) = A(ws(t) — wr), (5.2)

with A the slope of the dispersive signal of the reference feature at frequency wg,
which is equal to the F' = 2 — F’ = (1, 3) cross-over frequency in our experiment.
The frequency ws(t) of the light in the spectroscopy section is given by

ws(t) = wi(t) + daom(?), (5.3)

where wy,(t) is the laser frequency and daonm (%) is the shift in the double-pass AOM
section. In our experiment this is a step function

Saon(t) = 0o + Sru(t), (5.4)
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with 6o/2m = —186.2 MHz, 4, /27 = 48.8 MHz and u(t) the unit step function, so
that the laser changes frequency at t = 0. Including all feedback and feedforward
terms the laser frequency wy,(t) is given by

t

wr,(t) = wo + pe(t) + a/ e(T)dr + 0g(t). (5.5)

—00

Here wy is the frequency of the laser when it is not locked or any other electronic
feedback is applied, the second term represents proportional current feedback. The
third term is the integrational feedback to the PZT controlled grating. The last term
is the feedforward to the laser current, which should instantaneously compensate the
detuning jump by the AOM, as defined in Eq. (5.1).

When the laser is locked at ¢ = 0, before the frequency jump, several terms

cancel: .

wr,(02) = wo + we(0_) + a/ e(t)dr — Cdg = wr — - (5.6)

—00

Combining Egs. (5.1)-(5.6) yields:

e(t)y=A (gpe(t) + oz/ot e(t)dr + (1 — C)&lu(t)) (5.7)

from which the error function e(t) after the frequency jump can be solved. As dis-
cussed in the previous section, several of the components have a limited bandwidth,
which can be easily incorporated in the Laplace transform of Eq. (5.7), yielding

E(8) = Tomor (5) A % [(Tmi(s)gp + %) E(s) + 1v(s) (1 — Tui(8)75:(5)C) %1 . (5.8

with E(s) the Laplace transform of e(t) and 7x(s) = 1/(1 4 s/wy) for x €
{error, V, ff, mi} a (dimensionless) transfer function that describes the bandwidth
of various components of the setup as shown in Fig. 5.2. Only the most limiting
bandwidths are taken into account. The closed loop transfer function can be derived
by solving E(s) from Eq. (5.8). Subsequently the error function e(t) can be derived
from E(s) by an inverse Laplace transformation. Although the solution e(t) is
analytical, it is not printed here, because it is too lengthy.

The frequency of the laser wy, (t) can be derived from the error function by com-
bining the Laplace transforms of Egs. (5.2), (5.3) and (5.4) and incorporating the
bandwidth transfer functions 7y (s) as discussed previously. This yields for the laser
frequency

wp(t) = L1 <% — TV(S)%> + wr — do, (5.9)
where £71(+) denotes an inverse Laplace transformation and the solution of Eq. (5.8)
for E(s) should be used for E(s). Also Eq. (5.9) yields an analytical but lengthy
solution, and is therefore not printed here. In the next section we will compare the
calculated transients with the measured ones.
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Figure 5.3: FM spectra, measured by scanning the PZT, for two different AOM detunings (a) without
and (b) with current feedforward. It is clear that the frequency jump &7 is larger than the locking range,
the width of the dispersive features. The laser will thus not stay locked to the F =2 — F' = (1,3)
cross-over when the AOM frequency is changed without current feedforward. Note that the curves in
(b) have been displaced vertically relative to each other.

5.4 Comparison with experimental data

To lock the laser while the AOM frequency is switching, first the parameter C' is
coarsely adjusted by overlapping the spectra as described in section 5.2 (see also
Fig. 5.3(b). We then lock the laser to the desired zero crossing of the error signal by
closing the feedback loop. While the laser is locked, the current feedback parameter
@ is increased in order to decrease excursions of the error signal. The optimal value
of ¢ is just below the value where the error signal starts to oscillate, in order to
be as close as possible to critical damping. The top curve in Fig. 5.4(a) shows an
error signal when the laser has been locked by this procedure and the frequency
of the laser is changed from MOT to molasses frequency at ¢ = 0. The error
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Figure 5.4: (a) Error signals versus time. At t = 0 the AOM and diode laser are switched from MOT
detuning to molasses detuning. The top curve shows the error signal and a fit when the feedforward
compensates 98% of the applied AOM shift, the bottom curve when the feedforward is 100.3% of the
applied AOM shift. The solid line is the prediction of Eq. (5.8). (b) Laser frequency versus time for
the above mentioned cases of current feedforward (solid and dashed), calculated using Eq. (5.9), and
the frequency shift of the AOM (dash-dot), which is limited by the bandwidth of the step function wy.
The inset shows the development of the laser frequency during the first millisecond in more detail.

signal is converted to a frequency by dividing it by the slope A of the dispersive
signal. From this graph it is clear that in steady state the excursions of the laser
frequency are approximately 1 MHz. One recognizes a fast increase of detuning
due to the frequency shift of the AOM, followed by a decrease of frequency shift,
because the current feedforward starts to compensate the AOM frequency shift. The
current feedforward is slower than the AOM shift due to the bandwidths wg and
Wni. Finally a long tail due to the slow integrational feedback that removes the last
amounts of the error signal is visible. It is clear that the current feedforward does
not completely cancel the AOM detuning, resulting in a finite error signal that is
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cancelled by the slow integrational feedback. By minimizing the amplitude of the
error signal while the laser is locked and the AOM detuning is jumping, C' can be
optimized to a few permille. A curve with C' optimized by using this method is
shown in the bottom graph of Fig. 5.4(a). In order to determine values for C' for
both curves, fits to the data using the error signal e(t) derived from Eq. (5.8) were
performed. The results are shown as solid lines in Fig. 5.4(a). The bandwidths
wy and the frequency 0; are kept constant to their measured or specified values.
The slope of the dispersive signal A, the integrational feedback parameter a and
the current feedback parameter ¢ are equal for the two curves. Their values are
however not accurately known since they include e.g. the frequency response to the
piezo voltage and the laser current. By repeating the fit procedure on both curves
while iteratively varying A, a and ¢, these values were optimized. Values for C'
are determined to be 0.98(1) and 1.003(5) after optimizing using the spectra and
error signals respectively. It is clear that with the first method it is not possible
to accurately get C' equal to 1, while with the second method this is possible. For
both cases the amplitude of the frequency excursion is smaller than I".  We have
successfully tested the technique for frequencies near the extrema of the bandwidth
of the AOM. This range thus appears to be the limiting factor. The extent to which
C has to be optimized when the frequency jump is changed depends on the linearity
of the response of the VCO (AOM frequency) and the laser current on the applied
voltage. In practice we had to finetune C slightly when the frequency jump was
changed.

Fig. 5.4(b) shows the frequencies of the laser, calculated using Eq. (5.9) for the
same parameters as for the two curves in Fig. 5.4(a). The frequency shift of only
the AOM is also shown. From Fig. 5.4 it is clear that the error caused by the extra
feedback loop is not severe for our application.

The main limiting parameters are the bandwidths wy; and wg in the current
feedforward path, which are not present in the electrical path to the AOM. In
theory the amplitude of the frequency excursion can be decreased to 0 by better
matching the bandwidths of the two paths, so that the detunings due the AOM and
the current feedforward path always cancel. It would, of course, be more elegant
if the bandwidth wy were larger, resulting in a shorter step-up time. However one
should be careful with the bandwidths of the current feedforward path and the AOM
path, since for constant but unequal bandwidths of these paths the amplitude of the
frequency excursions will increase with wy.

5.5 Conclusions and outlook

We have demonstrated a new technique for locking a narrow linewidth laser to an
arbitrary frequency in the vicinity of a spectral feature not by frequency shifting the
output beam, but by frequency shifting the spectroscopy beam. By simultaneously
switching the AOM frequency and the laser current it is possible to change the
frequency of the laser by more than the locking range, while keeping it locked.
Whereas the frequency shifting range in our experiment was limited by the frequency
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range of the AOM, it should be possible to make even larger jumps by jumping
to a different lock point. The transient frequency excursion was smaller than 5
MHz, less than the linewidth of the 8"Rb D, transition. The transient time was
approximately 0.2 ms. The amplitude of the excursions was limited by the matching
of the bandwidths of the electronics in the feedforward path and the AOM path.
The duration of the transient was limited by the small bandwidth wy of the voltage
driving the VCO and the current feedforward. The demonstrated technique is not
restricted to diode lasers but should be applicable also to other types of laser, e.g.
dye or Ti:Sapphire lasers.

* The technique described in this chapter has not been used in the experiments described in this
thesis. However, it is presently being used to lock a Toptica TA100 tapered amplifier system, which is
used as the MOT /molasses laser in the setup used for the experiments described in this thesis, and a
Tiger laser from Sacher Lasertechnik in another setup in the group.
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We demonstrate the in situ detection of cold 8’ Rb atoms near
a dielectric surface using the absorption of a weak, resonant
evanescent wave. We have used this technique in time of flight
experiments determining the density of atoms falling on the
surface. A quantitative understanding of the measured curve
was obtained using a detailed calculation of the evanescent
intensity distribution. We have also used it to detect atoms
trapped near the surface in a standing-wave optical dipole
potential. This trap was loaded by inelastic bouncing on a
strong, repulsive evanescent potential. We estimate that we
trap 1.5 x 10* atoms at a density 100 times higher than the
falling atoms.
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6.1 Introduction

Recently there has been increased interest in cold atoms trapped near a surface. For
example magnetic fields of micro-electronic structures are used to trap and guide
atoms near the surface of so called atom chips [107, 108, 109]. In 2001 Bose-Einstein
condensation was realized on such a chip [38, 39]. Other examples are experiments
aiming to increase the phase-space density and create a quasi 2D gas of atoms using
inelastic reflections from an evanescent-wave (EW) atomic mirror [11, 20, 21].

These experiments pose new challenges for in situ detection, in particular if
the atoms are within the order of an optical wavelength from the surface. In this
case absorption of EWs is advantageous, since only atoms that are within a few
wavelengths from the surface are probed. Aspect et al. have proposed the non-
destructive detection of atoms close to a surface by detecting a phase change of a
far detuned EW [14]. However this effect is very small and has not been observed
so far. In this letter we demonstrate experimentally the absorption of resonant
evanescent waves as a novel diagnostic tool to study cold atoms near a dielectric
surface. Using a weak, resonant EW, we have studied a sample of cold atoms falling
onto the surface as well as atoms trapped close to the surface.

EW absorption has previously been used for spectroscopy on hot and dense
atomic vapors to experimentally investigate EW properties such as the Goos-Hanchen
shift [110, 111].

6.2 Evanescent wave calculations

An evanescent wave appears when a light wave undergoes total internal reflection at
the surface of a dielectric with index of refraction n. For a plane incident wave the
optical field on the vacuum side of the surface decays exponentially ~ exp(—z/¢)
with z the direction perpendicular to the surface, £(6) = 2-(n?sin*6# — 1)71/? the
decay length, n the index of refraction of the substrate and 6 the angle of incidence.
For a low density of resonant absorbers near the surface, the scattering rate in the
low saturation limit is proportional to the square of the field: ~ exp(—2z/¢). If the
density of absorbers is uniform, this gives rise to a total rate of scattered photons
proportional to £&. The scattered photons are missing from the reflected beam,
which is therefore attenuated. If the angle of incidence approaches the critical angle
0. = arcsin(n™!), the value of ¢ diverges, so the absorption becomes large. The
absorption is however less height selective in this limit.

For a Gaussian beam with an angle of incidence 6y > 6. + ¢ with 6. the critical
angle and ¢ the divergence of the beam, the electric field is similar to the field
of a plane wave. For Gaussian beams with 6y closer to 6., the evanescent field
does not decay as a simple exponential. We can describe the incident field as a
superposition of plane wave Fourier components with various 6. Each component
contributes an evanescent-field component with decay length £(#) and an amplitude
proportional to the complex Fresnel transmission coefficient ¢(f). Because both

£(0) and t(6) vary strongly around 6., the evanescent-wave contributions of these
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Figure 6.1: (a) Overview of the geometry and notations for the evanescent-wave calculations near the
critical angle. The incident beam has a waist w and angle of incidence 6y. The waist is at a distance d
from the surface. (b) Intensity distribution of the evanescent wave for realistic experimental parameters
w = 330 um, (fp — 6.) = 133 urad and d = 680 mm. Transverse x distribution at the prism
surface, z distribution at the x coordinate where the intensity at the surface is highest.

incident plane wave components add up to a non-exponentially decaying field. In
addition the transverse beam profile is modified to a non-Gaussian shape. In the
reflected beam one of the effects is the well known Goos-Hénchen shift [112]. Other
phenomena like non-specular reflection, shift of focus point and change of beam
waist have been predicted [113]. They all result from combining a finite size beam
with angle dependence of the transmission coefficient #(6). Recently, it has been
proposed to measure a Goos-Hanchen shift also in the evanescent wave using a
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scanning tunnelling optical microscope (STOM) [114].

In the following calculations we will coherently add plane wave components with
propagation vectors in the plane of incidence. The transverse distribution has been
assumed Gaussian with the same radius as the incident beam at the surface. This
approach is valid, since the transverse components of the propagation vector change
the angle of incidence only in second order.

The evanescent field has been calculated by evaluating the following expression

/2
1 , ,
E(z,z) = W /t&p(g)p(g)e%kz(@)xeZ/é(G)emkod(H90)2/26(990)2/¢2d9’ (6.1)
bc

with k,(0) = nkosin® the wavevector along the prism surface, kg = 27/ and
Oy is the angle of incidence. The first two exponents are the field distributions
parallel and perpendicular to the surface, respectively. The third exponent takes
into account that the waist of the incident beam is at a distance d from the surface.
The fourth exponent is the distribution over angles of incidence for a Gaussian
beam, with ¢ = 2/(nkow) the 1/e half width of the angle distribution of the field
of a Gaussian beam with waist w. The factor ¢,,(6) is the Fresnel transmission
coefficient for transmission of a s or p polarized plane wave with angle of incidence
0 from the dielectric into vacuum. They are given by t4(0) = 2ncosf/(ncosf +
iv/n2sin®0 — 1) and ¢,(0) = 2n cos 8/ (cos 6 +iny/n?sin® § — 1) respectively. Finally
p(0) is a normalization factor that is equal to 1 for s polarized incident light and
V/2n2sin? @ — 1 for p polarized light. The integration is carried out over the range
of angles of incidence that generate an evanescent wave, from the critical angle 6.
to 7/2. The normalization is chosen such that |E|*> = 1 in the waist of the incident
beam. The geometry of the problem and some of the parameters are displayed in
Fig. 6.1(a). The effective evanescent intensity is given by

1 2 2
Iy, 2) = —Io—| B, 2) Pe="/"%, (6.2)
p

where I is the intensity of the incident beam in the waist of the incident beam. The
Gaussian determines the distribution in the y direction with w, the transverse 1/e?
intensity radius at the prism surface. The fraction w/w, corrects for the transverse
divergence of the incident beam. This approach is possible since |E|*> = 1 in the
waist of the incident beam. Fig. 6.1(b) shows a calculation of the EW intensity dis-
tribution for realistic experimental parameters (0 —0.) = 133 prad, w = 330 pum
and d = 680 mm. This distribution is used to calculate the absorption via the
integrated scattering rate.

6.3 Time of flight experiments

In a first experiment we use evanescent-wave absorption to detect a cloud of cold
atoms falling on a glass surface. Our setup consists of a right angle, uncoated, BK7
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prism, mounted inside a vacuum cell with a background Rb pressure of 10~ — 1078
mbar. About 2x 107 8'Rb atoms are captured from the background gas in a magneto
optical trap (MOT), located 7 mm above the prism surface and are subsequently
cooled to 4.5 puK in optical molasses. They are released in the F' = 2 hyperfine
ground state and fall towards the prism due to gravity. Inside the prism a weak,
resonant, p polarized probe beam undergoes total internal reflection. Its angle of
incidence was determined with 100 urad accuracy by a method that will be discussed
later. The probe beam has a waist of 330 ym (1/e? radius) resulting in a divergence
of 500 prad inside the prism. At the prism surface it has a waist (1/e? intensity
radius) of (470 & 20) pm. The total power of the incident beam is P, = 2.2 uW.

We measure the absorption in the reflected wave on a photodiode which is ampli-
fied by a factor 10° by a fast, low noise current amplifier (Femto, HCA-IM-1M). A
typical absorption trace is shown in the inset of Fig. 6.1(a). The maximum absorp-
tion of time traces for different values of the angle of incidence are plotted in Fig.
6.2(a). From this graph it is clear that the absorption is highest for angles of inci-
dence very close to the critical angle. In order to analyze these results we consider
the atomic density to be uniform perpendicular to the surface, since the penetration
of the EW (< 10 pm) is much smaller than the size of the cloud (~ 1 mm). It is cru-
cial to take the finite probe beam diameter into account. This leads to a finite range
of angles of incidence so that the EW is no longer exponential as described above.
We define an effective decay length & by £/2 = 1/(22) — (2)? where the distribution
function is the normalized intensity distribution I(zo,0,z)/ [;° I(x0,0, z)dz at the
transverse position xy where the intensity at the surface is maximum. For a plane
incident wave é = ¢. In Fig. 6.2(b) the solid squares represent the same absorption
data as shown in Fig. 6.2(a), but plotted versus €. Absorption increases with €, but
decreases beyond a value & &~ 12\. This decrease for larger € occurs because the
amplitude of the EW quickly drops for angles of incidence 6, smaller than 6.

We compare our data to the absorption as calculated using two different ap-
proaches. The first method is to calculate the scattering of evanescent photons by
the atoms near the surface, where we assume that the transmission coefficients are
not changed by the atoms. The scattered power is calculated as

1 s(x) 3
Ehwf /EW p(x)md x,

where s(x) = 151(x)/lsa is the local saturation parameter, I is the saturation
intensity 1.6 mW /cm?, I(x) is the local evanescent intensity, given by Eq. (6.2),
p(x) is the local density, hw is the energy of a photon and I' = 27 x 6 MHz
is the natural linewidth. The factor % appears because linearly polarized light is
used. The integration is over the entire volume of the evanescent wave. Because the
absorption is so low, Beer’s law remains in its linear regime. Obviously saturation
effects are taken into account. We also account for the Van der Waals potential,
which leads to a decrease in the atomic density close to the surface. Finally also the
transverse density distribution of the atomic cloud is taken into account. Neglecting
these last three effects would increase the calculated absorption by approximately

20%. The open circles in Fig. 6.2(b) are the results of this calculation for a density
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Figure 6.2: (a) measured absorption by a cloud of cold atoms falling onto a dielectric surface as a
function of the angle of incidence of the evanescent probe beam. The inset shows a typical time of
flight signal, measured with an angle of incidence of (6y — 6.) = 130 prad. (b) same data as shown
in (a), but versus effective decay length €. Also the results of the calculations based on a density of
1.2 x 10° cm~3 are shown. M measured data, () calculated absorption on the basis of scattering, A
calculations using complex index of refraction. The vertical dotted line corresponds to the critical angle.

near the prism of 1.2 x 10 cm=3.

For another measurement (not shown) with an angle of incidence (6y—6.) = 130
prad and an evanescent probe power of 2.9 uW, the measured maximum absorption
of (0.2340.01)% resulted in a calculated density of (1.340.4) x 10° cm™2. This value
agrees very well with the density of (1.340.2) x 10° cm™ derived from conventional
absorption images with a CCD camera.

Close to a dielectric surface the radiative properties of atoms are altered [58].
The natural linewidth of a two-level atom can be up to 2.3 times larger than the
natural linewidth in free space. However, including this effect in the calculations
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only increased the calculated absorption by about 2%, which is well within the
measurement uncertainty. By decreasing both the probe intensity and the decay
length this effect should start to play a role.

As a cross check, the second method determines the absorption by describing
the atomic cloud by a complex index of refraction n = 1+ i”j}—:f‘, with g = 1—75%
the resonant cross-section for linearly polarized light and p the density at the prism
surface. Using this index of refraction to calculate the reflected intensity also yields

the absorption. The reflected field is determined by evaluating

w/2
1 . . .
E(z,z2) = % /TP(Q’ n)elk:c(Q)IB—Ikz(Q)Zemkod(e—%)Q/Qe—(9—90)2/¢2dg7 (6.3)
0
with k,(0) = nkgcosf the wavevector perpendicular to the surface and r,(6) =

(cosf — ny/1 —n2sin?0)/(cos + ny/1 — n2sin® ) is the Fresnel coefficient for re-

flection for p polarized light. The same normalization as for Eq. (6.1) was used. The
reflected intensity is given by I(x,z2) = Iy|E(z, z)|>. Saturation effects are not in-
cluded. Since finally only the total absorbed power is important, it is not necessary
to incorporate the transverse distribution in these calculations. The open triangles
in Fig. 6.2(b) show the results of these calculations for various angles of incidence.
The absorption for a maximum density near the prism surface of 1.2 x 10° cm™3
calculated with the complex index of refraction is slightly higher than the absorp-
tion calculated from the scattering of evanescent photons, mainly because saturation
effects were neglected.

6.4 Trapping

In a second experiment we used evanescent waves to detect atoms trapped close to
the surface in a standing light field. We load and trap the atoms using the scheme
as described in previous work [20]. Cold atoms are prepared as in the time of flight
experiment. During their fall the atoms are optically pumped to the F' = 1 hyperfine
ground state. On the vacuum side of the prism surface a repulsive EW potential is
created by total internal reflection of a 90 mW, TM polarized laser beam with a waist
of 500 pm and blue detuned by 0.2-1 GHz with respect to the FF = 1 « F' = 2
transition of the D; line. This potential acts as a mirror for atoms. The decay
length of the EW can be controlled by changing the angle of incidence of the laser
beam [115]. By scattering EW photons, the atoms can make a spontaneous Raman
transition to the F' = 2 hyperfine ground state, for which the repulsive EW potential
is lower. This results in a virtually complete loss of their gravitationally acquired
kinetic energy [46].

The trapping laser is a linearly polarized, 1.3 W laser beam, red detuned by
about 85 GHz with respect to the Dy line. It is reflected from the vacuum side of
the uncoated prism surface, creating a standing wave (SW) with a visibility of 0.38.
The angle of incidence is nearly normal, 25 mrad. The spot size at the prism surface
is 380 um x 440 pm (1/e? radii). For atoms in the F' = 1 hyperfine ground state
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Figure 6.3: Measurement of atoms trapped in a standing wave, detected using evanescent probing.
The absorption for different probe detunings shows that the atoms are distributed over several light
shifts. We determine that 1.8 x 103 atoms are initially trapped.

the EW potential is dominant, whereas for the F' = 2 hyperfine ground state the
SW potential is dominant. Atoms that are Raman transferred to F' = 2 near their
motional turning point can be trapped in the SW potential. Only a few potential
minima will be occupied due to the highly localized optical scattering of the EW.
When the atoms fall towards the prism both the EW and the SW are off. Both are
turned on 1 ms before the maximum atom density reaches the prism surface. In
order to decrease the scattering rate, the EW is switched off after 2 ms, after which
the loading of the SW trap stops.

The EW probe beam is aligned by overlapping it with the EW bouncer beam,
whose angle can be set with an accuracy of 25 urad. The overlap could be checked
over a distance of 1.5 m, resulting in an uncertainty in the angle of 100 urad.
During the trapping experiments the probe angle of incidence was kept constant at
(6o — 6.) = 130 prad and the power of the probe beam is P, = 2.2 uW. At the
prism surface it had a waist (1/e? intensity radius) of (770410) gm. The probe was
resonant for atoms in the F' = 2 hyperfine ground state and was turned on at least
14 ms after shutting the EW bouncer beam in order to be certain that no falling
atoms were present and only trapped atoms would be probed.

Since the trap is red detuned, the atoms will be trapped in the intensity maxima.
In the center of the trap the scattering rate in these maxima is calculated to be
7 ms~! and the ground-state light shift is dpg/2m = —15.4 MHz. The trap depth
here is only 8.6 MHz since the fringe visibility of the standing wave is 0.38. The
trap frequency is 359 kHz, which results in approximately 24 bound levels. The
resonance frequency of trapped atoms is blue shifted by —2dg, due to the light shift
of the excited state.

Fig. 6.3 shows the absorption of an evanescent probe beam by atoms trapped in
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the standing wave. The evanescent-wave bouncer is blue detuned by 550 MHz and
has a decay length £ = 1.15 A. The evanescent probing technique was used to opti-
mize the trap loading by varying the bouncer detuning. The maximum absorption
is observed for a detuning of the EW probe of 8 MHz. The measured linewidth is
larger than the 6 MHz atomic linewidth, probably due to inhomogeneous broaden-
ing. There are two contributions to the broadening. Firstly, since the trap laser has a
Gaussian profile the atoms encounter a spatially varying light shift. Secondly atoms
in higher excited vibrational states will encounter a smaller light shift. It is not
possible to reliably retrieve these detailed distributions from our measured curve. It
is however possible to make a good estimate of the total number of trapped atoms.
The relative absorption curve in Fig. 6.3 is, for low saturation, described by

// 1 +4X 8) Ea? d*x dA, (6.4)

which is similar to the scattering analysis of the falling atoms, but inhomogeneously
broadened by means of the convolution with the Lorentz function. The factor P,
is the power of the incident probe beam and p(x,A) is the distribution of atoms
in the F' = 2 hyperfine ground state over spatial coordinates and light shifts. By
integrating Eq. (6.4) over the detuning ¢ (the area under the curve of Fig. 6.3), the
integration of the Lorentzian over ¢ yields 7I'/2. The integration over A, for which
the integrand is now only p(x, A), yields the density of atoms p(x).

From comparing the kinetic energy of the falling atoms in F' = 1 to the trap depth
when the atoms are pumped to F' = 2, it follows that mainly the third and fourth
potential minima will be populated. An underestimate of the number of atoms can
be obtained by assuming the probe intensity constant over the trap region (which
is valid if the evanescent probe size is much larger than the trap size) and all atoms
are in the third minimum. Eq. (6.4) then reduces to (mhwl'?s3)/4Py)N, with N
the total number of trapped atoms and where s3 denotes the saturation parameter
in the third potential minimum. From this a number of trapped atoms in the F' = 2
hyperfine ground state of 3.0 x 10% can be calculated after 14 ms of trapping. The
total number of trapped atoms will be 4.5 x 10% because the steady state F' = 1
ground state population will be 0.5 times the F' = 2 population due to scattering
by the standing wave with the present detuning. The populations of the magnetic
sub-levels of one hyperfine ground state are equal to within 1%. By comparison with
previous measurements we deduce a life time of 14.3 ms. An extrapolation results in
about 1.2 x 10* trapped atoms at ¢ = 0. The assumption that the evanescent probe
size is much larger than the trap size is not completely valid. Taking the correct
radii into account leads to a 22% increase, thus 1.5 x 10* trapped atoms. Assuming
the transverse trap distribution equal to the trapping laser, the vertical trap radius
to be A/4 and the atoms to be distributed mainly over two potential minima, the
density becomes 1.2 x 10'* em™3, which is about 100 times higher than the density
of the atoms falling onto the prism.
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6.5 Conclusions and outlook

We have shown that the absorption of a weak, resonant evanescent wave can be used
to selectively detect cold atoms near (~ ) a dielectric surface. A model treating the
absorption by scattering evanescent photons was suitable to describe the absorption.
When calculating the evanescent intensity distribution, the Gaussian character of
the incident beam had to be taken into account in order to quantitatively understand
the absorption for angles of incidence very close to the critical angle.

By detecting cold atoms falling onto the dielectric surface for different angles
of incidence of the probe beam we have verified our quantitative description of
the dependence of the absorption on the angle of incidence of the probe beam. By
detecting cold atoms trapped in standing wave potential minima close to the surface
we have determined that we have trapped more than 1.5 x 10* atoms initially. This
results in an increase of the density of two orders of magnitude with respect to the
approaching atoms.

The technique can be extended to using a CCD camera so that a transverse dis-
tribution of the atoms can be measured. By performing measurements for different
angles of incidence of the probe beam, it should be possible to obtain information
about the distribution of atoms perpendicular to the surface.



Analysis of an evanescent-wave
dark-state trap

We present an implementation of an evanescent-wave dark-
state trap. Various different geometries are discussed. In
order to find a suitable set of experimental parameters, we
have performed a numerical analysis of the loading procedure
of the trap, in order to optimize the trapping fraction and the
trap life time.

Within the experimentally accessible region of parameters, we
found an optimum trapping fraction of 10% for atoms that
fall onto a trap region. The trap depth for this result was
57 uK. A factor 130 density increase and a factor 75 phase
space density increase are predicted with respect to values in
a magneto-optic trap.

The main limitation of the dark-state trap is its sensitivity
for photon scattering. An atom that scatters a photon al-
most certainly results in loss of the atom from the trap, since
it will end up in an untrapped state. For atoms in the vi-
brational ground state this leads to an expected life time of
600 ms. However, for samples with realistic temperatures, the
expected life time is decreased to few times 10 ms.

73
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7.1 Low dimensional trapping

Ever since the experimental realization of Bose-Einstein condensation (BEC) [24,
25], and the Nobel prize for this achievement [33, 34], new quantum degenerate
systems have been pursued. BEC has since then been realized for many atomic
species [116], almost all alkali atoms, metastable noble gas atoms (He*), and rare
earth atoms (Yb). Quantum degenerate Fermi gases have been realized [117, 118§]
and are presently at the threshold of the BCS regime [119], and there is strong
evidence that this threshold has been crossed [120]. Furthermore condensates of
molecules have been observed [35, 36, 37]. There are efforts for alternative, possibly
easier, methods to reach BEC. Atoms are trapped in far off-resonant light field
(QUESTS) instead of magnetic traps [40, 41]. Furthermore there is a trend to
miniaturize the magnetic traps to current carrying wires mounted on a chip [38, 39],
or using permanent magnetic thin films [121, 122]. There is still much interest in
reaching the BEC threshold by means of dissipative optical laser-cooling techniques.
The most promising results so far are for Cs [5] where a phase-space density (PSD)
of 1/30 has been realized using Raman sideband cooling and Sr, where a sample of
4 x 10* atoms has been cooled to a PSD of 1/10 using Doppler cooling while the
atoms where trapped in a FORT [6]. Still all realizations of BEC so far involve
evaporative cooling.

Low dimensional quantum degenerate systems of bosons have very different quan-
tum statistical properties than their 3D equivalents. In 2D a condensate only exists
for T = 0, in 1D a condensate is absent at any temperature. The presence of a
trapping potential, however, changes this situation. For a thorough analysis of such
systems we refer to Petrov et al. [123, 124]. There are regions in parameter space,
sufficiently low temperature T" and large enough particle number N, for which a
2D condensate is formed. Only recently cold atom experiments have entered these
regimes in 2D [43, 125] and 1D [125, 126]. For slightly higher temperature quasi-
condensates are formed, where the phase coherence does not extend over the entire
sample and “islands” of constant phase are present. For the 1D case, for very small
N and T, the gas becomes a so called Tonks-Girardeau gas. The mutual repulsion
between the bosons dominates the system, which prevents them to occupy the same
position in space. This resembles fermionic behavior. A Tonks-Girardeau gas was
recently realized by Paredes et al. [127].

For creating atom traps with lower dimensionality, evanescent waves have always
received a lot of attention, either as the loading mechanism of a standing-wave
(SW) trap, so that by scattering EW photons only one (or very few) fringes of
the SW are loaded [15, 21, 22], or as the trapping potential itself. Examples of
this are the gravito-optical surface trap (GOST) [11, 128, 129], or the red and
blue detuned double EW trap (DEWT) [12], with which tighter confinement in the
strongly confined direction can be realized. Rychtarik et al. [43] have created a two-
dimensional BEC of Cs atoms, by trapping thermal atoms in a GOST, increasing the
density using a dimple potential [44], and a subsequent evaporative cooling stage.
Colombe et al. [42] are working towards loading a DEWT surface trap from a 3D
8"Rb BEC trapped in a magnetic trap. Hammes et al. [13] have already successfully
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Figure 7.1: (a) Atoms in the |F, m) = |2, 42) ground state are decoupled from o polarized light
(near) resonant with the D; line. A localized region of this polarization, blue detuned from the Dy
line is a confining potential for atoms in these states. (b) Two evanescent waves with different decay
lengths have an equal intensity at a height zy above the surface. (c) When these evanescent waves
have orthogonal polarizations, there are planes perpendicular to the surface where the phase difference
between these two evanescent fields is /2. The intersections of these vertical planes with the horizontal
plane at height z; are lines of circular polarization, at which atoms can be confined.

demonstrated loading a DEWT trap from a GOST trap combined with a dimple
potential, and trapped 20 000 Cs atoms at a temperature of 100 nK.

This chapter focuses on a combination of several of the above mentioned inter-
ests: a low-dimensional quantum degenerate system, created by dissipative optical
techniques. It was proposed by Spreeuw et al. [20] and is an extension of [22], to
make the latter proposal applicable to Rb atoms. The loading scheme is similar to
the scheme described in the previous chapter and [15]. A sample of ¥’ Rb atoms in
the F' = 1 ground state is dropped on an evanescent-wave mirror [60] and is pumped
to F' = 2 by a spontaneous Raman process, during the reflection. This pumping
is also performed by an evanescent field, which makes the pumping process highly
localized. The pump field could be the same EW field that also creates the EW
mirror, as in the previous chapter, but it could also be an extra, independent field.
In [20] is shown that this process can increase the phase-space density up to three
orders of magnitude compared with the MOT.

In the experiment described in the previous chapter, the atoms were trapped in
a red detuned standing-wave dipole trap after this pumping process, similar to the
experiment performed by Gauck et al. [21], where Ar* atoms were used. These Ar*
atoms have a disadvantage in that they are in a metastable state, so that they will
suffer from Penning ionization. The advantage of Ar* atoms is that the states before
and after the pumping process are well separated by 42 THz, so that they can be
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addressed independently. This is not possible for ' Rb atoms, since the ground-state
hyperfine splitting is only 6.8 GHz. This small splitting limits the SW detuning to
small red detunings with respect to the F' = 2 state, so that the F' = 1 potential
is not too strongly corrugated. Consequently, this small detuning led to a limited
trap life time due to scattering of SW photons. An alternative could be the use of
a blue detuned SW dipole trap. The atoms will then be trapped in the intensity
minima, which results in a lower scattering rate. However, our loading scheme is not
compatible with this option, since the atoms will be repelled by the blue detuned
beams before they reach the trap region.

Spreeuw et al. [20] propose to trap atoms in a state that is locally decoupled
from the light field. The only scattering that remains is due to the oscillation of
the trapped particles into regions where they do interact with the light field. More
specifically, 8Rb atoms in the |F = +m = 2) ground-level sub-states are decoupled
from a oF polarized light field that is blue detuned from the D; line, as is shown in
Fig. 7.1(a). By creating localized regions of blue detuned, circularly polarized light,
atoms in the |F' = +m = 2) sub-states will be repelled if they move out of these
regions, they will thus be contained at these sites. These polarization structures
are interference patterns of two orthogonally polarized evanescent waves. The same
fields also act as the repulsive potential for atoms in the F' = 1 state. A combination
of a propagating or standing wave with an evanescent wave could lead to appropriate
interference patterns, but atoms approaching the surface will be repelled by these
non-evanescent fields.

The remainder of this chapter deals with the details of this trapping scheme.
First the possible geometries and their implications will be discussed. Subsequently
the “optimum” experimental parameters are determined from a numerical analysis
in order to maximize the pumping to the trapped state, the life time and the trapping
fraction. Some considerations are made about detecting the trapped atoms. Finally,
the experimental issues that prevented us from performing the experiment will be
discussed. We will end with conclusions.

7.2 Experimental configuration

The first part of this section deals with some initial choices for the EW dark-state
trapping geometry. We will discuss several experimentally possible trapping geome-
tries and the choice for a certain geometry will be explained. In the last part we
will describe how this particular geometry is implemented experimentally. The fine
tuning of the experimental parameters for this specific case will be dealt with in
more detail in sections 7.3 and 7.4.

7.2.1 Double EW trapping geometries

In order to obtain a dark trap based on two evanescent waves, as described in section
7.1, the polarizations of the two evanescent fields should be orthogonal in order to
avoid intensity fluctuations over the trap region. Furthermore the angles of incidence
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012 of the two beams should be different, since this leads to different decay lengths
§12 = Ki%, with

Ko = ko\/n2 sin?6; 5 — 1, (7.1)

and different components of the k| vector along the surface

K12

= kon sin 9172, (72)

as already discussed in section 2.1.3. In these equations ko = 27/ is the free space
wavevector, with \g the wavelength of the light, and n is the refractive index of
the dielectric. The different k|| lead to a spatially varying phase difference between
the two polarizations along the surface. There will be planes, perpendicular to
the average k|| vector and perpendicular to the surface, where the phase difference
between the polarizations is +7/2, as e.g. shown in Fig. 7.2(b, d, f). The different
decay lengths, together with appropriately chosen intensities of the two beams leads
to equal intensities of the two polarizations at a certain distance zy from the surface,
as shown in Fig. 7.1(b). We will preferably work with angles as close as possible
to the critical angle, because, according to Eqs. (2.24) and (2.25), this leads to
maximum evanescent-field amplitudes. The intersections of the horizontal plane
at height 2y, and the vertical planes where the phase difference between the two
EW components is /2, are lines of circular polarization, leading to a confining
potential for the |F'm) = |2, £2) state, as shown in Fig. 7.1(c). In reality the Van
der Waals coupling with the dielectric surface changes the potential.

When the angle between planes in which the incident beams propagate is changed
the main change is the spacing between the lines of circular polarization. The
following three cases are the most straightforward for our prism geometry, which is
discussed in section 4.3.2:

(a) counterpropagating beams as shown in Fig. 7.2(a, d). The spacing between
two lines of equal circular polarization is 27 /(kj;1 + kj;2) S A/2. The spacing
between two lines of opposite circular polarization is half this value. The po-
larizations of the input beams can be one TE and one TM polarized beam.
Although a TM polarized input beam results in general in an elliptically po-
larized EW, this polarization is still orthogonal to the polarization of the TE
polarized EW.

(b) planes of incidence at 90° as shown in Fig. 7.2(b, e). The spacing between two
lines of equal circular polarization is 27 /(kf, + kii,)"* S A/ V2. The simplest
option is for the two polarizations to be TE polarized. A combination of a
TE and TM polarized input beam or two TM polarized input beams does not
result in orthogonally polarized EWs.

(c) copropagating beams as shown in Fig. 7.2(c, f). The spacing between two
lines of equal circular polarization is |27 /(ky,; — kj;2)| > A. The same remarks
about the polarizations as for the counterpropagating beams apply.
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Figure 7.2: Schematic representation of (a) counterpropagating, (b) perpendicularly incident, and (c)
copropagating beams. When the polarizations of the evanescent waves formed by these beams are
perpendicular they form a phase pattern parallel to the surface with a periodicity of respectively (d)
< A/2, (e) £ A/V2, and (f) > A (notice the different scale). Figures (d), (e) and (f) are calculated
using angles of incidence of 6. + 2 mrad and 6. + 20 mrad. Black and white lines indicate a phase
difference of +7/2.
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When atoms are trapped on these lines, they can be used as an atomic grating
with an adjustable periodicity. This can e.g. be realized by changing the angles of
incidence, which causes a slight variation of the periodicity, or by only loading one
polarization set of the 4+ /2 polarized lines or both, which causes the periodicity
to change a factor 2. The counterpropagating geometry is a candidate for a trap
in which a Tonk’s gas could be realized, due to its extremely elongated symmetry.
Since initially our aim is to test these type of traps we have chosen the scheme with
copropagating beams, since this is experimentally the easiest method to implement,
as will be discussed in section 7.2.2. Moreover its scattering rate is lowest as will be
discussed in section 7.4.2. The quantization axis in this geometry is roughly parallel
to the k) vectors. It is slightly titled in the plane parallel to the surface, with the
tilt depending on the angle of incidence of the TM polarized beam as discussed in
section 2.1.5. For an angle of incidence of 20 mrad, this tilt angle is 12° as can be
seen in Fig. 2.2.

7.2.2 Optical setup

For the EWs we use a Ti:Sapphire laser (Coherent, MBR-110) which is pumped
by a 10 W Verdi laser (Coherent). It can produce up to 1.8 W at wavelengths
close to the D; line. Due to losses in the optics, this leads to typically 1 W of
power inside the vacuum. The frequency of the Ti:Sapphire laser is monitored
with a Burleigh WA1500 wavemeter. The setup for the EWs is shown in Fig. 7.3:
the two polarizations are separated using a polarizing beam splitter PBS1 and are
recombined on a second polarizing beam splitter PBS2. The angles of incidence are
independently adjusted with telescope setups such as described in section 4.2. The
first lenses L1 and L1’ (focal distance 80 mm) of these telescopes are between the
two beam splitters. The two telescopes share the second lens L2, which is behind
PBS2. Next the two beams are reflected towards the prism P using an elliptical
silver mirror SM. By using this interferometer like setup the overlap of the two
beams can be checked outside the vacuum. Before the first beam splitter PBS1, the
power distribution between the two polarizations is adjusted with an electro-optic
modulator and the beam is shaped with two achromat lenses. They are positioned
such that the focus is on the first lenses L1 and L1’ and it will thus be imaged on
the prism surface. In the focus of this beam-shaping telescope a shutter is placed.

7.3 Pump field optimization

The transfer of atoms from the F' = 1 ground state to the trappable F' = 2 state is
due to scattering photons either from the repelling EW or from a resonant EW that
can be switched off after the trap is loaded. The first option requires a relatively
low detuning of the trap and repellent fields, which results in a high scattering rate.
Therefore we use an extra pumping field. Moreover this relaxes the criteria for the
parameters of the trapping fields.

This section deals with optimizing the experimental parameters of the Raman
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Figure 7.3: (a) top view and (b) side view of a schematic representation of the setup with which
two evanescent waves with different decay lengths are created in the copropagating geometry. The two
polarizations are split using a polarizing beam splitter PBS1 and are recombined with another polarizing
beam splitter PBS2. Each of the arms passes a telescope with which the angle of incidence on the
prism surface can be adjusted, as discussed in section 4.2. By moving the first lens (L1 or L1') up
and down the angle of incidence of one of the beams is changed. Both arms share the second lens L2.
(S)M: (silver) mirror, P: prism in cuvet.
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pump beam. The parameters in question are the angle of incidence, i.e. the decay
length of the evanescent field, the polarization and the intensity. Both theoretically
optimal values and methods to obtain these in the experiment are presented. The
first part focuses on finding the optimum polarization and frequency of the pump
field. For our “copropagating” trap geometry we explain which alignment and po-
larization of the pump beam satisfies these conditions. In the second part a method
is presented to optimize the pump beam intensity. It should not be too intense,
since then all atoms will be pumped away before they reach the trap region, and
not too weak, since then too few atoms will be pumped to the other state.

7.3.1 Pump field geometry and polarization

Table 7.1 shows the Raman transfer probabilities to a trapped state for the initial
magnetic sub-levels mpr_; of the F' = 1 ground state. Values are given for the pump
beam tuned to all possible excited states of both D lines and for several polariza-
tions of the pump field. The numbers are the products of the probability of being
excited to a state that can decay to the |F'm) = |2,42) state and the probability
to subsequently decay to the desired magnetic sub-state. They are calculated using
the pumping efficiencies that are introduced in section 2.3.2 and are graphically de-
picted for the 8Rb D lines in Fig. 2.4. For example we consider an atom initially
in the |1,1) state with the pump field resonant to the F' = 1 — F’ = 2 transition
of the D; line and polarized in an equal superposition of o™ and o~. The atom can
be excited to both |2,0) and |2,2) with probabilities of = and 32 respectively. But
only the latter excited state can decay to the |2,2) ground state, with a probability
of %. The pumping efficiency in this example is thus %% = % ~ (.286.

The largest transfer probabilities obtained are for 7 (6%) polarized light on the
F =1— F' =1 transition of the D, line, for atoms that are in the |F'm) = |1, £1)
(|JF'm) = |1,0)) state. The major difference between the m and o* polarized pumping
field is that the former populates both the o' and the o~ polarized trap sites,
whereas the latter populates only one of the two types of trap sites, depending on
the polarization of the pump field. For an unpolarized incident sample of atoms it
is possible to switch the periodicity of the atomic grating, formed by the lines of
trapped atoms, by changing the polarization of the pump field.

In the remainder of this chapter we focus on loading the trap using a 7 polarized
pump field, tuned to the FF = 1 — F’ = 1 transition of the D; line. Besides
the fact that it has the most efficient loading and that this polarization is easily
created in the lab, it has an additional advantage. A trap site will only be loaded
from one initial magnetic sub-state of the F' = 1 ground state. Since the pump
probability is different for each initial sub-state, this simplifies the optimization of
the experimental trap parameters.

For our trap geometry with copropagating trapping beams, there is only one
option to obtain a m polarized pump field. Only a TE polarized beam, incident
(almost) perpendicular to the trapping beams, results in a 7 polarized pump field.
As discussed in section 2.1.5 the quantization axis at the circularly polarized sites
is rotated by a small angle x with respect to the kj vectors. This angle depends
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compensate for the rotation of the quantization axis at the trap sites with respect to the k| vector.

evanescent polarization || evanescent polarization
ot to~ v
excited final state || initial state |1,mp—1) initial state |1, mp_1)
state |2, mp_g) -1 | 0 | 1 -1 ] 0 | 1

5p?Piy F'=1 -2 — | 0.250 — || 0.500 — —
F'=1 +2 — | 0.250 — — — | 0.500

F'=2 —2 0.286 | 0.083 — || 0.167 — —

F'=2 +2 — | 0.083 | 0.286 — — | 0.167

5p?Ps;p F' =1 —2 — | 0.050 — || 0.100 — —
F'=1 +2 — | 0.050 — — — | 0.100

F'=2 -2 0.286 | 0.083 — || 0.167 — —

F'=2 +2 — | 0.083 | 0.286 — — | 0.167
evanescent polarization || evanescent polarization

ot o
excited final state || initial state |1, mp—1) initial state |1, mp_1)
state |2, mp_s) -1 | 0 | 1 -1 | 0 | 1

5p?Pijp F' =1 —2 — — — — | 0.500 —
F'=1 +2 — | 0.500 — — — —

F'=2 —2 — — — || 0.333 | 0.167 —

F'=2 +2 — | 0.167 | 0.333 — — —

5p°Psyy F' =1 -2 — — — — | 0.100 —
F'=1 +2 — | 0.100 — — — —

F'=2 —2 — — — || 0.333 | 0.167 —

F'=2 +2 — | 0.167 | 0.333 — — —

Table 7.1: Probabilities for an atom to end up from any of the magnetic sub-states of the F =1

ground state in a trappable state |2, +2) after making a spontaneous Raman transition induced by
scattering a pump photon. The probabilities are given for several evanescent pump field polarizations

and for the pump field to be resonant with all possible excited states of both the D; and the D, line.
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on the angle of incidence of the TM polarized beam. The plane of incidence of the
pump beam should be rotated over the same angle y in order to be perpendicular
to this quantization axis, as indicated in Fig. 7.4.

Beams with linear input polarizations that are incident from other directions
lead in general to some superposition of ot and o~ polarization. A field with pure
oT or o~ polarization is very difficult to realize, since it is not possible to measure
whether the EW is circularly polarized. One thus has to calculate the necessary
ellipticity of the incident beam, thereby relying on the knowledge of the Fresnel
transmission coefficients of all the optics on its path. The same problem holds for
any other polarization.

7.3.2 Pump field intensity and decay length

The repulsive potential for the F' = 1 atoms is not an exponentially decaying func-
tion in space because it originates from two exponentially decaying potentials with
different decay lengths and different polarizations. This makes also the polarization
a function of the distance from the surface. We have to find a general, experimentally
usable, solution to optimize the pump field decay length and the pump intensity,
independent of the trajectory of the falling atoms. The decay length should be as
short as possible, since this enhances the scattering close to the surface with respect
to further away:.

In the following analysis we will assume the atoms to be optically pumped to the
magnetic sub-state from which the trapped state is loaded. In order to optimize the
loading of the trappable states |2,42) the absolute scattering rate at the turning
point of the atoms must be optimized. This depends on the remaining population
ny of the magnetic sub-state that can be transferred to a trappable state and on the
scattering rate. The trajectory of the falling atoms is given by ((t), with {(0) = 2
the turning point, which is determined by gravity and the repulsive potential. When
an atom scatters a photon it has a probability p; to end up in its original state, a
probability p, to end up in a trappable state, p3 to end up in another magnetic
sub-state of F' = 2, and a probability ps to end up in another state of F' = 1, with
p1 + p2 + p3 + ps = 1. The rate equation for n; is

1 (t) = (p1 — Dn(¢())m(2), (7.3)

with 7({(t)) the time dependent scattering rate the atom encounters. This can be
derived from the local scattering rate n(z), which in turn is proportional to the local
pump intensity. This equation can be formally solved as

ny(t) = na(to)e” Jig (1=p)n(¢(m)dr (7.4)

Here ty < 0 is the time at which the atoms are released from the MOT.

The pump rate at the motional turning point 1(¢(0))n;(0) can be maximized by
optimizing the amplitude of n(z). By substituting n(z) = n7(z) with 7(¢(0)) = 1
we have to optimize 7 in order to maximize 7y7(¢(0))n1(0). The solution of

d — 2 - n(¢(r))dr
G (O (to)e oS0y — g (75)
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satisfies this criterium. Here n(0) has been evaluated using Eq. (7.4). Solving Eq.
(7.5) yields

/ (1= p)om(C(r))dr = 1, (7.6)

to

i.e. the expectation number of the number of scattered photons that lead to the
atom ending up in another than the initial state equals 1. This result is completely
independent of the input trajectory and the distribution of the pumping field. After
a full bounce the number of scattered photons will be twice this value, which leads
to a final population of n; of 1/e? of its original value ny ().

This can be used to experimentally optimize the pump intensity. Using an ab-
sorption probe, which is resonant with the F' = 2 — F’ = 3 transition, only atoms
in F' = 2 are detected. We can slightly adjust the trap parameters, which will be
discussed in the next section, so that no trapping potential is present, and thus all
atoms will bounce on the repulsive potential, but the scattering remains unchanged.
The pump intensity can now be adjusted to optimize the fraction of atoms that is
transferred to ' = 2 during the bounce.

Depending on the specific pump transition, a certain fraction of the atoms that
are pumped from the initial state will end up in the F' = 2 ground state. For our
chosen pump transition (7 polarized pump field tuned to the FF = 1 — F' =1
transition of the Dy line) this fraction is (p» + ps)/(p2 + ps + pa) = 2. So after a
full bounce a fraction %(1 — e%) ~ 78.6% of the atoms should be in the F' = 2 state
at the optimal pump intensity. For an unpolarized initial sample of atoms an extra
factor comes into play. In our case, atoms in the |1,0) ground state are decoupled
from the pump light and will not be pumped to the F' = 2 ground state. The
repulsive potential at a o= trapping site, for atoms in the |1, F1) state will typically
be too low for the atoms to bounce, as is obvious from Fig. 7.5, and also these atoms
will not contribute to the ' = 2 population after a bounce. So only atoms which
are initially in the |1,41) state at a o0& polarized trapping site will be pumped to
I = 2. The fraction of atoms that should be transferred to the F' = 2 ground state
for an unpolarized sample should thus be approximately 3 x 78.6% = 26.2%.

7.4 Optimization of trap parameters

In order to optimize the trap characteristics for a given laser power several parame-
ters are at hand: the laser detuning ¢, the beam waist w, the angles of incidence
Orr, and Oy of the two polarizations, and the distribution of the available power
between the two polarizations. There are two quantities that have to be optimized:
the scattering rate, which determines the life time of the trap, and the trapping
fraction, which determines the initial number and density of trapped atoms.

The first part of this section explains some details about the potentials of these
double EW geometries. These potentials are used subsequently to derive expressions
for the scattering rate and the fraction of trapped atoms. Optimum values for the
above mentioned experimental parameters will be derived by numerically optimizing
the scattering rate in the trap and the trapping fraction by systematically changing
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the experimental parameters. This is necessary since there is only a small window
for the experimental parameters that yields a system in which atoms can be trapped.

7.4.1 Potentials

The potentials are calculated using the procedure described in section 2.3.2. Fig. 7.5
shows cross-sections of the potential curves of all the F' = 1 and F' = 2 ground states,
through the center of a trap, one perpendicular to the surface and one parallel to
the k;| vectors and the surface. It is obvious from Fig. 7.5(a) that one of the F' = 2
states has a local potential minimum at z = z5. The potential at this minimum is
smaller than 0 due to the Van der Waals attraction and the attractive potential due
to far off-resonant coupling with the Dy line. The steep decline of the potentials
when z = 0 is approached is due to the Van der Waals attraction. The EW potential
should be high enough near the surface to overcome the Van der Waals potential.

From Figs. 7.5(b, d) it is apparent that atoms that fall towards a trap region in
the F' = 2 potential fall on a potential maximum in the F' = 1 state. They will thus
be accelerated transversely, leading to a transverse displacement and an increase in
kinetic energy. However, the displacement due to this acceleration is negligible with
respect to the transverse period of the trap and the gained kinetic energy due to
this acceleration is negligible with respect to the initial energy spread of the atoms.
Both effects will be neglected in the following optimization procedure.

7.4.2 Life time

When the detuning from the D; line is small with respect to the fine-structure split-
ting between the D; and the D, line, the dominant contribution to the scattering
rate is due to the atom moving out of the circularly polarized region. When the trap
is approximated by an harmonic oscillator potential with energy levels (v + %)ﬁw,
with v =0,1,2,3,... and w the harmonic trap frequency, the average potential en-
ergy U is half of this value due to the equipartition theorem. The average scattering
rate is, according to Eq. (2.40), given by v = UT'/(hd), with § the detuning with
respect to the D line. The scattering rate of atoms in the lowest vibrational state
of a one dimensional harmonic oscillator is

wl’
Yo = a5 (7.7)

For an atom in the vth vibrationally excited state, the scattering rate is 2v + 1
times higher. The trap frequency w in the z direction, perpendicular to the surface,
is much larger than in the other two directions. It will therefore dominate the trap
loss, which justifies this one-dimensional oscillator approach. The scattering can be
decreased by choosing a larger blue detuning, as long as it is small with respect to
the D line fine-structure splitting.
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Figure 7.5: Cross sections of the potentials of all magnetic sub-states of the ground states of 'Rb
through the trap minimum. Shown are cross-sections for the F =2 ground state, (a) perpendicular
and (b) parallel to the k| vectors and the surface and cross-sections of the F =1 ground state, (c)
perpendicular and (d) parallel to the surface. The trapping potential for the |2, £2) state and the
repulsive potential for the state from which we load the trap |1,41) are drawn with a thick line.
Note that the motional turning point of atoms incident on the |1, +1) potential overlaps with the trap
minimum. These potentials are calculated in the center of the evanescent field for the parameters
O+ = 450 prad, Otpm = 20 mrad, 1 W total power, 300 um beam waist, § = 23.8 x 10% T" and the
fraction of power in the TE polarized beam is 27.4%,

7.4.3 Trapping fraction

The estimate of the realizable fraction of trapped atoms can be written as the
product of two factors. The first, fy, is the fraction of atoms that geometrically
fall on an area with a confining potential. The second is the fraction of atoms
that scatter a photon at the correct height in order to be transferred into the trap,
which is denoted by f,;. This estimate is performed only for atoms with zero kinetic
energy in the center of the original cloud of atoms. The energy spread due to the
finite width and temperature is negligible with respect to the kinetic energy of the
atoms when they arrive at the surface, and thus do not significantly influence the
optimization of the parameters, as will be shown in the last part of section 7.4.4.

The geometric factor fy, is estimated by the ratio of the trap width to the period
of the trapping potential as depicted in Fig. 7.5(b). Here we take as the trap width
the width of the regions where the potential is lower than the perpendicular trap
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depth Usap,
_ trap width

fx period

(7.8)

A typical number for f; ~ 0.5. Note that in general the potential maxima parallel
to the surface are larger than perpendicular to the surface.

The scattering factor f; is determined by whether the atom scatters a photon at
the correct height, so that it will be trapped. This will be determined by a classical
and not a quantum-mechanical calculation, which will be justified in section 7.4.5.
For an exponentially decaying pump field, the scattering rate at a certain height
z above the surface is denoted 7(z). The pump field is normalized such that the
criteria described in paragraph 7.3.2 are fulfilled. In these calculations we have
chosen to have a relatively large angle of incidence 6. + 4°, which corresponds to a
very small decay length of 0.4\.

Since we chose a 7 polarized pump field tuned to the FF =1 — F’ = 1 transition
of the D; line we only need to consider 2 potentials, as discussed in paragraph
7.3.1. The potential U} 11y is the repulsive potential encountered by the falling
atoms in the F' = 1 ground state and Uy 49) is the trapping potential for atoms
in the F' = 2 ground state, depicted by the thick curves in Figs. 7.5(c) and 7.5(a)
respectively. Whether the plus or the minus signs apply depends on whether a o+
or a o~ polarized trap site is considered; the potential shape is the same for both
cases.

For each height z we can calculate the remaining energy F(z) of an atom that
ends up in the |F'm) = |2, +2) state

E(z) = mg((to) — Up+1y(2) + Upg,12)(2), (7.9)

with mg((to) the initial potential energy of the atom, with m the mass of the atom,
g the gravitational acceleration constant, and ((¢y) the initial height of the atoms
above the surface. This energy should be smaller than the trap height Uy, in order
for the particle to be trapped. When the turning point of the falling atoms is within
the trapping region, there is a time ¢; for which E(((t1)) = Upap. For —t; <t <1y,
U(C(t)) < Ugap holds. The total trapping fraction can be calculated by integrating
over the absolute scattering rate between times —t; and ¢;. This integral has to
be multiplied by two factors in order to yield the scattering contribution f to the
trapping fraction in the center of the trap. The first is the probability that the
excited state will decay to the trapped state, ps/(p2+ps+ ps) as discussed in section
7.3.2. This is equal to % for our pump geometry. The second is a correction factor
pp to take into account whether a polarized or an unpolarized sample is considered,
equal to % in our case for an unpolarized sample of atoms. Both factors are already
explained in section 7.3.1. The scattering contribution to the trapping fraction is
thus
= & / ) d 7.10)
L r—— . na(T)n(¢(7))dr. (7.
The trapping fraction f; determines the density increase of the trapped atoms
with respect to the falling atoms, whereas f, only influences the number of trapped
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Figure 7.6: Determination of the scattering rate o and the trapping fractions £ and f; for (a) varying
detuning 4, (b) varying beam waist w, and (c, d) varying angles of incidence 61y and ftg. Unless
specified otherwise the parameters are taken as Oty = 6. + 20 mrad, v = 6. + 450 prad, P=1W,
w = 300 um, ((tp) = 4.2 mm, and an unpolarized sample of falling atoms. The detuning § (the initial
height ((tp) for (a)) and the distribution of power between the TE and TM polarized components is
varied for each point in order to overlap the turning point with the trap minimum and to have the trap
maximum closest and further from the surface at the same height. These optimized values are shown
in (e, f, g, h).
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atoms, but has no influence on the density. Therefore we will optimize the trap
parameters for maximum f; in the next section.

7.4.4 Parameter optimization

For a wide range of combinations of angles of incidence of the TE and the TM
beams, denoted frg and f1\; respectively, there is a combination of detuning ¢ and
power distribution between the TM and the TE polarization for which a confining
potential is present. By changing the power distribution, the symmetry of the trap
can be adjusted. The maximum closest to the surface can be increased by using a
larger fraction of the power in the beam with the shorter decay length, because there
is more power available to counteract the Van der Waals potential. The maximum
farthest from the surface will consequently decrease. For a larger fraction of the
power in the beam with the longer decay length, the reverse will happen. When
the potential maxima closest to and farthest from the prism are equal the trap is
maximally deep. By changing the detuning, the turning point of the falling atoms
can be overlapped with the trap minimum. Mainly the amplitude of the F' = 1
potential is changed, while the trap position is only shifted slightly. Using this
parameter the loading can be optimized for every initial height of the atoms.

Figs. 7.6(a, b, ¢, d) show the optimized trap fractions fx and f; as discussed in the
previous section, and the scattering rate vy of the lowest vibrational state for varying
detuning 0, beam waist w and angles of incidence of the TM and TE polarized beams
Oty and O respectively. Unless specified otherwise, the parameters are taken as:
initial height of the atoms ((t9p) = 4.2 mm, the total laser power P = 1 W, beam
waist w = 300 pum, and the angles of incidence 01y = 6.4+20 mrad, and g = 6.+450
prad. Figs. 7.6(e, f, g, h) show the optimized values for the detuning (initial height
of the atoms in case of Fig. 7.6(e)) and the fraction of power in the TE polarized
beam.

In Fig. 7.6(a) the detuning § is varied and for several values of § the fall height
for which the atoms turning point overlaps with the trap minimum is determined.
This graph shows that both the scattering rate decreases and the loaded fraction f
increases when the atoms are initially closer to the surface. In the experiment the
MOT is at 4.2 mm above the surface, which is as close to the surface as experimen-
tally possible. We come to the same conclusions for other choices for the angles of
incidence for the TE and TM polarized beam.

Fig. 7.6(b) shows the trapped fraction and the scattering rate for different values
of the beam waist. The graph shows that the trapped fraction increases slightly and
the scattering rate decreases rapidly for decreasing beam waist, mainly because a
larger detuning ¢ can be used. Similar results have been obtained for other values
for the angles of incidence of the TE and TM polarized beams. Since the detected
signal will be the sum over all trap sites, choosing a larger waist will result in more
signal. We choose a waist of 300 ym as an intermediate.

Although we are free to choose whether TM or TE has the shorter or longer
decay length, power considerations convinced us to choose the TM polarization to
have the shorter decay length, since this is the higher power beam and the transmis-
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sivity into the EW is highest for this polarization. The smallest angle of incidence
should be further away from critical than its divergence angle, so that the EW can
be approximated with an exponential decay in order to simplify the potential cal-
culations, and to avoid propagating light. The largest possible angle of incidence is
0. + 50 mrad, which is limited by the size of the last mirror SM.

Figs. 7.6(c) and 7.6(d) show the results for varying the angles of incidence 61y
and Org. The influence of a variation of frg on especially the scattering rate is
very moderate. Choosing a very small value for g increases the trapped fraction
relatively more than the scattering rate and thus seems to be a good choice. The
scattering rate is strongly influenced by a change of 61y, whereas the trap fraction
fs is more or less independent of this parameter. We will use a value of 20 mrad,
for which the scattering rate is at an appropriate level.

7.4.5 Consequences for the experiment

The “optimum” trap parameters for a total laser power of 1 W and an initial height
of the atoms of 4.2 mm are thus g = 450 urad, Oy = 20 mrad, w = 300 pm,
§ = 23.8 x 10? T and the fraction of power in the TE polarized beam is 27.4%.
Cross-sections through the center of the resulting potential are shown in Fig. 7.5.
The trap depth is approximately 0.2 Al' corresponding to 57 K. The trap frequency
perpendicular to the surface is 25.6 kHz. This leads to an estimate of 45 vibrational
levels in the trap. This justifies the classical treatment for determining the trapped
fraction as mentioned in section 7.4.3.

This trap is deep compared to the spread in initial kinetic energies of < 10 uK,
but shallow compared to the spread in initial potential energies of 0.18 AI' due to the
finite width of the typically 1 mm 1/4/e diameter of the atomic cloud. However this
distribution in incident energies results only in a very moderate spread of turning
points due to the steepness of the |1, +1) potential as shown by the dotted lines in
Figs. 7.5(a, ¢).

When the EWs are created by Gaussian incident beams, the intensity decreases
towards the edges. Since the Van der Waals potential is constant over the surface,
the main effect is a decrease of the potential maximum closest to the surface. In
order to increase the area of the trap it is necessary to have an asymmetrical trapping
potential in the center of the trap, with the potential maximum closest to the surface
higher than the potential maximum furthest from the surface.

Due to the last two effects, energy spread of the falling atoms and EWs created
by a Gaussian beam, the calculated optimum trap fraction f; of 10% in the center
of the trap for monochromatic incident atoms has to be treated as a maximum
value. The ratio of the width of the initial cloud of atoms and the height of the EW
trap, scaled with the trap fraction f; yields an upper limit to the expected density
increase. This yields a density increase of < 130 with respect to the MOT density.
When the temperature of the atoms trapped in the EW trap is estimated by half
the trap depth the phase-space density could be increased by a factor < 75.

The ground-state life time of the EW trap is the inverse of the scattering rate o,
given by Eq. (7.7). For our parameters this yields y9 ~ 1.7 s~!, which corresponds
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to a life time for atoms in the vibrational ground state of 590 ms. However, this life
time decreases rapidly for atoms in excited vibrational states. For realistic initial
temperatures in the trap the trap lifetime decreases to a few times 10 ms. E.g. the
life time for atoms in the 20" excited state is equal to the value of 14.3 ms that
was obtained for the SW trap, that was discussed in the previous chapter and [15].
Hence, the use of a dark-state trap does not lead to the intended trap life time
increase. This is probably because for a dark-state trap, scattering a photon leads
to the atom being lost from the trap with a probability of almost 1. This in contrast
to the case of the SW trap, for which scattering a photon only results in a slight
heating of the trapped atom.

7.5 Probing considerations

This section deals with the problem of detecting atoms in the trap, since the evanes-
cent probing method of chapter 6 is not straightforwardly applicable anymore. The
first part of this section discusses some adjustments that have to be made that en-
able us to use the in-situ evanescent-probing technique. The second part of this
section discusses the option to launch the atoms away from the surface and detect
them in free space.

7.5.1 In-situ detection

Detecting the atoms in these traps is more challenging than detecting atoms in
the standing-wave trap of chapter 6. Detecting when the atoms are trapped is
a challenge since only one magnetic sub-state is trapped. Using the EW probe
described in chapter 6 requires every atom to scatter many photons in order to have
a detectable absorption. However, scattering only a single probe photon (linearly
polarized) will almost certainly result in losing the atom from the EW dark-state
trap that is analyzed in this chapter.

A way to prevent this loss is to use a o* polarized EW probe. The probe
will excite the |2,+2) state to the |3,43) excited state of the Dy line, which can
only decay back to the trapped state. The o and o~ polarized trap sites can be
detected independently by choosing either a ot or a o~ polarized probe. However, as
already discussed in section 7.3.1, making a circularly polarized EW is very difficult.
Moreover the probe has to be o& polarized with respect to the quantization axis of
the trapped atoms.

Another, perhaps more realistic possibility is to split the magnetic sub-levels by
adding a small magnetic field parallel to the quantization axis of the trapped atoms.
The closed transition |2, £2) — |3,43) on the Dj line can now be addressed inde-
pendently from transitions to other magnetic sub-states by choosing the appropriate
probe detuning. Also this probing scheme allows independent detection of the o™
and o~ polarized trapping sites.
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7.5.2 Time of flight detection

Another possibility is to release the atoms from the trap and detect them in free
space during their flight. This can be done by e.g. pumping them back to the F' =1
ground state with a laser pulse tuned to the F' =2 — F’ =1 or I’ = 2 transition.
It is also possible to slightly change the trap parameters, e.g. the distribution of
the power between the TE and TM polarizations, to remove the trap and have the
atoms roll down the potential gradient.

The detection can be performed using absorption imaging. However since the
expected signal, especially during first attempts, will be low, one has to use a sensi-
tive probing technique. We used a probe beam parallel to the prism surface which
is focused with a cylindrical lens. This “flat” probe is very thin, so that it has a
good time resolution for vertically moving atoms, but is also wide so that all atoms
will be detected. The detection is done by measuring the difference signal between
this probe beam and an extra reference beam of equal power that originates from
the same laser. Although the probe is very weak in order to avoid saturation, we
are able to detect absorption down to a level of 107 [16].

7.6 Experimental set-back: prism roughness

In practice we encountered experimental problems that prevented us from perform-
ing the experiment. The amount of stray light originating from the prism surface
proved to be too much. Due to this problem the pump beam causes the atoms to be
pumped to F' = 2 before they enter the region of the EW field. This was apparent
by trying to optimize the pump beam intensity using a “flat” probe as described in
section 7.5, approximately 0.5 - 1 mm above the surface. In order to optimize the
fraction of atoms that are pumped to the F' = 2 state after the bounce, as described
in section 7.3.2, we gradually increased the power of the pump beam. We observed,
however, that falling atoms would already be pumped to the F' = 2 state before
reaching the prism surface. Loading of the dark-state trap is impossible while this
problem exists.

We eliminated the possibility that stray beams cause this effect. We checked
the system thoroughly for stray beams and eliminated them all until no more were
present. Moreover all three entrance facets of the prism were tried to transmit the
pump beam to further diminish the possibility of the scattering being caused by a
stray reflection. This untimely pumping effect was persistent for different angles of
incidence and the precise location and orientation of the beam on the prism surface.

Also the off-resonant repulsive EW caused atoms to be pumped over before
reaching the prism surface. For parameters similar to the values used in [46] we
were not able to observe atoms bouncing inelastically. All the atoms bounced from
the surface with velocities expected for an elastic bounce. Pulsing the repulsive EW
and decreasing the duration of the pulse did not improve the result.

We measured the amount of stray light with a calibrated CCD camera. It was
calibrated without imaging optics using a beam of known power. By placing the
camera above the prism we can determine the amount of scattered light in the solid
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Figure 7.7: Atoms falling down in the F = 1 ground state are being pumped to the F =2 ground
state by stray light from a resonant pump beam with powers (a) 12.9 uW, (b, d) 19.4 uW (c) 401
#W, tuned to the F =1 — F’ = 2 transition of the D; line. The black squares are measurements of
the fraction of atoms that is pumped to the F = 2 ground state and the error bars correspond to an
uncertainty of 10% in the atom number. The solid line is a calculation based on the measured fraction
of stray light 9(3) x 107 srad~!, with the dashed lines calculations for the 1/e uncertainty limits of
this value. In (d) the same data is shown as in (b), but for the calculated curves an initial fraction of
10% of the atoms in F = 2 is assumed, resulting in an even better agreement between measurement

and theory.

angle of the imaging optics in front of the camera. This leads to a scattered fractional
brightness of 9(3) x 107° srad~! with respect to the power incident on the prism.
Within the measurement accuracy we observed no difference in scattering between
TE or TM polarized incident light. From the image of the CCD camera, the waist
of the beam at the prism surface was determined to be 1.0(1) mm. This measured
fractional brightness is approximately 10 times higher than the fraction measured
with the prism in the former setup that is described in section 4.3.1. For this setup
D. Voigt reported a fraction of 5 x 1075 in a solid angle of 5% [130].

With this information we can determine the rate at which atoms make a spon-
taneous Raman transition from F' = 1 to F' = 2 due to the scattered light at a
certain height above the prism surface. Fig. 7.7 shows measurements of atoms
prepared in F' = 1 being pumped to F' = 2 during their fall. The TM polarized
pump beam was switched on 5 ms after the release of the atoms and was tuned to
the FF =1 — F’ = 2 transition of the D; line. The measurement was performed
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for 12.9 uW (Fig. 7.7(a)), 19.4 uW (Fig. 7.7(b)), and 401 W (Fig. 7.7(c)) pump
beam power. The error bars of the measurements correspond to a realistic uncer-
tainty of 10% in the measurement of the number of atoms. The lines in the graphs
are calculations using the fractional brightness. The source of the stray light is
assumed to be a point source. The solid lines are calculations for the mean value
of the fractional brightness, the dashed lines correspond to a fractional brightness
one standard deviation away from the measured fractional brightness. The mea-
surements are in perfect agreement with the calculations, indicating that the stray
light from the surface is indeed the cause of the problem. The offset between the
measurement and the theory curve in Fig. 7.7(b) suggests that the sample of atoms
was not produced purely in the F' = 1 state. Taking this into account results in an
even better agreement as shown in Fig. 7.7(d).

After disassembling the prism from the vacuum setup, a visual inspection of
its surface using an optical microscope showed point and line shaped structures.
These features could not be cleaned, so that we have to assume that these are dents
and scratches. The actual cause of these features cannot be determined anymore.
A possibility is that the original commercial prism did not meet its specifications.
However, since we did not encounter problems with an equal prism we used previ-
ously, we expect the polishing procedure of the extra optical surfaces on the prism,
that are described in section 4.3.2, to be the cause. In order for these surfaces to
be large enough for polishing, extra substrates of the same material were adhesively
glued to the prism. After the polishing was finished these substrates were removed
and the remaining glue was removed by cleaning with acetone and subsequent clean-
ing with methanol. Any hard particles in this glue might have caused the observed
damage to the prism surface.

7.7 Conclusions

We have performed a numerical analysis of the loading of an evanescent-wave dark-
state trap in order to find a set of suitable experimental parameters. Several trap
geometries and their (dis)advantages were discussed. The analysis was performed
for a geometry in which the two beams that create the evanescent dark-state trap
are nearly copropagating. This trap is loaded from atoms that are transferred to the
trapped state during their reflection from an evanescent-wave mirror. We derived
that, independent of the trajectory of the atoms and the spatial distribution of
the pump field, a fraction 1 — e~ of the atoms should be transferred during a
full reflection in order for the pump rate at the turning point of the atoms to be
maximum.

By systematically varying the experimental parameters within the experimental
limits, we found a set of optimized parameters for which the trapping fraction was
maximum and the scattering rate was minimal. This resulted in a trap that was 57
1K deep with a trap frequency in the tightest direction of 25.6 kHz. We estimated
that 10% of the atoms that fall onto a trap region can actually be trapped. A density
increase of a factor 130 and a phase-space density increase with a factor 75 with
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respect to the MOT values should be possible.

The life time is limited by the fact that scattering a photon leads to an almost
immediate loss of the atom from the trap. Even though the trap life time for atoms
in the lowest vibrational state can be as long as 600 ms, the expected life time
for samples with realistic initial temperatures is comparable to the values that were
achieved with the red detuned standing-wave trap that was discussed in the previous
chapter.

We have found experimentally that the experiment poses very stringent require-
ments on the prism surface quality. The insufficient surface quality of our prism
prevented the atoms from reaching the surface in F' = 1, and thus from being
loaded into the dark state trap. It should be expected that the surface quality will
also be a limiting factor for the lifetime of atoms trapped in the EW dark state trap.
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An atom interferometer using
spontaneous decay

This chapter is based on the following paper:

R.A. Cornelussen, R.J.C. Spreeuw, and
H.B. van Linden van den Heuvell,
submitted for publication.

In this chapter we investigate the question of whether Michel-
son type interferometry is possible where the role of the beam
splitter is played by a spontaneous Raman transition. This
question arises from a detailed inspection of trajectories of
atoms bouncing inelastically from an EW mirror. Each fi-
nal velocity can be reached via two possible paths, with the
Raman transition occurring either during the ingoing or the
outgoing part of the trajectory.

At first sight, one might expect that the spontaneous charac-
ter of the Raman transfer would destroy the coherence and
thus the interference. We investigated this problem by nu-
merically solving the Schrodinger equation and found that in-
terference fringes in velocity space nevertheless are expected,
even when random photon recoils are taken into account.
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8.1 Introduction

Throughout this thesis we have considered processes where an atom undergoes spon-
taneous Raman pumping between two internal atomic states that interact differently
with the applied evanescent fields. This process has been used as a mechanism to
efficiently load low-dimensional traps. In earlier experiments we studied the behav-
ior of atoms that reflect from an evanescent-wave mirror while undergoing such a
spontaneous Raman transition during their reflection [46]. When the repulsive po-
tential experienced by the final state is lower, the atoms lose kinetic energy during
this process and hence bounce inelastically from the potential.

The final velocity of an atom depends on the position where it made the Raman
transfer. Looking at the trajectories in detail we see that two trajectories can end
up at the same final velocity. An atom can be transferred to the second state on
the ingoing or the outgoing part of its trajectory, as is shown in Fig. 8.1(a). Cognet
et al. [131] have performed similar experiments where the transfer to the second
internal state was by a stimulated Raman transfer. They observed interference
patterns, in the form of Stiickelberg oscillations in the diffraction efficiency of atoms
from polarization gradients in an evanescent-wave mirror.

This leaves the intriguing question whether interference is possible when the
transfer is by a spontaneous Raman transition. At first sight one would answer
this question negatively, since the spontaneously emitted photon could in principle
be detected, and thus would provide “which way” information. Furthermore, a
spontaneous process is generally considered incoherent and not deterministic due
to the random direction in which the photon is emitted and the resulting random
recoil to the atom. Intuitively, both effects would destroy the interference.

On the other hand there are several indications that spontaneous Raman tran-
sitions are not necessarily incoherent processes. Loudon [132] derives that the
linewidth of the spontaneous emission of an atom that is optically driven by a
weak field is equal to the linewidth of the driving field and not to the linewidth
of the transition that is driven. Eichmann et al. [133] report interference of the
spontaneous emission of two well localized trapped ions. The experiments of Cline
et al. [134] show that the phase of the atomic wave function is preserved over the
spontaneous process. They trapped 8°Rb atoms in a far off-resonance dipole trap
with a detuning that is much larger than the fine-structure splitting between the
Dy and D, line. The observed trap life time could only be explained by coherently
adding the spontaneous Raman scattering amplitudes of the D; and D lines. The
posed question will be answered in this chapter by solving the Schrodinger equation.

This chapter is structured as follows. We first present a semi-classical picture,
that we use to make qualitative predictions about the behavior of the interference
effects, if present. The question whether interference is possible will be answered by
solving the Schrodinger equation in two different ways. The first method will employ
stationary analytical solutions of the time-independent Schrodinger equation, but
is limited to monochromatic wave functions. The second method will propagate a
wave packet by numerically solving the time-dependent Schrodinger equation. The
last section will focus on the implications and requirements of a future experiment.
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Figure 8.1: (a) An atom that is transferred from state |1) to state |2) can be transferred on the
ingoing or the outgoing part of the trajectory. These two paths possibly interfere. (b) Caustic in the
final velocity distribution of an inelastic EW mirror for initial velocity v; = 1 and ratio between the
potentials § = 0.1.

8.2 Semi-classical description

We start the description of inelastic bouncing in a (semi) classical way. In the first
part we derive the classical velocity distribution of the inelastically bouncing atoms.
After that we give a semi-classical picture of the phase difference between the two
possible trajectories. Based on this picture we derive how the possible interference
patterns change on variation of the available experimental parameters.

8.2.1 Primary rainbow caustic

We consider atoms bouncing inelastically from an evanescent-wave (EW) mirror,
defined by a repulsive potential Vj exp(—2kz). Here x~! is the decay length of the
EW field, as defined by Eq. (2.19). An atom in state |1), with incident velocity —v;

(v; > 0) moves, in a classical description, on a trajectory
1
2(t) = 2o + — In (cosh (vikt)) , (8.1)
K

with zy the position of the turning point of the atom, given by

o= —In (2_v12) | (8.2)

2K mu;

The atom’s trajectory through phase space is given by

2 2 2V1 o
vi(z) = v; — ) (8.3)
While moving in the repulsive potential, the atom can make an optical Raman
transition to state |2). The repulsive potential V;exp(—2kz) experienced by this
latter state is significantly lower. The ratio V5/V; depends on the detuning of the
EW with respect to the D; line. For convenience, we define 5 = V5 /Vj, thus § < 1.
The transfer leads to a loss of potential energy of the atom so that it will leave
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the potential with a velocity vy < v;. The trajectory through phase space after this
transfer is given by
_ 26‘/1 672nz

i) =07 - 20

(8.4)
The velocity v with which an atom in state |2) leaves the potential depends on its
velocity vy at the moment of the transfer. By combining Eqgs. (8.3) and (8.4) it
follows that the final velocity vf depends on the transfer velocity vy as

u(v) = 62 + B (07 7). (8.5)

The spontaneous Raman transfer leads to a caustic in the velocity distribution of
atoms that leave the potential in state |2). There is a large population of the outgoing
velocity class around /Bv;, which corresponds to atoms that are transferred in the
turning point, with vy = 0. A transfer in the motional turning point is most likely
since atoms spend a long time there (classically zero velocity) and the scattering rate
is highest, because the light intensity is highest. There is a tail to larger velocities,
up to a maximum of v;,, which corresponds to atoms that are pumped over on their
way in or their way out of the potential.

Classically, the caustic, the distribution of final velocities, is proportional to
Ovy/Ove. This distribution is shown in Fig. 8.1(b). In this description depletion of
the initial state |1) is not taken into account, so the results are only valid for a small
transfer rate.

Like many processes that occur near the edge of a classically allowed domain,
this caustic maps on the well known description of the rainbow, as was already
noticed earlier, and several analogies between the two phenomena are possible [46].
Furthermore, we have successfully observed and characterized this caustic distribu-
tion. The minimum final velocity v/3v; is called the rainbow velocity in analogy with
the rainbow angle for an optical rainbow caustic.

8.2.2 Supernumerary rainbows

There is, however, an intriguing question. According to Eq. (8.5) both atoms that
are transferred to state |2) at velocities v, i.e. on their way in and out of the
potential, end up on the same trajectory through phase space and will thus leave
the evanescent field with the same final velocity v¢. This is also shown in Fig.
8.1(a). This raises the question whether there could be interference between the
part of the atomic wave function transferred on the ingoing trajectory and the part,
describing the same atom, transferred on the outgoing trajectory. This interference
would manifest itself in velocity space. Following the rainbow analogy, one could
call these interference patterns supernumerary rainbows. In our case the question
about interference is highly non-trivial, because a spontaneous Raman process is
involved that may destroy the coherence between the paths.

We will give a semi-classical analysis of this problem and a method to determine
the phase difference between the two paths. Furthermore two mechanisms will be
discussed that could destroy the interference. The first is related to the atom’s initial
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phase-space distribution, which is an argument that is generally applicable to atom
interferometers. The second is more specific for our case and involves the effect of
the spontaneous recoil.

Phase difference between trajectories A schematic representation of two tra-
jectories through phase space of atoms that enter the potential in state |1) and leave
the potential in state |2), is shown in Fig. 8.2(a). The phase difference Ay between
the two trajectories is given by

Ap=" /_ Y () — 2(0) do, (8.6)

where 21 (v) and z2(v) correspond to the inverse of Egs. (8.3) and (8.4) respectively.
The transfer velocity vy can be derived from Eq. (8.5). This phase difference in
Eq. (8.6) is proportional to the area between the two curves, indicated in gray in
Fig. 8.2(a). From the evaluation of the integral for various parameters we learn
that the fringe period decreases for increasing initial velocities v;, for increasing final
velocities vg, for smaller # and for larger decay length (smaller k).

General argument for matter-wave interferometers The center-of-mass mo-
tion and position of an atom can be described by a wave packet which is subject
to Heisenberg’s uncertainty relation AzAwv, > h/2m. The distribution of uncer-
tainty between position z and momentum muv, is determined by the experimental
preparation procedure of the atoms.

For a wave packet that initially has a large spread in momentum, and a well
defined position, it is not possible to unambiguously determine the phase difference
between the two possible paths, since the wave packet is spread out over several
classical trajectories through phase space. This is indicated by the dashed curves in
Fig. 8.2(a). With such a wave packet it is possible to determine whether the atom
transferred to state |2) on its ingoing or outgoing path, by observing the timing
of the spontaneously emitted photon. The spatial compactness of the wave packet
enables this measurement. Therefore, it is not expected that wave packets with this
shape show interference.

On the other hand, a minimum uncertainty wave packet with a narrow initial
momentum spread, and therefore some extension in the spatial dimension, will more
closely follow a classical trajectory through phase space, as defined by Egs. (8.3)
and (8.4). This is indicated by the dotted curve in Fig. 8.2(a). Due to this,
the phase difference between the two paths, equivalent to the gray area of phase
space enclosed by the two paths, is well defined. It comes as no surprise that the
two points in phase space where a transition to the final trajectory is possible are
covered simultaneously by the wave packet. This is the reason that no “which way”
information can be obtained by observing the spontaneously emitted photon.

Thus the initial trade-off between position and momentum uncertainty in a band-
width limited wave packet determines whether interference can be a priori excluded
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Figure 8.2: (a) Phase space trajectories of atoms being repelled by an evanescent potential. Atoms
initially in state |1) can be transferred to state |2) and continue on a different path through phase
space. The transfer to such a trajectory can occur either on the ingoing branch of the trajectory, at
point A, or on the outgoing branch, at point A'. The accumulated phase difference between these two
paths, indicated by the enclosed gray area, may give rise to interference effects. A wave packet with
a large initial velocity spread, indicated by the dashed curve, can not overlap both transfer points at
the same time. Therefore “which way" information can be obtained by observing the timing of the
spontaneously emitted photon. We do not expect that such a wave packet will lead to interference.
A wave packet with a small initial velocity spread, as indicated by the dotted curve, can overlap both
transfer points simultaneously. No “which way” information can be obtained from the emitted photon
and we expect that interference is possible in this case. (b) When the transfer is a spontaneous Raman
process, the momentum kick due to the stochastic nature of the spontaneous emission process has to
be taken into account. For a given z component of the recoil this gives rise to extra phase factors,
indicated by the dark gray areas for a small final velocity and by the light gray areas for a higher final

velocity.

or not. This requirement is necessary but not sufficient, since in the actual reali-
zation the incoherent nature of the transfer between states must yet be taken into
account.

Specific argument for interferometers with spontaneous decay The ran-
dom direction of the spontaneously emitted photon can be taken into account in the
motion of the atom by a random momentum jump. This makes the atom propagate
on a different trajectory through phase space than it would have without the ran-
dom recoil. Since we treat our atomic bounce as a one-dimensional problem, only
the z component of the recoil is of importance to us. The momentum changes are
indicated by horizontal arrows in the phase-space diagram of Fig. 8.2(b).

For a single atom, or a collection of distinguishable atoms, the size and sign
of the z component of the spontaneous recoil could be measured by detecting in
which direction the photon was emitted. Due to this possibility there will be a set
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of interference patterns, each with a well defined recoil direction. By disregarding
the information present in the scattered photons, we probe the incoherent sum of
all these interference patterns [135].

The transfer moments that contribute to a particular final velocity of one of these
interference patterns are not symmetrical around the moment of closest approach
anymore, as indicated by the points A and A’ in Fig. 8.2(b). The phase difference
between the two paths is different with respect to the recoilless case, and it depends
on the direction of the recoil. It is indicated by the dark gray areas in Fig. 8.2(b). In
order for the interference to be experimentally observable the difference between the
interference patterns with a certain recoil direction should not be too large. This
means that the phase difference between recoil components in the 4z directions
should be less then 7. For larger final velocities these phase corrections get larger
as is apparent from the larger area around the points B and B’ in Fig. 8.2(b). So
we expect the visibility of the interference to decrease for larger final velocities.

8.3 Time-independent approach

The question whether interference is visible will be answered by considering analyti-
cal stationary solutions of the Schrodinger equation for particles with a total energy
p3/2m. We show that the interference survives the incoherent nature of the sponta-
neous Raman transfer to state |2) for various experimental parameters. Furthermore
the qualitative predictions of section 8.2 are confirmed.

8.3.1 Analytical stationary solutions

The time-independent Schrodinger equation

12 92 P2

- Vie 2r% = =0 8.7

- 0221/)1(2) + Viem" () 2m¢1(2)> (8.7)

describes stationary states with a total energy p2/2m on the potential Vi exp(—2k2).

It thus describes particles with momenta £pg in the asymptotic limit of large z. This

is one of the few examples where the eigenfunctions of the Schrodinger equation are
analytically known. The solutions are given by [136]

Yi(2) = \/i sinh (W_Z)(])Kipo/hn (\/We_’“) : (8.8)

TK hk hk

where K, () is the Bessel-K function of order a evaluated for argument 5 [137].

Figure 8.3 shows [1;(z)|? for an evanescent-wave potential with x = ko /8, with
ko the wave vector of a photon, and for several values of the initial momentum pj.
To separate them, for better visibility, they are shown at an offset of their own
energy pa/2m. It is clearly visible that far from the surface, where the exponential
potential vanishes, the wave function closely resembles that of a free particle. Also
obvious is that the higher energy solutions move deeper into the evanescent wave
potential. Note that in the classically forbidden region the wave function vanishes
very rapidly, more rapidly than exponential.
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Figure 8.3: Examples of density distribution |11 (z)|? with 11 (z) a stationary solution of Schrodinger’s
equation with an exponentially decaying potential as given by Eq. (8.8). Plots are shown for initial
momenta of pg = hkg, 2hkg, 2.5hkg, and 3hky, and are shown at an offset of their own energy p§/2m.
The decay length of the evanescent wave is k=1 = ko /8.

8.3.2 Spontaneous Raman transfer

An atom with initial momentum p, that is initially in state |1) can make a Raman
transition to state |2) by scattering photons from the optical evanescent potential. In
this new state the interaction of the atoms with the evanescent potential is changed
and they are now repelled by a lower potential of height V5. The atom can make
a transition to several of the eigenfunctions v ,(2) with final momentum p in the
potential V5 exp(—2k2).

The final wave function in momentum space is given by

ou(p) ~ / () Ry (2)dz, (8.9)

where the recoil due to the spontaneous Raman transition is taken into account by
projecting the initial wave function with an extra momentum factor ¢ (2) exp(—ikz)
onto the eigenfunction 1, ,(z). Here hk is the momentum component of the recoil
in the z direction. The coupling between these two states is determined by the Rabi
frequency, which is proportional to the electric field amplitude, and is thus given
by exp(—kz) and not by exp(—2kz) which is proportional to the evanescent-wave
intensity. As already discussed in section 8.2.2; there will be interference patterns
|6x(p)|? for every value hk of the recoil. A measurement constitutes of the sum
of all these possible interference patterns. In this derivation we will assume an
isotropic distribution of the recoil momentum hk. This is not straightforward, since
the distribution depends on the polarization of the spontaneously emitted photon.
We will come back to this point in section 8.5.3. This leads to

6(p)|* = /_+ 0 |0 (p) [Pk (8.10)

ko



8.3 Time-independent approach 105

108

106

k (ko)

scale

104

102

o o0s 1 15 2 25 3 35
p (: ko)
Figure 8.4: The behavior of the interference pattern |¢x(p)|? versus the final momentum p for various
values of the z component of the photon recoil fik for parameters py = 2hkg, kK = ko/8, and 5 = 0.2.

The dotted lines indicate the initial momentum and the rainbow momentum.

8.3.3 Results and discussion

Fig. 8.4 shows the behavior of the momentum distribution for various values of the
z component of the photon recoil hk. It is calculated using Eq. (8.9), with an initial
momentum py = 2hkgy, a potential steepness k = ko/8, and potential reduction
6 = 0.2. Some points are immediately apparent from this graph. First of all, as
expected, the main part of the momentum distribution extends between the initial
momentum po and the rainbow momentum +/3py, both indicated by vertical dotted
lines. The distributions “peak” near the rainbow velocity, resembling the caustic
distribution. Secondly, for every recoil direction there are supernumerary rainbows
visible. Although the interference washes out for larger values of the recoil, the
remaining interference fringes are present at more or less the same final momenta.
They only shift slightly to lower final momenta for larger values of the recoil. This
already indicates that the spontaneous recoil does not completely wash out the
interference. The behavior of the interference is independent of the direction of the
recoil. This makes sense if one realizes that a photon emitted on the ingoing part of
the trajectory has the same effect on the momentum distribution as a photon that
is emitted in the opposite direction on the outgoing part of the trajectory.

Fig. 8.5 shows the results of calculations of Eq. (8.10) for different experimental
parameters. The dashed lines are calculations of |¢o(p)[?, without a spontaneous
recoil, so the expected interference patterns for a coherent splitting process. The
solid lines are calculations of |¢(p)|? in which the effect of the recoil has been in-
corporated. Indeed the summation over the spontaneous recoil does not destroy the
interference pattern, even for these extremely low initial momenta. The small parts
of the distribution |@g(p)|*> at momenta smaller than the rainbow momentum and
larger than the incident momentum are evanescent matter waves that extend into
the classically forbidden regions.

Several of our predictions that were made for the general case of a coherent
interferometer are noticeable in these graphs. Indeed the fringe spacing decreases
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Figure 8.5: Interference patterns calculated for different parameters. Solid lines: |¢(p)

2 with the
effect of a spontaneous recoil, and dashed lines: |¢o(p)

2 without the effect of a spontaneous recoil.
The dotted lines indicate the initial momentum and the rainbow momentum.

for larger initial and final momenta, for longer decay lengths x~! of the evanescent
field, and for smaller values of 3. Furthermore, as predicted for the case of an

incoherent interferometer, the visibility of the graphs in which the effect of the
recoil has been taken into account decreases for larger final momenta.

8.4 Time-dependent approach

In the previous section we have shown that the incoherent nature of the spontaneous
Raman transfer does not prevent us to observe interference. In this section we will
show that the interference phenomena will also be visible for a wave packet with
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Figure 8.6: Evolution of (a) the density distribution |¢1(z,t)|? and (b) the real part of the wave
packet 1 (z, t), calculated for an evanescent wave with x = ko /8, and a wave packet with initial height
29 = 75/ko, initial width o, = 7/ko, and initial momentum py = 2hkg.

a finite momentum spread. In the analysis we will closely follow the Monte-Carlo
wave-function approach [138, 139].

8.4.1 Transfer-free evolution

We consider the evolution of a diffraction limited wave packet in state |1)

t=0)= L i (8.11
Qpl(z, = ) me e z . )

with initial height zq, initial width o,, and initial momentum pg = hk,. It is normal-
ized such that [ |¢(z,0)]*dz =1 and [(z — 29)?|¢(z,0)[*dz = o2. The evolution of
the wave packet is calculated by numerically solving the time-dependent Schrodinger
equation

0 h* 9

Zha’@bl(z,t) = —%@
when it reflects from the evanescent-wave potential with a potential height V) at
z = 0 using the Quantum kernel [141] package in Mathematica [140]. This results in
a wave packet 11(z,t) at time ¢.

An example of such an evolution is shown in Fig. 8.6, where the density dis-
tribution and the real part of the wave function are plotted versus position z and
time ¢. This graph is calculated for an evanescent wave with k = k/8, and a wave
packet with initial height zy = 75/k¢, initial width o, = 7/k¢, and initial momen-
tum py = 2hkg. The spatial width leads to a width of the momentum distribution
of o, = hko/T7.

U1 (z,t) + Vie 2 (2, 1), (8.12)
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In these graphs several characteristics of the wave packet are visible. In Fig.
8.6(b) the difference between the phase velocity and the group velocity is apparent.
Furthermore the dispersion of the wave packet is observable: its initial width is
smaller than its final width. Also the slight tilt of the interference fringes during the
reflection is due to dispersion. Atoms that arrive later in their turning point are the
slower atoms that move less deep into the evanescent potential.

8.4.2 Spontaneous Raman transfer

At a time 7 a transition to state |2) occurs, and the evolution abruptly continues
on a potential that is a factor § lower. This corresponds to a Raman transition of
an atom to another internal state that has a weaker interaction with the evanescent
wave.

Immediately after the transfer the wave function in state |2) is described by

Vri(2,7) = Napy (2, 7)e e, (8.13)

where N denotes a normalization factor. The first exponent represents the mode
function of the absorbed evanescent photon, and the second exponent the mode
function of the spontaneously emitted photon. The evolution of this wave function
can now be continued up to a time ¢4, leading to a wave function ¢, (2, tena). When
tena is large enough the entire wave packet effectively propagates in free space, so
that the momentum distribution remains constant. The Fourier transform

Gre(p) ~ F (Yri(2, tend)) (8.14)

of the wave packet at this time is the wave function in momentum space that endured
a momentum kick Ak at its transfer time 7.

Every atom of the sample that is transferred to state |2) is transferred at a ran-
dom transfer time 7 and undergoes a random recoil kick Ak due to the spontaneously
emitted photon. The transfer rate I'(7) at a certain time 7 is given by

L(r) ~ /000 Ui (z, T)V1(2)1(2, T)dz. (8.15)

We again assume an isotropic distribution of the recoil momentum hk. We have to
add contributions with different 7 and k£ in an incoherent way. In contrast to the
original description of the Monte-Carlo wave-function method we do not evaluate
the momentum distribution for a discrete number of random transfer moments 7 and
recoil momenta hk, but integrate numerically over these values. For the momentum
distribution as a function of the wave vector of the spontaneously emitted photon
we get

tend
@~ [T 6o (8.16)
0
A subsequent integration over this wave vector yields
ko
(p)* = / | (p)|*dk (8.17)
—ko

for the momentum distribution of a sample of atoms.
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Figure 8.7: (a) density distribution [t);.0(2, tena)|”, (b) real part of the wave packet ;. o(z, tend), (c)
momentum distribution |¢,0(p)[?, and (d) real part of the momentum distribution ¢, o(p). All these
graphs are calculations without recoil, thus for k = 0. The data for a certain value of transfer time
T represent the wave function at the final time te,q if the evanescent field had been switched on for
a very short time at time 7. These results are given at a large te,q = 70m/hkZ, so that the wave
packet effectively evolves in free space, as is visible in Fig. 8.6. The graphs are calculated for an
evanescent wave with kK = ko/8 and 5 = 0.2, and a wave packet with initial height zy = 75/ko, initial
width o, = 7/kg, and initial momentum py = 2hiky. The dotted lines indicate the initial momentum

and the rainbow momentum.

8.4.3 Results and discussion

Fig. 8.7 shows examples of the density and momentum distributions as a function
of the transfer time 7 in the absence of recoil, thus for £k = 0. The data for a
certain value of time 7 represents the final wave function if the evanescent field
had been switched on for a very short time at time 7. The plots are calculated for
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Figure 8.8: Interference patterns calculated for different parameters. Solid lines: |#(p)|?, with the
effect of a spontaneous recoil, and dashed lines: |¢o(p)|?, without the effect of a spontaneous recoil.
The dotted lines indicate the initial momentum and the rainbow momentum.

an evanescent wave with a decay length x=' = 8/k, a ratio of the two potentials

B = 0.2 and a wave packet with initial height zqg = 75/k, initial width o, = 7/k
and initial momentum py = 2hky. The momentum spread due to the finite size of
the wave packet is 0, = hko/7. Both the density distribution [¢;0(2, tena)|* and the
real part of the wave function ¢, ¢(z, tena), and the momentum distribution |¢,(p)[?
and the real part of the wave function in momentum space ¢, o(p) are shown.

Figs. 8.7(a) shows a line with high density that we interpret as atoms that are
transferred in their turning point. It is extended in time due to the finite width
of the wave packet and it is slanted because atoms that are transferred later have
less time to fly away from the potential. We interpret the less intense area at larger
distances and larger transfer times as atoms that are transferred on the outgoing
part of their trajectory and thus leave the potential with a large velocity. In Figs.
8.7(c, d) is visible that atoms which are transferred either very early or very late,
indeed leave the potential with unchanged momentum. Fig. 8.7(c) also shows that
around the motional turning point, for 7 approximately between 30 m/hk2 and
45 m/hk?, a large population near the rainbow momentum /Bp, is created. Tt is
furthermore visible that the supernumerary rainbow contributions that are created
at different transfer times 7 have the same final momentum. The phase fluctuations
in momentum space, that are visible in Fig. 8.7(d), are of no importance since the
various 7 contributions add incoherently.

Fig. 8.8 shows graphs of |¢(p)|* for some parameters. Fig. 8.8(a) must be
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compared with Fig. 8.5(a), Figs. 8.8(b)-(d) must be compared with Fig. 8.5(c). It
is obvious that even for a wave packet with a finite momentum spread the interference
effects are still present. The parameters for Figs. 8.8(b)-(d) are equal except for
the initial width o, of the wave packet and thus the momentum spread o, = fi/o..
It is clear that the interference fringes are more apparent for a wave packet with a
smaller momentum spread.

8.5 Experimental considerations

This section discusses the implications of the results of the calculations that are
presented in this chapter for an actual experiment. Several aspects are considered.
Firstly the implication of the low initial velocity that is used in the calculations.
Secondly proper physical levels of ¥ Rb atoms are chosen to fulfill the role of states |1)
and |2). Subsequently we consider the implications of a real probability distribution
of directions in which the spontaneously emitted photon is emitted. This distribution
has been taken isotropic throughout this chapter. Finally we consider a method to
detect the resulting final momentum distribution.

8.5.1 Computational limitations - experimental implications

The calculations presented in this chapter are for unrealistically low initial veloc-
ities v;. This is because both calculation procedures turned out to be limited by
computational resources. The calculation time becomes inconveniently long to eval-
uate the procedure for experimentally realistic incident velocities of ~ 30 cm/s [46],
which corresponds to ~ 500, With vy the recoil velocity of the atom due to the
scattering of a photon.

For the time-independent approach the evaluation in Mathematica [140] of the
Bessel-K functions of high imaginary order becomes very slow, even though these
functions are analytically known. For the time-dependent approach the number of
sampling points, necessary for the numerical evaluation, becomes too large due to
the highly oscillatory character of the incident wave packet. However, we expect
even better signals for realistic values for the initial velocity v;, so the calculation
represents a worst case.

8.5.2 Rb levels and optical pumping

So far we have considered levels |1) and |2) without discussing which physical level
they correspond to. In reality we usually deal with multi-level atoms, that moreover
include sub-structure. Each of these (sub-)levels has a different interaction with
the evanescent field. If more (sub-)levels contribute to the signal the predicted
interference can be washed out.

For 8"Rb atoms a convenient choice for state |1) would be the |F'm) = |1,0)
ground state and the |[F'm) = |2, +1) ground states for the |2) state. The evanescent
field needs to be linearly polarized and blue detuned with respect to the FF =1 —
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F’" = 2 transition of either the Dy or D, line. For this choice of parameters, atoms
in state |1) can only make transitions to state |2). Transitions via the F’ = 0
excited state can not decay to state |2), and hence do not contribute to the signal.
Transitions via the |F'm’) = |1,0) or I’ = 3 excited stated are forbidden due to
selection rules. Only a transition over the |F'm') = |2,0) excited state contributes
to the transition from state |1) to state |2). This excited state can decay to either of
the |2, £1) ground states. Since these states interact identically with the evanescent
field, their interference patterns will overlap.

We performed experiments to observe the interference effects that are described
in this chapter. Our attempts were hampered by the fact that the incident atoms
were not optically pumped [90]. If interference was present it was obscured by the
superposition of several of these interference patterns. Moreover the velocity spread
of the sample of atoms might have been too large to observe interference.

8.5.3 Distribution of the spontaneously emitted photons

The distribution of wave vectors of the spontaneously emitted photon has been
assumed isotropic throughout this chapter. In reality the polarization of the photon
is either linear or circular, each having a corresponding wave-vector distribution.

The intensity distribution of a linearly polarized photon is given by I(f) =
% sin?#, with 6 the angle with the z axis. This leads to a distribution of the z
component of the wave vector of 2(1 — (k/ko)?). For a oF circularly polarized
photon the intensity distribution is given by I(6) = t2-(1 + cos®§), which leads to
a distribution of the z component of the wave vector of 2(1 + (k/ko)?). For the
intensity distributions, see e.g. [47].

From these distributions it is clear that a linearly polarized spontaneously emit-
ted photon is advantageous in order to maximize the visibility of the interference
pattern, since the components for small |k| contribute more than the components
for larger |k|. However, as discussed in the previous sub-section, for ’Rb atoms the
spontaneously emitted photon needs to be either o™ or o~ polarized. This will lead
to a decrease of the interference visibility as compared to the graphs calculated in
the previous two sections. However, it will still be possible to observe interference.

8.5.4 Detection

In an actual experiment the momentum distribution eventually maps on the position
distribution since the decay length of the evanescent wave x~! is short with respect
to the height of the motional turning point due to gravity. One way to perform
this experiment is similar to the inelastic bouncing experiments [46]. The velocity
distribution can be determined from e.g. an absorption image of the sample of atoms
at a sufficiently long time after the reflection.

Another possibility is to perform a beam experiment with an atomic beam inci-
dent at a grazing angle with respect to the dielectric surface that is used to create
the evanescent wave. The velocity component of the atoms parallel to the surface
will not be altered, while the velocity component perpendicular to the surface will
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show the interference as discussed in this chapter. A spatially resolving detector
down the path of the atomic beam will show the interference patterns. This setup
has the advantage of being a continuous experiment, which will enhance the signal
to noise ratio.

8.6 Discussion and conclusions

By solving the Schrodinger equation numerically we have been able to answer the
question “Is it possible to have an atom interferometer on basis of beam splitters
that involve spontaneous emission?” with an unambiguous yes.

The intuitive objections to whether this is possible have been refuted. The semi-
classical arguments that were presented in section 8.2 have been confirmed by the
full quantum-mechanical calculations. “Which way” information due to the possi-
bility of detecting the spontaneously emitted photon can be prevented by choosing
a sufficiently narrow velocity uncertainty. A wave packet can cover both transfer
points in phase space simultaneously if its velocity is defined accurately enough. The
incoherent nature of a spontaneous emission process due to the random recoil direc-
tion of the atom is visible in all the calculated interference curves, but does not lead
to a complete scrambling of the interference. For larger final velocities, for which the
transfer points are separated more and the acquired random phase is consequently
larger, the visibility of the interference fringes indeed decreases. Furthermore the
fringe period indeed qualitatively shows the behavior that was predicted on the basis
of the semi-classical calculations.
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Summary

This thesis describes our efforts to exploit the unique properties of evanescent waves
in the field of cold atoms. We have demonstrated detection of cold atoms in close
proximity of a dielectric surface. Other efforts were focussed to obtain a sample
of atoms with high phase-space density in a completely optical way, without using
evaporative cooling.

In chapter 2 we described the theoretical background that is needed for the rest
of the thesis. Light, and especially evanescent light, is described. We extend the
concept of light intensity to an effective light intensity which is also applicable for
evanescent waves. The interaction of atoms with light is described, both for near-
resonant and far off-resonant radiation. This is applied to the case of 8Rb atoms.
Some attention is paid to the Van der Waals interaction of atoms with a dielectric
surface.

Chapter 3 discussed a slightly different subject. In the literature it is claimed that
the success of Bose-Einstein condensation in dipole traps of a CO, laser is due to the
sign of the polarizability of the excited state that is used in the laser cooling process.
We have calculated the level shifts of the ground and excited state for radiation with
wavelengths higher than 700 nm. Based on these calculations we found that the level
shifts have the same sign as the DC value for wavelengths between 1366 nm and
approximately 1400 nm and for wavelengths larger than 1529 nm. The magnitude
of the light shift and the current day availability of high power and single spatial
mode cw lasers lead to the conclusion that a laser with a wavelength of 2 ym is a
promising alternative for a CO, laser.

The experimental setup that is used to perform the experiments is described
in chapter 4. The laser beams that are used in the experiment are discussed. For
beams that create evanescent waves, a very accurate method to determine the angle
of incidence with respect to the critical angle is discussed. An accuracy below the
diffraction limit was obtained. The components of the vacuum setup are discussed.
In particular the quartz cell that provides the optical access for the experiments,
the custom made prism that is used to create the various evanescent fields for the
experiments and the dispenser that is used to get a low Rb vapor in the vacuum
system are discussed in detail.

It is often necessary to quickly change a laser frequency during the experiment.
This is convenient to, e.g. switch between a frequency needed for magneto-optic
trapping to a frequency needed for polarization gradient cooling. In chapter 5 a
method is discussed to perform this task very efficiently. Its effect is demonstrated
using a diode laser system. The laser frequency is changed by changing the laser
current, while this change is compensated by an AOM for the light that is used for
spectroscopy. This way the laser will stay in lock even for very fast changes of the
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frequency.

In chapter 6 we demonstrate a method to in situ detect atoms very close (~ \)
to a dielectric surface. We measure the absorption of a weak, resonant evanescent
wave in order to detect atoms that are present in the volume of the evanescent
wave. The method was tested by detecting the absorption of atoms falling onto the
surface. In order to qualitatively understand the absorption of the evanescent wave
for angles of incidence very close to the critical angle, the Gaussian character of
the incident beam had to be taken into account. We also demonstrated loading of
only a few potential minima of a standing-wave dipole trap by making use of the
highly localized scattering of an evanescent-wave mirror. We used the evanescent
probing technique to determine the number of trapped atoms. We determined that
we have trapped more than 1.5 x 10* atoms initially. We infer a density increase of
two orders of magnitude.

Chapter 7 presents a numerical analysis of an evanescent-wave dark-state trap.
Several trap geometries were discussed. For a geometry of two nearly co-propagating
incident beams a more detailed analysis was performed. We optimized the experi-
mental parameters within realistic limits for a large trapping fraction and a low
scattering rate. We concluded that a trapping fraction of 10% could be realized,
which leads to a density increase of a factor 130 and a phase-space density increase
of a factor 75 with respect to the MOT values. Because scattering even a single
photon is very likely to lead to loss from the trap, the life time of this trap is its
weak point. The realization of this experiment was prevented by the inferior quality
of the surface of the prism that was used to create the evanescent fields.

As an example of the unexpected possibilities of the combination of cold atoms
and evanescent wave potentials may serve chapter 8. Atoms that reflect inelastically
from an evanescent-wave mirror are transferred to a different internal state during
the reflection from the potential. This transition can occur on the ingoing or the
outgoing part of the trajectory. By numerically solving the Schrédinger equation
we have shown that it is possible to observe interference between these two trajec-
tories even though the transfer process is a spontaneous Raman transition, which is
intuitively an incoherent process. This is possible if the initial velocity of the wave
packet is well defined. The atoms then follow a trajectory that closely resembles a
classical trajectory through phase space, but the wave packet is spread out along
this trajectory such that both transfer points are covered simultaneously. This pre-
vents knowledge of “which way” information by detecting the spontaneously emitted
photon. The random direction of the recoil does not lead to a complete scrambling
of the interference.



Samenvatting

De afgelopen jaren is mij vaak gevraagd om uit te leggen wat mijn onderzoek eigenlijk
inhoudt. Deze uitleg heb ik met wisselend succes gegeven. De reden hiervoor is,
denk ik, duidelijk als je door dit proefschrift heen bladert. Aan de ene kant is
wiskunde de taal waarmee veel effecten het makkelijkst worden beschreven. Een
poging om dit in gewoon Nederlands te doen strandt al snel in een warrig verhaal.
Warrig doordat het moeilijk en misschien zelfs onmogelijk is om alle subtiele effecten
die in de formules verstopt zitten in gewoon Nederlands te vertellen. Aan de andere
kant staan de effecten die ik heb onderzocht ver van het leven van alledag. Weinig
mensen kunnen zich er iets bij voorstellen.

Toch wil ik, nu ik het in alle rust kan opschrijven, nog een poging doen. Om
een helder verhaal te krijgen zal ik veel subtiliteiten moeten weglaten. Iemand die
hierin geinteresseerd is raad ik aan om toch maar dit proefschrift door te lezen. En
vragen stellen kan natuurlijk altijd.

Lichtkracht Normaal gesproken merk je het niet, maar licht oefent een kracht uit
op materie. De kracht die het licht van de zon op jou uitoefent is te vergelijken met
de kracht van een snipper confetti die op je ligt. Een voorbeeld van deze lichtkracht is
de staart van een komeet. Deze staart staat niet, zoals veel mensen denken, langs de
baan van de komeet, maar hij staat altijd van de zon af. Hij bestaat uit stofdeeltjes
van de komeet die door het licht van de zon worden weggeduwd. In figuur S.1 is een
foto te zien van komeet Hale-Bopp toen hij in 1997 door ons zonnestelsel vloog. De
staart van de komeet is duidelijk te zien.

De experimenten die beschreven zijn in dit proefschrift zijn gedaan met rubidium-
atomen. Op deze atomen oefent het licht een veel grotere kracht uit. Deze kracht kan
zo groot zijn als 10.000 keer de zwaartekracht! Dit is mogelijk door gebruik te maken
van een eigenschap van deze atomen; ze zijn bijzonder gevoelig voor een bepaalde
kleur van het licht. Dat bepaalde atomen een voorkeur hebben voor een bepaalde
kleur licht is bijvoorbeeld te zien aan natrium-atomen. Natriumlampen, de gele
lampen boven de snelweg, hebben een heel specifieke gele kleur. Deze kleur is ook te
zien als je keukenzout (ofwel natrium-chloride) in vuur gooit. De rubidium-atomen
die wij gebruiken in onze experimenten zijn in veel opzichten vergelijkbaar met
natrium-atomen, maar de speciale kleur van rubidium-atomen ligt in het infrarood.
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Figuur S.1: De staart van een komeet ontstaat door stofdeeltjes van de komeet die door licht van de
zon worden weggeduwd. Foto van komeet Hale-Bopp die in 1997 langs de aarde vloog.

Koelen met laserlicht Om deze bijzondere kleur goed aan te spreken is een
speciale lichtbron nodig die precies de goede kleur licht levert. Normale lampen
voldoen niet, omdat hun licht bestaat uit heel veel kleuren. In plaats daarvan
gebruiken wij lasers die precies één kleur leveren. Heel toevallig is de kleur licht die
de lasertjes in CD-spelers leveren precies de kleur die wij nodig hebben.

In de experimenten die beschreven zijn in dit proefschrift worden veel lasers
gebruikt. Allemaal met een iets andere kleurnuance, maar allemaal infrarood, in
de buurt van de voorkeurskleur van rubidium. De experimenten beginnen allemaal
door zes laserbundels met de goede eigenschappen (intensiteit en kleur) te kruisen in
een glazen potje waarin een klein beetje rubidiumdamp zit. Deze zes laserbundels,
in combinatie met een goed gekozen magnetische put, zorgen ervoor dat er van alle
kanten tegen de atomen wordt geduwd. De atomen verzamelen zich in het kruispunt
van de laserbundels en worden tegelijkertijd afgeremd. Een foto van deze opstelling
is te zien in figuur S.2.

Omdat op atoomschaal de snelheid van de atomen een maat is voor de temper-
atuur van gas, wordt het wolkje atomen dus afgekoeld. Voor een gas op kamertem-
peratuur (20°C of ongeveer 293 Kelvin) is deze snelheid gemiddeld ongeveer de
geluidssnelheid, oftewel 300 m/sec. Bij het absolute nulpunt, (—273,15°C, oftewel
0 Kelvin, kouder kan niet), staan de atomen helemaal stil. In onze experimenten
worden ongeveer 10 miljoen atomen een factor 10.000 afgeremd tot een gemiddelde
snelheid van ongeveer 3 cm/sec. Dit komt overeen met een temperatuur van 5 pK
(micro-Kelvin), oftewel -273,149995°C. Dit is 0,000005 graad boven het absolute
nulpunt en is veel lager dan de temperatuur van het heelal! In 1997 is voor deze koel-
techniek de Nobelprijs uitgereikt aan S. Chu, C. Cohen-Tannoudji en W. Phillips.
Door deze lage temperatuur, en dus lage snelheid van de atomen, blijft het ingevan-
gen gaswolkje bij elkaar als de laserbundels worden uitgezet. Het wolkje valt door
de zwaartekracht naar beneden terwijl het maar minimaal groter wordt. Dit is te
zien in de bovenste rij experimentele plaatjes in figuur S.3. Bij hogere temperaturen
zou het wolkje direct uit elkaar spatten.
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Figuur S.2: Foto van het potje met rubidiumdamp. De zes laserbundels om de atomen in te vangen
en af te koelen zijn met pijlen in de foto getekend. De cirkels geven de spoelen aan die de magnetische
put maken om de atomen op hun plaats te houden. Ook te zien zijn sommige van de spiegeltjes die de
laserbundels het potje in reflecteren.

Figuur S.3: (bovenste rij) Een wolkje atomen dat is afgekoeld tot 5 K valt als een baksteen naar
beneden. (middelste rij) De vallende atomen worden afgestoten door een evanescent lichtveld. Dit
lichtveld vormt een spiegel voor atomen of een atomaire trampoline. (onderste rij) Als tijdens deze
stuitering de atomen worden overgepompt naar toestand F = 2 stuiteren ze minder hoog op. De tijd
die is aangegeven in de plaatjes is de tijd die verstreken is sinds de atomen zijn losgelaten.
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Figuur S.4: Foto van de opstelling. Tafel waarop de lasers en optische elementen staan opgesteld.

Nog kouder Er is een koelmethode die tot nog lagere temperaturen leidt. Deze
koelmethode wordt afdampkoelen genoemd en is gebaseerd op verdampen, net als
een kop koffie die afkoelt. Het komt erop neer dat de warmste deeltjes ontsnap-
pen en je daardoor vanzelfsprekend de koudste overhoudt. Bij de temperaturen en
dichtheden die op deze manier gehaald kunnen worden treedt een bijzonder effect
op. De atomen gaan allemaal hetzelfde gedrag vertonen en het is niet meer mogelijk
om ze van elkaar te onderscheiden. Verder gaan de atomen zich steeds meer als
golven in plaats van deeltjes gedragen. Dit gedrag wordt Bose-Einstein condensatie
genoemd. Het is in 1925 voorspeld door de natuurkundigen Bose en Einstein. In
1995 is het voor het eerst waargenomen. Hiervoor is in 2001 de Nobelprijs uit-
gereikt aan E. Cornell, W. Ketterle en C. Wieman. Om dit gedrag te beschrijven is
quantum-mechanica nodig; de beschrijving van de natuurkunde van het hele kleine.
Het gas gaat zich gedragen als een quantumgas. Dit betekent dat alle atomen gaan
zich hetzelfde gaan gedragen.

Beinvloeden van atomen met laserlicht Een rubidium-atoom kan in twee
toestanden voorkomen. Deze toestanden worden genummerd met /' =1 en F' = 2.
In onze experimenten is het effect van licht op F' = 1 atomen veel groter dan op
atomen in de F' = 2 toestand. Verder lijken deze toestanden erg op elkaar. Een
atoom kan van de ene in de andere toestand worden gebracht. Ook dat gebeurt weer
met behulp van laserlicht. Weer een andere laser wordt gebruikt om atomen waar te
nemen door te kijken naar de schaduw die de atomen in de lichtbundel achterlaten.

Voor al deze toepassingen is laserlicht met een iets andere kleurnuance nodig. In
ons laboratorium hebben we dan ook een heel park met lasers, optische elementen
zoals spiegels en lenzen en electronica om te zorgen dat we al deze kleurnuances
kunnen maken. In figuur S.4 is een foto van de tafel te zien waarop al deze lasers
en optische elementen staan.
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Figuur S.5: (a) Licht breekt aan een opperviak tussen een dicht (glas) en minder dicht (lucht of
vacuim) medium: de hoek van uittreding t is groter dan de hoek van inval i. (b) Als de hoek van
inval / groter wordt, is er op een gegeven moment een hoek j. waarvoor het uittredende licht parallel
aan het oppervlak loopt. (c) Als hoek i nog groter wordt, is er geen uittredende lichtstraal meer, maar
alleen een dun laagje licht: een evanescent lichtveld.

Evanescent licht Naast lasers die gebruikt worden als lichtstraal, een bundel licht
die door de ruimte loopt, worden ze ook gebruikt om evanescente (Nederlandse ver-
taling: uitdovende) lichtvelden te maken. Deze velden ontstaan als een laserbundel
van een optisch dicht medium (zoals glas) verder gaat in een optisch minder dicht
medium (zoals lucht of vacuiim). Bij zo'n overgang reflecteert een gedeelte van het
licht aan het oppervlak tussen de twee media en een gedeelte van het licht gaat door
in het nieuwe, minder dichte, medium. Dit doorgaande licht breekt aan het opper-
vlak. De hoek van uittreding ¢ is groter dan de hoek van inval ¢, zoals te zien is in
figuur S.5(a). Als de hoek van inval ¢ groter wordt, is er op een gegeven moment een
hoek 7. waarvoor het uittredende licht parallel aan het oppervlak loopt. Dit is te
zien in figuur S.5(b). Als hoek i nog groter wordt, is er geen uittredende lichtstraal
meer, maar alleen een dun laagje licht, zoals is weergegeven in figuur S.5(c). Dit
wordt een evanescent lichtveld genoemd en heeft hele bijzondere eigenschappen.

Atomen waarnemen met evanescent licht In de experimenten die beschre-
ven zijn in dit proefschrift valt het wolkje koude atomen op een glazen oppervlak
waarboven zo’n evanescent lichtveld is gemaakt. We hebben onder andere een tech-
niek ontwikkelt om met evanescent licht atomen zeer dicht boven het glazen opper-
vlak waar te nemen. We hebben het hier over afstanden van ongeveer 0.5 pum of
0.0005 mm. Door deze kleine afstand is het heel moeilijk om deze atomen op een
andere manier te bekijken.
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Spiegel voor atomen Evanescente velden kunnen niet alleen gebruikt worden
om atomen waar te nemen, maar ook om ze te beinvloeden. Door de kleur van het
licht goed te kiezen kan dit evanescente veld afstotend werken voor atomen. Op deze
manier kan een atoomspiegel of trampoline voor atomen worden gemaakt. Plaatjes
die gemaakt zijn met onze opstelling staan in de middelste rij in figuur S.3. Deze
stuitering kan worden beinvloed (onderbroken) door tijdens de stuitering de atomen
over te pompen van toestand F' = 1 naar toestand F' = 2. Atomen in deze laatste
toestand worden veel minder sterk afgestoten waardoor ze minder hoog opstuiteren.
Dit is te zien in de onderste rij plaatjes in figuur S.3.

Vangen van atomen met evanescent licht Waar we uiteindelijk in geinteres-
seerd zijn is het vangen van atomen vlak boven een glazen oppervlak. Dit hebben we
gedaan door een lichtveld te maken dat ervoor zorgt dat atomen na het overpompen
naar toestand F' = 2 niet wegstuiteren maar gevangen zitten in dit lichtveld. We
hebben experimenten gedaan waarbij het evanescente veld gecombineerd wordt met
een bundel licht die van het bovenoppervlak reflecteert. Hierbij is het ons gelukt om
de wolk atomen in hele dunne plakjes boven het oppervlak te vangen. Ook hebben
we experimenten gedaan met een combinatie van twee evanescente lichtvelden. Deze
combinatie levert een lijntjespatroon op waarin atomen gevangen kunnen worden.
Omdat de structuren van atomen die we maken één- (lijntjes) of twee-dimensionaal
(plakjes) zijn, zullen de atomen een ander gedrag vertonen dan normaal gesproken
in drie dimensies.

Door atomen op deze manier te vangen verwachten we dat we de dichtheid kun-
nen verhogen. Een relatief grote wolk atomen wordt immers samengeperst in een
platte schijf of zelfs nauwe lijntjes. Door de dichheid voldoende te verhogen kun
je ook een Bose-Einstein condensaat maken. Het is ons gelukt om de dichtheid in
de plakjesstructuur te verhogen met een factor 100. Niet genoeg voor een Bose-
Einstein condensaat, maar wel ongeveer hetzelfde als andere mensen in een verge-
lijkbaar experiment hebben behaald. Berekeningen die we gedaan hebben aan de
lijntjesstructuren laten zien dat ook hier de grens ligt op ongeveer een factor 100.
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Dit hele proefschrift is geschreven in de derde persoon enkelvoud. Uiteraard is dit
geen pluralis majestatis maar het betekent dat ik dit proefschrift niet had kun-
nen schrijven zonder de hulp van veel mensen. Allereerst zijn dat natuurlijk mijn
promotor en co-promotor Ben van Linden van den Heuvell en Robert Spreeuw.
De grote vrijheid die ik gekregen heb tijdens mijn onderzoek heb ik altijd heel erg
gewaardeerd. Gelukkig stonden jullie altijd klaar om mee te denken als er problemen
waren die ik niet zelf opgelost kreeg. Jullie verschillende aanpak van vraagstukken,
een verhelderend analoog fenomeen door Ben en een verklarend subtiel effect dat
de onbegrijpelijke resultaten logisch maakt door Robert, leidde meestal snel tot een
goed begrip.

Gedurende mijn hele promotie heb ik samengewerkt met een groep leuke col-
lega’s: Aaldert van Amerongen, Bas Wolschrijn, Carolijn van Ditzhuijzen, Cor
Snoek, Dirk Voigt, Esther Schilder, Iuliana Barb, Jan-Joris van Es, Klaasjan van
Druten, Nandini Bhattacharya, René Gerritsma, Rik Jansen, Tycho Huussen, Vero-
nica Ahufinger, Vlad Ivanov en Yu Tao Xing. Cor, jouw enthousiasme en manier van
onderzoek doen hebben me direct geinspireerd. Als er een hulpstuk nodig was dan
maakte je dat even, of je haalde iets te voorschijn uit de grote, bijna historische verza-
meling instrumenten. Klaasjan, je stond altijd klaar om mee te denken. Bedankt
voor je opmerkingen over hoofdstuk 3. Dirk, door jouw alom aanwezige initialen
heb ik al die tijd niet om je heen gekund. Je originele insteek in discussies was altijd
leuk. Bas, samen met jou heb ik lange dagen in het lab doorgebracht. Die dagen
waren nooit saai of vervelend en we vulden elkaar perfect aan. Trouwens, furby is
nog steeds een onderdeel van mijn woordenschat. Aaldert, jou moet ik bedanken
voor het feit dat er een hoofdstuk 6 is in dit proefschrift. Als afstudeerstudent was
je er zo van overtuigd dat het mogelijk moest zijn om absorptie van evanescent licht
waar te nemen dat we gelukkig uiteindelijk een serieuze poging gedaan hebben. Ty-
cho, bedankt voor je bijdrage aan hoofdstuk 5. Vlad, it’s your experiment already
for some time and it is in good hands. Jan-Joris en Carolijn, jullie zijn begonnen
toen ik eigenlijk al klaar was. Succes met jullie projecten. Throughout my Ph.D.
period I've shared an office with several people. I want to mention in particular
Nandini, Tuliana and René, I couldn’t have wished for better office mates. Our seri-
ous and less serious talks were always a pleasure. Nandini, your ability to always see
things from a positive side has always amazed me. Iuliana, despite all your efforts
my pronounciation of Romani is still horrible. Tea? René, jij hebt me uiteindelijk
overgehaald om de vrijdagavonden een nuttiger invulling te geven.

Soms is apparatuur te koop, heel vaak is het dat niet en moet het speciaal
gemaakt worden. Hierbij wil ik alle mensen van de instrumentmakerij, het construc-
tiebureau en de electronica-werkplaats bedanken voor de altijd plezierige samen-
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werking. In de instrumentmakerij en het constructiebureau heb ik voornamelijk
samengewerkt met Diederik Kwakkestein, Fred van Anrooij, Joost Overtoom, Floris
van de Woude, Harry Beukers, Mattijs Bakker (ook bedankt voor al je hulp bij het
printen van de vele posters), en Willem van Aartsen. Wim, Fred en Harry, jul-
lie waren altijd bereid om kleine (en zelfs minder kleine) aanpassingen even tussen
jullie andere werk door te doen. Dit heeft mij enorm geholpen. Ik ben bang dat
door alle reorganisaties mijn opvolgers deze luxe steeds minder zullen hebben. Op
de electronica-afdeling heb ik voornamelijk samengewerkt met Alof Wasskink, Ben
Harrisson, Edwin Baaij, Frans Pinske, Herman Prins, Johan te Winkel, Peter Wa-
terman, Pieter Sannes en Ronald Nieuwendam. Ik wil jullie bedanken voor al jullie
hulp en advies. Alof en Johan, jullie waren geregeld het slachtoffer als ik zelf din-
gen wilde maken die ik beter aan jullie over had kunnen laten. Maar jullie waren
gelukkig altijd bereid om me te helpen als ik vastliep.

Voor de ICT voorzieningen kon ik altijd rekenen op Damien van Zijst, Derk
Bouhuijs, Marc Brugman, Marnix Rozenga en Roelof Brandsma. Jullie waren zelfs
bereid om me te helpen met mijn privé laptop. Voor advies en hulp op allerlei
terreinen kon ik terecht bij Bert Zwart, Flip de Leeuw, Hugo Schlatter, Huib Luigjes,
Paul Vlaanderen en Ton Riemersma. Mariet Bos, Rita Vinig en Roos Visser bedankt
voor alle hulp bij de contractuele, financiéle en administratieve zaken.

Een zwart onderdeel van mijn promotie is de sluiting van het Van der Waals-
Zeeman laboratorium vanwege de vondst van asbest in het gebouw en de verhuizing
die nu al een paar keer ter sprake is gekomen. Er kon een ruim half jaar niet geéxper-
imenteerd worden en vervolgens moest de werkende opstelling worden afgebroken en
verhuisd naar een nieuwe laboratoriumruimte in een ander gebouw. Dit heeft nog
eens een half jaar gekost. Ren Moolenaar bedankt voor al het plan- en regelwerk en
Jan Tromp en “de Jantjes” voor de goed verlopen verhuizing. Ik ben nog steeds blij
dat die optische tafels niet in de gracht zijn beland. Co Zoutberg en de mensen van
de scheikunde-instrumentmakerij bedankt voor het inrichten van de labruimtes.

On a regular basis, but definitely not regularly, there was a Quantum Collective
meeting, a meeting of atomic physicists working in Amsterdam and surroundings.
These meetings I valued both for the exchange of information and for the opportunity
to meet people from the Amolf institute and the VU. In this context I want to
mention Dima Petrov, Igor Shvarchuck, Jeroen Koelemeij, Jook Walraven, Jora
Shlyapnikov, Kai Dieckmann, Louw Feenstra, Norbert Hershbach, Paul Tol, Roland
Stas, Stefan Petra, Tom Hijmans, Wim Vassen and Wolf von Klitzing.

Als laatste wil ik de mensen bedanken die privé veel voor me betekend hebben.
Chéa, bedankt voor al je steun en de leuke tijd de afgelopen jaren. Ten slotte mijn
ouders, voor jullie steun, stimulans en omdat jullie altijd voor me klaarstonden.
Bedankt!



