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DeMarco, Brian (Ph.D. Physics)

Quantum Behavior of an Atomic Fermi Gas

Thesis directed by Dr. Deborah S. Jin

Results from the production and study of the first degenerate Fermi gas of atoms

are presented. By adapting the magnetic trapping and evaporative cooling techniques

that were used to produce atomic Bose-Einstein condensation, a gas of fermionic 40K

atoms is cooled into the quantum regime. The fundamental difficulty in cooling a gas

of fermionic, compared to bosonic, atoms is the lack of rethermalizing collisions in

a spin polarized sample. This obstacle is explored in cold collision studies and then

overcome by magnetically trapping two spin-states of 40K and developing a technique

for simultaneous evaporative cooling.

The ability to cool an interacting, two-component gas to one-quarter of the Fermi

temperature is demonstrated. A spin-polarized, ideal gas can be cooled to as low as

∼ 0.17 times the Fermi temperature. The emergence of quantum behavior at low

temperature is observed both as “excess” energy in the gas and a distortion of the

momentum distribution compared to the classical expectation. Furthermore, the effect

of the Fermi-Dirac statistics of the gas on individual collisions via Pauli blocking is

observed through measurements of the thermal relaxation time.
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Chapter 1

INTRODUCTION

1.1 In the Beginning

This thesis will cover the first experiments with a degenerate Fermi gas (DFG)

of atoms, specifically with a gas of ultracold 40K atoms. There are several purposes

behind this thesis, and different kinds of material presented herein. Published work on

collisions and thermodynamic and dynamic measurements is highlighted. Experimental

details, never published in refereed journals, are included in thesis, and will hopefully

prove useful to people running the apparatus at JILA and others who may want to start

new experiments. Cursory investigations, for example into inelastic collisions between

40K atoms, that were not pursued far enough for publication are disclosed in this thesis.

Also, a catalog of useful theoretical results can be found spread across several chapters.

This thesis was written assuming that the reader is working in the field of atomic physics.

This introduction will give a historical perspective of our experiment and, in the

process, establish the material covered by this thesis. I will also motivate our work and

explain why we are excited by what we do. The journey that led to the production of

the first Fermi gas of atoms is an engaging story.

Construction of the experiment began in the fall of 1997. Bose-Einstein Conden-

sation (BEC) of 87Rb [1], 22Na [2], and 7Li [3] had been around for about two years,

and the field of quantum degenerate atomic gases was starting to explode. Techniques

for cooling alkali gases to ultra-low temperature (< 1 µK) had become established and
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and were rapidly being perfected. A clear path to BEC involved collecting and pre-

cooling atoms from a room-temperature vapor or atomic beam using a magneto-optic

trap (MOT) [4,5], transferring the atomic gas to a magnetic trap [6–11], and then evap-

oratively cooling [12–16] the gas by ejecting the highest energy atoms from the trap.

The remaining atoms rethermalize to lower temperature via collisions.

At JILA, the double-MOT, a particularly attractive experimental implementation

of this BEC recipe, had been invented by 1996 [11]. The double-MOT obviated the need

for a physically large and complicated atomic beam machine, and achieved high numbers

of magnetically trapped atoms with long trap lifetimes using simple MOT technology.

In the early fall of 1997 there were still only three purely magnetic traps (which did not

use permanent magnets) that had been proven for the production of BEC: the TOP

trap [17], the “baseball” trap [18], and the “cloverleaf” trap [19].

BEC experiments were exploring exiciting physics in late 1997. However, these

experiments were probing the physics of only one of the two classes of quantum parti-

cles that are found in nature. The next step in the evolution of the field of quantum

degenerate atomic gases was clear: the production of a degenerate Fermi gas (DFG) of

atoms.

1.2 There Were Fermions

Fermions are ubiquitous in nature. The constituent particles of matter — elec-

trons, protons, and neutrons — are all fermions. Even protons and neutrons are the

bound state of more fundamental fermions — quarks. Fermi-Dirac (FD) statistics gov-

erns the structure and behavior of diverse physical systems, from atoms and nuclei to

metals to neutron and white dwarf stars. Fermi systems found in nature are generally

dense and strongly interacting. The only realization of a low-density Fermi system up

to the work presented in this thesis was a dilute solution of liquid 3He dissolved in

superfluid 4He (see [20], for example).
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An ultracold atomic Fermi gas constitutes a dilute system in which the inter-

particle interactions are weak and readily treated theoretically. Furthermore, funda-

mental control over the interactions is available, for example through magnetic field

Feshbach resonances [21–23]. By adjusting the magnitude of an applied magnetic field

near an atomic Feshbach resonance, the effective interaction between atoms can be

tuned smoothly from strongly attractive to strongly repulsive (and to zero in between).

This can even be done in some cases while maintaining low inelastic losses [24]. Not only

is precise control over the interactions possible, but the internal (see [25], for example)

and external (see [26], for example) states of the atoms can be carefully manipulated

as well. An ultracold atom gas of fermions is an ideal system for quantitative study of

quantum statistical effects in a controlled environment.

For a gas of bosons, the emergence of quantum behavior as the gas is cooled is

sudden and marked by a phase transition at a critical temperature Tc. In contrast,

the quantum behavior of an ideal (non-interacting) Fermi gas emerges gradually as the

temperature T is lowered below the Fermi temperature, TF . Tc and TF are comparable

for trapped atom gases, and depend only on the number of atoms and the spring constant

of the trap. For our experimental parameters, TF is on the order of one micro-Kelvin.

This is strongly contrasted with the high density electron “gas” in a metal where TF ∼

10000 K. The phase space density, npkΛ3
dB (where npk is the peak density of the gas

and Λdb the thermal deBroglie wavelength), is a measure of the importance of quantum

statistics in the gas. For npkΛdB ∼ 1 or T/TF ∼ 0.6, the average inter-atomic distance in

the gas is comparable to the average atomic thermal deBroglie wavelength and quantum

mechanical effects become important.

As the temperature of the gas is lowered below TF , the Pauli exclusion principle

starts to dominate the thermodynamics and the dynamics of the gas. The Pauli exclu-

sion principle is an expression of the requirements of exchange symmetry for fermions,

and stipulates that no two fermions can occupy the same state of a quantum mechanical
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system. The atoms in the gas are forced (by the Pauli exclusion principle) to form a

Fermi sea arrangement in the energy levels of the harmonic trapping potential at low

T/TF . Unlike uniform systems such as electrons in a metal, the inhomogeneous trapping

potential then leads to a Fermi surface that is manifest in momentum and space [27].

Because the atoms “stack up” in the energy levels of the trapping potential, the

gas has more energy at low T/TF than one would expect classically. Classically, the

equipartition theorem predicts that the average kinetic energy per particle is 3
2kbT . In

fact, the kinetic energy of the Fermi gas does not approach zero as the temperature

approaches zero. Rather, each atom has 3
8EF of kinetic energy on average at T = 0

(this is the result for atoms trapped in a harmonic potential — see [28] for example).

The Fermi energy EF is the energy of the highest occupied level at T = 0, and defines

the Fermi temperature through TF = EF /kb. Dynamic processes, such as collisions

[29–32] or light scattering [33,34,31,35,36], that move atoms between the energy levels

of the trapping potential are suppressed at low T/TF by Pauli blocking. For example,

a collision that would result in an atom state at low energy is suppressed at low T/TF

because the low energy states are already highly occupied. Photon scattering can be

suppressed because the recoil energy may not be high enough compared to EF in order

to transfer an atom at low energy to a free state (found only within kbT of EF ).

In interacting Fermi systems, a sharp phase transition can occur in addition to

the smooth emergence of quantum behavior below TF . A phase transition to a paired

state for any Fermi system with attractive interactions between the constituent parti-

cles must exist (see [37], for example) at some temperature. In metals, the effective

attraction between electrons is provided by phonon coupling and pairing produces su-

perconductivity. For low Tc superconductors, the phase transition can be described by

the Bardeen-Cooper-Schrieffer (BCS) theory (see [37], for example). The possibility for

investigating the analogous physics in an atomic Fermi gas is a major motivator for our

work. More detail on the possibility of “Cooper pairing” in a gas of 40K atoms will be
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given at the end of this chapter and in the thesis conclusion at the end of chapter 6.

1.3 It Seemed Like a Good Idea at the Time

The magneto-optical trapping techniques that were crucial for creating atomic

BEC work best with alkali atoms. There are only two stable fermionic alkali atoms: 6Li

and 40K (actually 2H and metastable 3He are also experimental candidates, although

more difficult to work with).1 Many people were interested in a DFG of 6Li because

it was known to have a large, attractive interaction [38]. For this reason, 6Li seemed

like a good candidate for BCS studies [39,40] in a dilute gas. However, 6Li was not

without problems — the internal states with a large attractive interaction also suffer

from enormous inelastic loss rates [38].

My graduate advisor in the summer of 1997, Eric Cornell, suggested that I quit

working for him and help a new fellow at JILA, Deborah Jin, build a 40K DFG experi-

ment from scratch. While 40K had some advantages compared to 6Li, this seemed like a

risky proposition. Not much was known at the time about the collisional properties of

40K [41]. We did not know if the collision cross-section would be large enough to allow

evaporative cooling to progress efficiently. Also, no one had succeeded in trapping large

numbers of 40K atoms because the natural abundance of 40K is only 0.012%. There had

not been a good method proposed for even detecting the onset of Fermi degeneracy in

a trapped atomic gas. Further, we were already a few years behind the competition.

But, it seemed like a good idea at the time.
1 Actually, 40K β− decays with a 1.3 billion year half-life to 40Ca in an excited nuclear state. In a

funny twist of fate, as an undergraduate student I had used the ∼ 1.4 MeV emitted from the relaxation
of the 40Ca nucleus to calibrate gamma-ray detectors. These detectors were then used in an experiment
to determine the absolute neutron flux from laser fusion experiments. The abundance of 40K is high
enough in concrete so that a sensitive photon detector (such as a cooled Ge:Li detector) can be saturated
by ∼ 1.4 MeV gamma-rays if placed next to a concrete wall or floor without shielding. Note that the
lifetime of 40K is comparable to the lifetime of 87Rb, which is not stable either.
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1.4 Why the Delay for a DFG Compared to a BEC?

Evaporative cooling is fundametally more difficult for a gas of fermionic atoms

compared to bosonic atoms. Elastic collisions between identical fermionic atoms are

prevented at low temperature (T < 100 µK) [42] (see Chapter 3). At ultralow T , elastic

collisions between atoms must occur in an s-wave channel. Not enough energy is present

to overcome the centrifugal barrier for higher partial waves. However, atoms colliding

in an s-wave channel have a spatial wavefunction that is symmetric under exchange

of the colliding partners. The overall symmetry under exchange of the two particle

wavefunction is determined by the product of the symmetries of the spatial and spin

parts, and must be anti-symmetric for colliding fermions. Since completely identical

fermionic atoms must have a spin wavefunction that is also symmetric under exchange,

s-wave collisions are prevented.

Cold atom experiments using magnetic traps are normally done with spin po-

larized gases in order to avoid atom loss due to spin-changing collisions that populate

untrapped states. For a spin polarized gas of fermionic atoms, evaporative cooling would

fail because there are no rethermalizing collisions possible in the gas.

There were several proposals for defeating this problem. The first involved simul-

taneously trapping bosonic and fermionic atoms, for example 6Li and 7Li [43]. In this

scheme, collisions between the bosons and fermions are allowed at low T and provide the

rethermalization mechanism for evaporative cooling. In another approach, Geist and

co-workers [44] had proposed enhancing the p-wave collision cross-section at low T by

applying a static electric field in order to permit collisions between identical fermionic

atoms. Our choice was to magnetically trap multiple spin states of 40K [31]. At low

T , s-wave collisions are allowed between atoms in different Zeeman levels because the

two-atom spin wavefunction can be anti-symmetric under exchange.

Aside from complications caused by the collisional properties of fermionic atoms,
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the thermodynamic properties cause trouble for evaporative cooling too. Efficient, or

“runaway”, evaporative cooling relies on an increase in the collision rate in the gas even

as atoms are removed in order to cool to lower temperature. Normally, this increase

in collision rate comes from an increase in density caused by compression from the

harmonic trapping potential. However, the density for a trapped Fermi gas starts to

“freeze” as the gas is cooled into the quantum regime [27]. Even worse, Pauli blocking

of collisions drives the collision rate to zero at T = 0. So as a Fermi gas of atoms

is evaporatively cooled into the degenerate regime, the collision rate in the gas must

decrease and evaporative cooling must become more difficult.

1.5 Poor, Neglected 40K

Potassium was the last alkali atom to be trapped in a MOT [45]. Some efforts

had been made to trap 40K [46,47], but the number of atoms were severely limited by

the low natural abundance (0.012%). The hyperfine structure of 40K is a little strange,

with both the excited states and ground states inverted (see figure 1.1) [46,48]. This

complete inversion is caused by a large nuclear spin (I=4) that points in the opposite

direction from the nuclear magnetic moment. As shown in figure 1.1, the separation

between excited states is relatively small and the ground states are only separated by

∼ 1 GHz.
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4S1/2

f = 9/2

f = 7/2

571.4 MHz

714.3 MHz

4P3/2

766.7 nm

43.4 MHz

32.9 MHz

23.9 MHz

f ’= 11/2

f ’= 9/2

f ’= 7/2
f ’ = 5/2

Figure 1.1: Hyperfine structure of 40K.
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The hyperfine structure of 40K is its biggest advantage over 6Li for a DFG ex-

periment. The large angular momentum of the lower ground state, f = 9/2, means

that there are many magnetically trappable Zeeman levels (nominally 5). In the lower

ground state, the positive mf levels are the weak magnetic field seekers and can be

magnetically trapped. Furthermore, a mixture of mf = 9/2 and mf = 7/2 atoms in

the f = 9/2 manifold is stable against spin changing collisions. Collisions between an

mf = 9/2 and an mf = 7/2 atom cannot conserve the projection of angular momen-

tum without the final state being identical in spin. Inelastic (or any) collisions between

two mf = 7/2 atoms are prevented by the FD statistics at low T . Further, hyperfine

changing collisions are prevented since not enough energy is available below 10 mK to

drive f = 9/2 → f = 7/2. For comparison, there is no combination of Zeeman states in

6Li that is stable against spin changing collisions at reasonable values (less than many

hundreds of gauss) of magnetic field.

So, our plan was to use a stable mixture of mf = 9/2 and mf = 7/2 atoms to

provide the rethermalizing collisions needed for evaporative cooling. Using multiple spin

states is a great advantage compared to trapping multiple isotopes, since the experi-

mental setup is considerably simplified. Further, the optical transition for potassium

is 767 nm, which is very close to 780 nm in rubidium. This allowed us to use all of

the optics and diode laser technology that had been developed for experiments with

rubidium.

The total angular momentum, f = 9/2 for the states that we use, defines 40K

as a fermion. The total angular momentum is the sum of the intrinsic nuclear and

electron spin and the electron orbital angular momentum. For the regime of temperature

(or energy) in which we work, the quantum statistics of the internal components (the

electrons, protons, etc.) of 40K is not probed and is irrelevant.

The astute reader will also note that the equilibrium state of potassium is a solid

at room temperature, and is most definitely a solid at 1 µK! Experiments with quantum
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atomic gases rely on the fact that the process of forming a solid (via molecule and

cluster formation) takes a long time at typical densities (∼ 1013 cm−3). This separation

of solidification and experimental timescales allows us to perform experiments that can

take many minutes.

Potassium also has two stable bosonic isotopes, 39K and 41K, and so naturally

lends itself to future studies of Bose-Fermi mixtures. These bosonic isotopes were also

our collision backup plan. Although the collisional properties of potassium were not well

known in 1997, it seemed like some combination of different spin states and/or isotopes

had to have a large enough elastic collision cross-section for evaporative cooling to work

well.

1.6 A Cunning Plan

Our attitude was to treat the technology for producing ultra-cold atom gases and

atomic BEC as established. We planned to borrow as much as we could and invent as

little as possible. We chose the double-MOT technique and a cloverleaf magnetic trap

for our experimental apparatus. Potassium MOT’s tend to be hot (∼ 100 µK, although

one group has observed sub-Doppler cooling in 40K [49]), and a Ioffe-Pritchard (IP) type

magnetic trap [50] (compared to the TOP trap) had enough trap depth to efficiently

capture and compress the gas from the MOT. Out of the two IP traps available at

the time, we chose the cloverleaf configuration because it seemed to have the greatest

amount of optical access.

With the help of the excellent support staff at JILA, and the members of Eric

Cornell’s and Carl Wieman’s groups, we were able to quickly progress to the point of

magnetically trapping and evaporatively cooling gases of 40K atoms. The apparatus

that we built is described in Chapter 2 of this thesis.
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1.7 First Task: Find a Source

Our first task was to develop an enriched source of 40K atoms for the MOT. High

numbers of atoms are required so that the elastic collision rate in the gas is large enough

for efficient cooling and so that TF is at an experimentally attainable temperature. Eric

Cornell’s 87Rb BEC experiment at JILA was using alkali dispensers from SAES, Inc. as

a 87Rb vapor source, which was an attractive option for us. These dispensers produced

an alkali vapor in the vacuum system via in situ chemistry. Not only were the dispensers

free enough of contaminants to be suitable for use in ultra-high vacuum, but they could

be turned off when not in use (thereby extending the useful lifetime of the device).

Unfortunately, commercial vendors were unwilling to create potassium alkali dis-

pensers that were enriched in 40K. With the help of Hans Rohner at JILA, in 1998 we

were able to make our own enriched alkali dispensers [51] (details in chapter 2). These

sources consisted of a fine powdered mixture of KCl and Ca held in a small Nichrome

foil “boat”. The KCl is enriched to ∼ 5% in 40K. Electrical current is used to heat the

“boat” and drive the reaction KCl+Ca→K+CaCl. These sources allowed us to trap

10000 times more atoms (∼ 109 atoms) than previous efforts.

1.8 Collisions — Another Magical JILA Atom

Next, we turned to investigating the collisional properties of the states (mf = 9/2

and mf = 7/2 in the f = 9/2 ground state) that we planned to use for cooling. We were

able to transfer atoms in these Zeeman levels into the magnetic trap, and evaporatively

cool (this was not yet optimized) to 10 µK in order to sample a range in temperature.

Sampling a range in temperature is equivalent to exploring a range of collision energies.

Using cross-dimensional rethermalization techniques, we were able to measure

the s-wave and p-wave collision cross-sections from 5 to 100 µK (Chapter 3) [42] in

1999. The simultaneous s-wave and p-wave measurement allowed us, in conjunction
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with John Bohn, Jim Burke, and Murray Holland, to accurately measure the triplet

scattering length at = 157(20) a0, where a0 is the Bohr radius. Not only was the

triplet scattering length large (even compared to 87Rb) but we found a p-wave shape

resonance at ∼ 280 µK. This was great news — the elastic collision cross-section was

high enough, considering the initial density and collision rate in the magnetic trap, such

that evaporative cooling should be very efficient. P-wave collisions could also give the

initial stages of cooling at high temperature a significant boost in collision rate. The

measurement of the p-wave collision cross-section dependence on temperature was also

one of the first measurements of the Wigner threshold law for neutral scatterers [42,52].

We also did a cursory investigation of inelastic loss processes (Chapter 3). By

holding a combination of mf = 7/2 and mf = 5/2 atoms in the magnetic trap and

looking for the production of mf = 9/2 atoms, an upper limit on the spin-exchange

rate constant was inferred. We found that the rate constant was unusually low (<

10−14 cm3/s). This was also exciting news. It was not crucial to load a very pure mixture

of mf = 9/2 and mf = 7/2 atoms into the magnetic trap. Nor was it important to

avoid creating a population of other spin states during evaporative cooling. 40K turned

out to be a serendipitous choice of atoms from the point of view of collisional properties.

1.9 Simultaneous Cooling

Evaporative cooling of two components requires both mf and energy selectivity

in removing atoms. Maintaining a nearly equal mixture of components is important to

ensuring a high overall collision rate at low T , since thermal equilibrium in one com-

ponent is only maintained by collisional contact with the other. Removing energy from

the gas in a balanced way (from both components equally) is necessary to achieve a high

cooling rate. If one component was used to sympathetically cool the other, eventually

the cooling would be spoiled by the heat capacity carried by the other component.

The radio-frequency (rf) transitions normally used for evaporative cooling of mag-
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netically trapped gases could not give us component selectivity except at very high

magnetic fields. We therefore chose to remove atoms via microwave transitions between

hyperfine ground states. Selectivity in energy is possible because of the dependence

of the transition frequency on magnetic field — the microwave frequency is set to be

resonant with atoms that have enough energy to “roll” up the harmonic potential to

high field. However, working at these higher frequencies (∼ 1 GHz instead of ∼MHz)

brought many complications (see Chapter 2). Among other technical issues, delivering

high power at ∼ 1 GHz to the atoms was tricky.

By mid 1999, we had developed an evaporation scheme that we dubbed “simul-

taneous cooling” [53] (see Chapter 4 for the details). By adjusting the magnetic trap

parameters during the evaporation and using multiple microwave frequencies, we were

able to always remove atoms equally from both components. We discovered a rather

startling “feature” of the cooling — the evaporation became inefficient at some critical

T/TF below which we could not cool. In our first experiments [53], one component was

removed in an evaporative way at the end of the bulk of the cooling, leaving a spin-

polarized gas. This final sympathetic cooling, which was necessary to reach degeneracy,

allowed us to cool a spin polarized gas to T/TF = 0.5. At that time, we attributed the

cooling failure to the properties of a trapped Fermi gas (namely, that the collision rate

in a trapped Fermi gas must eventually decrease in the degenerate regime).

In late 1999, Murray Holland completed an simulation [54] which indicated that

there was no fundamental limit to our cooling scheme. Spurred on by this knowl-

edge, we began to weed out technical limits and improve the cooling. A toy-model

of the evaporation that included technical limits not used in Murray’s model proved

useful for this task (see Chapter 4). Improvements to the magnetic trap stability and

microwave instrumentation along with several small enhancements allowed us to cool a

two-component, 50/50 mixture of mf = 9/2 and mf = 7/2 atoms to T/TF ∼ 0.2 by late

2000. Now, in early 2001, we believe that the evaporation is still technically limited.
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Chapter 4 thesis provides many details on our evaporative cooling scheme.

1.10 Fun Experiments with DFG’s

We published the first experiments with spin polarized DFG’s in Sciencemagazine

[53]; that work was later selected as one of the top ten scientific breakthroughs of 1999

by Science. We were able to detect a deviation (from the classical expectation) in the

momentum profile of a spin polarized 40K gas released from the magnetic trap that

was consistent with FD statistics (Chapter 5).2 In this article we also published a

measurement of the mean energy per particle in the gas. We measured “excess” energy

in the gas at low T/TF compared to the classical case (Chapter 5). The measurements

published in [53] covered the classical regime (T/TF ∼ 200) down to T/TF = 0.5.

Finally, both classes of quantum particles were experimentally available to workers in

the field of quantum degenerate gases.

By 2000, we had perfected a thermometric technique that directly probed the

Thomas-Fermi (TF) shape of the gas [55] (see Chapter 5). With the improvements in

our cooling, we moved on to doing experiments with two-component degenerate gases.

We also added an “anti-gravity” coil to the experiment which allowed to us spatially

separate and simultaneously image the two-components (Chapter 2).

In late 2000, we published work [32] on the thermodynamics and dynamics of

spin mixed degenerate gases (Chapter 6) at temperatures as low as T/TF ∼ 0.2. By

tuning the Fermi energy of one component relative to the other (via controlling the

spin mixture), we measured an imbalance in energy between the two components in the

degenerate regime. We were also able to measure Pauli blocking directly by measuring

the effective collision cross-section in the gas, again using cross-dimensional retherm-

alization. At T/TF ∼ 0.25, we were able to measure a factor of two reduction in the
2 We had half hoped to discover that 40K was a boson, which would have been a really big scientific

breakthrough.
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effective collision cross-section compared to the classical regime.

1.11 My Crystal Ball — The Future

There are many experiments left to do with DFG’s. Predictions exist for the

emergence of a zero sound mode [56], suppression of light scattering [33,31,35,36], com-

ponent separation [39,57], changes in the frequency and damping rates of collective

excitations [58–63], and shell structure [64,65]. Also, the outlook for cooling further

into the degenerate regime in our system is still bright (see Chapter 4).

Perhaps the most exciting possibility for future experiments is the prospect of

a paired state at low temperature, similar to BCS superconductivity. The attractive

interaction that is required for a phase transition to a paired state can be via a direct,

collisional interaction (see [39,40] among many others), induced via photo-associative

methods [66], or phonon mediated [67]. In early 2001, a DFG in 6Li was achieved by

two groups (see [68] and C. Salomon, unpublished). With its large, attractive collisional

interaction, 6Li seems like a good candidate for BCS studies. However, the inelastic

losses for the relevant states are so large that one of the groups is already considering

(see [68]) using other states and modifying the interaction with a Feshbach resonance.

There is a predicted [69] (and experimentally accessible) Feshbach resonance in

40K for the mf = −9/2 and mf = −7/2 Zeeman levels in the f = 9/2 ground state.

Unpublished work by Murray Holland predicts a phase-transition at T/TF ∼ 0.5 for

these states using the Feshbach resonance to make the interaction strongly attractive.

The 40K group at JILA is currently setting up an optical trap with the hopes of trapping

these states and accessing the Feshbach resonance.

1.12 Thesis Outline

Chapter 2 will give many details on the experimental apparatus, including in-

formation on stabilization of the magnetic trap, microwave equipment, lasers, optical
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pumping, and the “anti-gravity” coil. Chapter 3 covers the properties of collisions be-

tween fermionic atoms, a measurement of the s-wave and p-wave collision cross-sections

for 40K as a function of temperature, and a cursory measurement the of spin-exchange

collision rate constant for 40K. Next, in Chapter 4, many details of our cooling scheme

are explained, evaporation results are highlighted, a toy-model of the evaporation is

developed, and the results from a study of heating of the atoms held in the magnetic

trap will be given. Chapter 5 contains a laundry list of useful thermodynamic equations,

details on the techniques that we use for measuring thermodynamic properties, as well

as the results of the first thermodynamic measurements of a degenerate Fermi gas of

atoms. Chapter 5 will also address the sources of random and systematic uncertainty

that are important in the experiment. Finally, Chapter 6 contains the results of recent

(as of early 2001) measurements of the thermodynamics and collisional dynamics of two-

component degenerate Fermi gases. The table of contents for this thesis is extensive,

and should be used to find specific information.



Chapter 2

THE LEAN MEAN FERMION MACHINE

2.1 Overview

This chapter will describe the apparatus that was used to execute the experiments

covered by this thesis. We built the apparatus, from the ground up, in the vacant space

left after evicting some theorists. We chose to construct a double-magneto optic trap

(double-MOT) apparatus for producing ultra-cold atom gases, since it was a proven

system for Bose-Einstein condensation (BEC). Careful attention will be paid in this

chapter to explaining the modifications that we had to make to the standard double-

MOT scheme in order to make it compatible with cooling fermionic 40K atoms. This

chapter will also serve as a guide (hopefully useful to new graduate students and post-

docs) to each piece of the experimental apparatus, highlighting any unique or essential

features to producing a degenerate Fermi gas (DFG). For more information, the reader

may want to refer to Jason Ensher’s thesis [70] which describes an 87Rb BEC apparatus

very similar to our 40K apparatus in form and operation.

Special mention should be made of the air conditioner (KoldWave 2K260812)

that JILA supplied for the lab. The experiment could not produce a DFG reliably

without active stabilization of the ambient lab temperature. Variation of the optical

table temperature (before installation of the air conditioner) over a one and a half month

period is shown in figure 2.1. The magnetic trap bias field and the optical alignment

were affected significantly by changes on the order of 3 ◦F. A HEPA air filter (Kenmore
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51500) has also proven useful for slowing the accumulation of dust on lenses and mirrors,

which is a significant problem in Boulder’s dry climate. On the other hand, Boulder’s

aridity is essential to our simple technique of cooling laser diodes that uses enough duct

tape to make Red Green proud.
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Figure 2.1: Daily variation of the optical table temperature, measured with a thermo-
couple, is plotted over 1.5 month period.

2.2 What is Unique to our Experiment?

Areas where our experiment deviate from the standard BEC apparatus include the

laser system, the atomic vapor source, the optical pumping parameters, the attention to

the magnetic trap stability, use of an “anti-gravity” coil, and our evaporation technique.
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Our experiment was the first all semiconductor laser trapping and cooling apparatus for

potassium. MOT’s for potassium require high power in two laser frequencies because

of the relatively small excited state splittings [46,45,47]. To provide this light, we

developed Master Oscillator Power Amplifier (MOPA) laser systems which are still a

new technology to atom trappers. Standard locking saturated absorption spectroscopy

locking techniques produce a small error signal for 40K because of the low natural

abundance (0.012%). We therefore implemented the first dichroic atomic vapor laser

lock (DAVLL) [71] for potassium so that we could have a large locking signal with a

large locking bandwidth.

We also had to develop an enriched source in order to trap large numbers of 40K

atoms. Efficient evaporation requires high numbers of atoms in order to have a suffi-

cient collision rate in the magnetic trap. Further, reaching degeneracy at a reasonable

absolute temperature (∼ 1 µK) relies on trapping many atoms since TF depends on N .

Our source allowed us to trap 10000 times more 40K atoms than previous efforts, which

were limited to using natural abundance sources [46,47].

Evaporative cooling requires a high rate of rethermalizing collisions in the gas.

Typically, cold atom experiments that use magnetic traps employ optical pumping to

prepare spin polarized samples. The atoms are all pumped into one Zeeman level in order

to avoid loss due to spin changing collisions that populate magnetically untrapped states.

However, collisions between 40K atoms at low temperature occur only between atoms

in different internal states. We therefore had to develop a method for reproducible,

“imperfect” optical pumping in order to prepare the optimal spin polarization for the

experiment.

Because potassium MOT’s are relatively hot, a magnetic trap with a high trap

depth is required to efficiently capture and hold the gas for evaporative cooling. To

this end we chose a Ioffe-Pritchard, cloverleaf style magnetic trap [19] for our experi-

ment. The Ioffe-Pritchard type of trap has a great disadvantage, though — the small
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(∼ 1 gauss) bias field is created by the subtraction of two large (∼ 250 gauss) fields

and is therefore difficult to stabilize. The magnitude of the bias field sets the final

temperature for a fixed frequency evaporative cut. Our requirements on temperature

stability therefore necessitate very low noise on the bias field. We invested a great effort

in stabilizing the bias field to reduce fluctuations to the order of 1 mG.

A method is required to separately image the different spin states in order to ex-

tract information about the both spin components in the trapped gas. Optical methods

[72] that are used in other experiments to resolve atoms in different hyperfine states are

not suitable for resolving atoms in different Zeeman levels. We therefore implemented

an “anti-gravity” coil that spatially separates the spin components during the expansion

[73] by exerting spin dependent forces via a magnetic field gradient.

Unlike other experiments, we cannot use transitions between Zeeman levels for

evaporation because these transitions cannot distinguish between the different spin com-

ponents except at very high magnetic field. We therefore use transitions between the

hyperfine ground states to remove atoms from the trap. Using this type of transition is

difficult because of the relatively high frequency and the need for two distinct frequen-

cies. We developed techniques to deliver high power in two frequencies to the atoms in

the magnetic trap.

There are some aspects of the apparatus covered in this chapter that are not

unique to our experiment, for example the details of the MOT’s and the transfer between

MOT’s. These sections of the experiment are covered for completeness. There are many

figures in this chapter that use arbitrary or relative units. The purpose of these figures

is to illustrate the general dependence of the behavior of the system on adjustable

parameters, and to make clear which “knobs” in the experiment can be used to fix

problems. The quantitative behavior of the apparatus tends to change over time, while

the qualitative behavior does not. The lab book index (in the Appendix to this thesis)

can be used to find specific information in more useful experimental units.
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2.3 Double-MOT Setup

The double-MOT technique [11], developed at JILA, has now been employed to

produce ultra-cold atom gases and atomic BEC around the world. The defining feature

of a double-MOT apparatus is the use of two MOT’s, one in a high vacuum section where

large numbers of atoms are collected from a room-temperature vapor and the other in

an ultra-high vacuum section where experiments are carried out. The separation of the

“collection” MOT from the “science” MOT permits experiments with high numbers of

atoms and long magnetic trap lifetimes. A schematic of our apparatus is shown in figure

2.17, with details appearing in figure 2.22, and figure 2.24. These figures will appear in

sections 2.3.2, 2.3.5, and 2.3.6.

Atoms are gathered and cooled in the collection MOT from a room-temperature

vapor [4,5]. These atoms are then pushed using a pulse of resonant light (the push beam

— green in figure 2.17) down a small-diameter transfer tube and caught in the science

MOT. The low conductance transfer tube creates the pressure gradient between the col-

lection and science MOT’s. Permanent magnets in a hexapole arrangement surrounding

the tube confine the atoms and support the atoms against gravity. Once enough atoms

are transferred into the science MOT, the gas is optically pumped (brown beam in figure

2.17) and loaded into the magnetic trap. The gas is then cooled evaporatively by forcing

the highest energy atoms to leave the trap via microwave driven transitions between

the hyperfine ground states. After cooling the gas and performing any experiments, the

gas is destructively imaged by quickly turning off the magnetic trap and allowing the

gas to expand (typically for 1-20 ms). Information, such as temperature, number, and

energy about the gas is extracted from absorption images. These images are generated

by illuminating the gas with a pulse of resonant light (the probe beam — violet in

figure 2.17). The shadow cast by the gas into the probe beam is imaged onto a CCD

camera, and a picture of the column density, or optical depth, is generated. The whole
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experimental cycle, taking ∼ 3 minutes, then begins again.

2.3.1 Lasers

Three semiconductor lasers are used in the experiment, one (“peak-locked” laser)

as a frequency reference and the others (“trap” and “repump” MOPA’s) for manipulat-

ing atoms. The trap and repump MOPA’s are used to produce the five light frequencies

shown in figure 2.2. Significant power for the MOT repumper [47,46,45] is required

because of the small excited state hyperfine splittings of 40K.1 The power and detuning

in the MOT beams are optimized to ultimately maximize the number of atoms trans-

ferred into the magnetic trap. Discussion of this optimization and the optimization of

the push and optical pumping parameters can be found in sections 2.3.6, 2.3.7, and 2.4

of this chapter.

Using diode lasers with 40K is complicated by the lack of commercially available

diodes at 767 nm. We therefore use wavelength selected2 , actively cooled 780 nm

diodes. The best results have been obtained with 30 mW Sharp diodes (LT024MD);

Sanyo (DL7140-201) and Mitsubishi (ML60125R) diodes have produced mixed results

and generally have a very restricted external cavity tuning range.

2.3.1.1 Peak-locked Laser

The peak-locked laser is a JILA design external cavity diode laser (ECDL) [74]

that was modified for diode cooling. The light from a commercial laser diode is col-

limated with a lens (Navitar Industries DO-818), and adjustable feedback is provided

by a Littrow configuration cavity formed by a diffraction grating (Edmund Scientific

NT43-215) and the rear facet of the diode. The grating provides wavelength control
1 A 40K MOT behaves somewhere in between a rubidium and a 39K MOT — not quite a MOT

with separate trap and repump frequencies, and not quite a MOT with two trap frequencies. We run
the collection MOT, for example, in the regime where the calculated excited state population in the
f ′ = 11/2 state is only 1.5 times higher than in the f ′ = 9/2 state.

2 Optima Precision and Power Technology are two companies that are happy to wavelength select
diodes for a small fee.
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Figure 2.2: Light frequencies and detunings derived from the two MOPA’s. The color
scheme matches that used in the schematic in figure 2.17. More details on the hyperfine
structure of 40K (shown here) can be found in chapter 1.

and is glued onto a JILA optical mount so that it can be adjusted by hand with a

ball-driver or electronically via a piezo-electric transducer (PZT). The laser has two

stages of thermo-electric cooling (“TEC” will be used for “thermo-electric cooler” in

this chapter) (figure 2.3) that are capable of cooling to diode to -20 ◦C, although the

laser typically runs slightly below 0 ◦C. Coarse temperature control is used to tune the

center wavelength of the diode within the range of the external cavity (typically ±3

to 4 nm). Fine manipulation of the temperature is used to center a cavity mode on

the atomic transition. For a more complete discussion of the cooling scheme, see the

appendix to this chapter.

The peak-locked laser is frequency locked to the 39K f = 2 ground state to f ′

excited state manifold transition.3 The laser current is dithered at 100 kHz, and the
3 The excited state hyperfine structure of 39K cannot be resolved using standard saturated absorption

spectroscopy.
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Figure 2.3: Schematic of peak-locked laser cooling scheme. One inch thick Armaflex
insulation that covers the laser housing is not shown. Also missing from the diagram is
a small, interior box of dessicant (T.H.E. brand) that prevents condensation. The laser
diode and diode mount are electrically grounded through the diode current driver.
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resulting locking error signal is derived from a saturated absorption spectrum analyzed

by a lock-in amplifier. Standard JILA electronics are used to frequency-lock to the zero

crossing of the lock-in amplifier signal via feedback to the laser PZT. The light from

the laser is combined with the light from either the trap or repump laser and focused

onto a fast photodiode (New Focus 1601). The beat frequency between the lasers is

measured by a frequency counter (Hewlett-Packard 53181) that is connected to the

fast photodiode, and is used to set and monitor the frequency of the trap and repump

MOPA’s. The detunings (∆o,∆t,∆r,∆jump
r ,∆cold

t ) of the trap and repump lasers will

either be specified by the beat frequency in this thesis or by the actual detuning from

the atomic transitions (figure 2.2). The relevant laser beams are shifted relative to the

beat frequency by the acousto-optic modulators (AO1 and AO2) shown in figure 2.17.
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2.3.1.2 JILA MOPA design

Semiconductor lasers bring many benefits to atom trapping experiments. Al-

though diode lasers are easy to frequency lock and to align and require little main-

tainence, they are typically low power (< 50 mW). While power at this level is sufficient

for trapping large numbers of Rb atoms (for example), trapping potassium requires sig-

nificantly higher power. At JILA, we have developed a Master-Oscillator (MO) Power-

Amplifier (PA) (MOPA) laser design capable of providing high power (∼ 500 mW) along

with the standard benefits of diode lasers.

The JILA MOPA setup was designed under the guidance of Eric Cornell, and

has now been integrated into multiple experiments involving Rb and K. A schematic

of the setup is displayed in figure 2.4 and figure 2.5. The MOPA is a two-part laser

[75,76] with a tapered power amplifier (PA) that amplifies light from an ECDL master

oscillator (MO). The PA itself is a commercial semiconductor device that we integrate

into a housing and the MOPA setup. Commercially available PA’s are able to produce

500 mW of light from 5 mW of input light, and almost perfectly reproduce the frequency

characteristics of the MO. Technical drawings for the PA mounts can be found in the

appendix.

The PA is a semiconductor AlGaAs heterostructure device with a gain region that

is tapered in order to permit uniform power density amplification. Light is injected into

the input facet, freely diffracts along the gain region, and exits from the output facet at

the opposite end of the device. The taper is defined by a (typically) 5× 1 micron input

facet and a 100× 1 micron output facet, with a 1 mm long gain region. Production of

PA’s has been halted by SDL Inc., but they are now available for purchase from TUI

Inc. Our experiment only used PA’s produced by SDL. The only apparent difference

between devices from SDL and TUI is the orientation of the polarization relative to the

beam geometry.4 SDL devices have the same polarization orientation as a diode laser
4 This has been confirmed in preliminary tests by Dirk Müller, at JILA.
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Figure 2.4: Schematic of MOPA setup.

(parallel to short beam direction), while the polarization of the TUI device is rotated

by 90◦. The PA is rather delicate as it is a bare semiconductor chip mounted in an SDL

C-mount. Precautions must be taken to avoid physical damage to the PA. In order to

prevent dust from attaching to the PA facets, the PA is housed in a sealed aluminum

box with anti-reflection coated windows covering the input and output holes (figure 2.5).

The manufacturer stipulates standard handling procedures for the PA. Physically

handling the device should always be done while taking anti-static precautions. Under

no circumstances should cleaning of the device be attempted. Special AR coatings

are used on the input and output facets (< 0.1 % reflectivity), and any damage to or

accumulation of dirt on these facets results in hampered performance or device death.

The PA is electrically similar to a laser diode, and must be protected from static

discharge. The PA is driven by a stable current source that is a modified JILA diode

driver (see the appendix to this chapter for a circuit diagram). A protection circuit
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(figure 2.6)5 is connected between the current driver and PA as close as possible to the

PA. A typical PA drops ∼ 2.5 V while operating at 1-2 A with roughly a factor of 100

optical power gain. Electrically, the C-mount is the device anode and a separate pin

connects to the device cathode.

5 This circuit was designed by Leo Hollberg’s group at NIST Boulder.
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Temperature stabilization and heatsinking of the PA is required to prevent over-

heating, and can be used to tune the device characteristics. A schematic of the PA

housing (figure 2.5) shows the TEC’s used for cooling the device. The device should be

kept below 25 ◦C (recommended by the manufacturer), and we measure weak tuning

of the output power vs. temperature. The center wavelength of the PA tunes with

temperature much like a diode laser, with a measured ∼ 0.3 nm shift per degree Cel-

sius. A proportional-integral-differential (PID) servo is used to stabilize the PA housing

baseplate temperature via feedback to the TEC’s. The temperature is measured using

a small thermistor that is glued into a small hole in the baseplate.

The simple optical setup of a MOPA (figure 2.4) is certainly one of its advantages

over other high power laser systems. We have had the best results using JILA optical

mounts on large (1 inch diameter) posts. All of the MOPA optical mount posts are glued

to a 0.5 inch thick sanded and lapped aluminum plate, which rests on sorbathane pads

on top of the optical table. Two mirrors are used for the MOPA injection alignment.

Optical isolators (40-60 dB isolation total) are needed to prevent optical feedback into

the MO from PA input facet amplified spontaneous emission (ASE). A beam wedge

is useful for picking off MO light for a frequency lock and to beat against the peak-

locked laser. The alignment of the MO onto the PA input facet can be accomplished by

following a standard procedure. The coupling lens inside the PA housing is adjusted to

collimate the ASE from the PA input facet. Two mirrors are then used to overlap the

MO beam and this ASE output over an extended path — if this is done well enough,

amplified light should be observed from the PA output. The amplified power can then

be optimized by adjusted the two mirrors and the distance of the coupling lens from the

PA input facet (one half of the double-flexure mount is used for this). The PA output

shows no steering with changes in the alignment of the input beam from the MO.6

6 There have been two PA’s at JILA that have showed weak steering of the PA output beam with
changes in the MOPA alignment. These two PA’s had a very short lifetime, and are considered abnormal.



31

Reflection back into the PA output facet must be prevented, so all the optics

following the PA up to the PA isolator should be slightly tilted. Variation in the opti-

cal properties of the amplified light among different devices necessitates implementing

slightly different beam shaping optics on a case by case basis. The beam emitted from

the PA after the spherical collimating lens has a large aspect ratio (∼ 10:1) and is quite

astigmatic. The spherical collimating lens inside the PA housing is used to collimate

the long direction of the beam. Cylindrical optics outside of the housing then collimate

the short direction and shape the beam into a roughly 1:1 aspect ratio. The spherical

collimating lens introduces a focus into the short direction 10-13 cm from the lens. Fig-

ure 2.7 shows the most commonly used (in JILA) cylindrical lens scheme, which is the

scheme we use for the trap and repump MOPA’s. In general, trial and error is used

to find a collimation scheme that works for a particular device. Note that the output

facet ASE has a very different spatial mode compared to the amplified MO light, and

the collimating optics should be set up using an injected device.

All PA’s are similar, with the gain, current dependence, input power dependence,

and spatial mode varying somewhat from device to device. A compilation of the char-

acteristics of several devices follows. Cross-sections of the spatial profile of a shaped

and collimated beam is shown in figure 2.8; note that this device had a particularly

clean mode. Some PA’s have much more high-frequency spatial variation, and can show

clear, high contrast stripes in the far-field spatial pattern. The dependence of optical

ASE power on current is shown in figure 2.9 for both the input and output facets. The

input facet ASE power can be equal to the injection power (∼ 5 mW) at high current,

explaining the need for the high degree of optical isolation between the MO and PA.

Most of the output facet ASE is presumably pulled into the MO mode when the PA

is injected. However, there are some indications from other experiments at JILA that

residual output facet ASE can cause problems when light present in a several nanometer

bandwidth is important.
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Figure 2.7: MOPA cylindrical lens setup. The rays indicate the behavior of the beam
in the short direction. The spherical collimating lens collimates the beam in the long
direction, and introduces a focus into the short direction 10-13 cm from the lens. All
distances in this figure are only accurate to within a centimeter.
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Figure 2.8: Spatial profile of shaped and collimated MOPA beam. This profile was ac-
quired by measuring the power transmitted through a small pinhole that was translated
across the beam.
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The output power dependence on current from two devices is shown in figure

2.10. All PA’s are imperfect amplifiers, and exhibit threshold behavior at low current

because the facet coatings have finite reflectivity. The dependence of output power on

input power at different currents is shown in figure 2.11. Saturation of the PA gain is

observed for input power above 5 mW.
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Figure 2.10: Output power vs current for two different MOPA’s, each with a different
injection power.
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The sensitivity of the MOPA output power to the polarization of the MO light is

shown in figure 2.12. A half-wave plate was used to control the MO polarization relative

to the PA input facet ASE polarization (which has the same polarization as the output

light). The highest output power is measured for parallel or anti-parallel polarization.
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Figure 2.12: Sensitivity of the MOPA output power to the polarization of the MO light.
The relative polarization is the angle between the polarization of the MO light and the
PA input facet ASE and amplified output light (the polarization of the output does
not depend on the input). This data was taken with the PA operating at 1.2 A, and
∼ 5 mW of injection light.

As a check on the ability of the PA to reproduce the frequency characteristics

of the MO, a Rb saturated absorption spectrum was taken with the injected PA light

(figure 2.13). The sub-Doppler spectroscopic features show no broadening over the

same spectrum taken with the MO. The nano-meter scale frequency characteristics of

an injected PA are shown in optical spectrum analyzer (OSA) spectra in figure 2.14.
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Over several nanometers, the injected PA spectrum is identical to the MO spectrum

within the 0.1 nm resolution of the OSA. The total light outside of the MO mode is

suppressed by at least a factor of 1000.
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Figure 2.13: Rb saturated absorption spectrum of MOPA light.
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Figure 2.14: Comparison of MO and injected PA light on an OSA. Although only 1 nm
wide spectra are shown, other measurements indicate that the spectra are identical
across many nm.
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The gain of the PA at fixed current for different MO wavelengths figure 2.15

was measured by replacing the ECDL MO with a Ti:Sapphire laser. Light from the

Ti:Sapphire laser was coupled into a fiber in order to avoid changes in the MOPA align-

ment as the Ti:Sapphire was tuned. The collimated light from the output of the fiber

was injected into the PA input facet. The wavelength of the Ti:Sapphire laser was swept

using a computer controlled and wavelength calibrated bi-refringent tuner. Changes in

the injection power were monitored with a pick-off and the measured gain was normal-

ized to 12 mW of input power.7 The gain curve of the PA has a measured FWHM of

13 nm, making the device usable across a wide wavelength range. In particular, 780 nm

devices that are meant for use with Rb are still useful for experiments with K at 767 nm.

Figure 2.15: PA gain vs wavelength at 1.2 A.

7 The light from the Ti:Sapphire laser was not coupled well into the PA, so that the gain appears
low.
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A table of PA lifetimes from various JILA experiments is given in table 2.1.

Two different manifestations of PA death and damage have been observed: rapidly

decaying output power preceded by hysteretic current or temperature tuning behavior,

and damage indicated by a sudden decrease in the gain (which can then be stable over

months or years).

Experiment Status Lifetime

Cornell/Wieman/Anderson atom guiding #1 dead 1 year

Cornell/Wieman/Anderson atom guiding #2 live 1 year

Cornell BEC live 4.5 years

Jin K #1 live 3.5 years

Jin K #2 dead 2.5 years

Jin K #3 live 1 year

MOPA built by N. Claussen live 2 years

Table 2.1: PA lifetime for several experiments at JILA.
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2.3.1.3 Trap and Repump MOPA’s

The MOPA’s used in this experiment follow the standard JILA design. The trap

MO is a standard JILA ECDL, while the repump MO has been modified with a 3

stage cooling system (figure 2.16). The trap MO can only use diodes with a center

wavelength within 5 nm of 767 nm since the diode cannot be cooled very far below

room temperature. Three stages of TEC cooling are capable of chilling the repump MO

diode to -40 ◦C with active convective cooling of the heatsink. This extreme cooling

is necessary only when sufficiently short wavelength diodes are unavailable. The diode

mount, flexure mount, and baseplate are fastened together with stainless steel screws

that are thermally insulated with fiber and nylon washers. All electrical feedthroughs

and countersunk holes are sealed with epoxy or epoxy covered duct tape. The box-

baseplate interface is sealed with duct tape, and dessicant (not shown) held in a wire

mesh box slows the accumulation of frost. This dessicant only needs to be replaced

every 2-3 months. Flexible latex feedthroughs allow the grating to be adjusted and the

hex wrenches then mechanically disengaged. Recent work has improved this design by

using a commercial hermetically sealed box, and replacing the latex feedthroughs with

ultra-torr feedthroughs. More details on the cooling scheme and temperature control

can be found in the appendix to this chapter.
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Figure 2.16: Repump MO cooling scheme. One inch thick Armaflex insulation covering
the laser housing is not shown.
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2.3.2 Optical setup

The optical layout is shown in figure 2.17, and the function of each optic is detailed

in tables 2.2, 2.3, 2.4, and 2.5. The individual MOT optics and beams do not appear in

this figure. The color scheme is: green — push beam; violet — probe beam; brown —

optical pumping beam; red — MOT trap light; blue — MOT repump light; light blue

— frequency reference beams; black — laser lock beams.
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Figure 2.17: Optical layout.
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Key Function

s1 science MOT repump light shutter

s2 science MOT trap light shutter

s3 science MOT bright repump beam shutter

s4 collection MOT shutter

s5 push beam shutter

s6 optical pumping shutter

s7 probe beam shutter

Table 2.2: Shutters (Uniblitz LS6T2).

Key Function

HW1 sets science/collection MOT repump light split

HW2 sets science/collection MOT trap light split

HW3 sets science MOT bright/dim repump beam split

HW4 sets polarization for AO1

HW5 sets polarization for polarization preserving fiber

HW6 sets dim repump beam polarization

Table 2.3: Half-wave plates (Meadowlark Optics commercial retarders).
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Key Part Function

iso optical isolator (OFR IO-5C-
LP)

MOPA output isolator

AO1 acousto-optic modulator
(NEOS N15260)

frequency offsets trap light by 240
MHz

AO2 acousto-optic modulator
(NEOS N15260)

change push, probe frequency

IA1 iris aperture (∼ 1 mm) cleans up repump spatial mode (85%
transimission)

IA2 iris aperture (∼ 1 mm) creates flat intensity profile for prob-
ing

QW1 quarter wave plate (Mead-
owlark RQM-100-780)

sets optical pumping polarization

QW2 quarter wave plate (Mead-
owlark NQM-100-780)

sets push and probe polarization

pol polarizer polarizes optical pumping beam be-
fore QW1

SC security camera images collection MOT
PD photo-diode measures collection MOT number
RM gold mirror optical pumping beam retro mirror
LCD polarization rotator sets push polarization
PBS polarizing beam splitter cube splits/combines various beams
FC fiber-coupler (New Focus

9091)
couples probe beam into optical fiber

FH fiber-holder (New Focus 9095) couples probe beam out of optical
fiber

fiber polarization preserving single
mode fiber (Wave-Optics WF
733)

cleans up probe beam spatial mode
and pointing stability

BS microscope slide cover slip picks off light for probe beam
DS 3 mm bronze circle glued to

pyrex window
science MOT dark spot

SF 25 micron spatial filter cleans up science MOT trap light spa-
tial mode

ND 12% transmission neutral den-
sity filter

used for low magnifcation imaging

Table 2.4: Miscellaneous optical elements.
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Key Function

�1,�2,�3 repump MOPA collimating and shaping op-
tics

�6,�7 trap MOPA collimating and shaping optics
�4, �5; �8, �9 telescope to get through isolator aperture

�10, �18-�17-�20 telescope to couple into AOM — focus occurs
inside AO1

�11, �12 telescope to expand and spatially filter the sci-
ence MOT trap beam — focus at SF

�19, �23 telescope to expand beams for collection MOT
�13, �14 telescope for science MOT bright repump

beam
�15, �16 telescope for science MOT dim repump beam
�21, �22 telescope to match numerical aperture of fiber
�24, �25 telescope for push beam
�29 focus push beam at science MOT
�26 collimate output of fiber

�27, �28 telescope to expand probe beam
�30 image IA2 onto the atoms for flat intensity

profile probe beam
�31, �32 high-magnification imaging optics
�33, �34 low magnification optics (used with �31, �32)

Table 2.5: Lenses.
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2.3.3 K DAVLL lock

We use the DAVLL scheme [71] for frequency stabilization of the trap and repump

MOPA’s. A DAVLL lock for potassium offers the advantage of being able to easily

frequency lock directly to the 40K transitions. Further, the laser frequency can be

quickly (faster than 1 ms) and reproducibly jumped by many 100’s of MHz.

The K DAVLL locking signal is shown in figure 2.18 with the 40KMOT transitions

and other isotope cycling transitions marked for reference. The K absorption cell used

in the DAVLL setup is enclosed in an oven and temperature stabilized to 50 ◦C. A

120 gauss bias field is created by permanent magnets that are located inside of the oven.

The lasers are stabilized to the locking error signal using standard JILA electronics via

feedback to the PZT driven diffraction grating and to the laser current. At best, the

DAVLL locks are stable to 0.75 MHz over a day, with 300 kHz short term stability. The

short term stability was measured by beating the all three lasers together, two at a time.

The locked linewidth of each laser was extracted from the three beat spectra acquired

on a spectrum analyzer. We assume that the laser spectrum is gaussian and that the

beat spectrum represents the Fourier convolution of the spectra of the two lasers. We

have found that using temperature insensitive polarization optics, particularly calcite

polarizers, is important to long term stability. We have successfully manufactured our

own calcite polarizers by having the JILA shop polish pieces of calcite that are hand

selected from shops in Estes Park, CO.
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2.3.4 Enriched Source

With the usual type of alkali source, the low natural abundance (0.012%) of 40K

would severely limit the number of atoms that could be collected in the vapor cell MOT.

Efficient evaporative cooling relies on trapping enough atoms to have a high collision

rate in the gas. Furthermore, reaching TF at a experimentally achievable temperature

(∼ µK) also requires large initial numbers of atoms. Our experiment would not have

been successful without the development of an enriched source that allowed us to trap

10000 times more atoms than previous efforts [47,46].

Potassium enriched in 40K is available commercially8 in the form of a salt, KCl,

rather than as a pure metal. The cost of the enriched material is quite high (roughly

$3000 per 100 mg of K from Trace Sciences), so that the ideal source should deliver

potassium vapor for a MOT efficiently using a small amount of material. Large loss due

to continuous exposure of the source to the vacuum pumps or due to adsorption of the

alkali atoms onto the surface of the cell is unacceptable.

Our enriched source [51] is based on the design of commercially available alkali

metal dispensers by SAES Getters [77]. The dispenser contains an alkali salt as well

as a reducing agent and delivers small amounts of pure alkali metal through chemistry

that occurs inside the vacuum chamber. The metal is released, or evaporated, simply

by ohmic heating of the dispenser. The vapor pressure can then be controlled with

the current applied to the device; the source is essentially turned off completely if

there is no applied current. Unfortunately we were unable to find a company willing to

make dispensers for enriched isotopes upon request, presumably because the commercial

dispensers are generally mass-produced.

Our 40K source contains enriched KCl plus calcium [78] for the reduction reaction.
8 For the experiments in this thesis, enriched material was purchased from Isotec, Inc. Enriched KCl

is no longer available from Isotec, but can be purchased from Trace Sciences, International.
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The KCl contains K that is 4.5% 40K, 29.1% 41K, and 66.4% 39K 9 (natural abundances

are 0.012% 40K, 6.73% 41K, and 93.26% 39K). Upon heating the source, the enriched K

is released while the Cl as well as other contaminants are captured by the Ca.

The Ca must be very pure, especially since its dominant contaminant tends to

be alkali metals. If proper care is not taken, these alkali contaminants will be released

when the source is activated, leading to higher background pressures as well as a reduced

relative abundance of the desired isotope. The Ca used in our source was baked at 400 ◦C

under vacuum for 4 days in order to drive out any impurities. As a check on the purity

of the Ca, we performed a yield measurement (described below) and verified that a

source containing only the clean Ca did not release a noticeable amount of alkali metal.

We prepared a 5:1 molar mixture of Ca and enriched KCl, with both chemicals

in a powdered form. Since the reaction depends on adequate fresh calcium surface area,

we used a powder of Ca prepared using a jeweler’s file and sieved through a woven wire

mesh (0.07 mm wire with 0.15 mm apertures).10 The mixture was put into a small

“boat” made from 0.125 mm thick Nichrome (80%-20% nickel-chromium alloy) foil that

had been flame annealed, then mechanically cleaned and electro-polished (figure 2.19).

Electrical leads, 1 mm nickel wires, were spot-welded to the foil tabs on both sides of

the boat. Several sources were made, each containing approximately 2.1 mg of KCl.

These were incorporated into a glass arm for use in the collection MOT. It is crucial to

avoid heating the dispensers while the pin-press to which they are attached is fastened

to the glass arm.

To characterize our source, we have examined the level of contaminants, the total

potassium yield, and the relative abundance of 40K. A major concern for ultrahigh

vacuum studies is that the level of contaminants released from the source be sufficiently
9 This data is from Isotec.

10 Calcium is not normally available in a powdered form for obvious reasons. In Boulder’s arid climate
we were able to prepare calcium filings without using a glove box; the power was stored in a desiccant
jar.
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Figure 2.19: Schematic of enriched source.

low. We fired one of our sources, as well as a commercial SAES K dispenser, into

an uncalibrated residual gas analyzer. With our source, we detected levels of released

contaminants, such as Cl, water, CO2, and other alkalis, that were no higher than that

seen for the commercial dispenser.

Another concern is that the useful lifetime of the source, which is directly related

to the total yield, is reasonable. We performed a yield measurement of our source and

compared this to a commercial dispenser. Using a triode arrangement, we measured

the amount of released potassium by ionizing the gas and counting the collected ion

current. The source was mounted along the axis of a helical tungsten filament inside a

water-cooled Kovar tube. The filament was heated to roughly 1400 ◦C and maintained

at 30 V relative to the source, while the Kovar was held at -400 V. After baking the

apparatus under vacuum and degassing the tungsten filament, the yield measurement

was performed by activating the source and monitoring the ion current (using a pico-

ammeter) as a function of time. For calibration, we performed a similar test using

a purchased SAES potassium dispenser having a nominal yield of 4.5 mg. Assuming
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this nominal yield is accurate, we found that our dispenser, containing 2.1± 0.3 mg of

KCl, released a total of 0.39 mg of alkali metal, giving an efficiency of 19± 3% (figure

2.20). Upon inspection of a spent source we found that the efficiency appears to be

limited by the availability of fresh Ca surface area for the required reduction reaction.

A single enriched dispenser has been found to last for about three years of daily use in

our apparatus.
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Figure 2.20: Yield measurement for enriched source.
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While the above tests show that our source efficiently delivers potassium, they

do not provide a measure of the relative abundance of the isotope of interest 40K. To

make this determination, we fired one of our sources into a small glass cell. Then, using

this cell and a 767 nm diode laser, we performed saturated absorption spectroscopy.

The results of this test, as well as a saturated absorption spectrum for a cell containing

unenriched potassium, is shown in figure 2.21. The enriched source clearly delivers

potassium with a higher abundance of both 40K and 41K. In particular, the 40K lines,

which are imperceptible for the unenriched source, clearly appear in the spectrum for

the enriched source. The frequency axis in figure 2.21 was calibrated using the known

hyperfine splittings for K.
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Figure 2.21: Saturated absorption spectrum from enriched source. Spectrum (a) was
taken using an absorption cell made from an unenriched source, and spectrum (b) from
an enriched source.
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2.3.5 Collection MOT

Both the Science and Collection MOT’s are fairly standard compared to other

experiments in the ultra-cold trapped atom gas business. Characterization of the MOT

behavior is presented here for completeness and so that the importance of adjustable

parameters is clear.

The collection cell (figure 2.22), constructed by Hans Rohner at JILA, is a six-

way cross design made from pyrex tubes with optical quality windows. Three glass

arms extend from the bottom of the cell and contain enriched K, SAES K, and SAES

Rb alkali dispensers. The MOT windows are 1.5 inch in diameter, and there are three

small (0.5 inch diameter) ports used for the push and probe beam and for monitoring

the MOT position and number. Because of the low vapor pressure of K (∼ 2×10−8 torr

for K compared to ∼ 2×10−7 torr for Rb at room temperature [79]), the cell is heated to

40 ◦C using thermofoil resistive heaters (gray in figure 2.22) in order to prevent buildup

of potassium on the glass surface.

The collection MOT uses a three beam, retro-reflected arrangement for the MOT

light. The trap and repump light are nearly collinear in all directions. The quadrupole

magnetic field (calculated 12 G/cm) for the MOT is provided by a pair of coils (black in

figure 2.22). A security camera (SC in figure 2.17) can be positioned on one side port

or behind the push/probe combining optic in order to align the MOT with the transfer

tube. The MOT position can be altered with three orthogonal shim coils (red in figure

2.22) that are used to shift the location of the quadrupole magnetic field zero.
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Figure 2.22: Detail of collection MOT.
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Typically, the collection MOT runs with 100 mW of trap light and 30 mW of

repump light.11 The trap light is detuned by ∆t ∼25 MHz from the f ′ = 9/2 ground

state to f ′ = 11/2 excited state transition, and the repump light is detuned by ∆r ∼30

MHz from the f = 7/2 ground state to f = 9/2 excited state transition.12 The MOT

number is calculated using a 6-level model [46] from the photodiode (PD in figure 2.17)

signal. With an enriched source running at 3.2 A, the MOT fills (at best) up to 2× 109

40K atoms with an exponential time constant of 0.5 sec. The dependence of the MOT

fill on repump power is shown in figure 2.23. The maximum fill rate (atoms/sec) is

obtained at the highest values of repump power.

11 The power in each beam is measured directly after the shutter s4. About 90% of this light makes
it into in a 1.3 inch diameter beam with a very non-uniform spatial profile.

12 These detunings correspond to beat frequencies of ∼559 MHz and ∼445 MHz between the trap
and repump lasers and the peak-locked laser.
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Figure 2.23: Collection MOT fill dependence on repump power. The number of atoms
N in the MOT, exponential loading time constant τ , and loading rate (which is just
calculated from the data as N/τ) are shown vs the total repump power. The alkali
dispensers were run at 3.0 A for this data, the beat frequencies for the trap and repump
lasers were 560 MHz and 443 MHz, and there was 86 mW (measured after s4) of trap
light.
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2.3.6 Science MOT

The science cell (figure 2.24), also manufactured by Hans Rohner, is a modified

six-way cross design. The cell is only 1 inch across in one direction so that the mag-

netic trap coils can be positioned as close together as possible. The MOT windows are

1 inch in diameter, and there are three 0.5 inch diameter ports for probing and miscel-

laneous optical access. A security camera or a photodiode and lens monitor the MOT

flourescence through the top port.

TOP VIEW

SIDE VIEW security camera

transfer tube

transfer tube
electromagnets

U/D shim coil

E/W shim coils

N/S shim coil

“pcoil”

cloverleaf coils
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SS support structure

N
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Figure 2.24: Detail of science MOT.

The science MOT must serve multiple purposes: efficiently catching atoms from
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the collection MOT push, filling up with large numbers of atoms, and then preparing

the sample to load into the magnetic trap. There are strongly different requirements for

each role. For example, an efficient catch requires a MOT with strong forces, while filling

up with large numbers of atoms requires low collisional losses and therefore low excited

state fraction and large trap volume. In order to make the science MOT multi-purpose,

the MOT position, repump power, and laser detunings are adjustable and jump between

values for different stages of the experimental cycle.

Four coils (red in figure 2.24) are used to position the MOT for the best catch

from the collection MOT push and for optimized loading into the magnetic trap. These

coils are also used to provide the quantization axes for probing and optical pumping.

We use the following conventions for referring to spatial directions: East/West (E/W)

for along the probing and push direction, vertical or up/down (U/D), and axial or

North/South (N/S) for along the magnetic trap bias field. The calculated field at the

center of the science cell from the shim coils is: U/D 2.63 gauss/A, N/S 1.86 gauss/A,

and eastern E/W 2.66 gauss/A. Two coils (orange in figure 2.24) provide the quadrupole

field (calculated 7 G/cm) for the MOT.
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The science MOT uses a six beam configuration, with a complicated repump light

scheme that is designed to minimize collisional losses [80] in the MOT while allowing

for strong viscous forces for the catch. The repump light is collinear with the trap

light in all six directions. About 30 mW total of trap light in a 1 inch 1/e2 beam

diameter is used in the MOT. Data showing the relative science MOT catch efficiency

and density dependent loss rate vs. repump power are shown in figure 2.25. The best

results are obtained with high repump power for the catch and low repump power for

holding the atoms between catches. In order to take advantage of this, a bright repump

beam (20 mW) is turned on for the catch, while a dim (5 mW) repump beam is used

to hold the atoms. Both repump beams also have a ∼ 1 inch 1/e2 beam diameter. A

dark spot (DS in figure 2.17) [81] is put into the dim beam using a solid brass circle

(diameter 4 mm) mounted on a 1.5 in diameter pyrex window. The dark spot is aligned

along the optical axis to minimize bright Fresnel fringes at the MOT and along the

orthogonal directions to minimize the MOT fluorescence. The dark spot allows for low

MOT excited state fraction while avoiding loss due to “leaks”.
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Figure 2.25: Science MOT repump power dependence. Data taken under slightly differ-
ent conditions is shown in the inset — at very low power, the MOT becomes “leaky”.
All of this data was taken without the dark spot. The data in the main plots was taken
with 39 mW of trap light in the science MOT (measured after the spatial filter), and
with beat frequencies of 560 MHz and 443 MHz for the trap and repump lasers.
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The science MOT fill is characterized by two parameters: the number of atoms

caught per second F and the inelastic loss rate β. Excited state-ground state collisional

losses dominate compared to loss due to collisions with room temperature atoms (figure

2.26). The number in the MOT is measured using the CCD camera and fluorescence

imaging. An extra set of optics (see table 2.5 and section 2.6) can be combined with

the normal imaging optics to decrease the magnification by a factor of 5.8 in order to

image the MOT (see the section on absorption imaging for more details). The CCD

flourescence signal was calibrated against the signal from a photo-diode that imaged the

MOT through the top port. The number is calculated using the CCD signal and a 6-

level model [46]. The parameters F and β are measured by fitting the time dependence

of the number of atoms in the MOT to a model [82] that assumes no loss except due to

inelastic collisions:

dN

dt
= F − βN2 (2.1)

N(t) =

√
F

B
tanh

(
t
√
Fβ

)
(2.2)

and constant trap volume. Under optimized conditions, F=4 × 107 atoms/sec and

β = 2 × 10−10 1/atoms/sec, so that 4 to 5×108 atoms fill into the MOT in 20 sec

(figure 2.27). In published work, we have specified a 50% uncertainty in atom number,

even when measured with absorption imaging. We specify this uncertainty because

absorption and flourescence imaging only agree to this level. The primary source of the

uncertainty is the lack of a direct measurement of the light intensity experienced by the

atoms for flourescence imaging. See Chapter 5 for more details.
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Figure 2.26: Science MOT lifetime. The lifetime is characterized by two exponential
time constants (measured with a double-exponential fit): a fast ∼ 18 second decay due
to density dependent loss and a slower ∼ 110 sec decay caused by collisions with room
temperature atoms. This data was taken very early in the construction of the exper-
iment, with the trap and repump beat frequencies at 565 and 373 MHz, respectively,
and trap and repump powers measured at 55 and 8.5 mW. There was no dark spot in
the repump beams for the data in this figure. This data should not be used to compare
to the modern performance of the apparatus.
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Figure 2.27: Science MOT fill. The fit (solid line) is used to extract the fill and loss
rates, which are shown on the plot in experimental units for this particular data. For
the data in this figure, the alkali dispensers were set at 3.2 A, the science MOT trap
and dim/bright repump powers were 39 mW and 4.5/17.3 mW, and the laser beat
frequencies were 559 and 443 MHz for the trap and repump lasers, respectively.
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The MOT detunings for the transfer are optimized to load the highest number

of atoms into the magnetic trap (figure 2.28); the number of atoms is measured after

some evaporation. Before loading, the MOT trap detuning (∆cold
t ) is jumped closer to

resonance in order to Doppler cool the gas. Another group has seen evidence for strong

sub-Doppler cooling [49], but we have been unable to reproduce these results. The

temperature of the MOT vs detuning is shown in figure 2.29; the MOT temperature is

cooled from 220 µK to 150 µK before loading into the magnetic trap by jumping the

trap detuning to ∆cold
t ∼ 575 MHz (referred to by the beat frequency) for 20 ms. The

repump laser detuning is also jumped at the same time, and, although the effect on

temperature is unknown, the detuning (∆jump
r ) is optimized by measuring number after

some evaporation.
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Figure 2.28: Science MOT detuning dependence. The MOT number is optimized by
measuring the number left after some evaporation. For the data in this plot, the total
peak optical depth (OD) in the gas is plotted at a 15 ms expansion time after evapo-
rating to 1281.5 MHz in the “evap1” stage (see Chapter 4). The data is taken at fixed
temperature, and the peak OD reflects the total number of mf = 9/2 and mf = 7/2
atoms in the gas. Since the number is measured after some evaporation, effects on the
evaporation performance due to changes in the MOT temperature are included in this
plot. For this figure and the next (figure 2.29) the detunings are measured by the beat
frequency with the peak-locked laser at the 39K f = 2 to f ′ manifold. Note that AO1
is set to 240 MHz, which adds to the frequency difference (which is the measured beat
frequency) between the trap light and the 39K f = 2 to f ′ manifold. For the data in
this figure, the trap and repump dim/bright repump powers were 34 mW and 3.4/13.4
mW. For this figure and the next, the trap light power is measured after the spatial
filter, and the repump power after the repump shutters.
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Figure 2.29: Science MOT temperature dependence on cold MOT stage detuning. The
temperature is inferred by measuring the MOT expansion energy. The r.m.s. size
of the MOT is measured using absorption imaging for different expansion times after
turning off the MOT quadrupole field and light. The peak optical depth (proportional
to collision rate) is shown at a fixed expansion time. For the data in this figure, there
was 34 mW of trap light and 1.5 mW of repump light in the science MOT.
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2.3.7 Push

The technique we use to transfer atoms between MOT’s is also standard compared

to other double-MOT experiments. Again, the transfer behavior is characterized here

in predominantly a qualitative way so that people running the experiment know which

parameters affect the transfer efficiency.

The push beam (green in figure 2.17) is used to transfer atoms through the transfer

tube from the collection MOT to the science MOT. Only a single frequency of laser light

is used in the push beam. The collection MOT trap and repump light and the collection

MOT quadrupole magnetic field is left on during the push. The push beam empties all

of the atoms in the collection MOT during a 100 ms pulse every 870 ms (figure 2.30).

Note that during the transfer sequence, the collection MOT only fills up to one-half

of the maximum fill. The atoms travel down the transfer tube, guided by hexapole

magnets, at 20 m/sec (figure 2.31) and are caught with at best 35% efficiency by the

science MOT. We define the transfer efficiency as the number caught in the science

MOT divided by the number that leave the collection MOT for one pulse of push light.
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Figure 2.30: Push duration. The number of atoms caught by the science MOT is
measured vs. the duration of the push pulse. Most of the atoms that can be caught are
pushed in the first 100 ms. The data in this figure and the next were taken very early
on in the construction of the apparatus, and may be difficult to compare to current
performance.
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Figure 2.31: Atom velocity from push beam. The push shutter opens at 0 ms and closes
at 100 ms. The number of atoms caught in the science MOT is measured for different
delay times after the beginning of the push. The atom arrival time implies a longitudinal
velocity spread of 19 to 23 m/s given the 57 cm center-to-center MOT distance.
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We do not fully understand the transfer efficiency dependence on detuning and

polarization. We hypothesize that the dependence comes from the fact that the MOT

quadrupole field is on during the push, and that the magnetic fields that the atoms ex-

perience as they enter the transfer tube are complicated. The polarization that produces

the best push efficiency for particular push beam detuning is shown in figure 2.32. The

best transfer is always produced with linear polarization, changing toward slightly ellip-

tical with changes in detuning (figure 2.32). This complicates the optical setup since the

probe beam, which shares polarization optics with the push beam, must be circularly

polarized. For this reason an LCD polarization optic (LCD in figure 2.17) is used to

modify the push beam polarization before going through a quarter-wave plate (QW2

in figure 2.17). The voltage on this LCD is optimized for the best transfer efficiency.

The push beam power is also optimized for best transfer, typically running with 20 mW

at ∼ −40 MHz detuning (AO2 is set to 234 MHz and the trap laser to a 559 MHz beat

frequency) from the f = 9/2 to f ′ = 11/2 transition. Note that measurements indicate

that the velocity of the atoms does not seem to depend on the push detuning over a

120 MHz range.
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Figure 2.32: Collection to science MOT transfer dependence on detuning and polariza-
tion. The detuning is measured from the f = 9/2 to f ′ = 11/2 transition. The light
is circularly polarized (accordingly to the markings on the quarter-wave plate) when
the angle is 325◦. The data in this figure was taken with ∼ 560 and ∼ 440 MHz beat
frequencies for the trap and repump lasers, and with 27 mW of trap light and 35 mW
of repump light in the science MOT. The trap power is measured after the spatial filter,
and the repump power after the repump shutter.
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2.3.8 Vacuum System

The vacuum system consists of the science cell, collection cell, transfer tube, and

connections to ion pumps. The entire system was baked at 300 ◦C for three days while

connected to a turbo pumped roughing station. During this time the alkali dispensers

were flashed to 1.5 A for 5 minutes in order to drive off impurities. After the bake, the

system was closed off using an all-metal valve. The collection cell is pumped by a 20 l/s

ion pump (P2 in figure 2.17), and the science cell by a 40 l/s pump(P1 in figure 2.17).

The distance along the transfer tube to the connection to P2 from the center of the

collection cell is ∼ 14 cm. The science cell is connected to the four-way cross through a

1 inch diameter glass tube that is ∼ 15 cm long.

The limited conductance of the transfer tube isolates the science cell from the

vapor in the collection cell. The tube itself is 30 cm long and has an 11 cm inner

diameter. A bellows at one end of the transfer tube and glass arms at both ends extend

the total length to ∼ 45 cm. There is a short arm (9 long) (note that this arm is not

shown on any figures in this thesis) that is connected to the transfer tube at a right

angle 22 cm from the center of the collection cell. Inside this arm is a small glass block

with an embedded magnet that can be moved in and out of the transfer tube. This valve

is useful for performing tests where the conductance between the science and collection

cells needs to be restricted even further.

The vacuum in the science cell can be characterized by the exponential lifetime

for atoms held in the magnetic trap, which is typically 350 sec for our apparatus.

Occasionally, for example during power outages, the vacuum may be compromised and

the lifetime will drop. In this case, a titanium sublimation pump (TSP in figure 2.17)

filament is fired to 48 A for 1 minute in order to adsorb contaminants onto a titanium

layer on the four-way cross. Normally we have to fire the TSP only once a year.

The pressure in the science cell is not limited by potassium atoms from the col-
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lection cell that wander down the transfer tube. This was confirmed with several mea-

surements of the trap lifetime and heating rates for trapped gases. All of the following

measurements were done with ∼50/50 mixtures of mf = 9/2 and mf = 7/2 atoms,

with initial temperatures between 1 and 2 µK, and with a total of a few million atoms.

The heating rate and trap lifetime were compared for: (i) the normal case (valve open),

(ii) with the transfer tube valve closed during the measurement, (iii) with the enriched

sources only on for the transfer of atoms between MOT’s (43 sec out of a 3 minute

cycle), and (iv) with the transfer tube valve closed overnight but open during the mea-

surement (which was done immediately after opening the valve in the morning). Note

that the lifetime measurement takes place over 300 to 400 seconds at the end of the

experimental cycle. Within the typical 30 to 50 second uncertainty in the trap lifetime

and few nK/sec uncertainty in the heating rate there was no difference between any of

these four measurements.

2.4 Optical Pumping and Spin Composition

Atoms in multiple internal states are required for rethermalizing collisions to be

present during evaporative cooling. Normally in cold atom experiments, the optical

pumping is optimized very carefully to load atoms in only one Zeeman level into the

magnetic trap. This is done in order to suppress loss caused by inelastic collisions that

populate magnetically untrapped states. We found that it is not hard to load multiple

Zeeman levels into the trap in a controlled and reproducible way. There are two primary

parameters that control the spin composition of the gas that is loaded into the trap:

(i) the optical pumping power and (ii) the repump laser detuning used during the cold

MOT stage and during optical pumping.

The gas is optically pumped before transfer from the science MOT into the mag-

netic trap. The optical pumping is optimized to prepare the best spin mixture for

evaporation and to improve the fraction of atoms transferred into the magnetic trap.
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The optical pumping sequence begins by turning off the science MOT trap light and

quadrupole magnetic field, leaving the bright repump beam present for hyperfine pump-

ing. During the 2.3 ms before the magnetic trap is turned on, a few gauss field collinear

with the magnetic trap bias field is turned on as a quantization field for the optical

pumping. The trap laser is set to the optical pumping frequency (∆o), and a 100 µsec

pulse of circularly polarized light (brown in figure 2.17) then optically pumps the atoms

into predominantly the mf = 9/2 and mf = 7/2 states in the f = 9/2 ground state.

The angle, ∼ 13 ◦, that the optical pumping beam makes with the quantization field

may be important to determining the spin composition. The light is retro-ed by a gold

mirror (RM in figure 2.17) in order to avoid large recoil forces on the atoms.

The fraction of atoms transferred into the magnetic trap is measured using MOT

recapture and flourescence imaging. The dependence on the quarter-wave plate (QW1

in figure 2.17) angle used to circularly polarize the light and the laser detuning is shown

in figure 2.33. The quarter wave plate is set to produce circular light. We pump on the

f = 9/2 → f ′ = 9/2 transition as this adds less heat to the gas because the atoms are

shelved in the f = 9/2, mf = 9/2 dark state. Measurements of the MOT temperature13

indicate that optical pumping adds less than 10 µK to the temperature of the gas. The

total number of atoms after some evaporation is shown in figure 2.34 for optical pumping

on each transition.

13 Again, the MOT temperature is inferred from a measurement of the MOT expansion energy. The
size of the MOT is measured using absorption imaging for different expansion times after turning off
the MOT quadrupole field and MOT light. The temperature is compared with and without an optical
pumping pulse.
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Figure 2.33: Dependence of the fraction of atoms transferred in the magnetic trap
on optical pumping polarization and detuning. The detuning is measured from the
f = 9/2 to f ′ = 11/2 optical transition. In the experiment, we pump with ∆o ∼ 49
MHz, which corresponds to a 634 MHz beat frequency between the trap and peak-locked
laser. The inset shows the dependence on polarization over a larger range; this data
was taken under different conditions when the overall transfer was not optimal. Note
that the light is circularly polarized (according to the markings on the waveplate) at
228◦. The fact that less than 7% transfer is never observed probably indicates that the
light polarization relative to the quantization field is not perfect. The polarization data
is taken when pumping on the dark state transition.
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Chapter 4 will explain why using a partially spin polarized gas is advantageous

for evaporation. The optical pumping parameters are optimized to produce a 65-70%

f = 9/2,mf = 9/2 gas, with the other atoms predominantly in the f = 9/2,mf = 7/2

state. The spin composition is measured after evaporating to low enough temperature so

that the AG coil is effective at separating the spin components. For this measurement,

we check that the spin composition has not changed from the initial magnetic trap load.

The spin composition of the gas that is loaded into the magnetic trap is altered by the

optical pumping power as well as the repump laser cold MOT stage detuning (∆jump
r ),

as shown in figure 2.35 and figure 2.36.
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Figure 2.35: Spin composition dependence on optical pumping power. The peak optical
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MHz (see Chapter 4). Because the temperature of the gas is fixed, the peak OD in the
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measured in the experimental units (“qvolts”) used to set the optical pumping power.
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Figure 2.36: Spin composition dependence on the cold MOT stage repump detuning.
The repump laser detuning is specified by the beat frequency with the peak-locked laser.
The data here and in figure 2.35 (above) represents only relative spin composition.
The number is measured after evaporation into the regime where the spin composition
changes (see Chapter 4). Typically, we choose to run the experiment with ∆jump

r =
432 MHz.
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2.5 Magnetic Trap

The magnetic trap is truly the heart and soul of our experiment. We have put

tremendous effort into creating a very stable magnetic trap. Working with fermionic

atoms is more difficult than bosons for many reasons. For example, the ability of the

evaporation to cool in the degenerate regime is very sensitive to the energy resolution

with which atoms are removed [54]. The magnetic trap can broaden this resolution as we

use field dependent transitions to remove atoms. Also, experiments with a degenerate

Fermi gas require tighter constraints on temperature reproducibility. The goal is not

just to cool below Tc and produce a condensate. Rather, shot-to-shot reproducibility

in T/TF is critical to making measurements, since all phenomena that depend on the

Fermi statistics are sensitive to the degree of degeneracy. The magnetic trap bias field

sets the temperature for a fixed evaporative cut. For this reason, we require an ultra-

stable bias field. Ioffe-Pritchard magnetic traps do not make this easy, as the relatively

small bias field is produced by the subtraction of two large fields. On the other hand, a

Ioffe-Pritchard trap can attain the large trap depth that is necessary to capture, hold,

and compress potassium atoms that are relatively hot. After a serious investment in

stabilizing the bias field we now have one of the most stable traps that we know of. 14

2.5.1 Cloverleaf Trap

We use a cloverleaf [19] design Ioffee-Pritchard [83,50] magnetic trap. The clover-

leaf coils produce a harmonic trap with cylindrical symmetry, so that there are two

orthogonal trap directions: radial (r =
√
x2 + y2) and axial (z). The layout of the coils

is shown in figure 2.37. The center coils are a Helmholtz pair designed to produce a

large field with large curvature:

Bz(r, z) ≈ Bc + γ

(
z2 − r2

2

)
(2.3)

14 One outstanding exception is Ted Hänsch’s QUIC trap, which is enclosed in “mu” metal shielding.
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where Bc is the bias field produced by these coils, and 2γ is the axial curvature (measured

in G/cm2). The bias coils are a Helmholtz pair wound in the opposite direction that

are designed to cancel some the bias field from the center coils while adding very little

curvature. For our system, the calculated bias coil curvature is ∼1/20th of the center

coil curvature. The trap bias field B0 is then the difference between the fields produced

by these two coils.

bias coil

petal coil

center
coil

Figure 2.37: Cloverleaf arrangement. The arrows indicate the direction of current flow.
The bias coils are black, the center coils blue, and the petal coils red.

The “petal” coils add radial gradient to the field while adding very little bias

field:

Br(r, z) = βr (2.4)

where β is the petal gradient (measured in G/cm). The magnitude of the field then

provides the trapping potential:

B(r, z) =

√[
B0 + γ

(
z2 − r2

2

)]2

+ β2r2 (2.5)

which can be expanded to first order assuming that the bias field is the dominant
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contribution to the total field:

B(r, z) ≈ B0 + γz2 +

(
β2

2B0
− γ

2

)
r2 (2.6)

The harmonic trap frequencies can then be determined from the magnetic field potential

energy U = −!µ · !B assuming that the Larmor frequency is sufficiently high so that the

magnetic moment µ follows the direction of the field:

fz =
1
2π

√
µ

m
2γ (2.7)

fr =
1
2π

√
µ

m

(
β2

B0
− γ

)
(2.8)

We normally operate with fixed center and petal current Ic=190 A, and vary the bias

current Ib to adjust the radial frequency fr and bias field. Note that the current through

the petal and center coils is always equal.

We have measured the curvature, gradient, and bias field constants for our trap

by measuring the trap frequencies and bias field for fixed center coil current and different

bias coil currents. The trap frequencies are measured by exciting sloshing motion of the

cloud. A shim coil is turned on for a few oscillation periods, so that the trap center is

displaced. This shim is then quickly turned off, and the ensuing center-of-mass (COM)

motion of the gas (figure 2.38) is measured in time. By fitting the COM coordinate to a

sine wave, the trap frequency is determined. The bias field is measured by extrapolating

to zero temperature in evaporation trajectory data (see Chapter 4). For a harmonic trap,

the cloud temperature scales linearly with the final microwave frequency in evaporation.

15 Careful to avoid regimes where the spin composition is changing, the beginning of

the cooling, and regimes where evaporation works only marginally, the intercept of a

linear fit of temperature vs. microwave frequency is used to determine B0 (figure 2.39).

15 Note that this is not true for N , particularly in the degenerate regime.
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Figure 2.38: Determination of harmonic oscillator frequency. The center of the cloud
is plotted after exciting vertical slosh of a spin polarized mf = 7/2 gas in the “tight”
trap. A fit (solid line) is used to determine that the radial frequency is 117 Hz.
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Figure 2.39: Determination of B0. Two-frequency evaporation is used to cool the gas,
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for more details). A linear fit (solid line) is used to determine the frequency where the
temperature would go to zero. This frequency corresponds to 5.452(1) gauss for the
f = 9/2,mf = 9/2 → f = 7/2,mf = 7/2 transition (this data taken in the tight trap).
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We find that γ = 0.295 G/cm2/A×Ic, β = 0.885 G/cm/A×Ib, andB0 = 1.27(7)Ic−

1.38(8)Ib. The curvature γ is determined by the axial frequency at fixed Ic, while β is

determined from B0 and fr at different bias coil currents. The dependence of B0 on the

center and bias coil currents is determined from the measurements of B0 at different

values of Ib.

All of the work done in this thesis used three different traps: the “evap”, “tight”,

and “load” traps. Parameters for these traps are detailed in table 2.6. Some tests were

also done with a low bias field trap — the “single frequency” trap. Variation from these

parameters will be noted in this thesis where appropriate. Note that the frequencies for

mf = 7/2 atoms are reduced from the mf = 9/2 frequencies by the square-root of the

ratio of the magnetic moments (
√
7/9).

Trap Ib B0 mf = 9/2 fr mf = 9/2 fz
evap 174.9 A 1.3 G 234 Hz 19.5 Hz∗

tight 172.0 A 5.34 G 135 Hz 19.5 Hz
load 142 A 45 G 44 Hz 19.5 Hz∗

single frequency 175.5 A 0.68 G 380 Hz† 19.5 Hz†

Table 2.6: Different magnetic trap parameters used in this thesis. We have the best
measurements of the axial frequency in the “tight” trap. Because fz should not depend
on the bias current, we list the measured axial frequency in the “tight” trap for all of the
traps. For the traps marked with an “*”, we have measurements of the axial frequency
with larger uncertainty. We have no measurements of the axial or radial frequency for
the trap marked with a “†”. The radial trap frequency for this trap is inferred from a
measurement of the bias field.
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2.5.2 Trap Depth

For the mf = 9/2 state, the trap depth is set by the size of the science cell

in the z (axial) direction. The trap depth can be calculated using the form for the

magnetic field without the harmonic approximation (equation 2.5). For the mf =

9/2 state, the trap depth is then −µ9/2

kb
[B(y0, 1.27 cm)−B(y0, 0)] = 6 mK, where y0

is the equilibrium position in the vertical direction (taking into account gravitational

sag). For other states, the magnetic moment changes at high field and gravitational

sag in the vertical direction is important. The Breit-Rabi formula (see chapter 4)

can be used to compute the field-dependent magnetic moment and the total energy

U(y, z) = −µ(y, z)B(y, z) +mgy. However, it turns out for the trap parameters that

we use that the trap depth is still limited by the size of the science cell for the mf =

7/2 component. In the tight trap, the trap depth for the mf = 7/2 component is

−µ7/2(y0,1.27 cm)

kb
[B(y0, 1.27 cm)−B(y0, 0)] = 3 mK.

2.5.3 Mechanical Design

The coils were wound using 1/8 inch copper refrigerator tubing and insulated with

heatshrink tubing. Roughly 8 liters per minute of water flow through six parallel paths

in order to remove heat created through Ohmic dissipation; there is a ∼ 1 ◦C increase in

the water temperature at the combined output of the water paths during operation. The

power supply is inter-locked to the water flow via a paddle-wheel flow meter (Proteus

Industries). The water and current connections to the coils are carefully strain-relieved

to the optical table. A manifold constructed from stainless steel optical posts (gray in

figure 2.24) fixes the coils relative to the table and to each other. In addition, Delrin

plastic brackets and phenolic plastic rods help to fix the distance between the halves

of the coils. More details on mechanical stabilization can be found in the sub-section

(2.5.5) discussing the stability of the bias field.
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2.5.4 Current Servo and Switching Electronics

The primary requirements for the magnetic trap current servo are low noise, low

drift, insensitivity to the microwave field used for evaporation, and fast (compared to

the harmonic trap frequencies) switching times. A low noise servo (< 6 ppm integrated

current noise) is constructed from MOSFET’s via feedback from closed-loop current

sensors (Hall probes — F.W. Bell CLN-300). The Hall probes are temperature stabilized

to minimize drift, and the control voltages used for the servo are generated from a special

low drift (< 1 ppm over 6 months) circuit. Sensitivity to the ∼ 1 GHz microwave field

used for evaporation is reduced by strictly following a star-grounding protocol and

using high-frequency filters on inter-case connections. Additional MOSFET’s are used

to achieve fast switching times.

The MOSFET setup is shown in figure 2.40. The MOSFET’s are two Advanced

Power Technology APT10M07JVR devices wired in parallel; each FET is capable of

passing 225 amps and dissipating 700 W. The FET’s are mounted to a water cooled

plate with thermal compound in order to facilitate good thermal contact.16 F1 and

F3 are used for switching, while F2 is used to servo the current through the bias coils

by shunting some of the total current. Typically, only a small fraction of the current

is shunted so that there is some common-mode rejection of noise between the bias and

center coils. F4 is used to servo the total current through the circuit. The Hall probes

are used to sense the current for the servo circuits, and there is an extra set (not shown)

that can be used to measure noise and monitor the current. The power supply (HP

6682A) is a particularly robust and low noise 21 V, 240 A supply that is run in constant

voltage mode. The HP6682A power supply voltage is set so that the F4 drain-source

voltage is ∼ 1 V.

16 Note that excellent thermal contact between the FET’s and the water cooled plate is essential to
avoiding fires. The water cooled plate should be carefully cleaned with a degreasing agent and methanol
before applying the thermal grease and mounting the FET’s
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Figure 2.40: Magnetic trap current control scheme. The large star represents the physi-
cal star ground, which is a copper bar connected to the optical table to an earth ground.
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The petal and center coils and the bias coils are shown in figure 2.40 as self-

resonant circuits.17 The measured average resistances of the coils are 5.2 mΩ per petal

coil, 7.4 mΩ per center coil, and 9.6 mΩ per bias coil. The self-resonance frequency,

450 Hz, of the coil-FET system was measured by DC biasing the FET gates and driving

the gates with an oscillating voltage across a 20 Ohm resistor. The current response was

measured at different frequencies using an FFT analyzer. The low resonant frequency

enforces harsh constraints on the servo and switching electronics. Large inductance, and

therefore low self-resonant frequency, is the main disadvantage of the cloverleaf scheme.

The servo circuit (“main” servo) that controls F4 is shown in figure 2.41. All

connections into the circuit come through “pi” filters (figure 2.42) that reduce 1 GHz

signals by ∼ 40 dB (measured). The signal from the Hall probe enters at J4 and J5

and is differentially amplified by U1 in order to reject pick-up. C1 is necessary to

provide local feedback to suppress oscillation at U1. The Hall probe signal is compared

to the control voltage (connected at J6) by U2, which is the servo loop-filter. The servo

proportional-integral (PI) loop-filter corner frequency is set by the combination of R1

and C2, while R1 sets the open loop gain past the PI corner. The PI corner frequency

and the proportional gain are optimized to maximize servo bandwidth while avoiding

oscillations. D1 prevents the output of U2 from going lower than -0.6 V in order to

avoid integrator wind-up to -15 V.18 Connecting to the gate through R2 is necessary

to spoil the Q of a resonant circuit (with resonant frequency at typically 10’s of kHz)

that is formed by the FET Miller capacitance and the coils.

17 The coils have some capacitance from the gap between turns, and therefore behave like an L-C-R
resonant circuit.

18 If the output of U1 is allowed to go to the negative rail, at least an integrator time constant is
required for the servo to respond to current turn-on.
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to the case
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Figure 2.42: High-frequency (“Pi”) filter. It is crucial that the capacitor leads are as
short as possible and connected directly to the case.
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The bias servo is shown in figure 2.43. The circuit is similar to the main servo,

with different values ofR1 and C2 and some op-amp and FET protection circuitry. The

protection circuitry is necessary for the bias servo since the bias coils can produce large

voltages at the source (and gate via the Miller capacitance) of F2 during switching.

D2 prevents damage to the output stage of U2 caused by high positive voltage coupled

through the Miller capacitance of F2. The network connected to D3 and D4 prevents

the gate-source voltage of F2 from exceeding 9.7 V, while the D5-D6 network prevents

the gate of F2 from falling below 0 V. R3 is necessary so that the protection circuitry

does not overload the current capabilities of the output stage of U2, and C3 bypasses

R3 to enable high-frequency response.



98

to source

150K

150K

75K

75K

100 pF

2K

from
hall
probe

to gate

100 nF

100K

100 nF

1K

100 nF

100 nF

10K 5.6 nF

20 2K

860 nF
1N41481N4148

5.1K

1N4148

1N4739A
5.1K

OPA627AP

OPA627AP

100 nF

100 nF1 F�

1 F�

33 F�

33 F�

CW

CW

+30V

-5V

+30V

+30V

-5V

+30V

-5V

+30V

+30V

+30V

1N4148

+30V

















D2

9.1V

D3

D4

D5 D6

R2 R3

C3

U1

C1

C1R1

F
ig
ur
e
2.
43
:
B
ia
s
co
il
cu
rr
en
t
sh
un

t
se
rv
o.



99

The control voltages used for the main and bias servos are generated by the cir-

cuit shown in figure 2.44. The primary voltage source is a LM399H voltage reference.

The high frequency noise caused by the LM399H heater (which is necessary to eliminate

long-term drift) are reduced by the filtering capacitors C1-C4. Sensitivity to the Zener

bias voltage due to slight Ohmic response is reduced by the 7912 voltage regulator.

The main servo control voltage is derived from a 4-resistor voltage divider (R1-R4).

This scheme allows precision adjustment of the control voltage by adjusting the small

resistors (R2, R4) while avoiding the drift, noise, irreproducibility and temperature

sensitivity that we have observed with trim-pots. Control voltages for the bias servo for

different traps are fed through a multiplexer. Low noise ramps between these control

voltages are executed by an Stanford Research Systems DS345 arbitrary waveform gen-

erator (computer controlled) that is also connected to the multiplexer. The computer

controlled TTL signals that connect to the multiplexer (A0-A3) do not have their sig-

nal ground connected to the circuit or case ground. This is essential to avoiding ground

loops since the computer hardware is located on a different circuit and has a different

ground. The control voltages supplied by this circuit have < 1ppm noise in a 10 kHz

bandwidth, and drift by less than 1 ppm per six months.
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The Hall probe current sensors are mounted in a temperature controlled, grounded

box. The temperature is controlled with 1 mK stability using standard JILA electronics

and TEC’s. The Hall probes behave like current transformers with a turns ratio of 2000;

the current is then read out across as a voltage across a sense resistor. We use Vishay

50 Ohm 4-terminal resistors for the sense resistors. The sense resistors are temperature

controlled in the same housing as the Hall probes.

The measured noise spectrum (using an HP FFT spectrum analyzer) of both the

bias and main current when the servo’s are locked is flat (within 3 dB) out to 3 kHz,

and then falls off with a 10 dB/octave slope. The measured integrated noise (rms) in a

5 kHz bandwidth is less than 6 ppm for both currents, although we do not know how

much of this noise is correlated between Ib and Ic.

The circuit used for switching the trap on and off is shown in figure 2.45. For the

trap turn-on, the gates of F1 and F3 are switched to +30 V simultaneously (within a

few nano-seconds). Both servo’s are locked within 4 ms, with some overshoot so that

the trap is actually fully on within 1 ms of the F1 and F3 turn-on. For turn-off, F1

is switched off after a controlled delay compared to F1 (the gates are switched to 0

V). This is basically a control on the boundary conditions for the turn-off of the bias

coils. The bias coils will reverse bias F2 and turn on the drain-source protection diode

if the main current is switched off while current is flowing through the bias coils. This

can drastically slow down the turn-off, or even reverse the bias field as current can flow

in the bias coils once the center coils have shut off. The current during the turn-off is

shown in figure 2.46, along with the calculated trap frequencies. The turn off is fast

compared to the harmonic trap frequencies, with a small delay (0.2 ms) between the

radial and axial directions.
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The grounding scheme is shown in figure 2.47. The star ground is a copper

bar (6 × 2 × 1 inches) that is attached to an earth ground through the optical table.

Each circuit is housed in a separate box — this simplifies diagnosing and eliminating

sensitivity to the microwave field. Each case has a separate connection to the star

ground. The case grounds are never attached to the circuit board grounds directly.

P1-P6 are power supply lines that are carried in shielded cable. S1-S3 are signal lines

that are transmitted on twisted shielded pair cable. S4 and S5 are the Hall probe

temperature servo TEC and thermistor connections. The cable shields are connected

only at one end, and we choose the convention that the “sending” side is connected.

The microwave field used for evaporation can cause DC servo errors via rectification

in op-amp input stages. Without this grounding scheme, significant sensitivity (several

parts in 105 in the current) was observed; after implementing the star ground scheme

there is less than 1 ppm sensitivity when 5 W of microwave power is applied at 1 GHz.
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2.5.5 Bias Field Stability

Stability of the magnetic trap bias field is important on two timescales: the evap-

oration time scale (seconds) and the experimental cycle timescale (minutes). Jitter in

the bias field on the evaporation time scale limits the energy resolution of the evaporative

knife. Excellent energy resolution has proven to be especially important for evaporative

cooling of fermions [54]. Shot-to-shot reproducibility in number and temperature is

affected by drift on the experimental cycle timescale.

2.5.5.1 Jitter

It is most straightforward to use the evaporation behavior itself to measure the

bias field stability. The bias field noise on the evaporation timescale is determined by

measuring atom loss caused by pulses of microwave radiation at different frequencies. We

introduce the variable ν0 as the resonant microwave transition frequency at the minimum

of the magnetic trap (at B0) (see Chapter 4 for more details). Atoms experience an

increasing resonant microwave frequency with decreasing magnetic field, and experience

an absolute minimum in magnetic field at B0. If the applied microwave frequency ν is

greater than ν0, then no atoms are resonant and no atom loss from the magnetic trap

is observed. For ν slightly less than ν0, all of the atoms can be removed. Therefore,

a step-like response in atom loss around ν0 should be observed, and the width of this

“step” is broadened by noise on the bias field (see Chapter 4). The width of the “step”

can be used to determine the noise on B0. This method was tested by adding a known

amplitude of white noise to the bias coil current and measuring the effect on the width

of the “step”.

We assume gaussian noise on the bias field. Because there is a one to one map-

ping of field to microwave frequency, this noise is equivalent to a gaussian microwave

frequency spectrum with width Σ (see chapter 4 for more details). The effective power
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for removing atoms is then the integral of this gaussian spectrum, or an error function.

By mapping out the loss vs. frequency at fixed pulse length19 the width of the original

gaussian is determined. The measurement is done with pulses with just enough power

to remove nearly all (∼ 95%) of the atoms for ν < ν0 − 3Σ. Measurements of this

resonance before and after optimization of the servo response is shown in figure 2.48.

The gas is cooled to 1.3 µK, and then pulses are applied on the f = 9/2,mf = 9/2

to f = 7/2,mf = 7/2 transition in a 1.3 gauss bias field trap. The total (mf = 9/2

and mf = 7/2) number of atoms is measured after the pulse. Fits to an error function

give r.m.s. widths of 27(9) kHz (before) and 4(3) kHz (after), which correspond to

19 mG (before) and 2 mG (after) noise in the bias field on the evaporation timescale.

The 2 mG figure for the optimized trap that we use now is really an upper limit as

the measurement cannot truly resolve the linewidth within the experimental scatter in

number.

19 The pulse length is typically set between 200 and 1000 ms. Experimentally, we measure that a
change in the pulse time between these limits has no effect on the measured noise on B0.
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Figure 2.48: Magnetic trap bias field stability on the evaporation timescale. The top
plot is the response before optimizing the magnetic trap current servos, and the bottom
plot is after optimization. See the text for details.
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2.5.5.2 Shot-to-Shot Stability

The shot-to-shot stability of the bias field can be measured by measuring the

temperature of the gas at a fixed evaporative cut frequency over many experimental

cycles. There are many factors that drive drift of the magnetic trap. The current

itself is measured to be stable to better than a part per thousand over two years, and

instability in the current is not a significant source of shot-to-shot noise. The trap is

primarily affected by changes in temperature and stray magnetic fields. Changes in

temperature cause changes in the location and distance between the coils, while stray

fields add to the bias field directly. Currently, the trap bias field shifts by less than

1 mG (the equivalent to 8 nK for two-frequency evaporation — see Chapter 4) over 20

experimental cycles after the initial warm-up.

Changes in temperature are the primary source of initial drift in the bias field.

The Ohmic dissipation of the science MOT coils and the cloverleaf coils as well as the

lab air conditioner drive temperature drift. The science MOT coils (in thermal contact

with the cloverleaf coils) are off for most of the experimental cycle, and must be kept

off between cycles. With the science MOT coils off between cycles, the trap takes about

three experimental cycles (∼ 9 minutes) to warm up. The bias field changes by 14 mG

(∼ 100 nK for the two-frequency evaporation) during this time, with the temperature of

the coils changing by ∼ 1 ◦C. If the science MOT coils are allowed to heat the magnetic

trap coils between cycles, the warm-up time can increase to greater than half an hour.

The shift in B0 due to changes in the temperature of the cloverleaf coils has been

suppressed in general in two ways: by covering the coils with epoxy and by fixing the two

halves of the cloverleaf coils together with phenolic plastic rods (brown in figure 2.24).

Phenolic plastic is a fibrous material that has a linear thermal expansion coefficient

of only 15 × 10−6/K. Four 1 inch long and 0.5 in diameter rods were glued between

the coils using thermally conductive epoxy (Tra-Con BA2151). The thermal expansion
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coefficient of the epoxy matches aluminum, which is not much different than copper

tubing. The phenolic rods also serve to damp vibrational modes where the coils move

out of phase.

The lab air conditioner also has thermal and electrical effects on the trap. The air

conditioner condenser cycle is roughly 15 minutes, and each time the condenser turns

on the bias field shifts by less than 3 mG.20 Some of this shift is due to electrical

transients that affect the Hall probe temperature servo. There is also contribution from

the optical table (which oscillates with 0.25 ◦C amplitude on the air conditioner cycle)

and air temperature changing. The effect of electrical transients has been suppressed

by adding high-frequency filters to the temperature servo.

The bias field is also affected by the magnetization of low-grade stainless steel

optical posts and screws that are used to mechanically stabilize the coils. The magnetic

field from the stainless steel components adds directly to the bias field. Confirmed with

a flux gate magnetometer located near the trap and aligned with the bias field, the steel

components are magnetized by the shim and quantization coils. Shifts as large as 27

mG have been observed when using a quantization field for probing that was collinear

with the bias field.21 These effects have been minimized by using quantization fields

that point in directions orthogonal to the bias field (E/W and U/D). Further, both

quantization fields are turned on for every experimental cycle, with a delay to select the

field used for probing. The effect of switching between quantization fields has now been

minimized to less than a 1 mG shift in the bias field.

Effects on B0 caused by stray fields from the transfer tube magnets are avoided

by replacing the last section (closest to the science cell) with electromagnets (green in

figure 2.24). The last section of permanent magnets, 6 cm long, caused a 140 mG drift

per hour in the bias field. This drift seems to be very long term warm up caused by
20 This was 7 mG before installing the phenolic rods and fixing the Hall probe temperature servo.
21 We observed changes this large within a few experimental cycles of switching between using a U/D

vs. E/W quantization field for imaging.
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heating of the magnets. Without these permanent magnets, the fill rate F for the science

MOT drops by a factor of 2.5. Switching to the electromagnets (three coils arranged

in a hexapole configuration, each 100 turns carrying 3 amps) actually increased F by a

factor of 1.5 compared to transfer with the permanent magnets.
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2.6 Absorption Imaging

We use standard destructive, absorption imaging techniques. Images are produced

by illuminating the gas, after release from the magnetic trap and some expansion, with

a 24 µsec pulse of resonant light (“probe beam” — green in figure 2.24). The shadow

cast by the gas into the circularly polarized probe beam is imaged onto a CCD camera

by lenses �31 and �32 using the “high magnification” optics, or by the combination of

�31, �32, �33 and �34 for the “low magnification” optics. The exact placement of the

imaging optics is shown in figure 2.49. The optical depth of the gas is calculated from

three images: one with the atoms present (shadow—S), one without the gas (light—L),

and one without the probe beam (dark—D). The optical depth is then:

OD(y, z) = ln
[
L(y, z)−D(y, z)
S(y, z)−D(y, z)

]
(2.9)

which reproduces a two-dimensional image of the gas column density. This image is

then fit and information on number, temperature, and energy can be extracted (see

Chapter 5).

The magnification of the imaging optics is determined by watching the gas drop

after release from the trap and measuring the gravitational acceleration constant (fig-

ure 2.50). We have only carefully characterized the “high magnification” optics, and

the “low magnification” optics are calibrated via a direct comparison between images

of identical gases. The “high magnification” imaging optics have a magnification of

6.35 µm/pixel. The camera is focused (see figure 2.51) on a cloud with a diameter close

to the diffraction limit of the optics. We measure a diffraction limit of < 10 µm FWHM

(see the caption to figure 2.51), which is consistent with the calculated limit from the

first lens in the optical setup of 5 µm.
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Figure 2.49: Schematic of imaging optics. In the experiment, there is a 1.5 inch square
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rectangular gold mirror between the atoms and the 12.5 cm focal length lens.
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Figure 2.51: Camera focus. The r.m.s. radial size σ of a gas cooled to 270 nK and
expanded for 1 ms is measured for different camera positions. The fit (solid line) to the
expected dependence σ = σ0

√
1 + (x−xc

R )2 determines the depth of focus R, the focussed
position xc, and the actual size of the object σ0. From this data we find R = 2.3(2) cm,
and σ0 = 1.70(8) pixels, where the expected size is 1.6 pixels from the temperature and
harmonic oscillator frequency. This implies a ∼0.7 pixel (gaussian) diffraction limit, as
the observed size is

√
σ2

0 + d2 where d is the diffraction limited size. We treat this as
an upper limit on the diffraction limit of the imaging optics.
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Typically, the maximum optical depth we can measure is 2.5, which we hypoth-

esize is limited by light that the atoms cannot absorb and by lensing. Experimental

checks reveal that a gas with an OD higher than 1/2 of this maximum observable OD

will have a shape distorted enough to produce significant errors in the measured energy

and temperature (see Chapter 5). In order to observe larger optical depths, we switch

from a quantization field collinear with the probe beam (E/W) to one at a right angle

(U/D).22 This changes the polarization relative to the atoms to 1/4 left circular, 1/4

right circular, and 1/2 linear. The observed optical depth is reduced by a factor 2 (figure

2.52), with no other measured effects on the image. We have observed that the factor

by which the OD is reduced is a good indicator of the quality of the polarization of

the light. Also, with the U/D quantization field, actual OD’s as high as 7 have been

observed.

22 Normally, one would detune the probe beam from the atomic resonance in order to reduce the
observed OD. However, lensing caused by detuning the probe beam introduces significant distortions in
the cloud sizes and shape. See Chapter 5 for more details.
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Figure 2.52: Optical transition lineshapes. The peak OD in the gas is measured for
the two imaging quantization fields as the probe AOM (AO2 in figure 2.17) is varied.
The atomic resonance can be precisely located this way, and the frequency shift here
is from different magnitudes of the E/W and U/D fields. The OD correction factor is
measured by toggling between the quantization fields with the AO on resonance. The
beat frequency between the trap laser and the peak-locked laser was 575 MHz for this
data. The widths from Lorentzian fits (solid lines) are 6.9(1) MHz and 6.0(3) MHz for
the E/W and U/D quantization fields, respectively. This data was taken at a 20 ms
expansion time with a mf = 9/2 gas at 100 nK.
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The thermometry techniques used for the work in this thesis rely on detecting

small changes in the shape of the expanded gas. Even at our lowest temperatures, the

shape only deviates slightly from a gaussian. For this reason, it is crucial to have a

very flat background plane in the absorption images. To achieve this we prepare the

probe beam using a non-standard method. The probe beam is spatially filtered by a

polarization-preserving fiber. A small iris aperture (IA2 in figure 2.17) is then put into

the very center of the collimated beam, so that the transmitted beam has a flat intensity

profile. The aperture is then imaged onto the gas by a 100 cm focal length lens (�30 in

figure 2.17). It is crucial that no part of the probe beam is truncated by any optics, as

this can produce stripes into the image.
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2.7 Microwave Coil and Sources

Our evaporation scheme utilizes microwave transitions between hyperfine ground

states to transfer atoms into magnetically untrapped states. We use microwave transi-

tions so that we have selectivity in removing different spin components. The transitions

we use primarily address the electron and not nuclear spin so that the coupling to

magnetic fields is strong (see the appendix to Chapter 4). Using microwave fields for

evaporation instead of radio-frequency (rf) is not easy — working at higher frequen-

cies brings many complications. Achieving excellent performance for the evaporation

requires producing a large oscillating magnetic field between 1200 and 1300 MHz at the

atoms, producing a controlled frequency sweep with high frequency precision (1 kHz at

the end of evaporation), and producing two frequencies simultaneously. Meeting all of

these requirements is actually fairly difficult. Working at 1 GHz is awkward electrically

as lumped components do not work well, lead lengths are important, the current flows in

a few micron layer on the surface of conductors, and traditional microwave components

are large and bulky. Impedence matching at 1 GHz is also difficult, as the inductive

component of the reactance becomes very large and self-resonances tend to appear be-

low 1 GHz. Further, working between the near and far field regions is not intuitive,

and the field dependences can be unexpected. Affordable synthesizers with the required

resolution and stability at these frequencies are not designed for rapid frequency sweeps,

and often perform this task disastrously poorly.

In order to produce a large magnetic field a coil shaped device must be used.

Antenna designs were tested and do not work well for this purpose. The coil self-

resonance must be above the frequencies of interest. A modified version of the transducer

from a 1950’s style grid-dip meter satisfies these constraints well. Our coil design is

shown in figure 2.53 (purple in figure 2.24). The self-resonance of this coil is above 2

GHz, and the large surface area permits low surface resistance so that power coupled
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into the coil produces large currents and therefore large magnetic field. The surface is

chemically etched and tinned to improve the surface quality and to prevent oxidation;

this procedure lowered the total impedence at 1250 MHz by a factor of 65. The measured

(using a network analyzer) impendence of the coil at 1250 MHz is (2.5-4 i) Ω - it has only

2.5 Ω of surface resistance and the overall reactance is capacitive. We use 0.086 inch

diameter semi-rigid coaxial cable to connect the coil to an amplifier for its mechanical

stability and ability to transmit 1.3 GHz signals with low loss. Connecting the coil to

the coaxial cable must be done carefully. A short section (5 mm) of the coaxial cable

center conductor is exposed. Large diameter copper wire is soldered from the center

conductor and shield to either end of the coil. Using as short as possible leads and

making excellent solder joints is critical to avoiding loss of the microwave power and

creating a low-inductance connection.
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etched and tinned,
0.063 in thick Cu

0.5 in

1.25 in

0.625 in

0.086 in diameter semi-rigid

SMA “T”

RG-174

to amplifier

l=3.5 cm

d=5.7 cm

Figure 2.53: Microwave coil.
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The coil is impedence matched using a stub-tuning technique [84]. This permits

high power to be coupled into the coil, with good transmission over a relatively large

bandwidth. The basic idea of stub tuning is shown in figure 2.54. A load with admit-

tance (1/impedence) YL is attached to a length d of coaxial cable so that the admittance

looking into the coax-load system in 1/50 Ω + iB. An open stub of length L with ad-

mittance −iB is wired in parallel to the load so that the total admittance looking into

the system is 1/50 Ω, resulting in a matched condition. Our implementation is shown

in figure 2.53 with d=5.7 cm and l=3.5 cm. The stub is made with a standard SMA

“T” and RG-174 coaxial cable. The transmitted power into the coil is shown in figure

2.55. Greater than 60% transmission is achieved over the frequency range of interest.

YL

Y=1/50 + i B�

l

d

Y=1/50 i B��

50 �

Figure 2.54: Stub tuning scheme. The lumped admittances of the stub and the load-
coax system are grouped inside of dashed boxes.
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Figure 2.55: Transmittance of microwave coil. The power reflected from the stub-tuned
load was measured using a network analyzer.
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The position dependence of the field was measured using a pick-up coil, and is

shown in figure 2.56. The field is predominantly (> 90%) along the axis of the coil

near the center of the coil, even with large metal objects such as a mock-up of the

cloverleaf coils in place. This was surprising considering the wavelength and distance

scales involved. The position of the coil relative to the magnetic trap bias field means

that only ∆mf = ±1 transitions should be driven. In practice, we find that we can

drive ∆mf = ±1, 0 transitions equally well. Presumably, the coil is not well centered

on the atomic sample and fringing fields play a large role.
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Figure 2.56: Position dependence of microwave field. The power in a pick-up coil
oriented to measure the field along the axis of the microwave coil was measured using a
spectrum analyzer. The pick-up was translated along the coil axis.

The overall microwave setup is shown in figure 2.57. The output from two syn-

thesizers is combined using a Mini-Circuits ZAPD-2 power combiner. A voltage con-
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trolled attenuator (VCA — Mini-Circuits ZAFS-2000) allows for fast computer control

of the power. A 5 W amplifier (RFGA0012-05 from Richardson Electronics) feeds the

microwave coil through a short length of 0.086 inch diameter semi-rigid coaxial cable.

Measurements of the spectral properties of the microwave field indicate that this system

produces radiation with no (< 90 dB) harmonics and excellent phase noise (< −100 dBc

at 1 kHz).

E4420B
synthesizer

E4420B
synthesizer

combiner VCA

5 W amp

from
computer
DAC

to
coil

driver

mod in

from
computer
DAC

Figure 2.57: Synthesizer setup. A schematic of the driver circuit for the synthesizer
analog input can be found in the appendix to this chapter.
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We use E4420B Agilent frequency synthesizers, and have also had (bad) experi-

ence with the Agilent 8656, 8646,and 8647 models. There are two primary problems

that are encountered with many synthesizers: long frequency switching time and un-

controlled switching behavior. Long switching times limit the evaporation duty cycle

(and effective microwave power) and speed (see chapter 4). The 8656 and 8646 models

suffer from this problem, with switching times as long as 100 ms. The 8656, 8646,

and 8647 models all suffer from frequency “glitches” during switching. The frequency

is swept by issuing successive frequency set commands via GPIB control. Excursions

larger than 1 kHz from the target frequency during switching lead to uncontrolled atom

loss during the last stages of our evaporation. These glitches can be caught on a spec-

trum analyzer,23 or by monitoring the atom number during evaporation. In order to

limit the effect of these glitches, the VCA can be used to turn off the microwave power

during the glitch. Unfortunately, this again limits the duty cycle and evaporation speed

and leads to poor evaporation performance. The E4420B is an excellent model, with

fast (< 40 ms) switching times and no glitches for frequency switching by less than 10

MHz. The E4420B only has to be attenuated during large frequency diversions and

changes in the synthesizer power level. Furthermore, the E4420B has analog voltage

controlled, phase continuous frequency sweep capability over 20 MHz which we use for

rethermalization measurements (see chapter 6).

2.8 Anti-Gravity Coil

In order to perform experiments with spin mixed gases and extract information

separately about each component, we need a method to separately image different spin

states. We choose to spatially separate and simultaneously image the different spin

components by applying a magnetic field gradient and essentially perform a Stern-
23 To catch a glitch, the spectrum analyzer must be set to sample a small range in frequency fairly

rapidly (typically 1 MHz in 60-100 ms). The spectrum analyzer must also be set to operate in a sample
and hold mode, and a glitch can usually be caught after watching the synthesizer sweep ten times.
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Gerlach experiment. Just like Stern and Gerlach did in 1922 [85], we find that the

atomic spin is quantized and the different spin components separate discretely.

To separate the spin states for imaging, an 80 G/cm magnetic field gradient is

applied during the expansion [73]. The gradient is created by a coil (cyan in figure 2.24)

located on the bottom port of the science MOT cell. The “anti-gravity” (AG) coil has

220 turns, a 0.52 inch inner-diameter, 0.97 inch outer diameter, is 0.3 inches thick, and

is 5 cm from the atoms. Electrically, the coil has a resistance of 3.3 ohms. The coil is

quickly (< 100µsec) switched using a FET connected to a 60 V power supply (Xantrex

XHR 60-18). The circuit is fused to support less than a rated 3 A DC current in order to

prevent accidental heating of the science cell. The fuse itself limits the transient current

to 18 A during the expansion. The coil is switched on for 9 ms during the expansion,

with the image taken after 10 ms of total expansion time. A picture of the separated

spin components is shown in figure 2.58.

m=9/2f

m=7/2f

m=5/2f

m=3/2f

Figure 2.58: Absorption image of separated spin components at low temperature. Be-
cause the atoms are initially loaded into a 45 G bias field trap, only states withmf > 1/2
are trapped. The separation between the centers of each component is used to measure
the AG coil magnetic field gradient.
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After expansion, the centers of the mf = 9/2 and mf = 7/2 components are

separated by ∼ 430 µm. The widths and shape of the gas are also altered. This problem

is exacerbated in our experiment because a large gradient is required to separate atoms

with a small difference in magnetic moments. The effect of the AG coil on the gas is

calibrated by taking a series of images at different temperatures with and without the

coil on during the expansion. Sample data used for this calibration is shown in figure

2.59. The effect on the widths from by the Thomas-Fermi and energy fits (see Chapter

5) appears to be fractional in the cloud size, even in the quantum degenerate regime.

Calibrations from different dates are detailed in tables 2.7 and 2.8; the correction factor

is defined as the measured width without the coil on divided by the measured width

with the coil on. The shape of the cloud is also changed by the anti-gravity coil, so that

Thomas-Fermi fits do not correctly determine the fugacity. This systematic is difficult

to correct for, and has not been studied extensively. Regardless, the corrected number,

temperature, and value of T/TF agree with data taken with the AG coil off (figure 2.60).
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Figure 2.59: Sample anti-gravity correction data. The Thomas-Fermi fit widths are
shown with the AG coil on vs. off. A fit (solid line) to a line without an intercept is
used to determine the correction factor.
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Figure 2.60: Data corrected for the effect of the AG coil. This is the data used for figure
2.59, explicitly plotting the corrected values of N , T , and T/TF . Linear fits (solid line)
with no intercept indicate excellent agreement within the scatter.
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Date TF z TF y energy z energy y gaussian z gaussian y

5/8/00 1.02(1) 1.12(2) 1.000(9) 1.084(7) 0.99(2) 1.09(1)
9/22/00 0.93(2) 1.06(2) 0.93(1) 1.06(1) 0.95(1) 1.07(1)
10/18/00 0.95(1) 1.06(1) 0.959(8) 1.062(9) 0.963(3) 1.070(9)

Table 2.7: Calibration of the effect of the AG coil on different dates for the mf = 9/2
component. The correction factors for the widths from different fits are shown for each
direction.

Date TF z TF y energy z energy y gaussian z gaussian y

5/8/00 0.997(9) 1.07(1) 1.008(4) 1.064(5) 1.001(8) 1.073(3)
9/22/00 0.940(5) 1.043(5) 0.946(6) 1.049(5) 0.949(4) 1.052(3)
10/18/00 0.974(5) 1.056(6) 0.969(1) 1.047(6) 0.965(6) 1.046(3)

Table 2.8: Different measurements of AG corrections for mf = 7/2 component.

The AG coil correction factors are consistent with a classical, 2-dimensional model

describing individual atom trajectories during the expansion. The coil is modelled as a

loop of wire, with magnetic field magnitude in the z-y plane:

B(y, z) =
µ0

4π
m

√
z2 + 4y2

(z2 + y2)2
(2.10)

where m is the loop magnetic dipole moment (m = IA where A is the loop area and I

the current). The total force on an atom is then:

Fz(y, z) = µ
µ0m

4π
3
(
z3 + 5zy2

)
(z2 + y2)3

√
z2 + 4y2

(2.11)

Fy(y, z) = µ
µ0m

4π
12y3

(z2 + y2)3
√
z2 + 4y2

−Mg (2.12)

where µ is the atom magnetic moment,M is the mass, and g is the value of gravitational

acceleration. Newton’s differential equations for the atom position are then solved

numerically for specific initial positions and velocities.
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We perform the simplest calculation and consider specific atom trajectories with-

out averaging over all initial positions and velocities. We consider two cases: atoms

that start at the center of the cloud with equal and opposite velocities (z0 = y0 = 0,

v0 = ±
√

kbT
m ), and atoms that start at opposite sides of the average diameter with the

average and opposite velocities (z0 = ±
√

kbT
mω2

z
, vz0 = ±

√
kbT
m and y0 = ±

√
kbT
mω2

r
, vy0 =

±
√

kbT
m ). The correction factor is defined as the ratio between the distance between the

atoms with and without the AG coil on during the expansion. For the first case the

correction factors would be (regardless of the initial velocity): 1.07 (mf = 9/2 radial),

0.98 (mf = 9/2 axial), 1.06 (mf = 7/2 radial), 0.98 (mf = 7/2 axial). For the second

case we find: 1.09 (mf = 9/2 radial), 0.96 (mf = 9/2 axial), 1.07 (mf = 7/2 radial),

0.97 (mf = 7/2 axial). These results are independent of the absolute temperature. The

measured values are consistent with these calculated correction factors. The calculation

also indicates that there is sensitivity to the initial position of the gas relative to the

coil. Since the AG coil is not very mechanically stable, this may explain the scatter in

correction factors indicated in tables 2.7 and 2.8.

2.9 Loading and Release Sequences

The science MOT and magnetic trap loading sequence is shown as a timeline in

figure 2.61. The magnetic trap is turned on to the “load” trap after 2.3 ms of expansion

in order to mode-match to the expanded MOT as closely as possible. The bias current

is then ramped linearly over 100 ms to the “evap” trap and the first stage of evaporation

begins.

Evaporative cooling to the degenerate regime takes 2-3 minutes. The release

sequence is shown in figure 2.62. The magnetic trap is always ramped to the “tight”

trap before the release. Note that we avoid turning on any other magnetic fields while

the magnetic trap is on. The exception is the “pcoil” which is turned on after the bias

current is off but while some main current is still on. Even the quantization fields used
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for imaging can drive significant center-of-mass motion in the expanding gas if they are

turned on before the release. The “pcoil” preserves the spin orientation of the atoms

while allowing time for the imaging quantization fields to turn on. In figure 2.62 there

are two release sequences — one for E/W (with dashed segments) probing and the other

for U/D probing (without dashed segments). For U/D probing, the “pcoil” provides

the quantization axis. The E/W field takes ∼ 2 ms to turn completely on, so the actual

turn-on time has some spread.

begin
magnetic
trap
turn-off

AG coil on

0.3 ms

pcoil on

0.67 ms

0.28 m
s

0.83 ms

bias current off

main current off

1.3 ms

pcoil off

E/W field on

expansion time

E/W field on

10 ms

picture

Figure 2.62: Magnetic trap release sequence.

2.10 Computer Control

The computer control system used in the experiment is not explained thoroughly

in this thesis. We copied the scheme used in Eric Cornell’s BEC experiment. TTL,

DAC, GPIB, and ADC computer boards are controlled from a QuickBASIC program

with built-in low-level routines. Simple circuits are used to sum analog and TTL signals,
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as well as convert TTL signals to low-noise analog control voltages that are controlled by

a potentiometer. The computer program is phase-locked to the 60 Hz line cycle, which is

remarkably stable. The 60 Hz phase locked loop (PLL) is frequency multiplied to provide

a 1/3 ms time base for computer events. Events requiring fast timing are controlled by

external delay and pulse generator circuits, where are triggered by the computer TTL

signals. This system is shown schematically in figure 2.63. Data acquisition occurs

primarily from the Princeton Instruments camera used to take images. The CCD array

is read-out using a combination of Princeton Instruments supplied OCX controls and

home-brewed Visual Basic programs. These programs then fit and analyze the images.
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Figure 2.63: Computer control schematic.
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2.11 Appendix to Chapter 2

2.11.1 MOPA mounts

Figures 2.66, 2.65, and 2.64 are the most up-to-date drawings for the specialized

MOPA mounts, with corrections by Neil Claussen to the original schematics. The lens

mounts are fixed to the double flexure with stainless steel screws (holes “C”), and are

designed to hold the DO-818 lenses. The center arm of the double flexure mount is fixed

to the baseplate with two screws (holes “D”), and the PA coupling mount is attached

to the double flexure mount via two screws (holes “E”). The SDL C-Mount fits snugly

into the PA coupling mount. A connection to the cathode pin is usually constructed

from an electrical socket and a Delrin rod — this is glued into place so that the cathode

pin fits snugly into the socket.
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Figure 2.64: PA double flexure mount.
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Figure 2.65: PA lens mount.
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Figure 2.66: PA coupling mount.
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2.11.2 PA Current Driver

Figure 2.67 is the circuit diagram for the PA current driver, courtesy of James

Fung-A-Fat. Switch S3 can be used to short the PA for protection when it is off. We

have observed that transients can appear across a load similar to the PA connected

to the current driver through a long (20 foot) cable when the supplies PS1 and PS2

are switched on or off (even with S3 shorted to ground). These transients have been

suppressed to undetectable levels with the additions of switches S1, S2, and the solid-

state relay K1. K1 forces the high current supply PS2 to turn on or off only on a zero

crossing in the 60 Hz wall power cycle. This prevents PS2 from producing transients

across the load. The turn-on procedure is: S3 is shorted to ground and the driver is set

to zero current, turn-on S1, then turn-on S2. The turn-off procedure is current to zero,

short S3 to ground, turn-off S2, then turn-off S1.
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Figure 2.67: PA current driver.



142

2.11.3 Synthesizer Driver Circuit

Driving the modulation input on the E4420B carries two dangers, notably damage

to the computer DAC and/or damage to the E4420B input stage. A typical computer

DAC barely has the current drive capability to output 1 V across 50 Ohms. Repeatedly

trying this will eventually damage the output stage of the DAC. If a high current diver

is improperly connected to the synthesizer input, the 50 Ohm input stage can easily by

overdriven and damaged. The circuit shown in figure 2.68 is designed to safely allow

a computer DAC to drive the modulation input. This circuit has a 50 Ohm output

impedence, and enough current drive capability to drive a few volts across 50 Ohms.

The output is limited by 1.2 volts by the diodes. The input is divided down by a factor

of ten in order to increase the DAC resolution. The circuit has a built in low-pass at

∼ 3 kHz.
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Figure 2.68: Synthesizer modulation input driver.
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2.11.4 XTreme Diode Cooling

We learned many lessons the hard way when it came to using multiple stages of

thermo-electric coolers (TEC’s) to cool diode lasers. There are general design issues to

keep in mind when attempting to cool diodes. Peltier cooling efficiency is actually quite

low, temperature dependent, and dependent on the temperature difference across the

device. The Melcor Thermoelectric Cooling handbook has a wealth of information on

TEC’s. A TEC can be modelled as a device the removes heat at a rate Q̇c from the

cold side (at Tc) and expels heat at a rate Q̇h from the hot side (at Th):

Q̇c = 2N

[
αITc − I2ρ

2G
− κ (Th − Tc)G

]
(2.13)

Q̇h = 2NαITc (2.14)

where I is the device current, N is the number of p-n junctions, and α,G,κ, ρ are device

constants, and temperature is measured in K. For the devices used in the work described

by this thesis, some approximate values are α = 2.0×10−4 V/K, ρ = 1.0×10−3 ohm·cm,

and κ = 1.5× 10−2 W/cm/K. The value of N is obtained from the second set of digits

in the part number. For part number CP-1.4-127-045L G = 0.171, for CP-0.8-127-06L

G = 0.42, and for OT-1.5-32-F0 G = 0.03. The second term in the equation for Q̇c

represents Ohmic heating in the device, while the third term is reverse heat flow due to

the junction thermal conductivity. Note that the device efficiency falls to zero around

∆T = Th − Tc = 40◦C, and that the optimal operating current is always around 80%

of the specified maximum current. In reality, we have found it difficult to support ∆T

greater than 30 ◦C across a single stage.

Working with multiple stages of cooling carries unique design constraints. Multi-

ple stages are used when trying to reach very large ∆T ’s, and actually tend to reduce the

available cooling power. Each stage must be able to handle the load from the previous

stage as well as move some extra heat. It is not necessary to always stack the TEC’s

on top of each other, and, in fact, there are some good reasons not to. Experimentally,
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we have found that the heat load on the diode mount comes from convective transfer

from the closest neighbor and the laser housing. For this reason, it is advantageous

to cool the lens mount in the laser, for example, to below room temperature. Also,

foam insulation between objects at different temperatures is very helpful in reducing

heat loads. For example, a thin layer of insulation between the laser baseplate and the

heatsink can reduce the heat load on the baseplate by 10-15%. For the type of mounts

that we use, it is difficult to measure any temperature gradient across aluminum parts

that are between TEC’s.

In general, good thermal contact is only assured by connecting multiple stages

together with stainless steel screws. The heads of the screws are insulated with a

combination of nylon and fiber washers. The surfaces of aluminum parts should be

lapped and thoroughly cleaned — flycutting tends to cause surfaces to bow. A very

thin layer of thermal compound is helpful to avoid problems caused by pits or machine

marks. The thermal compound should only be applied with a clean tool, as oils and

grease can significantly diminish its effectiveness.

The total heat load when using multiple stages is multiplied by the inefficiency

of each stage. It is easy to generate at least 60 W at the end of three stages of cooling

that bring a diode down to -40 ◦C. Removing this heat can be difficult, and the heatsink

thermal resistance becomes the actual limit on the lowest temperature that a system

can achieve. Water cooling works best for the heatsink, but seems to introduce a lot

of frequency noise into ECDL’s. We have achieved a (measured) thermal resistance

of ∼0.2 ◦C/W with forced convection across heatfins. The repump laser can cool to

-40 ◦C with forced convective cooling of the heatsink and the laser attached to the large

aluminum MOPA plate. Without forced convection the laser can only cool to -30 ◦C.

The fan used for forced convection should not be attached directly to the optical table

in order to avoid vibrational noise.

Avoiding water condensation and frost is also important, although we have found
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that most laser diodes are amazingly robust against water damage. Note that we never

remove the diode from the usual hermetically sealed package. The presence of frost is

indicated by a drop in the laser power with no change in the threshold current. We have

found that duct taping the “seams” of the laser cavity, sealing electrical feedthroughs

with epoxy, sealing countersunk holes with epoxy covered duct tape, and putting a small

box of dessicant in the cavity reduces the frost accumulation to the point that the laser

must only be cleaned out every three months. In addition, the latex feedthrough scheme

detailed in the text is necessary of low temperature adjustment of the laser wavelength,

feedback, and collimation.24

Both stages of cooling in the peak-locked laser are controlled with PID servo’s

— the temperature is measured using a 30 kOhm thermistor. In the repump laser, the

laser housing and diode mount are servo’d, while the flexure TEC is controlled with a

constant-current power supply. We are careful to avoid thermal runaway, and the TEC

equations are useful for checking the heat load on each stage. The repump diode is

cooled to -40 ◦C with the diode mount TEC’s at 0.422 A, the flexure TEC’s at 1.35

A, the flexure at -22 ◦C, the heatsink at 30 ◦C, and the laser housing at 14 ◦C (the

housing TEC’s are at 3.85 A). Under these conditions, the TEC’s under the diode mount

are removing 1.1 W at their cold side, and the final stage is moving ∼ 55 W into the

heatsink.

24 The laser collimation and feedback alignment shift significantly from room temperature to -40 ◦C.



Chapter 3

COLLISIONS — 40K IS MAGICAL!

3.1 Overview

The collisional properties of fermionic atoms are the fundamental challenge to

evaporative cooling. Experiments with ultra-cold atomic gases are usually done with

spin polarized samples in order to avoid loss due to spin changing collisions that transfer

atoms into untrapped states. Evaporative cooling requires high collision rates so that

the gas rethermalizes to lower temperature after ejecting the highest energy atoms.

However, completely identical fermions do not collide at low temperature. Therefore, a

spin polarized fermionic gas cannot rethermalize and evaporation will fail.

Our plan to overcome this problem was to trap two spin states of 40K (mf = 9/2

and mf = 7/2 in the f = 9/2 ground state) that are stable against spin exchange

collisions. We would then simultaneously evaporatively cool the two gases, each main-

taining thermal equilibrium through its contact with the other. Although sympathetic

cooling of bosonic atoms to degeneracy had been demonstrated before [18], this was a

more complicated scheme and one that raised many questions. For example, we were

unsure when we started exactly how the mechanics of the evaporation would work. We

did not know how to prepare the spin mixture that we needed, and the importance of

the spin mixture purity was uncertain. At that time, the magnitude and sign of the

triplet scattering length of 40K was essentially unknown [86,87]. We did not know if the

elastic s-wave cross-section would be large enough for evaporation to work. For that
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matter, we did not know if inelastic losses due to spin exchange, dipolar relaxation, or

three-body collisions would cause trouble. We were in for a few surprises, notably that

40K is an unusual atom (even among the alkali’s) with collisional properties that are

especially advantageous for evaporative cooling.

This chapter will explain some of the first measurements [42] that we made of

the scattering properties of 40K. Using cross-dimensional rethermalization, we measured

the p-wave and s-wave collision cross-sections. We also measured the p-wave threshold

behavior vs. temperature. We discovered a p-wave shape resonance due to a bound

state (in the inter-atomic potential) close in energy to the p-wave centrifugal barrier.

The simultaneous measurement of the s- and p-wave collision cross-section allowed us,

with the help of JILA theorists, to make a relatively precise determination of the triplet

scattering length at. The reader should keep in mind that these measurements were

performed before we installed the AG coil, and before we developed the two-frequency

evaporation technique that allowed us to cool to degeneracy. Further, we used a very

simplified model of the rethermalization — a more complete treatment can be found

in chapter 6. At the end of this chapter, I will mention some measurements that

provided an upper limit on the spin exchange rate for certain combinations of spin

states. The ultra-low inelastic rate that we found was surprising. However, comparison

with theoretical calculations using the currently best known values of C6 = 3897 a.u.

[88]1 and at = 169 a0 [89] where a0 is the Bohr radius 2 reveal that all inelastic rates

in 40K are very low.

Note that in this chapter we use the symbols xrms and zrms for the radial and

axial rms size of the gas. This is done in order to be consistent with published work

and avoid confusion with the collision cross-section. In other chapters, σ will be used

for the size of the gas.
1 This value comes from a recent high precision calculation, with an uncertainty of only 15 a.u.
2 Recent two-photon photoassociative spectroscopy of 39K and mass rescaling was used to determine

this value, with an uncertainty of only 9 a0.
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3.2 Colliding Fermions

Quantum mechanical exchange symmetry limits the type of two-particle wave-

functions allowed in collisions between fermionic atoms. For identical fermions, the

wavefunction must be anti-symmetric under exchange of the atoms. It is a common

point of confusion that 40K atoms in different Zeeman levels are, in fact, identical (or

indistinguishable) in the context of scattering. The physical observables in a collision

are the initial and final relative momenta !k′ and !k and the initial and final spin state

of the atoms. The collision itself is a quantum mechanical “black-box” where the exact

collision process for any particular collision cannot be known. Consider an elastic col-

lision between atoms a and b with mf = 9/2 and mf = 7/2. In the final state we see

atoms with mf = 9/2 and mf = 7/2, but we cannot be sure which is a and which is b

because the scattering potential is spin dependent and can change the spin of an atom

during the collision. For this reason, the two-particle wavefunction must be properly

symmetrized for exchange.

We start by considering the properties of quantum-mechanical elastic collisions.

For the sake of clarity, the properties of elastic and inelastic collisions are discussed

separately. The solution to the Lippman-Schwinger equation [90] using a partial wave

expansion is useful for understanding the properties of colliding fermions. Solving the

Lippmann-Schwinger equation for the lth partial wave of the asymptotic3 wavefunction

|Ψ〉 [90] in an elastic collision gives:

〈!x|Ψ〉l ∝ Pl (cos θ)

{
[1 + 2ikfl(k)]

eikr

r
− e−i(kr−lπ)

r

}
|χ〉 (3.1)

where r inter-nuclear distance, Pl (cos θ) is the lth Legendre polynomial evaluated as a

function of the angle between the initial and final relative momenta (we assume k = k’),

|χ〉 is the spin wavefunction, and fl is the scattering amplitude. The first term in the

brackets is the outgoing wave, modified in amplitude and phase by the action of the
3 Meaning large inter-nuclear distance.
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scattering potential. The second term represents the incoming spherical wave. The

usual symmetrization of the space part via the anti-symmetrization operator has not

been done so that we can consider different cases. Swapping particles involves the

transformation cos(θ) → cos(π−θ) and changing |χ〉 appropriately. In order to be a valid

wavefunction for FD particles, we must have 〈!x|Ψ〉l → −〈!x|Ψ〉l for this transformation.

The overall symmetry of the wavefunction is determined by the product of the symmetry

of the spatial and spin parts.

For atoms in the same spin state, the spin wavefunction is always symmetric under

exchange: |s1, s1〉 → |s1, s1〉. Here, the position inside the Dirac bra-ket denotes which

atom is in which state. The symbols s1 and s2 will be used to denote different spin

states (as in the ms = +1/2 and -1/2 states of an electron or mf = 9/2 and mf = 7/2

for 40K atoms) in order to be general. Elastic collisions of atoms in the same spin state

can only occur on l odd entrance channels4 since the spatial part of the wavefunction

is anti-symmetric for l odd and symmetric for l even. This comes from the behavior of

the Legendre polynomials under rotation: Pl (cos(θ)) = Pl (cos(π − θ)) for l even and

Pl (cos(θ)) = −Pl (cos(π − θ)) for l odd. However, for atoms in different spin states

(s1 = s2), |χ〉 can be anti-symmetric

1√
2
(|s1, s2〉 − |s2, s1〉) → − 1√

2
(|s1, s2〉 − |s2, s1〉) (3.2)

or symmetric

1√
2
(|s1, s2〉+ |s2, s1〉) → 1√

2
(|s1, s2〉+ |s2, s1〉) (3.3)

under exchange. Atoms in mixed spin state gases can undergo elastic collisions on both

odd and even partial wave channels. This is our trick for evaporation — at low temper-

ature, where only s-wave collisions are allowed, a mixed spin-state gas can still maintain

a high collision rate. Collisions occur between, but not within, the two components.
4 It is rather remarkable to realize that atoms in the same spin state do not ever approach each other

in a head-on collision.
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Collisions on channels higher than s-wave (l=0) are suppressed at low temperature

because of the centrifugal barrier. The threshold energy Eth for a given partial wave to

contribute to scattering can be approximated by the centrifugal barrier,

Eth(l) =
h̄2l(l + 1)
2mb2

− C6

b6
(3.4)

b2 =

[
6C6m

h̄2l(l + 1)

]1/2

(3.5)

where the currently best known value of C6 for 40K is 3897 a.u., m is the mass of either

colliding partner (40 a.m.u. for our case), and b is the radius of the local maximum in the

effective potential. The threshold energy for p-wave (l = 1) collisions and d-wave (l = 2)

collisions are 100 µK and 500 µK, respectively. Since we start with a MOT temperature

of 150 µK and evaporate to less than 1 µK, collisions are primarily s-wave in nature,

with a significant p-wave contribution only at the beginning of the evaporation. The

contribution from d-wave collisions is unknown but may play a role once the atoms are

compressed and adiabatically heated after transferring from the science MOT into the

magnetic trap.

Next, we consider the properties of inelastic collisions, specifically spin-exchange

collisions where the incoming and outgoing spin states are different. It is important

to avoid loss due to inelastic collisions in the experiment, and a measurement of the

spin-exchange rate constant will appear later in the chapter. Spin-exchange collisions

must not only satisfy FD statistics but also conserve the total projection of spin. For

this reason a spin-exchange collision between an mf = 9/2 and mf = 7/2 atom is

forbidden because there is no other final state at lower energy such that the totalmf = 8.

Furthermore, the spin-exchange collisionmf = 7/2+mf = 7/2 → mf = 9/2+mf = 5/2

is forbidden by FD statistics for s-wave collisions. A mixture ofmf = 9/2 and mf = 7/2

atoms is then stable against spin relaxation when only s-wave collisions are allowed.5

5 Dipolar relaxation, where two atoms enter on an s-wave channel and exit on a d-wave channel,
can cause spin relaxation. This rate is very low, however, because we work at temperatures where the
collision energies are far below the d-wave centrifugal barrier.
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In the experiment, we also have mf = 5/2 and mf = 3/2 atoms present during

some of the evaporation. There are some spin exchange collisions that are still not

allowed, mf = 5/2 + mf = 9/2 → mf = 7/2 + mf = 7/2 for example. This can

be understood as the time-reversed version of a forbidden s-wave collision, and, since

the scattering Hamiltonian is time-reversal invariant, this collision is also forbidden.

Alternatively, one can consider the lth partial wave of the asymptotic wavefunction

again (this time written in a way useful for considering spin-exchange collisions):

〈!x|Ψ〉l ∝ Pl (cos θ)

{
[1 + 2ikfl(k)]

eikr

r
|χout〉 − e−i(kr−lπ)

r
|χin〉

}
(3.6)

where the spin wavefunctions for the in and out states have been separated. For even

partial waves, this wavefunction cannot be properly symmetrized for identical final spin

states — the outgoing part cannot have odd exchange symmetry. This collision can only,

therefore, occur on odd partial waves. Because we trap atoms in the lower hyperfine

ground state, hyperfine changing collisions are energetically forbidden. There is not

enough kinetic energy for a collision where f = 9/2 → f = 7/2 below 10 mK.

3.3 Definition of Cross-Section

In the experiment, we measure collision, or rethermalization, rates in the gas,

which we then connect to the collision cross-section. The parameter of interest to

theorists is the scattering length, which can be connected to the collision cross-section.

The point of this section is to explain the connection between the collision rate, collision

cross-section, and scattering length clearly. We will pay particular attention to using

definitions that work for both the experimentalists and theorists.

Jim Burke has done an excellent job of explaining the quantum mechanics of cold

atom scattering in his thesis [91], and then deriving the appropriate cross-sections in

terms of the scattering length. As he mentions, his method is easily adapted to fermions

by changing the symmetrized wavefunctions appropriately. Modifying Jim’s equation
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2.21, for elastic scattering of fermions we have:

ΨI
i =

(
eikiZ − e−ikiZ

√
2

)
|s1, s1〉 (3.7)

ΨD
i =

eikiZ |s1, s2〉 − e−ikiZ |s2, s1〉√
2

(3.8)

for the incoming plane waves, and in 2.22

ΨI
f =

(
ei

#kf ·#R − e−i#kf ·#R
√
2

)
|s1, s2〉 (3.9)

ΨD
f =

ei
#kf ·#R|s1, s2〉 − e−i#kf ·#R|s2, s1〉√

2
(3.10)

for the outgoing state. In these equations, I refers to the case of scatterers with identical

spin states and D to the case of scatterers with different spin. Jim’s cases (i)-(iv) can

be calculated with modifications to the sums and to the wavefunctions expanded in

spherical harmonics in order to preserve the proper symmetry. The final result for the

elastic collision (case (i) and (iv)) cross-section for fermions is the same as for bosons:

4πa2 for atoms with different mf and 8πa2 for atoms with the same mf , where a is

the relevant scattering length. The s-wave elastic collisions between atoms in different

spin states described in this chapter are primarily triplet in nature, and the relevant

cross section is 4πa2
t where at is the s-wave triplet scattering length. A scattering length

can be formally defined for p-wave collisions (J. Bohn, private communication). The

relevance to the collisions that we consider is that there is a factor of two difference in

the p-wave collision cross-section between atoms in the same internal state and atoms

in different internal states.

The factor of two difference in the cross-section between atoms in different com-

pared to the same spin states often seems mysterious but can be understood from a

simple point of view. The rate of elastic collisions between two atoms for a given partial

wave is proportional to ∫
d(cosθ) dφ |〈ψin|T |ψout〉|2 (3.11)
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where the angular integration is carried out over the angles θ and φ between !k and !k′,

and T is the scattering matrix. In order to satisfy exchange symmetry we must have:

|ψin〉 = 1√
2

(
|s1s2,!k〉 − |s2s1,−!k〉

)
(3.12)

|ψout〉 = 1√
2

(
|s1s2,!k′〉 − |s2s1,−!k′〉

)
(3.13)

as exchanging particles involves swapping the spin of each atom (s1 ↔ s2) and changing

the sign of the relative momenta (!k → −!k and !k′ → −!k′). In general, T is only a

function of k, θ, and the spin of the scatterers. Using momentum conservation, we find

that equation 3.11 becomes6

∫
d(cosθ) dφ |〈s1s2|Tk(θ)|s1s2〉 − 〈s1s2|Tk(π − θ)|s2s1〉|2 (3.14)

where the first and second terms are the “direct” and “exchange” terms and we have

implicitly left in a possible spin dependence for Tk. Consider p-wave collisions (which

are the only collisions for our experiment that can exhibit this factor of two) so that

we can have s1 = s2 or s1 = s2, and T l
k(θ) = −T l

k(π − θ). If s1 = s2 then the direct

and exchange terms are exactly equal and add, giving 4T l
k(θ)

2 inside the integral. If

s1 = s2, the exchange term for alkali atoms is generally much smaller than the direct

term, so that we have T l
k(θ)

2 inside the integral. For s1 = s2, however, the integral over

θ covers only 0 → π/2 in order to avoid double counting. In the end, then, we reproduce

the factor of two difference in the rate of collisions. It is important to realize that this

is only approximately a factor of two, with the deviation coming from the subtraction

of the small exchange term. The importance for our system is that the rate of p-wave

collisions between atoms with the same mf is approximately twice as high as for atoms

with different mf .

In practice, these definitions are useful for connecting experimentally measured

rethermalization rates to the scattering length and cross-section. It can be difficult to
6 To get this result you must use: T (�k′,�k) = Tk(θ), T (−�k′,−�k) = Tk(θ), T (−�k′,�k) = Tk(π− θ), and

T (�k′,−�k) = Tk(π − θ).
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drag out of collision cross-section calculating theorists how their cross-section connects

to the collision rate in the gas. Their theory is developed for two particles in a box,

using Fermi Golden’s rule to determine the number of collisions per volume per second:

K2 = h̄
k

µ
σ (3.15)

where k is the magnitude of the incident relative momentum and µ is the reduced mass.

The relative speed (|!v1 − !v2|) in the collision is just h̄ k
µ .

For a trapped gas, we have to average K2 over all colliding partners in order to

determine the total number of collisions in the gas per second Γ. We assume that the

colliding partners must be at the same place in space, since the range of the interaction

is shorter than all other relevant length scales. The total number of collisions per second

between a 1 and a 2 atom is then:

Γ12 =
1

N1N2

∫
d3!r1

∫
d3!r2

∫
d3!p1

∫
d3!p2 δ

3(!r1 − !r2)F1(!r1, !p1)F2(!r2, !p2)
|!p1 − !p2|

m
σ

=
1

N1N2

∫
d3!r

∫
d3!p1

∫
d3!p2 F1(!r, !p1)F2(!r, !p2)

|!p1 − !p2|
m

σ (3.16)

where F1 and F2 are the statistical distribution functions for the colliding atoms, the

differential cross section is assumed to be isotropic with total cross section σ, and the

mass of the colliding atoms is m (which is the same for atom 1 and 2). For Maxwell-

Boltzmann distributions, F is separable in !r and !p, and we define n12 =
∫
d3!r n1(!r)n2(!r)

and the mean relative speed v = 1
N1N2

∫
d3!p1

∫
d3!p2 Π1(!p1)Π2(!p2)

|#p1−#p2|
m . Both the density

and momentum distributions n(!r) and Π(!p) may be anisotropic if the gas is out of cross-

dimensional equilibrium. With substitution into equation 3.16, we end up with the total

collision rate as

Γ12 = n12σv (3.17)

which is the familiar definition of the cross section from considering a beam-target

experiment. In order to determine the collision rate per particle, Γ12 must be divided
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by the number of particles N1 or N2. If the mixture of particles 1 and 2 is not equal,

then each gas may have a very different collision rate per particle.7

3.4 Elastic Collision Measurement

We determine elastic collision cross sections [42] from measurements of cross-

dimensional thermalization rates [92] in the magnetic trap. The sample is taken out of

thermal equilibrium by changing the radial harmonic trap frequency νr through a ramp

of the bias coil current. For the measurements reported here νr lies between 44 and

133 Hz. The change in νr occurs adiabatically (slow compared to the atomic motion

in the trap) but much faster then the rate of collisions between atoms. Since the axial

frequency is essentially unchanged, energy is added to (or removed from) the cloud in

only the radial dimension. Elastic collisions then move energy between the radial and

the axial dimensions, and the thermal relaxation is observed by monitoring the time

evolution of the cloud’s aspect ratio.

To avoid perturbations to the image due to the spatially dependent magnetic

fields, the trap is turned off suddenly and the cloud is imaged after 2.7 ms of free ex-

pansion. The aspect ratio of the cloud is observed via absorption imaging using a 9.1 µs

pulse of light resonant with the 4S1/2, f = 9/2 to 4P3/2, f ′ = 11/2 transition. Optical

depth is calculated from the image captured on a CCD array and then surface fit to a

gaussian distribution to find the rms cloud size in both the radial and axial dimensions.

An example of the cloud evolution following a change in trap potential is shown in figure

3.1. Since the expanded cloud sizes are proportional to the square root of the cloud

energy in each dimension, the exponential time constant for the redistribution of energy,

τ , can be extracted from an appropriate fit (see the appendix to this chapter) to the

aspect ratio vs time. To rule out significant relaxation through trap anharmonicities,
7 This may seem strange at first, but consider s-wave collisions between a million mf = 9/2 and a

hundred mf = 7/2 atoms. Each mf = 9/2 atom is colliding at a much lower rate than each mf = 7/2
atom, because there are far fewer available colliding partners.
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we have verified that the relaxation rate 1/τ scales linearly with the number of trapped

atoms N .
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Figure 3.1: Example of thermalization data. The inset shows the axial size, zrms (◦),
and the radial size, xrms (•), imaged after 2.7 ms of free expansion, relaxing as the
trapped atoms rethermalize via elastic collisions. At time=0 the cloud is taken out of
equilibrium by changing νr from 133 to 44 Hz. A fit (line) to the aspect ratio vs time
is used to extract the relaxation rate.
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To obtain the elastic collision cross section σ from our measurements of thermal

relaxation rates, we use the relation: 1/τ = 2
αnσv, where n is the density-weighted

density of the trapped atoms given by 1
N

∫
n(r)2d3r, v is the rms relative speed between

two atoms in the trap, and α is the calculated average number of binary collisions per

atom required for thermalization. The product nv depends on both the size and temper-

ature, T , of the trapped sample. These are measured by observing the expansion of an

equilibrated sample after release from the magnetic trap. The rate of expansion yields

the temperature, while an extrapolation back to the release time gives the initial sizes.

Using the trap potential calculated from the field coil geometry we have checked that

the measured initial sizes and temperatures are consistent to within their uncertainties.

The mean number of collisions each atom undergoes, α, during one relaxation

time constant was determined by Murray Holland from a numerical simulation of the

experiment using classical Monte Carlo methods. 8 For a harmonic trapping potential,

the relaxation simulation yields αs = 2.5 for s-wave collisions and αp = 4.1 for p-wave

collisions, where we include explicitly the different angular dependence. The ratio αp/αs

can also be determined analytically through an integration over the angular dependence

of scattering. This gives αp/αs = 5/3, consistent with the Monte Carlo results.

The primary results of this measurement are shown in figure 3.2. While ordinarily

one cannot measure higher order partial wave contributions to the collision cross section

directly, the Fermi-Dirac statistics of 40K allow us to probe p-wave and s-wave inter-

actions independently. The p-wave cross section σp is determined from measurements

using a spin-polarized sample (|f = 9/2,mf = 9/2〉 atoms), where s-wave collisions are

prohibited by the quantum statistics. The s-wave cross sections σs are determined from

data obtained using a mixture of two spin states, |9/2, 9/2〉 and |9/2, 7/2〉. This mix-

ture is stable against inelastic spin exchange collisions (s-wave), which must preserve

the total projection of spin. The magnitude of the p-wave cross section is surprisingly
8 For more details see M. Holland.
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large and we find that 40K has a p-wave shape resonance at a collision energy of roughly

280 µK. At temperatures well below the resonant energy (less than 30 µK), a fit to

σp vs T gives σp ∝ T 2.0±0.3. Thus, we have directly measured the expected threshold

behavior σp ∝ E2 [93]. In contrast, σs exhibits little temperature dependence. With

these very different temperature dependencies, the collision rate changes by over two

orders of magnitude at our lowest temperatures depending on the spin mixture of the

fermionic atom gas.
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Figure 3.2: Elastic cross sections vs. temperature. The s-wave cross section (◦), mea-
sured using a mixture of spin states, shows little temperature dependence. However,
the p-wave cross section (•), measured using spin-polarized atoms, exhibits the expected
threshold behavior and is seen to vary by over two orders of magnitude. The lines are
a fit to the data, as described in the text, yielding at = 157± 20a0.
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To explore this effect further we measure the thermalization rate vs spin polar-

ization at 9 µK (see figure 3.3). We control the relative populations of |9/2, 9/2〉 and

|9/2, 7/2〉 atoms in a two-component cloud with a microwave field that drives tran-

sitions to untrapped spin states in the F=7/2 ground state manifold. The trap bias

magnetic field breaks the degeneracy of the hyperfine ground-state splitting (1.286 GHz

at zero field [94]) so that the different spin-states can be removed selectively (see figure

3.3 inset). For the data shown in figure 3.3 the fraction of atoms in the |9/2, 9/2〉 state

fmf=9/2 ≡ Nmf=9/2

Nmf=9/2+Nmf=7/2
, was varied smoothly from 70 to 100% by varying the power

of an applied microwave field (frequency swept) that removes a portion of the |9/2, 7/2〉

atoms.
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Figure 3.3: Dependence of collision cross-section σ on spin composition at T = 9µK.
A quantity proportional to σ, 1/τN , is measured as a function of the fraction of atoms
in one of two trapped Zeeman spin states, fmf=9/2. The inset shows the number of
atoms remaining after application of microwaves at the indicated frequency. The three
features correspond to removal of trapped atoms in particular spin states and can be
used to measure or control the spin composition of the atom gas.
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The thermalization of mixed spin-state samples depends on both s-wave and p-

wave collisions. The data in figure 3.3 can be fit to a simple model given by:

1/τ = n1,2(
2
αs
σs +

2
αp

σp
2
)v + (n1,1 + n2,2)

2
αp
σpv,

where ni,j is the density-weighted density between two species given by

ni,j = 1
N1+N2

∫
ni(r)nj(r)d3r and the subscripts 1 and 2 stand for the two relevant spin

states. Since the magnetic moments of the |9/2, 9/2〉 and |9/2, 7/2〉 atoms are only

slightly different we make the simplifying assumption that these states have identical

spatial profiles in the trap. A fit using the above model with σs and the ratio σp/σs

as free parameters shows good agreement with the data in figure 3.3. In addition to

demonstrating the type of control over collision rates that is available in a trapped gas

of fermionic atoms, this measurement of σp/σs at low temperature provides a sensitive

constraint on the triplet scattering length. The s-wave cross-sections shown in figure

3.2 were extracted using the above equation, however at these low temperatures σp

is relatively small and the measured thermalization rates are due primarily to s-wave

interactions.

To compute the scattering cross sections for comparison with these data, our

collaborators Jim Burke and John Bohn perform fully coupled scattering calcuations,

including potassium hyperfine structure, as detailed in [95]. These calculations include

additional corrections that enable them to tune independently the singlet and triplet

scattering lengths over their entire ranges −∞ < a <∞. They set the singlet scattering

length’s value at as = 104a0 [95] where a0 is the Bohr radius, but leave the triplet

scattering length at as a free parameter to be determined by the experiment. Scattering

is strongly triplet-dominated for the collision partners used in this experiment, and they

find no singlet resonance near threshold. Therefore, each partial wave’s cross section

has little dependence on the spin states involved. Moreover, the present experiment is

relatively insensitive to the value of as.
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After computing cross sections as a function of collision energy, they determine

temperature-dependent cross sections by computing a thermal average over collision

events, weighted by the collision energy. Using this type of thermal averaging to account

for a temperature-dependent cross section is supported by Monte Carlo studies.9 To

make a fit to the data, they compute χ2 while floating both at and a multiplicative factor

ε which scales simultaneously the computed σs(T ) and σp(T ). This factor is required

to accommodate a ±50% systematic uncertainty in the experimental determination

of absolute cross sections (primarily from N). Their global best fit occurs for at =

157 ± 20a0 and ε = 1.6, with a reduced χ2 of 3.8; the corresponding cross sections are

plotted as lines in Fig. 2. The uncertainty in at reflects a doubling of the fit χ2 and

includes a ∼ 2a0 uncertainty arising from varying C6 over its range 3600 < C6 < 4000

a.u. [96].10 Their nominal potential gives a p-wave shape resonance at ∼ 280µK in

collision energy, with an asymmetric lineshape whose FWHM is ∼ 400µK.

The relatively small uncertainty on the value of at is attributable to the fact that

they can simultaneously fit s-wave and p-wave collision data having little relative uncer-

tainty. The value of at for 40K determined here does not agree well with reference [41],

highlighting the importance of low temperature data in determining accurate potentials.

Our measurement is however in good agreement with the value at = 194+172
−42 obtained

from an analysis of photoassociation spectroscopy of 39K [95]. This agreement between

two fundamentally different experiments is very encouraging, and suggests that the

potassium scattering lengths are now fairly well determined. 11 Using their new value,

they have tabulated in table 3.1 the resulting triplet scattering lengths for collisions

between the different potassium isotopes.
9 For more details see M. Holland.

10 This was the range for C6 in 1999, when this measurement was made.
11 The result of [95] is somewhat sensitive to the value of C6, and is in better agreement with the

present result for C6 = 4000 a.u.
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Isotopes Nominal at Range

40 + 40 157 136 < at < 176
39 + 39 −44 −80 < at < −28
41 + 41 57 49 < at < 62

39 + 40 3600 at > 500 or at < −900
39 + 41 164 140 < at < 185
40 + 41 93 83 < at < 99

Table 3.1: Triplet scattering lengths at in Bohr radii for collisions between potassium
isotopes.

3.5 Inelastic Collisions

We were first suspicious that 40K might have abnormally low inelastic collision

rates when we discovered some mf = 5/2 atoms present after a several minute evap-

oration sequence. One would expect that these atoms would undergo spin exchange

collisions and disappear, ultimately populating mf = 9/2 and untrapped states. Fur-

ther, even at peak densities exceeding 1013 cm−3 we were unable to observe any rapid,

non-exponential loss when measuring the magnetic trap lifetime. We used changes in

the spin composition of the gas to detect spin exchange collisions and measure the spin

exchange collision rate constant. This measurement is consistent with an upper limit

derived from the stability of a mixture of four spin states at lower temperature.

The number ofmf = 9/2 atoms produced by a mixture ofmf = 5/2 andmf = 7/2

atoms was measured in order to determine the spin exchange rate constant K. This was

a quick measurement, with few experimental checks. However, it is useful to have an

order of magnitude estimate for an upper limit on K. Assuming that both mf = 9/2

and mf = 3/2 atoms are created and therefore present, all allowed s-wave spin exchange

collisions are detailed in table 3.2. These collisions involve a change in potential energy

Q = Ef − Ei caused by the second order Zeeman effect. The Q value for each collision

is also listed in table 3.2 for a 5 gauss field. The mf = 1/2 atoms are not trapped and
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leave the gas once they are produced.

collision Q (nK)

mf = 9/2 +mf = 3/2 → mf = 7/2 +mf = 5/2 -369
7/2 + 5/2 → 9/2 + 3/2 369
7/2 + 3/2 → 9/2 + 1/2 562
5/2 + 3/2 → 7/2 + 1/2 366
5/2 + 3/2 → 9/2 +−1/2 1100

Table 3.2: Possible spin exchange reactions for the measurement of K.

After evaporating in the “evap” trap and adiabatically ramping to the “tight”

trap, all mf = 9/2 atoms were removed using a swept microwave field. The gas was

then initially was composed of 1.1 × 106 mf = 5/2 and 0.9 × 106 mf = 7/2 atoms at

20µK. The gas was held in the “tight” trap for 200-300 seconds, and then all the atoms

except for mf = 9/2 were removed by again using a microwave sweep. The number of

mf = 9/2 atoms produced during the “tight” trap hold (which is the number of atoms

left after the second microwave sweep) was then measured using absorption imaging

after release from the magnetic trap.

A very simple model is used to determine the spin exchange rate. We assume that

the spin exchange rate constant is the same for all of the collisions listed in table 3.2.

There is very little heating of the gas during the measurement, and therefore we assume

that the radial cloud size xrms =
(

kbT
mω2

r

)1/2
in the trap is constant and the same for the

spin states that we consider in this measurement. This is a fairly bad assumption, as

the magnetic moments of the mf = 9/2 and mf = 3/2 atoms are quite different, for

instance. On the other hand, this is not meant to be a very exact measurement. The

total rate of spin exchange collisions is then Kn12, where n12 = 1
2
√

2
N1N2

(2π)3/2x3
rms

is the

overlap integral of the density distributions for states 1 and 2. The rate Kn12 gives the

total number of spin exchange collisions in the gas per second. The coupled differential

equations describing the change in number of each state, including a term for loss due to
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background collisions with a 300 second magnetic trap lifetime, are numerically solved:

dN9/2

dt
=
K

A

(
−N9/2N3/2 +N7/2N5/2 +N7/2N3/2 +N5/2N3/2

)
− N9/2

300 s
(3.18)

dN7/2

dt
=
K

A

(
−N7/2N5/2 −N7/2N3/2 +N9/2N3/2 +N5/2N3/2

)
− N7/2

300 s
(3.19)

dN5/2

dt
=
K

A

(
−N7/2N5/2 − 2N5/2N3/2 +N9/2N3/2

)
− N5/2

300 s
(3.20)

dN3/2

dt
=
K

A

(
−N9/2N3/2 − 2N5/2N3/2 −N7/2N3/2 +N7/2N5/2

)
− N3/2

300 s
(3.21)

where A = 2
√
2(2π)3/2x3

rms. We ignore threshold effects since the average collision

energy is high compared to the Q values for all of these reactions. The value of K is

varied to match the number of mf = 9/2 atoms produced during the experiment.

We determine that K = 1.0(3) × 10−14 cm3/s, where the uncertainty represents

the scatter in the data points. This should really be considered an upper limit, since

other, unknown processes may be contributing to the production of mf = 9/2 atoms.

By setting the rate constant to zero for individual reactions in the calculation explained

above, we find that this experiment is most sensitive to the reaction 5/2+7/2 → 9/2+

3/2. This is not surprising considering that the initial conditions are a gas consisting

of only mf = 5/2 and mf = 3/2 atoms and that relatively few mf = 9/2 atoms are

produced. A multi-channel calculation courtesy of John Bohn for the inverse reaction

at 5 gauss and different collision energies is shown in figure 3.4. The measured value of

K agrees well with the calculation, which uses the currently best known values of C6

and at. The dependence of K on at is shown in figure 3.5. Apparently there is some

interference effect in the scattering, much like 87Rb where the fact that at ≈ as produces

very low spin exchange collision rates [97].
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Figure 3.4: Spin exchange rate constant for mf = 5/2 + mf = 7/2 → 9/2 + 3/2 at
different collision energies and 5 gauss.
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Figure 3.5: Spin exchange rate constant (calculated at 5 gauss and 20 µK to match
the experimental conditions) for 5/2 + 7/2 → 9/2 + 3/2 for different values of at. The
vertical lines indicate the current range on at. The horizontal line is the value of our
measurement.
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In a separate measurement, we use the spin mixture stability at lower temperature

to put an upper limit on the spin exchange rate. For this measurement, after cooling

to 200 nK the gas consisted of 2.1 × 105 mf = 9/2 atoms, 1.8 × 105 mf = 7/2 atoms,

1.2 × 105 mf = 7/2 atoms, and 0.15 × 105 mf = 3/2 atoms (a picture of this gas can

be found in figure 2.58). The gas is held in the “tight” trap for 50 seconds, and then

released. The number in the mf = 9/2 and mf = 7/2 components are measured using

the AG coil and absorption imaging. After 50 seconds, the gas has heated to 1 µK

(see chapter 4 for a discussion of the heating), and we use this temperature to calculate

the constant A. The equations equivalent to 3.7-3.10 are solved assuming that only the

first collision in table 3.2 is allowed and that the others are threshold suppressed. An

upper limit of 2× 10−14 cm3/sec for K is determined by varying K to match the time

dependence of the ratio N9/2

N9/2+N7/2
, which is measured to be fixed to within 4% over 50

seconds. This upper limit is consistent with the calculated value shown in figure 3.4.

3.6 Appendix to Chapter 3

3.6.1 Time dependence of the aspect ratio

We develop a simple cross-dimensional rethermalization model here that was used

to analyze the data in this chapter. This model is valid under certain assumptions that

will be relaxed in chapter 6. In chapter 6 we will also explain how this model can be

derived from the first principles of kinetic theory.

The average energy per particle in one dimension is defined as:

〈Ex〉 = 〈1
2
mω2

xx
2〉+ 〈 p

2
x

2m
〉 (3.22)

where a statistical average is done over the gas. A similar equation holds for z. Since

the difference in magnetic moments between the mf = 9/2 and mf = 7/2 atoms is

small, we treat both components as one gas with a single harmonic oscillator frequency.
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We assume that 〈E〉 relaxes exponentially in time in each direction:

Ez(t) = Ezf + (Ezi − Ezf ) e−
t
τ (3.23)

Ex(t) = Exf + (Exi − Exf ) e−
t
τ (3.24)

where the averaging symbol is dropped for convenience. The subscripts z and x are

used to denote the axial and and one of the radial directions, and f and i denote the

final (t → ∞) and initial (t → 0) values. We assume that 〈Ex〉 = 〈Ey〉 because of the

cylindrical symmetry of the magnetic trap.

The physical picture behind equations 3.23 and 3.24 is that collisions are redis-

tributing energy between the x and z directions in the gas. For that reason, both

directions relax in time with the same exponential time constant.

The aspect ratio of an expanded cloud, which is the ratio of the rms sizes zrms
xrms

,

is directly connected to the ratio of the energy Ez/Ex. The expanded aspect ratio is

given by:

zrms

xrms
=
z0rms

x0rms

√
1 + (ωztexp)2√
1 + (ωxtexp)2

(3.25)

where texp is the expansion time, and the “0” indicates the size in the trap before

the expansion. The appendix to chapter 6 will explain how an anisotropic density

distribution can be derived that is properly normalized for N . In the classical limit, the

anisotropic density distribution is

n(r, z) =
N

(2π)3/2x02
rmsz0rms

e
− r2

2x02rms e
− z2

2z02rms (3.26)

where r2 = x2 + y2. The key assumption here is that each direction maintains a well

defined Maxwell-Boltzmann energy distribution, and that the axial and radial directions

are separable. The average potential energy (〈ux〉) in the x direction, for example, is

then connected to the r.m.s. size in the trap through:

〈ux〉 =
∫
d3!r n(r, z)1

2mω
2
xx

2∫
d3!r n(r, z)

=
1
2
mω2

xx0
2
rms (3.27)
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where a similar equation holds for z. Finally, using the equipartition theorem, 〈Ex〉 =

mω2
xx0

2
rms and 〈Ez〉 = mω2

zz0
2
rms.

Combined with equations 3.23 and 3.24, energy conservation

Ezf + 2Exf = Ezi + 2Exi (3.28)

and the condition for cross-dimensional equilibrium

Ef = Exf = Ezf (3.29)

are used to solve for the time dependence of Ez/Ey. After some algebra and substituting

in the relation between the energy and the r.m.s. sizes, we find that:

zrms

xrms
=

√√√√γ 1 + (s− 1)e−
t
τ

1− 1
2(s− 1)e−

t
τ

(3.30)

where s = Ezi
Ef

and γ = 1+(ωztexp)2

1+(ωxtexp)2
ω2
x

ω2
z
. We leave γ and s as free parameters in the fit to

the time dependence of the aspect ratio.



Chapter 4

EVAPORATIVE COOLING

4.1 Overview

After demonstrating that we could maintain rethermalizing collisions in the gas at

low temperature, we needed to devise an evaporation scheme that could cool to quantum

degeneracy. We adapted the evaporative cooling techniques [12,98–100] used to produce

atomic Bose-Einstein condensation to the unique requirements of fermions. Cooling fer-

mionic atoms is more difficult than bosons. Working with multiple components increases

the complexity of the evaporation procedure. Further, efficient evaporative cooling re-

lies on a density increase, even as atoms are removed, that arises from the harmonic

trap compressing the cloud as the temperature is lowered. The density increase re-

sults in a increasing collision rate for decreasing temperature, producing “runaway”

evaporation for bosonic and classical gases. Fermions, unfortunately, have exactly the

opposite behavior in the degenerate regime. Once FD statistics start to dominate the

thermodynamics, the Fermi pressure starts to “freeze” the cloud size and the density

stops increasing as quickly. Even worse, the collision rate is shut off by Pauli blocking,

eventually falling to zero at T = 0. So, as the Fermi gas is cooled into the degenerate

regime the collision rate must decrease.

In practice, we do not think that the evaporation performance is currently limited

by the collision rate. Ultimately, the limiting collision rate behavior described above

must become a problem, but the experiments detailed in Chapter 6 will show that
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the rethermalization rate is high even at our lowest values of T/TF . Because we are

trying to cool to as low T/TF as possible, technical limitations to the evaporation

performance, such as heating and magnetic trap stability, are dominant. This is in

contrast to experiments with BEC, where reaching 0.5 Tc is sufficient to ensure negligible

thermal fraction. We believe that technical limitations are the current barrier to our

ability to reach lower T/TF .

This chapter will discuss the details of the cooling procedure, as well as explain

the most important technical requirements. Our current cooling scheme represents two

years of work, progressing from only being able to cool a spin polarized gas to T/TF = 0.5

to producing an interacting, equal mixture of mf = 9/2 and mf = 7/2 components with

the mf = 9/2 component at T/TF ∼ 0.2. A factor of two in temperature may not seem

large, but actually represents a huge change in the behavior of the gas. The incentive to

continually improve the evaporation came from a time-dependent model constructed by

Murray Holland [54] that found no fundamental limit to evaporative cooling of fermions.

This chapter will develop a time-independent model that was useful for ferreting out

and fixing technical limits.

4.1.1 Chapter Content

This is a long and detailed chapter, so I will give a quick list of the content

here. General cooling considerations relevant to working with two components and

an overview of our evaporation scheme are explained in section 4.2. Details on the

first, single-frequency stage of the evaporation are found in section 4.2. Details of

the second, two-frequency stage of the evaporation and results circa 1999 are found in

4.3.3.1. Improvements to the two-frequency stage and results circa 2000 are found in

4.3.3.2. The explanation of a toy-model of evaporation that was useful for learning how

to improve the evaporation performance is found in 4.4. Characterization of the heating

we observe for a magnetically trapped gas is detailed in 4.5. Finally, experimental details
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for the evaporation are listed in the appendix to the chapter.

4.2 General Cooling Considerations

There are a few general requirements that must be met for evaporative cooling to

work well, independent of working with multiple components. The ratio of the rate of

elastic, or “good”, collisions to the rate of (“bad”) collisions that lead to uncontrolled

loss should be high, typically higher than 100. For our system, this is a constraint on

the rethermalization rate compared to the inverse of the trap lifetime (∼ 3 mHz). Also,

simultaneous evaporation for multiple components requires not only energy selectivity

in atom removal but also component selectivity. Finally, the cooling rate must always

exceed the heating rate.

The overall rethermalization rate in the gas depends not only on the total number

and temperature but the spin mixture and the component spatial overlap as well. The

total collision rate (collisions/sec) in the gas is Γ = n12σv, where σ is the collision

cross-section, n12 is the density overlap integral, and v is the mean relative speed. For

information on the calculation of n12 and v, see Chapter 6. Neglecting relative sag,

n12 =
N9/2N7/2λ

(2π)3/2
(

kbT
mω2

9r

)3/2

ξ3

(1 + ξ2)3/2
(4.1)

for classical clouds with different magnetic moments. In this equation, λ = ωz/ωr is the

same for both components, and ξ = ω7/2/ω9/2 =
√
7/9. The mean relative speed for

classical gases is

v =
4√
π

√
kbT

m
(4.2)

and is number independent. If we rewrite the number of atoms as N9/2 = fN and

N7/2 = (1−f)N where N = N9/2+N7/2 and f is the fraction of atoms in the mf = 9/2

component, then the collision rate is proportional to f(1 − f)N2. The collision rate

is highest for an equal mixture, diving to zero for a spin polarized gas. In order to

maintain a high collision rate, the spin mixture should be kept close to an equal mixture
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of components. At a 70/30% mixture the collision rate is reduced by 20% from the

maximum value, and at a 90/10% mixture the collision rate is down by a factor of 2.8.

The centers of each component are displaced from each other by gravitational

sag. The displacement for one component from the minimum of the magnetic field is

g/ω2
r , where g is gravitational acceleration. The displacement between the mf = 9/2

and mf = 7/2 components is then:

∆y =
g

ω2
9r

(
1
ξ2

− 1
)

(4.3)

with the same definition of ξ. For classical distributions, the value of n and therefore Γ

is reduced by ∫
d3!r n9/2(x, y, z) n7/2(x, y −∆y, z)∫
d3!r n9/2(x, y, z) n7/2(x, y, z)

= e
−m∆y2ξ2ω2

9r
2kbT (1+ξ2) (4.4)

which limits the choice of trap parameters. As we cool to low T , the spatial overlap

must be preserved by choosing a trap with sufficient radial confinement. For a 100 nK

classical gas in the “tight” trap, the collision rate is reduced by only 10%.1

We use magnetic field dependent transitions between hyperfine ground states

to remove atoms in order to have both energy and component selectivity [42]. The

component selectivity is important to maintaining a 50/50% mixture as well as removing

energy in a balanced way. The transitions we use are shown in figure 4.1. The transitions

|f = 9/2,mf = 9/2〉 → |7/2, 7/2〉 and |9/2, 7/2〉 → |7/2, 7/2〉 are driven together with a

single microwave frequency in the first (“single-frequency”) stage of evaporation, while

|9/2, 9/2〉 → |7/2, 7/2〉 and |9/2, 7/2〉 → |7/2, 7/2〉 are used separately in the second

stage (“two-frequency”). Atoms in the mf = 5/2 and mf = 3/2 states are removed

when necessary using the transitions |9/2, 5/2〉 → |7/2, 3/2〉 and |9/2, 3/2〉 → |7/2, 5/2〉,

which are degenerate in frequency at low field. In practice, we sometimes use other

transitions when convenient.
1 Note that this problem is reduced for a degenerate gas, since the rms size of the gas is larger than

the classical expectation.
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Figure 4.1: Microwave transitions used for evaporation. Note that there are many
Zeeman levels that are not shown in this figure.

The frequency of these transitions can be calculated using the Breit-Rabi formula

[101], which includes the second order Zeeman shift. We start by calculating the energy

of each Zeeman level relative to the 4S ground state. We define the parameters

x(B) =
(gJ + gIr)µbB

hνhfs
(4.5)

ζ(B,mf ) = 1 +
4mfx(B)
2I + 1

+ x(B)2 (4.6)

Zu(B,mf ) =
√
ζ(B,mF ) (4.7)

Zl(B,mf ) =




√
ζ(B,mf ) mf > −7/2√
ζ(B,mf ) mf < −7/2 & x(B) < 1

−
√
ζ(B,mf ) mf < −7/2 & x(B) > 1

(4.8)

where u and l refer to the upper (f = 7/2) and lower (f = 9/2) states, gJ = 2, I = 4,

gI = −0.363, vhfs = −1286 MHz, µb is the Bohr magneton, and r = 1
1836 is the ratio of

the Bohr to nuclear magneton. The energy of any level is then:

Eu(mf , B) = − hνhfs
2(2I + 1)

− giµnBmf − hνhfs
2

Zu(B,mf )

El(mf , B) = − hνhfs
2(2I + 1)

− giµnBmf +
hνhfs
2

Zu(B,mf ) (4.9)
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where µn is the nuclear magneton. The frequency for any microwave transition is equal

to 1
h

[
Eu(m′

f , B)− El(mf , B)
]
. Equations 4.9 can also be used to determine the field

dependent magnetic moment through µ(mf , B) = −∂E(mf ,B)
∂B :

µl(B,mf ) = gIµnmf − (gJ + gIr)µb

4
√
ζ(B,mf )

[
4mf

2I + 1
+ 2x(B)

]
(4.10)

µu(B,mf ) = gIµnmf +
(gJ + gIr)µb

4
√
ζ(B,mf )

[
4mf

2I + 1
+ 2x(B)

]
(4.11)

for the upper or lower hyperfine ground states.

A measurement of the frequency of these transitions in the tight trap is shown

in figure 4.2. For this measurement, the gas was cooled to 1.2 µK. The number of

atoms was measured after a slow (5.9 seconds total time), linear frequency sweep from

high frequency to low frequency was applied. The transition frequencies at B0 are

indicated by a “step” in atom number — as the frequency is swept over the transition

at the minimum of the trap the atoms are all removed. In this data, the transitions

|9/2, 7/2〉 → |7/2, 5/2〉 and |9/2, 5/2〉 → |7/2, 7/2〉 are degenerate and appear at 1276.04

MHz. The |9/2, 7/2〉 → |7/2, 7/2〉 transition is not seen because the mf = 7/2 atoms

have already been removed by that point in the sweep. The |9/2, 7/2〉 → |7/2, 5/2〉

transition appears at 1272.75 MHz. The location of the transition frequencies and the

spacing between them is consistent with B0 = 5.336 gauss.

There are three regimes for the evaporation. The kinetic energy scale kbT sets

the width of the cloud in the magnetic potential and hence the spread of microwave

frequencies δν ∼ kbT/h that will remove atoms from the trap. The shape of the gas in

frequency space is determined by calculating the number of atoms that would remain in

each component versus the applied microwave frequency (see figure 4.3). The calculation

assumes that the microwave field removes all atoms above the cut energy, Ec. The cut

energy as a function of the magnetic field experienced by an atom is Ec = 2
9mfµb(B −

B0), where −2
9mfµb is the magnetic moment to first order. Ignoring second order
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Figure 4.2: Measurement of location of microwave transition frequencies in the “tight”
trap. Atoms are removed with a slow frequency sweep from high (starting at 1279 MHz)
to low frequency.

Zeeman shifts,

Ec =
2
9
mfµb


ν − 1286 MHz

Λmf ,m
′
f

−B0


 (4.12)

where the transition is between |9/2,mf 〉 and |7/2,m′
f 〉 with applied microwave fre-

quency ν. In equation 4.12, Λmf ,m
′
f
= −2

9
µb
h (mf + m′

f ) is the shift in the transition

frequency with field to first order. The number of atoms left after removing all the

atoms above Ec is

Nleft =
∫ Ec

0
dE g(E)F(E) (4.13)

where F(E) is the statistical distribution function and g(E) is the density of states (see
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chapter 5). For a classical gas,

Nleft = N ×




1− e−η
(
1 + η + η2

2

)
η > 0

1 η < 0
(4.14)

where η = Ec
kbT

. The case η < 0, calculated strictly from the equation for Ec, corresponds

to an applied microwave frequency that is too high to remove any atoms from the trap.

This corresponds to a microwave frequency that would be resonant at a field lower than

the bias field.

The three regimes and corresponding microwave spectra described by equation

4.14 are shown in figure 4.3. The trap bias field sets the Zeeman shift ∆ν = ν9/2 − ν7/2

between the two transitions at the trap center. At relatively high T (case 1) where

δν >> ∆ν, a single frequency removes atoms nearly equally from both spin states. At

low T (case 3) where δν << ∆ν, the microwave lines are distinct and two microwave

frequencies are needed to cool both components in parallel. In the intermediate case

(case 2) where δν ∼ ∆ν, the application of any relevant microwave frequency will remove

unequal numbers of atoms from each species.

We call our evaporation scheme “simultaneous cooling” [53] because it is designed

to always remove energy and atoms from each component, and therefore cool each

component at the same time. The evaporation sequence starts at 1 mK in case 1 in

the “evap” trap (1.3 gauss B0). A swept single frequency microwave field is applied

(with frequency indicated by νevap in figure 4.3) until we reach case 2. The fact that

evaporation in case 2 changes the spin mixture is used to produce a 50/50% mixture

of mf = 9/2 and mf = 7/2 atoms by continuing to apply a single frequency. We often

refer to the evaporation from case 1 through case 2 as the “evap1” stage.

After a 50/50 mixture of atoms has been prepared, the trap is then adiabatically

ramped to the “tight” trap (5.3 gauss B0) to move to case 3. Cooling is continued

with the application of a two-frequency field (“evap2”), with the spacing between the

frequencies adjusted to preserve an equal mixture of components. Not only is a high
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Figure 4.3: Microwave lineshapes and evaporation regimes. We plot the fraction of
atoms that would remain in each component versus applied microwave frequency, with
the frequency appropriate for evaporation νevap indicated by a dotted line (note that
lower microwave frequencies remove higher energy atoms). The calculation assumed a
classical gas in which the microwave field removes all atoms above a particular energy.
The high T (case 1, Fig. 2), low T (case 3), and intermediate regimes (case 2) are
distinguished by the spread of frequencies δν resonant with atoms in the trap compared
with the Zeeman shift ∆ν at the trap center.

collision rate sustained, but energy is removed in a balanced way. Sympathetic cooling

by removing energy and atoms from only one component would fail once the number

imbalance became too large. In that case, the heat capacity carried by the other com-

ponent would prevent any change in temperature. At the end of the two-frequency

evaporation, atoms in either spin state may be removed to produce a spin-polarized

gas. The removal sweep is designed to sympathetically cool the remaining component.

4.3 Evaporation Sequence and Performance

4.3.1 Single Frequency Stage

The first stage of evaporation begins with roughly 4× 108 atoms at 1 mK in the

evap trap. The collision rate per atom is about 0.3 Hz, implying that the ratio of “good”

to “bad” collisions is about 100 and that evaporation should run-away. The evaporation

trajectory for the first stage is shown in figure 4.4. The data was analyzed assuming
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a 50/50 mixture of spin-states, and T/TF is plotted for the mf = 9/2 component. In

truth, the spin mixture starts at 70/30 (mf = 9/2/mf = 7/2) and the final cut is chosen

to produce a 50/50 mixture. This data was taken without the AG coil, and the spin

composition was not measured carefully throughout the entire trajectory.

The data is shown using the usual release sequence, meaning that the trap is

adiabatically ramped to the “tight” trap before release. Therefore, the temperature

and peak optical depth in the trap do not represent the values in the “evap” trap. For

an adiabatic ramp, T/TF is preserved. Assuming that the axial frequency is fixed, the

temperature scales with ω2/3
r . See the appendix to this chapter for information on the

ramp.

As shown in figure 4.4, the evaporation does run-away; the peak OD in the trap,

which is proportional to the collision rate, increases by nearly an order of magnitude.

Information on the efficiency of evaporation is contained in the plot of T/TF versus N .

The steepness of the slope is directly related to the evaporation efficiency — the most

efficient evaporation accomplishes a large change in T/TF with a small change in N .

We lower T/TF by two orders of magnitude with only a factor of 50 decrease in number.

The frequency sweep used for evaporation is broken up into four stages. Each

stage exponentially sweeps the frequency in time. The speed of the sweep, the microwave

power, and other parameters are optimized to produce the highest number at fixed

temperature. Details on these sweeps and the optimization procedure can be found in

the appendix to this chapter.

Data taken at the end of the single frequency stage (using the AG coil) are shown

in figure 4.5. The cooling clearly progresses into case 2, where more mf = 9/2 atoms

than mf = 7/2 atoms are being removed. In fact, the mf = 7/2 component is being

very efficiently sympathetically cooled. While the evaporative process has ceased to run-

away for the mf = 9/2 component, run-away is evident for the mf = 7/2 component

as seen in the peak OD shown at a 10 ms expansion time. A final cut of 1281.8 MHz
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Figure 4.4: Single frequency evaporation trajectory. This data was taken without the
AG coil, and the analysis assumes a 50/50 mixture. The total number N = N9/2+N7/2

is plotted, while T/TF is plotted for just the mf = 9/2 component. The cooling is
performed in the “evap” trap, but the measurements shown in this figure are made
after an adiabatic ramp to the “tight” trap.

would be chosen based on this data in order to produce a 50/50 mixture. It is also at

this cut where the mf = 9/2 peak OD starts to decrease.

The data in figure 4.5 also explains the advantage to using a partially spin polar-

ized gas. If the end of the single frequency cooling is set by the constraint of producing

a 50/50 mixture, a higher degree of initial spin polarization allows the evaporation to

end at lower T/TF . Because this cooling takes place in the high frequency “evap” trap,

it can be more efficient than in the “tight” trap and occur much faster.

The microwave power has an effect on the behavior at the end of the single
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Figure 4.5: End of single frequency evaporation trajectory. This data was taken using
the AG coil, and is plotted independently for each component. Note that the evaporation
occurs in the “evap” trap, but these measurements are made after an adiabatic ramp
to the “tight” trap. This data was taken at a 10 ms expansion time, using the AG coil
to separate the two spin components.

frequency evaporation (see figure 4.6). This data was taken by varying the final cut

to always produce a 50/50% mixture. Higher power allows a deeper cut and lower

T/TF for this stage of the evaporation. This behavior is consistent with the time-

independent model described in section 4.4, where the evaporation actually becomes

more efficient with higher power. The data, in conjunction with the model, suggests

that the evaporation performance is power limited.
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4.3.2 mf = 5/2 and mf = 3/2 Cleanout

After the first stage of evaporation, the trap is ramped to the “tight” trap. This

is done to move to case 3 cooling by increasing the bias field, adiabatically cooling the

gas, and therefore increasing ∆ν compared to δν. In the “tight” trap, the different spin

components can be separately addressed using multiple microwave frequencies at the

temperature of the gas after the “evap1” stage.

Before the two-frequency stage, mf = 5/2 and mf = 3/2 atoms that are present

are removed. This is done with a fast sweep on the |9/2, 5/2〉 → |7/2, 3/2〉 transition,

which is degenerate with the |9/2, 3/2〉 → |7/2, 5/2〉 transition. Because there are

relatively few atoms in these states, the sweep cannot cool the gas much and is as fast

as possible. The temperature of the gas after the sweep is shown in figure 4.7 versus the

exponential sweep rate. For more details on the sweep parameters, see the appendix to

this chapter.
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Figure 4.7: Fast mf = 5/2 and mf = 3/2 removal sweep timing. The sweep must be
done with a fast exponential sweep rate α since there are not enough atoms to efficiently
cool and defeat the heating.
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4.3.3 Two-frequency Stage

The two-frequency stage is also broken up into multiple exponential sweeps, each

of which is optimized separately (see the appendix to this chapter). There is an ad-

ditional parameter, ∆f , compared to the “evap1” sweeps which controls the spacing

between the frequencies. ∆f is adjusted for each sweep to produce a 50/50 mixture at

the end of the sweep (each sweep is 0.05-0.1 MHz long).

The constraint that sets ∆f in theory is that the cut energy should be identical

for each component when measured in units of kbT . If we set ν7/2 = ν9/2 + ∆f , and

solve for ∆f under this constraint we find that

∆f =
Λ7/2,7/2

µ7/2

[
ν9/2

(
µ9/2

Λ9/2,7/2
− µ7/2

Λ7/2,7/2

)
− ν0,9/2,7/2

µ9/2

Λ9/2,7/2
+ ν0,7/2,7/2

µ7/2

Λ7/2,7/2

]

(4.15)

where we have introduced new parameter ν0, which corresponds to the frequency that

is resonant at B0. To first order in the Zeeman shift, ν0,mf ,m
′
f
= 1286 MHz+Λmf ,m

′
f
B0.

According to the above equation, across a 0.15 MHz evaporation sweep in the tight

trap, ∆f should only change by ∼ 0.020 MHz. This is consistent with a measurement of

the microwave lineshapes shown in figure 4.8. For this measurement, the gas was cooled

and then spin polarized by removing all of the mf = 9/2 or mf = 7/2 atoms in order

to turn off rethermalization and heating. With a spin polarized gas, the gas cannot

rethermalize during the microwave lineshape measurement because s-wave collisions are

forbidden and p-wave collisions are heavily suppressed at this temperature. Heating is

also heavily suppressed (see section 4.5) for a spin-polarized gas. The temperature of the

remaining mf = 9/2 or mf = 7/2 gas was matched to 1.5 µK within the experimental

scatter on T .

A sweep from low to high frequency was applied, and the number of atoms left

was measured versus the final frequency. In the plot, the fraction of atoms remaining is

plotted versus the difference between the final cut frequency ν9/2 or ν7/2 and ν0,9/2,7/2
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or ν0,7/2,7/2. A constant offset of 1.55 MHz, which would correspond to ∆f , is removed

in the plot. In 4.8 is is clear that a constant ∆f within 30 to 40 kHz should work for all

of the two-frequency evaporation. Within this spread in frequency, the same fraction of

each gas is removed for the same difference between ν and ν0.
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Figure 4.8: Microwave lineshapes of spin-polarized gases. The gas is cooled and then
the mf = 9/2 or mf = 7/2 component is completely removed. The fraction of atoms
left after a sweep from low to high frequency is plotted versus the final cut from the
resonant frequency ν0 for the relevant transition at B0.

4.3.3.1 Original Two-Frequency Evaporation Results

In 1999 we were able to first cool below T/TF = 1 [53]. Data from a cooling

trajectory at that time is shown in figure 4.9 as a plot of T/TF versus N . This data

was taken with a mf = 7/2 removal sweep after the two-frequency stage. Working with
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spin polarized clouds not only simplified interpretation of the images, but the removal

sweep significantly cooled the gas (see section 4.3.4). The sweep occurs on a time scale

that is long compared to the collision rate so that the component that remains is in

thermal equilibrium. As a check, we have taken data varying the time for the removal

sweep by a factor of 10 and seen no change in the polarized gas thermodynamics. The

thermometry techniques that we use to determine T/TF will be discussed in the next

chapter.
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Figure 4.9: First demonstration of cooling below TF using two-frequency evaporation.
The data is taken with a mf = 7/2 removal sweep, so that the data is shown for the
resulting spin polarized gas.

A rather startling feature [53] appears in the evaporation trajectory once the gas

is cooled to T/TF=0.5. The forced evaporation becomes grossly inefficient in reducing

T/TF and many more atoms are removed to accomplish the same change in temperature.
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This plunge in cooling efficiency does not coincide with any observed change in the

atom loss (not due to evaporation) or heating rate (see 4.5 for an exhaustive heating

study). The behavior survives aggressive changes in the evaporation timing, variation

in the initial number, and replacement of the two-frequency stage with single-frequency

cooling in a lower B0 trap. The evaporation always failed at T/TF ∼ 0.5 in traps

covering ωr = 2π × 127 to 373 Hz, N = 3.5 × 105 to 1.2 × 106, and TF = 0.36 to

1.0 µK. Data comparing continued single-frequency evaporation in a B0 = 0.68 Gauss

trap (the “single-frequency” trap) to two-frequency evaporation without a mf = 7/2

removal sweep is shown in figure 4.10.
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Figure 4.10: Evaporation data from 1999 taken in different traps. The two-frequency
stage was replaced with a single-frequency stage in a low bias field trap. This data was
taken with a 50/50 mixture of components (no removal sweep), and is plotted for one
of those spin states. In either case, the evaporation becomes inefficient at T/TF ∼ 1.
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At the time, we attributed this change in the evaporation behavior to the patho-

logical collision rate behavior of fermionic gases discussed earlier. A time-dependent

calculation (see figures 4.11 and 4.12) of the evaporation process by Murray Holland

[54] revealed no fundamental limit in T/TF . However, Murray was able to show for an

optimized trajectory that the collision rate did start to plummet around T/TF = 0.8.

The decreasing collision rate was due partly to Pauli blocking of collisions and partly

to the Fermi pressure. This meant that the evaporation speed had to slow down as the

temperature decreased, making the evaporation performance very sensitive to technical

limits. Incidentally, his optimized trajectory in cut energy as a function of time was

very close to the frequency sweeps that we were already using. Murray’s optimized cut

energy fits almost perfectly to an exponential in time.
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Figure 4.11: Evaporation trajectory from the quantum kinetic evaporation model by
Murray Holland. The open squares (connected by a line) show the optimized evapor-
ation trajectory as determined by Murray’s calculation. The only technical limitation
he includes in the simulation is a finite magnetic trap lifetime. The closed circles and
open triangles are experimental data taken with spin polarized mf = 9/2 gases, using
an evaporative mf = 7/2 clean-out. The closed circles are the data originally published
in [53], while the open triangles show the improvement after optimizing the magnetic
trap current servos. Optimization of the current servos improved the energy resolution
with which atoms are removed from the trap; the comparison in this plots highlights
the importance of this resolution to the cooling.
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Figure 4.12: Collision rate calculation from the quantum kinetic evaporation simulation
by Murray Holland. The dashed line only includes effects due to the Fermi pressure,
while the solid line includes suppression due to Pauli blocking as well. The collision
rate is plotted as a function of time in the simulation, and the open circles and labels
indicate the value of T/TF at different times.
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We began to try to understand and overcome the technical limits to the cooling

process. One of the biggest breakthroughs was improving the bias field stability and

consequently the evaporation energy resolution. This improvement is detailed in 2.5.5,

and involved reducing the bias field noise on the evaporation timescale by a factor of

almost 10. A trajectory after this improvement is shown in figure 4.13. Now we were

able to cool a spin polarized gas (still using an evaporative mf = 7/2 removal sweep)

to T/TF = 0.3. This was a huge gain in our ability to observe the FD statistics.

We revisited the limit on our cooling at this point. Data taken with different

initial N is shown in figure 4.14. The initial number was reduced by a factor of two

by limiting the number of atoms loaded into the science MOT. Again, the evaporation

failure seemed to be related to the degree of degeneracy.
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Figure 4.13: Evaporation trajectory after optimization of the magnetic trap current
servo’s. This trajectory should be compared directly to the data in figure 4.9. Optimiz-
ing the current servo’s reduced the noise in the bias field on the evaporation timescale
by a factor of 10. This data was taken with a spin polarized gas, evaporatively removing
the mf = 7/2 component after the “evap2” stage.
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Figure 4.14: Evaporation trajectory with different initial number, taken under the same
conditions as the data in figure 4.13. The evaporation is not sensitive to changes in the
initial number on the order of a factor of two.



198

4.3.3.2 Evaporation Results circa Late 2000

Our next big breakthrough was discovering the problems with various frequency

synthesizers and also increasing the microwave power. We switched from using an HP

E4420B and HP 8656B synthesizer to two HP E4420B’s.2 We also replaced a coil

that was impedence matched using a resonance created with surface mount components

with the stub tuned coil described in section 2.7. We were now able to cool a 50/50

mixture to T/TF ∼ 0.35 (see figure 4.15). The cooling power of the cleanout sweep after

two-frequency evaporation was no longer needed in order to cool into the degenerate

regime.

Several other improvements allowed us to get even colder. Motivated by the model

explained in 4.4, we investigated the sensitivity of the evaporation to the position of the

“bottom” frequency of the sweep compared to the resonant frequency at the bottom

of the trap, ν0. The sweep “bottom” is the frequency that the exponential sweep

approaches at long times (see the appendix to this chapter for more details). The data

in figure 4.16 for a 50/50 mixture (although only mf = 9/2 data is plotted) shows that

this sweep “bottom” frequency should be around 0.15 MHz higher than ν0.3 Note that

ν0 is measured as described in chapter 1 by measuring T versus the final evaporation

frequency.

The two-frequency evaporation is also sensitive to the bias field noise on a scale

that is difficult to measure directly. The current servo’s are optimized for a specific F4

drain-source voltage drop.4 Data for themf = 9/2 component for a deep two-frequency

cut is shown in figure 4.17 versus this voltage (altered by changing the power supply

voltage). The servo’s do their job well DC — this data was taken at a fixed cut and the
2 This switch essentially increased the microwave duty cycle, and effective power, by a factor of 3-4.

With the 8656B, the microwave power had to be attenuated for long periods of time in order to avoid
frequency glitches.

3 This means that the sweep “bottom” is past the actual minimum of the magnetic trap.
4 This voltage drop sets various capacitances associated with the FET and changes the servo perfor-

mance.
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Figure 4.15: Two-frequency evaporation trajectory taken mid 2000 with a spin-mixed
gas. This data was taken with no removal sweep and using the AG coil. Compared to the
data in figure 4.13, the improvement here was from using better frequency synthesizers
and higher microwave power.

temperature (which is related to B0) did not systematically shift with the FET voltage

within the normal experimental scatter. The evaporation efficiency, measured by the

number left after the sweep, does depend on the voltage with a peak close to 0.9 V.
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Figure 4.16: Evaporation performance vs. the sweep “bottom” frequency. This data was
taken with 50/50 mixed clouds and the AG coil, although data for only the mf = 9/2
component is plotted. The absolute temperature T was kept constant by changing the
final evaporation cut. The changes in T/TF are then due to changes in the number of
atoms left after evaporation. The vertical line indicates the location of ν0. For high
values of the sweep bottom frequency, the evaporation still works well but needs to be
slightly reoptimized (triangle). For sweep bottom frequency values to close to the trap
bottom, no amount of reoptimization can help the evaporation performance.
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Figure 4.17: Two-frequency evaporation performance vs. the main FET F4 drain-source
(DS) voltage drop. The DS voltage was varied by controlling the power supply voltage
and affects the current servo performance on a scale that is difficult to measure directly.
This data was taken with 50/50 mixed clouds and the AG coil, although data for only
the mf = 9/2 component is plotted. The efficiency of the evaporation, indicated by
the highest N left after the evaporation, occurs at a voltage drop ∼ 0.9 volts. The
temperature does not shift systematically with changes in the DS voltage, and the
scatter is consistent with the normal scatter in T at a fixed evaporative cut.
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A typical example of an evaporation trajectory circa late 2000 is shown in figure

4.18. Without too much work, we are able to cool a spin mixed gas to T/TF = 0.25.

With careful manipulation of ∆f throughout the evaporation sequence and particularly

in the last stage, T/TF = 0.2 can be reached (figure 4.19). The data in figure 4.19

also demonstrates the sensitivity to ∆f . The data was taken at fixed ν9/2, so that ∆f

changes the final cut into the mf = 7/2 component. This is clear in the plot of N versus

∆f . Note that the ∆f that we find experimentally does not agree with the result of

equation 4.15, which predicts 1.67 MHz for the value of ν9/2 used in this data. This

is probably due to unequal power in driving the relevant microwave transitions and

relative gravitational sag.5

The data in both figures 4.18 and 4.19 were taken with a 500 ms microwave

pulse to remove mf = 5/2 and mf = 3/2 atoms before the last stage of two-frequency

evaporation. We observe that atoms in these states are actually produced during the

two-frequency stages. The heat capacity carried by atoms in these states can foil the

last stage of cooling.

5 Since the microwave transitions we use are driven by different components of the microwave mag-
netic field, it is unlikely that they are driven equally well. This is compensated for by changing ∆f
and cutting deeper into one component. In addition, relative sag causes the components to experience
slightly different bias fields.
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Figure 4.18: Typical two-frequency evaporation trajectory from late 2000. This data
was taken with the AG coil, and T/TF is measured and plotted independently for each
component. Without too much work, an equal mixture of components can be cooled to
T/TF ∼ 0.25. The failure of the cooling in T at deep cuts is particularly bad in this
data, but often much colder absolute temperatures can be reached (see the next plot,
for example). Also, the spin mixture is this data set was not controlled well because
∆f was not set properly — with slightly more effort we can keep the mixture fixed to
50± 2%.
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Figure 4.19: Sensitivity to ∆f , the difference between ν9/2 and ν7/2 during “evap2”.
These are our coldest temperatures with a spin mixed cloud (T/TF = 0.2 for the mf =
9/2 component). The final ν9/2 cut was fixed to 1272.41 MHz for this data. Note that
this data was taken at a slightly different bias field than the data in figure 4.18.
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4.3.4 mf = 7/2 Removal Sweep

If a spin-polarized, non-interacting gas is desired, one component or the other

can be removed evaporatively after the two-frequency evaporation is finished. This is

done with a frequency sweep, which is optimized to produce the coldest temperature in

the remaining component (see the appendix to this chapter for details). An optimized

trajectory for a mf = 7/2 removal sweep is shown in figure 4.20. The data is plotted vs.

the final ν7/2 cut of the frequency sweep that is used to remove the mf = 7/2 atoms.

The mf = 9/2 component is sympathetically cooled, with the temperature falling by a

factor of 2 in this data.6 Since there is no loss in atom number, T/TF is lowered by

the same amount.

6 Note that this is the theoretically best (fractional) reduction in temperature that can be accom-
plished for a classical gas starting with a 50/50 mixture of spin components.
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Figure 4.20: Optimized mf = 7/2 removal sweep. The mf = 9/2 gas is sympathetically
cooled in this process from its initial ∼ 350 nK temperature. See the appendix to this
chapter for details on the single frequency sweep that is used to remove the mf = 7/2
atoms.
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4.4 Toy Model of Evaporation

4.4.1 Overview

After measuring cross-dimensional relaxation times as short as 60 ms at our lowest

temperatures (see chapter 6) with 85% of the mf = 7/2 component removed (from an

initially equal mixture of spin states), we guessed that our evaporation was not failing

because of low collision rate. This hypothesis was advanced by the observation that

optimal two-frequency evaporation performance occurred for a frequency sweep with a

0.07 Hz rate that took over 10 seconds. It took this long to cool the gas from 600 to 100

nK, while the rethermalization time was probably shorter than 30 ms! We constructed

a toy model [102] of the evaporation in order to explore technical limits that were not

included in Murray’s model.

We assume that we have experimentally found the best parameters (such as the

evaporation speed) for the evaporative cooling procedure given our technical limits. The

point behind this model is to then look at how changes in the technical limits impact

the performance. The model is not designed to look at extensive re-optimization, but

only small deviations from the existing conditions. Our hope was to find easy changes

to the experiment that could lead to gains in the lowest achievable T/TF .

We develop two models, one for simultaneous evaporation of two species and

one for single species evaporation. The single species model is equivalent to the two

species model for perfectly balanced evaporation, and includes a finite energy resolu-

tion (caused by magnetic field noise) in removing atoms. The two component model

is computationally intensive, and does not include the finite energy resolution in the

interest of expediency. We use these models only to explore the behavior of the two-

frequency evaporation trajectory. The model uses a frequency sweep identical to the

sweeps described in section 4.7.2.2 and the appendix to this chapter, and calculates the

cut energy as described by equation 4.12. The sweeps are not divided into stages as in
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the experiment, but rather ∆f is set according to equation 4.15 for balanced evapor-

ation. ∆f can also be adjusted in the model by hand to make the cut energy different

for the two components.

4.4.2 Calculation Mechanics

The model divides the evaporation sweep into 100 ms steps. The choice of step size

dt=100 ms is arbitrary and serves only as a convenient way to divide up the frequency

sweep. As a check, the step size has been varied by a factor of two (both higher and

lower) and no changes in the simulation results were observed. For each step i (which

occurs at time idt), the frequencies ν9/2,i and ν7/2,i and corresponding cut energies

Ec,i are calculated. See the appendix to this chapter for an explanation of the time

dependence of the microwave frequency.

At step i in the iterative process, the energy and temperature removed by the

microwave knife is calculated for either species. For the single species case, we have (see

chapter 5)

dNi =
1

2λ(h̄ωr)3

∫ ∞

Ec,i

dε
ε2

1
Zi
e

ε
kbTi + 1

E erf(ε/Σ) + 1
2

(4.16)

dUi =
1

2λ(h̄ωr)3

∫ ∞

Ec,i

dε
ε3

1
Zi
e

ε
kbTi + 1

E erf(ε/Σ) + 1
2

(4.17)

where Zi is the fugacity at step i and E is the total probability to make a transition to

the untrapped state. The integral in each case is done over the energy of the atoms ε

in the magnetic trap.

The error function in equations 4.16 and 4.17 takes into account the finite energy

resolution in removing atoms caused by noise in the bias field. We assume gaussian

noise on B0 with r.m.s. size δB0, which translates into an r.m.s. spread in cut energy

Σ = 2
9mfµb∆B0 (see equation 4.12). The idea is then that as an atom moves in the

harmonic potential past the cut energy, the gaussian noise is integrated into an error
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function.7 So, many Σ above Ec the atom has probability E to be removed and many

Σ below Ec the atom is not addressed by the microwave field and has no probability for

removal. Note that for the two component case, equations identical to 4.16 and 4.17 are

used except the [erf(ε/Σ) + 1]/2 is left out. This is done to speed up the calculation.

The fugacity at each step is solved via the number normalization condition:

Li3(−Zi) = − 1

6
(

Ti
TF,i

)3 (4.18)

where TF,i is the Fermi temperature at step i and Lin is the polylogarithmic function

of order n.

For each step, the new N and U is calculated for each species:

Ni = Ni−1 − dNi −Ni−1
dt

350 sec
(4.19)

Ui = Ui−1 − dUi + 3
(
8 + 8

Ni−1

106

)
× 10−9kbNi−1dt (4.20)

where dt is the time step, 350 sec is the trap lifetime, and the third term in the equation

for Ui is the experimentally measured heating rate in the “tight” trap (see the section

on heating in this chapter). For the two component case, we have these expressions for

each spin component.

For the single species case, the new temperature is calculated by solving the

equations:

Ni = − 1
λ

(
kbTi
h̄ωr

)3

Li3(−Zi) (4.21)

Ui = − 3
λ

(kbTi)4

(h̄ωr)3
Li4(−Zi) (4.22)

simultaneously for the new value of Ti and zi. For the two species case, we solve

Ni,9/2 = − 1
λ

(
kbTi
h̄ωr,9/2

)3

Li3(−Zi,9/2) (4.23)

Ni,7/2 = − 1
λ

(
kbTi
h̄ωr,7/2

)3

Li3(−Zi,7/2) (4.24)

Ui,9/2 + Ui,7/2 = − 3
λ
(kbTi)4

[
1

(h̄ωr,9/2)4
Li4(−Zi,9/2) +

1
(h̄ωr,7/2)4

Li4(−Zi,7/2)

]
(4.25)

7 We use the same definition of the error function as Mathematica.
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simultaneously, since Ui,9/2 + Ui,7/2 is the conserved quantity.

4.4.3 Simulation Results

We start the simulation with the same conditions (N and T ) as the data in

figure 4.18. We find that we have to set E = 0.2 to match the experimentally observed

trajectory. The trajectory for the single species case as a function of E is shown in

figure 4.21. For this data, the energy resolution was set to the experimentally measured

upper limit (δB0 = 2 mG, which gives Σ/kb = 135 nK). With only a modest increase in

power, the removal efficiency would no longer be a limit to the evaporation. A transition

probability of 0.2 is actually not unreasonable considering our experimental parameters

(see the appendix to this chapter).

The effect of the width of the microwave knife is shown in figure 4.22. This

calculation was done with E = 0.2. Before the current servo optimization, the field

noise was equivalent to 1350 nK energy resolution. At that time, the width of the

knife was severely limiting the evaporation. The width (now equivalent to 135 nK) is

currently not much of a limitation, however.
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steps in the simulation for different experimental parameters.
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Moving to the two species calculation, we show the trajectory without any heating

(with E = 0.2) in figure 4.23. The model suggests that the evaporation is actually limited

by the combination of heating and an inefficient microwave knife. If the microwave

removal efficiency is improved or the heating is eliminated, then the evaporation can

reach lower T/TF .
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Figure 4.23: Evaporation simulation without heating for two components. This simu-
lation was done with E = 0.2.

Data showing the sensitivity to ∆f is shown in figure 4.24. The case plotted with

thin lines, with ∆f set perfectly, compares to the experimental trajectories qualitatively

well (compare to figure 4.18 — the difference in the frequencies is caused by a difference

in B0 between that data and the simulation). The case plotted with thick lines is with

∆f systematically high by only 3 kHz throughout the entire trajectory. This eventually
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produces an imbalance in the spin mixture. However, the mf = 9/2 component is still

cooled efficiently. At some point, an error in ∆f becomes catastrophic, as all of the

atoms in one component will be removed before reaching low T .
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It is possible that we are not as efficient at removing the mf = 7/2 atoms since

the magnetic field from the microwave coil should predominantly produce circular po-

larization. To explore this effect, we show a trajectory in figure 4.25 with E = 0.3 for the

mf = 9/2 component and E = 0.1 for the mf = 7/2 component. ∆f is forced systemat-

ically high by 10 kHz during the trajectory to fix the spin composition to roughly 50%.

This means that the microwave knife is cutting deeper in the mf = 7/2 component

compared to the mf = 9/2 component. Having an unbalanced microwave knife is very

detrimental to the evaporation performance — we find that the trajectory reaches only

T/TF=0.4 compared to 0.25 for the perfect case.
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Figure 4.25: Evaporation simulation with unequal removal probability for different spin
components. This simulation was done with E = 0.1 for the mf = 7/2 component and
E = 0.3 for the mf = 9/2 component. ∆f was forced systematically high by 10 kHz in
order to fix the spin composition to roughly 50%.

Finally, we explore the dependence on the location of the “bottom” of the fre-

quency sweep compared to ν0 in figure 4.26. This data was taken for the spin mixed

case, with E = 0.2, extracting the best value of T/TF,9/2 reached in the trajectory. This
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data is remarkably similar to the experimentally obtained results shown in figure 4.16.

The best performance is with an aggressive cut at the end of evaporation, faster than

an exponential with ν0 as the endpoint. If heating is removed from the simulation, the

dependence shown in this plot disappears. Presumably, the aggressive cut is needed to

boost the cooling rate compared to the heating rate.
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Figure 4.26: Evaporation simulation dependence on the location of the sweep “bottom”
compared to ν0. The frequency resonant at B0, ν0, is indicated by a vertical line in this
plot. The simulation was done for two species with E = 0.2, although the minimum
value of T/TF is plotted only for the mf = 9/2 component.
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4.4.4 Evaporation Simulation Conclusions

There are some important conclusions to draw from the results of this toy model.

First of all, the simulation can qualitatively describe the evaporation behavior without

any information on the collision rate. This confirms our suspicion that the evaporation

is not limited by low collision rate. Magnetic trap bias field noise and imperfect spin

composition caused by errors in ∆f are also not currently limits. Locating the frequency

sweep “bottom” is important to the evaporation, but this does not really limit T/TF .

According to the model, there are three limits to the evaporation performance:

limited microwave power, heating, and the microwave power balance between transi-

tions. A modest increase in microwave power (by a factor of two) should remove this

as a limit, although other factors may then come into play. Experimentally, it might

be fruitful to investigate the dependence on the relative power between ν9/2 and ν7/2,

which we have not done. Reduced heating could also lead to the ability to reach lower

T/TF .

4.5 Heating Study

4.5.1 (Lack of) Models

We spent a great deal of time investigating the heating of 40K atoms held in

the magnetic trap. This detailed study was done in hopes of defeating the heating as

a limit to the evaporative cooling (see section 4.4). Other experiments have observed

heating due to inelastic collisions and hot “Oort” clouds of alkali atoms left behind by

evaporation or populated by collisions with residual gas atoms. Two BEC experiments

at JILA observe much lower heating rates than we do under similar conditions, while

a third observes a heating rate comparable to ours. Carl Wieman’s 85Rb experiment

has a 3-5 nK/sec heating rate in a “baseball” coil Ioffe-Pritchard trap.8 Eric Cornell’s
8 This heating rate is measured using a Feshbach resonance to set the scattering length to ∼ 100 a0.
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double-MOT 87Rb experiment has only 1 nK/sec heating rate with atoms held in an

8 Hz TOP trap. The Cornell “People’s BEC” experiment observes a ∼ 10 nK/sec

heating rate with 87Rb atoms held in a ωr = 2π × 100 Hz Ioffe-Pritchard trap. Our

heating rate, with a similar number of atoms, tends to be between 10 and 20 nK/sec.

We find that the heating rate in our experiment scales linearly with the number of

trapped atoms N , has some weak dependence on the trap parameters, and depends on

the spin mixture in the same way as the collision rate. The heating does not depend on

temperature, is not affected by a microwave “shield”, and is not due to magnetic trap

field noise. Unfortunately, these dependencies make it difficult to significantly reduce

the heating rate relative to the cooling rate.

Our heating data are not consistent with any known heating models [103,104].

Because the states (mf = 9/2 and mf = 7/2) used in these studies do not undergo

inelastic collisions, we rule out heating due to inelastic processes.9 Heating can also

be caused by glancing collisions with residual gas atoms that result in 40K atoms with

energy less than the trap depth [103]. Glancing collision heating gives rise to an energy

transfer rate (U̇) to the gas proportional to N , or a heating rate (Ṫ ∝ U̇/N) independent

of any of the 40K gas properties. For this process, the 40K gas is modelled as a stationary,

spherical target. The probability for an incident residual gas atom to collide with a 40K

atom is proportional to nKσl, where l is the cloud size, σ the collision cross section, and

nK the 40K gas density. The number of residual gas atoms that are incident on the 40K

“target” per second is proportional to nbl
2vb, where nb is the number density of residual

gas atoms and vb is the mean residual gas atom velocity. If nK ∝ N/l3, then the overall

rate of collisions with residual gas atoms is proportional to N and has no dependence

on l. The rate of residual gas atom collisions is probably much lower than the collision

rate in the gas, so that the energy deposition rate U̇ is then proportional to N .
9 Again, these states are affected by dipolar relaxation, but the rate should be so low that it cannot

account for our heating rates.
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Another process than can drive heating is secondary collisions between high en-

ergy 40K atoms (created by glancing collisions or other processes) and cold 40K atoms.

As explained in [104], this kind of heating and “Oort” cloud heating give rise to a

U̇ ∝ ΓnK l, which is temperature dependent through the dependence on the collision

rate in the cold alkali gas Γ and l. Since we observe no temperature dependence over a

wide range, we conclude that this heating mechanism is not present.

4.5.2 Characterization

The heating rate is measured by measuring the temperature of the gas for different

hold times in the magnetic trap. The data in this section cover the classical to quantum

regime. The heating rate is remarkably constant in time as seen in figure 4.27 for

data taken in the tight trap. The temperature fits very well to a linear function of

time, which implies that the heating rate is temperature independent. For the data

shown in figure 4.27, the density in the gas decreased by over an order of magnitude

and the collision rate by a factor of 30 because of the increase in T . This data also,

therefore, suggests that the heating rate is independent of density and collision rate. It

is possible that the heating rate is dependent on a combination of parameters such that

the temperature dependence cancels. For example, if the heating rate was proportional

to Γ/n2
pk, where Γ is the collision rate and npk the peak density in the gas, then the

heating rate would appear to be temperature independent. Further, the linear heating

implies that parametric heating caused by magnetic trap noise is not the culprit, since,

in that case, the temperature should increase exponentially in time.

The data in figure 4.28 demonstrates the linear dependence of the heating rate

on the number of atoms N . This data was taken while trying to determine if heating

due to a hot Oort cloud was at work. By skipping various stages of evaporation, we

tried to create a hot Oort cloud (or modify an existing one) of atoms and then measure

the impact on the heating rate. This data in shown in figure 4.28. All of the data has
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Figure 4.27: Heating of the trapped gas. A linear fit (solid line) is used to measure the
heating rate, which is remarkably constant in time. This data was taken in the “tight”
trap, with 2 × 106 total atoms and an approximately equal mixture of mf = 9/2 and
mf = 7/2 atoms. The measured heating rate is 31.6(8) nK/sec.

the same scaling with N , which matches the normal dependence without any changes in

the evaporation sequence. For the data in figure 4.28, the beginning of evaporation was

varied from 1190-1250 MHz, and sections were skipped starting from 1269-1280 MHz.

The final cut was fixed at 1282 MHz, which fixed the initial temperature to 1.43 µK.

This data suggests that Oort heating is not at work, as the character should change

with the properties of the Oort cloud. This is also consistent with the observation that

a microwave “shield” (an applied microwave field that is resonant far from the edge of
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the gas) has no effect on the heating.
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Figure 4.28: Heating rate dependence on properties of hypothetical Oort cloud. The
initial evaporative cut was varied and sections of the evaporation sequence were skipped
in order to try and change the properties of an Oort cloud that might be causing
heating. This data suggests that Oort heating is not a dominant source of heating in
our experiment. This data was taken in the “tight” trap, with an approximate 50/50
mixture of spin components.
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Noise on the magnetic trap current can also drive heating through parametrically

driving energy into individual atom trajectories [105]. We measured the heating rate

dependence on N for different traps before the servo optimization; the results are shown

in table 4.1. We do not understand the dependence on the trap parameters (bias field

and harmonic trapping frequencies), and the base heating with N = 0 seems to vary

significantly over months and years. We found no significant difference in the heating

rates immediately after the servo optimization. This suggests that the heating is not

being caused by magnetic field noise, since the servo optimization reduced the bias field

noise by a factor of 10. Further, we measured the effect on the heating rate caused by

mechanically driving the coils. A PZT that was mounted rigidly to the optical table

was butted up against one half of the bias coils and driven with a white noise source

spanning DC-2 kHz. There was no difference in the heating rate with and without the

drive on. Finally, we tested the heating rate dependence on the main FET drain-source

voltage drop. We know that this voltage drop changes the servo behavior and the noise,

but we observed no effect on the heating rate as shown in figure 4.29.

trap N dependence

“load” Ṫ = −14(6) + 19(4) ·N/106 nK/sec
“tight” Ṫ = 8(6) + 8(1) ·N/106 nK/sec
“evap” Ṫ = 32(7) + 8(3) ·N/106 nK/sec

Table 4.1: Heating rate dependence on trap parameters before servo optimization. Note
that the heating rate in the “evap” and “load” trap were determined using temperatures
measured after a ramp to the “tight” trap.
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Figure 4.29: Heating rate dependence on magnetic trap power supply voltage. Changing
the voltage changes the main FET drain-source voltage and the servo and current noise
characteristics. From this data, which has the usual dependence on N , we conclude
that the servo noise on this low level is not playing any role in heating. This data was
taken in the tight trap, with an approximately 50/50 mixture of spin components.
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We do have the ability to investigate the heating characteristics in a way that

other experiments do not. We can change the spin composition at fixed total number

and temperature. This varies the overall collision rate in the gas without changing the

density or temperature. The results for this measurement at 190 nK in the tight trap is

shown in figure 4.30. The heating rate is plotted versus both the spin composition and

a quantity proportional to the overall collision rate. The heating rate depends on the

spin composition in the same way as the overall collision rate in the gas.
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Figure 4.30: Heating rate dependence on spin composition at 190 nK in the tight trap.
The heating rate is plotted against the fraction of atoms in the mf = 9/2 component,
and a quantity proportional to the overall collision rate in the gas. The total number of
atoms N = N9/2 +N7/2 was kept relatively fixed to 2× 105 in this measurement. Note
that this data, which was taken ∼ 1 year later than the other data in this section, shows
a higher heating rate than we might expect from the previously measured dependence
on N .

4.6 Chapter Conclusions

We have implemented a unique, two-component cooling scheme that allows us to

cool the fermionic atom gas into the quantum degenerate regime. Since the spin degrees
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of freedom are frozen in our system, we tend to think of the 40K gas as two separate

gases, each of which maintains thermal equilibrium only through its contact (through

collisions) with the other. Our “simultaneous cooling” scheme is designed to remove

energy and atoms from each component in a balanced way by taking advantage of the

adjustable magnetic trap parameters and multiple microwave frequencies. Simultaneous

cooling allows us to cool the an equal mixture of spin components to temperatures as

cold as T/TF ∼ 0.2.

By comparing the evaporation performance to a time dependent and a toy model,

we find that the evaporation performance is probably technically limited. A model

constructed by Murray Holland suggests that there is no fundamental limit to our

cooling scheme. Indeed, the rethermalization rate in the gas should be high enough for

evaporation to work well even at our lowest temperatures. And, technical improvements

to the magnetic trap stability and microwave frequency sources over several years have

allowed us to reach lower and lower T/TF . The toy model suggests that the evaporation

performance is currently (as of late 2000) limited by heating and insufficient microwave

power.

The prospects are still bright for cooling the gas to even lower T/TF . The micro-

wave power could be increased by installing a higher power amplifier (used 20 W trav-

elling wave tube amplifiers are easy to find), and the resulting effect on the evaporation

performance could be readily tested. The toy model suggests that a study of the relative

balance of microwave power between the transitions used for evaporation may be key

to reaching lower T/TF . Also, reducing the heating rate relative to the cooling rate

may still be possible, although more heating studies are needed. Identifying the heat-

ing mechanism and understanding the heating rate dependence on the magnetic trap

parameters may prove fruitful.
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4.7 Appendix

4.7.1 Ramps

As mentioned in chapter 2, the ramps are executed by an Stanford Research

Systems DS345 arbitrary waveform generator that is multiplexed with the stable control

voltages. The ramp is programmed via GPIB into the waveform generator as a series

of voltage-time coordinates. The generator is then TTL triggered to activate the ramp,

and the multiplexer is switched at the beginning and end of the ramp. The requirements

for adiabaticity are to ramp slower than the collision rate and harmonic trap frequencies.

Also, the SRS voltage must be carefully matched to the control voltages at the beginning

and end of the sweep in order to avoid exciting slosh. The slosh is excited by sudden

changes in the trap center due to sag. In practice, the ramp time is limited on the long

side by heating. The ramp time is chosen to produce a ramp that is as adiabatic as

possible. The ramps are linear in the bias coil current vs. time. The ramp from the

“load” to “evap” trap takes 100 ms, and the ramp from the “evap” to “tight” trap takes

525 ms.

4.7.2 Frequency Sweeps

4.7.2.1 Single Frequency

The frequency sweeps for single-frequency evaporation follow the form

f(t) = fb + (f0 − fb)e−αt−βt2 (4.26)

where fb is the sweep “bottom frequency”, f0 is the start frequency, α is the evaporation

rate, and β is an acceleration parameter. An exponential sweep removes an equal

fraction of the energy in the gas per unit time for a classical gas, and is also generally

very flexible. Exponential sweeps can easily be turned into linear sweeps, and multiple

sweeps can be used to approximate any function. The frequency sweep is executed by
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a loop of QuickBASIC code

starttime = TIMER
time = 0
IF beta = 0 THEN

duration! = -1! / alpha! * LOG(1! - (gotofreq - startfreq) /
(zerofreq - startfreq))

ELSE
C = LOG(1! - (gotofreq - startfreq) / (zerofreq - startfreq))
duration! = (-alpha! + SQR(alpha! ^ 2 - 4 * C * beta!)) / 2 / beta!

END IF
PRINT "Evaporation will take "; duration!
CALL attenon(power)
WHILE time < duration!

frq# = startfreq + (zerofreq - startfreq) *
(1 - EXP(-time *(alpha! + beta! * time)))

CALL IBWRT(microhp%, "FREQ " + LEFT$(STR$(frq#), 11) + " MHZ")
qwait 40
time = TIMER - starttime

WEND
CALL IBWRT(microhp%, "FREQ " + STR$(gotofreq) + " MHZ")
qwait 100

which sends a frequency set command to the synthesizer based on the time. In this way

the most accurate sweep is produced. The qwait command (which adds a 40 ms pause)

after the frequency set command is necessary in order to allow the synthesizer GPIB

processing time.

The evaporation in the “evap” trap is broken up into four sweeps, from 1190 MHz

to ∼ 1282 MHz. The sweep parameters for each stage are optimized to maximize N

at the end of “evap1”.10 The synthesizer power is constant for all the sweeps. The

bottom frequency is always set to coincide with the |9/2, 9/2〉 → |7/2, 7/2〉 transition

frequency at B0, typically 1282.7 MHz. The sweep parameters are given in table 4.2.

stage α β duration

1190-1250 MHz 0.03 Hz 0 Hz2 35 sec
1250-1270 0.07 0 13.7
1270-1278 0.07 0.001 14.8
1278-x 0.05 0 33-44

Table 4.2: Single frequency evaporation sweeps. The end frequency x for “evap1” ranges
from 1281.8-1282.2 MHz.

10 Note that the evaporation parameters should be optimized for the highest N at fixed temperature.
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The mf = 5/2 and mf = 3/2 removal sweep in the “tight” trap also uses this

routine, with typical parameters α=10 Hz, sweep from 1279.15 to 1279.25 MHz, sweep

bottom at 1279.35 MHz. This sweep is optimized by shifting all three frequencies

around together to minimize the temperature of the gas and the number of mf = 5/2

and mf = 3/2 atoms that are left afterward. The sweep rate α is set as described in the

text. The width of the sweep may need to be changed if the initial cloud temperature

changes significantly.

The mf = 7/2 cleanout sweep at the end of “evap2” uses a single frequency

evaporative sweep as well. Typical parameters are α = 0.07 Hz, sweep from 1273.9-

1274.2 MHz, sweep bottom at 1274.3 MHz. This sweep is optimized by minimizing the

temperature of the remaining mf = 9/2 component. A standard procedure that works

well is: set the start of the sweep to ν9/2+∆f , move the sweep end and bottom together

to minimize T9/2 after the sweep, vary α to minimize T9/2, then finally vary the sweep

end relative to the sweep bottom.

4.7.2.2 Two Frequency

The sweeps for two-frequency evaporation follow the form

f1(t) = fb + (f0 − fb)e−αt (4.27)

f2(t) = f1(t) + ∆f (4.28)

where an acceleration parameter is not used. The frequencies f1 and f2 correspond to

ν9/2 and ν7/2, respectively. Similar QuickBASIC code is used to execute the sweep:

starttime = TIMER
time = 0
CALL attenon(power)
tau! = 1! / alpha!
duration! = -tau! * LOG(1! - (gotofreq - startfreq) / (zerofreq - startfreq))
PRINT "Evaporation will take "; duration!
WHILE time < duration!

frq# = startfreq + (zerofreq - startfreq) * (1! - EXP(-time / tau!))
frq2# = frq# + deltaf!
CALL IBWRT(microhp%, "FREQ " + LEFT$(STR$(frq#), 11) + " MHZ")
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qwait 40
CALL IBWRT(micro%, "FREQ " + LEFT$(STR$(frq2#), 11) + " MHZ")
qwait 40
time = TIMER - starttime

WEND
CALL IBWRT(microhp%, "FREQ " + STR$(gotofreq) + " MHZ")
CALL IBWRT(micro%, "FREQ:CW " + STR$((gotofreq + deltaf! - fslope! *

(zerofreq - gotofreq))) + " MHZ")
qwait 100

where a pause after each GPIB command is required. The synthesizers tend to glitch if

there is any activity on the GPIB bus during frequency switching.

The two-frequency evaporation is also broken up into stages. These stages are

also individually optimized, and the sweep bottom frequency is set as described in this

chapter. Although the single-frequency stage optimized parameters are constant over

many months, the two-frequency stage parameters typically must be tweaked on a daily

basis. A typical breakdown is described in table 4.3. A microwave pulse before the last

stage is used to remove mf = 5/2 and mf = 3/2 atoms that are created in previous

sweeps. We usually set α to be constant across all the sweeps as variation seems to have

little effect. The sweeps in table 4.3 use 1272.7 MHz as a bottom frequency.

stage α ∆f duration

1272.15-1272.3 MHz 0.07 Hz 1.670 MHz 4.5 sec
1272.3-1272.4 0.07 1.677 4.1 sec
1272.4-1272.45 0.07 1.676 2.6 sec

500 ms pulse at 1279.25 MHz
1272.45- 0.07 1.674

Table 4.3: Two-frequency evaporation sweeps.

4.7.3 Landau-Zener Transitions

A dressed state description must be used to accurately calculate the probability

of removing atoms from the trap via microwave transitions [106]. Consider the case of

trying to remove an atom in state |1〉 by transferring it to |2〉. The microwave field



230

couples the states at a location in space where the magnetic field from the trap causes

the frequency to be resonant with the |1〉 → |2〉 transition. As the atom approaches the

resonant region, the states adiabatically transform into each other in order to create an

avoided crossing. A transition to the untrapped |2〉 state occurs if the resonant region

is traversed adiabatically.

The probability to undergo a diabatic [107], or Landau-Zener transition, is given

by

P = exp

[
−2π |V12|2

h̄(dE/dt)

]
(4.29)

where V12 is the matrix element connecting states 1 and 2 and dE/dt is the rate of

change of the energy difference between the states as the atom passes through the

resonant region. The probability for the atom to be removed from the trap is then

1− P .

In order to calculate P we must calculate the matrix element V12. The term in

the Hamiltonian that couples the states is −!µ · !B where !µ is the total magnetic moment.

We evaluate the matrix element by breaking up the total angular momentum into it’s

components: !F = !S + !L+ !I. For the ground states, !L = 0 and we ignore the magnetic

field coupling to the nuclear spin compared to the electron spin. The relevant matrix

element is then V12 = 〈2|2µb!σ · !B|1〉 where !σ is the Pauli spin matrix, µb is the Bohr

magneton, and the factor of 2 is for the electron g-factor.

Let us consider the particular case of the transition |9/2, 9/2〉 → |7/2, 7/2〉. These

states in the I,S basis are given by

|9/2, 9/2〉 = |mI = 4,ms = +1/2〉 (4.30)

|7/2, 7/2〉 = −1
3
|mI = 3,ms = +1/2〉+ 2

√
2

3
|mI = 4,ms = +1/2〉 (4.31)

using the appropriate Clebsch-Gordan coefficients. We also need an estimate for the

magnitude of the oscillating magnetic field !B. We estimate the current in the coil by
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assuming that all 2.5 W11 are coupled into the coil as a 50 Ω load. If we treat the coil as

a circular loop of wire with a 1 cm radius located 5 cm away from the atoms, we find that

the magnitude of the field experienced by the atoms is ∼ 1 mG. We assume that the field

is equally distributed over all three directions, giving !B = 1 mG√
3

(x̂+ ŷ + ẑ). Writing

the Pauli spin matrices in a spherical basis as !σx = 1
2 (σ+ + σ−) and !σy = 1

2 (σ+ − iσ−),

we find that the matrix element is V12 = −2
√

2
3 2µb

1
2 (Bx +By).

In order to calculate P we also need dE/dt. We approximate dE/dt using the

uncoupled states. The relevant microwave transition frequency changes at Λ9/2,7/2=-

2.5 MHz/gauss at low field, so that dE/dt = Λ9/2,7/2h(dB/dt) where dB/dt is the rate

of change of magnetic field (from the trap) that the atom experiences. In the radial

direction, we can write the magnitude of the trap magnetic field as B = B0 +B′′r2, so

that dB/dt = 2B′′r(dr/dt) for the moving atom. Our final evaporative cuts are about

10 µm from the center of the trap, and we assume that we are removing atoms with

∼ 300 nK of kinetic energy. Using the trap parameters, we find that 1 − P = 0.2,

which is a fairly low probability of atom removal. With only a factor of two increase in

microwave power, 1−P increases to 0.37 and the model outlined in section 4.4 predicts

that the microwave power should no longer be a limit to the evaporative cooling.

11 For the two-frequency evaporation, only 2.5 W from the 5 W amplifier are available to drive either
transition.
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THERMOMETRY AND THERMODYNAMIC MEASUREMENTS

5.1 Overview

In the summer of 1999 we were first able to detect the emergence of quantum

behavior in an evaporatively cooled gas of 40K atoms [53]. We detected FD statistics

through measurements of the momentum distribution and the energy of the gas. In our

lab, we now had the world’s first and only trapped Fermi gas of atoms. In early 2001,

two other groups (see [68] and C. Salomon, unpublished) succeeded in cooling a gas of

the fermionic atom 6Li into the degenerate regime.

This chapter will begin by deriving a laundry list of thermodynamic relations for

a trapped Fermi gas, as well as other useful quantities such as the density distribution

and expanded column density. We will assume in this chapter than mean-field type

interactions are negligible; this is equivalent to dealing only with an ideal gas. Final

equations will be boxed for easy reference. The equations derived in this chapter will

be put into a form that is convenient for people working with trapped Fermi gases.

I will then explain, in detail, the thermometry techniques that we have developed.

Our first results probed the momentum distribution of the gas using a fitting technique

that did not assume FD statistics. Later, we moved on to probing the Thomas-Fermi

(TF) shape of the gas directly. These fitting techniques not only allow us to determine

N and T , but can provide an independent “T/TF -meter”. I will also explain the details

of a method that we have devised for measuring the mean energy per particle in the
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gas.

At the end of the chapter I will highlight experimental results. I will show the data

where we first detected deviation from classical statistics at low T in the momentum

distribution of the gas. Results from the TF thermometry will also appear, demonstrat-

ing the ability to directly measure the fugacity of the gas, which is only a function of

T/TF . The TF thermometry also provides a very clean method for determining the ab-

solute temperature T of the gas. Direct comparisons between the observed momentum

distributions and calculated classical distributions for gases with the same N and T will

dramatically demonstrate the effects of FD statistics in the gas. Finally, measurements

of the mean energy per particle in the gas show a factor of two “excess” energy in the

gas compared to the classical expectation at our lowest temperature.

5.2 Everything You Wanted to Know About a Trapped Fermi Gas

but were Afraid to Ask

5.2.1 Trapped Fermi Gases — Statistical Mechanics

All the thermodynamics of a non-interacting (or ideal) trapped Fermi gas can be

derived from straightforward statistical mechanics. The single particle Hamiltonian for

an atom in a harmonic potential is

H =
1
2m

(
p2
x + p2

y + p2
z

)
+
mω2

r

2

(
x2 + y2 + λ2z2

)
(5.1)

where λ = ωz/ωr is the trap asymmetry parameter. The density of states is given by

[27]

g(ε) =
ε2

2λ(h̄ωr)3
(5.2)

as a function of the energy ε. This is an approximation to the density of states that is

valid when the temperature of the gas is much greater than h̄ωr. And, of course, the



234

Fermi-Dirac distribution function [108,109] is

F(ε) =
1

1
Ze

ε
kbT + 1

(5.3)

with Z as the fugacity. The fugacity is a convenient parameter to deal with as it is a

function of only T/TF .

The Fermi temperature TF is defined by the Fermi energy EF , which is the energy

of the highest occupied energy level in the harmonic potential at T = 0. The Fermi

energy can be determined through integrating the equation for N at T = 0:

N =
∫ EF

0
g(ε) dε (5.4)

where every level up to EF is fully occupied. The integral is trivial, and yields:

TF =
EF

kb
=
h̄ωr

kb
(6λN)1/3 (5.5)

which is only a function of the trap parameters and N . Note that the harmonic trapping

frequencies depend on the mass and magnetic moment of the atom.

Fortunately, all the common thermodynamic integrals have an analytic represen-

tation in terms of a hyper-geometric function that is known to Mathematica. For n > 1

(where n is an integer or half-integer),

∫ ∞

0
dε

εn

1
Ze

ε
kbT + 1

= − (kbT )
1+n Γ(1 + n)Li1+n(−Z) (5.6)

where Γ is the Euler gamma function (use Gamma[1+n] in Mathematica) and Lin is

the Poly-Logarithmic function of order n (use PolyLog[n,-z]).1 Maxwell-Boltzmann

(classical) statistics holds for Z << 1, with Lin[−Z] → −Z to first order in Z. In order

to perform some of the integrals in this chapter, a series expansion for Lin

Lin(−Z) =
∞∑
k=1

(−Z)k/kn (5.7)

1 All of the thermodynamic equations in this chapter can be modified for Bose gases by taking
−Lin[−Z] → Lin[Z] and including a term for the ground state which is not counted properly because
of the approximation used for g(ε).
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must be used and the integrals evaluated term by term.

We can now determine the integrals for N =
∫∞
0 g(ε)F(ε) dε and the total energy

in the gas U =
∫∞
0 ε g(ε)F(ε) dε:

N = − 1
λ

(
kbT

h̄ωr

)3

Li3(−Z) (5.8)

U = − 3
λ

(kbT )4

(h̄ωr)3
Li4(−Z) (5.9)

Rearranging the equation for N and substituting in the definition of TF leads to:

Li3(−Z) = − 1
6(T/TF )3

(5.10)

which must be solved numerically in order to determine Z.

Another quantity of interest that is related to U is the mean energy per particle

E = U/N , given by

E = 3kbT
Li4(−Z)
Li3(−Z)

(5.11)

which reduces to the classical expectation for Z << 1. We will discuss measurements

of E/3kbT , which is only a function of T/TF .

Universal thermodynamic plots for harmonically trapped ideal FD gases are

shown in figure 5.1. As T → 0, E approaches 3
4EF . This means that the extra fractional

energy E/3kbT compared to a classical gas diverges at T = 0. This “excess” energy is

present because atoms cannot all fall to the lowest levels of the harmonic potential. The

fugacity is shown on a log plot (it is a very steep function of T/TF at low T ) and ap-

proaches 0 as T/TF becomes large. We also plot the chemical potential µ = kbT · ln(Z),

which approaches EF at T = 0. The chemical potential crosses zero at T/TF ∼ 0.55

which coincides with a phase space density equal to unity.
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Figure 5.1: Universal thermodynamic plots for a harmonically trapped Fermi gas. The
classical expectation is plotted as a dashed line.
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5.2.2 Density and Momentum Distribution

The Thomas-Fermi (TF) approximation [27] is valid for the range of temperatures

that we access in this experiment. In the TF picture, a semi-classical phase-space

distribution [27,108] w(!r,!k) is used to describe the many-body wavefunction of the

gas. Each point in phase-space is assigned a definite position and momentum, with the

distribution given by:

w(!r,!k) =
1

(2π)3
1

1
Ze

H(�r,�k)
kbT + 1

(5.12)

where !p = h̄!k. Since we tend to think in terms of !p, the phase space distribution can be

written as w(!r, !p) = 1
h̄3w(!r,!k) with the h̄3 present to fix the normalization for number.

The density and momentum distributions are then determined by appropriate

integrals over w. The density distribution is given by

n(!r) =
1

(2πh̄)3

∫
d3!pw(!r, !p) (5.13)

=
1

(2πh̄)3
4π

∫ ∞

0
dp p2 w(!r, p2) (5.14)

n(ρ) = −(kbmT )3/2

(2π)3/2h̄3 Li3/2

(
−Ze

−mω2
r

2kbT
ρ2

)
(5.15)

where !ρ is a scaled coordinate with magnitude ρ2 = x2+y2+λ2z2 = r2+λ2z2. Likewise,

the momentum distribution2 is given by

Π(p) =
1

2πh̄3

∫
d3!rw(!r, !p) (5.16)

=
1

(2πh̄)3λ
4π

∫ ∞

0
ρ2dρw(!ρ, p) (5.17)

Π(p) = − 1
(2π)3/2h̄3λ

(
kbT

mω2
r

)3/2

Li3/2

(
−Ze

− p2

2mkbT

)
(5.18)

where p2 = p2
x + p2

y + p2
z.

2 The trick to doing these integrals over space is to define a new variable Z = λz. The integral can
then be transformed to an integral over dZ by substituting dz = dZ/λ. Then integrate over the scaled
(elliptical) coordinate �ρ with magnitude ρ2 = r2 + Z2 and d3ρ = ρ2dρd(cosθ) dφ/λ.
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It is also worth determining the density and momentum distributions in the clas-

sical limit, which are:

nc(ρ) =
λN

(2π)3/2σ3
r

e
− ρ2

2σ2
r (5.19)

Πc(p) =
N

(2π)3/2σ3
p

e
− p2

2σ2
p (5.20)

where σ2
r = kbT

mω2
r
and σ2

p = mkbT .

5.2.3 Expansion from the Magnetic Trap

The images we use to extract thermodynamic data are always taken after some

expansion from the magnetic trap. Theoretically, Bruun and Clark [61] have been able

to show that a free expansion from a harmonic trap of an ideal Fermi gas amounts to

rescaling the spatial coordinates in n(ρ). By considering the evolution of the many-

body wavefunction with the boundary condition ωi → 0 at t = 0, they find that the

expansion transformation is xi → xi/
√
1 + ω2

i t
2 (where xi refers to x, y, or z) and

n(ρ) → n(ρ)

(1+ω2
r t

2)
√

1+ω2
zt

2
. This is a remarkable result — the shape of the density distri-

bution does not change in time after the release from the magnetic trap (other than a

rescaling). The shape invariance under expansion is particular to harmonic traps, and

does not hold for a general potential.

5.2.4 Expanded Column Density

We actually measure the column density, or the density profile integrated through

in one direction. The form for the column density in the trap can be determined by

integrating n(!ρ) through in x (expanding the hypergeometric function according to

equation 5.7 and then integrating term by term). The observed optical depth (OD) is

the column density multiplied by the photon absorption cross-section σλ = 3λ2

2π , where
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λ is the transition wavelength.3 After expanding for time t, we end up with:

OD(y, z) = − σλ

2
√
1 + (ωrt)2

√
1 + (ωzt)2

m(kbT )2

πh̄3ωr
Li2

(
−Ze

− y2

2σ2
r e

− z2

2σ2
z

)
(5.21)

σ2
r =

kbT

mω2
r

[
1 + (ωrt)2

]
(5.22)

σ2
z =

kbT

mω2
z

[
1 + (ωzt)2

]
(5.23)

which reduces to a gaussian in the classical limit. The coordinate rescaling has been

lumped into the widths σ in this expression. At long expansion times ((ωt)2 � 1) the

aspect ratio, σz
σy

= ωr
ωz

√
1+(ωzt)2

1+(ωrt)2
, goes to unity so that the gas appears spherical. In this

limit, the initial size of the gas is unimportant compared to the final size. The final size

of the gas then reflects the kinetic energy and the expanded distribution is equivalent

to the momentum distribution, which is isotropic.

5.3 Minimal Assumption Thermometry — The “Mixture” Fits

In order to use a thermometric method that does not assume FD statistics, we

fit the expanded OD images to the following functional form [53] which varies smoothly

between the T = 0 and classical limits:

OD(R) =



A
(
1− R2

R2

)2
, 1− R2

R2 ≥ L

Be−
R2

2 , otherwise
(5.24)

Here, R is a scaled distance R =
√

y2

σ2
m,y

+ z2

σ2
m,z

from the peak of the distribution, and

A (the peak OD in the image), σm,y, σm,z, and L are fit parameters.4 The requirement

of continuity of the function and its first derivative at the boundary of the inner quartic

and the outer gaussian form fixes the parameters B = AL2e2
1−L
L and R = 2/

√
L. The

3 This neglects effects that may change the effective absorption cross-section as the light passes
through the gas. The value for σλ assumes that the light is right circularly polarized, the light intensity
is very low compared to Isat, the atoms are in the f = 9/2,mf = 9/2 state, and the light is resonant
with the f = 9/2,mf = 9/2 to f ′ = 11/2,mf = 11/2 transition.

4 In practice, for all fits to the images we allow for a background plane (a term +b+my ·y+mz ·z in
the OD) in order to account for imaging imperfections. Also, in these equations y and z have an offset
in order to locate the center of the cloud. See the TF fit for more details.
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parameter L characterizes the deviation from the classical gaussian profile with L = 1

at T/TF >> 1 and L = 0 at T/TF = 0.

We call these fits “mixture fits” since a gaussian is connected, or mixed, with the

T = 0 TF shape at some radius in the gas. In order to figure out how the fit parameters

are connected to T , we generated simulated OD images using equation 5.21 and fit

them to the mixture fit form. From these fits, we determine correction factors to the

temperature calculated directly from σm. This is cheating a bit on our desire to avoid

assuming FD statistics, but we find that the corrections are relatively small.5

To determine T and T/TF , first we find the number of atoms from the fit:

N =
2π
σλ

·A · σm,y · σm,zM
2L

3 + 2
3L

= 22.4µm−2 ·A · σm,y · σm,zM
2L

3 + 2
3L

(5.25)

where σm is measured in pixels and M is the imaging magnification measured in

µm/pixel.6 We then determine an uncorrected T = mω2σ2
m

kb[1+(ω2t2)]
from either direc-

tion and corresponding uncorrected T/TF with TF determined by the trap parameters

and N . From these values, we calculate the actual Tcorr = T

[
1− 0.8e−

T/TF
0.234

]
and cor-

responding (T/TF )corr = Tcorr/TF . These corrections come from testing the “mixture”

fits on simulated distributions.

5.4 TF Thermometry

The thermometry technique we use most commonly now is a fit of the image to

the TF profile [55]. The exact function we fit to, based on equation 5.21 is

OD(y, z) = A ·
Li2


−Ze

− (y−yc)2
2σ2
TF,y e

− (z−zc)2
2σ2
TF,z




Li2(−Z)
+ b+myy +mzz (5.26)

where the fitting parameters are detailed in table 5.1. The temperature is determined
5 For the data shown in figure 5.7, the correction was at most 7%.
6 The factor of 22.4 uses σλ =

3λ2

2π
.
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parameter

σTF,y

√
kbT
mω2

r
[1 + (ωrt)2]

σTF,z

√
kbT
mω2

z
[1 + (ωzt)2]

A peak OD
b background plane offset

my,mz background plane slopes
yc,zc cloud centers

Z fugacity

Table 5.1: TF fit parameters.

from the widths σTF , while the number of atoms is determined from a simple gaussian

fit to the same image.7 The gaussian fit makes at most a 2% error in N across the

temperatures that we sample (T/TF > 0.15).

7 The number from a gaussian is N = 2π
σλ

·A · σg,x · σg,zM2 where σg from the simple gaussian fit is

measured in pixels and M is the imaging magnification measured in µm/pixel.
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5.5 Imaging and Thermometry Systematics

Because all of our thermometric techniques rely on detecting relatively small

deviations from a gaussian (see figure 5.7 inset), we are particularly sensitive to imaging

imperfections. Most imaging imperfections can mimic the effects of quantum degeneracy

on the shape of the expanded distribution and/or introduce systematic errors in T .

Images of clouds with a width too close to the imaging resolution are significantly

distorted. This is avoided by only using images for expansion times greater than or

equal to 10 ms, where the r.m.s. cloud size is at least 18 times the imaging resolution.

In this limit, the observed cloud size should never be distorted by more than 0.2%. In

fact, we do not observe a significant effect on the thermometry, in the measured T , z or

L, for expansion times from 10-25 ms.

Any light present in the probe beam that the atoms cannot absorb that is not

properly subtracted will distort the shape of the image. Light present in the probe

beam that is of the wrong polarization or far off of resonance will not be absorbed by

the atoms. Because the light is present only in the probe beam and not the “dark”

frame, it will not be properly subtracted in the OD math (see Chapter 2). If α = eOD

where OD is the actual OD, then the measured OD is

ODmeas = ln

(
L+B

L/α+B

)
(5.27)

where L is the amount of absorbable light and B is the amount of unabsorbable light

that is not subtracted in the dark frame. If we define c = L/B as the ratio of absorbable

to uncounted unabsorbable light, then the observed OD is:

ODmeas = ln

(
c+ 1

ce−OD + 1

)
(5.28)

and the maximum observable OD is ln(1+c). With our maximum observable OD of 2.5,

we estimate c = 11. The effect of fitting a gaussian column density with the OD modified

by equation 5.28 is shown in figure 5.2. From data taken with classical (gaussian) clouds,
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it appears that we are actually operating at much higher c. This discrepancy may be

explained if lensing or scattering of light outside of the gas is playing a role in limiting

the OD. Experimentally we find that shape distortions are avoided by probing clouds

with a peak OD at least a factor of two smaller than the maximum observable OD.
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Figure 5.2: Effect of unabsorbable, uncounted light on the mixture fit thermometry.
The plot on the left is experimental data and the plot on the right is from a theoretical
calculation; in both cases the value of the non-gaussian mixture fit parameter L should
be 1. The theoretical plot (right) is the result fitting a simulated, gaussian image that
has been modified by the presence of “bad” light for two different ratios of “good” to
“bad” light (c). At high OD, the “bad” light mimics the effects of quantum degeneracy,
driving the measured L to below 1. The data plot (left) was taken with clouds for
T/TF > 1.7, so that the image should have a gaussian (classical) profile. We observe a
very weak systematic with the measured peak OD that does not match the theoretical
prediction (we estimate that we have c = 11). It is difficult to understand this result,
and this systematic deserves more investigation.
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In order to avoid a similar systematic caused directly by saturation of the atomic

resonance, we probe with I/Isat < 0.05. A measurement of Isat is shown in figure

5.3. The number of counts measured by the CCD camera per pixel in the probe beam

is plotted vs. the measured peak OD of the gas. The vertical axis in these plots is

essentially an experimental measure of the probe intensity. By fitting the dependence to

the expected form, I = Isat
(
OD−ODmeas

1−e−ODmeas

)
[110] (here OD is the actual OD and ODmeas

is the observed OD) we find that Isat corresponds to 1400(200) counts/unbinned pixel

for a 24 µs probe pulse.8 We also find that for this particular gas, the actual peak OD

was 2.29(5).
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Figure 5.3: The effect of saturation of the atomic resonance on imaging. The probe
intensity, measured in CCD counts per unbinned pixel for a 24 µsec probe pulse, is
plotted vs. the observed peak OD. A fit (solid line) to the expected dependence allows
to extract Isat in experimental units. The data on the right is data taken across the
region in which we normally operate. There is no observed effect of saturation on the
peak OD.

8 The CCD camera is capable of fast hardware binning, with the result of multiple pixels summed
into a single pixel.
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Lensing caused by the density gradient of the cloud [111] will also cause image

distortions. In order to avoid this systematic, we probe on resonance and carefully focus

the camera. The effect of probe detuning on the cloud parameters measured via the

TF fit is shown in figure 5.4. Both the fugacity and the widths used to determine T

are systematically affected. While not shown here, widths measured using gaussian fits

(which are used to determine N) are also affected. We find experimentally that the all

of the observed thermodynamics are only consistent when probing on resonance. We

have not taken enough data to know that the effects of detuning are conclusively due to

lensing. However, the fact we have observed the cloud width dependence on detuning

change sign after a camera refocusing is rather suggestive.
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Figure 5.4: Effect of detuning on the TF thermometry. We observe that the probe beam
detuning affects the measured shape (fugacity) of the image and the measured widths.
These effects may be caused by lensing. As the probe beam is detuned from resonance,
the gas acts like a lens and causes shape distortions in the image. This systematic
affects both degenerate and classical gases. Unfortunately, these effects are not very
reproducible day to day and cannot be easily corrected, presumably because the lensing
action of the gas depends on the OD and size.
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The worst systematic in our thermometry is caused by features in the background

field of the image. These can be difficult to spot by eye, but seem to be characterized

by curvature, stripes, or patches in the image background. These features appear to

be caused by spatial variations in the intensity profile of the probe beam or fringes

introduced by clipping of the beam. Data taken with an almost undetectable curvature

in the image background field is shown in figure 5.5. The thermometry cannot be trusted

under these circumstances.

Problems caused by the probe beam have been solved by the probe beam prepa-

ration scheme described in Chapter 2. Our probe beam is formed from the image of

a small aperture placed in the center of a gaussian beam — this produces a relatively

flat intensity profile. In addition, reducing background light (in the “dark” frame) by

shielding the camera is important.

We find that the “mixture” and TF profile fits have trouble with images with a

peak OD less than 0.35. Typically, the fits lose the ability to determine that the profile

is non-gaussian (in the degenerate regime) at this point. We suspect that this problem

is caused by narrow (3-4 pixels wide) stripes in the background image field that seem

nearly impossible to eliminate. These stripes have a peak-to-peak variation of 0.01 in

OD.
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Figure 5.5: Bad effect of features in the probe beam on the mixture fit thermometry.
This data was taken with an almost imperceptible curvature in the background field of
the image. The solid line is the theoretical expectation. These kinds of problems can be
detected by looking for systematics (L = 1 or Z = 0) for high T/TF (classical) clouds.
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5.6 Check on the Expansion

An important check on the thermometry is that the expansion follows the form

described in section 5.2.3. We must be sure the temperature can be accurately extracted

from one point during the expansion. The width of the cloud measured with the TF

fit as a function of the expansion time for a mf = 9/2 gas at 150 nK and T/TF = 0.4

is shown in figure 5.6. A fit to the time dependence indicates that the expansion is

consistent with form from 5.2.3: σ(t)TF = σ0,TF

√
1 + (ωt)2 where σ0,TF is the size in

the trap.9 This is also a statement that T extracted from each point is consistent,

where we find that T is 152(8)nK and 144(8) nK from the axial and radial directions,

respectively. There is no systematic shift in the measured T with the expansion time.

However, there is a systematic difference between the radial and axial directions. We

are not sure where this error comes from, but extensive studies have revealed that

the vertical direction (radial) result produces self-consistent thermodynamics.10 The

scatter in the measured T across different expansion times is consistent with the noise

at fixed expansion time for repeated runs of the experiment.

9 The data in figure 5.6 cannot actually resolve the initial vertical size.
10 Actually, this sort of aspect ratio error seems to change slightly in the experiment from month to

month.
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Figure 5.6: Measured TF fit widths and corresponding temperatures as a function of
the expansion time. The vertical expansion time is actually 0.2 ms longer than shown
in the plot (for an explanation of the magnetic trap turn-off, see chapter 2), which is
added into the fits (solid lines) to the expected form for the expansion.
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5.7 Energy Measurements

One of the most dramatic features of the trapped Fermi gas is the fact that the

average energy per particle E does not go to zero at T = 0. The trapped atoms have

relatively large kinetic energy, 3
8EF per atom, at T = 0. This physics tends to make

the biggest impression on laypeople, as most everyone is taught in grade school that

“all motion ceases at absolute zero”. We are able to directly measure E of the gas from

absorption images.

E can be connected to the second moment of the image at any expansion time.

We define the second moment (in scaled coordinates) of the image as:

J2 =

∫∞
0 dz

∫∞
0 dy |OD(y, z)|mω2

r

[
2y2

1+(ωrt)2
+ λ2z2

1+(ωzt)2

]
∫∞
0 dz

∫∞
0 dy OD(y, z)

(5.29)

where the factor of 2 in 2y2 + z2 takes into account that we are looking at the column

density which is a projection of the 3 dimensional density onto a plane (we also assume

that the radial symmetry is not broken). In this equation, y and z refer to the distance

from the center of the cloud. The integrals can be done directly in cartesian coordinates

using the expansion for the polylogarithmic function and the equation for the expanded

column density, giving

J2 = mω2
r

[
2σ2

y

1 + (ωrt)2
+

λ2σ2
z

1 + (ωzt)2

]
Li4(−Z)
Li3(−Z)

(5.30)

which, after substituting for σ (which is
√

kbT
mω2 [1 + (ωt)2] — see the section on the

expanded column density distribution) gives the correct value of E. To measure E, we

measure the second moment of the image as defined by J2.

This correspondence between the second moment of the image and E in general

is no accident. At long expansion times, the second moment of the image, as defined

here, is proportional to the twice kinetic energy in the gas. Simply put, each atom can

be viewed as expanding from a point source by r = vt in this limit, and then the second

moment (the average of r2) is proportional to v2. In the opposite limit — in the trap
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— the second moment is proportional to twice the potential energy. What is surprising

is that this measurement works in between long and short expansion times. This is a

consequence of the behavior of a free expansion from a harmonic trap. The definition

of J2 that I give above is designed to extrapolate back to the conditions in the trap and

calculate twice the potential energy.

We have used two slightly different methods of measuring E. One, the “direct”

method, calculates J2 directly from the image. The other, the “fitting” method, uses a

specially weighted fit to extract the second moments in each direction separately. It is

important to note that any method of measuring J2 must deal with the low signal to

noise section of the image at large ρ. Noise in this part of the image can cause large

errors in E since it does not average away (note the absolute value in J2) and is heavily

weighted. Both of our methods use a gaussian fit to the image to help with this problem.

The widths from the gaussian fits, σg, are used to define an inner and outer part of the

image. As with the TF and “mixture” fits, we find that at least a peak OD of 0.35 is

necessary to get accurate results. Presumably, problems caused by small stripes in the

image are also the culprit here.

5.7.1 Direct Method

In the direct method, the raw image data is used to compute the second moment

of the image. Data inside a cut region defined by y2

σ2
gy

+ z2

σ2
gz

= j2 (where j is a number)

is used to calculate J2 on a pixel by pixel basis. The background plane of the image is

subtracted off using the values from the TF fit, since the simple gaussian fit (and the

“mixture” fit, for that matter) makes significant systematic errors in the fit parameter

b (the offset for the image background plane) at low T/TF .

A correction must be made for the contribution to the second moment outside of

the cut region. To this end, only the data outside of the cut region is fit to a gaussian,

returning widths σex. For large enough j (“large enough” depends on T/TF ), the outer
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part of the image actually is gaussian, since it corresponds to atoms in energy levels of

the harmonic trap that are sparsely populated where FD statistics are not important.

The correction to J2 from the data that we “left out” is calculated from σex,y and σex,z

according to the equation for J2, where the integrals are only done outside of the cut

region. From comparison to generated theory images, we find that j=2.5 to 3.5 produces

only small errors (< 1%) in the measured value of E for our range of T/TF . The best

value of j depends on the signal to noise in the images.

5.7.2 Fitting Method

We can also extract E using a fit to the image with a modified criteria for the fit

χ2. Using a fitting routine to determine E is slightly more robust and less complicated

than the direct method. We use a simple gaussian fit with standard parameters included

for the background plane. The cutting procedure is used as outlined in the above

subsection, except the fit only uses data inside the cut region. The center of the cloud

(yc and zc) and the background plane parameters (b, my, and mz) are fixed to the

values from the TF fit. This must be done because this “energy” fit does not have the

information from the wings of the image that allow it to determine the cloud center and

image background.

For the fit χ2, which the fitting routine (we use a two-dimensional Levenberg-

Marquardt routine) attempts to minimize, we use:

χ2 =
∑
y,z

[OD(y, z)− f(y, z)]2 (y2 + α2z2)2 (5.31)

where the sum runs over all the pixels in the image, f is the value of the fit, and

α = σz/σy is the expanded aspect ratio.11 This criteria forces the fit to minimize

the deviation of the second moment of the fit gaussian from the second moment of the

image. Using the definition of J2, E is given by mω2
r

[
2 σ2

e,y

1+(ωrt)2
+ λ2σ2

e,z

1+(ωzt)2

]
where σe are

11 Note that the expanded aspect ratio is calculated “on the fly” using the widths in the fitting
routine.
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the gaussian widths from the “energy” fit.

We find from applying this fit to theoretical images that j = 2.5 − 3.5 makes a

negligible error in E even down to T/TF = 0.1. Experimentally, j = 3 gives the best

signal to noise for clouds with peak OD’s between 0.35 and 1.3. We have also tested

this fit on theoretical images of the thermal component of a trapped Bose gas above and

below Tc. We find that this method works equally well for Bose, Fermi and, of course,

classical gases.

5.8 Sources of Uncertainty

5.8.1 Shot-to-Shot Reproducibility

There is some scatter in N , T , the spin composition, and T/TF for repeated,

identical runs of the experiment. We believe that the major contributors to this irre-

producibility are changes in the initial number of atoms loaded into the magnetic trap

and changes in the magnetic trap bias field. Changes in the initial number directly

affect the final number for a fixed evaporative cut, and may also affect the evaporation

performance and therefore the final temperature. Changes in the magnetic trap bias

field result in an effective change in the final evaporative cut (affecting both T and N)

for a fixed microwave frequency.

We have studied the reproducibility of the experiment at very low temperature.

The data that follows was taken (on August 12, 2000) after the “evap2” stage of cooling,

with a fixed final cut of 1272.69 MHz. The anti-gravity coil was used to separate the

components and extract information on each (using the “mixture” fits) at a 10 ms

expansion time for 10 experimental cycles. For this data, the average spin mixture was

44% mf = 9/2 atoms, with a standard deviation of 2% (in the value — not fractional).

In the raw data, the average values and standard deviations were 1.8(1) for the peak

OD, 11.5(2) pixels for σy, and 8.5(1) pixels for σz for the mf = 9/2 component, and
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2.11(7) for the peak OD, 12.4(2) pixels for σy, and 8.6(1) pixels for σz for the mf = 7/2

component. This translates into 2.2(2) ×105 for N , 109(3) nK for T , and 0.292(9) for

T/TF for the mf = 9/2 component and 2.8(1)×105 for N for the mf = 7/2 component.

This level of reproducibility (essentially 8% in N and 3 nK in T ) is the best that we

have seen. Typically, we have 10% shot-to-shot reproducibility in N , 5% fractional

reproducibility in the spin composition, and 8 nK reproducibility in T (these values

represent the standard deviation for repeated cycles of the experiment). Note that the

uncertainty from the fitting routine in the fit parameters is typically less than 0.5%.

5.8.2 Systematic Uncertainties

Our ability to determine N , T , and T/TF is systematically affected by uncertainty

in the experimental parameters. Note that we assign a 50% systematic uncertainty to

N determined from absorption imaging because absorption imaging and flourescence

imaging only agree to this level. The primary source of this uncertainty is the lack of

a measurement of the intensity of the light experienced by the atoms for flourescence

imaging (using the science MOT beams).

The dominant contributors to systematic uncertainty are the uncertainty in the

imaging magnification, U/D imaging OD correction, anti-gravity corrections, and the

50% systematic uncertainty in N . We have 0.5% uncertainty in the measurement of

the imaging magnification (this affects N and T ). To estimate the uncertainty in the

U/D imaging OD correction and AG corrections, we use the standard deviation for all

measurements. There is a 3.4% standard deviation across all measurements of the U/D

imaging OD correction (which affects N), and a 3.3% standard deviation in measure-

ments of the anti-gravity corrections to the widths from the fits (which affects T and N).

Using standard uncertainty analysis, the systematic uncertainty in N is then 50%, in

T is 7%, and in T/TF is 17%. Obviously, the uncertainty in N and T/TF is dominated

by the 50% uncertainty in N .
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5.9 Experimental Results

5.9.1 Deviation from Classical Momentum Profile — “Mixture” Fits

In figure 5.7 we show the first data that we acquired that indicated degeneracy

[53]. This data was taken at a 20 ms expansion with a spin polarized mf = 9/2 gas.

The expansion time was sufficiently long so that we were probing the shape of the

momentum distribution.12 As T decreases below TF , we see a clear deviation from

a classical (L=1) momentum distribution. This nongaussian character of the images

can also be seen in an analysis of fit residuals that uses azimuthally averaged data.

When low T/TF images are fit to the classical gaussian distribution, a pattern appears

in the fit residuals as a function of the scaled radius ρ. This pattern is consistent with

our expectation from fitting theoretical distributions (from equation 5.21) to gaussians.

At these low temperatures, fits to the mixture function typically give a factor of 3

improvement in the reduced χ2 compared with a simple gaussian fit.

12 This is an excellent approximation for the radial direction, as (ωr · 20 ms)2 = 288� 1. In the axial
direction, this approximation is not as good: (ωz · 20 ms)2 = 6.
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Figure 5.7: Original data demonstrating the emergence of quantum degeneracy as seen
in the shape of the momentum distribution. Surface fits to the images reveal the non-
gaussian character of the momentum distribution at low T/TF . For a particularly low
noise image at T/TF = 0.5 the inset shows fit residuals normalized by the peak OD vs.
the scaled cloud radius ρ. A classical gaussian fit (solid points) is contrasted with the
mixture fitting function from (hollow points). The main figure shows the fit parameter
L of the non-gaussian form vs. T/TF . For a classical gas L = 1; for a Fermi gas at
T/TF = 0, L = 0. The data compare well to theory (line) generated by fitting simulated
TF distributions to the mixture function.
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5.9.2 Measurements of the Fugacity — Experimental Results with the

TF Fits

Compiled data showing the measured fugacity vs. T/TF are shown in figure 5.8.

The data in 5.8 are not typical — usually we see a small shift in the T/TF axis (as in

figure 5.7) that we attribute to a systematic error in determining T or N . The fugacity

is determined independently from N and T , and can be used as a “T/TF -meter”.

Figure 5.9 shows a comparison between the TF and mixture thermometry by

analyzing the data in figure 5.7 using both fits. Either technique works equally well. In

practice, we use a fit to the TF profile to determine T , a gaussian fit to determine N ,

and then calculate T/TF . The TF fit provides a very clean method for determining T

that requires no corrections, unlike the “mixture” fit.
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Figure 5.8: Measured fugacity using the TF thermometry. The solid line shows the
expectation from thermodynamic theory. The fugacity Z is independent in the fits from
N and T , which are used to calculate T/TF in this figure.
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Figure 5.9: Comparison between mixture and TF fits using the data in 5.7. The solid
line is a linear fit with no intercept, and finds a slope 0.985(3).
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5.9.3 Measured Momentum Profiles

The effects of FD statistics can be seen directly in measured momentum profiles

of the gas. The OD in the two-dimensional image is averaged at constant scaled radius

ρ for different values of T/TF and displayed in figure 5.10. The data is compared with

the profile for a classical gas with the same N and T and with the TF profile generated

with the fit parameters.13

At T/TF ∼ 1, the data is consistent with a classical distribution. At lower T/TF ,

the profile clearly becomes non-gaussian (the curvature of the distribution is too “flat”

in the center of the cloud) and has suppressed density and higher r.m.s. momentum

compared to the classical case. At T/TF = 0.2, the peak density of the gas is suppressed

by a little over a factor of two. This suppression is caused by the Fermi pressure,

which resists the compression of the magnetic trap. In a semi-classical picture, the low

momentum states are all occupied at low T/TF . The Pauli exclusion principle forbids

the occupancy of these states from being as high as it could classically. It is this Fermi

pressure which is responsible for stabilizing neutron stars against gravitational collapse.

13 Note that the OD in these averaged profiles must be weighted by ρ in order to calculate N .
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Figure 5.10: Momentum profiles of a mf = 9/2 gas at different values of T/TF . From
top to bottom, N = 2× 106, N = 1.7× 106 and N = 4× 105 and T = 700 nK, T = 350
nK, and T = 90 nK.
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5.9.4 Measurements of Energy

The data showing deviation in E from 3kbT that we originally published in Science

is shown in figure 5.11. We used the direct method to analyze this data. This method is

fairly sensitive, and can detect deviations from the classical expectation as small as 3-5%.

Data taken and analyzed with the fitting method are shown in figure 5.12 for partially

spin polarized gases. Data for the mf = 9/2 and mf = 7/2 component are shown

together in figure 5.12. For our lowest temperatures T/TF ∼ 0.17, we observe almost

twice the classical energy per particle in the gas. The data in figure 5.12 was taken with

the AG coil and used the image subtraction method described in the appendix to this

chapter.

At low T/TF , the “excess” energy compared to the classical expectation appears

because of the Pauli exclusion principle. The lowest energy levels of the harmonic

potential become highly occupied at low T/TF . At T/TF = 0.17, for example, the

ground state of the trap is 99.5% occupied. Classically, the atoms would all fall into

the low energy levels of the potential at low T . However, the Pauli exclusion principle

prevents this, resulting in the appearance of “excess” energy for fermionic atoms. Like

the electrons in an atom, the atoms in the trapped gas “stack up” one per quantum

state in the energy levels of the harmonic potential.
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δ E
/ E
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Figure 5.11: Original data showing deviation in the energy of the gas from the classical
expectation. We plot δE/Ecl = (E−3kbT )/(3kbT ) vs T/TF . E is determined using the
“direct method” outlined in the text. This data was taken with spin polarizedmf = 9/2
gases.
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Figure 5.12: Energy in the gas as a function of T/TF . The extra energy in the gas
compared to the classical case is plotted vs. T/TF . This data was analyzed using the
“fitting” method. Data taken using partially spin polarized mixtures for both the mf =
9/2 and mf = 7/2 components are shown together. The thermodynamic expectation
is shown by the solid line, while the classical expectation is shown by the dashed line.
The data in this figure is the same as in figure 6.1.
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5.10 Appendix

5.10.1 Image Subtraction

Using the methods to determine E in this chapter for images of spin polarized

clouds is straightforward. However, images of spin mixed gases taken with the AG

coil introduce a new wrinkle. In order to fit to the TF profile and to extract E using

the energy fitting method, we must use the simultaneous image of both components to

create separate images of each. It turns out that the mixture fit is the perfect tool for

this task. The mixture fit can fit almost any individual image well (even images with a

peak OD that is equal to the maximum observable OD) if all the parameters are allowed

to vary freely. Also, fitting to two “mixture” functions added together is relatively fast.

We fit the double image to a sum of two mixture functions (a “double mixture”

function), with shared parameters for the image background plane. A “double” FD fit,

although it should work as well as a “double mixture” fit, is not used because it would be

very computationally intensive (it would require evaluating the hyper-geometric function

twice for each pixel). The “double mixture” fit is then used to subtract off either

component and produce two images, one of each component separately. This procedure

works rather well — no effect in the residuals in the processed single image can be

detected. In addition, there is no difference between the energy or TF fit parameters

between carefully matched images at the same T/TF taken with one or both components

present. This method will fail, however, when the separation between the centers of the

components becomes small compared to their sizes.

This image subtraction method can even be used when one component has a peak

OD that is equal to the maximum observable OD. In this case, the double mixture fit

is restricted to fit pixels with an OD lower than 1.5. This fit is then used to subtract

off the high OD component where only pixels with an OD less than 1.5 are processed.

Fits to the resulting image are constrained to ignore any high OD pixels that are left
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behind. The TF and energy fits are then performed on the processed image of the low

OD component.



Chapter 6

A TWO-COMPONENT DEGENERATE FERMI GAS

6.1 Introduction and Overview

This chapter will present the first experiments [32] with a two-component degener-

ate Fermi gas of atoms, starting with thermodynamic measurements. By manipulating

the spin mixture, we change the value of EF of one component relative to the other. We

observe that we can create an imbalance in the mean energy per particle between the

two gases in this way. In the degenerate regime, this is thermodynamically expected

since E is not only a function of T but also T/TF . Although the two gases are in ther-

mal equilibrium, T/TF is different for the two components if there are unequal numbers

of atoms in each spin state. This same physics is observed in other systems — nuclei,

for example. However, in nuclei the two components (protons and neutrons) can inter-

convert. An imbalance in the relative Fermi energies in the nucleus can therefore drive

beta or inverse beta decay [112]. In particular, 40K decays to 40Ca with a 1.3 billion

year half-life via this mechanism (see the online ENSDF database at http://ie.lbl.gov,

for example).

In this chapter I will also present the direct observation of Pauli blocking of colli-

sions through measurements of cross-dimensional rethermalization rates. The effect of

Pauli blocking can be viewed as reducing the effective collision cross-section between

colliding atoms. Using techniques similar to those explained in Chapter 3, we measure a

reduction in the effective collision cross-section of a factor of two (compared to the clas-
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sical case) at our lowest temperatures. Note that this effect is fundamentally different

from the effect of the Pauli exclusion principle on collisions between indistinguishable

fermions presented in Chapter 3. In that case, individual collisions are affected by the

FD statistics of the particular colliding atoms. For the measurement presented in this

chapter, individual collisions are affected by the FD statistics of the entire gas.

6.2 Two-Component Thermodynamics

The emergence of quantum degeneracy at low T is observed through measure-

ments of the equilibrium thermodynamic properties (see Chapter 5) of the two-component

gas. In the quantum degenerate regime (T/TF < 1), the average energy per particle

E rises above the classical expectation 3kBT . For the roughly equal (46% mf=9/2

for this data) mixture of spin states used for evaporation, figure 6.1(a) shows E vs

T/TF for each component. The excess energy characteristic of quantum degenerate

Fermi systems can clearly be observed in both components. For this data, T and E

are determined independently for each component from fits to absorption images of the

expanded gas. A fit to the Thomas-Fermi shape expected for an ideal Fermi gas is used

to measure T , while E is determined from a gaussian fit that is weighted to minimize

the fit deviation from the second moment of the image (see Chapter 5 for a discussion

of both techniques). The widths of both fits are adjusted by roughly 6% to account for

distortions introduced by curvature in the Stern-Gerlach field (see Chapter 2). Recall

that these distortions cause the TF fit to return an incorrect fugacity (see chapter 2

for more details). The measured temperatures of the two components match to within

experimental uncertainty, as expected for thermal equilibrium.
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Figure 6.1: Thermodynamics of the interacting gas. The average energy per particle
E, extracted from absorption images such as the examples shown in the insets, is dis-
played for two spin mixtures, 46% mf=9/2 (a) and 86% mf=9/2 (b). In the quantum
degenerate regime, the data deviate from the classical expectation (dashed line) as the
atoms form a Fermi sea arrangement in the energy levels of the harmonic trapping
potential. The data in (a) represent the spin mixture used for evaporation, where we
reach T/TF ∼ 0.25 at 90 nK and N = 2.8 × 105 atoms. The data agree with the ideal
Fermi gas prediction for a harmonic trap, shown by the solid line. Misalignment of
corresponding mf=9/2 and mf=7/2 points on the T/TF axis reflects a difference in the
Fermi energies for the two components.
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Thermodynamic data for a different spin mixture, 86% mf=9/2 and 14% mf =

7/2 , are displayed in 6.1(b). Here the spin composition is controlled by removing

some mf=7/2 atoms after the bulk of the evaporation. Changing the spin mixture

manipulates the Fermi energies EF since EF depends on the number of atomsN through

EF = kBTF = h̄ω(6N)1/3 [27], where ω = (ω2
rωz)1/3 is the geometric mean of the

harmonic trap frequencies.1 In the thermodynamics for this less balanced spin mixture,

again both components reach quantum degeneracy.

For both mixtures, the thermodynamic data agree well with the ideal gas theory

prediction; this indicates that the mean-field energy due to inter-particle interactions in

the gas must be small compared to the kinetic and potential energy. For Bose-Einstein

condensates (BEC) with similar number, temperature, and scattering lengths, the mean

field is quite significant. However, the influence of the mean field for a Fermi gas is

drastically reduced because the Fermi gas always has higher energy and lower density

than a Bose-Einstein condensate. In fact, for our range of experimental conditions

Eint/kBTF < 0.4%, where Eint is the interaction (mean field) energy per particle [59].

Also apparent in 6.1 is a misalignment of the correspondingmf=9/2 andmf=7/2

points on the T/TF axis, indicating that the two components are not equally degen-

erate. This is particularly true for the 86% mf=9/2 case where EF is roughly twice

as high for the mf=9/2 component, and therefore the mf=9/2 component is always

more degenerate. Figure 6.2 displays the effect of unequal EF by plotting the energy

ratio E9/2/E7/2 vs T/TF,9/2 (T/TF for the mf=9/2 component). For the gas with 86%

mf=9/2 atoms, E9/2/E7/2 is measured as high as 1.4 in the quantum degenerate regime,

strongly violating the classical expectation E9/2/E7/2 = 1. However, when the gas has

roughly equal numbers of mf=9/2 and mf=7/2 atoms EF is matched to within 13%,

1 The two spin-states have different magnetic moments and therefore experience slightly different
harmonic oscillator frequencies. The magnetic trap frequencies for all of the experiments described in
this chapter are 134.0 Hz radial and 19.9 Hz axial for themf=9/2 atoms. The corresponding frequencies

for the mf=7/2 atoms are reduced by the square root of the ratio of the magnetic moments (
√
7/9).
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and E is roughly equal for both components irrespective of T/TF .
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Figure 6.2: Effect of Pauli blocking on the equilibrium thermodynamics of the gas. Using
the same data shown in figure 6.1, the ratio of energy, E9/2/E7/2, for pairs of clouds
from each double image is plotted vs. T/TF, 9/2. Each point in this plot represents
the average of two runs of the experiment. For comparison, the prediction for an ideal
Fermi gas is shown by the solid lines. The energy imbalance revealed at low T/TF is
maintained by Pauli blocking of collisions.
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The observed imbalance in E must arise from a change in the collisional inter-

actions in the gas since s-wave collisions would normally redistribute energy equally

between the two components. Collisions are predicted to be suppressed by Pauli block-

ing, a phenomenon common to all Fermi systems such as semiconductors, liquid 3He,

and nuclear matter. At low T/TF , the lowest energy states of the trap are highly oc-

cupied and any collision resulting in a final atom state at low energy is suppressed by

the Pauli exclusion principle. The energy imbalance is then maintained because colli-

sions that remove energy from the more degenerate component are the most strongly

suppressed.

6.3 Two-Component Dynamics

We have directly observed Pauli blocking of elastic collisions in measurements of

the thermal equilibration time. The gas is taken out of thermal equilibrium by a rapid

removal of high energy atoms from the mf=7/2 component (see the appendix to this

chapter). Because of gravitational sag in the trap, energy is preferentially removed from

the radial direction. As a result, the mf=7/2 component is initially both out of cross-

dimensional equilibrium as well as out of equilibrium with the mf=9/2 component. A

sample data set showing the rethermalization of the energy of the mf=7/2 component

is shown in figure 6.3. The cross-dimensional relaxation rate can be used to obtain

the elastic collision cross-section (see Chapter 3 and [92]). One can define an effective

collision cross-section σeff that encapsulates the total effect of Pauli blocking on collisions

independent of changes in the density and temperature of the gas. The value of σeff is

predicted to vary from 0 at T=0 to the s-wave cross-section σ = 4πa2 in the classical

regime [37], where a is the s-wave triplet scattering length.
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Figure 6.3: Rethermalization data. A plot of the aspect ratio (axial size/radial size) of
the expanded mf=7/2 component vs. time shows cross-dimensional energy rethermal-
ization. The inset, a plot of the average energy per particle of the mf=7/2 component,
shows the simultaneous transfer of energy from the mf=9/2 to mf=7/2 component.
The data in this figure were taken for a gas with T/TF, 9/2=0.5, N9/2 = 4.6× 105, and
N7/2 = 7.7×104. A fit (solid lines) of the time dependent aspect ratio is used to measure
the effective collision cross-section.



274

Figure 6.4 shows the measured σeff vs T/TF, 9/2 for an 86% mf=9/2 gas. The

rethermalization time constant τ is extracted from a fit to the time dependence of the

mf=7/2 component aspect ratio, assuming that the energy difference δ = Ex − Ez

relaxes exponentially (Ez and Ex refer to the mf=7/2 energy in the axial and one

of the radial directions, respectively). The cross-section is then determined through

1
τ = nσeffv

α , where n = 1
N7/2

∫
d3!r n9/2(!r)n7/2(!r) is the density-weighted-density, v is

the mean relative speed for a collision between mf=9/2 and mf=7/2 atoms, and α

is the average number of collisions per mf=7/2 atom required for cross-dimensional

equilibration. The product nv is determined from gaussian fits to the expanded images

of each component (see the appendix to this chapter). See the appendix to this chapter

for a complete explanation of the rethermalization model.
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Figure 6.4: Collisional Pauli blocking. A factor of two decrease in the effective elastic
collision cross-section, σeff , is observed at low T/TF . The error bars in σeff are predomi-
nately from uncertainty in the fits to the time dependence of the mf = 7/2 aspect ratio,
while scatter in number and temperature set the error bars in T/TF, 9/2. In addition,
there is at most a 20% systematic uncertainty in T/TF, 9/2 and a 50% systematic uncer-
tainty in σeff from uncertainty in the number determined from absorption imaging. The
solid line shows the result from a quantum kinetic calculation of the collision rate. At
high T/TF the data agree with the known value of the s-wave collision cross-section, and
at low T/TF the observed decrease in σeff agrees with the quantum kinetic prediction.
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For our data, the time dependence of the aspect ratio is complicated by energy

transfer from the mf=9/2 component to the mf=7/2 component. This is included in

the fit to the aspect ratio by assuming that the difference ∆ = E9/2−ηE7/2 also relaxes

exponentially with time constant
(
nσeffv

A

N7/2+ηN9/2

N9/2(1+η)

)−1
, where η is the equilibrium ratio

E9/2/E7/2, and A is a constant similar to α. We have used a classical kinetic theory

calculation to determine that α = A = 0.75 (see the appendix to this chapter).

In the classical regime, the measured value of σeff agrees, within the 50% system-

atic uncertainty in atom number, with the best known value of the scattering length

for 40K a = 169a0 [89], where a0 is the Bohr radius. The effective cross-section drops

by a factor of two at T/TF, 9/2 = 0.2. Within our uncertainty, the observed size of the

Pauli blocking effect agrees with the theoretical value of σeff from a quantum kinetic

calculation [54] shown in figure 6.4. In the calculation, the reduction in σeff represents

the effect of Pauli blocking averaged over all possible initial and final colliding atom

states.

6.4 Chapter and Thesis Conclusion

This thesis has presented the production of and measurements with the world’s

first degenerate Fermi gas of atoms. We developed a novel cooling scheme in order

to cool a gas of 40K atoms to well below to Fermi temperature. New techniques of

thermometry were devised in order to observe the emergence of quantum degeneracy

through measurements of energy and the momentum distribution. After spending a

year exploring and improving the performance of evaporative cooling in the quantum

regime, we were able to produce the world’s first and currently only two-component

Fermi gas of atoms. The work in this chapter details the investigation of the effect of

interactions on the thermodynamics and dynamics of the two-component degenerate

gas.

As described in the introduction (chapter 1), there are many experiments left to
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do with an atomic DFG. The work detailed in this thesis makes the realization of the

equivalent of BCS-like pairing [67,113,40] in an atomic gas possible in the near future.

The possibility of the phase transition to a paired state requires an attractive interaction

between the atoms. Although the interaction for the states we use, mf = 9/2 and

mf = 7/2, is repulsive, theoretical calculations predict [69] an experimentally accessible

Feshbach resonance for the mf = −9/2 and mf = −7/2 states. A degenerate gas of

these states could be created by loading the gas of the positive mf states into an optical

trap and quickly reversing the direction of the magnetic field. Then, the inter-atomic

interactions could be made strongly attractive by tuning the magnetic field magnitude.

In fact, unpublished work by Murray Holland predicts that a phase transition to a

paired state at T/TF = 0.5 is possible using the Feshbach resonance in this way.

6.5 Appendix

6.5.1 Rethermalization Model

6.5.1.1 Overview

This appendix is not a rigorous mathematical derivation of a rethermalization

model. Rather, I will informally explain the basics of the model that we use to analyze

the data presented in this chapter. This appendix follows the notation used in Statistical

and Thermal Physics by Reif [114], which is an excellent reference for kinetic theory.

The material in this appendix is meant to be used in conjuction with [114], and may be

difficult to follow without some cross-reference.

Physical intuition suggests that the rethermalization rate for quantities like δ

and ∆ (the difference in energy between the directions of the mf=7/2 component and

between the two components, respectively) should be connected to the collision rate per

particle in the gas. One might guess that the rethermalization should be exponential

in time, as well. In fact, a Monte Carlo simulation by Murray Holland for a single
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component, classical gas found that cross-dimensional relaxation is nearly exponential

in time, with a rethermalization rate that is proportional to the collision rate per particle

[42]. However, this is difficult to justify a priori for a two-component Fermi gas. All

we know for sure is that the time rate of change of ∆ and δ must be zero in thermal

equilibrium.

We use the kinetic theory derived in [114] to explore the time dependence of ∆

and δ. In [114], Enskog’s equations are derived from the first principles of kinetic theory.

These equations connect the time rate of change of any average quantity in the gas to a

collision integral.2 For our case, the kinetic theory describes how collisions rethermalize

energy between the components and between the directions in themf = 7/2 component.

Unfortunately, including the Pauli blocking explicitly in the kinetic theory equa-

tions is difficult. We solve the equations for the classical case, and then “patch” the

results for the quantum regime. The patch is designed to take into account the effects

of FD statistics that we do not want to probe (thermodynamics) and lump what we

do wish to probe (Pauli blocking) into σeff . Numerical calculations are used to justify

approximations that are made in order to produce tractable (and analytic) retherm-

alization equations. In this appendix the label “1” is used to refer to the mf = 9/2

component and “2” to the mf = 7/2 component.

In this appendix, we will assume that the gas maintains a quasi-equilibrium at

all times. We assume that the statistical distribution function can be approximated

by a FD distribution with a well defined fugacity Z and mean energy per particle E.

Ergodicity is broken by allowing different values of E in the radial and axial directions

in the gas (see the appendix to chapter 3). However, we do assume that the x and y

directions in the gas stay in thermal equilibrium because of a separation of the x—y

equilibration timescale and the timescale for the microwave frequency sweep that is used
2 Because the force from the harmonic trap is conservative and the gas has no net momentum, only

the collision term in Enskog’s equation drives changes in δ and ∆.
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to bring the mf = 7/2 component of out equilibrium. The equilibration timescale for

the x and y directions should on the order of the inverse of the radial trap frequency,

∼ 8 ms. The microwave frequency sweep that takes the mf = 7/2 component out of

equilibrium between the radial and axial direction takes ∼ 150 ms. In the experiment

we do not observe any rapid change in the properties of the gas that would reflect an

x—y re-equilibration after the microwave cut.

Under these assumptions, we characterize the gas by E = Ex+Ey+Ez = 2Ey+Ez.

In addition, it is assumed that the energy is evenly distributed (on average) between

kinetic and potential energy in each direction: Ey = 1
2mω

2
r 〈y2〉 + 1

2m〈v2
y〉, for example

(the averaging symbols refer to a statistical average over the gas).

6.5.1.2 Time Dependence of ∆

We first consider the time dependence of ∆ = E1 − ηE2, which is the difference

in energy between the components with an adjustment so that d∆/dt = 0 in thermal

equilibrium in the quantum regime. The adjustment factor, η, is the equilibrium ratio

E1/E2.

From [114], the kinetic equation for ∆ is

1
2
d∆
dt

=
∫
d3!p1

∫
d3!p2

∫
dΩf

|!p1 − !p2|
m

n12
Π1(!p1)
N1

Π2(!p2)
N2

dσeff
dΩf

×

1
2m

{
(p1

′)2

N1
− η

(p2
′)2

N2
−
[
(p1)2

N1
− η

(p2)2

N2

]}
(6.1)

Here, the change in ∆ is driven by collisions between a 1 and a 2 atom, with initial

momenta !p1 and !p2 and final momenta !p1
′ and !p2

′. The final momenta are implicitly a

function of the initial momenta and the solid angle Ωf between the initial and final rel-

ative momenta. The statistical momentum distributions Π(!p) (which will be addressed

later in this appendix) are normalized so that
∫
d3!pi Πi(!pi) = Ni for i = 1 or 2. The

density overlap integral is given by

n12 =
∫
d3!r n1(!r)n2(!r) (6.2)
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with a similar normalization (
∫
d3!r ni(!r) = Ni) for the statistical density distribution

n(!r) (which will be addressed later in this appendix). Note that equation 6.1 is missing

a factor of 1
2 on the right side of the equation compared to [114] because the colliding

atoms are not identical.

The physics behind equation 6.1 can be understood by breaking the equation into

pieces. The time rate of change of ∆ (as an average quantity) is the change in ∆ for any

particular collision (the second line of the equation) averaged over all possible collisions

in the gas. Note that only the kinetic energy of a colliding atom is changed by a collision,

so that the potential energy does not appear in equation 6.1. This is also the reason

for the factor of 1
2 on the left side of the equation — we are only considering the time

dependence of the kinetic half of ∆. The integral over dΩf covers the average over all

final colliding states, while the integral over d3!p1d
3!p2 covers the average over all initial

colliding states. The factor |#p1−#p2|
m n12Π(!p1)Π(!p2)

dσeff
dΩf

, combined with the differentials,

gives the rate at which a collision with specific parameters !p1
′, !p2

′, !p1, !p2 occurs in the

gas.

For the time being, we consider the classical case and take η → 1 and dσeff
dΩf

= σeff
4π .

The integral over dΩf can be done analytically by using center of mass and relative

coordinates. We find that the kinetic equation 6.1 (still with η = 1) with this integration

is:

1
2
d∆
dt

= −n12
N1 +N2

2N1N2
σeff

∫
d3!p1

∫
d3!p2

|!p1 − !p2|
m

Π1(!p1)
N1

Π2(!p2)
N2

1
2m

[
(p1)2 − (p2)2

]
(6.3)

We now define A by

A =

{∫
d3!p1

∫
d3!p2

|#p1−#p2|
m

Π1(#p1)
N1

Π2(#p2)
N2

}
×
{∫
d3!p1

∫
d3!p2

1
2m

[
(p1)2 − (p2)2

] Π1(#p1)
N1

Π2(#p2)
N2

}
∫
d3!p1

∫
d3!p2

|#p1−#p2|
m

Π1(#p1)
N1

Π2(#p2)
N2

1
2m [(p1)2 − (p2)2]

(6.4)

and rewrite equation 6.3 as:

1
2
d∆
dt

= −n12
N1 +N2

2N1N2
σeff

1
A

{∫
d3!p1

∫
d3!p2

|!p1 − !p2|
m

Π1(!p1)
N1

Π2(!p2)
N2

}
×
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d3!p1

∫
d3!p2

1
2m

[
(p1)2 − (p2)2

] Π1(!p1)
N1

Π2(!p2)
N2

}
(6.5)

= −n12
N1 +N2

2N1N2
σeff

1
A
〈|!v1 − !v2|〉〈 1

2m

[
(p1)2 − (p2)2

]
〉 (6.6)

where the angle brackets refer to a statistical average: 〈〉 → ∫
d3!p1

∫
d3!p2

Π1(#p1)
N1

Π2(#p2)
N2

.

The average of |!v1−!v2| is the mean relative speed between a “1” and a “2” atom, which

we denote by v. The average of 1
2m

[
(p1)2 − (p2)2

]
is just 1

2∆ (still with η = 1), so

equation 6.6 turns into:

d∆
dt

= − 1
A

N1 +N2

2N1N2
n12σeffv∆ (6.7)

which gives exponential relaxation of ∆ in time, assuming that A is a constant. We

find that the exponential time constant is proportional to one over the average of the

collision rate per particle in each component,
[

1
2

(
n12σeffv

N1
+ n12σeffv

N2

)]−1
.

We now revisit the quantum case, for which η = 1. The effective differential

cross-section dσeff
dΩf

is properly a function of the final momenta since Pauli blocking (of

the form 1− n(!p ′)) terms should be included explicitly in the kinetic equations. Pauli

blocking is what allows the gas to reach an equilibrium where E1 = E2 (or η = 1). To

“patch” the classical result (equation 6.7), we consider the average over the final states

(over dΩf ) from a different perspective. The total energy in a collision must be divided

up, on average, into the final states consistently with thermodynamic equilibrium. For

thermodynamic equilibrium, d∆/dt = 0 and ∆ = 0. This constraint is satisfied if the

total energy et = e1 + e2 in a collision divides up, on average, fractionally to the 1 and

2 atom after the collision according to e′1 =
η

1+η et and e
′
2 =

1
1+η et. Here, e1 and e2 are

the initial kinetic energies of atom 1 and 2 in the collision, and e′1 and e′2 are the final

kinetic energies of atom 1 and 2 in the collision.

We denote the average over dΩf as 〈〉dΩf . On average,

〈 e
′
1

N1
− η

e′2
N2

−
(
e1
N1

− η
e2
N2

)
〉Ωf = − N2 + ηN1

N1N2(1 + η)
(e1 − ηe2) (6.8)
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must be true.3 Comparing to the classical result (equation 6.7), we guess that the time

dependence of ∆ is approximated by

d∆
dt

= − 1
A

N2 + ηN1

N1N2(1 + η)
n12σeffv∆ (6.9)

The final answer for ∆(t) is:

∆(t) = (E10 − ηE20) e−t/τ∆ (6.10)

where τ∆ =
(

1
An12σeffv

N2+ηN1

N1N2(1+η)

)−1
. The initial conditions are given by E10 = E1(t =

0) and E20 = E2(t = 0).

The value of A can be evaluated analytically if n(!v) is isotropic in velocity space

and the distribution is gaussian (classical case). In this case, we find A = 3
4 , and ∆

varies exponentially in time. In order to describe the experimental case, however, the

value of A must be evaluated using FD distributions that allow different mean energies

in the different directions. A distribution that is correctly normalized for N (so that
∫
d3!p Π(!p) = N) is

Π(!p) = − 1
(2π)3/2h̄3λ

√
ζ

(
kbTr
mω2

r

)3/2

Li3/2

(
−Ze

− p2r
2mkbTr e

− p2z
2mkbTz

)
(6.11)

where ζ = Tr/Tz and z is now a function of ζ. This distribution gives 〈 p2
z

2m〉 = kbTz
Li4(−Z)
Li3(−Z)

and 〈 p2
r

2m〉 = 2kbTr
Li4(−Z)
Li3(−Z) (here the angle brackets refer to an average done as 〈 p2

y

2m〉 =
1
N

∫
d3!p Π(!p) p2

y

2m , for example). The variables Tr and Tz should not be viewed as temper-

atures (since the gas is not in equilibrium), but rather convenient parameters to allow

each direction to have a different mean kinetic energy.

The value of A can now be calculated using the explicit definition given previously

(equation 6.4). We use the anisotropic FD distribution (equation 6.11) to numerically

investigate the case for T/TF = 0.25. The range ζ = 0.5 (and E1/E2 = 2) to ζ = 1

(and E1/E2 = 1.3) approximately covers the rethermalization data. For ζ = 0.5 and
3 To get this equation, all we’ve done is substitute the expressions for e′1 and e′2 into the left side of

the equation.
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E1/E2 = 2, we find that A = 1.3, and for ζ = 1 and E1/E2 = 1.3 we find that A = 1.0.

Since A is not constant during the equilibration at low T/TF , the time dependence of ∆

is only approximately exponential. For high T/TF (T/TF = 2), we find that A ∼ 0.75

for the range ζ = 0.5 to 1.0 (and E1/E2 = 2 to E1/E2 = 1). Numerically we determine

that A ranging from 1.3 to 0.75 makes little difference (∼ 10% in the value we determine

for σeff ) in the fit that determines the rethermalization time constant as described in

this chapter.
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6.5.1.3 Time Dependence of δ

Next, we investigate the time dependence of δ = E2y − E2z, which is a measure

of the degree of cross-dimensional equilibrium of the “2” component. The analysis of

the time dependence of δ closely follows the investigation of the time dependence of ∆

from the previous section.

The kinetic equation (from [114]) for the time evolution of δ is:

1
2
dδ

dt
=
n12

N2

∫
d3!p1

∫
d3!p2

∫
dΩf

|!p1 − !p2|
m

Π1(!p1)
N1

Π2(!p2)
N2

dσeff
dΩf

×
1
2m

{
(p2y

′)2 − (p2z
′)2 −

[
(p2y)2 − (p2z)2

]}
(6.12)

As for the kinetic equation for ∆, this equation can be viewed as an average over all

possible collisions. In equation 6.12, !p1 and !p2 are the initial momenta of the 1 and

2 atom for a particular collision. For the “2” atom, p2y and p2z are the projections

of the initial momentum onto the axes of the harmonic trap. The quantities p2y
′ and

p2z
′ are similar quantities for the final momentum of the 2 atom. The final momenta

are implicitly functions of the initial momenta and the solid angle Ωf , as in the kinetic

equation for ∆.

I will jump straight to the simplified final state averaging procedure for δ. The

procedure works the same way as for ∆, except that we break up the kinetic collision

energy e1 and e2 into directions. Here e1 and e2 are the initial total kinetic energy for

the “1” and “2” atom in a collision. The total energy in the collision again breaks up,

on average, fractionally into the 1 and 2 atoms after the collision as before. Now we

assume that the energy is equally divided up after the collision, on average, into each

direction: e′2y = 1
3e

′
2 and e′2z = 1

3e
′
2 and e′1y = 1

3e
′
1 and e′2z = 1

3e
′
1. Here the “primed”

quantities refer to the kinetic energies of the 1 and 2 atoms after the collision in the

y and z directions (recall that these directions refer to the axes of the harmonic trap).

Equal division of the energy into the different directions guarantees that in thermal
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equilibrium Ey = Ez. We find that 〈e′2y − e′2z − (e2y − e2z)〉dΩf = − (e2y − e2z).4

After completing the angular average, equation 6.12 simplifies to:

1
2
dδ

dt
= −n12

N2
σeff

∫
d3!p1

∫
d3!p2

|!p1 − !p2|
m

Π1(!p1)
N1

Π2(!p2)
N2

1
2m

[
(p2y)2 − (p2z)2

]
(6.13)

Introducing α (similar to A) defined by:

α =

{∫
d3!p1

∫
d3!p2

|#p1−#p2|
m

Π1(#p1)
N1

Π2(#p2)
N2

}
×
{∫
d3!p1

∫
d3!p2

1
2m

[
(p2y)2 − (p2z)2

] Π1(#p1)
N1

Π2(#p2)
N2

}
∫
d3!p1

∫
d3!p2

|#p1−#p2|
m

Π1(#p1)
N1

Π2(#p2)
N2

1
2m [(p2y)2 − (p2z)2]

(6.14)

we rewrite equation 6.13 as:

1
2
dδ

dt
= −n12

N2
σeff

1
α

{∫
d3!p1

∫
d3!p2

Π1(!p1)
N1

Π2(!p2)
N2

1
2m

[
(p2y)2 − (p2z)2

]}
×{∫

d3!p1

∫
d3!p2

|!p1 − !p2|
m

Π1(!p1)
N1

Π2(!p2)
N2

}
(6.15)

= −n12

N2
σeff

1
α
〈 1
2m

[
(p2y)2 − (p2z)2

]
〉〈|!v1 − !v2|〉 (6.16)

where the angle brackets refer to a statistical average over !p1 and !p2 as in the analysis

of ∆.

With the same definition for v as before and realizing that 1
2δ = 〈 1

2m

[
(p2y)2 − (p2z)2

]〉,
we have:

dδ

dt
= − 1

α

n12

N2
σeffv12δ (6.17)

Again, we find that the time dependence of δ is exponential if α is constant, and that

the rethermalization rate is proportional to the collision rate per particle in the “2”

component, n12
N2
σeffv12. With initial conditions E2y(t = 0) = E2y0 and E2z(t = 0) =

E2z0, we have:

δ(t) = (E2y0 − E2z0) e
−t 1

α

n12
N2

σeffv12 (6.18)

Using the FD anisotropic momentum distributions from equation 6.11, numerical

calculations indicate that α is fixed to 0.75 to within 8% across our range of experimental

conditions. The model therefore predicts a nearly exponential time dependence for δ.
4 Again, to obtain this equation we’ve just substituted for e′2y and e′2z into the left side of the

equation.
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For the classical and quantum cases, α varies from ∼ 0.69 to ∼ 0.74 as ζ varies from

0.3 to 0.95 (numerically investigating ζ = 1 presents some technical problems, but the

calculations indicate that α approaches 0.75 as ζ approaches 1).5 This result agrees

with the result of a Monte-Carlo simulation for a single component, classical gas [42].

Note that α and A can be viewed as the average number of collisions per particle to

rethermalize δ and ∆, respectively.

6.5.1.4 Functional Form for the Aspect Ratio vs. Time

We wish to find E2z/E2y as a function of time, which is proportional to the

expanded cloud’s aspect ratio squared (see the appendix to chapter 3). If total energy

in the gas is U = N1E1+N2E2 then ∆ = U/N1−(β + η)E2 giving E2 = 1
β+η (U/N1 −∆)

where β = N2/N1. Using E2 = 2Ey +Ez, δ = Ey −Ez, and some algebra, we find that:

E2z

E2y
=
E2 − 2δ
E2 + δ

(6.19)

which gives for the aspect ratio

√
γ
[U/N1 −∆(t)]− 2δ(t)(β + η)
[U/N1 −∆(t)] + δ(t)(β + η)

(6.20)

with γ = 1+(ω7ztexp)2

1+(ω7rtexp)2
ω2

7r

ω2
7z
, where ω7r and ω7z are the harmonic oscillator frequencies for

the mf = 7/2 component and texp is the expansion time. Substituting in and doing

some more algebra, we get the function that we actually fit the aspect ratio vs. time to:√√√√√γ h+ β − (h− η)e−
t
τ

1
A

N2+ηN1
N1N2(1+η) − 2s(β + η)e−

t
τ

1
α

1
N2

h+ β − (h− η)e−
t
τ

1
A

N2+ηN1
N1N2(1+η) + s(β + η)e−

t
τ

1
α

1
N2

(6.21)

where γ, τ = 1
n12σeffv12

, and s =
(
1− E2z0

E2y0

)
/
(
2 + E2z0

E2y0

)
are left as free parameters in

the fit. The measured values of N1, N2, β, η, and h = E10/E20 are fixed in the fit.
5 To calculate α for the classical case, the classical limit of equation 6.11 is used.
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6.5.1.5 Determination of n and v

After we use the fit to the aspect ratio vs. time to extract τ , we need the product

n12v in order to determine σeff . Again, these parameters are defined as:

n12 =
∫
d3!r n1(!r)n2(!r) (6.22)

v =
1

N1N2

∫
d3!p1

∫
d3!p2 Π1(!p1)Π2(!p2)

|!p1 − !p2|
m

(6.23)

where an FD anisotropic density distribution can be defined as:

n(!r) = − (kbmTr)
3/2

√
ζh̄3 (2π)3/2

Li3/2

[
−Ze

− mω2
r

2kbTr
(r2+λ2ζz2)

]
(6.24)

which is normalized properly for N (
∫
d3!r ni(!r) = Ni for i = 1, 2) and gives 〈1

2mω
2
rr

2〉 =

kbTr
Li4(−Z)
Li3(−Z) and 〈1

2mω
2
zz

2〉 = 1
2kbTz

Li4(−Z)
Li3(−Z) . Here, the statistical average is done as

〈1
2mω

2
rr

2〉 = 1
N

∫
d3!r n(!r)

(
1
2mω

2
rr

2
)
, for example. Again, because the gas is out of

equilibrium, the parameters Tr and Tz should not be regarded as temperatures, but

rather parameters that allow the different directions in the gas to have different mean

potential energies.

In order to determine n12v for the data, we fit the images to gaussians. The

product n12v is then calculated using anisotropic gaussian momentum and density dis-

tributions. Gaussian distributions that are the high T/TF limit of equations 6.11 and

6.24 are:

n(!r) =
λN

√
ζ

(2π)3/2

(
mω2

r

kbTr

)3/2

e
− mω2

r
2kbTr

(r2+λ2ζz2) (6.25)

Π(!p) =
N
√
ζ

(2π)3/2 (mkbTr)
3/2

e
− 1

2mkbTr
(p2
r+ζp2

z) (6.26)

These distributions give 1
N

∫
d3!r n(!r)

(
1
2mω

2
rr

2
)
= kbTr and 1

N

∫
d3!p n(!r)

(
1
2mω

2
zz

2
)
=

1
2kbTz as average values of potential energy. Likewise, the average values of kinetic

energy are: 1
N

∫
d3!p Π(!p)

(
1

2mp
2
r

)
= kbTr and 1

N

∫
d3!p Π(!p)

(
1

2mp
2
z

)
= 1

2kbTz.

The accuracy of using gaussian fits, rather than TF fits, is checked numerically.

The gaussian fitting procedure is tested on images generated using the anisotropic FD
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density distributions (equation 6.24). Of course, in the classical regime the gaussian fits

determine n12v exactly. At worst, at T/TF = 0.2 and ζ = 0.5, the gaussian fits make a

2% error in n12v.

6.5.2 Fast mf = 7/2 Component Removal

A single frequency sweep (as described in chapter 4) is used to quickly remove

atoms from the mf = 7/2 component and bring the gas out of thermal equilibrium.

Generating the frequency sweep via GPIB commands to the HP E4420B synthesizer

is too slow and coarse for this purpose. For this reason, we use the analog voltage

controlled, phase-continuous sweep capability of this synthesizer. The frequency is swept

by stepping an analog voltage (that is connected to the synthesizer using the driver

circuit described in Chapter 1) in time, and uses the same exponential sweep parameters

as described in the appendix to Chapter 4. Typical parameters for this sweep are: sweep

rate of 1 Hz, sweep start of 1274 MHz, sweep end of 1274.057 MHz, sweep “bottom”

at 1274.4 MHz. We optimize the sweep to provide some cooling but still bring the

mf = 7/2 component out of thermal equilibrium.
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Appendix A

LAB NOTEBOOK INDEX

added preservation coil #16: 84

install AG coil #12: 46

transfer tube electromagnets #9: 112

information on cooling diodes and performance #12: 133-, #14: 56,62,82

calibration of ZFAS-1000 attenuator #4: 5

lifetime, heating with valve shut overnight #12: 33

surface mount component resonant matching of microwave coil #15: 185

recent noise data #16: 138

thermometry data

last expansion data mf=9/2 #17: 12-13
mixture fit vs FD fit #12: 104
good fugacity data #13: 45, #12: 96, #14: 23,103
angularly averaged cloud profiles #12: 134-135
thermometry systematic vs 7/2 cleanout time #12: 80
mixture fit L dependence on detuning #12: 38-43
FD fit parameters dependence on detuning #15: 18
saturation effects #10: 29
different cuts for energy fits #15: 6
L vs peak OD #10: 115
example of effect of bad probe beam #10: 132
test of image subtraction #15 : 32-33

evaporation

study of end of single frequency evaporation #14: 109; #15: 74
two-frequency evaporation performance vs PS voltage #16: 53
best two-frequency evaporation temps (using 8648) #15: 144
check that microwave line spacing make sense #12: 11
two-frequency with 7/2 cleanout #13: 45, 51; #12: 25
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data on variation in final T with variation in initial N for evap1 #12: 116
evap2 in single-frequency trap #10: 13
7/2 removal trajectory #12: 109; #15: 44
trajectories with different initial N #12: 32
removal sweep optimization #12: 13,16
single frequency trajectory #11: 96, 111; #10: 103, 99, 97, 92, 68, 45, 21,

17, 15, 13
microwave lineshapes, checks on ∆f #8: 124, 144
very early data on badness of 8656B synth. (and switch to E4420B for

evap1) #9: 17
switch to “sheet” coil in evaporation #8: 153
cooling rate in evap2 #15: 88
measure microwave power from removal probability #15: 106, 127, 147
problems caused by synths w/ different duty cycles #15: 130
effect of power on end of evap1, varying cut to get 50/50% mixture #15:

141
evap2 trajectory with 8648 synth #16:16-17
evap2 trajectory with 8647 synth #16:41
evap2 trajectory with E4420B synth #16:43
implement fast 5/3+3/2 cleanout #16:47
implement 5/2 cleanout during evap2 #16: 50
evap1 behavior vs power at fixed cut #16: 109, 112; #17: 76
recent evap2 trajectory #16: 140-142; #17: 64,79
optimize bottom of sweep for evap2 #16: 45

imaging

imaging optics #7: 73-81
calibration vs PD #5: 109-116
calibration of low magnification #11: 61
check on N #10: 117-125
last focus #14: 96
last/best magnification measurement (and sag measurement) #16: 100-102
absorption lineshapes for different Q fields #15: 25; #16:104,131

MOT behavior

MOT temp #5: 39; #4: 149; #2: 148
effect of cold MOT stage #6: 37-39,79,138
dependence of catch/loss on repump power #2: 22-26, 42; #6: 20-21
Sci MOT lifetime #2: 3
max fill vs bypass power #3: 35, 42; #7: 10,16; #8: 58
last science MOT fill #17: 19
collection and science MOT behavior vs repump power #12: 144-152
best shims for fill #13: 9
add dark spot #13: 9
last? (detailed) science MOT detuning optimization #14: 87,113; #15: 87
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push

push polarization and detuning dependence #2: 97; 1/12/01
push speed #2: 13-14
push duration #2: 15; #3: 86
push speed vs detuning, pulse vs LVIS #1: 152

elastic collision measurement

correct fitting function, reanalysis #6: 53-54
data #5: 60-152
check on scaling with N #5: 66

inelastic rates

looking for mf = 5/2 +mf = 7/2 Feshbach resonance #11: 58-64

optical pumping and spin composition

better evaporation performance for dark state transition #5: 34-35; #7: 5
fix optical pumping polarization and repumping #6: 135-143
measurement of spin composition #14: 73
fraction transferred into magnetic trap vs λ/4 angle and detuning #13: 18
optical pumping dependence on power #15: 53
effect of opt pumping on temperature #3: 122-124; #4: 145; #6: 106
compare optical pumping on two different transitions #13: 17-18
repump jump detuning effect on spin composition #14: 123
set up optical pumping beam using reflection #6: 114

magnetic trap

install hall probes for magnetic trap current servos #11: 128-134
frequency response of cloverleaf coils #11: 123-125
explicit magnetic trap wiring diagram #16:150-151
magnetic trap sensitivity to air conditioner and drift #13: 81-102
implementation of fast magnetic trap turn-off #14: 45-50
paranoia: magnetic trap sensitivity to the door position #15: 97
set up control voltages with 4 resistor dividers #9: 141; #10: 77
bias field short term stability before optimizing servos #11:65-83,108
bias field short term stability after optimizing servos #12:7-10
drift vs temp of phenolic rods #11: 144
effect of science MOT coils on drift #12: 6
effect of magnetization of stuff on bias field #16: 71-80
magnetic trap coil wiring and plumbing #1:16-17
magnetic trap field measurements #1:21-26
magnetic trap coil resistances #1: 28-29
single frequency trap #10: 9-12
water flow #2: 149
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mode matching on load #5: 37
drift caused by transfer tube magnets #9: 110
slosh caused by SRS mismatch on ramp #9: 70
effect of turning off alkali dispensers during evaporation #16: 68


