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Abstract
FERMIONS AND BOSONS ON AN ATOM CHIP

Marcius H.T. Extavour, Doctor of Philosophy, 2009
Graduate Department of Physics, University of Toronto

Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled meso-

scopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic

atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed

matter systems, and to study matter wave interference and coherence.

This thesis describes the experimental realization and manipulation of Bose-Einstein conden-

sates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic mag-

netic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases.

The chips consist of micrometre-scale conductors supported by a planar insulating substrate,

and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres

from the chip surface. We demonstrate for the first time that a DFG can be produced via sympa-

thetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb

collision rate afforded by the strongly confining atom chip potential permits rapid cooling of

40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-

thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in

the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T ≈ 0.1TF ,

and observe Fermi pressure in the time-of-flight expansion of the gas.

This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create

dressed state double-well potentials for BEC and DFG. We demonstrate for the first time that RF-

dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-

well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure

fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC.

In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight

absorption imaging. These measurement tools lay the foundation for future investigations of

number squeezing and matter wave coherence in BEC and DFG systems.

ii



Acknowledgements

This thesis is the product of many years of hard work, and I have many people to thank. The
work really would not have been possible were it not for the professional and personal support
of physics faculty, my fellow graduate students and lab mates, friends, and family.

My thesis supervisor Professor Joseph Thywissen has been a supportive and responsive the-
sis adviser. Joseph was always generous with his time, making himself available to discuss
physics, technical issues and experiment strategy one-on-one and in groups. I particularly ap-
preciated his focus on the broader field and his optimism for the future during the early days
of bare optics tables and freshly painted lab walls. He sold me on ultra-cold atoms on my first
visit to his office, where he told me about fermionization of bosons in a one-dimensional trap.
I mention this detail as a testament to his enthusiasm for the research, which I value greatly. I
would also like to thank Prof. Aephraim Steinberg for his feedback on my research throughout
my Ph.D, and Prof. Allan Griffin for his valuable advice during the writing of my thesis.

Dr. Seth Aubin taught me most of what I know about atomic spectroscopy and general cold-
atoms laboratory technique. My first lesson from Seth was that a Ph.D in experimental atomic
physics would require tightening no fewer than ten-thousand vacuum bolts. He led the build-up
phase of our experiment, and was the driving force behind our achievements of BEC and DFG.
Dr. Stefan Myrskog and Lindsay LeBlanc were also instrumental in the early years in bringing
the cold atoms machine online, as were the first summer students Phil Scrutton, Swati Singh and
Hyun Youk. Alan Stummer’s skills and support on so many technical projects have also been an
invaluable resource for this work.

Dr. Thorsten Schumm’s 2006 visit to our group was very productive time. Thorsten brought
his expertise in radio-frequency double-well potentials to our group, along with his considerable
atom chip experience. We observed matter wave interference for the first time during his stay,
which was the starting point of my subsequent work on relative number and phase measure-
ments in a split Bose-Einstein condensate.

My fellow lab mates Lindsay LeBlanc, David McKay, Alma Bardon, Dylan Jervis and Dr.
Jason McKeever have kept life interesting in the lab over the years. Lindsay’s ice cream, McKay’s
chatter, Alma’s cheer, Dylan’s tunes and McKeever’s edge made the good times great and the
bad times bearable. Outside of the lab, I was lucky to have many friends to talk physics and
commiserate with, especially Elham, Shabnaz, Lisa, Reza, Patrick P., Patrick M., Chris E., John V.
and Krister. I am also grateful to the Torontula ultimate, especially the On Point Kings, and to
many musical masters to name, with whom I also shared all of the ups and downs.

Special thanks are due to my sisters Cassandra, Ericka and Mariea for their support and
laughter, and to my parents Hughgo and Doris for never asking when I would graduate. Finally,
my deepest thanks are for my wife Janine – for her love, her faith in me, and her tremendous
patience. Janine always knew when to cheer me on, when to shut me up, and how to help me
see the forest for the trees.

iii



Preface
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me as an odd choice for a conference dedicated to ultra-cold atoms research, which my thesis
supervisor and the list of invited speakers assured me it was. I followed their lead and prepared
a poster entitled Cold Bose-Fermi Mixtures in a Microchip Trap, describing our recent achievement
of Bose-Einstein condensation in an atom chip trap, and ongoing efforts to achieve a degenerate
Fermi gas.

At the conference’s opening reception, Professor Norman Ramsey greeted the attendees and
regaled us with tales of the early days of the laser, and of atomic spectroscopy. As he recalled the
origins of ICOLS at a 1971 laser physics symposium in Esfahan, I couldn’t help but overhear the
quiet grumbling of two nearby physicists: here was one of the great spectroscopists presiding
over a conference which had been hijacked by the quantum gas people, they said. “Hijacked”
is surely an overstatement, but their sentiment did highlight a theme of that conference, and of
contemporary atomic physics research in general: namely, the gradual and ongoing shift toward
the physics of interacting many-body quantum systems.

This thesis presents my graduate research in quantum degenerate gases of neutral alkali
atoms in Professor Joseph H. Thywissen’s group at the University of Toronto in Toronto, Canada.
The experimental work was carried out between September 2003 and the present in the McLen-
nan Physical Labs, room MP023.
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and J. H. Thywissen, Fermions on atom chips, A chapter in the forthcoming volume Atom
Chips ed. V. Vuletic and J. Reichel, Wiley-VCH, 30 pages, in press 2009. arXiv:0811.1401.

• M. H. T. Extavour, L.J. LeBlanc, T. Schumm, B. Cieslak, S. Myrskog, A. Stummer, S. Aubin
and J. H. Thywissen, Dual-species quantum degeneracy of 40K and 87Rb on an atom chip, Atomic
Physics 20, p.241 - 249 (2006).

• S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, J. H. Thy-
wissen, Rapid sympathetic cooling to Fermi degeneracy on a chip, Nature Physics 2 384 - 387
(2006).

• S. Aubin, M. H. T. Extavour, S. Myrskog, L. J. LeBlanc, J. Estève, S. Singh, P. Scrutton,
D. McKay, R. McKenzie, I. D. Leroux, A. Stummer and J. H. Thywissen, Trapping fermionic
40K and bosonic 87Rb in a chip, J. Low Temp. Phys. 140 377 - 396 (2005).

The methods and results of Chapters 7 are unpublished, but will be incorporated into future
publications.
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Something interesting will happen
soon at work.

Wing’s fortune cookie 1
Introduction

The experimental work of this thesis was carried out in a laboratory formerly occupied by the
atomic and molecular spectroscopist Boris P. Stoicheff [1]. It seems fitting that our cold atoms
research group should have inherited Professor Stoicheff’s space, since the modern field of ultra-
cold atoms grew out of the laser physics and atomic spectroscopy communities. Many of the
research directions driving the ultra-cold atoms community today, however, address questions
traditionally associated with condensed matter physics and quantum optics. These include quan-
tum simulation of magnetic ordering using neutral atoms in optical lattice potentials (see for
instance [2, 3]), vortex dynamics in superfluid quantum gases (e.g. [4, 5]), and matter wave
coherence and squeezed states for matter wave interferometers (e.g. [6]).

The use of ultra-cold atoms to pursue these research directions reflects a broader theme in
the field, which is also a central theme of this thesis: the tools used to prepare, manipulate and
measure ultra-cold gases depend critically on internal atomic degrees of freedom, but the be-
haviour of the resulting quantum systems is dictated by quantum statistics, which apply to any
gas of particles obeying Bose-Einstein or Fermi-Dirac statistics. Thus, degenerate quantum gases
of neutral atoms are excellent systems for studying a broad range of physical phenomena beyond
the bounds of traditional atomic physics.

Quantum degeneracy in atomic gases

The first major achievement of this thesis is the realization of degenerate Fermi gases of 40K and
Bose-Einstein condensates of 87Rb in a simple, single-vacuum-chamber apparatus. The Bose-
Einstein condensate (BEC) is one of the most unique and fascinating many-body states in physics.
Unlike a conventional gas, in which particles are distributed among the available energy states,
a BEC is characterized by the multiple, “ macroscopic” occupation of one single-particle quan-
tum state of the system. BEC in dilute alkali gases was first achieved in 1995 [7, 8, 9], following
advances in the phase-space-reducing techniques used to coax the atomic gas through a phase
transition and into the condensed state. The main techniques are laser cooling and evaporative
cooling, which typically involve coupling external laser and radio-frequency (RF) magnetic fields
to internal atomic states. Since all the particles in a BEC occupy the same single-particle quan-
tum state, the BEC is a source of coherent matter waves analogous to a laser for light. The first
observation of matter wave interference between two BECs in 1997 [10] was an immediate and
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striking demonstration of the analogy between the BEC and coherent optical waves.
In 1999, the first degenerate Fermi gas (DFG) was achieved by similar means [11]. However,

the Pauli exclusion principle states that two identical fermions cannot occupy the same quantum
state. Thus, quantum degeneracy in fermions has a very different meaning than in boson sys-
tems. At zero-temperature, n particles in a Fermi gas fill the n lowest energy states of the system.
This “filled Fermi sea” description of the single-component atomic DFG is directly analogous to
elementary textbook descriptions of electrons in a metal [12], or neutrons in a neutron star [13].

Atom chips: an enabling technology

This thesis describes the preparation of atomic DFG and BEC using atom chip magnetic traps.
Atom chip magnetic microtraps (“chip traps”) are small-volume magnetic traps for neutral atoms
formed using magnetic fields generated by an atom chip. An atom chip consists of a planar sub-
strate patterned with lithographic, planar conductors, which generate trapping magnetic fields
when DC and/or AC currents are passed through the conductors [14, 15]. Not long after the
first DFG was produced, efficient loading of cold atoms into atom chip microtraps enabled the
first demonstration of Bose-Einstein condensation on an atom chip [16, 17]. In subsequent years,
research efforts in DFGs and atom chips progressed independently. Though the 1999 demon-
stration of DFG was a promising step toward observing many-body fermion dynamics in atomic
systems, as of 2003, when the work of this thesis began, DFGs continued to be a challenge to pro-
duce, and had been realized in only a handful of laboratories [11, 18, 19, 20, 21, 22, 23, 24, 25, 26].
A major achievement of this thesis is the first demonstration of a DFG on an atom chip [27],
which represents a significant reduction in the experimental complexity required to prepare an
atomic DFG.

The use of lithographic conductor patterns for magnetic atom trapping was first proposed
in [28] in 1995. A major impediment to realizing chip traps for neutral atoms was their small
trap volume (. 1 µm3), which limits the number of atoms which can “fit” in the trap, and their
proximity (hundreds of micrometres or less) from the atom chip surface. An efficient loading
scheme based on laser cooling and magneto-optical trapping near the chip surface made atom
chip microtraps experimentally accessible for ultra-cold atoms for the first time in 1999. In 2001
the first atom chip Bose-Einstein condensates were produced in harmonic magnetic traps based
on “Z”-shaped wires [16, 17]. Since their introduction into the field of cold atoms, atom chips
have been used to offer a wide array of techniques for trapping and manipulating ultra-cold
atoms using a single, integrated device, including magnetostatic, electrostatic [15] and dynamic
RF and microwave dressed potentials [29, 30, 31, 32, 33], and integrated optical potentials [34, 35].
The experiments described in this thesis capitalize on the versatility of atom chips by using the
various conductors to generate static magnetic traps, adiabatic double-well traps, and as near-
field RF antennae for forced RF evaporative cooling and RF spectroscopy.
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Coherence with quantum gases in double-well potentials

The second major achievement of this thesis is the implementation of double-well potentials for
BEC and DFG, and the development of tools to measure the relative atom number and relative
phase of a BEC confined to a double well.

The double-well potential for atoms is analogous to a beam splitter in optics – a basic building
block of optical coherence and quantum optics experiments. A key difference between matter
waves and light waves is the presence of interparticle (atom-atom) interactions, which are absent
in coherent optics experiments. As a coherent, interacting object, a BEC confined to a double-well
potential is a versatile canonical system for studying interference and coherence effects in matter
waves.

These systems have both fundamental and applied importance. Consider matter wave inter-
ference. As Kasevich points out [6], although particle-wave duality is a fundamental and well-
tested aspect of quantum mechanics, demonstrations of interference with a collection of atoms
– massive, composite “meta-particles” – is truly remarkable. Matter wave interference experi-
ments also raise important questions about the meaning of the global phase of a BEC, and the
relative phase between two BECs. For example: Will two independently prepared BECs, each
consisting of a definite measurable number of atoms, and which have never “seen” each other,
produce an interference pattern? [36, 37, 38] This question was answered in the affirmative in
1997, with the first observation of matter wave interference between two 23Na BECs, which were
created independently, released from their trap, and allowed to overlap [10].

In more applied terms, careful measurement and control of BECs in double well atom chip
potentials are important steps toward creating compact atom interferometers for precision mea-
surement. Trapped BECs are promising candidates for atom interferometry since they possess
narrower momentum distributions than do non-condensed ultra-cold atoms [39]. The double
well can act as matter wave beam-splitter, and can in principle be integrated with other atom
optical elements such as waveguides, slits, diffraction gratings, and mirrors on an atom chip [6].
Along these lines, Schumm et al. have demonstrated the coherent splitting of a BEC on an atom
chip [29], and Jo et al. have reported coherence times as long as 200 ms between the two halves
of a split BEC [31].

One drawback of BECs for atom interferometry is the decrease of coherence time due to
mean-field interactions; atom number fluctuations between the two wells can cause rapid de-
phasing [39]. This effect can be mitigated with atom number squeezed states, i.e. states with
sub-shot-noise relative atom number fluctuations. These states are analogous to squeezed pho-
ton states, which are known to yield increased phase sensitivity in optical interferometers [40].

It is convenient to describe the split BEC as a boson Josephson junction (BJJ) for the purpose
of discussing the relative number and relative phase: both the split BEC and a conventional
Josephson junction consist of two superfluids connected by a tunnelling link [41, 42]. The BJJ
model predicts the emergence of number squeezed states if a single-well potential is adiabatically
deformed into a double-well potential to split the BEC. This has led to the recent observation of
number squeezed states achieved by adiabatic splitting of a BEC [31, 43].
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This thesis describes the splitting of a 87Rb BEC using RF dressed state potentials. The re-
sulting double-well potential barrier height and well separation are tunable over a wide range,
allowing access to both the strong tunnelling and weak tunnelling regimes. We develop tools
to characterize fluctuations in the relative atom number and relative phase, and observe relative
atom number fluctuations at the shot noise level.

Thesis outline

The thesis is divided into eight chapters and two appendices, and is organized as follows. In
short, Chapters 2, 3 and 4 provide theoretical and technical material which support the experi-
mental work of the thesis; Chapters 5 discusses the creation of BECs and DFGs; Chapters 6 and
7 describe the implementation of RF double-well potentials; the main results of the thesis are
contained in Chapters 5, 6 and 7.

Chapter 2 presents a brief review of the theory of quantum gases relevant to the main results of
the thesis. We review the theory of ideal BECs and DFGs at zero-temperature in harmonic
traps, focusing on thermodynamics and the observable signatures of quantum degeneracy.
This review is most relevant to the measurements of a DFG/BEC mixture on an atom chip
presented in Chapter 5. We also discuss the relative atom number and relative phase of a
BEC in a double-well potential using the Bose Josephson junction model, which supports
the measurements of number and phase discussed in Chapter 7.

Chapter 3 describes the characterization of micromagnetic atom chip traps used for confining
the atoms. The chapter reviews the basic theory of magnetic trapping in neutral atoms, and
gives a detailed description of our anisotropic magnetic chip traps. Appendix A provides
supporting theoretical material related to magnetic fields generated by chip wires of finite
width and length.

Chapter 4 provides a detailed technical account of the design, construction and characterization
of the experimental apparatus: the diode laser system, ultra-high vacuum chamber, mag-
netic coils, atom chips, RF sources, imaging systems and control hardware and software
used in our experiment. Updates as of June 2009 to the original 2003 and 2004 designs,
published in [44], are noted where appropriate.

Chapter 5 describes the laser cooling, magnetic trapping and sympathetic evaporative cooling
steps used to create 87Rb BECs, 40K DFGs, and BEC-DFG mixtures on an atom chip. We
discuss the experimental signatures of Bose and Fermi degeneracy. We also present data
showing the Ramsauer-Townsend reduction of the 40K-87Rb elastic scattering cross-section
at high temperatures. These topics are published in [33, 45, 27]. This chapter also includes
a discussion of the roles of trap volume and temperature in loading atom chip microtraps
from external magnetic traps.

Chapter 6 describes the formation of double-well potentials for neutral atoms on atom chips us-
ing RF dressed adiabatic potentials. We describe the application of this RF technique to the
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dynamic splitting of a BEC or DFG in a chip trap. We demonstrate the species-selectivity of
RF-dressed potentials by creating a simultaneous double well for bosons and a single well
for fermions. The chapter also presents the results of weak-field RF spectroscopic mea-
surements on RF-dressed potentials, and their role in the characterization of double-well
potentials in our experiments.

Chapter 7 describes the development of measurement and analysis tools for studying the rela-
tive atom number and relative phase in a dynamically split BEC. We focus on the charac-
terization of number and phase fluctuations over successive realizations of the experiment.
The main results are the demonstration of non-random phases after splitting, and relative
number fluctuations at the shot noise level. We estimate our number counting sensitivity
to be well below shot noise, and discuss the prospects for observing number squeezing
via adiabatic splitting in future work. Appendix B gives further detail of the analysis pro-
cedures used to quantify and distinguish atomic fluctuations and optical shot noise from
technical noise in our measurements.

Chapter 8 concludes the thesis by summarizing the major achievements and briefly outlining
promising new research directions arising from this work.

Summary of scientific contributions

This thesis describes the experimental realization and manipulation of 87Rb BECs and 40K DFGs
on an atom chip. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a single-vacuum-chamber atom-chip-based apparatus. We achieve
DFG temperatures as low as T ≈ 0.1TF , and observe Fermi pressure in the time-of-flight ex-
pansion of the gas. We also observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic
scattering cross-section at high temperatures, and show that this is an important aspect of sym-
pathetic cooling in this system.

The thesis also describes the application of RF double-well to BEC and DFG. We demonstrate
for the first time that the RF-dressed potentials are species-selective, permitting the formation
of simultaneous 87Rb double-well and 40K single-well potentials for 40K-87Rb mixture. We also
develop tools to measure fluctuations of the relative atom number and relative phase of a dy-
namically split 87Rb BEC, and observe atom number fluctuations at the shot-noise level using
time-of-flight absorption imaging. These measurement tools lay the foundation for future inves-
tigations of matter wave coherence in BEC and DFG systems.



It is proper to speak the truth.

Wing’s fortune cookie 2
Theoretical basics

This thesis presents experimental work with quantum degenerate atomic gases of fermionic 40K
and bosonic 87Rb. The tools used to prepare, manipulate and measure the atoms – laser cooling,
magnetic trapping, radio-frequency manipulation, and absorption imaging – all involve exter-
nal coupling to internal atomic degrees of freedom. However, the physics describing quantum
degenerate Bose and Fermi gases is based on quantum statistical occupation functions, which
apply equally well to any gas of particles obeying Bose-Einstein or Fermi-Dirac statistics.

The internal atomic structure and external many-body behaviour in these systems are linked
through two aspects of modern ultra-cold atom experiments: interparticle interactions, and ex-
ternal confining potentials. Trapped, interacting Bose and Fermi gases require theoretical de-
scriptions which go beyond the textbook statistical mechanics treatment of uniform ideal Bose
and Fermi gases. These descriptions are well-established in the ultra-cold atoms literature for
Bose gases and Bose-Einstein condensates [46, 47, 48, 49], and for Fermi gases [50, 51].

In this chapter, we review key aspects of the theory of Fermi and Bose gases in harmonic
traps. The chapter begins with a discussion of the Bose gas and BEC. We review the Thomas-
Fermi solution of the Gross-Pitaevskii equation, which gives a mean-field description of a weakly
interacting condensate at zero-temperature. Next, we discuss ideal Fermi gases, with a focus on
signatures of quantum degeneracy. Both the Bose and Fermi discussions include descriptions of
the time-of-flight density distributions, which we observe using absorption imaging and use to
measure the bulk properties of the DFG and BEC. These descriptions support the experimental
work of Ch. 5. The present chapter closes with a discussion of a BEC in a double-well poten-
tial, which is pertinent to the radio-frequency double well implementation discussed in Chs. 6
and 7. We review the two-mode, bosonic Josephson junction description of this system [41, 42],
which provides a useful framework for discussing the interplay of the relative atom number and
relative phase of the split BEC.

2.1 Bose gases

One of the most striking features of quantum statistics is the phenomenon of Bose-Einstein con-
densation – the macroscopic occupation of the single-particle energy state of the system. Atomic
Bose-Einstein condensation (BEC) is typically achieved in the lowest energy state of an external
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magnetic or optical potential, and coexists with a non-condensed phase – the “thermal cloud”.
In this section, we review the thermodynamic functions which describe the non-condensed Bose
gas. We then discuss the Thomas-Fermi solution of the Gross-Pitaevskii equation, which de-
scribes the weakly interacting BEC at zero temperature. The section closes by summarizing ex-
pressions for the time-of-flight density distributions of the thermal cloud and BEC.

2.1.1 Thermodynamics and Bose-Einstein condensation

In the grand canonical ensemble description of an ideal Bose gas, the mean occupation number
of the single-particle energy state ε is

〈nε〉 =
1

eβ(ε−µ) − 1
=

1
Z−1eβε − 1

, (2.1)

where β ≡ 1/kBT , kB is the Boltzmann constant, µ is the chemical potential of the gas, and
Z ≡ eβµ is the fugacity. The mean occupation number is bounded only from below, 〈nε〉 ≥ 0; any
number of bosons can occupy a given single-particle energy level. We consider a non-interacting
Bose gas in the external harmonic potential

U(r) = 1
2M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.2)

which has associated single-particle energy states

εnx,ny ,nz = (nx + 1
2)~ωx + (ny + 1

2)~ωy + (nz + 1
2)~ωz (2.3)

and single-particle wavefunctions ϕnx,ny ,nz(r).
At high temperatures µ is large and negative, and 〈nε〉 � 1. As T decreases, µ approaches

the ground state energy ε0 ≡ ε000, and the occupation of the lowest energy levels increases until
eventually the single-particle ground state ε0 becomes macroscopically occupied. The ideal BEC
transition temperature T 0

c is the highest temperature at which this macroscopic occupation ap-
pears. µ = ε0 at T 0

c . As T → 0 all atoms populate the single-particle ground state. This is the
phenomenon of Bose-Einstein condensation.

Critical temperature For T < T 0
c we can think of the system as being composed of a mixture of

two “phases”: a normal phase, consisting of Nth atoms distributed over the excited states ε > ε0

(the “thermal cloud”); and a condensed BEC phase consisting of N0 particles accumulated in the
ground state [13, Ch.7].

For non-interacting bosons the condensate density distribution is

nc(r) = N0|ϕ0(r)|2 (2.4)
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where

ϕ0(r) =
1

π3/4√axayaz
exp

(
− x2

2a2
x

− y2

2a2
y

− z2

2a2
z

)
(2.5)

is the single-particle ground state wavefunction in the harmonic potential U(r); ai ≡
√

~/Mωi

are the harmonic oscillator lengths.
For large N and small energy level spacing with respect to the temperature kBT � ~ω, the

density distribution of the thermal cloud can be calculated using a semi-classical integration of
the occupation function nε over momentum degrees of freedom, as in Eq. 2.37:

nth(r) = Λ−3
T g3/2

(
Z exp

[
− βM

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)
])

(2.6)

=
Nth

g3(Z) π3/2 rxryrz
g3/2

(
Z exp

[
− x2

2r2
x

− y2

2r2
y

− y2

2r2
z

])
. (2.7)

The thermal cloud atom number below the transition temperature (for which Z = 1) is obtained
by the normalization condition

Nth = N −N0 =
∫
dr nth(r) = ζ(3)

(
kBT

~ω

)3

(2.8)

where ζ(3) = g3(1) ' 1.202 and ζ(α) =
∑∞

n=1 n
−α is the Riemann zeta function. The ideal BEC

transition temperature is obtained by setting N0 = 0 at T = T 0
c in Eq. 2.8

T 0
c =

~ω
kB

(
N

ζ(3)

)1/3

' 0.94
~ω
kB

N1/3. (2.9)

Inserting the expression for T 0
c from Eq. 2.9 into Eq. 2.8 results in the following expression for the

temperature dependence of the condensate fraction

N0(T )
N

= 1−
(
T

T 0
c

)3

. (2.10)

Finite-size correction to Tc The result of Eq. 2.9 is accurate in the thermodynamic limit N →
∞ and V → ∞ where V is the volume of the condensate. The approximation ε0 ≈ 0 in the
integrals over energy states ε used to arrive at Eqs. 2.30 and 2.6 is justified in this limit. In real
BEC experiments, N is finite and the effect of the non-zero single-particle ground state energy
ε0 = ~(ωx + ωy + ωz)/2 introduces an appreciable shift in the transition temperature [46, 47].
The effect is particularly important for atom chip experiments, in which the small atom number
(typically 105 and below) and large anisotropy of micromagnetic wire traps can easily lead to
corrections to T 0

c of around -10% or -20%.
The finite-size correction to T 0

c can be calculated by considering the effect of the zero-point
energy on µ at the transition point [46]. In a cylindrically symmetric harmonic trap with ωx,z ≡
ω⊥ and ωy ≡ ω‖, the transition temperature T fs

c that includes finite-size corrections is given by
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[52, 53]

kBT
fs
c ≈ kBT 0

c −
ζ(2)
6ζ(3)

~(2ω⊥ + ω‖). (2.11)

The correction to T 0
c (second term on the right of Eq. 2.11) is independent of N , but the fractional

change (T fs
c −T 0

c )/T 0
c is proportional to N−1/3. With parameters typical of our 87Rb experiments

ω⊥ = 2π × 1 kHz, ω‖ = 2π × 15 Hz and N = 104, (T fs
c − T 0

c )/T 0
c ' −9%. With N = 103,

(T fs
c − T 0

c )/T 0
c ' −20%.

Interaction correction to Tc The effect of interparticle interactions, ignored here thus far but
discussed in Sec. 2.1.2, also introduces a shift in the transition temperature [47]. Repulsive attrac-
tions reduce the peak density at the centre of the trap, which in turn reduces Tc. The magnitude
of this reduction is given by [52, 53]

Tc − T fs
c

T 0
c

≈ −1.326 a

√
Mω

~
N1/6 (2.12)

where a is the 87Rb s-wave scattering length. Using the same representative trap frequencies as
in the previous paragraph, this shift is roughly -3% for N = 104, and -5% for N = 103 in our
experiment. The expression for Tc given in Eq. 2.12 is used to calibrate the total atom number
measured in absorption imaging (see Sec. 5.4.3.1).

2.1.2 Interacting Bose gases at zero temperature

Elastic atom-atom interactions modify the BEC wavefunction, leading to deviations from the
Gaussian density profile presented in Eq. 2.4 for the non-interacting case. In dilute ultra-cold
atomic gases the effect of interactions is well-described by a mean-field approach which assumes
only binary s-wave scattering [47, 46].

Since elastic scattering in ultra-cold bosons only occurs in the symmetric s-wave channel1,
atom-atom interactions can be described by a delta-function contact interaction pseudopotential

V (r− r′) = gδ(r− r′) (2.13)

where

g =
4π~2a

M
(2.14)

is the interaction parameter derived from the s-wave scattering length a [46]. The dilute-gas
approximation used to derive Eq. 2.14 is justified so long as |a| � d where d = n−1/3 is the
average interparticle separation in a gas of average density n, i.e. n|a|3 � 1 [47]. 87Rb-87Rb

1Even-symmetry higher-order partial waves are “frozen out” by centrifugal barriers in the two-body scattering
potential [54].
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interactions are repulsive, with a ≈ 99 a0 ' 5.2 nm [55], where a0 is the Bohr radius. In our
experiments, nc(0) ∼ 1013 cm−3 so that n|a|3 ∼ 10−6.

Gross-Pitaevskii equation In the dilute, “weakly interacting” regime n|a|3 � 1 the zero-temperature
properties of the non-uniform condensate can be described using the pseudopotential of Eq. 2.13
and a mean-field treatment which ignores quantum fluctuations in the condensed state [47]. The
result is the Gross-Pitaevskii equation (GPE)(
− ~2

2M
∇2 + U(r) + g|ψ(r)|2

)
ψ(r) = µψ(r), (2.15)

where ψ(r) =
√
N0 ϕ(r) is the single-particle wavefunction of the condensed state, and nc(r) =

|ψ(r)|2 the condensate density, which is subject to the normalization condition

N0 =
∫
dr nc(r). (2.16)

The time-independent GPE is obtained from the time-dependent version by assuming a time-
dependent condensate “wavefunction”2 of the form Φ(r, t) = ψ(r) exp(−iµt/~) [47]. The GPE
has the form of a non-linear Schrödinger equation, in which the effective potential acting on each
boson is a sum of the external potential U and the mean-field g|ψ(r)|2 produced by the other
bosons. The mean-field approximation used in deriving Eq. 2.15 is valid so long as N0 � 1 [46].

Thomas-Fermi approximation Though the system is said to be “weakly interacting” when
n|a|3 � 1, interaction effects are actually large compared with the kinetic energy of atoms in
the trap in most atomic BEC experiments.3 The quantity N0a/a is a dimensionless measure of
the strength of the interaction, where a ≡ (axayaz)1/3 =

√
~/Mω [47]. For N0a/a � 1 interac-

tions are a small perturbation, while forN0a/a� 1 equilibrium is determined by the competition
between potential energy and interaction energy [46]. Most atomic BEC experiments are in this
interaction-dominated “Thomas-Fermi” regime, with N0 ∼ 105 to 107. This is also the case for
atom chip traps, which have smaller N0 but larger nc(0) due to large trapping frequencies. With
typical 87Rb parameters in our experiment N0 = 104, ω⊥ = 2π × 1 kHz, ω‖ = 2π × 15 Hz,
a = 5.2 nm for 87Rb [55], N0a/a ' 77.

The Thomas-Fermi approximation amounts to neglecting the kinetic energy term (−~2/2M)∇2

in the GPE of Eq. 2.15. In this approximation the equilibrium condensate density for repulsive
interactions is given by

nc(r) = |ψ(r)|2 =
1
g

(µ− U(r)) (2.17)

for µ > U(r), and nc = 0 otherwise. Thus, U(r) = µ defines the edge of the condensate. The
2Φ(r) is the expectation value of a bosonic field operator and is the order parameter of the condensate. It is not

equal to the many-body condensate wavefunction ΨN (r1 . . . rN : t) [48].
3The gas is considered weakly interacting because the interaction energy is small compared to the single-particle

energy, which includes potential energy.
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spatial half-widths (“Thomas-Fermi radii”) of the condensate are

Ri =

√
2µ
Mω2

i

. (2.18)

The relationship between N and µ is established by the normalization condition for the Thomas-
Fermi wavefunction (see Eq. 2.16). Integrating nc(r) over the volume defined by the Thomas-
Fermi radii gives

N0 =
8πµ
15g

R
3
. (2.19)

whereR ≡ (RxRyRz)1/3 is the geometric mean Thomas-Fermi radius of the condensate. Eqs. 2.18
and 2.19 can be used to express the condensate density profile as [56]

nc(r) =
15
8π

N0

RxRyRz

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(2.20)

for µ > U(r), and nc(r) = 0 otherwise. Eq. 2.20 describes a parabolic cloud in three dimensions
with peak density nc(0) = µ/g. From Eq. 2.19, the chemical potential is given by

µ =
~ω
2

(
15N0a

a

)2/5

. (2.21)

Combining Eqs. 2.18 and 2.21 gives

R =
(

15N0a

a

)1/5

a. (2.22)

Eq. 2.22 can be used to demonstrate that, as a result of repulsive interactions, the zero-temperature
size of the condensate R is much larger than that predicted by the non-interacting treatment a.
For 87Rb parameters typical of our experiment, N0 = 104, ω⊥ = 2π×1 kHz and ω‖ = 2π×15 Hz,
µ ' h × 1.4 kHz ≈ 53~ω, and R ' 2.8 µm, whereas a ' 0.7 µm. Considering the transverse
and longitudinal axes of the trap separately, R⊥ ' 2 a⊥ and R‖ ' 17 a‖. The peak density of the
condensate is also much lower in the Thomas-Fermi approximation than in the non-interacting
case: nc(0)TF ≈ 0.074 nc(0)non−int for the same experimental parameters [47].

The Thomas-Fermi approximation is excellent for µ = gn(r) � ~ω/2, i.e. near the centre of
the cloud, but not at the edges, where the density vanishes. Numerical solutions of the full GPE
(Eq. 2.15) presented in [47] show that the slight Thomas-Fermi underestimate of nc(r ≈ R) is
even less severe in column density distributions observed in time-of-flight absorption imaging.
Finally, we note that in strongly anisotropic atom chip traps the transverse kinetic energy may
be too large to ignore for sufficiently large ω⊥. In this case the condensate may deviate from the
parabolic shape of the Thomas-Fermi solution in the transverse direction. For the experimental
parameters presented above, µ ' 2~ω⊥.
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2.1.3 Time-of-flight density distributions

We measure the atom number and temperature of 87Rb Bose gases using time-of-flight absorp-
tion imaging after abruptly switching off the trapping potential and allowing the cloud to expand
for a time t. Assuming the thermal cloud density is sufficiently low that interactions during ex-
pansion may be neglected, the time-of-flight density may be written

nth(r, t) =
Nth

(2π)3/2 rx(t) ry(t) rz(t) g3(Z)
g3/2

(
Z exp

[
− x2

2r2
x(t)
− y2

2r2
y(t)
− z2

2r2
z(t)

])
, (2.23)

where r2
i (t) = kBT (1 + ω2

i t
2)/Mω2

i is the cloud size in the i ∈ {x, y, z} direction after a time t of
free expansion [56]. The column density along x is obtained by integrating Eq. 2.23 along x:

ñth(y, z, t) =
Nth

2π ry(t) rz(t) g3(Z)
g3/2

(
Z exp

[
− y2

2r2
y(t)
− z2

2r2
z(t)

])
. (2.24)

At long times of flight the expansion of the thermal cloud becomes isotropic, similar to that of the
ideal Fermi gas (see Eq. 2.2.3). When analyzing thermal clouds below the transition temperature,
one must use Z = 1 in Eqs. 2.23 and 2.24.

For the condensate, interparticle interactions play an important role during time-of-flight ex-
pansion. Approximate analytic solutions of the time-dependent Gross-Pitaevskii equation reveal
that, remarkably, the parabolic shape of the condensate is preserved during time-of-flight expan-
sion, though the aspect ratio is not [47]. In particular, for a BEC from a cylindrically symmetric
anisotropic trap with ω‖ = λω⊥, the condensate Thomas-Fermi radii evolve according to [47]

R⊥(t) = R⊥(0)
√

1 + τ2 (2.25)

R‖(t) = R‖(0)
(

1 + λ2[τ arctan τ − ln
√

1 + τ2]
)

(2.26)

where τ ≡ ω⊥t. Thus the Thomas-Fermi condensate density in time-of-flight is given by Eq. 2.20
with the Thomas-Fermi radii re-scaled according to Eqs. 2.25 and 2.26. The BEC column den-
sity in the yz plane is obtained by integrating the result along x in the region bounded by
x ∈ [−Rx(t), Rx(t)]

ñc(y, z, t) =
5N0

2πRy(t)Rz(t)

(
1− y2

R2
y(t)
− z2

R2
z(t)

)3/2

. (2.27)

Throughout this thesis x and z are the transverse directions, and y the longitudinal direction.

2.2 Ideal Fermi gases

Ultra-cold Fermi gases differ from ultra-cold Bose gases in their simplest theoretical descrip-
tion in two important ways: first, there is no macroscopic occupation of the single-particle
ground state; second, spin-polarized Fermi gases are completely non-interacting at ultra-cold
temperatures [51, 57]. Ideal thermodynamic functions are thus excellent descriptors of cold spin-
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polarized fermions, even as T → 0. In this section, we review fermion thermodynamics, calculate
trapped density distributions, and discuss observable signatures of Fermi degeneracy.

2.2.1 Thermodynamics

In the grand canonical ensemble description of an ideal Fermi gas, the mean occupation number
of the single-particle energy state ε is

〈nε〉 =
1

eβ(ε−µ) + 1
=

1
Z−1eβε + 1

. (2.28)

The mean occupation number is bounded 0 ≤ 〈nε〉 ≤ 1 as a result of the Pauli exclusion principle.
The T = 0 ideal Fermi gas is characterized by a filled “Fermi sea”: each energy level ε for which
ε ≤ EF is occupied (nε = 1), while all those for which ε > EF are empty (nε = 0). The Fermi
energyEF is equal to the chemical potential µ at T = 0. At high temperatures the gas is described
by a Boltzmann-like distribution [13].

Since a trapped gas is not in contact with number or energy reservoirs in experiments, we
ignore fluctuations in the total number and energy predicted by the grand canonical ensemble
description, taking N and E to be the average total number and total energy, respectively. These
can be calculated using the discrete sums

N =
∑
ε

〈nε〉 and E =
∑
ε

ε 〈nε〉, (2.29)

where the sums run over all discrete states. In the limit of a large number of occupied states we
can take the continuum limit, writing

N =
∫ ∞
ε=0

g(ε)〈nε〉 dε and E =
∫ ∞
ε=0

g(ε)ε 〈nε〉 dε, (2.30)

where g(ε) = ε2/2(~ω)3 is the energy density of states of a harmonically trapped gas in three
dimensions [58], and ω ≡ (ωxωyωz)1/3 is the geometric mean harmonic trap frequency.

Integrals of this type can be evaluated using the Fermi-Dirac integrals [13]

fn(C) ≡ 1
Γ(C)

∫ ∞
0

a n−1da

C−1e a + 1
= −Lin(−C) (0 ≤ C <∞, n > 0), (2.31)

where Lin(C) =
∑∞

j=1C
j/jn is a polylogarithmic function and Γ(C) is the gamma function. For

n = 1, f1 = ln (1 + C). Using 2.31 we find that the average total number and energy are

N = (β~ω)−3f3(Z) and E = 3kBT (β~ω)−3f4(Z). (2.32)

The number and energy at zero temperature can be found using the zero-temperature limit
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of the Fermi-Dirac integral [13]

lim
T→0

fn(Z) =
(βµ)n

Γ(n+ 1)
. (2.33)

As mentioned above, the Fermi energy EF is defined as the zero temperature limit of µ.
For convenience, we will also refer to the “Fermi temperature” TF ≡ EF /kB , even though this
temperature does not correspond to a phase transition, as is the case for Tc of Bose gases. Re-
writing Eq. 2.32 in terms of EF and taking the T → 0 limit, we find

N =
1
6

(
EF
~ω

)3

and E =
3
4
N EF . (2.34)

The chemical potential and fugacity at finite temperature can be found numerically by solving

6f3(Z) = (βEF )3. (2.35)

Using the Sommerfeld expansion of the polylogarithms, one obtains low- and high-temperature
approximations to the chemical potential in a three-dimensional harmonic trap [59]:

µ ≈


EF

[
1− π2

3

(
kBT
EF

)2
]

for kBT � EF , and

−kBT ln
[
6
(
kBT
EF

)3
]

for kBT � EF .
(2.36)

Low dimensionality Under certain conditions, a T = 0 Fermi gas in an anisotropic magnetic
trap having ω⊥ � ω‖ may become effectively one-dimensional. If the atom number and temper-
ature are such that EF < ~ω⊥, the transverse degrees of freedom are “frozen out” and fermions
occupy only the longitudinal energy levels of the trap. The maximum number of fermions N1D

that can populate such a one-dimensional configuration at T = 0 is equal to the aspect ratio of
the trap: N1D = ω⊥/ω‖. This scenario is especially relevant to atom chip micromagnetic traps,
whose aspect ratios can be on the order of 102 to 104 [60].

2.2.2 Density distribution

Apart from the choice of g(ε), many of the expressions derived in Sec. 2.2.1 resemble the textbook
treatment of a uniform Fermi gas. In this section, we calculate the non-uniform position and
momentum distributions of trapped fermions. The position distribution is observable in situ (with
sufficient spatial resolution), while the momentum distribution is observable in time-of-flight
expansion. We calculate these distributions by two different conceptual starting points: first,
using semi-classical integrals; and second, using the local density approximation.

Semi-classical approximation Taking the energies ε ≡ ε(r,p) = p2/2M + U(r) to be those of a
classical free particle at position r, where U(r) is the trapping potential andM is the atomic mass,
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we can integrate the occupation function of Eq. 2.28 over the momentum degrees of freedom to
find the semi-classical position distribution:

n(r) =
∫

d3p

(2π~)3
[Z−1eβε(r,p) + 1]−1, (2.37)

in which we have used the semi-classical phase-space volume of one quantum state, (2π~)3.
Integration using Eq. 2.31 yields

n(r) = Λ−3
T f3/2(Ze−βU(r)), (2.38)

where ΛT =
√

2π~2β/M is the thermal de Broglie wavelength. Unlike the corresponding ex-
pression for ideal bosons, Eq. 2.38 is valid at all temperatures. The difference lies in the fact that
we have ignored the occupation of the single-particle ground state in taking the continuum limit
(see Eq. 2.30), evidenced by the vanishing density of states g(ε) for ε = 0. This does not pose a
problem for fermions, for which the occupation of the ground state Z/(1 + Z) ≤ 1. For bosons,
however, the corresponding expression Z/(1 − Z) diverges; the continuum limit completely ig-
nores the condensed fraction, whose contribution to the thermodynamics must be accounted for
separately [13].

Local density approximation An alternate conceptual approach to the calculation of inhomo-
geneous distributions is the local density approximation. We start with the expression for the
density of a uniform Fermi gas nuniform = Λ−3

T f3/2(Z) [13] and assume that local properties can
be described by a local chemical potential µ − U(r) and hence a local fugacity Ze−βU(r). We
immediately recover Eq. 2.38, and obtain its zero-temperature using Eq. 2.33

nuniform
T=0−→ 1

6π2

[
2M
~2

EF

]3/2

. (2.39)

This implies that long-range properties of the Fermi gas may be ignored, unlike in a BEC, which
exhibits long-range phase coherence. In fact, the local density approximation and the semi-
classical approach generally yield identical results for non-interacting fermions [51].

Specializing to the case of a three-dimensional harmonic oscillator potential (see Eq. 2.2),
we obtain

n(r) = Λ−3
T f3/2

(
Z exp

[
− βM

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)
])
. (2.40)

At zero temperature,

n(r) =
8N

π2R
3
TF

[
1− x2

X2
TF

− y2

Y 2
TF

− z2

Z2
TF

]3/2

Θ
(

1− x2

X2
TF

− y2

Y 2
TF

− z2

Z2
TF

)
(2.41)

where RTF =
√

2EF /Mω2 is the mean Thomas-Fermi radius of the cloud, XTF =
√

2EF /Mω2
x
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etc. are the Thomas-Fermi lengths along each trapping axis, and Θ(· · · ) is the Heaviside step
function.

The momentum distribution can also be calculated using either the local density or semi-
classical approach. Experimentally, we observe the momentum distribution in a time-of-flight
density image, for which the distribution is obtained by rescaling all spatial coordinates xi →
xi/
√

1 + ω2
i t

2 in Eq. 2.40 along the direction i ∈ {x, y, z}, and renormalizing to conserve particle
number [57].

2.2.3 Crossover to Fermi degeneracy

The T = 0 filled Fermi sea is quantum degenerate in the sense that it represents the absolute
many-particle ground state of this non-interacting system. The meaning of the term “degen-
erate” here should not be confused with its more conventional meaning for a gas of bosons,
for which degeneracy implies multiple or macroscopic occupation of the single-particle ground
state. Multiple occupancy is forbidden for fermions.

What, then, is the nature of the transition to quantum degeneracy in fermions? In contrast to
the boson case, there is no phase transition into or out of the filled Fermi sea. As is the case with
bosons, however, high-temperature expansions for thermodynamic quantities fail around Z =
1. At lower temperatures the behaviour differs dramatically from the predictions of classical,
Boltzmann statistics. As T → 0, Z → 1− for ideal bosons, whereas Z → ∞ for ideal fermions
with the scaling Z ≈ eβEF , as implied by Eq. 2.36. It is interesting to note the quantitative
relationship between fugacity and degeneracy for fermions:

n0Λ3
T = f3/2(Z), (2.42)

where n0 ≡ n(0) is the central density of the cloud. Thus n0Λ3
T ' 0.77 when Z = 1 for fermions,

which occurs at T ' 0.57TF . By comparison, n0Λ3
T ' 2.61 when Z ≈ 1 for bosons, at T = Tc. (In

the thermodynamic limit, Z = 1 at T = T 0
c [61].)

The lack of a marked phase transition raises the question of what an experimental signature
of Fermi degeneracy might be. Unlike a BEC, the non-interacting DFG has an isotropic mo-
mentum distribution in time-of-flight, even when released from an anisotropic trap [59]. Thus
the aspect ratio of the cold cloud cannot be a signature of degeneracy. Instead, observations of
Fermi degeneracy rely on two signatures: the average energy per particle, and the shape of the
time-of-flight density distribution.

Using Eq. 2.32 we may write the average energy per particle as

E

N
= 3kBT

f4(Z)
f3(Z)

. (2.43)

The finite zero-temperature limit of Eq. 2.43 is 3EF /4, corresponding to the Fermi pressure [13].
By comparison, the corresponding expression for the Boltzmann gas is E/N = 3kBT , which
tends toward zero at zero temperature.
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The second signature of Fermi degeneracy is evident when the observed fermion time-of-
flight distribution is compared to the predictions of the Boltzmann and Fermi-Dirac models. The
latter is obtained by integration of Eq. 2.40 along the imaging line of sight.4

Taking x as the imaging direction we obtain the column density distribution of the expanding
gas

ñ(y, z, t) =
N

2π ry(t) rz(t) f3(Z)
f2

(
Z exp

[
− y2

2r2
y(t)
− z2

2r2
z(t)

])
, (2.44)

where r2
i (t) = kBT (1 + ω2

i t
2)/Mω2

i is the cloud size in the i ∈ {x, y, z} direction after a time t
of free expansion. By comparison, the column density distribution for an expanding cloud of
classical particles is

ñcl(y, z, t) =
N

2π ry(t) rz(t)
exp

[
− y2

2r2
y(t)
− z2

2r2
z(t)

]
, (2.45)

using the same definitions for ri(t).

2.3 A Bose-Einstein condensate in a double-well potential

The behaviour of a BEC confined in a double-well potential is analogous to a Josephson junction
of two superconductors separated by an insulating barrier. For low temperatures and low-energy
excitations, the bosonic Josephson junction (BJJ) can be described by a model which considers
only the two lowest BEC eigenstates of the double well. The atoms in the two modes are coupled
between wells by tunnelling, and to each other by repulsive atom-atom interactions. In a basis of
Fock states of well-defined atom numbersNL andNR in the left and right wells, the BJJ behaviour
can be fully characterized by the mean value and fluctuations of the relative atom number and
relative phase φ between the two wells. In our experiments we probe the relative atom number
Nr with direct measurements of NR and NL after short times-of-flight, and φ via matter wave
interference patterns formed after long times-of-flight.

Many theoretical efforts have been devoted to exploring the interplay of relative number and
relative phase in split BEC systems [62, 63, 64, 65, 66, 37, 67, 68, 69, 70, 71, 72, 73, 38, 74]. Several
double well BEC experiments in recent years have also reported observations well described by
BJJ theory [75, 76, 77, 78]. In this section, we review the BJJ description of a BEC in a double-well
potential within a two-mode approximation. The discussion is meant to introduce the roles of
mean value and fluctuations in Nr and φ within the two-mode BJJ model, which motivate the Nr

and φ measurement apparatus and techniques described Ch. 7. We refer the reader to [42] and
references therein for a thorough and up-to-date review of the subject.

4When integrating Fermi functions over Gaussian degrees of freedom, it is useful to note that
R∞
−∞ dx fn(Ce−x

2
) =√

πfn+1/2(C).
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2.3.1 Two-mode model of the double well

We imagine a BEC trapped in a symmetric double-well potential formed by erecting a central po-
tential barrier in an initial harmonic potential. In the case of a large potential barrier height, the
symmetric ground state ψs and antisymmetric first excited state ψa are nearly degenerate, and
are well separated from the higher energy states. This is true when the barrier height exceeds the
chemical potentials of these two modes, denoted by µa and µs. The wavefunctions ψs,a(r) and
chemical potentials µs,a can be determined by solving the time-dependent Gross-Pitaevskii equa-
tion. The two-mode approximation consists of ignoring all higher energy modes, and writing the
many-body bosonic field operator as

Ψ̂ = ψsâs + ψaâa (2.46)

where â†s and â†a (âs and âa) are the single-particle creation (annihilation) operators for the sym-
metric and antisymmetric states [76]. For a large barrier we can imagine each atom lying predom-
inantly (but not exclusively) in one of the “left” or “right” wells. The left and right well modes
can be constructed using superpositions of the symmetric and antisymmetric wavefunctions and
creation/annihilation operators [42]

φL =
1√
2

(ψs + ψa) and φR =
1√
2

(ψs − ψa), (2.47)

âL =
1√
2

(âs + âa) and âR =
1√
2

(âs − âa), (2.48)

in terms of which

Ψ̂ = ψLâL + ψRâR. (2.49)

The two-mode Hamiltonian for this system [62] is obtained by inserting Eq. 2.47 into the
Hamiltonian describing N weakly interacting bosons with s-wave contact interactions confined
to an external potential (see [65]). The result is [42]

Ĥ2M =
Ec
2
n̂2 − Ejα̂ (2.50)

where

n̂ =
â†Râ

†
R − â

†
Lâ
†
L

2
(2.51)

is half the relative atom number (NR −NL)/2 ≡ Nr/2, and

α̂ =
â†RâL + â†LâR

N
=
â†sâs − â†aâa

N
(2.52)

is the tunnelling operator and is related to the relative phase of the two condensates. Eq. 2.50 is



2.3. A BOSE-EINSTEIN CONDENSATE IN A DOUBLE-WELL POTENTIAL 19

known as the “canonical Josephson Hamiltonian” [48, 62]. The term proportional to Ej describes
tunnelling of atoms between the two wells. Ej is known as the “Josephson coupling energy” and
depends linearly on the chemical potential difference as N(µa − µs) where N is the total atom
number, as well as the wavefunction overlap between ψL and ψR. As the barrier height becomes
infinite Ej vanishes since µs and µa become equal, and the wavefunction overlap vanishes. The
term proportional to Ec corresponds to intra-well atom-atom interactions. Ec is known as the
“on-site energy” or “charging energy” and is proportional to the intra-well “left-left” and “right-
right” wavefunction overlap, as well as the inter-well “left-right” wavefunction overlap [42].
Eq. 2.50 ignores two-particle tunnelling effects (“correlated hopping”), which in any case vanish
in the high-barrier limit [62, 48].

The two-mode model has been discussed extensively in the literature [62, 63, 65, 66, 67, 71,
72, 73, 74, 79]. It should be fairly realistic in the large barrier case described so far, but is known
to have limited validity (a) in the case of low barrier, when the symmetric-antisymmetric energy
separation becomes comparable to the energy gap between φa and the next highest excited state,
and (b) for strong atom-atom interactions [63, 73].

2.3.2 Simplified mean-field Hamiltonian

Eq. 2.50 can be rewritten in terms of classical fields satisfying the time-dependent GPE using
substitutions of the form âL →

√
NL(t)eiφL(t) etc. in Eqs. 2.50, 2.51 and 2.52 [42, 62]. This results

in a mean-field description of the BJJ Hamiltonian [42]

H =
Ec
2
n2 − Ej

√
1− 4n2

N2
cosφ (2.53)

where

n̂ =
NR −NL

2
≡ Nr

2
and φ = φR − φL (2.54)

are the relative atom number (occupation) and relative phase between the left and right well
wavefunctions.

Observables: relative number and relative phase Eq. 2.53 is a mean-field description of a
quantum system whose character depends on the ratio Ec/Ej . The mean values 〈n〉 and 〈φ〉 and
their rms fluctuations ∆n and ∆φ can be probed experimentally over many realizations of the
experiment, i.e. successive preparations and measurements of the BEC trapped in the external
double-well potential. In a single realization of the experiment the relative atom number can be
deduced by measuring and subtracting the left and right well populations. Atom numbers can
be measured in-situ, as in [43], or after turning off the double-well potential and allowing a short
free expansion time, as we do in our experiments (see Ch. 7).

The single-shot relative phase can be deduced by allowing an expansion time long enough
that the expanding BECs overlap and interfere. The resulting matter wave interference pattern
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is a measure of the in-trap momentum distribution

n(p) = G(p) [1 + cos(pd/~ + φ)] (2.55)

where d is the initial double well separation along the x direction, φ is the relative phase, and
G(p) is a Gaussian envelope function. After long times-of-flight t the mean interference pattern,
averaged over many experimental realizations, is [74, 76]

〈n(r)〉 = G(r) [1 + α cos(mdx/~t)] = G(r)
[
1 +

Ns −Na

N
cos(mdx/~t)

]
(2.56)

where

α = 〈cosφ〉 = 〈α̂〉 =
〈Ns −Na〉

N
(2.57)

is the visibility of the mean interference pattern. α is also known as the coherence factor [74]
since it provides the degree of first order coherence in the system [80, 76]. Eq. 2.57 shows that,
in the two-mode model, α is given by the mean atom number difference of the symmetric and
antisymmetric modes [76]. α = 1 corresponds to prefect coherence and a fixed relative phase
φ = 0 in each experimental realization; α = 0 corresponds to completely random phases. It is
important to note that the fringe visibility in any single interference pattern (single experimental
realization) is expected to be very high, even if the initial state is not coherent.5 This point is
of key importance in interpreting BEC interference experiments, and has been widely discussed
in the literature; see for instance [36, 48, 37] and references therein. The spatial fringe spacing
is ∆x = ht/md, if we assume that atom-atom interactions do not significantly alter the velocity
distribution during expansion [46, 47].

2.3.3 Number and phase fluctuations at zero temperature

The BJJ Hamiltonian in Eq. 2.53 corresponds to motion of a particle in a one-dimensional sinu-
soidal potential. The relative atom number n plays the role of the momentum p, and the relative
phase φ ∈ [−π, π] plays the role of position x [42]. Ej defines the height of the sinusoidal po-
tential, and 1/Ec is the particle mass. At low energies, the quantum mechanical level spacing is
approximately given by

~ωp =

√
Ej

(
Ec +

4Ej
N2

)
; (2.58)

5For instance, two independently prepared BECs which have never “seen” one another will nevertheless interfere
with high contrast, but with a completely unpredictable relative phase [36, 38].
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ωp is known as the “plasma frequency” or “Josephson frequency” [48, 76]. Expanding Eq. 2.53
up to second order in n and φ gives

H =
(
Ec +

4Ej
N2

)
n2

2
+
Ej
2
φ2. (2.59)

This system exhibits quantum mechanical fluctuations

∆p2 ↔ ∆n2 =
1
2

√
Ej

Ec + 4Ej/N2
and ∆x2 ↔ ∆φ2 =

1
2

√
Ec + 4Ej/N2

Ej
(2.60)

at zero temperature, which satisfy the uncertainty relation

∆n2 ∆φ2 ≥ 1
4
, or ∆N2

r ∆φ2 ≥ 1. (2.61)

The tunnelling strength is parametrized byEc/Ej , and defines three dynamical regimes of the
BJJ: the “Rabi”, “Josephson” and “Fock” regimes [48]. The “Rabi” regime Ec/Ej � N−2 is the
non-interacting limit. The state is dominated by tunnelling and is delocalized between the two
wells. The system approaches the ideal “phase state” or “coherent state” [37], with Poissonian
relative atom number fluctuations, vanishing phase fluctuations ∆φ → 0, a well-defined rela-
tive phase and maximal coherence [42]. The “Josephson” regime is a strong-tunnelling regime
defined by N−2 � Ec/Ej � 1. The system exhibits small oscillations in time about the equilib-
rium values n = 0, φ = 0 at the plasma frequency ωp =

√
EcEj/~, described by the simplified

Hamiltonian

H ≈ Ec
2
n2 +

Ej
2
φ2. (2.62)

The state is delocalized between the two wells, and the relative phase fluctuations
∆φ2 =

√
Ec/Ej/2� 1 are small [74, 42]. In the “Fock” regimeEc/Ej � 1; interactions dominate

and tunnelling is negligible. The system corresponds essentially to two independent condensates
with well-defined atom numbers and vanishing relative number fluctuations ∆n2 =

√
Ej/Ec → 0.

Coherence vanishes and φ becomes random and unpredictable [36].
In addition to the requirements for the Josephson regime stated above, Stringari and Pitaevskii

[74] point out that the two-mode model assumes a decoupling of the BJJ dynamics from the other
modes of the BEC. This assumption should be valid if the plasma frequency is much smaller than
the harmonic oscillation frequencies of the BEC in the external potential: ωp � ωx,y,z .

Attaining the Josephson and Fock regimes in experiments In the two-mode approximation,
the “charging energy” Ec and the chemical potential µs,a remain approximately constant over a
wide range of barrier heights V0 � µs,a to V0 � µs,a [79]. We confirm this for our experimental
parameters by numerically solving the GPE. Our experimental control parameter is the “Joseph-
son coupling energy”Ej , which can be varied by changing the barrier height and well separation.
In experimental configurations which produce visible matter wave interference patterns (V0 close
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to µs,a), numerical solutions of the GPE yield parameters on the order of Ec/h < 1 Hz, Ej/h ∼ 1
to 5 kHz and ωp/2π ∼ 1 to 2 Hz for N ∼ 104 87Rb atoms, µ/h ∼ 1 kHz and V0/h ∼ 1 to 3 kHz.
With Ec/Ej ∼ 10−3 and N = 104, we expect to be well beyond the Rabi regime and well into
the Josephson regime. Because V0 can be made made arbitrarily high with our radio-frequency
splitting technique, we also expect to be able to access the Fock regime with large barriers V0 � µ

and well separations of tens or hundreds of micrometres (see Ch. 7).
According to [48], the Rabi regime is never attainable with conventional superfluids (e.g.

4He), and very unlikely in atomic gases. A simple scaling argument supports this claim in our
experiment. One might imagine reducing the repulsive 87Rb interactions, and hence Ec, using a
Feshbach resonance. We rule this out in our experiments since we confine atoms to chip-based
micromagnetic traps having magnetic field minima on the order of 1 G, far too small to access
any 87Rb Feshbach resonances. A second option is to reduce N , thereby reducing Ec. In the
Thomas-Fermi approximation (µ ∝ N2/5), assuming the N atoms to be divided equally between
the two wells, Ec = 2(dµL,R/dNL,R) = 8µ/5N where µ ≈ µL,R ≈ µa,s is the chemical potential
[74]. Thus Ec ∝ N−3/5. Ej is proportional to N(µs − µa) [42], so Ej ∝ N7/5 in the Thomas-Fermi
approximation. Thus Ec/Ej varies as N−2 as N is reduced. But since our goal for accessing the
Rabi regime is Ec/Ej � N−2, the right hand side of which also varies as N−2 (exactly), it would
be difficult to reach the Rabi regime in our setup.

2.3.4 Number and phase fluctuations at finite temperature

In addition to zero-temperature quantum fluctuations, thermal fluctuations are present in any
experimental implementation of the BJJ. Thermal fluctuations at finite temperatures might arise,
for example, from interactions between the BEC and the thermal cloud of non-condensed atoms.
Thermal fluctuations of ∆n2

th and ∆φ2
th are expected to be larger than quantum fluctuations [74].

For small phase fluctuations ∆φ � π we can estimate the randomizing effects of tempera-
ture on the relative number and relative phase by assigning an energy kBT/2 to each degree of
freedom in the harmonic oscillator BJJ Hamiltonian of Eq. 2.59 [74]. This leads to [42]

∆n2
th =

kBT

EC + 4Ej/N2
and ∆φ2

th =
kBT

Ej
. (2.63)

This assumes that the BJJ interaction with the thermal environment is via energy transfer only,
and ignores the effects of particle exchange and other dynamics between the condensate and
thermal cloud. This estimate lead to a thermal version of the number-phase uncertainty relation
[42]

∆n2
th∆φ2

th ≥
(
kBT

~ωp

)2

. (2.64)

A more careful analysis of thermal fluctuations is presented in [74], in which the thermal average
of the coherence factor is calculated as a function of Ej and T . Their work points out that the
thermal decoherence of φ becomes important for kBT ∼ Ej . Thermal fluctuations in the BJJ have
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been studied experimentally and shown to be useful as a direct measurement of the temperature
of the system [78, 76, 81]. We use Eq. 2.63 to estimate the role of thermal fluctuations on the
measured phase fluctuations in our splitting experiment (see Ch. 7).
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Characterization of atom chip magnetic

microtraps

Atom chip magnetic microtraps are small-volume magnetic traps formed using magnetic fields
generated by wires on a planar substrate known as an “atom chip”. This chapter focuses on the
characterization of the magnetic atom chip potentials used for confining 87Rb and 40K in this
thesis. The chapter begins with a review of magnetic trapping of neutral atoms. These ideas are
then applied to archetypal wire-based atom chip traps: the single-wire “atom-guide” quadrupole
trap, and the Z-wire Ioffe-Pritchard-type harmonic trap [16, 17]. Focusing on the Z-trap, we
present three simple models of current flow in the Z-wire, and compare the analytic calculations
of the total Z-trap magnetic field from each of these models. The most realistic model is based
on current flow in three wire segments of finite length and width, which together approximate
the Z-wire. The chapter closes with notes on the calibration of analytic Z-trap magnetic field
calculations using experimental Z-trap parameters such as the magnetic field minimum and the
harmonic oscillation frequencies, which are measured using ultracold 87Rb.

3.1 Magnetic trapping of neutral atoms

Magnetic trapping of neutral atoms is based on the Zeeman effect – the interaction of an atom’s
magnetic dipole moment µ with a static magnetic vector field B. The interaction Hamiltonian
for a neutral atom with magnetic moment µ in a magnetic field B is [82]

Hint = −µ ·B. (3.1)

The magnetic moment of a neutral atom in an internal state with total angular momentum F is

µ = −gFµB
~

F, (3.2)

where µB is the Bohr magneton, gF is the Landé factor, and ~ = h/2π where h is Planck’s constant
[82]. Using Eq. 3.2, we can evaluate the dot product in Eq. 3.1 to obtain

Hint =
gFµB

~
BF, (3.3)

24
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where B ≡ |B| is the magnetic field amplitude, and F is the component of the F vector operator
along the quantization axis defined by the direction of B. The spin angular momentum states
|F,mF 〉 are eigenvalues of F with eigenvalues ~mF :

F|F,mF 〉 = ~mF |F,mF 〉, (3.4)

where mF ∈ {−F,−F + 1, . . . , F} as usual [82]. Using Eq. 3.4 and 3.3, we can easily calculate the
potential energy of an atom in the atomic spin state |F,mF 〉 in the presence of a static magnetic
field:

U = 〈F,mF |Hint|F,mF 〉 = mF gFµBB, (3.5)

or, more generally

U(r) = mF gFµBB(r) (3.6)

for a spatially varying static magnetic field B(r).

Trappable spin states The magnetic potential of Eq. 3.6 must have a three-dimensional mini-
mum to allow magnetic confinement. Since B(r) and µB are positive quantities, it follows that
gFmF > 0 and the existence of a magnetic field minimum are requirements for magnetic trap-
ping.1 The sign of gFmF depends on the particular hyperfine state occupied by the atom. In
particular, gF is a function of the atomic angular momentum quantum numbers F , J , I , L and S
[82]:

gF =

[
1 +

J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1)

][
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

]
. (3.7)

S, L and I are the electron spin angular momentum, orbital angular momentum and nuclear
spin angular momentum quantum numbers respectively. gF = 1/2 for 87Rb in |F = 2,mF = 2〉,
and gF = 2/9 for 40K in |F = 9/2,mF = 9/2〉.

Those states having gFmF > 0 are referred to as weak-field seekers and are magnetically trap-
pable in static traps. On the other hand, atomic states having gFmF < 0 are termed strong-field
seekers and are repelled from magnetic field minima. An efficient magnetic trap therefore relies
on the atoms being in trappable weak-field-seeking states.

Finally, we note thatmF = 0 states may be magnetically trapped owing the quadratic Zeeman
effect [84]. An expression for the magnetic potential due to the linear and quadratic Zeeman
effects is expressed by the Breit-Rabi formula [85]. We have only considered the linear Zeeman
effect in this section, since stretched states |F, F 〉 were used in the work of this thesis, and since
the quadratic Zeeman effect is absent for “pure spin states” |F,±F 〉 [84].

1The existence of free-space magnetic field maxima are ruled out by Maxwell’s equations and Wing’s theorem [83].
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Adiabatic following Classically, the response of an atomic spin µ to an applied magnetic field
B is to precess about the local direction of the magnetic field at the Larmor precession frequency
ωL where

~ωL = mF gFµBB. (3.8)

To remain trapped in a weak-field-seeking state, the atomic spin must be able to adiabatically
follow the local direction of B. In magnetic trap, this requires that the rate of change of the
magnetic field’s direction θ (in the reference frame of the moving atom) be much slower than the
precession frequency [14]

dθ
dt
� ωL. (3.9)

This inequality shows that magnetic traps are susceptible to “Majorana loss” via transitions to
untrapped spin states whenever B is small enough or dB/dt is large enough that Eq. 3.9 is
violated [86, 87].

3.2 Static magnetic waveguides and the “Z-trap”

Static magnetic microtraps use currents in atom chip conductors to produce confining magnetic
field minima for neutral atoms. There are several popular chip trap geometries in use in the
cold atoms community, their differences being mainly in conductor arrangements and layout,
and in the resulting magnetic potential shapes and characteristics. Some microtraps, including
the linear “U-trap” [88] and quadratic “Z-trap” [14], combine chip wire fields with external uni-
form bias fields, typically using auxiliary magnetic field coils. Others, including ring traps and
three-wire traps [28], and parallel-wire guides [89] use chip wire fields alone to generate three-
dimensional trapping or lower-dimensional “atom-guiding” potentials.

Although we have dabbled briefly with U-traps and three-wire traps, the work in this thesis
was carried out exclusively with a Z-trap as the central atom chip trapping element. First used to
create a BEC on an atom chip in 2001 [17, 16], the Z-trap combines the static magnetic field gen-
erated by DC current flowing in a “Z”-shaped atom chip wire with a uniform external magnetic
field to create a non-zero magnetic minimum at some finite distance from the atom chip surface.
In the vicinity of the minimum the total magnetic field grows quadratically with distance, cre-
ating to very good approximation a harmonic trap near the trap centre [14, 15]. This section is
devoted to a brief theoretical review of the Z-trap, including the basis of its formation, analytic
approximations of the total magnetic trapping field, and descriptions of the Z-trap’s anisotropy
and position as functions of the Z-wire current and the external magnetic bias field amplitudes.

3.2.1 First step: a magnetic waveguide

The formation of the Z-trap’s magnetic minimum is best understood by first considering a sim-
plified system: a single, infinitesimally thin and long wire segment bearing DC current Iz, and a



3.2. STATIC MAGNETIC WAVEGUIDES AND THE “Z-TRAP” 27
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Fig. 3.1: (a): Magnetic field at point P due to an infinitely long and thin wire segment may be calculated using
the Biot-Savart formula. (b): xz plane B-field components generated by current Iz flowing along +y in the wire.

second externally applied uniform magnetic bias field Bbias = −Bbiasx in a direction perpendic-
ular to the wire.

The magnetic field of the wire alone is calculated using the Biot-Savart formula

dB =
µ0

4π
Iz

d`× r
|r|3

, (3.10)

which specifies the differential flux density (“differential magnetic field”) dB arising at the obser-
vation point P from a constant current Iz flowing in the length element d` (and in the direction
of d`) [90, Ch.6]. The observation point is connected to the length element d` by the vector r, as
shown in Fig. 3.1a.

For a straight wire the magnetic field direction follows the right hand rule, circulating sym-
metrically around the wire all along its length, and perpendicular to the direction of current flow
everywhere. The total magnetic field magnitude at some distance r from the wire is calculated
by integrating Eq. 3.10 over a coordinate l ∈ (−∞,∞), which defines the position of an element
d` on the wire, and noting that the distance from the observation point P to the wire position l is√
r2 + l2. The magnitude of the total field as a function of the perpendicular wire-to-observation-

point distance r is then

B(r) = |B| = µ0

4π
Iz

∫ ∞
−∞

dl
r

(r2 + l2)3/2
=
µ0Iz

2πr
. (3.11)

Using this expression for the magnetic field magnitude in the plane perpendicular to d`, and
knowing the field direction in this plane, we can construct a vector expression for the magnetic
field generated by current I in the wire. The in-plane field components are shown in Fig. 3.1b, in
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(a) (b) (c)

Fig. 3.2: Quadrupole magnetic field in the xz plane produced by I = 2 A in an infinitely long and thin wire, plus
an external field Bbias = -20 G x. (a,b): Contour plots of Bquad; darker shades indicate smaller field amplitude.
(c): Vector field plot of Bquad (see Eq. 3.14) near the trap centre located at z0 = 200 µm.

which the wire is defined to lie along the y axis, bearing current in the +y direction:

Bwire(r, θ) =
µ0Iz

2πr
(sin θx− cos θz) (3.12)

Bwire(x, z) =
µ0Iz

2π(x2 + z2)
(zx− xz) (3.13)

in polar and Cartesian coordinates. Note that the y-component of the field is zero everywhere
along the length of this infinitesimally thin, infinitely long wire.

Adding a bias field Bbias = −Bbiasx creates the magnetic minimum at (x = 0, z = z0). The
expression for the full quadrupole magnetic field

Bquad(x, y, z) = Bwire + Bbias =
[µ0Iz

2π
z

x2 + z2
−Bbias

]
x−

[µ0Iz

2π
x

x2 + z2

]
z (3.14)

Eq. 3.14 describes a quadrupole field pattern in which the magnitude of the total field vanishes
along the line (x = 0, y, z = z0), along which Bwire and Bbias exactly cancel. The magnitude
of the total field increases linearly in all directions in the xz plane from the trap centre point
(x = 0, z = z0). The distance from the wire to the trap centre is easily determined by setting the
quadrupole magnetic field of Eq. 3.14 to zero at the trap centre:

z0 =
µ0Iz

2πBbias
. (3.15)

Eq. 3.15 may be rewritten in a convenient form so that B is in units of gauss, Iz in amperes, and
z0 in micrometres:

Bbias[G] ' 2000
Iz[A]
z0[µm]

. (3.16)
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Fig. 3.3: (a): Schematic diagram of the Z-wire (grey), as well as the direction of DC current flow (black arrow)
and the two external bias fields (thick arrows). The position of the trapped atom cloud (green ellipse) shows the
twist angle φt, discussed in Sec. 3.3.2. x′, y′ denote the local directions along which magnetic field curvatures
should be computed to accurately calculate estimate the harmonic oscillation frequencies (see Sec. 3.3.2).
(b): Magnetic field components in the xz plane due to the “end-cap” segments of the Z-wire, which ensure
magnetic confinement along y, and provide the “natural Ioffe” field (see text). The external, applied Ioffe field
is also indicated.

3.2.2 Adding longitudinal confinement: a 3-D harmonic trap

It is clear from the lack of y-dependence in Eq. 3.14 that the quadrupole “waveguide” structure
does not provide three-dimensional confinement of atoms; the magnetic field is zero everywhere
along the line (x = 0, y, z = z0). Also, a non-zero magnetic potential minimum is necessary to
avoid Majorana spin-flip losses at the temperatures required to reach quantum degeneracy [91].
This makes quadrupole magnetic traps inherently unsuitable for BEC and DFG experiments.
Longitudinal (y direction) confinement with a finite B-field minimum is provided by adding a
spatially-dependent magnetic field along the y direction. In a Z-trap this is achieved using the
“end cap” wires which bear current along the −x direction. We can think of this conceptually as
a truncation of the infinitely long wire considered in Sec. 3.2.1 to some finite length along y, and
the addition of two end cap wire segments parallel to the x axis (see Fig. 3.3). This wire pattern
has the shape of the letter “Z”, hence “Z-trap” and “Z-wire”. The end cap wire segments add
the required y-direction field so that, taken together, the total magnetic field due to DC current
flowing through the Z-wire plus the external bias field produce a three-dimensional non-zero
magnetic minimum.

We can write down expressions for the end-cap wire contribution by considering current
flowing wires running along x, bearing current Iz in the −x direction at y = ±L, as shown in
Fig. 3.3a. Using the geometric relations r2

1 = z2 + (L+ y)2 and r2
2 = z2 + (L− y)2 from Fig. 3.3b,



3.2. STATIC MAGNETIC WAVEGUIDES AND THE “Z-TRAP” 30

the y and z-component contribution of the end-cap wires to the total Z-trap field is

By
Z,end-cap(y, z) =

µ0Iz

2π

[
z

z2 + (L+ y)2
+

z

z2 + (L− y)2

]
(3.17)

Bz
Z,end-cap(y, z) =

µ0Iz

2π

[
− L+ y

z2 + (L+ y)2
+

L− y
z2 + (L− y)2

]
, (3.18)

where we have used the infinitesimally thin, infinitely long wire approximations of the magnetic
field.

To summarize this subsection, the magnetic minimum of the Z-trap has three key features:

1. a non-zero magnetic minimum at the trap centre (x = 0, y = 0, z0)

2. a parabolic shape in all three dimensions in the vicinity of the centre

3. an ellipsoidal “cigar shape”; the “radial” x and z directions are roughly symmetric, while
the “axial” y direction exhibits much weaker confinement (see Fig. 3.3a)

Because of the first two features, the Z-trap is often referred to as a Ioffe-Pritchard-type magnetic
trap [14] in analogy to the Ioffe-Pritchard magnetic trapping configuration use widely in conven-
tional quantum gas experiments [56].

Adding versatility with an external “Ioffe field” Since the all x and z-components of the Z-trap
magnetic field vanish at the trap centre, the value of the y-components dictate the magnitude
of the total field at trap centre. Although any DC current in the Z-wire will produce a small
non-zero B-field minimum, it is customary to apply an external uniform field to the Z-trap along
y. This external “Ioffe field” BIoffe allows B0 (and hence the absolute minimum trap energy or
“trap bottom”) to be tuned arbitrarily, and most importantly, to be controlled without changing the
position of the trap minimum located at (0, 0, z0). Including the two external uniform fields Bbias

and BIoffe, the expressions for the vector field and scalar amplitude of the Z-trap magnetic field
may be written

BZ(x, y, z) =
[µ0Iz

2π
z

x2 + z2
−Bbias

]
x +

[
By
Z,end-cap(y, z) +BIoffe

]
y

+
[
Bz
Z,end-cap(y, z)− µ0Iz

2π
x

x2 + z2

]
z (3.19)

Bxz
Z (x, y, z) ≈

[(µ0Iz

2π
z

x2 + z2
−Bbias

)2
+
(
By
Z,end-cap(y, z) +BIoffe

)2

+
(
Bz
Z,end-cap(y, z)− µ0Iz

2π
x

x2 + z2

)2
]1/2

. (3.20)
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(a) (b) (c)

(d) (e) (f)

Fig. 3.4: Z-trap magnetic potential sections through the trap minimum (0, 0, z0), along x, y, z. The vertical
axes correspond to µBBZ/kB in units of microkelvin, where BZ is calculated according to the infinitesimally
thin, infinitely long wire formula Eq. 3.20. The magnetic potentials are harmonic in all directions near the trap
minimum (a-c), but are roughly linear at higher energies along the radial directions x and z, further from the
trap centre (d-f). The curves were calculated assuming I = 2 A, BIoffe = 0, and Bbias = −20 G along −x,
which gives z0 = 200 µm.

The z-direction contribution of the end-cap wires vanishes at the trap centre (x = 0, y = 0, z0 = 0),
while the y-direction contribution vanishes as z0 → 0. In our experimentsBIoffe � By

Z,end-cap(0, z0)
typically (see Tab. 3.1).

3.2.3 High-temperature behaviour: trap depth and anharmonicity

Although the Z-trap provides an excellent approximation to a three-dimensional harmonic po-
tential near the trap centre, the potential becomes more linear in character further out, partic-
ularly in the transverse x and z directions as shown in Fig. 3.4. As a result the character of
the Z-trap potential experienced by trapped atoms depends strongly on the temperature of the
atomic ensemble; cold atoms sample the lower-energy part of the potential and experience har-
monic confinement, while hot atoms sample the higher-energy, linear portions of the potential
along x and z. Note that there are no pseudo-linear sections in the potential along y.

At high temperatures, the Z-trap has the character of a quadrupole trap transversely, com-
bined with a harmonic trap longitudinally. The high-temperature scenario is relevant to the
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intermediate stages of our experimental sequence, just prior to the forced RF evaporative cooling
step, when atoms are loaded into the Z-trap at temperatures of roughly 300 µK (see Sec. 5.2).

3.3 Analytic models of the Z-trap

This section is devoted to quantitative characterization the Z-traps used in the work of this thesis,
with an emphasis on calculations of the trap oscillation frequencies, magnetic potential minima,
and distance from the chip surface. Re-characterizing the Z-trap potential after slight parameter
changes is time-consuming in the lab, so it is useful to have accurate analytic expressions for the
trap for quick estimates of trap parameters, and to guide experimental choices for wire currents
and external bias fields. More importantly, accurate models of our potentials have proven in-
valuable in evaluating new atom chip potentials or trap configurations, diagnosing anomalous
behaviours, and understanding nuances and fine detail in static and dynamic magnetic traps rel-
evant to our experiments (see also Ch. 6) on length and energy scales too small to easily probe
experimentally.

3.3.1 Beyond idealized long thin wire models

The Z-wire magnetic field expressions of Sec. 3.2, based on infinitesimally thin and infinitely long
expressions for wire fields, are clearly only an approximation to the actual field generated by DC
current flowing in a real Z-shaped conductor of finite width, length and height. Though they do
capture the essential qualitative behaviour of Z-traps, accurate calculations of trap frequencies,
distances from the chip surface, and especially harmonic oscillation frequencies require more
realistic models.

Three models of the Z-wire field are compared here. The three models suppose the Z-wire to
be composed of

1. three infinitesimally thin, infinitely long wires (“thin-inf.”),

2. three infinitesimally thin, finite length wire segments, (“thin-fin.”), or

3. three finite thickness, finite length wire segments (“thick-fin.”),

carrying DC current Iz. For the “thin-inf.” model, the end-cap wires are assigned a current
Iz/2 to better account for their magnetic field contribution along y. These models are depicted
schematically in Fig. 3.5, along with the actual dimensions of the central part of the Z-wire used in
our atom chips. The Z-wires on our atom chips might be better called strips or ribbons, since they
are 3 µm to 6 µm tall, 50 µm wide, and have segment lengths 2 mm to 5 mm (see Sec. 4.6). With
typical working distances z0 of 80 µm to 200 µm, the effects of finite wire height are negligible,
and are ignored here. Z-trap characteristics calculated using these three models are compared in
the following subsections.
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(a) The actual Z-wire.
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Fig. 3.5: Three models for calculating the Z-wire magnetic field. (a): Actual central dimensions of the Orsay an
Toronto chip Z-wires. (b)-(d): Three calculation models with outlines of the actual Z-wire included for reference:
(b) “thick wire” model, consisting of three separate wire segments; (c) infinitesimally thin, infinitely long wires;
the end-cap wires running parallel to x bear one half the current; (d) infinitely thin, finite-length wire segments.
Red arrows indicate the direction of current flow.

3.3.2 Calculating harmonic oscillation frequencies

The centre-of-mass oscillation frequency ωi/2π of a particle of mass M in a harmonic magnetic
trap U(x, y, z) = 1

2M(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) is a function of the local magnetic field curvature (see
Eq. 3.6):

ωi =

√
1
M

d2U

d2xi
∝

√
1
M

d2B

d2xi
, (3.21)

where xi ∈ {x, y, z}.

Thin-inf model The simplest calculations of magnetic field curvatures are based on direct differ-
entiation of the “thin-inf.” magnetic field amplitude given in Eq. 3.20 along x,y and z. Although
the Z-trap potential is asymmetric along z (see Fig. 3.4), the curvatures in the x and z directions
are equal in the limits x→ 0 and z → z0, and are given by the following expression:

B′′x,z(0) ≡
d2Bxz

Z

dz2

∣∣∣∣∣x→0
z→z0

=
d2Bxz

Z

dx2

∣∣∣∣∣x→0
z→z0

=
(

2π
µ0Iz

)2 B4
bias

BIoffe
=

B2
bias

z2
0BIoffe

. (3.22)

The radial oscillation frequencies are then ω⊥ = ωx,z =
√
mF gFµBB′′x,z(0)/M .

The corresponding expression for the longitudinal field curvature along y requires the explicit
consideration of the end cap wire fields (see Fig. 3.3b). The total magnetic field amplitude at the
trap centre, B0, and the curvature along y at the trap centre are both obtained from the Eq. 3.17
expression for the total y-component field, accounting for the end-cap contributions and the
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applied Ioffe field BIoffe:

B0 = By
Z(y = 0, z = z0) =

µ0Iz

π

z0

z2
0 + L2

+BIoffe (3.23)

B′′y (0) =
d2By

Z

dy2

∣∣∣∣∣y→0
z→z0

=
6µ0Izz0

πL4

1− z2
0/3L

2

(1 + z2
0/L

2)3
. (3.24)

The first term in the expression for B0 is the contribution from the “natural Ioffe” y-direction
field due to end-cap wires, while the second term is the externally applied Ioffe field BIoffe. From
Eqs. 3.23 and 3.21, the longitudinal oscillation frequency is then ω‖ = ωy =

√
mF gFµBB′′y (0)/M .

Wait: Z-trap twist! Before comparing the trap frequencies predicted by the three models, we
stop to recognize an error in the thin-inf. trap frequency calculation in the previous section. The
magnetic potential minimum of the Z-trap is an ellipsoid which is twisted with respect to the
coordinate axes x, y, z. As depicted in Fig. 3.3a, the proper axes of the trap x′, y′ are at some
finite angle φt with respect to x, y. Though the effect is small, with φt typically on the order of a
few degrees, an accurate calculation of the oscillation frequencies – particularly the longitudinal
oscillation frequency – requires that the magnetic field curvatures be evaluated along twisted
axes x′ and y′.

We can gain some intuition about the cause of the twist by considering the z-component of
the Z-trap magnetic field. The twist may be thought of as a y-dependent displacement along x of
the trap centre (keeping the vertical trap centre fixed at z = z0). Both the central Z-wire segment
fields and the external bias fields are completely uniform along y.2 Therefore, the end-cap wires
must be the source of the twist; they are the only source of non-uniform and z field components
along the y direction (see Eq. 3.17).

Consider two geometric properties of the Z-trap: (1) According to Eq. 3.18, the z component
of the end-cap wire field varies linearly with y for |y| � L, and changes sign at y = 0, where it
is also equal to zero. (2) A z-direction magnetic field has the effect of translating the trap centre
horizontally along the x-direction. Taken together, these two ideas explain the twist angle: it is
a y-dependent, x-direction translation of the potential minimum, and is due to the z-component
field of the end-cap wires.

The twist angle φt can be expressed very generally as

φt = tan−1

(
∆x
∆y

)
≈ ∆x

∆y
(3.25)

where ∆x and ∆y are the small displacements of the trap centre along x and y due to the end-
cap wires. (∆y � ∆x due to the large (� 1) aspect ratio typical of Z-traps.) For any model of
the Z-trap magnetic field, this expression may be written in terms of derivatives of the Z-trap

2This is certainly true in the thin-inf. model, but even for a centre segment of finite length, the y and z field
components are nearly uniform along y near the trap centre.
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(a) (b)

Fig. 3.6: (a) Twist angle φt vs. Z-wire current Iz for Bbias = −20 G along −x, and BIoffe = 1 G along +y
calculated using the thin-inf. (dotted), thin-fin. (dashed) and thick-fin. (solid) models. With these parameters,
z0[µm] ≈ 100Iz[A]. The three models agree very well for small Iz, but diverge slightly at large Iz. (b) y-
direction gradient of the z component of the end-cap wire magnetic field which gives rise to the twist (thin-inf.
model).
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where r0 ≡ (x = 0, y = 0, z = z0). In the thin-inf. model, for instance, the twist angle may be
written

φt =
z2

0

L2

(
1− z2

0/L
2

1 + z2
0/L

2

)
. (3.27)

If we imagine fixing the bias fields and increasing Iz from zero to increase z0 from zero, then
φt = 0 when z0 = 0, increases to its maximum positive value when z0 =

√√
2− 1L, decreases

again to zero when z0 = L, and continues to decrease from there as z0 continues to increase. This
behaviour is demonstrated for all three models in Fig. 3.6.

Two more points regarding the role of end-cap wire fields are worth mentioning here. First,
there is no yz plane twist of the Z-trap. In other words, the proper axis for trap frequency calcula-
tion z′ is just equal to z. Such a twist would require a y-dependent x-component of the magnetic
field (to cause vertical translations), but no such dependence exists: the end-cap wires do not
contribute to Bx

Z , the external field Bbias is assumed to be uniform in space, and the central Z-
wire segment contributes a nearly uniform x-component along y, especially near the trap centre.
Second, the uniform x-direction shift of the trap centre in a U-wire trap [14] is also explained by
the z-component field of the end-cap wires. In the U-trap case, the end-cap wires bear currents
in opposite directions. The end-cap z-component fields do not vanish at y = 0 (as they do for the
Z-trap), resulting in a uniform translation along x rather than a twist in the xy plane.
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3.3.3 Thin-fin. and thick-fin. models

Expressions for the magnetic field of a straight wire segment of finite width w and length 2L
are derived in Appendix A. The basic procedure is to use the Biot-Savart formula of Eq. 3.10
to build up expressions for a straight wire segment by integrating over a finite width and/or
length. The full three-dimensional magnetic field of the Z-wire is then modelled by summing
the contributions of individual straight, finite-length and finite-width wire segments as shown
in Fig. 3.5. This method amounts to a crude finite-element analysis, and can be used to compute
the field pattern of any rectilinear wire arrangement.

One known flaw of this method is that it assumes the DC current to be spread uniformly
across the width w of a wire for its entire length, which is not generally true of real conductors.
This approach also fails to account for proper current flow around right-angle corners at which
the individual wire segments of the model overlap [92]. Not surprisingly, this model is at is
worst when computing magnetic fields in and around right-angle wire bends. On the other
hand, the model is an excellent approximation to the actual magnetic field far from any wire
bends. Despite the known flaws mentioned here, calculations of this type accurately reproduce
the measured oscillation frequencies and trap minima to within our measurement error. The
effects of finite length and width, in that order, are the dominant corrections to the idealized
conductor expressions of Sec. 3.2.

The magnetic field curvatures required to estimate the harmonic oscillation frequencies are
obtained by differentiating the full Z-wire expressions along the directions x′ and y′, following
[93]. To carry out the differentiation, one constructs a 3x3 matrix of spatial second derivatives;
each entry corresponds to one of the 9 possible Cartesian coordinate second derivatives of the
total magnetic field. The diagonal elements of this matrix are the second derivatives with respect
to x, y and z. Diagonalizing this matrix yields eigenvectors which correspond to the trap oscil-
lation axes x′, y′ and z′, and eigenvalues corresponding to the magnetic field curvatures along
those directions [93]:

d2B
dx2

d2B
dxdy

d2B
dxdz

d2B
dydx

d2B
dy2

d2B
dydz

d2B
dzdx

d2B
dzdy

d2B
dz2

 diag.
7−→


d2B
dx′2

0 0
0 d2B

dy′2
0

0 0 d2B
dz′2

 in the {x′, y′, z′} basis. (3.28)

3.3.4 Comparing models

The predicted trap twist φt, trap centre height z0, magnetic field minima B0, and harmonic os-
cillation frequencies ωi calculated using the three models are compared in Figs. 3.6a, 3.7, and
3.8, respectively. These figures show trap parameters plotted as a function of the Z-wire current
Iz for fixed values of the external bias fields (“bias” and “Ioffe”). The inputs to each model are
the fixed Z-wire geometry, the Z-wire current, and the three external bias fields. The models
could be compared over a vast array of input parameters; to highlight the essential differences
in the models, I have chosen a fixed set of bias fields which roughly corresponds to actual labo-
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(a) Trap centre (0, 0, z0) (b) Trap minimum B0

Fig. 3.7: Trap centre z0 and field minimumB0 as functions of the Z-wire current Iz for fixedBbias = −20 G along
−x, and BIoffe = 1 G along +y, predicted by the thin-inf. (dotted), thin-fin. (dashed) and thick-fin. (solid) Z-wire
models. For these parameters, z0 ≈ 100Iz (a): The thin-inf. model results are not shown since they overlap
almost exactly with the thin-fin. results (dashed). Both thin-wire models provide excellent approximations to z0

over a wide range, but fail for traps very near to the chip surface (z0 . 50 µm). (b) All three models agree very
closely for small Iz, and diverge only slightly for large Iz.

ratory conditions in the work of this thesis. Table 3.1 presents trap parameters computed by the
three models, as an alternative the aforementioned figures, and to highlight the slight differences
where they exist.

The winner is: thick-fin. These comparisons clearly demonstrate that the finite-length models
thin-fin. and thick-fin. give very similar results over a wide range of Z-wire currents. They also
predict the measured values of B0 and ωx,y,z to within our measurement error of these quantities
(see Sec. 3.3.5), which also demonstrates the inaccuracy of the simple thin-inf. model. Of the two,
the thick-fin. model has the slight advantage in accuracy when z0 . w, where w is the width of
the chip wire. For this reason, the thick-fin. model is our primary model for calculating chip trap
potentials. Though this model’s full analytic expression for the Z-trap is much more cumbersome
the that of the thin-fin. model (see Appendix A), calculations of BZ(x, y, z) and BZ(x, y, z) are
easily carried out using analytic software packages such as Mathematica.

3.3.5 Calibrating calculations with laboratory measurements

The calculations presented in this chapter are only useful if well calibrated using input from
experimental measurements. Of the “input” variables to each Z-wire model – Z-wire current Iz

and the bias fields Bx, By, Bz – only Iz is well known. We can easily measure Iz using a sense
resistor in series with the atom chip connection to an accuracy of±1 mA (∼ ±0.1%), but absolute
values of the bias fields produced by external coils (see Ch. 4) are only known to an accuracy
of roughly 10%. However, these poor bias field calibrations are compensated for by accurate
measurements of the minimum magnetic field B(r = 0) ≡ B0 and the harmonic oscillation
frequencies ωx,y,z in the Z-trap.

The calibration procedure is as follows:
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Fig. 3.8: Transverse (x) and longitudinal (y) oscillation frequencies vs. Z-wire current Iz for fixedBbias = −20 G
along −x, and BIoffe = 1 G along +y, calculated using the thin-inf. (red dots), thin-fin. (blue squares) and
thick-fin. (green diamonds) Z-wire models. Frequencies are computed at the trap centre along the appropriate
twisted axes x′ and y′ (see Fig. 3.3a). The black dashed line indicates the trap frequencies in the thin-fin. model
computed along the “no twist” coordinate axes x, y. Accounting for the twist is a significant correction for the
longitudinal frequency ωy, but makes almost no difference for the transverse directions ωx,z. Calculations of
ωz are not shown since they overlap almost exactly with the ωx results (see Tab. 3.1).

1. Since the minimum Z-trap magnetic field B0 = BIoffe ∝ Iz + By at the trap centre (see
Eq. 3.23), direct measurements of Iz and B0 together specify the total applied y direction
bias field By.

2. With By, Iz and B0 known, a measurement of the transverse oscillation frequency ω⊥ is
sufficient to specify the total xz-plane bias field

√
B2
x +B2

z . We typically isolate Bx by
working in a Z-trap with zero applied z-direction field.

3. In analytic Z-trap calculations, the input parameters Bx, By, Bz are tuned until the calcu-
lated values of B0 and ω⊥ match the measured values for a given Iz.

Once the bias field model values are calibrated in this way, other trap parameters such as the
axial oscillation frequency, magnetic field gradients, trap position (x0, y0, z0) etc. can be accu-
rately calculated. Trap parameters for other Z-trap configurations can also be easily calculated
by scaling the values of Iz, Bx, By, Bz according to calibrations applied in the lab.

One systematic flaw in this calibration method is that is does not account for gradients and
curvatures in the real bias magnetic fields. Spatial gradients and curvatures in Bx, By, Bz can
easily be added to analytic calculations, but calibrating these terms against experimental values
is difficult. We try to minimize the gradients and curvatures by aligning the three pairs of bias
coils (see Ch. 4) as closely to the x, y, z experimental coordinate axes as possible. Nevertheless,
cross-coupling between the bias fields due to spatial non-uniformities persists.

Measuring B0 We deduceB0 by performing radio-frequency (RF) spectroscopy on the Zeeman
states in a trapped gas. At the trap minimum the Zeeman energy splitting between adjacent mF
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Fig. 3.9: Measuring the RF trap bottom Ω0(0) ≡ gFµBB0(0)/~ in 87Rb. (a) Evaporating to lower and lower
final frequencies at a fixed RF amplitude probes Ω0. This data gives Ω0 = 2π × 800± 1 kHz, using a fit to an
error function (solid line). Error bars represent standard deviations over repeated measurements. (b) RF trap
bottom values measured as in (a) as a function of RF amplitude Brf. We use the extrapolated Brf → 0 value
of Ω0 as the best estimate of the Zeeman level separation in a bare (i.e. no RF) magnetic trap. The solid line
is a linear fit to the lowest Brf points (circles). Error bars are ±1 kHz from measurements of the type in (a).

states is gFµBB0 according to Eq. 3.6. The associated Larmor frequency Ω0 – the “RF trap bottom”
– is defined as

~Ω0 ≡ gFµBB0. (3.29)

During RF evaporation, sweeping the RF frequency down to lower and lower final frequen-
cies results in more and more atom loss into untrapped states [91]. The RF frequency at which all
the atoms are ejected from the trap corresponds to Ω0. Fig. 3.10a shows the 87Rb atom number
remaining in the Z-trap in after RF frequency sweeps to various final values.

Measuring Ω0 in this way is subject to a systematic overestimate since any non-zero RF mag-
nitudeBrf perturbs the “bare” (i.e. no RF) Zeeman states [91, 94]. (See also Ch. 6 of this thesis.) To
correct for this, we measure the apparent RF trap bottom at decreasing RF amplitudes, and take
Ω0 to be the value extrapolated down to Brf = 0 (see Fig. 3.10b). We have used this method to
measure Ω0 with an uncertainty of ∼ ±1 kHz for Ω0 between 300 kHz and 4 MHz. These values
correspond to measurements of B0 = 429 ± 2 mG (±0.3%) and B0 = 5714 ± 2 mG (±0.03%),
respectively.

Measuring ωx,y,z The harmonic oscillation frequencies are measured by directly observing centre-
of-mass motion of trapped, ultra-cold gases in the Z-trap. Oscillations are excited by perturbing
the trap centre using atom chip wire currents and/or external bias fields. For example, to mea-
sure ωz , the trap centre z0 is slowly3 shifted by several µm by smoothly increasing Bbias at a fixed
Iz, then quickly resetting Bbias to its original value. The sudden shift in the trap position induces

3“Slowly” on a timescale much larger than the expected centre-of-mass oscillation period.
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Fig. 3.10: Harmonic centre-of-mass oscillations for trapped 87Rb. (a) Measured radial oscillations; the sinu-
soidal fit gives ωx/2π = 2.76 kHz.(b) Measured axial oscillations; the sinusoidal fit gives ωz/2π = 13.2 Hz.
Error bars represent standard deviations over repeated measurements.

harmonic oscillations which we observe as oscillations in the cloud centre position in time-of-
flight after a variable hold time in the trap and a fixed time-of-flight. Fig. 3.10 shows example
measurements of x and y 87Rb oscillations as a function of in-trap hold times in two different
Z-traps. We use sinusoidal fits to extract the oscillation frequency.

3.4 Summary

This chapter describes the characterization of Z-trap magnetic trapping potentials used for con-
fining ultra-cold 87Rb and 40K in this thesis. We show how DC current in a Z-shaped wire and
an external uniform magnetic bias field together produce an anisotropic three-dimensional mag-
netic minimum suitable for trapping neutral atoms. We derive analytic expressions for the total
Z-trap magnetic field, using three separate models of current flow in the Z-wire. The most re-
alistic of these models approximates current flow in the Z-wire using uniform DC currents in
three wire segments of finite length and width. We identify the Z-trap “twist” – the misalign-
ment of the Z-trap axes with respect to the Z-wire – and point out that the twist angle must be
accounted for in order to accurately calculate the oscillation frequencies in the Z-trap, particu-
larly the longitudinal oscillation frequency. Analytic calculations of the Z-wire magnetic fields
are calibrated using laboratory measurements of the magnetic field minimum at trap centre, as
well as the centre-of-mass oscillation frequency of ultra-cold 87Rb in the Z-trap.
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input outputs
model Iz z0 B0 Bnat.

Ioffe ωx ωy ωz φt
A µm G 2π× Hz ◦

thin-inf. 25 1.006 .006 10153 1.8 10186 .02
thin-fin. .25 25 1.006 .006 10192 1.8 10192 .02
thick-fin. 16 1.004 .004 7223 1.5 7223 .03
thin-inf. 50 1.025 .025 4984 3.6 5045 .07
thin-fin. .5 50 1.025 .025 5057 3.6 5057 .08
thick-fin. 46 1.023 .023 4652 3.5 4652 .09
thin-inf. 100 1.102 .102 2329 7.1 2434 .29
thin-fin. 1 100 1.098 .098 2457 7.1 2457 .30
thick-fin. 98 1.098 .098 2405 7.2 2405 .31
thin-inf. 200 1.400 0.400 952 13.8 1080 1.1
thin-fin. 2 198 1.381 0.381 1119 13.6 1119 1.1
thick-fin. 197 1.390 0.390 1109 14.1 1110 1.2
thin-inf. 500 3.262 2.262 213 29.1 284 5.1
thin-fin. 5 474 3.079 2.079 338 27.5 339 4.9
thick-fin. 473 3.127 2.127 332 28.8 337 5.1

Tab. 3.1: Comparison of the thin-inf. thin-fin., and thick-fin. Z-trap models with bias fields Bx ≡ Bbias = 20 G
along −x, By ≡ BIoffe = 1 G along y, and Bz = 0. Much of this data is plotted in Figs. 3.6a, 3.7, and 3.8.
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Experimental apparatus

This chapter provides detailed technical descriptions of the trapping, cooling, manipulation and
measurement apparatus for atomic 40K an 87Rb used in the work of this thesis. Most of the
subsystems described here were first designed and implemented in my first two years at a grad-
uate student, but nearly all have been continually refined or upgraded. The descriptions in this
chapter are current as of the submission of this thesis (May 2009).

The apparatus was designed to produce a 40K DFG via sympathetic cooling with 87Rb on
an atom chip in a simplified, single-chamber ultra-high vacuum (UHV) system. Key features
of the apparatus resulting from this specific goal, and which distinguish our setup from other
ultra-cold atoms apparatus in the field are:

• Rather than a chip-based reflected surface-MOT [88], we use a traditional six-beam MOT
consisting of 4 cm-diameter beams to capture 40K as efficiently as possible. 40K has a natu-
ral isotopic abundance of only 0.012% [95].

• The large MOT beams set the scale of the required optical vacuum cell and MOT-to-atom-
chip distance, as well as the radii of MOT and magnetic trapping coils.

• The large collision rates made possible by the strong confinement of atom chip traps per-
mits rapid evaporation to degeneracy, eliminating the need for vacuum minutes-long life-
time, a multi-chamber vacuum system and a Zeeman slower. The MOT is loaded di-
rectly from atomic vapour produced using conventional atom dispensers and light-induced
atomic desorption (LIAD, see Sec. 4.1.3).

The following subsections give technical detail of the laser system for MOT, probe and optical
pumping beams, the UHV chamber and atom sources, magnetic field coils, radio-frequency (RF)
sources, imaging systems, and atom chips used in this work.

4.1 Vacuum chamber and atom sources

The UHV chamber has three main component groups: the main Pyrex cell, the atom chip and its
support stack, and the vacuum pumps. The single-chamber system is centred around a 6" Conflat
(CF) stainless steel cube. The six faces of the cube are attached to the following components (see
Fig. 4.1):

42
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1. 74 mm × 74 mm × 170 mm rectangular Pyrex cell, which houses the atom chip, and in
which all atom trapping and cooling takes place;

2. multi-port top flange and electrical feedthrough, which also supports the atom chip stack;

3. residual gas analyzer (RGA) (Stanford Research Systems RGA 100);

4. titanium sublimation pump (TSP) (Varian 8" cryopanel and titanium filament), cooled with
liquid nitrogen (LN2);

5. ion pump (Varian VacIon Plus 75 Starcell)

6. pneumatic vacuum valve (VAT Mini UHV 2.75"), behind which are attached a turbo-molecular
pump and a roughing pump for pumping down from atmospheric pressure

In steady state operation, the ion pump runs continuously and the TSP cryopanel is cooled
with LN2. The TSP is an excellent getter of H2, which is the dominant background gas in our
baked vacuum chamber (see Fig. 4.2). According to the manufacturer, −195◦C LN2 cooling in-
creases the pumping speed of H2 by roughly a factor of three compared to 20◦C water cooling.1

We measure a factor of three increase in the chip trap lifetime with LN2 cooling vs. un-cooled
room temperature operation of the cryopanel. The titanium filament is not used during each
experimental cycle, but approximately once per week, after the atom dispensers are used.

Fig. 4.3 demonstrates the effect of LN2 TSP cooling on the background gases in our UHV
chamber. RGA measurements of the partial pressure of hydrogen, water and other trace gases
are plotted against time in two scenarios: first, in the system starting at room temperature as LN2

is added to the TSP; second, as the system is left to naturally warm up to room temperature as
the LN2 boils off.

4.1.1 Bakeout and vacuum pressure

The stainless steel vacuum components (flanges, TSP shell) were all air-baked at 400◦C for 3 - 5
hours to outgas hydrogen, and to create an oxide layer on the bare steel to reduce the hydrogen
outgassing rate of the steel [96, Ch.16]). After assembling and mounting the entire system, the
chamber was baked at 150◦C under vacuum (turbo pump, then later ion pump) for three weeks
using ohmic heater tapes and layers of aluminum foil wrapping.

The full system maximum bake temperature was always limited by materials on the atom
chip and stack. In particular, peeling of the electroplated wires from the silicon substrate was
our biggest concern when baking the Orsay chip. When baking the Toronto chip and stack,
the electrically conductive epoxy and Kapton wire insulation were the bake temperature bottle-
necks. The epoxy manufacturer advised that cured epoxy bonds would weaken and even break
if reheated above 150◦C; Kapton was rated UHV-safe up to 260◦C. A fear of destroying chip elec-
trical connections during the bake ultimately limited the final bake temperature. Chip wires,
dispensers and the TSP filament were all degassed during the bake.

1Source: Varian, Inc. ion pump technical documentation.
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Fig. 4.1: (a) Side view of the vacuum system looking at the RGA showing cross-sections of the Pyrex cell,
titanium sublimation pump (TSP), and top multi-port flange and electrical feedthrough. The cell’s faces are at
roughly 45 degrees to the plane of the diagram. The vacuum system is supported at the points shown by black
triangles using aluminum stands bolted to the optical table. Ion pump not shown. (b) Side view of vacuum
system looking directly at the TSP showing the RGA and ion pump.
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Fig. 4.2: RGA scan of UHV environment immediately after a bakeout (19Feb08, blue), and after running the
experiment for several months (28Aug08, black). Water vapour was successfully removed from the system
during the bake, but returned during normal use of the system, likely due to regular use of unbaked Alvatec K
and Rb dispensers.

(a) (b)

Fig. 4.3: Effect of LN2 cooling on TSP pumping of UHV background gases, listed according to their mass
numbers in atomic mass units (e.g. 2 = H2). (a) The hydrogen partial pressure drops dramatically after the
LN2 is added (dashed black vertical line) to the TSP cryopanel. (b) Partial pressures of H2 and H2O slowly
increase as the LN2 is allowed to boil off, returning the TSP and UHV chamber to room temperature. The spike
in the water signal likely corresponds to the vaporisation and subsequent pumping of ice and/or liquid water
from the cold cryopanel.
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By this method, we achieved magnetic chip trap lifetimes of 20 to 25 s, with the system cooled
to room temperature, the valve shut, and only the ion pump running (with ion currents below the
sensitivity of the ion pump controller ion gauge, i.e. less than 1 nA). After running dispensers for
the first time after the bake, and running the experiment daily, the lifetimes stabilized at around
10 s over the course of several weeks.

4.1.2 Dispensers

We use a combination of homemade and commercial dispersers for 87Rb and 40K. The rubidium
dispensers are getters from SAES (model RB/NF/3.4/12), and Alvatec (Alvasource AS-Rb-20-S).
These dispensers work well for generating 87Rb vapour since the natural isotopic abundance of
87Rb is 28% [95]. By contrast, the 0.012% natural isotopic abundance of 40K [95] makes the use
of commercial potassium getters (e.g. from SAES) impractical. Instead, we constructed our own
homemade dispensers following DeMarco [97, 98], using with KCl powder isotopically enriched
to 7% (purchased from Trace Sciences).

In 2008 we also began using commercial 40K dispensers from Alvatec (Alvasource AS-K40(4+%)-
10-S), which have 40K enriched to 4%. Initial tests have shown that these dispensers pollute the
UHV chamber much less than do our homemade 40K dispensers. We achieve comparable MOT
lifetimes and loading efficiencies with the SAES, homemade and Alvatec dispensers, but the Al-
vatec versions pollute the chamber the least, registering a much lower vacuum pressure during
operation than the homemade or SAES designs: 0.9 µA (Alvatec) vs. 4 µA (SAES) for 87Rb, and
0.5 - 2 µA (Alvatec) vs. 8 µA (homemade) for 40K, measured with the ion pump’s ion gauge. The
baseline pressure in the chamber corresponds to roughly 0.5 µA at room temperature with the
experiment off. (0.51 µA corresponds roughly to a pressure of 4 × 10−9 torr; 1 µA corresponds
roughly to 7× 10−9 torr.)

4.1.3 Atomic vapour and LIAD

The 87Rb and 40K MOTs are loaded directly from atomic vapour created using light-induced
atom desorption (LIAD). The Pyrex vacuum cell is irradiated during MOT loading using ten
Marubeni L405 series illuminators positioned around the cell. Each illuminator package consists
of 60 integrated 405 nm LEDs and a spherical collimating lens. The illuminators are powered by
300 mA each, sourced from a constant-current supply circuit, and each produce roughly 16 mW
at λ = 405 nm. Rather than turning on the dispensers during every MOT loading cycle, we rely
on LIAD to load the MOT; dispensers are only run to replenish the 87Rb and 40K on the interior
walls of the vacuum chamber by running them as required, typically every few days or weeks.

LIAD permits rapid and repeatable modulation of the vapour pressure in our single vacuum
chamber. LIAD satisfies the competing requirements of high and low vapour pressure in our
single chamber experiment; higher vapour pressures are required for MOT loading, but lower
pressures are necessary to minimize background gas collisions which limit magnetic trap life-
times (see Sec. 5.1). We observe a 100-fold increase in the 87Rb MOT number compared to load-
ing from the background vapour alone (see Fig. 5.1). The increase in 40K MOT atom number is
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unknown since we cannot observe a 40K MOT with the LEDS off.

4.2 Lasers and optical frequency control

The laser system is based on locked external-cavity grating-stabilized diode lasers, free-running
injected mulitimode slave diode lasers, acousto-optic modulators (AOMs) and tapered optical
amplifiers (TA). Four master diode lasers (New Focus Vortex 6013) supply all the light for the
experiment; two at λ ≈ 766.700 nm for 40K, and two at λ ≈ 780.250 nm, outputting 8 - 10 mW
each with laser diode currents of 50 mA and 90 mA, respectively.2

4.2.1 Laser locking

We refer to the master lasers for each species as “trap” and “repump” – one pair for each species
– since they are tuned to the common cycling (52S1/2 F = 2 → 52P3/2 F = 3 for 87Rb and
42S1/2F = 9/2→ 42P3/2 F = 11/2 for 40K) and repumping transitions (5S1/2 F = 1→ 5P3/2 F =
2 for 87Rb and 4S1/2F = 7/2 → 4P3/2 F = 9/2 for 40K). The ground state hyperfine splittings of
87Rb and 40K (approximately 6.8 GHz and 1.3 GHz, respectively, see Fig. 4.5) are large enough
that separate trap and repump masters are convenient. All light for the MOT, optical pumping,
imaging probes and depumping beams are split off from these four lasers (see Tab. 4.1).

All four Vortex masters are locked to peaks in Doppler-free saturated absorption spectra pro-
duced with Rb and K vapour cells and balanced photodiodes (New Focus Nirvana Autobalanced
Photoreceivers, Model 2007). To probe the atomic resonances, two weak “probe” and “reference”
beams (∼ 20 µW each) are directed through a vapour cell; the probe beam is overlapped with a
stronger, counterpropagating ∼ 70 µW pump beam to saturate the absorption signal. The broad
Doppler absorption profile and saturated peaks (hyperfine transitions and crossover peaks) are
probed by scanning the master frequency using the piezo voltage at 20 Hz. Locking is carried
out by the modulation transfer method [99, 100]. The pump frequency is modulated at 110 kHz
using an AOM in double-pass configuration (see Fig. 4.4a). The resulting amplitude modulation
of the probe beam on the photodetector is used to lock to a peak maximum [101, 102]. The output
of a lock circuit is sent to both piezo voltage and current of the master laser via the laser diode
controller to complete the feedback loop. By this method we a lock bandwidth of over 5 kHz,
and observe a short-term stability of 300 kHz with a 30 ms integration time.

4.2.2 Slave diodes for higher power

Roughly 1 mW of the locked output of each saturated-spectroscopy setup is used to injection
lock free-running mulitimode laser diodes for the Rb trap, K trap and K repump lasers. Fre-
quency tuning of the injected light is accomplished with an AOM in double-pass configuration
(see Fig. 4.4b). This combination of locked low-power master diodes and injected free-running

2The lasers are controlled using New Focus Vortex 6000 series controllers, and have been extremely stable and
reliable parts of the experiment. We turn the diode current completely off at the end of each day. All four lasers had
been running trouble-free for 6 years as of June 2009.
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Fig. 4.4: (a) Frequency locking of the master Vortex diode laser to peaks in the Doppler-free saturated ab-
sorption spectrum using the modulation transfer scheme (see text). The “lock box” electronics feed back to the
Vortex laser’s piezo voltage and current inputs via the laser diode controller. (b) Injection of a multi-mode slave
laser diode with locked light from the master laser diode.
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Fig. 4.5: D-2 line hyperfine structure of 87Rb and 40K with the relevant optical transitions indicated. The 39K
level structure is also included since the 40K lasers are locked to 39K peaks (see text). The Rb diagrams are
reproduced from [103, p.25] and the K diagrams from [104, p.78] and references therein: [105, 106, 107].

slave diodes (Sanyo DL-7140-210W at 782 ± 2 nm and Sacher GmbH FP-0765-30 at 771 nm in
Thorlabs TCLDL9-TEC laser diode mounts) provides 60 - 70 mW of locked light. The double-
pass AOM geometry allows frequency tuning over 40 MHz range without affecting the slave
injection or the optical alignment downstream.

4.2.3 MOT, optical pumping and imaging beams

A schematic diagram of the lasers system, optical frequency control and generation of beams for
trapping, repumping, optical pumping, and imaging is show in Fig. 4.6. The AOM frequency
control of each beam is summarized in Tab. 4.1. The trapping, repump and optical pumping
transitions are depicted in Rb and K hyperfine level diagrams in Fig. 4.5.

MOT beams The 87Rb trap light is generated from the injection-locked output of the “Rb-trap”
laser system using a combination of single and double-pass AOMs (see Fig. 4.6). The double-
passed AOM2 frequency is computer-controlled, and is used to tune the frequency of this beam
near to the 87Rb hyperfine cycling transition of the D-2 line (F = 2 → F ′ = 3). The “+1”-order
diffracted output of single-passed AOM3 is coupled into the MOT fibre. 87Rb repump light is
taken directly from the locked output of the master diode laser without an injection locked slave
diode. The frequency is manually tuned to the F = 1→ F ′ = 2 87Rb D-2 transition using AOM3
in single-pass configuration.
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Fig. 4.6: Rb and K laser schematic (colour helps). Laser light is sourced from low-power master laser diodes
(LD) and amplified using injection-locked slave laser diodes and a TA. Frequency tuning is accomplished using
AOMs in single-pass (s.p.) and double-pass (d.p.) configurations. The fibre-coupled MOT light is directed
through a second tapered optical amplifier, whose output is divided into the six MOT beams for 87Rb and 40K
(see Fig. 4.7). The fibre-coupled depump, optical pumping and probe beams are sent directly to the UHV
chamber.
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The 40K trap setup is nearly identical to the 87Rb trap setup. The main exceptions are (1) that
a second stage of optical amplification is added after the “-1”-order diffraction output of AOM3,
and (2) the repump laser power is boosted using an injected slave diode. The TA is of the Orsay
design [108]. It uses an Eagleyard EYP-TPA-0780 775 nm TA chip, and steps the optical power
up from 1.6 mW to 41 mW (767 nm, trap + repump). After some spatial shaping of the TA output
beam, the trap and repump beams are directed toward the MOT fibre.

The output of the MOT fibre is fed into a Toptica TA100 1 W tapered amplifier to step up
the power for the MOT beams. The bandwidth of the TA100 is 20 nm – wide enough to amplify
light near 780 nm and 767 nm simultaneously when cooled to 11◦C. The output of the TA100
amplifier divided into six 4 cm diameter MOT beams, detailed schematically in Fig. 4.7. The
amplifier output is spatially filtered by focusing through a 20 µm pinhole; this improves the
beam’s spatial profile, but also results in a 30% power loss.

Polarizing beamsplitters and dichroic waveplates are used to divide the 4-colour amplifier
output into six MOT beams, with independent control of the beam powers for 87Rb and 40K.
The six 4-cm diameter beams are directed toward λ/4 waveplates to generate the required σ+ and
σ− polarizations, and from there into the Pyrex UHV cell along the directions shown in Fig. 4.9.
AOM3s are used to switch the MOT beams on and off. Optical shutters are also included before
the MOT fibre input and after the TA100 output to block any AOM leakage and/or spontaneous
emission from the TA100.

Rb & K beam control Amplifying MOT light for both species with the same amplifier means
that the 87Rb and 40K MOT beam k-vectors are not independent. In 2006 we separated the 87Rb
and 40K MOT light amplification by adding a Orsay-style TA for 40K and leaving the TA100
for 87Rb only. This swap made only a modest improvement in the dual-species MOT loading
efficiency, however, and so the setup was returned to the original, simpler form described here.

Optical pumping and depumping beams Optical pumping beams on the transitions shown
in Fig. 4.5 and listed in Tab. 4.1 are produced from weak beams picked off of the output of the
injected slave diodes. Their frequencies are set using AOMs 2, 3 and 4. Repumper light for
87Rb and 40K is also coupled into the optical pumping fibre for efficient pumping. The output
of the optical pumping fibre is collimated, polarized σ+, and sent directly into the UHV cell.
Depumping light – used in rapid absorption imaging of atoms released from the chip trap (see
Ch. 7) – is generated separately and coupled into its own fibre. This beam does not include
repump light; its purpose is to pump atoms into the states F = 1 for 87Rb and F = 7/2 for 40K,
which are dark with respect to the imaging probe beams tuned to the cycling transitions. The
optical frequencies of these beams are tuned manually with AOM4 in the 40K trap system and
AOM5 in the 87Rb trap system. AOM3s are used to pulse the pumping/depumping beams on
and off. Optical shutters block any AOM leakage.

Imaging probe beams The absorption imaging probe beams are produce from picked off out-
put of injected slave lasers. Imaging is typically carried out on resonance (i.e. resonant with the
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Fig. 4.7: Rb and K MOT optics, showing the second TA and telescopes used to create the six 4 cm diameter
beams. Dichroic waveplates (grey and black) allow independent power balance of the 87Rb and 40K MOT
beams. The beams are labelled according to their propagation directions in the lab. The coloured shapes
indicated pairs of counterpropagating MOT beams – see also Fig. 4.9.

87Rb and 40K cycling transitions), or detuned by one linewidth (Γ ≈ 6 MHz) or less. The laser
system is set up to accommodate both trap and repump light for both species in the imaging
probes, but we find that repump light is not usually required. Each atom scatters roughly 190
photons during a typical 100 µs pulse from a resonant probe beam at intensity I = Isat/10. We
expect that atoms are fully optically pumped into the |F = 2,mF = 2〉 and |F = 9/2,mF = 9/2〉
Zeeman states after scattering at most the first five (ten) photons in 87Rb (40K), eliminating the
need for optical (re)pumping. The probe light is divided between the two probe fibres, whose
output is collimated, polarized σ+, and directed into the UHV cell horizontally, skimming just
below the atom chip surface along the directions y and x, respectively (see Figs. 4.9 and 4.16).
AOM3s switch the probe beams on and off. Optical shutters block any AOM leakage.

4.3 Coils: MOT, magnetic trap and transfer

The magnetic field coils in our apparatus are of two functional types: (1) bias coils, which provide
weak, uniform magnetic fields to counteract environmental DC magnetic fields; and (2) trapping
coils, which provide strong quadrupole magnetic fields for the MOT, and for magnetic trapping
and transport to the atom chip. The design and construction of the trapping coils is described in
detail in [109]. This section provides a review of the key elements of the coil system design and
implementation, including slight modifications to the original 2004 setup.

4.3.1 Coil design considerations

The MOT uses a three-dimensional quadrupole magnetic field and six counterpropagating laser
cooling beams. The quadrupole magnetic trap (QMT) requires a similar magnetic field configu-
ration, but with a field gradient roughly one order of magnitude larger than that required for the
MOT. These two field constraints needed to be satisfied in the system design in such a way that
the appropriate magnetic fields and magnetic field gradients could be generated in the region of
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Fig. 4.8: Schematic diagram (not to scale) showing the minimum transfer distance from the MOT to the atom
chip surface. The minimum transfer distance (vertical black arrow) is established by aligning the MOT beams
(dashed lines) as close to the atom chip as possible without clipping the edge of the chip (horizontal black
line). The 4 cm beam diameter and 17 mm chip width constrain the distance to be at least 3.7 cm. Our working
distance is roughly 5 cm.

the glass vacuum cell without overly restricting optical access to the cell (i.e. lines of sight for
MOT and molasses cooling beams, imaging systems, and probe beams).

Having settled on the idea of trapping atoms in a quadrupole field configuration, the next
step was to identify physical and technical constraints, as well as performance criteria for the
coils before choosing a final design.

Overcoming gravity in magnetic trapping Levitation of a neutral atom of massM against grav-
ity requires that the force of gravity Fg = Mg be balanced by an upward force F = −∇U from
the gradient of the conservative magnetic potential. Using the magnetic potential expression
from Eq. 3.5, the magnetic levitation force may be written F = −∇U = gFmFµB

dB
dz . Setting

this force magnitude equal to Fgto results in an estimate of the trapping magnetic field gradient
needed to overcome the downward pull of gravity. Using the fact that gFmF = 2

9 ×
9
2 = 1 for

the |F = 9/2,mF = 9/2〉 state of 40K, and setting the two forces equal yields dB
dz

.= 7 G/cm.
This result means that any usable magnetic trap for 40K atoms must have a magnetic field gra-
dient of at least 7 G/cm in the vertical direction. The corresponding value for 87Rb atoms in the
|F = 2,mF = 2〉 level of the ground state is 15 G/cm.

Magnetic transfer distance We transport magnetically trapped atoms from the site of the MOT
up to the atom chip. The widths of the atom chip and stack, along with the MOT beam diameter,
set the lower bound of this transfer distance at roughly 4 cm (see Fig. 4.8). The MOT beams are
aligned at right angles for optimal capture efficiency. In the interest of keeping scattered light to
a minimum the atom chip needed to be positioned outside of the MOT beams.

UHV cell diameter and MOT coil separation The 74 mm-wide UHV cell sets a lower bound
on the separation of exterior magnetic field coils. The minimum separation affects the final coil
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radius since it is desirable to keep the MOT coil geometry close to the anti-Helmholtz geometry3

to maximize the quadrupole field gradient.

Fast magnetic field switching Loading atoms from one magnetic trapping potential to another
requires fine control over the turn-on and turn-off of the individual traps. A rapid and clean turn-
off is crucial for time-of-flight absorption imaging. Fast switching of magnetic field coils presents
a particular challenge because of the high inductance of large coils. As such, it is important to
minimize inductance in the final coil system to allow the large currents eventually required to be
switched well within a single atomic oscillation period in the magnetic trap.

4.3.2 Final design: off-coil-centre MOT and magnetic trap

Magnetic fields for the MOT, quadrupole magnetic trap (QMT) and magnetic transfer are gener-
ated using three circular coils: a pair of “MOT coils” arranged in anti-Helmholtz configuration,
and a single “transfer coil”. The MOT coils generate magnetic quadrupole fields suitable for the
MOT and the quadrupole magnetic trap. The transfer coil is used to displace the quadrupole
field minimum along the z-axis. The MOT and QMT are formed 2.5 cm below the MOT coils’
geometric centre. The transfer coil current is then reversed to transfer the magnetically trapped
atoms 5 cm vertically (the “transfer distance” of Sec. 4.3.1) to just below the surface of the atom
chip. The off-centre MOT, QMT and transport scheme is more than one order of magnitude more
power-efficient than a scheme based on a MOT located at the centre of the MOT coils. This point
is further explained in Sec. 4.3.2.

Why only one transfer coil? The original design and setup described in [109] used a pair of
transfer coils powered in Helmholtz configuration to generate as spatially homogeneous a field
as possible. The lower coil of the pair was removed in 2005 after we discovered that it was
periodically magnetizing the optical table. This resulted in unacceptable hour-to-hour and day-
to-day fluctuations in the radio-frequency trap bottom of the atom chip Z-trap. Removing the
lower coil, which had been mounted 120 mm from the optical table and generated fields of up to
∼40 G at the table surface, improved our trap bottom stability dramatically.

The MOT coils consist of 100 turns of square, insulated, hollow-core copper wire. The coil in-
ner diameters of 10 cm and outer diameters of 18.4 cm. Their cross-sectional profiles are square.
Their inner separation is 8.4 cm. In this configuration the MOT coils generate quadrupole mag-
netic field gradients of 1.56 G/cm per ampere of DC current, near the trap centre. The transfer
coil also has a square cross-section and is made of the same hollow-core copper wire. It has 49
turns, an inner diameter of 28 cm and an outer diameter of 36.4 cm. The transfer coil generates a
quasi-uniform magnetic field of 1.6 G/A at the MOT position, and 1.8 G/A at the atom chip sur-
face. The mounting geometry of all three coils is depicted in Fig. 4.9. Their physical and electrical
characteristics are summarized in Tab. 4.2.

3Coil radius ≈ coil separation
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Fig. 4.9: Two side views (a,b) and one top view (c) of the MOT and coil geometry, showing the Pyrex UHV cell,
MOT and transfer coils (light grey), bias coils (dark grey), MOT beams and their polarizations (dashed lines),
and the copper stack (copper colour). The “+” indicates the MOT position. See Tab. 4.3 for bias coil name
convention.
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MOT transfer “Zbias” “Xbias” (Ioffe) “Ybias” (up/dn.)
Cu wire type hollow hollow 14 AWG 14 AWG 14 AWG

wire length 44 m 47 m 12 m 11 m 21 m
shape circular circular circular rectangular circular

inner diam. 10 cm 28 cm 19 cm 7.5 cm×19.5 cm 33 cm
outer diam. 18.4 cm 36.4 cm 20 cm 8.5 cm×20.5 cm 34 cm
inner sep’n. 8.5 cm n/a 8.5 cm 8.5 cm 13 cm

# turns 100 49 20 20 20
resistance 0.16 Ω (pair) 0.11 Ω 100 Ω 95 Ω 190 Ω

inductance 2.3 mH (pair) 2.8 mH 0.63 mH 1.2 mH
MOT current 7 A 6.1 A 60 mA 10 mA 0.45 A
QMT current 45 A 48 A 60 mA 10 mA 0.45 A

Z-trap current n/a n/a 0 0.5 - 4 A 10 A
QMT dB/dx 1.56 G/cm.A † n/a n/a n/a n/a
field at MOT 7.5 G/A † 1.60 G/A † 2.2 G/A ∼ 1.1 G/A ∼ 1.8 G/A
field at chip 7.0 G/A † 1.83 G/A † 2.2 G/A ∼ 1.1 G/A ∼ 1.8 G/A

power supply 2 × Kepco 2 × Kepco FuG HighFinesse HighFinesse
ATE-25-40M ATE-15-50M NLN 140M-6,5‡ BCS-5/5 BCS-5/5

† Results of analytic calculations that are considered accurate to within ±5% [109].
‡ Modified for fast-switching and reduced current noise by Stefan Myrskog. See text.

Tab. 4.2: Summary of MOT, transfer, and bias coil characteristics.

Construction All three coils were wrapped by hand. The square, hollow-core wire was pur-
chased as bare wire from Wolverine Fabricated Products, Inc.; the double polyester glass insula-
tion4 (similar to fibreglass) was applied by S&W Wire Co. The square wire was chosen to facilitate
the wrapping of large, matched coil pairs. The coil was wrapped around a homemade jig, which
we turned by hand in the jaws of a lathe in neutral gear. The stiff wire (see wire cross-section in
Fig.4.10a) was bent and tensioned by hand. “20-minute” epoxy was used during wrapping as
well as after the coils were complete to stabilize the turns and to maintain the coil’s square shape.

Water cooling The maximum operating current and power in the MOT and transfer coils are
100 A at 16 W, and 50 A at 6 W, respectively. The heat load is dissipated by water plumbed
through the hollow wire centre. Vinyl water hoses were attached to the square wire using
Swagelok hardware and homemade wire-to-Swagelok adaptors (see Figs. 4.10a and 4.10b). Cool-
ing water is sourced from laboratory process cooling water at a pressure of roughly 80 psi (5.4
ATM). The MOT coils are water cooled in parallel, with a net flow rate of ∼9 mL/s through both
coils. This scheme easily provides adequate water cooling for our purposes: in steady state op-
eration5 the exit water temperature is only 2 – 3◦C warmer than the input temperature. During
normal operation, the coil temperature is thus stabilized at roughly 9◦C in winter and 13◦C in
summer (the cooling water input temperature varies slightly with the seasons).

4The insulation is can withstand temperatures up to 155◦C and has a dielectric breakdown voltage of roughly
500 V.

5In a typical cycle, the coils bear low currents for the MOT for 5 - 30 s, followed by high currents for the QMT for
400 ms in a total cycle of anywhere between 8s and 40 s. See Tab.4.2.
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Fig. 4.10: (a) Electrical and water cooling connections for MOT and transfer coils. Downstream of the water
cooling adaptor, a second length of square hollow-core wire is used for the electrical connection to maximize
surface contact between the two wires, which are connected by direct soldering. The diagram also shows a
cross-section of the hollow-core wire (not to scale). (b) Schematic diagram showing the dimensions of the
copper adaptor between water cooling plumbing and the square hollow-core wire. The wide end of the adaptor
accepts the stripped end of the wire, which is attached (and water sealed) using solder. The water cooling
plumbing is connected using 1/4" Swagelok fittings on the small end of the adaptor.

Advantage: power efficiency The most significant advantage of this off-centre MOT setup is its
power efficiency. The off-centre MOT saves over an order of magnitude of power as compared
to a setup based on a conventional centred MOT.

Analytic calculations of the quadrupole field showed that the magnetic trap formed in the
centre could by shifted by applying a uniform bias field, but only to a certain distance. Using a
coordinate system with z = 0 defined at the geometric centre of the MOT coils, the trap centre
can be shifted up to z = ±R/2, where R is the coil radius, without a significant reduction in the
trap depth or quadrupole field gradient. Shifting beyond |z| > R/2 resulted in a decreasing trap
depth and magnetic field non-linearity.

Given the constraints on the maximum safe magnetic transfer distanceR/2 and the minimum
required transfer distance d, we might have tried setting the coil MOT radius equal to twice
the desired transfer distance: R/2 = d. In such an arrangement the MOT and magnetic trap
would be located at the centre of two quadrupole coils (z = 0) and could be safely transferred
vertically to z = R/2. The coil size and power dissipated is considerably reduced, however, if
the MOT and magnetic trap are positioned off-centre with respect to the MOT coils - specifically
at z = −R′/2 and R′ = d. Under this scheme, which is the one adopted in our experiment, atoms
move from below to above centre of the MOT coils – z = −R′/2 → z = +R′/2. This allows the
coils themselves to be one half the radius for a given transfer distance d, and thus to dissipate one
sixteenth the power compared with coils having R/2 = d.6 As an additional advantage, the net
inductance of the MOT coils is greatly reduced by reducing their size and current, which enables
much easier and faster switching of large DC currents.

6For a circular coil, P ∼ I2, I ∼ r2 and B ∼ I/r2, where P, I,R, r and B represent electrical power, current,
resistance, coil radius and magnetic field amplitude. For a fixed magnetic field B, halving the coil radius means the
current must be decreased by a factor of four. A factor of four decrease in current in turn implies a factor of 16 decrease
in the dissipated power.
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Circuit and switching The MOT and transfer coils are powered by Kepco, Inc. linear DC power
supplies. The MOT coils use two model ATE-25-40M supplies connected in a parallel master-
slave configuration to deliver up to 80 A to the MOT coils. The transfer coil is powered by
a similar arrangement of two ATE-15-50M supplies for a maximum achievable DC current of
100 A. The supplies are computer-controlled by the ADwin sequencer and switched the custom-
built Mag-O-Matic switch, designed and built by our research technologist Alan Stummer.7

Several phases of the experiment require fast switching of the magnetic trap coils. In order to
load atoms from the MOT into the magnetic trap, the coils must be turned off quickly to create a
zero-field condition for optical molasses, and then turned on quickly to high current for efficient
loading of the magnetic trap. Fast turn-off is also necessary when imaging the atoms in order to
avoid heating, distortion of the cloud, and Zeeman shifts of the atomic energy levels.

Mag-O-Matic operation The necessary time scale for coil switching is determined by the mo-
tion of atoms in the trap: magnetic fields should be switched in less time than a single classical
oscillation period to avoid excessive heating. At 3 mH inductance and 60 A of current, voltages
up to 1 kV are required to achieve sub-millisecond switching times.

Fig. 4.11 shows a schematic of one of the Mag-O-Matic switches designed for switching large
DC currents. The full Mag-O-Matic consists of two nearly identical switches, one for the MOT
coils and the other for the transfer coil. The difference is the role of the relay: the MOT relay can
be used to toggle the current directions between Helmholtz and anti-Helmholtz configurations;
the transfer relay toggles the current direction in the single transfer coil. When the coils are
operating in steady state, the IGBT (insulated gate bipolar junction transistor) stack is on and
the coil supplies are running in constant current mode. The current flows through the blocking
diode, the coils, the IGBT stack, and a giant magneto-resistive (GMR) current sensor. The sensor
is used for quantitative monitoring only.

The coils are turned off by turning the IGBT stack off. The counter- EMF (“flyback”) caused
by the inductance of the coils produces a high voltage spike which is clamped by the transient
voltage suppressors (TVS) at about 940 V. The coil current is dissipated at 0.4 A/µs, as shown in
Fig. 4.11.

There are two ways to turn on the coil current. If the IGBT stack alone is turned on, the
current will rise asymptotically to the steady-state value in roughly 20 ms. The other turn-on
method – the “fast on” – works as follows. At any time before the fast turn-on is needed, the
high voltage (HV) supply is used to charge up the HV capacitor. Fast turn-on is triggered by
first turning on the IGBT stack, and then triggering the HV silicon controlled rectifier (SCR).
In the few microseconds between these two events, no significant current flows due to the coil
inductance. Triggering the SCR creates an LC parallel resonant circuit with the coil inductance
and the HV capacitor. During the first quarter-cycle of the resonance, roughly 350 µs, the capacitor
transfers its charge to the coil (see Fig. 4.11). The charge on the capacitor is chosen such that after
this quarter-cycle the coil is at its steady state voltage, and the blocking diode of the supplies will

7See www.physics.utoronto.ca/∼astummer for Alan’s wonderful documentation of this and many other projects.
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Fig. 4.11: (a) Schematic circuit diagram of the Mag-O-Matic switch for the MOT coils. The primary switch
is a stack of insulated gate bipolar junction transistors (IGBT’s). Turn-on is accelerated with a high voltage
(HV) charge in a capacitor, whose discharge is triggered using a silicon controlled rectifier (SCR). Turn-off
is accelerated with transient voltage suppressors (TVS’s). Current is sensed using a giant magneto-resistive
(GMR) current sensor. Arrows indicate the direction of controls and monitors; half arrows indicate coil currents.
(b) Turn-off performance: current falls from 60 A to zero in 150 µs. (c) Turn-on performance: rise of current
from 0 to 26.5 A in 350 µs.

conduct to provide the steady state current. The SCR turns off when the current flowing through
it falls to zero.

4.3.3 Bias coils

In addition to the MOT and transfer coils, three pairs of much smaller coils are used to control
the background magnetic field environment at the site of the MOT and chip magnetic trap. In
particular, the coils are used to null the environmental field during optical molasses cooling, and
to provide the uniform “bias” and “Ioffe” fields for the atom chip microtrap (see Ch. 3).

Each pair of coils is wired in series and produces a uniform magnetic field along one of the
three experiment axes x, y or z. For historical reasons8, we refer to the three pairs as“Xbias”,
“Ybias” and “Zbias”, respectively. This thesis uses coordinate axes based around the atom chip,
with the z-axis corresponding to the direction of gravity, but keeps the historical bias coil names
(which are still de rigueur in the lab). See Tab. 4.3 for name clarification.

All bias coils were wrapped by hand using insulated 14 AWG copper wire. Fig. 4.9 shows the
shape and placement of the bias coils. Their physical and electrical specifications are summarized
in Tab. 4.2. The Xbias and Ybias coils are powered by HighFinesse GmbH model BCS-5/5 low-
noise, bipolar constant current linear supplies. Current ripple in the BCS-5/5 output is rated
as 10−4 of the output current, maximum. The Zbias coils are powered by a FuG GmbH model

8The bias coils were originally named according to MOT-centric experimental coordinate axis definitions, in which
the strong axis of the MOT coils is Z, the vertical direction Y , and the longitudinal (Ioffe field) axis of the Z-trap X .
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axis
lab/coil name (thesis coordinates) function/direction

“Zbias” x Z-trap holding field
“Xbias” y Z-trap Ioffe field
“Ybias” z vertical bias field

Tab. 4.3: Bias coil/field name conventions.

NLN 140M-6,5 linear power supply. This supply was modified by Stefan Myrskog to allow for
sub-millisecond switching while maintaining a low output voltage ripple.

4.4 Radio-frequency sources

After loading atoms into the Z-trap, we achieve quantum degeneracy in 87Rb and 40K using
forced radio-frequency (RF) evaporative cooling. RF radiation is also used as a tool to manipulate
and spatially form the Z-trap magnetic potential – in particular, to create double well potentials
(see Ch. 6). In both cases, one or more atom chip wires serve as near-field RF antennae, to which
RF electronics are connected on the air side of the experiment. This section describes our direct
digital synthesizer (DDS) -based RF sources and their accompanying amplification and switching
circuits.

4.4.1 DDS basics

While many quantum gas experiments use standard commercial function generators as RF sources,
such devices typically have dwell times and switching times of 10 ms or greater, rendering them
unable to sweep quickly enough for an on-chip evaporation that may last only one second. In-
stead we generate RF fields using DDSs, which have sufficient frequency sweep speed and pre-
cision for our applications, at a fraction of the cost of a complete high-frequency function gener-
ator. A DDS creates a sinusoidal waveform digitally (point-by-point), which is then sent through
a digital to analog converter. Using dividers implemented in digital logic, any frequency from
µHz up to the Nyquist frequency (150 MHz in our case) can be generated with 48-bit resolu-
tion. Linear sweeps can be produced by specifying the start and stop frequencies, the number of
frequency steps, and the step time. Since no phase-locked loop is involved, the sweep speed is
effectively unlimited.

4.4.2 RF for evaporative cooling

A schematic diagram of our RF evaporation source is depicted in Fig. 4.12. A listing of parts and
functions is given in Tab. 4.4. All components from the DDS up to the load are connected via
coaxial BNC and/or SMA shielded cables.

Fig. 4.12 also gives circuit detail of the load, which consists of the atom chip antenna wire
(R ≈ 1 Ω), contact resistance and other small losses (net≈ 2 Ω) and a 47 Ω resistor added in series
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part function device†

DDS RF source AD9854 evaluation board (AD)
VCA voltage-controlled attenuator, ZAS-3 (M)

RF amplitude control
transformer block DDS DC bias FTB-1-1 (M)

switch RF on/off ZASWA-2-50DR (M)
amp. amplification ZHL-3A (M)

cpl. directional coupler, ZDC-20-3 (M)
signal monitor

DC blk. block amp. DC bias BLK-89+ (M)
lo-pass low-pass filter BLP-15 (M)

combiner for other RF manipulation ZA3CS-300-3W (M)
† AD = Analog Devices, Inc., M = Mini-Circuits

Tab. 4.4: RF evaporation chain hardware.

for impedance matching. The capacitors in the signal and ground lines serve as additional high-
pass filters. The 47 Ω resistor and capacitors are bundled together in an impedance-matching
package called “Lindsay’s box” (an updated version of “Ian’s box”) outside of the UHV chamber.

The DDS frequency and amplitude are controlled via digital programming on five serial con-
trol lines from the control software and sequencer. All frequency sweeps are programmed in the
experimental control software GUI. A voltage-controlled attenuator on the DDS output is used
for fine and/or dynamic amplitude control. A more coarse, stepwise amplitude control is also
possible by directly programming the DDS. Forced RF evaporation is carried out with a series of
linear frequency sweeps, which together approximate an exponential frequency sweep.

The Analog Devices AD9854 DDS evaluation board supplies signals with amplitudes up to
-12.5 dBm (54 mV rms) at frequencies from several mHz to 150 MHz. Adding the linear RF am-
plifier allows the full RF circuit to source amplitudes up to 9 dBm (640 mV rms). This maximum
corresponds to a RF current amplitude of roughly 20 mA in the chip wire antenna, a magnetic
field amplitude of roughly 160 mG and a Rabi frequency ΩR = 1

2µBB ≈ 110 MHz for atoms
trapped 200 µm from the chip surface. (The distance from the RF antenna wire the an atom cloud
trapped 200 µm below the centre of the Z-wire is 247 µm (see Sec. 4.6.1). We typically use RF
amplitudes of 430 mV rms or less during evaporation.

At some point upstream of the antenna wire, a coaxial cable was cut and opened up so that the
tip and shield could be connected to the antenna wire directly. In the Orsay stack, this was done
at a multi-pin electrical feedthrough. RF is piped into the UHV system via a DC feedthrough pin,
down to the atom chip via insulated copper wire, through the chip wire, and back up to the air
side in the same way. In the Toronto stack (in anticipation piping microwave radiation onto the
chip for future work) SMA vacuum feedthroughs are used to bring RF into the UHV chamber.
UHV-compatible coaxial cable (Kapton and Teflon-insulated, from Allectra Inc.) bring the RF
signal right to the atom chip. This vacuum coax is cut and split just a few centimetres from the
chip surface to allow connections to the antenna wire (see Sec. 4.6.2).
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Fig. 4.12: RF evaporation chain. The load consists of the impedence-matching Lindsay’s box (see text) and
the chip antenna wire.

4.4.3 RF for double well potentials

Our first attempts at creating RF dressed adiabatic potentials (see Ch. 6) used the RF evaporation
circuit described in Sec. 4.4.2, including the RF evaporation wire on the Orsay chip. After chang-
ing to the Toronto chip, we began using two RF antennae to produce RF double-well potentials,
and supplied RF using a new RF circuit based on a two-channel RF source.

2-channel RF source: PhaseOMatic The PhaseOMatic is a RF source designed for the double-
well relative atom number and relative phase experiments described in Ch. 7.9 It supplies two
adjustable RF signals with independent amplitude control, tunable relative phase from 0 to 2π,
and control of the RF phase at turn-off.

The idea of monitoring and controlling the phase of the RF dressing field at turn-off was
suggested to us by the Ketterle group as a way of stabilizing interference experiments (see [31],
for example). The amplitudes of the bare |mF 〉 components in an RF-dressed state |m′F 〉 depend
on the RF phase. Fixing the phase at the moment of turn off should ensure that the atoms are in
the same superposition at the beginning of each time-of-flight. The effect of the PhaseOMatic-
locked phase versus the random phase has thus far been small, likely because the experiment
is dominated by other sources of noise such at temperature and atom number fluctuations from
cycle to cycle.

The PhaseOMatic is based on an Analog Devices AD9854 300 MHz DDS evaluation board,
identical to the one described in Sec. 4.4.2. The AD9854 board supplies two RF outputs exactly
π/2 out of phase, which are mixed and amplified to generate the phase-tunable PhaseOMatic
outputs. Referring to the AD9854 outputs as sinωt and cosωt, Fig. 4.13 illustrates schematically
how the two signals are combined to form the PhaseOMatic output. The inputs α, β, γ represent
amplifier gains (in practice, voltage inputs to voltage-controlled amplifiers) and also the resulting

9See www.physics.utoronto.ca/∼astummer for more technical detail.
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Fig. 4.13: Conceptual schematic of PhaseOMatic dual RF source with tunable amplitudes and relative phase.

signal amplitudes.
If α and β can be tuned from −1 to 1, then the relative phase between outputs RF1 and

RF2 ranges from 0 to 2π. Though α and β also control the total RF2 amplitude, they may be
carefully chosen so that the relative phase φ between RF2 and RF1 may be tuned while keeping
the amplitude of RF2 fixed. Choosing α ∝ cosφ and β ∝ sinφ makes this so. γ is completely
independent of α and β, so that the amplitudes of RF1 and RF2 can be tuned independently over
their full range of 0 to 200 mV rms per channel.

Another feature of the PhaseOMatic is a delayed trigger signal for switching off RF signals at
a well-defined phase of the radiation. RF signals are switched off by TTL control voltages sent to
the PhaseOMatic, which relays them on to RF switches downstream. The PhaseOMatic monitors
the RF phase in real time, and delays the turn-off TTL signal until the RF reaches a user-defined
phase in its cycle. Buffering the TTL control signal in this way ensures that the turn-off of RF
radiation experienced by the atoms is constant from experiment to experiment. Though this
results in a variable cycle time, the variation is negligible since the TTL signals are delayed by at
most one RF period, e.g. 1 µs for a 1 MHz RF frequency. Fig. 4.14 demonstrates the stability of
the TTL-turn off-signal with respect to input signals arriving at random times from the ADwin.

Frequency and amplitude programming of the PhaseOMatic’s DDS are carried out using a
microprocessor core module (RCM3200 RabbitCore from Rabbit Semiconductor) built into the
PhaseOMatic and connected to the experimental control PC via Ethernet (rather than using serial
programming through the ADwin, as in the RF source of 4.4.2). “Rabbit” control of the DDS is
much faster than serial ADwin programming, which allows faster and more accurate frequency
sweeps.

The RF for dressed potentials is delivered to the Toronto chip via two independent amplifier
chains, as depicted in Fig. 4.15. As with the RF evaporation chain, RF splitting circuit is intercon-
nected using coaxial BNC and/or SMA cables and connectors. Tab. 4.5 lists the components of
the RF splitting circuits. RF is delivered into the chip wires through DC electrical feedthroughs
on the stack multi-port flange, and down into the chip in Kapton-insulated copper wires.
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Fig. 4.14: Characterizing controlled RF phase turn-off with the PhaseOMatic, from an oscilloscope screen
capture. The timebase (horizontal axis) is 20 ns/div. The upper trace is the RF signal monitor at 10 MHz. The
lower trace shows TTL falling-edge “off” signals arriving at random times over 100 ns. The middle trace shows
the delayed TTL output signals, which are all overlapped and fall onto a single trace at a fixed point in the RF
waveform. In this example, the falling-edge of the “off” signal occurs when the RF signal rises through its point
of maximum slope.

LOAD A

phase−O−matic

switch DC blk. lo−pasamp.1 amp.2

switch DC blk. lo−pasamp.1 amp.2 LOAD B

Fig. 4.15: RF splitting chain. LOADA and LOADB each consist of a 47 Ω impedence-matching resistor, stack
electrical connections, and a chip wire – typically the matched “U” or “bar” wires (see Fig. 4.20).

part function device†

phase-O-Matic dual RF source homemade using AD9854 DDS, see text
amp.1 amplifier ZHL-32A (M)
switch RF on/off ZASWA-2-50DR (M)
amp.2 10 W amplifier HF10-0130 (R)

DC blk. block amp. DC bias BLK-89+ (M)
lo-pas low-pass filter BLP-70 (M)

† R = Richardson Electronics Ltd., M = Mini-Circuits

Tab. 4.5: RF splitting chain hardware.
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4.5 Imaging systems

Time-of-flight absorption imaging is the primary method of detecting cold atomic clouds in this
thesis. The basic elements of this type of imaging are a probe laser beam, an imaging system
which collects and focuses the transmitted and scattered probe light, and a CCD camera which
records the resulting image. This section describes two generations of imaging systems. The first,
based on simple 1:1 telescopes and MicroPix M640 CCD cameras, was in place from 2004 to 2007,
and was used to produce the BEC and DFG data presented in Ch. 5. The second generation uses
additional 4X microscope objective lenses and faster, more versatile, low-read-noise Princeton
Instruments Pixis 1024BR CCD cameras. This upgraded imaging system was used to collect the
RF double well data presented in Ch. 7.

In both generations, two separate imaging systems are used to observe atomic clouds along
the x and y axes (see Fig. 4.16a) below the chip. These imaging directions are referred to as “axial”
and “radial” throughout. The “axial” imaging system uses a probe beam directed along x, and
produces absorption images in the yz plane. The ”radial” imaging system uses a probe beam
directed along y, and produces absorption images in the xz plane. Probe beams are directed into
the UHV cell, through the atom cloud, and into the imaging systems along a horizontal path
skimming just below the chip surface.

4.5.1 1st generation: BEC and DFG data

Our first imaging systems were simple 1:1 telescopes. Both lenses in each imaging system were
identical 1" achromatic doublets designed for near infrared optical wavelengths. The radial imag-
ing system uses Thorlabs AC254-100-B lenses, while the axial uses Thorlabs AC254-075-B lenses
(labelled “L1” and “L2” respectively in Fig. 4.16a). We estimate the optical resolution to be be-
tween 10 µm and 20 µm for both systems. A ray-tracing simulation10 predicts best-case (on-axis,
perfect focusing) diffraction-limited optical resolutions of 6 µm and 8 µm for our axial and radial
systems, respectively. The discrepancy between the theoretical minimum resolutions and our
larger working resolutions is attributed to imperfect probe beam and imaging system alignment
(i.e. not using the system exactly on-axis), and to a lesser extent, imperfect focusing.

The numerical apertures (NA) of the radial and axial imaging systems are approximately 0.13
and 0.17. The NAs are limited by our inability to position the 1:1 imaging system closer to the
atoms due to (a) the 74 mm width of the UHV cell, and (b) the need to keep imaging optics out
of the path of the 4 cm-diameter diagonal MOT beams (see Fig. 4.9).

Alignment and focusing The imaging systems were built using 1" lens tubes and optomechan-
ics. Before mounting the imaging systems in the experiment, the intra-lens distances are set using
a collimated test beam (a perfect 1:1 imaging system produces collimated output with collimated
input). The imaging system is focussed by fixing the CCD-to-lens distance and scanning the

10The analysis was performed by Vincent Kan using ZEMAX software. His report on imaging system performance
is available from our research group webpage www.physics.utoronto.ca/∼jhtgroup.
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Fig. 4.16: (a) Radial and axial imaging systems with MicroPix M640 CCD cameras, schematically drawn
looking up at the chip surface along the −z direction. The “object” of the imaging system is a cold cloud of
atoms (black ellipse) trapped beneath the chip surface, which is shown along with an outline of the UHV cell.
(b) 2nd generation imaging system (see text). Same as in (a), but with added 4x microscope objective and
Pixis CCD camera. The objective is placed at a working distance of 15 mm from the image (grey ellipse)
formed after the second lens (“L1” or “L2”) of the 1:1 imaging systems in (a).
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Fig. 4.17: Axial imaging system focusing with MicroPix M640. The 87Rb cloud size measured with a gaussian
fits of absorption images taken after 3 ms time-of-flight. The focussed camera position is taken to the be point
of minimum observed cloud size. Error bars correspond to the standard deviation of repeated measurements.

lens-to-atom distance manually while recording the apparent size of a cold 87Rb cloud in the re-
sulting images (see Fig. 4.17). The focussed position is taken as that which produced the smallest
apparent cloud size.

CCD camera and image acquisition The CCD cameras were MicroPix M640 12-bit 480×640
pixel models with 7.4 µm ×7.4 µm pixels. The M640 has a maximum image rate (full-frame
readout and reset) 30 Hz, which limited the time between successive exposures of the CCD to
at least 33 ms. The camera exposure is triggered by the experiment’s ADwin sequencer. Images
were retrieved via a FireWire connection, and analyzed on a Windows PC using homemade
software written by Dr. Seth Aubin.

4.5.2 2nd generation: double well data

The change to the second generation imaging system was precipitated by an upgrade in CCD
camera technology to a Pixis 1024BR from Princeton Instruments. The goal was to reduce imag-
ing noise in double well data (see Ch. 7). To compensate for the Pixis’s larger 13µm × 13µm
pixels, a 4x microscope objective was introduced to decrease the effective pixel size to 3.25µm
× 3.25µm . The objective is positioned between the second lens of the 1:1 telescope and the CCD
camera (see Fig. 4.16b), extending the path length of the imaging system significantly. Since the
1:1 telescope portion of the imaging system are identical to of the 1st generation system described
in Sec. 4.5.1, the numerical aperture and optical resolution are unchanged.

Alignment and focusing The objective lens is rigidly fixed to the 1:1 telescope using optome-
chanics. Focusing is carried out using the same procedure described in Sec. 4.5.1, but with the
added complication that the the Pixis camera is not attached to the lens assembly. (Unlike the
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MicroPix camera, which is lightweight enough to be attached directly to its imaging system,
the ∼ 1 kg Pixis is supported independently.) As a result, the Pixis position along the imaging
system axis needed to be manually adjusted to keep the CCD-to-objective distance fixed as the
lens-to-atom distance was scanned for focusing.

CCD camera and image acquisition The Princeton Instruments Pixis 1024BR is a 16-bit, back-
illuminated CCD camera with an 87% quantum efficiency at 780 nm. The CCD is an 1024×1024
array of 13 µm square pixels. The read noise is quoted by the manufacturer to be as low as 4
photoelectrons (with the CCD cooled to −70◦ with a thermoelectric cooler) out of a single-pixel
well depth of 9×104 photoelectrons.

The most beneficial feature of the Pixis for this work is its ability to rapidly expose multiple
frames. Though the actual CCD readout is slow (between 0.5 s and 2 s for the full frame, to ensure
low read noise), the camera allows multiple rapid sub-exposures of the CCD array in “Kinetics
mode” – i.e. to collection of multiple images – which are then read-out slowly and all together
after all imaging is complete. The sub-images are exposed one at a time on an n × 1024 pixel
strip of the CCD, where n = 1024 ÷ number-of-sub-images; n = 1 corresponds to a full frame
exposure. The time between successive sub-image exposures can be anywhere from 3.2 µs for
1024 n × 1024 pixel sub-images (far too narrow a strip to capture our atomic signals) to 1.6 ms
for two n × 1024 sub-images. We typically use four or eight sub-images, allowing us to take
successive images every 820 or 410 µs. This rapid exposure dramatically decreases background
fringes in image data due to vibrations in the imaging system as compared to the 1st generation
imaging system (see Sec. 4.5.1).

The Pixis image exposures are triggered using the experiment’s control sequencer. CCD im-
age data is acquired using a USB 2.0 connection and homemade control and analysis software on
a Windows PC written by myself and Gaël Varoquaux [110] during his 2006 visit.

4.6 A tale of two atom chips: Orsay and Toronto

The experiments described in this thesis were carried out at the University of Toronto with two
different atom chips. The first chip - the “Orsay chip” - was installed in the UHV system in Au-
gust 2004. The chip was designed and fabricated at the Laboratoire Charles Fabry de l’Institut
d’Optique11 [111, 93]. It was used to trap 87Rb and evaporate to BEC, and to trap 40K and sym-
pathetically cool 40K to DFG for the first time on an atom chip [27]. The Orsay chip also was
used to create adiabatic RF-dressed potentials for 87Rb and 40K for the first time in our lab. The
second atom chip - the “Toronto chip” - was designed over the summer of 2006, fabricated at
the University of Toronto’s Bahen Centre clean-room facility throughout 2007 by Barbara Cieslak
and Dylan Jervis [112], and was installed in the system in January 2008. Using the Toronto chip,
we re-established BEC and DFGs, as well as RF-dressed double-well potentials. The Toronto chip
was used for the bulk of the double-well BEC atom number and phase measurements presented

11Though the group has relocated from Orsay to Palaiseau, France, we still refer to the “Orsay chip”.
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in Ch. 7. This section describes the conductor layout, material composition, and supporting elec-
trical and mechanical infrastructure of the two atom chips.

4.6.1 Orsay chip

Construction and wire pattern The Orsay chip consists of gold wires electroplated onto a
cleaved 16 mm × 28 mm ×600 µm silicon substrate. The chip was patterned using photolithog-
raphy, with the metal wires deposited by evaporation and electroplating. A 20 nm titanium ad-
hesion layer and 200 nm gold seed layer were evaporated onto the SiO2 surface oxide, followed
by solution electroplating of gold to a final wire height of 6 µm. The final result is a mostly bare
silicon substrate hosting eight gold electrical contact pads connecting five separate conductors
on its surface [111]. Advice from l’Institut d’Optique suggested a 5 A maximum continuous DC
current as a safe upper bound for the thick U and Z-wires. We took this as a guide and used
voltage dividers to limit the wire currents to 5 A in the U-wire and 2 A in the Z-wire.

We use two of the five chip wires in the work presented here, highlighted in dark grey in
Fig. 4.18a. The central Z-wire forms the basis of our static micromagnetic trap. An adjacent,
thinner wire is used as a near-field antenna for delivering RF and microwave fields to the trapped
atoms.

Electrical and mechanical connections The Orsay chip was fastened to a copper support
“stack” without glues or screws, but by mechanical pressure only. Ceramic C-clamps pressed
flat trips of beryllium-copper (BeCu) foil onto the gold contact pads to make the electrical con-
nections, while at the same time pressing the chip onto a polished copper surface (see Fig. 4.18b).
The C-clamps, machined in the Toronto chemistry department’s machine shop out of the machin-
able ceramic MACOR, pressed the chip onto the stack end at three corners of the chip.

The BeCu foil strips are connected to ceramic-insulated copper wires12 which carried currents
from the air-side electrical feedthrough into the UHV chamber and onto the chip. Note Although
ceramic-insulated wires can be baked much hotter than Kapton-insulated wires, we switched to
Kapton insulation for the Toronto stack because of a magnetic nickel coating beneath the ceramic,
which made the Orsay stack and chip connections susceptible to magnetic field pickup.

Orsay chip stack The copper support “stack” provided rigid support for the atom chip in vac-
uum, and also supported the electrical connections to the chip. The atom chip was pressed onto
one end of the stack, and the other end was bolted into the vacuum side of a 6" Conflat vacuum
flange. (see Fig. 4.19). The stack was designed to meet three objectives: first, be mechanically
rigid to avoid Z-trap heating due to mechanical vibrations of the atom chip; second, be a good
thermal conductor to heatsink the chip during operation; and third, to support electrical connec-
tions for the atom chip and atom dispensers.

1218 AWG “Kulgrid” from Ceramawire.
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Fig. 4.18: Orsay chip conductor pattern and mounting schematic diagram. (a) Central atom chip conductor
pattern, highlighting the Z-wire (“DC”) and adjacent, thinner antenna wire (“AC”) in dark grey. Thick arrows
indicate the directions of external, uniform magnetic fields. (b) The atom chip is pressed onto a fly-cut copper
block using ceramic MACOR C-clamps (white). The shaded clamp was part of the original design, but broke
during mounting and was not used. (c) Photograph of the full Orsay chip, showing full conductor pattern
and electrical contact pads. (d) Close-up view of dashed region in (a), showing wire widths, centre-to-centre
separation, and location of the trapped atomic cloud (black ellipsoid). All dimensions are in micrometres.
Electrical connections are not shown.
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(a) chip and stack (b) wires, defect

Fig. 4.19: (a) The copper Orsay stack bolted to a 6" steel Conflat electrical feedthrough UHV flange, showing
electrical connections to the chip and to rubidium and potassium dispensers. The stack is mounted chip-side-
down in the UHV system. (b) Microscope image of the Orsay chip wires. Speckle from the rough wire surface
is visible, along with two apparent defects in the central segment of the thick Z-wire (darkened regions pointed
to by white arrows).
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thermal electrical
conductivity (W/m.K) resistivity (µΩ-cm)

Si (bulk, undoped) 1.5 3×106

SiO2 1† 1018

AlN 140 - 180 2×1017 - 1019

stainless steel (304) 0.15 72
Cu (OFHC) 401 1.68

Ag 429 1.59
Au 318 2.24
Al 237 2.65

† See [113].
‡ All values at 25◦C.

Tab. 4.6: Electrical and thermal characteristics of atom chip and stack materials, from [95, 114] unless other-
wise noted.

Heatsinking the atom chip Although the chip wires carry relatively small currents, the atom
chip substrate and stack must be well heat-sunk in order to prevent wire failure due to melt-
ing. A DC current of 2 A in the Z-wire corresponds to a current density of 6.7×105 A/cm2 at
the wire’s narrowest point. Assuming that all electrical power is dissipated as heat in the 1 Ω,
2.8 mm×6 µm×50 µm central segment of the Z-wire (the narrowest section of the wire), this cur-
rent density would heat a room temperature gold or silver Z-wire to its melting point in roughly
2 ms.13

Since there is no convective heat conduction in vacuum, effective heatsinking of the conduc-
tors becomes especially important. We addressed this issue first by building the stack out of
oxygen-free-high-conductivity (OFHC) copper for its relatively large thermal conductivity (see
Tab. 4.6), and second by fly cutting the chip-side of the stack in an attempt to maximize thermal
contact to the silicon substrate.

Orsay Z-wire “defect” Fig. 4.19b shows two apparent defects in the central segment of the Z-
wire. These defects are responsible for local minima in the longitudinal Z-wire potential, which
were observed during our first attempts at creating a 87Rb BEC. We evaporate to BEC in the
deepest of these potential minima, leveraging the increased longitudinal magnetic confinement
and accompanying increased elastic collision rate to achieve BEC rapidly and efficiently (see
Ch. 5).

4.6.2 Toronto chip

The Orsay chip was replaced with the Toronto chip in early 2008 to add functionality and flex-
ibility to the magnetic microtraps, while maintaining the key features of the Orsay Z-trap. The
chip includes a replica of the Orsay Z-wire in addition to other wires for other types of magnetic

13Estimate based on the specific heats (0.031 cal/g.K, 0.057 cal/g.K), densities (19.3 g/cm3, 10.5 g/cm3), and melting
points (1064◦C, 962◦C) of elemental gold and silver respectively [95].
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trapping and manipulation. The Toronto chip and stack chip was also designed to with the goals
of improving the current capacity of the wires via better construction and heatsinking of the chip
and stack, and to improve optical access below the chip surface.

The Toronto chip and stack were designed and built entirely at the University of Toronto.
The chip conductor pattern was designed by Thorsten Schumm and myself in the summer of
2006. David McKay designed the copper stack, which was machined in the Toronto chemistry
department’s shop. Barbara Cieslak initiated early efforts in fabricating the chip in the University
of Toronto’s Bahen Centre cleanroom. Dylan Jervis continues this work, finalizing the fabrication
process and producing the chip [112].

Design, construction and wire pattern A complete account of the fabrication process is avail-
able in Dylan Jervis’s MSc thesis [112]. This section presents only a brief summary.

The chip was designed to be compatible with the possibility of surface mirrorizing [115]. To
create as smooth a chip surface as possible, all unused areas were plated to the same thickness
as the wires, and wire gaps in the central chip region were kept to 10 µm . The gaps widen
to 100 µm and more toward the edges of the chip. The chip is based on a polished aluminium
nitride (AlN) substrate measuring 20 mm × 32 mm ×0.6 mm. AlN was chosen for its superior
thermal conductivity (see Tab. 4.6), which we hoped would increase the current capacity of the
chip wires and permit more atoms to be loaded into the chip trap (see the discussion of the role
of wire current on maximum loaded atom number in Sec. 5.2.2.) The AlN chip is glued to the top
of an OFHC copper stack using a thermally conductive UHV-compatible epoxy (Epotek H77).

The conductor pattern was established using photolithography, and the silver wires were
evaporatively deposited to their full 3 µm thickness on top of an initial titanium adhesion layer.
Despite being slow and an inefficient use of metal, evaporative deposition was used to to min-
imize wire rugosity; evaporative deposition produces smoother and more uniform conductors
than does electroplating [111, 116], which reduces current noise [117] and the resulting magnetic
field noise that famously plagued early atom chip traps [118, 119, 120]. Silver was chosen for
its superior electrical conductivity (see Tab. 4.6) and relatively low cost. Evaporative deposition
wastes so much metal that using gold alone would have been too expensive. A final thin gold
layer was evaporated to prevent a buildup of silver oxide on the chip surface.

The wire pattern of the Toronto chip contains a Z-wire of the same dimensions as that of the
Orsay chip (shaded blue in Fig. 4.20). Surrounding this Z-wire are symmetric pairs of 50 µm thick
“U-wires” (red in Fig. 4.20), 200 µm thick straight “bar wires” (dark green), and thin Z-shaped
“dimple wires” (yellow). The U-wires were designed to be used with the Z-wire to form a 3-wire
trap without external bias fields [28]. They were also intended for use as RF antennae, operating
in concert to generate RF fields of varying polarization for creating RF-dressed potentials (see
[121] and Ch. 6).

The dimple wires are designed to loosely mimic the defect dimple of the Orsay Z-wire –
which greatly benefited the rapid evaporation to BEC and DFG in the Orsay Z-trap (see Sec. 4.6.1)
– by increasing the longitudinal confinement of the Z-trap. Parallel DC currents in the bar wires
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Fig. 4.20: (a) Top view of the Toronto chip. Grey shading indicates the interconnected grounded filler plating.
Black circles at the corners indicate through holes in the AlN substrate, used to secure the chip during initial
mounting. (b) A zoomed view of the central portion of the chip (dashed region in (a)) detailing the Z-wire
(blue), U-wires (red), dimple wires (yellow), bar wires (dark green), RF antenna (light green) and HF antenna
(purples). The y-direction wire lengths are indicated in micrometres; wire widths are listed in Tab. 4.7. All gaps
(white) are 10 µm wide. Diagram not to scale.

y-dir’n segment x-dir’n segment DC
width (µm) width (µm) resistance (Ω)

Z-wire (blue) 50 200 1.3
U-wires (red) 50 200 1.3, 1.8

dimples (yellow) 10 50 4.5, 4.6
bars (dk. green) - 400 0.6, 0.7

RF (lt. green) 20 50 3.5
HF “signal” (dk. purple) 50 50 3.0
HF “ground” (lt. purple) 50 50 0.3

Tab. 4.7: Toronto chip wire widths (see Fig. 4.20) and electrical resistances at DC (including contact resis-
tance).

provide a more controllable adjustment of the longitudinal magnetic curvature in the Z-trap.
Finally, two types of AC magnetic field antennae are built into the chip design. The first

is a thin U-wire (light green in Fig. 4.20a), meant to roughly match the thin Z-wire antenna of
the Orsay chip. The second is an attempt at better impedence matching for better RF and high-
frequency (HF) power transmission to the chip. Shown in light and dark purple in Fig. 4.20a,
the idea is a based on a stripline coaxial conductor; the dark purple looped wire is the “signal”
conductor, and the light purple the “shield” or ground conductor. The chip conductor widths
are listed in Tab. 4.7.

Stack and electrical connections All electrical connections are made to the backside of the
Toronto chip, which maximizes the optical access to atoms trapped in a chip microtrap. Connect-
ing the backside gold chip pads to current-bearing wires, however, proved to be very challeng-
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Fig. 4.21: (a) The copper Toronto bolted to a 6" steel Conflat multi-port flange during assembly. The stack
measures 365 mm from flange to chip. Kapton-coated copper wires bear DC current to the chip and to dis-
pensers. (b) Chip glued onto the stack; backside electrical connections. (c) Stack side-view at chip, electrical
connections and Alvatec dispensers (vertical silvery tubes) connected with BeCu barrel connectors.

ing. The simplest solution seemed to be to solder copper wires directly onto the gold pads. Con-
ventional tin-based solder worked well, but these solders are unsuitable for UHV applications
due to their high outgassing rates [96]. Vacuum-compatible solders are available, but generally
require much hotter soldering temperatures (e.g. Allectra UHV-solder, 350◦C). The main imped-
iment to high-temperature soldering is the large thermal conductivity of the AlN substrate. The
gold pads are so well heat-sunk by the substrate that applying heat locally to a single pad invari-
ably heats the entire chip. Soldering on the first wire was relatively easy, but applying heat to
solder on a second adjacent wire would completely melt the first solder joint. After many frus-
trating attempts at soldering to the AlN chips, we settled on gluing copper lead wires to the gold
contact pads with an electrically conductive UHV-compatible epoxy (Epotek H21ND, containing
silver flakes in suspension). Although the wire-epoxy-pad bonds are quite weak mechanically14

the contacts are ohmic with DC resistances on the order of 1 - 4 Ω (see Tab. 4.7).
The electrical connections are shown in Fig. 4.21: 0.6 mm diameter Kapton-insulated copper

14The fragility of these bonds led to many broken-off wires, re-glueings, and general stress and anxiety during the
process of attaching the chip and making the necessary electrical connections.
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wires are glued to the chip’s contact pads at one end, and connected by BeCu barrel connectors
to similar 1 mm diameter wires at the other. The dispensers are also supported by the stack,
and are electrically connected using BeCu barrels and 1.7 mm diameter Kapton-insulated copper
wire. RF and HF signals are carried from the air side sources through UHV-compatible SMA con-
nectors on the stack multi-port flange, down through Kapton-insulted UHV-compatible coaxial
cables, and onto the chip via barrel connectors.

4.7 Computer control and automation

The experiment is controlled using an ADwin-Pro real-time sequencer15 from Keithley, Inc. Ex-
perimental sequence programs are loaded into the ADwin using control software written in Lab-
Windows and C, and run from a Windows PC. We use digital buffer circuits between the ADwin-
Pro and the experimental hardware to protect the ADwin’s I/O boards from current overloads.
In the case of a large current sink or source, low-cost, easily replaceable components on the buffer
boards fail, rather than the ADwin boards.

15CPU-T10 80 MHz processor; 8 analog inputs with 12-bit analog-to-digital converter (ADC); 40 analog output
channels with 12-bit DAC, 0-10V, 10 µs step time, 5 mA per channel; 32 digital input-output channels, -5V - 5.5V,
6 mA per channel max.
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Making DFG and BEC on an atom chip

This chapter describes the realization of a 87Rb BEC and a 40K DFG in a single chamber, atom-
chip-based apparatus. Our approach combines traditional free-space laser cooling with forced
evaporative cooling in a tightly confining magnetic chip trap to reach quantum degeneracy. A
key element of the experiment is the use of light-induced atom desorption (LIAD), which gen-
erates the initial atomic vapour. As discussed in Ch. 4, LIAD allows the 87Rb and 40K vapour
pressure to be rapidly increased while loading the magneto-optical trap, then just as rapidly de-
creased to maximize the lifetime of the atom chip magnetic trap during each experimental cycle.
Another important element is the atom chip, which generates the micromagnetic trap and sup-
ports radio-frequency (RF) antennae for evaporative cooling. The strong confinement and large
collision rate provided by the chip trap allow RF evaporation to quantum degeneracy in just a
few seconds.

We first achieved BEC in 2005, which was just the third realization of BEC in Canada. We
then modified the experimental sequence to incorporate 40K, with the goal of producing a DFG.
Since identical fermions do not undergo elastic collisions at low temperatures, spin-polarized gas
of 40K cannot be directly evaporatively cooled to quantum degeneracy. Instead, we use ultra-
cold 87Rb as a refrigerant for 40K in a 40K–87Rb mixture. We produce a DFG using sympathetic
cooling, in which 87Rb is evaporated and cooled directly, and 40K is “sympathetically” cooled by
thermal contact with the 87Rb [26, 22, 122]. Ours was the first demonstration of a DFG and of
dual-species DFG-BEC quantum degeneracy in a single-chamber apparatus [27].

The chapter begins with descriptions of the laser cooling, magnetic trapping, magnetic trans-
port, chip loading, and evaporative cooling steps used to make BEC and DFG [45, 33]. We dis-
cuss the roles of trap depth and trap volume in microtrap experiments, with particular emphasis
on chip loading of 87Rb and 40K in our setup. Next, we discuss the signatures of quantum
degeneracy in BEC and DFG, which we observe using time-of-flight absorption imaging. By
studying 87Rb–40K thermalization, we observed a dramatic decrease in the 87Rb–40K scattering
cross-section at high temperatures, which we attribute to the Ramsauer-Townsend effect. This
result has important consequences for sympathetic cooling of 40K with 87Rb, which are widely
used in the field in the field [11, 19, 22, 24, 25, 26].

78



5.1. LASER COOLING, MAGNETIC TRAPPING AND TRANSPORT 79

5.1 Laser cooling, magnetic trapping and transport

Our experimental approach to creating 40K and 87Rb quantum gases an atom chip is motivated
in large part by the scarcity of 40K, which is by far the rarer of the two species: 40K has a natu-
ral isotopic abundance only 0.012%, whereas 87Rb has 28% [95]. Even when using a potassium
source with 40K enriched to 5%, we find that large MOT beams are essential to capture enough
40K in a background UHV pressure compatible with magnetic trapping. Rather than using a
reflected surface MOT [88], which would require a mirror-coated chip of length ∼ cm to accom-
modate our 4-cm-diameter MOT beams, we first load a large conventional MOT – 87Rb only for
making BEC, or dual-species 40K–87Rb for making DFG – several centimetres beneath the atom
chip, then magnetically trap and transport the atoms to the chip. Once loaded into the Z-trap
we evaporate 87Rb directly to BEC with forced RF evaporation, and sympathetically cool 40K to
quantum degeneracy with a 87Rb reservoir to minimize 40K atom number loss. This approach
also circumvents the need for a mirror-coated atom chip [88, 115]. The experimental sequences
for creating a 87Rb BEC, a 40K DFG and a BEC-DFG mixture in both the Orsay chip and Toronto
chip setups are all qualitatively similar. We use the dual-species example to illustrate the pro-
cedures here, and point out any important differences from the BEC-only setup, or between the
Orsay and Toronto chip configurations where appropriate.

Both 40K and 87Rb are initially trapped and cooled in a dual-species MOT formed by six
counterpropagating 4-cm-diameter beams centred 5 cm below the atom chip [44, 45]. We use
a single-chamber vacuum system, and load the MOT directly from atomic vapour created us-
ing a combination of dispensers and light-induced atom desorption (LIAD). During each MOT
loading cycle, commercial high-power 405 nm LEDs irradiate the Pyrex vacuum cell for several
seconds to generate the atomic vapour (see Sec. 4.1.3). We use commercial Rb and home-made K
dispensers to replenish the 40K and 87Rb coatings on the interior walls of the UHV chamber as
needed – typically every few days or weeks [45]. A schematic diagram of the cell, MOT beams
and magnetic coils is shown in Fig. 4.9.

Fig. 5.1 demonstrates the effect of LEDs on the 87Rb MOT, and the rapid changes in vapour
pressure when the LEDs are switched on and off. Once the LEDs are off, the MOT loading rate
undergoes a sharp initial decrease from the LED-on value of 3 × 108 s−1, followed by a slower
decay to the LED-off value of ∼ 106 s−1 in approximately 300 s. The LED-on 87Rb MOT number
is roughly 100 times greater than the LED-off value.

The effect of the LEDs is even more crucial for 40K, for which we do not observe a 40K MOT
with the LEDs off.1 The 40K MOT loading rate is roughly 3 × 105 s−1 whereas the 87Rb MOT
loading rate is 108 s−1 (see Fig. 5.2). We measure the MOT loading time τ and loading rate γ by
fitting NMOT vs. time data to an exponential of the form

NMOT(t) = a
(

1− e−(t−t0)/τ
)

where γ ≡ dNMOT

dt

∣∣∣∣∣
t→t0

=
a

τ
; (5.1)

1A 40K MOT is always observable if a 40K dispenser is running.
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Fig. 5.1: Left: Repeated 87Rb MOT loading with the 405 nm LEDs switched on and off. Right: 87Rb MOT
loading rate as a function of time after the LEDs are switched off. The initial sharp decrease is followed by a
slower decay to the steady-state LED-off value.
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loading rate γ ' 3× 105 s−1
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a, t0 and τ are free parameters in the fits [123].
To collect a sufficient number of atoms in the dual-species MOT, we first load the 40K MOT

at an optical detuning of -30 MHz (∼ 5Γ) for 25 - 30 s, then add 87Rb MOT beams detuned by
-26 MHz (∼ 4.3Γ) for 2 - 10 s. MOT detunings are quoted with respect to the F = 2 ↔ F ′ = 3
and F = 9/2 ↔ F ′ = 11/2 cycling transitions in 87Rb and 40K, respectively (see Sec. 4.2). The
40K beams remain on during 87Rb MOT loading to maintain the 40K population. This two-step
MOT loading sequence is designed to minimize losses due to light-assisted collisions between
ground state 87Rb and 40K atoms [124, 123] and between excited-ground collisions [123]. We mit-
igate against excessive loss in our setup by keeping the 87Rb and 40K as spatially and temporally
separated as possible: we capitalize on the rapid 87Rb loading rate to minimize the 87Rb–40K
interaction time in the MOT, loading 87Rb for the final 10 - 20% of the 40K load cycle; we also
spatially separate the 87Rb and 40K MOT centres by ' 2 mm. The spatial separation is partially
natural, due to the differential gravitational sag of the two species, but is optimized empirically
for 40K atom number loaded onto the atom chip by adjusting the MOT beam powers and align-
ment. We achieve 40K and 87Rb atom numbers of up to 3× 106 and 4× 108 after a 20 s 40K
followed by a 5 s 87Rb load.

In the final 100 ms of dual-species MOT loading the 40K MOT beam detuning is jumped to
-16 MHz to compress and cool the MOT in advance of magnetic trap loading. This step takes
the place of optical molasses (which we use on the 87Rb) since molasses cooling for 40K is rel-
atively ineffective [125]. With the 40K MOT beams extinguished, the external magnetic fields
are trimmed to zero and the 87Rb MOT beams are detuned to −8.2Γ for 2.2 ms to form optical
molasses. After that, both species are optically pumped for 600 µs into the stretched internal
magnetic hyperfine states (|F = 2,mF = 2〉 for 87Rb and |F = 9/2,mF = 9/2〉 for 40K) us-
ing dedicated fibre-coupled optical-pumping beams from the laser system tuned to the 87Rb
F = 2↔ F ′ = 2 and 40K F = 9/2↔ F ′ = 9/2 transitions (see Sec. 4.2).

With all beams extinguished, the optically pumped atoms are loaded into a quadrupole mag-
netic trap (QMT) formed by the MOT and transfer coils. The MOT and transfer coils are switched
on in∼ 350 µs using the Mag-O-Matic switch (see Sec. 4.3.2) to produce an initial∼37 G/cm QMT
gradient along the coil axis – just strong enough to cancel gravity in the vertical direction (radial
coil direction). The QMT is then compressed prior to magnetic transport and chip loading by
simultaneously ramping up the MOT coil (transfer coil) currents in 400 ms from 24 A to 65 A
(21 A to 42 A). The QMT zero point is kept at a fixed position 2.5 cm below the MOT coil centre
during QMT loading and compression.

The next step is to transport the atoms vertically by ∼5 cm to just below the surface of the
atom chip. The transport sequence involves a 500 ms “S”-ramp (min-jerk) of the transfer coil
current from 48 A to 0 A to -48 A; the direction of current flow is reversed at the half-way point
using a relay. The QMT gradients are maintained during the transfer by the fixed MOT coil cur-
rent. Atoms are smoothly transferred from the quadrupole magnetic trap into the Z-trap, located
roughly 200 µm from the surface with a trap depth of roughly kB×1 mK. This is accomplished
by ramping down the MOT and transfer currents while simultaneously ramping up the Z-wire
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NRb TRb (µK) NK TK (µK)
MOT 6e8 130 3e6† 80†

Rb molasses 6e8 40 n/a n/a
QMT ‡ 2e8 90 9e5 280
transfer 2e8 90 9e5 280
Z-trap load 2.5e7 300 2e5 ∼ 300
† Following 100 ms compressed MOT.
‡ Following compressed QMT.

Tab. 5.1: Summary of typical pre-evaporation atom num-
bers and temperature.

current and bias fields in 200 ms. Further detail on loading the Z-trap, and on loading chip traps
from external traps in general, is presented in the following subsection.

Table 5.1 summarizes approximate atom numbers and temperatures measured after each
cooling step. These measurements are based on Gaussian fits to optical density time-of-flight
data acquired using absorption imaging (see Sec. 5.4).

5.2 Loading bosons and fermions onto the atom chip

Along with the advantages of large compression and fast collision rate characteristic of atom chip
microtraps comes a disadvantage: small trap volume. The volume occupied by a trapped gas
depends on its temperature, unlike in the uniform “box” potential to which we are accustomed
from thermodynamics. Trap volume is not typically discussed when creating “macroscopic”
magnetic traps with large coils, since these trap depths can be orders of magnitude larger than
is required to confine laser-cooled atoms. For microtraps, however, the trap volume may limit
the number of atoms that can “fit” into the trap in a way that we will quantify in the following
subsections. Fig. 5.3 demonstrates saturation of the number of 87Rb atoms loaded into a Z-trap
as a function of the MOT atom number as a result of the limited chip trap depth. Our discussion
points a clear route to larger atom number, when it would be desirable.

An atom is trapped when its energy is less than the trap depth Utd. A good model of a
thermalized gas in a trap-depth-limited trap is a truncated Boltzmann distribution [126], where
truncation occurs at η times the temperature, i.e. Utd = ηkBT . For typical collision rates in atom
chip traps, free evaporation occurs when η . 3, while efficient evaporation occurs when η & 5.

Laser cooling allows atoms to be delivered to the chip at temperatures less than Utd (see
Sec. 5.1). However, our loading efficiency is typically 10% or less, while phase-space density is
roughly preserved: we load roughly 2×107 87Rb atoms and 2×105 40K into the Z-trap at a phase
space density of roughly 10−6. We describe the factors limiting the Z-trap loading efficiency in
the following subsections.

The number of fermions initially loaded places an upper bound on the number of ultra-cold
fermions we can produce. Furthermore, though we load many more bosons than fermions,
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Fig. 5.3: Larger MOTs do not generally produce more atoms on the chip beyond a certain loaded atom number.
The limiting chip atom number is set by the effective trap volume. The data shown is 87Rb in a Z-trap with trap
depth h × 123 mK, Ω0 ' 2π × 2.4 MHz, ω⊥ ' 2π × 560 Hz, ω‖ ' 2π × 32 Hz. The data is empirically fit with
an exponential as a guide to the eye.

bosons are continually lost during the evaporative cooling process, as described in Sec. 5.3. The
decreasing “refrigerant” limits the number and final temperature of fermions that can be cooled.
It is therefore important to understand our loading process and ways in which it can be im-
proved.

5.2.1 Effective trap volume

Our discussion here concerns the number, temperature, and density of a gas at the start of evap-
orative cooling after loading into the microtrap. We will assume an initial phase-space density
ρ0, which is typically . 10−5 for laser cooled atoms. The density distribution of the gas is ap-
proximately equal to that of an ideal thermal gas at this point in the experimental cycle.

From Eq. 2.38, the density distribution of an ideal Fermi gas in three dimensions is n(r) =
Λ−3
T f3/2(Ze−βU(r)), where U(0) ≡ 0. The corresponding expression for ideal bosons is obtained

by replacing the thermodynamic Fermi function f3/2(· · · ) with the Bose function g3/2(· · · ). In
either case, at low fugacity

n(r) Z�1−→ Λ−3
T Ze

−βU(r). (5.2)

Integrating both sides of the equation, we recover the total atom number

N = n0

∫
e−βU(r)dr, (5.3)

where n0 = n(0) is the central (peak) density, and the volume of integration is defined by U <

Utd.
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In analogy with a uniform gas, we define the effective volume

Veff =
∫
e−βU(r)dr. (5.4)

where n0 ≡ N/Veff [126].
In the limit of η � 1, we can integrate the full Boltzmann distribution to find the trap volume

in several typical cases. For a three-dimensional simple harmonic oscillator potential,

V SHO
eff =

(
2π
Mω2

)3/2

(kBT )3/2, (5.5)

where ω is the geometric mean oscillation frequency. For the three-dimensional quadrupole (lin-
ear) trap,

V QT
eff = 8πF−3(kBT )3, (5.6)

where U ≡ |F · r| and F is the geometric mean gradient. For a simple three-dimensional box of
side L, Veff = V = L3. Finally, a hybrid two-dimensional quadrupole and one-dimensional box
model gives

V 2QB
eff = 2πLF−2(kBT )2. (5.7)

In all of the above cases, the effective volume has a power-law dependence Veff = CδT
δ [58].

5.2.2 A full tank of atoms: maximum trapped atom number

Using the effective volume, we can now relate the trapped atom number to the initial phase-space
density ρ0, which is equivalent to the degeneracy parameter n0Λ3

T for Z � 1:

N = ρ0Λ−3
T Veff(T ). (5.8)

Since kBT = Utd/η by definition, we can write out the explicit temperature dependence in Eq. 5.8
to find

Nmax = ρ0

(
M

2π~2

)3/2

Cδ(Utd/η)δ+3/2, (5.9)

for a trap with a δ power law effective volume.
This equation shows us why the loaded atom number is typically smaller in microtraps than

macrotraps. First, the trap depth Utd is typically smaller, which reduces atom number with a
power law as fast as U9/2

td for a three-dimensional quadrupole trap. Second, even for comparable
trap depths, the stronger trapping strength of a microtrap reduces Cδ: C3 ∝ ω−3 in the case of a
three-dimensional harmonic oscillator, for instance.

Eq. 5.9 also demonstrates the importance of large currents in trapping wires. Consider the
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case in which a three-dimensional harmonic microtrap is formed above a single long wire, for
which ω⊥ ∝ B0⊥/I where B0⊥ is the perpendicular bias field and I is the wire current (see
Eq. 3.22). Since the trap depth increases linearly with B0⊥, Eq. 5.9 suggests that the maximum
atom number at a fixed η and phase-space density is Nmax ∝ I2B0⊥/ωz . Assuming that the
distance from the trapped atoms to the chip surface is fixed, and that ωz ∝

√
I , (see Eq. 3.23),

Nmax ∝ I5/2. Thus, we see that larger wire currents allow an increase in the number of trapped
atoms. (This scaling motivated the high-thermal-conductivity AlN substrate for the Toronto
atom chip, which we hoped would permit the use of larger DC currents in the Z-wire (see
Sec. 4.6.2.)

5.2.3 Effect of geometry on loaded atom number

We now evaluate the trap volume and the expected maximum atom number loaded into sev-
eral well-studied chip trap geometries. We start with the earliest proposed traps, described in
[28] by Libbrecht, and assume they are loaded with 87Rb in the |2, 2〉 state. For a single-loop
quadrupole trap of radius 10 µm and 1 A current, the gradient is 5.4 × 105 G/cm and the trap
depth kB×21 mK. Assuming the trap can be loaded with η ≥ 4 (corresponding to an initial tem-
perature of ≤ 5 mK), the trap volume would be Veff ≤ 310 µm3. At an initial phase-space density
of 10−6, 2×104 atoms could be loaded into the trap. However, losses at the central magnetic field
zero of the quadrupole trap render it unsuitable for trapping ultra-cold atoms.

The Ioffe “(c)” configuration of [28] consists of concentric half-loops with a 10 µm minimum
diameter. Using a 1 A current, the trap has a depth of kB×1.3 mK and a curvature that gives
ω/2π ≈ 94 kHz. Although the trap is impressively strong, its effective volume is only 0.4 µm3;
less than one atom would be trapped at a phase-space density of 10−6. Larger trap volumes
than those of Libbrecht’s pioneering geometries were required to achieve quantum degeneracy
in atom chip microtraps [16, 17].

Finally, let us consider the Z-trap [88]. The potential at the centre of the trap is harmonic,
with a typical geometric mean frequency of ω/2π ≈ 300 Hz in our setup. The applied transverse
magnetic bias field (typically value of 20 G) limits the trap depth to Utd ≈ kB × 1.3 mK. As-
suming the trap is loaded at η = 4, we find that the effective volume is 1.3× 107 µm3, and the
maximum trapped atom number 1.2× 107 at an initial phase-space density of 10−6. Although
approximate, our calculation shows that the Z-trap geometry is capable of loading six to seven
orders of magnitude more atoms than the Libbrecht geometry for the same initial phase-space
density.

Furthermore, the calculation suggests that the loaded atom number in our experiment is lim-
ited by trap depth and volume. For our field curvature of 3 × 104 G/cm2 (geometric mean) and
initial temperature of 300 µK, the effective trap volume is 3× 107 µm3. One would expect 3× 107

87Rb atoms at ρ0 ≈ 10−6, and 3 × 105 40K atoms at ρ0 ≈ 4 × 10−8. This is consistent with our
observations to within an order-of-magnitude (2× 107 for 87Rb and 2× 105 for 40K), and demon-
strates that we are close to, if not at, the maximum possible number of loaded atoms, given the
phase-space density and temperature after magnetic transport to the chip.
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Fig. 5.4: (a) Sympathetic cooling to dual 40K–87Rb quantum degeneracy. Spin-polarized fermions without a
bosonic bath cannot be successfully evaporatively cooled (diamond). However, if bosonic 87Rb (squares) is
evaporatively cooled, the fermionic 40K is sympathetically cooled (circles) by thermalizing elastic collisions with
87Rb. The vertical axes indicate the evolution of phase-space-density en route to dual quantum degeneracy
(Z ≥ 1) during evaporation: 40K fugacity Z on the left, and 87Rb ground state occupation on the right. A
typical run-to-run spread in atom number is indicated on the right-most point; all vertical error bars are smaller
than the marker size. (b) Evaporation to BEC in 87Rb alone is more efficient than sympathetic evaporation.
The log-slope efficiency, deduced by a linear fit, is twice that of the sympathetic cooling case (see text).

5.3 Rapid RF evaporative cooling

We reach dual quantum degeneracy in 40K and 87Rb [22, 122, 127, 26] via sympathetic RF evapo-
rative cooling of 87Rb in a Z-trap with Ω(Rb)

0 = 3.60 MHz (B0 ' 2.6 G), 40K harmonic oscillation
frequencies ωx,z = 2π× 823±7 Hz and ωy = 2π× 46±1 Hz, and a trap depth of kB×1.05 mK [27].
In our case, 40K is cooled indirectly by thermalizing elastic collisions with 87Rb. By sweeping the
RF evaporation frequency from 28.6 MHz to 3.65 MHz in as little as 6 s, we reach T/TF ' 0.1 − 0.2
with εF ' kB × 1.1 µK and as many as 4 × 104 40K atoms, faster than has been possible in con-
ventional magnetic traps [27, 45]. (However, a 6Li DFG has been produced in an all-optical setup
in as little as 3.5 s [128].) This rapid evaporation to degeneracy is made possible by the strong
atom chip confinement.

As is evident in Fig. 5.4, the 40K is cooled to quantum degeneracy (Z ≥ 1) with only a five-
fold loss in atom number, while the 87Rb is evaporated with log-slope efficiency
−∂[log(ρ0)]/∂[log(N)] = 2.9± 0.4, where ρ0 is the peak phase-space density. When evaporating
87Rb alone to BEC, the evaporation efficiency can be as high as 4.0 ± 0.1; a more rapid evap-
oration can produce a BEC in just 2 s, sacrificing some evaporation efficiency. For 40K–87Rb
mixtures we observe that RF sweep times faster than 6 s are not successful in achieving dual
degeneracy; 87Rb and 40K rethermalize more slowly than 87Rb alone, particularly during the
initial high-temperature stages of evaporation. Direct measurements of the 40K and 87Rb tem-
peratures indicate that 40K thermalization lags that of 87Rb despite an experimentally optimized
RF frequency sweep that is slower at higher temperatures and accelerates at lower temperatures
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[27].

Density-dependent loss The large and negative inter-species scattering length aKRb ' −205 a0

[129] (see Sec. 5.5) results in a strong 40K-87Rb attractive interaction. At low temperatures and
high atomic densities, this interaction creates an additional mean-field confinement that can lead
to massive and sudden losses during sympathetic cooling at a critical 87Rb and 40K atom number
[26, 22, 122]. These studies of density-dependent interaction-driven losses point to boson-boson-
fermion2 3-body decay as the underlying mechanism for the collapse of the mixture [124, 130].
This effect ultimately limits the atom numbers in 40K–87Rb mixtures, and is manifest in our
experiment as 40K and 87Rb number losses near the end of evaporation. We are able to produce
BECs of as many as 3× 105 atoms working 87Rb alone, but the simultaneous 87Rb and 40K atom
numbers are restricted to at most ∼ 105 and 4× 104 respectively.

5.4 Thermometry and signatures of degeneracy

We analyze time-of-flight absorption images of expanding 87Rb and 40K clouds to measure in-
situ atom number and temperature, and to determine the degree of quantum degeneracy. In
bosonic 87Rb the appearance of the sharp condensate peak at the centre of the time-of-flight
density distribution is a clear signature of the phase transition from thermal Bose gas to BEC.
The bimodal structure of the density profile is easily distinguished from the Gaussian shape
of classical, Boltzmann particles. In fermionic 40K, for which there is no phase transition into
the quantum degenerate regime, we rely on (a) subtle changes in the density profile and (b)
measurements of the expansion energy to identity DFG behaviour.

5.4.1 Analyzing absorption images

In each absorption measurement the Z-trap magnetic fields are abruptly switched off and the
atom cloud is allowed to fall and expand for a time-of-flight (TOF) t, after which time the cloud
is destructively imaged using absorption imaging on the σ+ cycling transition [56]. The quan-
tization axis for imaging is defined by a weak (∼ 3.5 G) magnetic bias field applied along the
imaging axis during imaging. We use the example of “axial”, x-axis imaging throughout3 this
subsection, in which the probe beam and imaging system are aligned along x (see Sec. 4.5). The
transmitted probe intensity is registered on a CCD camera as a pixelated function of y and z. The
transmission is then converted into an optical density (OD) profile OD(y, z) and fit with the cor-
responding theoretical expression for an expanding gas of bosonic or fermionic atoms released
from a harmonic trap [56, 50] to extract the atom number N and temperature T . In this sub-
section we describe how optical density is related to the expanded column density ñ(y, z) (see
Sec. 2.2.3 and 2.1.3) and the absorption cross section σλ(δ) in absorption imaging, and motivate
the importance of calibration for accurate atom number measurements.

2Fermion-fermion-boson 3-body decay is precluded by the Pauli exclusion principle.
3We also routinely collect “radial” time-of-flight images by imaging along y.
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Two-level Rabi frequency We describe absorption imaging using a semi-classical description
of a plane wave exciting transitions between the ground |g〉 and excited |e〉 states of a two-level
atom, as in the “Rabi two-level problem” [82, 131]. This extreme simplification of the general
photon-multilevel-atom interaction is a reasonable description of an idealized measurement in
which

(a) all atoms are initially in a stretched hyperfine ground state state |F, F 〉, and

(b) the probe beam is perfectly polarized σ+ with respect to each atomic spin, and thus excites
transitions only between the two levels |F, F 〉 and |F ′, F ′〉, where F ′ = F + 1.

In 87Rb we use the 52S1/2 |F = 2,mF = 2〉 ↔ 52P3/2 |3, 3〉 transition; in 40K we use 42S1/2 |9/2, 9/2〉 ↔
42P3/2 |11/2, 11/2〉. We also note that the semi-classical description of absorption is appropriate
for time-of-flight absorption imaging, in which the expanding atom cloud is dilute and essen-
tially non-interacting.

The probe laser beam is described as a plane wave E(r, t) = E0ê cos(kx − ωLt), where ê is a
unit vector denoting the polarization of the light, k = 2π/λ and ωL = c/k, where λ is the optical
wavelength and c the speed of light. Assuming the probe beam intensity is weak enough that
non-linear effects may be ignored, the electric dipole interaction Hamiltonian between the light
and an atomic electron with charge q may be written

Heg(r, t) = −qE(r, t) ·R (5.10)

using the dipole approximation, where R is the position operator for the atomic electron [82].
For a two-level atom the matrix element relevant to the ground-excited coupling 〈e|Heg(r, t)|g〉
can be be parametrized by a single Rabi frequency Ωeg [94]

~Ωeg ≡ −µegE0 where µeg = q〈e|ê ·R|g〉 (5.11)

is the electric dipole moment. The idealized measurement scenario ((a) and (b) above) maximizes
the light-atom coupling for a given laser frequency ωL. In principle µeg can be calculated using
the wavefunctions of the ground and excited states of the 87Rb and/or 40K cycling transitions,
and using the appropriate Clebsch-Gordan coefficients [103].

Non-ideal measurements and calibration factor Real absorption measurements are are subject
to several systematic effects which reduce the light-atom coupling with respect to its maximal,
ideal value:

• imperfect σ+ polarization of the probe beam, leading to weak π or σ− transitions to adjacent
excited Zeeman states;

• some initial atomic population in adjacent trappable Zeeman ground states |F, F − 1〉,
|F, F − 2〉 etc., whose Clebsch-Gordan coefficients are not explicitly accounted for in the
idealized µeg;
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• stray magnetic fields during imaging, which may add spatial or temporal variation to µeg.

We can describe the effective, reduced coupling matrix element µ̃eg in terms of the maximal, ideal
value µeg using

µ̃eg ≡ µeg/C (5.12)

where C ≥ 1. C = 1 in the idealized absorption measurement. The systematics mentioned above
can result in a slightly different coupling strength (Clebsch-Gordan coefficient) for each atom. C
can be thought of as the appropriate correction factor averaged over all atoms in the cloud.

Absorption cross-section and optical density We describe the absorption measurement in
terms of a total absorption cross-section and the optical density, incorporating the calibration
factor C. From the semi-classical optical Bloch equation treatment of the Rabi two-level problem
[132], the photon scattering rate γp of light from the laser field is given by

γp =
s0Γ/2

1 + s0 + (2δ/Γ)2
, (5.13)

where Γ is the spontaneous population decay rate of the excited state, δ ≡ ωL − ωeg is the optical
detuning from the atomic resonant frequency ωeg ≡ (Ee−Eg)/~ where Eg and Ee are the ground
and excited state energies. The “saturation parameter”

s0 ≡
2|Ωeg|2

Γ2
=

I

IsatC2
(5.14)

parametrizes the probe beam intensity I , where Isat ≡ πhcΓ/3λ3 is the saturation intensity for the
cycling transition, and Ωeg the optical Rabi frequency [131]. The intensity I is a function of y, z
due to the spatial beam profile, and of x due to absorption. Assuming that light enters and exits
the cloud at the same position (y, z) (the “thin lens” approximation applied to the atom cloud)
[56], and assuming only incoherent scattering by the atom cloud, the amount of scattered power
per unit volume is ~ωLγpn, where n is the atomic density [131]. For a weak probe beam travelling
along x with I � Isat (s0 � 1)

dI
dx

= −~ωLγpn ≈ −
3λ2/2π

1 + (2δ/Γ)2
nI(x). (5.15)

σ0 = 3λ2/2π is the ideal resonant absorption cross-section [133]. The solution of Eq. 5.15 is

I(x) = I0 exp
[
− 3λ2/2π

1 + (2δ/Γ)2
nx

]
(5.16)

where I0 is the incident probe beam intensity. In experiments, we measure the total incident and
transmitted probe intensity as a function of y and z and construct the transmission Iout(y, z)/I0(y, z).

In classical scattering and absorption theory the optical intensity of a beam passing through a
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medium of non-interacting absorbers, with uniform density n, each with absorption cross-section
σ, decreases exponentially [133]

I(x) = I0e
−σnx ≡ I0e

−OD. (5.17)

Eq. 5.17 defines the optical densityOD and, assumes a probe intensity weak enough that multiple-
scattering, optical pumping and saturation effects can be ignored [133].4 From Eq. 5.17 the total
transmitted intensity through an absorber with x-direction thickness ` is

Iout

I0
=
I(`)
I0

= −σn`. (5.18)

We can relate Eq. 5.18 to our measurements of a non-uniform cloud of atoms using the column
density ñ ≡

∫
dx n, which is equal to n` in the case of a uniform gas of finite thickness `. The

transmission Iout(y, z)/I0(y, z) measured on the CCD camera, optical density OD(y, z), atomic
column density and absorption cross-section can be be related using Eqs. 5.16, 5.17 and 5.18:

OD(y, z) ≡ − ln
[
Iout(y, z)
I0(y, z)

]
= σ̃λ(δ) ñ(y, z) (5.19)

where

σ̃λ(δ) =
σ0

C2(1 + (2δ/Γ)2)
≡ σλ(δ)/C2 (5.20)

is the absorption cross-section written in terms of the ideal value

σλ(δ) =
σ0

1 + (2δ/Γ)2
(5.21)

and the calibration factor C.
The total atom number is obtained by integrating the measured column density

N =
∫
dy dz ñ(y, z) =

1
σ̃λ(δ)

∫
dy dz OD(y, z) (5.22)

using Eq. 5.19, which is larger than the naive estimate by a factor of C2. Proper atom number cal-
ibration consists of estimating C2 by a method which does not depend on light-atom interaction
models of the type presented here (see Sec. 5.4.3.1).

Constructing the optical density image The optical density (OD) image is found by combin-
ing three raw images: the “signal” image, which contains the transmitted probe light and the
atomic absorption spot; the “reference” image, which contains the transmitted probe light with
the atoms removed from the field of view; and the “background” image, collected without the
probe beam or atoms present, containing only background scattered light and any other CCD

4Eq. 5.17 can also written in terms of an “extinction coefficient due to absorption” α = −σn: I(x) = I0e
−αx [133].
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noise (e.g. read noise, digitization noise). The OD image is constructed pixel-by-pixel according
to

OD(i, j) = − ln
(

sig(i, j)− bg(i, j)
ref(i, j)− bg(i, j)

)
(5.23)

where sig(i, j), ref(i, j) and bg(i, j) are the signal, reference, and background images; i and j

index the two-dimensional CCD pixel array. In an ideal measurement, the OD is zero in every-
where where there is no atomic scattering, and finite where atoms do scatter. The total atom
number is proportional to the total OD, obtained by summing the individual pixel contributions.

The three raw images are extracted from the CCD camera as two-dimensional arrays of “ADC
counts” (analog-to-digital counts) NADC, which is related to the number of photons incident on
the CCD N by the quantum efficiency ηqe and internal camera gain G (the number of ADC
counts per CCD photoelectron): NADC = ηqeGN . With the MicroPix M640 CCD camera, signal
and reference images were taken 35 - 45 ms apart, and combined with a single representative
background image that was collected “offline” (i.e. at some other time) to construct the OD
image. With the Pixis 1024BR camera, signal, reference and background images taken 400 - 800 µs
apart are collected for each OD image.

5.4.2 Non-degenerate clouds

The time-of-flight optical densities of non-degenerate Bose and Fermi clouds at temperatures
well above Tc or TF are well described by a Gaussian profile; multiply the expanded column
density of Eq. 2.45 by and multiplying by σ̃λ(δ). This is equivalent to treating the atoms like
Boltzmann particles. Measured optical density profiles are fit to

OD(y, z) = A exp
[
−(y − yc)2

2σ2
y

− (z − zc)2

2σ2
z

]
+myy +mzz + b (5.24)

where the optical density amplitude A, cloud centre positions yc, zc, Gaussian widths σy, σz and
background offset b and slopes my,mz are free parameters in the fit. The background plane
myy +mzz + b accounts for systematic errors in the image. For atoms released from a harmonic
potential, the Gaussian widths are related to the temperature T , time-of-flight t and trap har-
monic oscillation frequencies ωi by

σ2
i =

kBT (1 + ω2
i t

2)
Mω2

i

(5.25)

whereM is atomic mass. This relationship is used to measureN and T of thermal atoms released
from the Z-trap.

To estimate T in the MOT, magnetic trapping and transfer stages, in which the trapping po-
tentials are not harmonic, we instead measure the Gaussian cloud size as a function of TOF t and
fit the resulting data to the expectation of ballistic expansion in a non-interacting ideal gas in
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Fig. 5.5: Bimodal fits of 87Rb clouds at and below Tc. We measure temperature using two-dimensional fits to
the thermal cloud only. These data show T/Tc ' 1, 0.7, 0.5 from left to right; Tc ' 240 µK.

three-dimensions

σi(t) =
√
σ2

0 + v2t2 (5.26)

where i ∈ x, y, z, σ0 = σ(0) is the in-situ cloud size, and vi is the one-dimensional mean thermal
velocity along the ith direction [131, 56]. The thermal velocity vi extracted from the fit is then
used to estimate the temperature Ti

〈E〉i =
1
2
Mv2

i =
1
2
kBTi ⇒ Ti = Mv2

i /kB, (5.27)

where 〈E〉i is the one-dimensional mean kinetic energy of the gas in the ith direction.
The atom number is extracted from the Gaussian fits according to

N = 2πAσyσz/σ̃λ(δ) (5.28)

where σ̃λ(δ) is the absorption cross-section for optical detuning δ from the cycling transition. We
note that in addition to absorption imaging for accurate N and T measurements, we also use the
collected atomic fluorescence stimulated by the MOT beams for quick checks and monitoring of
the MOT during each experimental cycle.

5.4.3 BEC

We observe the expected bimodal structure for temperatures below Tc in 87Rb by imaging along
x (“axial imaging”). Fig. 5.5 shows fits of ideal BEC theory to raw 2D optical density data which
have been summed along z at temperatures corresponding to T/Tc ∼ 1, 0.7, and 0.4. The data
shows N ∼ 104 87Rb atoms imaged on resonance after a 6 ms time-of-flight from a Z-trap with
trap bottom Ω0 ' 2π×415 kHz, z0 ' 190 µm and 87Rb oscillation frequencies ω⊥ ' 2π×1.8 kHz
and ω‖ ' 2π × 13.7 Hz.

We note that we can only distinguish the thermal cloud from the BEC in axial images along
x, not in radial images along y. In our anisotropic traps with aspect ratios as large as 130:1 the
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radial Thomas-Fermi width of the condensate in time of flight RTF,⊥ exceeds that of the thermal
cloud Rth,⊥ when kBT < µ (see Secs.2.1.2)

RTF,⊥ =

√
2µ

MRbω
2
⊥

√
1 + ω2

⊥t
2 and Rth,⊥ =

√
2kBT
MRbω

2
⊥

√
1 + ω2

⊥t
2. (5.29)

Thus, the condensate obscures the thermal cloud, making bimodal fits to extract temperature
impractical with radial images.

5.4.3.1 Atom number calibration

87Rb atom numbers measured using the axial Orsay imaging system were calibrated by observ-
ing the temperature dependence of the BEC size. From Eq. 2.22, the Thomas-Fermi BEC radius
and atom number are related by

Ri = (15N0a)1/5

(
~

Mωi

)2/5

, (5.30)

where M is the 87Rb mass, ωi the ith trap frequency, and a the s-wave scattering length. Since
the only remaining unknowns are the cloud half-width Ri and the condensate atom number N0,
we use this relationship can be used to to determine the calibration factor C2 (see Sec. 5.4.1) [53].
Eq. 5.30 can be rewritten

Rz ≡ B(C2Nnaive
0 )1/5, (5.31)

where Nnaive
0 is the naive pixel sum atom number (calculated from the measured optical density

using the ideal absorption cross-section σ0 = 3λ2/2π), and B = (15a)1/5 (~/Mωi)
2/5.

We prepared 87Rb BECs in the Z-trap by evaporating down to a range of final RF frequencies
to adjust the condensate fraction over as wide a range as possible. Two-dimensional bimodal
fits to time-of-flight data were used to extract the condensate fraction N0/N and Thomas-Fermi
width Rz along the vertical (transverse) axis of the condensate. The naive total atom number
Nnaive was calculated using the pixel-sum optical density and the ideal absorption cross-section
σλ(δ) (see Eq. B.61) and combined with the condensate fraction to establish the naive condensate
numberNnaive

0 for each image. Fig.5.6 shows a plot ofRz as a function ofNnaive
0 . A one-parameter

fit to a 1/5 power law yields C2 = 1.9± 0.1 (5%). This calibration was applied to the results from
2005, 2006 which are reported in this chapter.

A less careful, but more recent calibration of the current imaging system is based on a slightly
different method [53]. Rather than relying on a fit to a 1/5 power law, we (a) empirically locate
the BEC phase transition by noting the presence or absence of a condensate peak in the thermal
background near Tc, (b) compute the value of Tc at this point using accurate temperature mea-
surements from fits to the thermal component of the cloud, (c) compute the true atom number
from Tc using Eq. 2.12, which accounts for finite-size and interaction shifts of the critical temper-
ature, and (d) compareN toNnaive, calculated from the optical density using σ0, to determineC2.
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Fig. 5.6: Radial Thomas-Fermi radius Rz of a 87Rb BEC as a function of atom number, for calibration. The
thick line shows Rz calculated from the Thomas-Fermi expression Eq. 5.30. The line of best fit (thin solid)
yields a calibration factor C2 = 1.9 ± 0.1. The uncertainty is derived from the C2 values extracted from the
dashed curves, which deviate from the best fit result by±5%. Error bars are uncertainties inRz from a bimodal
fit.

We estimate C2 = 1.7 ± 0.3, and use this result as a rough calibration of number data from 2007
to the present, including relative BEC number data in presented in Ch. 7. A more careful analysis
is needed to confirm this value and to reduce the ∼ 20% systematic uncertainty. This calibration
method is expected to be more accurate than the first: it relies on an accurate determination of Tc,
which varies as N1/3 in general and as N very near Tc, rather than the cloud size, which varies
as as N1/5 and is therefore less sensitive to N .

5.4.4 DFG

We deduce the in-situ temperature of 40K by fitting time-of-flight optical density images to ideal,
non-interacting Fermi gas theory. Unlike with bosons, for which the time-of-flight density profile
exhibits a strongly non-Gaussian bimodal structure for T < Tc, Fermi gas density profiles deviate
much more subtly at low temperatures. As T is reduced below T/TF . 0.5, Fermi gases appear
to stop getting colder, i.e. the Gaussian-estimated width of the time-of-flight density profile is
nearly unchanged between T/TF ∼ 0.3 and 0. We rely on careful fitting to reliably measure atom
number and T/TF below T/TF ∼ 0.5 in our experiments.

We fit two-dimensional optical density data to the Fermi-Dirac column density (see Eqs. 2.44
and 5.24)

OD(y, z) = Af2

(
Z exp

[
−(y − yc)2

2σ2
y

− (z − zc)2

2σ2
z

])
+myy +mzz + b (5.32)

where the amplitude A, fugacity Z , cloud centre positions yc, zc, Gaussian widths σy, σx and
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Fig. 5.7: The large variation of Z in our coldest temperature range 0.1 . T/TF . 0.3 presents a challenge for
least-squares fitting.

background offset b and slopes my,mz are free parameters in the fit.5 We use the fugacity Z from
fits to obtain the atom number and T/TF using Eqs. 2.44 and 2.35:

N = 2πAσyσzf3(Z)/σ̃λ(δ), (5.33)

and

T/TF = (6f3(Z))1/3. (5.34)

We use four fit parameters Z , A, σy and σz , even though only there are only two physically
independent parameters (e.g. atom number N and temperature T ). Under-constraining the fit
by leaving these four parameters free allows us to calculate T/TF in two ways, as an indepen-
dent check of our analysis: from N and T according to from Eq. 2.35, or directly from Z using
Eq. 5.34. This consistency check is important because accurate least-squares fitting to extract Z is
technically challenging; in real units, Z spans a huge dynamic range for a relatively small range
of T/TF values (see Fig. 5.7). To compensate for the under-constrained fit, we check that final fit
results yield N , T and T/TF values which are consistent within statistical error. The statistical
uncertainty in T/TF obtained from fits is 0.05. Using Eq. 5.34, this uncertainty is calculated from
the difference in Z values extracted from fits with ∆χ2 = ±1 with respect to the best fit (i.e the
fit with minimum χ2). The independent fits results for σy and σz typically differ by 10%, which
corresponds to a systematic temerature uncertainty of ±20 nK for typical parameters (possibly
due to a z-direction magnetic field kick during Z-trap turn-off).

Fig. 5.8 shows an example fit to time-of-flight DFG data of N ∼ 4 × 104 40K imaged along
y (radial imaging) after a 9 ms time-of-flight. The 2D raw optical density image was radially
averaged about the cloud centre to increase the signal-to-noise; the resulting data was fit to a

5Note that here the peak optical density is Af2(Z) + b.
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Fig. 5.8: (a) Gaussian (dashed) and Fermi-Dirac (solid) to radially averaged 9 ms time-of-flight data of N ∼
4.2×104 40K atoms at T/TF = 0.13±0.05 imaged after 9 ms of time-of-flight reveal the subtle deviation of the
DFG profile from the classical expectation. (b) Raw residuals from the Fermi and Gaussian fits. The solid line
shows the Gaussian residuals from fits to fictitious DFG data with the same N and T/TF as the actual data
set. Radial averaging was performed about an ellipse defined by the vertical and horizontal cloud widths in
the raw 2D optical density image. Error bars are statistical – standard deviations in optical density from radial
averaging.

1D version of Eq. 5.32, yielding T/TF = 0.13 ± 0.05. A Gaussian fit (Eq. 5.32 with Z = 1) is
also shown to emphasize that the deviation of ideal DFG from ideal Boltzmann gas theory is
very slight even at T/TF = 0.13; the Gaussian fit overestimates the density at cloud centre and
edge, and underestimates in between. The reduced-χ2 of the Fermi and Gaussian fits 0.8 and 2.1
respectively. Fig. 5.8b shows raw residuals of the two fits, emphasizing that the Gaussian fails
to capture the shape of DFG data. The Gaussian residuals oscillate about zero, closely following
the residuals calculated from Gaussian fits to noise-free simulated DFG test data with the same
physical parameters as the actual data set. Above T/TF ' 0.5, the Gaussian and Fermi fits are
nearly indistinguishable. Fig. 5.9 compares Gaussian and Fermi residuals from fits to 40K clouds
at T/TF values between 0.8 and 0.35 to illustrate this point.

Fermi pressure An additional, more qualitative signature of Fermi degeneracy is Fermi pres-
sure. Unlike the Boltzmann gas, whose spatial width tends toward zero as T → 0, Pauli exclusion
results in a finite-sized Fermi gas with a finite average momentum, even at T = 0. This Fermi
pressure (see Sec. 2.2.3) is evident in Fig. 5.10a, in which the in-trap cloud width deviates from the
Boltzmann prediction for T/TF . 0.5. Absorption images taken at T/TF = 0.95 and T/TF = 0.35
are overlayed with a circle indicating EF in Figs. 5.10b and 5.10c, demonstrating that the average
momentum of the Fermi gas plateaus at low temperature.
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Fig. 5.9: Comparison of normalized fit residuals from Fermi and Gaussian fits to radial 40K DFG data at
different values of T/TF .
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Fig. 5.10: A DFG appears to stop getting colder as the temperature is reduced, even as the reservoir temper-
ature approaches zero. (a) The apparent in situ fermion temperature measured by Gaussian fits to 40K time-
of-flight absorption data, plotted versus 87Rb temperature for both thermal (diamonds) and Bose-condensed
(circles) 87Rb. The data follows a curve derived from Gaussian fits to artificial, perfect Fermi distributions (solid
line), deviating from the corresponding Boltzmann prediction (dashed) at temperatures below T/TF ≈ 0.5.
Quantum degeneracy of 87Rb has little effect on the 40K expansion energy in this data (circles vs. diamonds).
(b,c) Absorption images for T/TF = 0.9 and T/TF = 0.35 respectively, overlayed with white circles of radius
RF rescaled after time-of-flight (see Sec. 2.2.2). By comparison, a Boltzmann gas with T corresponding to
“T/TF = 0.35” would have a radius 2σ ≈ 0.8RF .
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5.5 Rb–K cross-thermalization

When empirically optimizing the sympathetic cooling trajectory, we find that RF sweep times
faster than 6 s are not successful, whereas 87Rb alone can be evaporated to BEC in just 2 s. This
indicates that the 40K and 87Rb rethermalize more slowly than 87Rb alone. Measurements of
the 40K-87Rb temperature ratio during sympathetic cooling (see Fig. 5.11a) reveals that 40K lags
behind 87Rb at high temperatures, despite the fact that our optimal RF frequency ramp is slower
at its start, when atoms are hottest, and accelerates near the end, when atoms are coldest.

In the low-temperature limit, we did not expect cross-species thermalization to lag 87Rb-87Rb
thermalization, since the 40K-87Rb elastic scattering cross section exceeds the 87Rb-87Rb cross
section by roughly a factor of two: σKRb = 4πa2

t = 1480± 70 nm2 [129] whereas σRbRb = 8πa2
t =

689.6± 0.3 nm2, using the fermion-boson and boson-boson scattering T → 0 expressions for the
cross-section with the triplet scattering length at quoted in [129] and [55], respectively. However,
in early 2006 when our measurements were published [27] several conflicting values of σKRb had
been previously reported [22, 26, 129, 127, 134, 122, 135].

5.5.1 Measuring the K–Rb scattering cross-section

To investigate σKRb further, we measured the cross-species thermalization rate at temperatures
between 10 µK and 200 µK in a mixture with relatively small 40K atom number: (NK ≤ 0.04NRb)
[27]. We start with a 87Rb-40K mixture in thermal equilibrium in the presence of a fixed RF
frequency νRF . We then abruptly reduce the 87Rb temperature to TRb by reducing νRF , wait for
a variable hold time, and measure the 40K temperature TK [136]. Fig. 5.11b shows an example
40K temperature as function of the hold time. The decay of ∆T ≡ TK − TRb can be described
generically by the differential equation [137]

d(∆T )
dt

= −∆T
τ
. (5.35)

Adapting the two-species rethermalization model of [137] to our experiment, in which NRb �
NK , dTRb/dt ≈ 0 during the 87Rb measurement time, and TK approaches TRb asymptotically,
the decay time τ can be written

1
τ

=
√

2
3π2

σKRb
kBTRb

√
MKM

2
Rbω

2
⊥ω‖

(MK +MRb)3/2
NRb (5.36)

where the harmonic oscillation frequencies ωi are for 87Rb. We use an exponential fit of the TK
decay data to find τ , and use τ to compute σKRb using Eq. 5.36.

5.5.2 Ramsauer-Townsend effect at high temperatures

The results of σKRb measurements show a clear reduction in the scattering cross section at high
temperatures. We compare the results to the σKRb-vs.-temperature behaviour predicted by two
scattering models. The simpler “naive” model assumes s-wave scattering from a delta-function
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potential, for which the s-wave phase shift δ0 is given by k cot δ0 ≈ −1/a in the low-energy limit,
where a is the 40K-87Rb s-wave scattering length and k the relative wavevector in the centre-
of-mass frame [82, Ch.8]. k is determined from the measured temperature of the gas T using a
velocity-weighted average over the distribution of velocities that corresponds to T . The naive
s-wave scattering cross section is then

σKRb(k) =
4π
k2

sin2 δ0 =
4πa2

1 + a2k2
, (5.37)

which predicts σKRb > σRbRb throughout our temperature range, in stark contrast to the exper-
imental data. Better agreement is given by an effective-range model, which includes the next-
order correction to the s-wave scattering phase shift k cot δ0 ≈ −1/a + rek

2/2, where re is the
effective range of the scattering potential [138]. This reduction of the phase shift results in a
reduced scattering cross section [136]

σKRb(k) =
4πa2(

1− 1
2 |a|rek2

)2 + a2k2
, (5.38)

which is in good agreement with the experimental data.
The data in Fig. 5.12 was first analyzed assuming a temperature-independent cross-section

within the range of initial and final 40K temperatures for each data point. We then re-analyzed the
data using a self-consistent method that assumes the effective-range temperature dependence,
and found a small upward shift of the best-fit cross-section values. Using this shift as an esti-
mate of the systematic error, we fit the four lowest-temperature data points to the effective-range
model of Eq. 5.38 using re = 20.2± 0.3 nm (calculated according to [138] with CKRb6 = 4274± 13
a.u. [139]) and find a 40K–87Rb scattering length aKRb = −9.9± 1.4± 2.2 nm, in agreement with
[129]. The second uncertainty is systematic, and includes the uncertainty in 87Rb atom number
calibration (see Sec. 5.4.3.1).

We attribute the observed reduction in scattering cross-section to the onset of the Ramsauer-
Townsend effect, in which the s-wave scattering phase and cross-section approach zero for a
particular value of relative energies between particles [140, 27].

We compare the sympathetic cooling of 40K to similar efforts in 6Li, which is the other fermionic
alkali species in heavy use in the experimental DFG community (see [50] and references therein).
6Li–87Rb sympathetic cooling and Feshbach resonance measurements [25, 141] demonstrate a
zero-temperature cross section approximately 100 times smaller than σKRb; in other words, a
maximum 6Li–87Rb cross-section roughly equal to the lowest 40K–87Rb value we measure. Thus,
despite the high-temperature reduction in cross-section 40K and 87Rb are relatively good sympa-
thetic cooling partners.

5.5.3 Required temperature

The reduction in the K–Rb elastic scattering cross-section discussed in Sec. 5.5.2 suggests that we
should start the evaporation at a lower temperature. Unfortunately, 87Rb–87Rb elastic collision
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thermalization by abruptly reducing the temperature of 87Rb and watching the temperature of 40K relax
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Fig. 5.12: K–Rb cross-species thermalization. Measurements of σKRb (diamonds) are compared with the
s-wave-only (dashed) and effective-range (solid) scattering models (see text). For reference, the s-wave σRbRb

is also shown (dotted). The highest temperature point (open diamond) did not completely thermalize and lies
off of the effective range prediction. A more sophisticated analysis may be required for this point, owing to
severe trap anharmonicity at this high temperature (see Sec. 3.2.3). The vertical error bars are statistical
(one standard deviation); the horizontal error bars show the spread in initial and final 40K temperature during
rethermalization.
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rate required for efficient evaporative cooling within our magnetic trap lifetime imposes a mini-
mum initial temperature. In this section we will shift our focus to single-species collision rates in
order to understand this constraint.

Evaporative cooling requires a trap lifetime τT that is some multiple of the mean collision time
γ−1

coll, since roughly three rethermalizing collisions are typically required before a hot atom exits
the trap [126, 91] . This multiple is typically 103 and the collision rate γ−1

coll, where γcoll = n0σelvr,
is the collision rate at the centre of the trap [91]; n0 is the central density, σel is the elastic scattering
cross-section, and vr =

√
8kBT/πM is the relative average velocity of collision partners [91].

Since ρ0 ≈ n0Λ3
T at the start of evaporation (see Sec. 5.2.2), we can express the central density

in terms of the phase-space density and find

γcoll =
σelρ0M

π2~3
(kBT )2, (5.39)

which is independent of atom number. This relation can be used for a broad range of traps to
estimate the minimum temperature for efficient evaporation. Defining γmincoll as the minimum
scattering rate,

(kBT )2 ≥ γmincoll

π2~3

σelρ0M
. (5.40)

In the case of 87Rb, approximating σ by its low temperature limit 8πa2
s, where as is the s-wave

scattering length, we find that the minimum temperature at the beginning of evaporative cooling
is

Tmin0 = 300 µK×
(

10−6

ρ0

)1/2(
γmincoll

150 s−1

)1/2

, (5.41)

for any loaded atom number or trap geometry. In our case, the Rb–Rb elastic collision rate at the
start of RF evaporation is roughly 150 s−1, and the phase-space density 10−6 or slightly higher.
Eq. 5.41 predicts Tmin0 = 300 µK, which exactly coincides with the temperature we measure at
the start of evaporation. (The excellent agreement should be taken with a grain of salt, since the
model is only approximate.) Can we gain anything be decompressing or compressing the trap?
Our trap lifetime τT ∼ 5 s is only 750 times larger than the collision time γ−1

coll = 1/150 '6.7 ms
– less than optimal, assuming that we require τt & 1000γ−1

coll for efficient evaporation. Any adia-
batic decompression would decrease our collision rate below γmincoll and result in significant loss of
evaporation efficiency. If the trap lifetime were longer, decompression would reduce the temper-
ature without sacrificing evaporation efficiency; τT > 1000γ−1

coll would be much easier to satisfy
even as γ−1

coll decreased in the decompression. Compressing the trap near the end of evaporation
would increase in K–Rb 3-body loss, which would exacerbate the losses we already observe due
to attractive 40K-87Rb interactions near the end of evaporation (see Sec. 5.5.2). Compressing near
the beginning of evaporation should not induce much loss since densities are relatively small
at that point, but compression causes dramatic loss in our case due to the limited trap depth.
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For these reasons, we have little choice but to start our evaporation in the regime where the
Ramsauer-Townsend effect is significant.

5.6 Summary

This chapter describes the experimental realization of a 87Rb BEC and a 40K DFG in a single
chamber, atom-chip-based apparatus. We describe the laser cooling, magnetic trapping and
transport, chip loading, and evaporative cooling steps used to make BEC and DFG [45, 33]. This
work represents the first demonstration of DFG in a simple, single chamber apparatus.

We discuss the roles of trap depth and trap volume in microtrap experiments, with partic-
ular emphasis on chip loading of 87Rb and 40K in our setup. We also discuss the signatures of
quantum degeneracy in BEC and DFG using time-of-flight absorption imaging, including Fermi
pressure in the DFG at T ' 0.1TF . By studying 87Rb–40K thermalization, we observed a dra-
matic decrease in the 87Rb–40K scattering cross-section at T ∼ 300µK, which we attribute to the
Ramsauer-Townsend effect. The methods used to achieve DFG and BEC presented here are used
in the RF-dressed potential experiments presented in Ch. 6 and Ch. 7.



Explore an unpaved road with a
new friend.

Wing’s Fortune Cookie 6
Radio-frequency-dressed double-well potentials

Soon after establishing DFG and BEC, we began to experiment with radio-frequency manipu-
lation of cold atoms beyond simple evaporative cooling. After a crash course in the art by the
visiting Dr. Thorsten Schumm, we began to work on creating radio-frequency dressed double-
well potentials for ultra-cold 87Rb and 40K atoms.

For atoms confined to a magnetic trap, an applied magnetic field oscillating at radio fre-
quencies (RF) can resonantly couple adjacent mF states. The atomic system in the combined
static and time-varying magnetic fields can be described by a Hamiltonian with new, uncoupled
eigenstates – the so-called “adiabatic” or “RF-dressed” states [94, 142]. The spatial dependence
of these states, and thus the spatial character of the trapping potential, can be manipulated by
varying the RF amplitude Brf, and RF frequency ω. If Brf is large enough that the usual adia-
batic condition is satisfied so that Landau-Zener tunnelling between dressed states is suppressed
[91], then atoms adiabatically follow the RF-dressed magnetic eigenstates and remain trapped
in a double-well potential [143, 121, 144]. This effect was first demonstrated on both thermal
[145, 142] and quantum degenerate Bose gases [29, 146], and is now a well-established method
for dynamically “splitting” an ultra-cold Bose gas [29, 30, 121, 144, 31, 32].

The RF double wells described in this chapter are applied to the measurements of fluctuations
in the relative atom number and relative phase of a dynamically split 87Rb BEC in Ch. 7. RF-
dressed potentials are particularly useful for creating double-well potentials for neutral atoms
because of their technical simplicity, stability, and broad tunability. The RF potential barrier
height and double well separation can be adjusted – from zero, i.e. a single well, to nearly arbi-
trarily large values – simply by tuning the Brf and/or ω. This allows nearly complete control of
the inter-well tunnelling strength. These characteristics are the key advantages of RF double-well
potentials over other types of double-well potentials, such as the static magnetic, and magnetic-
plus-optical-barrier varieties. In the former, fabrication imperfections and current noise in atom
chip wires can lead to instability and uncontrolled asymmetry in the double well [147, 148]. In
the latter, the well spacing is determined by the waist of a focussed laser beam, which is typically
too large (tens of micrometres) to support inter-well tunnelling in the double-well potential [10].

The chapter begins with theory of atom-RF interactions and RF-dressed states applied to
double-well potentials on atom chips. We describe the characterization of these potentials using
analytic calculations, which we use as a guide to fine-tune RF potentials used in experiments.

103
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Next we demonstrate the species-selectivity of RF potentials. In a 87Rb-40K mixture, this effect
permits the simultaneous formation of a double-well potential for 87Rb and single-well potential
for 40K, owing to the unequal gF values for 87Rb and 40K. Finally, we present weak-field spec-
troscopic measurements of 87Rb in a dressed adiabatic potential, the main result of which is a
precise determination of the RF field magnitude at the site of the trapped atoms. These measure-
ments are essential for a qualitative understanding of our RF-dressed potentials, and to calibrate
analytic calculations.

6.1 RF-dressed states

In this section, we consider the effect of a radio-frequency (RF) magnetic field on the Zeeman sub-
states of a atom confined to a static magnetic trap of the type described in Ch. 3. In experiments,
we apply linearly polarized RF fields to trapped 87Rb and 40K trapped initially in internal states
|F = 2,mF = 2〉 and |F = 9/2,mF = 9/2〉, respectively. The RF field is applied by one or more
chip wires running parallel to the y axis, so that the RF field typically lies in the xz plane (see
Figs. 6.5a, 6.5b). The method presented here is based on the geometric spin-1/2 representation
of optical absorption and emission in a two-level atom in the rotating wave approximation [94,
Section V.A.4]. It follows closely with [143, 148], and applies generally to any atom in internal
state |F,mF 〉.

6.1.1 Atomic spin in a time-varying magnetic field

We imagine an atom at point r in the lab frame subject to a static magnetic trapping field B0(r),
and a rapidly oscillating linearly polarized RF field Brf(r, t) ≡ Brf(r) cos(ωt). The semi-classical
interaction Hamiltonian for an atom with total angular momentum F in the combined (classical)
static and RF magnetic field B(r, t) = B0(r) + Brf(r, t) is [94]

H(r, t) = −µ ·B(r, t) (6.1)

=
gFµB

~
F · [B0(r) + Brf(r) cos(ωt)]. (6.2)

We introduce local spatial coordinatesX,Y, Z, in which the Z direction is determined by the local
orientation of B0(r), and decompose the linearly polarized RF field into components parallel and
transverse to B0(r):

Brf(r) cos(ωt) ≡
[
Brf,X(r)X̂ +Brf,Z(r)Ẑ

]
cos(ωt) (6.3)

where

Brf,Z(r) =
|B0(r) ·Brf(r)|
|B0(r)|

, and Brf,X(r) =
|B0(r)×Brf(r)|
|B0(r)|

. (6.4)

The classical response of an atomic spin to a fixed magnetic field is precession about the direc-
tion of the magnetic field [82]. We use Ω0 to denote the angular frequency of Larmor precession
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about B0(r), and Ωrf to denote the angular frequency of Larmor precession about Brf(r) [94,
Section V.A.3]:

~Ω0 ≡ gFµBB0(r) and (6.5)

~Ωrf ≡
1
2
gFµBBrf(r) cos(ωt) = ~

√
Ω2
X + Ω2

Z cos(ωt), introducing (6.6)

~ΩX ≡
1
2
gFµBBrf,X(r), and ~ΩZ ≡

1
2
gFµBBrf,Z(r). (6.7)

Note that, although the static trap field B0(r) is not spatially uniform, we are free to re-define
the XY Z coordinate system at every point r so that Z always points along B0(r). Note also that
Ω0,Ωrf,ΩX ,ΩZ are r-dependent. For convenience of notation, the r is omitted in these quantities
for the remainder of this section. Their spatial dependence is explored further in Sec. 6.2, and
ultimately permits the formation of double-well potentials.

6.1.2 Classical picture: rotating wave approximation and rotating frame

With just the static field B0(r) pointing along Z, the spin precesses about Z at Larmor frequency
Ω0. To understand the effect of the RF field on the evolution of the spin, we consider the X and
Z components of the resulting total field B(r, t) separately.

The X component Brf,X(r) cos(ωt) can be decomposed into two fields of equal amplitude
Brf,X(r)/2, rotating in the XY plane at the frequency ω in the clockwise and counterclockwise
directions. The response of the atomic spin to these two rotating components of Brf,X(r) is most
readily understood by conceptually shifting into a reference frame which also rotates about Z at
frequency ω [149]. On resonance (ω = Ω0), the counterclockwise component of Brf,X(r) cos(ωt)
is stationary in the rotating frame, and can thus couple efficiently to the spin, which is also sta-
tionary in the rotating frame on resonance. The other component rotates clockwise at frequency
2ω, too quickly to couple to the spin. Ignoring this 2ω component of the RF field on or near reso-
nance is known as the rotating wave approximation (RWA) [94]. In this approximation, the total X
component field is

Beff,X ≈
1
2
Brf,X(r) (6.8)

in the rotating frame, with an associated Larmor precession frequency ΩX . The factor of 1/2
and time-independence of Beff,X motivates the “1/2” convention and time-independence in the
definition of ΩX , and for symmetry, in the definition of ΩZ (see Eq. 6.7).

Next we consider the Z component of Brf(r). Classically, the effect of Brf,Z(r) cos(ωt) on the
atom is to modulate its precession frequency about Z in time at the RF frequency ω. The total
Z-direction field amplitude is B0(r) + Brf,Z(r) cos(ωt) in the original (non-rotating) frame, and
the Larmor precession frequency becomes Ω0 + 2ΩZ cos(ωt). In the rotating frame, the effective
Larmor precession frequency is decreased to Ω0 + 2ΩZ cos(ωt) − ω, which implies an effective
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(a) fixed frame
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(b) rotating frame
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Fig. 6.1: (a) The static field B0(r) and RF fields Brf(r) cos(ωt) in the static XY Z coordinate system, with
their respective Larmor precession frequencies Ω0 and Ωrf. (b) Effective static magnetic fields in the rotating
frame on resonance. Classically, the spin precesses about the effective static magnetic field Beff at Larmor
frequency Ωeff (see text).

total Z component magnetic field

Beff,Z = B0(r) +Brf,Z(r) cos(ωt)− ~ω/gFµB. (6.9)

The total effective magnetic field in the rotating frame is then

Beff(r, t) = Beff,X(r)X̂ +Beff,Z(r, t)Ẑ, (6.10)

with magnitude

Beff(r, t) =

[(
B0(r) +Brf,Z(r) cos(ωt)− ~ω

gFµB

)2

+
1
4
Brf,X(r)2

]1/2

=
~

gFµB

√
(2ΩZ cos(ωt)− δ)2 + Ω2

X (6.11)

and associated Larmor precession frequency about Beff(r, t)

Ωeff =
√

(2ΩZ cos(ωt)− δ)2 + Ω2
X , (6.12)

where the “RF detuning” δ is defined as

δ ≡ ω − Ω0. (6.13)
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6.1.3 Interaction Hamiltonian

We now use the rotating frame and RWA to compute the interaction Hamiltonian between the
atom and the total magnetic field. Using Eqs. 6.3 and 6.4, the Hamiltonian of Eq. 6.1 may be
written

H(r, t) =
gFµB

~
FZ [B0(r) +Brf,Z(r) cos(ωt)] +

gFµB
~

FXBrf,X(r) cos(ωt) (6.14)

= Ω0FZ + 2ΩZFZ cos(ωt) + 2ΩXFX cos(ωt) (6.15)

where FX and FZ are the X and Z vector components of the F operator.
We can understand the time evolution of the hyperfine states |F,mF 〉 of the trapped atom by

considering the time evolution of the spinor Ψ(r, t), whose components ψm(r, t) (where −F ≤
m ≤ F ) correspond to the wavefunctions of the Zeeman hyperfine states. Rather than solving
the Schrodinger equation

i~Ψ̇(r, t) = H(r, t)Ψ(r, t) (6.16)

in the lab frame, we move into a frame rotating about Z at frequency ω, as described in Sec. 6.1.2.
This can be accomplished using the rotation operator

RZ(−ωt) = exp(iωtFZ/~), (6.17)

which transforms Φ(r, t) and H(r, t) in the usual way [82, Section BVI]:

Ψ(r, t)→ Φ(r, t) ≡ RZ(−ωt)Ψ(r, t) (i.e. Ψ(r, t) ≡ R†Z(−ωt)Φ(r, t) ) (6.18)

H(r, t)→ RZ(−ωt)H(r, t)R†Z(−ωt). (6.19)

Substituting Eq. 6.18 into Eq 6.16, and acting on the result with RZ(ωt) from the left yields

i~Φ̇(r, t) =
[
−ωFZ +RZ(−ωt)H(r, t)R†Z(−ωt)

]
Φ(r, t) (6.20)

≡ Hrot(r, t)Φ(r, t), (6.21)

where the rotated-frame Hamiltonian Hrot(r, t) may be re-written using Eq. 6.15 as

Hrot(r, t) = −ωFZ +RZ(−ωt)H(r, t)R†Z(−ωt) (6.22)

= −ωFZ + Ω0FZ + 2ΩZFZ cos(ωt) + 2ΩX cos(ωt)RZ(−ωt)FXR†Z(−ωt) (6.23)

= −δFZ + 2ΩZFZ cos(ωt) + 2ΩX cos(ωt) [FX cos(ωt)− FY sin(ωt)] (6.24)

= −δFZ + ΩXFX + 2ΩZFZ cos(ωt) + ΩXFX cos(2ωt)− ΩXFY sin(2ωt). (6.25)

Following Sec. 6.1.2, we apply the rotating wave approximation here by ignoring the terms
in Eq. 6.25 oscillating at frequencies ω and 2ω; they cannot effectively couple to the spin, and
may be ignored to a good approximation. Doing so leaves behind a time-independent effective
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Hamiltonian in the rotating frame:

Heff = −δFZ + ΩXFX . (6.26)

The stationary effective Hamiltonian may be written in terms of the total effective magnetic
field in the rotating frame. To do this we introduce the unit vector n̂θ = cos θX̂+ sin θẐ along the
direction of Beff, which makes an angle θ with the Z axis in the rotating frame (see Fig. 6.1). The
Hamiltonian may then be written

Heff = Fθ

√
δ2 + Ω2

X , where (6.27)

Fθ = F · n̂ = FZ cos θ + FX sin θ (6.28)

tan θ ≡
Beff,X

Beff,Z
= −ΩX

δ
; sin θ =

ΩX√
δ2 + Ω2

X

and cos θ =
−δ√

δ2 + Ω2
X

(6.29)

for 0 ≤ θ ≤ π. (6.30)

Eq. 6.27 is the Hamiltonian describing the precession of a classical spin in a magnetic field

Beff(r) =
~

gFµB

√
δ2 + Ω2

X

[
sin θX̂ + cos θẐ

]
(6.31)

at the frequency Ωeff =
√
δ2 + Ω2

X .

The dressed states The eigenstates of Heff are the so-called “dressed states” [94]. The effective
Hamiltonian contains Zeeman energy terms Ω0 and ΩX , as well as the an energy term due to the
“dressing” RF photon at frequency ω. We denote the dressed spin states by |F,m′F 〉 ≡ |m′F 〉 for
simplicity. m′F is the effective dressed state magnetic quantum number. The dressed states are
superpositions of the bare, undressed Zeeman states |F,mF 〉 ≡ |mF 〉. They may be thought of as
rotations of the bare states about the Y axis by the angle θ

|m′F 〉 = RY (θ)|mF 〉, (6.32)

and have energies1

Ueff(r) ≡ 〈m′F |Heff(r)|m′F 〉 = ~m′F
√
δ2 + Ω2

X . (6.33)

On resonance, δ = 0, θ = π/2, and Beff points along the X axis. Far below resonance, δ � 0,
θ → 0, Beff points along Z, and the dressed states coincide with the bare states |mF 〉. Far above
resonance, δ � 0, θ → π, Beff points along −Z, and the dressed states coincide with the inverted
bare states | −m〉.

1The matrix elements of Heff are easily evaluated in the basis of dressed states using Eq. 6.27 since Fθ|m′F 〉 =
~m′F |m′F 〉. m′F is the θ-direction projection of the angular momentum, just as mF is typically the z axis projection,
and FZ |F,mF 〉 = ~mF |F,mF 〉 [82].
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6.2 Realizing RF-dressed double-well potentials

This section describes the formation of spatial double-well potentials using RF-dressed states.
The first theoretical proposals [142, 150] and experimental demonstrations of RF-dressed po-
tentials focussed on confinement on two-dimensional surfaces [145]. The Schmiedmayer group
[29, 121] later showed that the spatial dependence of the effective Hamiltonian could be exploited
to create double-well potentials with variable well separation and barrier height by combining a
static three-dimensional harmonic chip trap of the type described in Ch. 3 with a linearly polar-
ized RF field.

The spatial dependence of the dressed states of Sec. 6.1 is key to understanding the formation
of double wells. To emphasize this point, we re-write Eq. 6.33 with the explicit r dependence,
and using slightly modified notation:

Ueff(r) = ~m′F
√
δ(r)2 + Ω(r)2 (6.34)

= m′F

√
[~ω − gFµBB0(r)]2 +

[
gFµBBrf,⊥(r)/2

]2
, (6.35)

where Ω(r) ≡ ΩX(r) ≡ gFµBBrf,⊥/2 is the RF Rabi frequency, δ(r) is the RF detuning, B0(r) =
|B0(r)| is the static magnetic field amplitude. We introduce the notation Brf,⊥(r) ≡ Brf,X(r),
which is the component of the RF field that is perpendicular to the static trapping field at the
point r. Brf,X(r) is defined by

Brf,⊥(r) =
|B0(r)×Brf(r)|
|B0(r)|

= |B̂0(r)×Brf(r)| (6.36)

where B̂0(r) is a unit vector in the direction of B0(r).

6.2.1 Double well formation

We imagine starting with a 3D harmonic magnetic trap. In our experiments, this is always a Ioffe-
Pritchard-type Z-trap. For simplicity, we consider first the effect of RF radiation polarized along
x on a spin-1/2 system – an atom with F = 1/2 andmF = ±1/2. This system is easily generalized
to higher spins, in particular to F = 2 and F = 9/2 for 87Rb and 40K in our experiments.

An RF field at frequency ω resonantly couples the adjacent spin states at positions r1 satisfy-
ing

gFµBB0(r1) = ~ω. (6.37)

Fig. 6.2 shows the magnetic spin-1/2 potentials calculated as a function of the radial coor-
dinate of the static trap. (The needle-shaped Z-trap is radially symmetric in the xz plane, and
elongated along y. See Ch. 3) The finite RF Rabi frequency Ωrf(r1) leads to an avoided crossing
between the dressed states |m′F = ±1/2〉 at r1. The dressed state level separation at the avoided
crossing is ~Ω, and is thus proportional to Brf,⊥(r).
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Fig. 6.2: Effective potential of the two RF-coupled spin-1/2 magnetic Zeeman states in a radially symmetric
harmonic magnetic field. (a) The RF is resonant with the bare states at radial positions ±r1. (b) The coupled
dressed states (solid) show avoided crossings of the uncoupled states (dashed) at ±r1, whose separation is
proportional to the RF Rabi frequency. The effective dressed potential calculations in the figure are based on
the finite-wire-width model described in Ch. 3, and are described in more detail in Sec. 6.3.

Though the upper dressed state |m′F = 1/2〉 of Fig. 6.2b appears to be a double-well poten-
tial, the radial symmetry of the resonance condition in the static magnetic field means that we
have so far only described an ellipsoidal shell of minimum effective potential, rather than two
localized minima. The resonance condition of 6.37 defines this 3D surface, which was explored
theoretically and experimentally with a uniform RF field in [142, 150, 145]. The symmetry in the
full effective potentials is lifted, however, by the spatial dependence of Brf,⊥(r), which we have
ignored so far in these paragraphs. This leads to two local minima on the shell and the desired
double-well potential.

A cross-section of the “resonance shell” ellipsoid defined by Eq. 6.37 is drawn in Fig. 6.3a (red
circle), superimposed on a unit vector field of the static magnetic trap in the radial xz plane (in the
Orsay RF configuration). Though ~ω = gFµBB0(r) at every point on this ring, Ueff varies around
the ring due to the spatial dependence of Brf,⊥(r). The total RF field is polarized primarily along
x in this example. By definition (Eq. 6.36),Brf,⊥(r) reaches is minimum value when it is parallel to
the local static magnetic field, or more generally, when |B0(r)×Brf(r)| is minimized. In the static
Z-trap, whose x and z magnetic field components form a quadrupole pattern,Brf,⊥(r) and Ueff(r)
are minimized at two points in the xz plane (black spots in Fig. 6.3a). In 3D, Ueff(r) is minimized
along two lines running roughly parallel y on the surface of the resonance shell. These lines of
minimum Ueff(r) are the double-well potential minima for m′F > 0 and can be used to trap and
manipulate ultra-cold atoms.

Figs. 6.3c and 6.3d show the calculated effective potential for m′F = 2 in 87Rb in the xz and
xy planes, and demonstrate the full 3D double-well potential minima (darkest purple). The
calculations were carried out using typical experimental parameters for RF manipulation in the
Orsay chip setup (see Sec. 6.2.2).
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Fig. 6.3: Formation of an RF double well (see text) (a) Radial plane unit vector field of static trap in the
Orsay configuration, and the resonance ring. The RF field is polarized horizontally in the xz plane in
this configuration. The double well forms at those points on the ring (black circles) where Brf(r) is most
parallel to B0(r). (b) The static field of the Z-trap actually points mainly along y at its centre, though the x
and z components form a quadrupole pattern in the xz plane. (c,d) Contour plots of Ueff(r) for m′F = 2 in
87Rb, showing the full 3D character of the double well. Darker, inner colours represent smaller values of the
potential. All figures based on analytic calculations in an Orsay chip setup (see text). (e,f) Cartoons showing
the orientation of atoms trapped in a static single well, as well as a dressed double well with respect to the
atom chip.
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6.2.2 Atom chip implementations

Since 2006, we have used both the Orsay and Toronto chips (see Ch. 3) to create RF-dressed
double-well potentials. The magnetic field polarizations are slightly different in the two setups,
as depicted schematically in Fig. 6.5. The z axis points “up” in the diagram, but points “down”
in the lab frame (same direction as gravity).

Horizontal splitting In both configurations, we are interested in producing as symmetric a
double-well potential as possible. To this end, we work exclusively with “horizontal” double
wells, i.e. potentials having the axis of separation of the two clouds lying x. The motivation for
horizontal splitting is two-fold. First, it ensures that atoms in both wells are balanced with re-
spect to the gravitational potential. In coherent BEC splitting experiments (see Ch. 7), imbalance
leads to to dephasing between the two halves of the split BEC [37]. Second, the horizontal geom-
etry allows large double-well separations without danger of one cloud crashing into the nearby
chip, which could be a problem if the clouds were vertically split, for instance. Large separations
(10’s of µm , up to ∼ 150 µm ) are necessary to optically resolve the two split clouds, which is a
key requirement for accurate atom number counting (see Ch. 7).

Orsay chip configuration The Orsay configuration uses a single chip wire to apply RF to atoms
confined to a static Z-trap. The RF wire (the same one used in forced RF evaporative cooling)
is located 80 µm from the centre of the Z-wire, is 10 µm thick, and supplies an RF field which
is roughly horizontal at x ≈ 80 µm in the xz plane, in a coordinate system centred on the Z-
wire. Horizontal splitting with static Z-traps is possible at any point on the circular arc depicted
in Fig. 6.5a [31]. This is a consequence of the fact that the effective potential minima occur at
positions on the xz-plane resonance ring at which Brf,⊥(r) ‖ B0,xz , as described in Sec. 6.2.1.
Since the chip wire geometry fixes the radius of this ring at 80 µm , we use a shifted Z-trap
centred at x0 ≈ 80 µm , z0 ≈ 80 µm ), to maximize the atom-chip distance, and hence the quality
of the magnetic trap. In general, atom chip magnetic trap lifetimes decrease with decreasing
distance from the chip due to the 1/r dependence of static and RF magnetic field noise from
stray or noisy chip wire currents [118, 15]. Fig. 6.4 shows this effect as measured with the Orsay
chip.

The main disadvantages of the Orsay RF configuration are:

1. Inflexibility of the trap position: moving away from (x = 80 µm , z = 80 µm ) results in
either non-horizontal splitting, increased double-well asymmetry, decreased magnetic trap
lifetime, or some combination of all three.

2. Inherent asymmetry: the usual Z-trap is naturally asymmetric along z, but using a shifted
trap below the RF wire introduces an additional x axis asymmetry. This results in an asym-
metry in the RF dressed double potential, which becomes severe at large well separations
(see Fig. 6.10).
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Fig. 6.4: Heating rate and lifetime of a thermal cloud of N ∼ 104 87Rb atoms at an initial temperature T & Tc

as a function of the atom-to-surface distance z0. Heating and loss are caused by magnetic field noise arising
from AC current noise in the chip wires [15]. Each lifetime / heating rate measurement involved preparing a cold
cloud at a variable distance z0 with a trap minimum corresponding to Ω0(0) = 2π× 405 kHz, and measuring
N and T in time of flight after a variable in-trap hold time of 0 to 15 s. Error bars indicate the absolute spread
over repeated measurements.

3. Non-uniformity of the RF field: the RF wire creates gradients in Brf(r) along x and z which
distort the dressed potential. Though the gradients scale as 1/r2, we cannot reduce them
by moving further from the chip without introducing other systematics, as explained in 1.

Toronto chip configuration The Toronto chip’s RF configuration addresses each of the Orsay
chip’s drawbacks. Rather than using a single RF antenna wire, the RF field is supplied by two
independent wires [30] (the “U-wires”, see Sec. 4.6.2), which are independently powered by the
PhaseOMatic RF source described in Sec. 4.4.3. The two RF amplitudes Brf,1 and Brf,2 and their
relative phase are tunable and computer controlled. This RF setup results in the following im-
provements on the Orsay configuration:

1. Horizontal splitting can be achieved using an un-shifted Z-trap at any distance from the
chip. The quadrupole xz-plane orientation of the Z-trap necessitates a vertical, linearly
polarized RF field to achieve horizontal splitting. This RF field can be produced along the
line (x=0, y=0, z=z0) for any z0 with Brf,1 = Brf,2 and φ = π (see Fig. 6.5b).

2. Independent amplitude and phase control of the two RF sources permits the creation of RF
fields of arbitrary polarization in xz [30, 121, 144]. With φ = π, the linear polarization in
xz may be adjusted by tuning the relative amplitudes Brf,1 and Brf,2, which can be used to
fine-tune horizontal splitting.

3. The static trap and RF field are inherently symmetric in the xz plane at x = 0. This allows
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Fig. 6.5: (a) Orsay chip RF splitting geometry. Horizontal splitting is possible anywhere along the dashed arc;
we use the position furthest from the chip, directly below the single RF wire, which is naturally asymmetric
about the RF wire. (b) Toronto RF splitting geometry. RF fields from the two U-shaped RF wires add to
produce RF with arbitrary polarization in the xz plane. Symmetric, horizontal splitting is achieved in a Z-trap at
any distance z0 from the chip surface using equal RF1 and RF2 amplitudes and a relative phase of π, which
produces a net RF field polarized vertically in the plane. In both figures blue dots indicate the positions of
double well minima, and thick black arrows the external bias fields in the plane. (External “Ioffe” fields not
shown.)

symmetric double-well potentials even at double well separations of 150 µm or more.

4. The RF antenna wires are electrically isolated from one another, and from the Z-wire. From
a technical standpoint, this makes it much easier to prevent RF leakage from the RF sources
into the Z-wire or other “DC” chip wires. In the Orsay setup, by contrast, the RF and Z-
wires shared a ground connection.

6.2.3 Splitting: from static single-well to dressed double-well

Here we build upon the ideas of the previous section to describe the loading of a double-well
dressed potential. The starting point is always a degenerate or near-degenerate atomic sample in
|F = 2,mF = 2〉 for 87Rb and/or |F = 9/2,mF = 9/2〉 for 40K, prepared in a Z-trap as described
in Ch. 5 with the RF dressing field off. The RF field is then gradually turned on so that the atoms
adiabatically follow the dressed states and remain trapped in |m′F = 2〉 and/or |m′F = 9/2〉 as the
state deforms from a single harmonic trap into a double-well potential. This process is referred
to as “splitting” since the original, single cloud is divided in two by the potential barrier which
forms at the centre of the dressed state.

As RF is applied to the static trap, the harmonic dressed potential flattens out, becoming
less and less quadratic until the curvature at trap centre eventually changes sign and a non-zero
potential barrier forms (see Fig. 6.6). We describe two experimental splitting methods, which we
refer to as “frequency splitting” and “amplitude splitting”. These names derive from the fact that
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Fig. 6.6: RF splitting demonstrated with 87Rb effective dressed potentials. Atoms initially in |F = 2,mF = 2〉
(thick, upper curve) adiabatically follow the dressed potential as it flattens, and eventually deforms into a double
well as the RF amplitude and/or frequency are increased from (a) to (d).

each relies on a time sweep of the RF frequency (at a fixed amplitude), or the RF amplitude (at a
fixed RF frequency) to raise the barrier. Both yield qualitatively similar results and double-well
potentials, but are based on different interactions between the static and RF magnetic fields.

6.2.3.1 Frequency splitting

In frequency splitting, the double well separation and barrier height are controlled dynamically
using ω sweeps at a fixed RF amplitude. The locations of the double well minima are determined
by the resonance condition of Eq. 6.37. A typical time sequence of ω and Brf(r) is depicted
schematically in Fig. 6.7. The first step is to ramp on the RF amplitude from zero to some finite
value, with the ω tuned below resonance: ω < Ω0(0) and δ(0) < 0. The goal of this “dressing”
step is to reach the situation depicted in Fig. 6.6b, in which the potential is deformed, but a central
potential barrier does not yet exist. We typically use δ(0) ∼ −2π × 50 kHz to −2π × 10 kHz and
ramp Brf(r) from 0 to on the order of 300 mG 2 in 10 to 100 ms. The RF amplitude is such that
Brf/B0 ∼ 0.1 to 0.4.

In the “splitting”, the RF frequency is swept from below to above resonance at a constant
amplitude to raise the potential barrier. Fig. 6.8 shows the evolution of barrier height and double
well separation as ω and/or Brf is increased during frequency and amplitude splitting splitting.
The data in Fig. 6.8 are the results of analytic calculation of a splitting scenario in the Toronto chip
setup (see Sec. 6.2.2). In this example, the undressed static trap is centred 193 µm directly below
the Z-wire, has harmonic oscillation frequencies ωx,z ' 2π× 1.7 kHz and ωy ' 2π× 13.7 Hz, and
a minimum bottom corresponding to Ω0(0) = 2π × 416.5 kHz.

Fig. 6.10 shows absorption images of split 87Rb and 40K clouds. The upper row shows aver-
aged images of N ∼ 1.5 × 104 87Rb atoms initially in a quasi-pure BEC (no discernible thermal
cloud) split and separated by 70 µm using frequency splitting. In these data, a static trap with
Ω0 = 2π × 3.095 MHz is split with a 40 ms sweep of the RF frequency from ω = 2π × 1.55 MHz

2The smaller the RF amplitude, the more reliable the results of RWA calculations based on Eq. 6.35. However,
Brf(r) must be large enough to suppress Landau-Zener tunnelling between dressed states.
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Fig. 6.7: Brf(r) and ω timing diagrams for “frequency splitting” and “amplitude splitting”. The dashed lines
indicate the optional “separation” step, which is used when counting left and right atom numbers, but not in
matter wave interference experiments. See Ch. 7.

to ωfinal at a fixed amplitude Brf = 2000 mG. The two split clouds are imaged after switching off
the traps and a 1.5 ms time-of-flight expansion.

The lower row shows raw (single-shot) images of N ∼ 2 × 104 40K atoms at T/TF ' 1,
split and separated by 100 µm using frequency splitting. The static Z-trap with 40K parameters
Ω0 = 2π × 724 kHz and ωx,z ' 2π × 800 kHz is split with a similar 40 ms frequency sweep from
ω = 2π× 500 kHz to ωfinal at Brf = 2000 mG. The split clouds are imaged on resonance after 1 ms
time-of-flight. The imaging geometry for both examples is depicted in Fig. 6.9

Since the resonance condition of Eq. 6.37 determines the double well locations, arbitrarily
large double well separations are achievable in principle for a static trap of infinite spatial ex-
tent. In practice, the maximum double-well separation and barrier height are limited by (a)
atom loss due to Landau-Zener tunnelling between dressed states, and (b) the finite extent of
the Z-trap. We have achieved double well separations of up to 280 µm using a ω sweeps up to
δ(0) ∼ 10Ω0(0), accompanied by increases in Brf to maintain a dressed level repulsion sufficient
to suppress Landau-Zener tunnelling at the double-well positions (The dressed state level repul-
sion ~Ω(r) ∝ Brf,⊥(r) decreasing with increasing distance from the trap centre for RF dressing in
a Z-trap, as explained in the next section.)

6.2.3.2 Amplitude splitting

In amplitude splitting, the RF amplitude is ramped up at a fixed, near-resonant RF frequency (see
Fig. 6.7). The dressed states deform asBrf is increased, raising a barrier in the centre of the trap to
form the double well, as depicted in Fig. 6.6. Unlike frequency splitting, in which the resonance
condition (Eq. 6.37) determines the double well separation and barrier height, here the spatial
dependence of Brf,⊥(r) is responsible for deforming the dressed potential as Brf increases.

Even for a completely uniform RF field, Brf,⊥(r) is non-uniform along x due to the non-
uniformity of that static trapping field B0(r). The RF fields used in our experiments also have
their own spatial non-uniformities, but in both the Orsay and Toronto chip configurations, the
net Brf,⊥(r) non-uniformity is nevertheless dominated by the non-uniformity of B0(r) from the
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Fig. 6.9: Time-of-flight absorption imaging geometry for observing split clouds and matter wave interference
patterns.
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(a) No RF. (b) ωfinal = 2π × 2.2 MHz. (c) ωfinal = 2π × 3.0 MHz.

70 µm

(d) No RF. (e) 1.7 MHz. (f) 1.9 MHz (g) 2.2 MHz (h) 2.3 MHz

Fig. 6.10: (a-c) Averaged absorption images of 1.5 × 104 87Rb atoms imaged in the xz plane after 1.5 ms
time-of-flight (see text). (d-h) Raw absorption images of N ∼ 2 × 104 40K atoms at T/TF ∼ 1 imaged after
1 ms time of flight, labelled by ωfinal/2π in frequency splitting. The tilted splitting at large separations is due to
inherent asymmetry in the Orsay RF configuration (see Sec. 6.2.2). The atom chip surface is located at the
top edge of each image.

Z-trap. Fig. 6.11 shows calculated static, instantaneous RF fields, as well as a plot of Brf,⊥(r)
along x for varying Brf(r) field strengths. In particular, Fig. 6.11a shows the Brf,⊥(r) is peaked at
the static trap centre x = 0, and drops off sharply with increasing x. As Brf(r) is ramped up at
a fixed frequency ω, this peak in Brf,⊥(r) grows and becomes sharper, which ultimately leads to
the barrier in the centre of the dressed potential.

One technical advantage of amplitude splitting over frequency splitting is that, with our
DDS-based RF sources, arbitrary RF amplitude sweep functions are possible, whereas ω sweeps
are linear or piecewise linear. Amplitude splitting has been effective in performing coherent
splitting with small double-well separations for matter wave interferometry (see Sec. 7.1.1). For
large well separations – used in relative atom number counting (see Sec. 7.2.1), frequency sep-
aration is the only option, for technical reasons. The RF powers required to maintain the level
separation between adjacent dressed states for well separations beyond a few µm exceed the ca-
pability of our electronics at a fixed ω.3 Maintaining dressed state level repulsion is critical for
maitaining the trap lifetime of atoms in the double-well potential.

6.2.4 Beyond RWA analysis

Since Eq. 6.35 depends on the RWA, it is only valid for RF fields that are weak with respect to
the static field. In a 3D harmonic static trap with min |B0(r)| = B0(r = 0) ≡ B0, Eq. 6.35 is an
excellent approximation when Brf � B0. Lesanovsky et al. [121, 144] have calculated effective
dressed potentials without this approximation by diagonalizing the full interaction Hamiltonian

3The corresponding RF currents also exceed the current capacity of the Orsay RF antenna wire.
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Fig. 6.11: (a) Spatial non-uniformity of Brf,⊥(r), calculated in the Toronto configuration with RF currents of 1,
5, 10, 15 and 20 mA peak (bottom to top curve) in each RF antenna wire, and plotted against x at the static
trap position y = y0 = 0 and z = z0 = 192 µm . (b,c) Vector plots of the static magnetic field through the trap
centre. (d) Instantaneous vector field of Brf(r), which lies almost entirely in the xz plane near the trap centre
y = y0 in the Toronto chip configuration.
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of Eq. 6.25, and have applied this work to experiments [151] involving relatively large RF field
magnitudes Brf ≈ B0. Unlike the early work with dressed potentials, which used a traditional
macroscopic magnetic trap and an external coil as RF antenna [145], RF field amplitudes gener-
ated by atom chip wires tens of micrometres from the atoms can easily equal or exceed B0(0).
However, in the experiments presented in this thesis we were careful to maintain Brf . 0.2B0(0),
for which we expect the RWA-based calculations to still be applicable [151]. As the sensitivity
of our measurements improves, however, fuller characterization of double-well potentials will
likely demand calculations and analysis which include beyond-RWA effects.

6.3 Analytic dressed potential calculations

After RF splitting, two separated clouds can be detected using absorption imaging after times
of flight short enough that the clouds have not yet overlapped. Because we cannot resolve the
split atomic populations in-situ – or for any well separation less than our imaging resolution
of ∼ 20 µm – we rely on other means to characterize the double-well potentials at small well
separations. In particular, we are most interested in the shape of the potential for barrier heights
on the order of the BEC chemical potential µ or DFG Fermi energy EF , for which inter-well
tunnelling and coherence effects are strongest. Barrier heights on these energy scales occur at
well separations on the order of 1 to 5 µm , well below our imaging resolution. Therefore we
use a combination of analytic calculations and dressed state RF spectroscopy to characterize RF-
dressed double-well potentials, which are the focus of this and the next two sections.

The effective dressed potential calculations are based on the finite-width-wire equations de-
rived for static magnetic traps in Ch. 3. Dressed potentials are calculated according to Eq. 6.35,
with B0(r) and Brf(r) calculated directly from chip wire magnetic fields according to the “thick-
fin.” formulae of Ch. 3. Because they rely on the RWA, these calculations are only approximate
(albeit very good approximations for B0(r) � Brf), and are not sufficient on their own to fully
characterize our dressed potentials. Nevertheless, they have been an extremely useful for our
qualitative understanding of the three-dimensional shape of the potentials, and their suscepti-
bility to magnetic gradients at length scales below the optical resolution of our imaging systems.
Calculations have also provided insight into the behaviour at large well separations, particularly
the susceptibility to Landau-Zener tunnelling loss, which motivated the increase ofBrf to achieve
the lossless frequency splitting and separation described in Ch. 7.

6.3.1 Effect of spatial gradients in Brf: the “banana”

The RF fields produced by atom chip RF antenna wires are spatially non-uniform in both their
direction and amplitude. This fact was ignored in our initial experiments with RF double wells
since Brf(r) is nearly uniform over the few micrometres near the static trap centre where the
double well ultimately forms.

When using frequency splitting to create large well separations in the Orsay setup, absorption
images of split 87Rb clouds at 2 ms time-of-flight revealed a surprise: two dense regions (the two
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(a) (b) (c)

280 µm

Fig. 6.12: Two double-well potential calculations in a static trap having Ω0(0) = 1034 kHz, centre position
(x0 = 0, y0 = 0, z0 = 193 um) and oscillations frequencies ω⊥/2π = 1.1 kHz, ω‖/2π = 13.7Hz. (a) Splitting
with a uniform Brf(r) produces the expected symmetric double-well potential, whereas (b) splitting with a more
realistic chip wire RF field shows the dreaded banana. (c) Optical density resonant absorption image of two
widely-split Rb clouds imaged after 0.3 ms time-of-flight (TOF). The hottest atoms fill in the dressed potential,
revealing the banana shape. The apparent “hole” and relative brightness of the two clouds is due to poor
imaging focus at this short TOF.

clouds after splitting) connected by a lower-density arched “banana” shape (see Fig. 6.12c). A
closer examination of the dressed potential using analytic calculations revealed the source of this
unexpected signal: an asymmetry in the double well resulting from spatial gradients in Brf(r),
even at micrometre-scale well separations.

Fig. 6.12 compares the results of two double well potential calculations: the first using chip
wire fields to simulate Brf(r) in the Orsay chip setup, the second using an idealized uniform
Brf(r). The uniform-Brf(r) example shows a symmetric double well potential in the xz plane,
while the “real” Brf(r) example shows the banana.

The RF splitting configuration of the Toronto design was chosen in part to address the Brf(r)
issues with the Orsay configuration. The RF gradients could be reduced by moving the splitting
setup further away from the RF wire (dBrf/dr ∼ 1/r2), but not without compromising the poten-
tial as explained in Sec. 6.2.2. By contrast, the combined RF field from two independent antenna
wires in the Toronto configuration has lower spatial gradients along x and z, as demonstrated in
Fig. 6.13. This investigation led to an understanding of how control and eliminate the “banana
effect” in the Toronto configuration.

Dressed potential calculations also show that the banana effect can be mitigated by reducing
the applied y-direction Ioffe bias field in both the Orsay and Toronto configurations. Fig. 6.14
shows four 87Rb |m′F = 2〉 dressed potentials calculated in the Orsay configuration for for
Brf = 320 mG (RF current of 13 mA in the RF wire), and a static trap in which the Z-wire cur-
rent and bias fields Bx and Bz are adjusted to maintain the harmonic oscillations frequencies at
ωx,z = 2π × 1.4 kHz as the Ioffe field By is adjusted. Dressed potentials with Ioffe fields cor-
responding to Ω0(0) ∼ 2π × 1600 kHz – typical of our early splitting attempts – show a strong
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Fig. 6.13: Gradients in Brf generated by the single Orsay RF wire (dashed) and the twin Toronto RF wires
(solid). (a,b) x and z direction gradients are plotted along x and z in the vicinity of the static trap centres of the
Orsay and Toronto configurations. For the Orsay curves, x0 ≈ 80 µm and z0 ≈ 80 µm . For the Toronto curves,
x0 ≈ 0 µm and z0 ≈ 193 µm . The Toronto configuration shows smaller gradients in both cases. (c) Diagrams
of Brf(r) vector field in the xz plane in the vicinity of the static trap for comparison.

banana character. Those with Ω0(0) ∼ 2π × 400 kHz or 2π × 200 kHz produce much more sym-
metric double wells, which prompted an experimental switch to lower-Ioffe field static traps for
splitting.

6.3.2 Well separation and barrier height

In double well experiments involving BECs, the well-to-well tunnelling rate depends exponen-
tially on the potential barrier height [152]. Tunnelling is generally strong for barrier heights V on
the order of the chemical potential of the condensate µ, which is in range of h × 1 to h × 2 kHz
for 87Rb condensates of 1000 atoms in our experiments. This barrier height corresponds to well
separations d . 5 µm .

Fig. 6.8 shows the calculated barrier height and x-direction double well separation as a func-
tion of applied Brf(r). These calculations provide a useful guide to the qualitative scaling of
double-well parameters during splitting, but must be used in tandem with direct measurements
to accurately characterize the potential.

6.3.3 Axial trap frequencies

So far we have not mentioned the axial curvature of the potential during splitting. While is it
clear that radial curvatures are most perturbed during splitting, analytic calculations also re-
veal that the axial curvature is slightly decreased during splitting. Fig. 6.15 compares calculated
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(a) Ω0 = 2π × 1600 kHz (b) ...800 kHz (c) ...400 kHz (d) ...200 kHz

Fig. 6.14: Calculated dressed potentials for 87Rb in |F = 2,mF = 2〉 (see text). The banana effect is
mitigated by reducing B0 – in this case, by reducing the applied Ioffe bias field while keeping Brf and the static
trap parameters (position, oscillation frequencies) fixed.
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Fig. 6.15: Comparison of calculated and measured axial oscillation frequencies in an RF-dressed trap. ω = 0
denotes a completely undressed trap (i.e. RF off).

and measured axial harmonic oscillation frequencies during RF dressing of a static Z-trap in the
Toronto configuration with z0 ≈ 193 µm , undressed trap frequencies ωx,z ' 2π × 1.7 kHz and
ωy ' 2π×13.7 Hz, and a trap bottom Ω0(0) = 2π× 416.5 kHz. The RF is fixed at atBrf ≈ 286 mG.
“ω = 0” in the plot corresponds to a completely undressed static trap.

6.4 Species selective RF splitting

In this section, we explore the species-selective nature of RF-dressed double wells. In a two-
species mixture, this effect permits the simultaneous formation of a double-well potential for
87Rb and single-well potential for 40K [45, 33], and vice versa. This result demonstrates that the
adiabatic potentials experienced by each species can be dramatically different in an applied RF
field, owing to the unequal values of gF for 87Rb and 40K: gF = 1/2 for 87Rb in |F = 2,mF = 2〉,
and gF = 2/9 for 40K in |F = 9/2,mF = 9/2〉.

Fig. 6.16 shows absorption images of the 40K-87Rb mixture 0.3 ms after being released from
the RF-dressed trap. The 87Rb cloud is split using frequency splitting. (A strong “banana” effect
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Fig. 6.16: A static chip trap loaded with a 40K-87Rb mixture is dressed with RF radiation. A sweep of the RF
frequency ω creates a double well for 87Rb, but leaves 40K in a single well. Absorption images of the mixture
with probe light resonant to 87Rb only (top row) reveal the split 87Rb cloud, while those taken with two-colour
probe light resonant to both species (bottom row). The bottom row demonstrates that the shape of the 40K
potential is nearly unaffected by the RF dressing. The arc visible in the split 87Rb data is the “banana” effect
described in Sec. 6.3.1

is also visible – see Sec. 6.3.1). At the same time, the 40K dressed potential is a single well nearly
identical to the original undressed potential. 40K is visible as the upper single “blob” in the
bottom row of Fig. 6.16.

We use Eq. 6.35 to calculate effective adiabatic potentials for 87Rb and 40K, and use them to
explain the simultaneous creation of single- and double-well potentials in a 40K–87Rb mixture.
For clarity, we consider the formation of the 87Rb double well and 40K single well separately. Our
starting point is a |9/2, 9/2〉–|2, 2〉 40K–87Rb mixture confined to a static, anisotropic harmonic Z-
trap directly with B0(0) = 1.214 G, ωx,z = 2π× 1.23 kHz and ωy = 2π× 13.7 Hz.

Rb double well An RF field with initial frequency ω = 2π × 800 kHz and detuning δ(Rb) =
−2π×50 kHz is applied by ramping up its amplitude from zero to the final valueBRF = 200 mG.
A potential barrier is formed at r = 0 by sweeping the RF frequency through the resonant point
δ(Rb)(0) = 0. As the RF field is applied, each undressed state is adiabatically connected to one
dressed state; here m(Rb)

F = 2 is connected to m′(Rb)F = 2, shown as the upper-most black curve
in Fig. 6.17a. After sweeping to a final RF frequency ω = 2π × 860 kHz, the barrier height is
h×2.4 kHz and the x-direction double well separation is 4 µm (see Fig. 6.17c). The m′(Rb)F level
repulsion at the double well minima is 70 kHz, sufficient to prevent Landau-Zener spin flips at
our working temperatures T . 1 µK. The 87Rb population thus remains trapped in them′(Rb)F = 2
dressed level.

K single well The trapping potential for the 40K atoms is affected in a very different way for
the same magnetic field configuration. In our current example (Figs. 6.17a, 6.17b), the detuning
for 40K is positive; δ(K)(0) = 2π × 482 kHz at the trap minimum. Near r = 0, the RF dressing
adiabatically connects m(K)

F = 9/2 to m′(K)
F = −9/2. Since [δ(K)(0)]2 � [Ω(K)(0)]2, the potential

curvature near r = 0 is largely unaffected by the RF coupling (see Eq. 6.35). The dressed states are
most deformed where δ(K)(r) ≈ 0, which corresponds to an x-direction double-well separation
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Fig. 6.17: Simultaneous adiabatic RF-dressed potentials for 87Rb and 40K. (a): The 87Rb-double-well case.
87Rb (black) and 40K (grey) effective dressed potentials are plotted as a function of the spatial coordinate x
(see Fig. 6.5). Each curve corresponds to a single value of m′F for 87Rb and 40K, with the upper-most curves
corresponding to m′F = 2 and m′F = 9/2 respectively. 87Rb atoms populate their upper-most m′F = 2 dressed
state (thick, dashed), while 40K atoms populate their lower-most m′F = −9/2 single well dressed state (thick,
grey). (b): A closer view of the 87Rb double well and 40K single well, plotted together on a single vertical
Ueff/h axis in units of kHz. Both curves have been shifted vertically to align their potential minima at zero kHz.
(c): A closer view of the 40K double well and 87Rb single well, with vertical axis similar to (b). The dressed
87Rb single well (black, dashed) deviates slightly from the undressed single well (solid, thin black), illustrating
the slight loss of radial trap curvature.
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d ' 2 × 23 µm, and a potential energy of roughly 110 µK above the local minimum at r = 0.
Since our experiments are typically conducted with T . 1 µK, we can be satisfied that the 40K
potential retains its original form near r = 0 without inducing any 40K loss.

One important feature of this single- and double well arrangement is that the 87Rb double
well separation and barrier height may be tuned over a wide range by adjusting ω and BRF

without affecting the shape of the 40K potential.
An obvious extension of the work described here and in [45] would be to reverse the roles of

boson and fermion, creating a double well for fermions overlapped with a single well for bosons.
The magnetic hyperfine structure of 40K and 87Rb makes this possible in a 40K–87Rb mixture, but
with slightly different results than in the 87Rb-double-well case.

Here we sweep the RF frequency from ω = 2π × 338 kHz to ω = 2π × 383 kHz. In the
same static trap with B0 = 1.214 G, δ(K) changes sign from −2π × 50 kHz to +2π × 5 kHz,
while δ(Rb) remains negative throughout. This creates a 40K double well in the m′(K)

F = 9/2 state
with x-direction well separation d ∼ 4 µm, barrier height h×2.9 kHz at r = 0, and m

′(K)
F level

repulsion ∼ 70 kHz at coordinates x = ±2.1 µm. In contrast to the 87Rb-double-well scenario,
here both 40K and 87Rb adiabatically follow their respective upper-most dressed levels, which
exhibit their strongest spatial deformation near the trap centre. While 40K experiences a double
well potential, the 87Rbm′(Rb)F = 2 potential is a single well with slightly reduced radial curvature
from the initial, undressed mF = 2 potential, as shown in Fig. 6.17c.

In addition to the species-selectivity of this process, it should be emphasized that atom chips
are particularly well-suited to creating adiabatic dressed state potentials due to the proximity
of the atoms to chip wire RF antennae. The double-wells described in this section were created
using RF Rabi frequencies Ω ∼ 100 - 200 kHz, though we can achieve values as large as 1 MHz
with tens of milliamperes rms in the chip wire antenna. By comparison, achieving Ω ≈ 1 MHz
with an air-side RF antenna would require a circular coil of radius 3 cm and 3 turns bearing 10 A
rms of AC current.

6.5 Dressed state RF spectroscopy

Analytic calculations of RF-dressed potentials rely on careful calibration of the static and RF
magnetic field magnitudes and polarizations. To calibrate Brf and to experimentally characterize
our RF-dressed potentials, we perform spectroscopy on the dressed potentials, following [151].
The idea is that a weak “tickling” RF magnetic field – Btkl ' 6 × 10−4Brf in our case – applied
to 87Rb BEC trapped in a dressed potential can induce transitions to untrapped dressed states
without significantly deforming the potential. The frequencies of the resulting loss features in
trapped atom number are measured as a function of the RF dressing field amplitude Brf at RF
dressing frequency ω, and can be used to directly measure the RF amplitude experienced by
atoms in the dressed trap.

Fig. 6.18 shows a schematic energy level diagram showing undressed and dressed Zeeman
states of 87Rb. On the left are the bare Zeeman states of 87Rb in a static Z-trap whose mag-
netic field minimum B0(0) ≡ B0 defines the frequency Ω0 ≡ gFµBB0/~. The atoms are ini-
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Fig. 6.18: Energy level diagram of bare and dressed Zeeman states for 87Rb. The notation |mF , n〉 is used
throughout, where n is the number of RF “photons”, andmF the usual magnetic quantum number. The dressed
states (centre) are correspond to the bare states (left) shifted in energy by 0, 1, 2, ... RF photons. Adjacent
dressed states are separated by the RF detuning δ within each manifold. Atom-photon coupling of the dressed
states leads to level separations of ~Ωeff = ~

√
δ2 + Ω2 between the full “dressed+coupled” states |mF , n〉′,

where δ is the RF detuning and Ω the RF Rabi frequency. The only allowed dressed state transitions within the
RWA are a ≡ ~Ωa, b ≡ ~Ωb and c ≡ ~Ωc (see text).
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tially in the state |F = 2,mF = 2〉, shown in thick red. The centre of the diagram shows
the bare states shifted by κ~ω where the RF “photon” number κ = 0, 1, 2.... These shifts cor-
respond to zero, one, two-photon etc. excitations of the Zeeman states. The RF frequency is
red-detuned with respect to Ω0 so that δ ≡ ω − Ω0 < 0, as in our experiments. On the right
of the figure are the “dressed and coupled” states, which account for the n~ω energy shifts as
well as the dressed state coupling induced by the RF Rabi frequency Ω = 2gFµBBrf/~. The
diagram shows the energy levels in the RWA, in which |δ| � Ω0 and Ω � Ω0. In this case,
the dressed states can be grouped into “manifolds” [94, 151], of which three are shown. In de-
scribing dressed states so far we have only considered a the central manifold of dressed states, la-
belled |m′F = 2, n− 2〉′, |1, n− 1〉′, |0, n〉′, | − 1, n+ 1〉′, | − 2, n+ 2〉′ wherem′F is the dressed state
magnetic quantum number and n is the number of RF “photons” in the dressed state. As demon-
strated in [151], the manifolds are no longer separable in this way at large values ofBrf (Brf & B0).
In this case, the off-resonant terms ignored in the RWA become important (see Eq. 6.25), and each
dressed state becomes a superposition of bare states from many manifolds. In our experiments,
we generally useBrf and δ small enough that the RWA is approximately valid: Brf/B0 ∼ 0.1−0.3
and δ/Ω0 ∼ 0.05− 0.01. See also [151].

We wish to probe the dressed state energy ladder by applying the tickling field to a 87Rb BEC
trapped in the dressed state |m′F = 2, n− 2〉′. In the RWA, the only allowed transitions involving
this state are between adjacent manifolds satisfying ∆m′F = 0, 1. These are labelled a, b and c in
Fig. 6.18. Thus, when applying Btkl to dressed atoms, we expect resonant loss features at only
these three tickle frequencies. Using Fig. 6.18, they may be written

~Ωa ≡ ~ω (6.38)

~Ωb ≡ ~ω − ~Ωeff (6.39)

~Ωc ≡ ~ω + ~Ωeff (6.40)

where ~Ωeff = ~
√
δ2 + Ω2; δ is the RF detuning and Ω the RF Rabi frequency. Fig. 6.19 shows raw

data of dressed state resonances b and c at a fixed RF dressing amplitude Brf(r), measured in the
Orsay configuration. The experimental procedure detailed here is specific to this data, though
we use this general method to measure Brf in all atom chip RF splitting experiments.

The 87Rb BEC is initially trapped in Zeeman state |F = 2,mF = 2〉 in a static Z-trap di-
rectly below the Orsay RF wire (see Fig. 6.5a) at x0 ≈ 80 µm , y0 = 0, z0 ≈ 80 µm with
Ω0 = 2π×1550±1 kHz (B0 =2214±2 mG). The trap is dressed by ramping Brf from 0 to 323 mG
in 100 ms at a fixed RF frequency ω = 2π×1532 kHz, or δ = −2π × 18 kHz. During this step
the atoms adiabatically follow and remain in the dressed state |m′F = 2〉, which is deformed to
the point shown in Fig. 6.6b (i.e. no potential barrier). N.B. The value of Brf is not precisely
known before performing tickle spectroscopy. The value quoted above was calculated after the
fact based on the calibration explained here.

Next, the weak tickling field with Btkl ' 0.2 mG ≈ 6 × 10−4Brf is applied4 for 100 ms at a

4In our Orsay chip setup, Btkl is supplied directly from the output of a Stanford Research systems SRS D345 signal
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Fig. 6.19: RF tickle spectroscopy resonance features, measured as a dip in the number of atoms detected
after applying the tickle RF field. Error bars are standard deviations over repeated measurements. (a) The
upper resonance Ωc, measured at two different tickle field amplitudes. Some power broadening is visible,
but no frequency shift, verifying that the Btkl is small enough that the dressed potentials are not significantly
perturbed. (b) The lower frequency resonance Ωb.

fixed frequency ωtkl. All fields are then switched off and the remaining trapped atom number is
measured with a resonant absorption image after a 0.3 ms time-of-flight. The tickle resonances
shown in Fig. 6.19 are measured by repeating this process at various tickle frequencies ωtkl. To
verify that the measured frequencies were not dependent on Btkl (i.e. to verify that the tickling
field did not significantly perturb the dressed potentials), we repeated the measurements after
reducing the tickle field amplitude by a factor of two. This resulted in a narrowed resonance
feature, but no overall frequency shift. The asymmetry in the resonance features is due to the
finite temperature and spatial extent of the trapped BEC. Each resonant frequency is taken to be
the frequency corresponding to maximum atom number loss (i.e. at the tip of each resonance dip
in Fig. 6.19).

Measuring the tickle resonances as a function of Brf at a fixed ω provides a direct mea-
surement of Brf experienced by the trapped atoms. Fig. 6.20 shows data of the resonances
Ωb (lower curve) and Ωc (upper curve) as a function of the RF current in the chip antenna
wire. The Ωc data is fit to a function of the form y = (ω/2π) +

√
(δ/2π)2 +Dx2, and Ωb to

y = (ω/2π) −
√

(δ/2π)2 +Dx2; x is the dependent variable proportional to RF amplitude, and
δ (RF detuning) and D are free parameters. Extracting δ from the fit also gives a measurement
of the Larmor frequency Ω0, since the applied RF frequency ω is well known. The desired cal-
ibration of the RF amplitude – RF field amplitude per control unit – is Brf/x = 4

√
Dh/µB '

2
√
D/(700 kHz/G) for 87Rb in an F = 2 state (gF = 1/2). Brf/x has units of mG/mA if x is RF

current, or mG/V if x is a raw control voltage.5

generator connected to the RF antenna wire. In the Toronto setup, Btkl is supplied by the RF evaporation source and
RF evaporation antenna wire, which are not otherwise used for RF dressing.

5In the lab we calibrate Brf against the raw RF amplitude control voltage of a voltage-controlled RF attenuator.
This method is most precise since the error associated with the RF current measurement is much smaller than that of
a control voltage measurement.
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Fig. 6.20: (a) Dressed state resonance frequencies Ωb and Ωc as functions of the RF amplitude (RF wire
current). (b) A more routine measurement of Ωc only, which is used to calibrate the RF amplitude Brf. The RF
frequency ω is set by the RF source, while δ and the calibration parameter D are determined from fits (see
text).

Comparing to geometric estimates of Brf based on RF wire currents The data in Fig. 6.20a
yield a Brf calibration of 25.3±0.5 mG/mApk, expressed in terms of RF current in the antenna
wire. Combining this calibration result with the 2% uncertainty on RF current measurements6

results in a total uncertainty of 3% in Brf deduced from spectroscopy. We can also estimate the
Brf calibration using the thin-wire formula for the magnetic field generated by current in a wire
(Eq. 3.16). This approach gives 24.7 mG/mA using direct measurement of RF currents and the
calculated distance between the RF wire and the atoms. The uncertainty on this value is at least
5%, however, due mainly to the uncertainty in the Z-trap position. Therefore, we take the tickle
spectroscopy calibration of Brf to be the calibration.

We routinely use RF tickle spectroscopy to precisely measure Brf in all our atom chip RF
splitting experiments, focusing on the upper Ωc resonance. Example data of Ωc vs. RF current
is shown in Fig. 6.20b for a Z-trap configuration with x0 ≈ 80 µm , y0 = 0, z0 ≈ 80 µm and
Ω0 = 2π × 746 kHz.

6.6 Summary

This chapter describes the formation of RF-dressed adiabatic double-well potentials for 87Rb and
40K. We describe how a single-well potential can be dynamically deformed into a double-well
potential, by ramping the RF frequency or the RF amplitude. This method provides tremendous
experimental control over the potential barrier height and double well separation, which control
inter-well tunnelling in these systems. We perform weak-field spectroscopy on RF-dressed states,

6The RF current is deduced from the voltage drop across the 1% tolerance impedence matching resistor in the RF
circuit (see Fig.4.12) measured using high-impedence voltage probes.
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and use the resulting resonant atom number loss features to determine the RF dressing amplitude
to a precision of 3%. This calibration is critical in characterizing the RF double-well potentials. We
also discuss the species-selectivity of RF potentials, and demonstrate the simultaneous trapping
of 87Rb in a double well and 40K in a single well, starting from an ultra-cold 87Rb-40K mixture in
a single well harmonic trap. The RF double well techniques discussed in this chapter are applied
to the measurement of fluctuations in the relative atom number and relative phase of a split BEC
in Ch. 7.



A routine will turn into an en-
chanting escapade.

Wing’s fortune cookie 7
Measuring the relative atom number and relative

phase of a split BEC

The first observation of matter wave interference between two BECs, which were initially sepa-
rated and dropped on top of one another [10], stimulated great interest in BECs in double-well
potentials. Research directions based on these quantum systems have ranged from fundamental
questions regarding the definition of relative phase between two BECs (for example, [36, 37]),
to more practical efforts to create squeezed states and entanglement in macroscopic quantum
systems for atom interferometry and precision measurement [43, 39, 79, 153, 6].

In this chapter, we describe the experimental realization of a BEC in an RF double-well po-
tential. Using the methods described in Ch. 6, a single-well potential is smoothly deformed into
a double well to “split” the BEC. In a single realization of the experiment, we measure either the
relative atom number Nr, by spatially separating the two halves of the split BEC and imaging af-
ter short times of flight, or the relative phase φ, using the interference pattern formed as the BECs
overlap and interfere after long times of flight. We then repeat the preparation and measurement
steps to measure fluctuations in Nr and φ over successive experimental realizations.

For a gas of distinguishable, non-interacting particles, the splitting process can be described
using binomial statistics.1 In this case, for “balanced” splitting (i.e. equal mean populations of
the left and right wells), we expect binomial (“shot noise”) relative atom number fluctuations:
∆Nr =

√
N , where N is the total atom number among the two wells (see Sec. 7.2.3 and Ap-

pendix B). The binomial distribution of the discrete atom number Nr approaches the Poisson
distribution in the limit of a large N [156]. In the case of a BEC in a double-well, if the conden-
sate is described by a coherent state with a definite relative phase φ, then the fluctuations in Nr

are also Poissonian [37]. If the BEC is split quickly and non-adiabatically, we expect to observe
the same Poissonian relative atom number variance Var(Nr) ≡ (∆Nr)2 = N . If the BEC is split
slowly and adiabatically, however, nonlinear repulsive atom-atom interactions favour narrower
number distributions, making it possible to observe sub-Poissonian relative number fluctuations
[63, 31, 43, 157, 153].

Our main result is the observation of relative atom number fluctuations at the shot-noise
1This applies, for instance, to classical particles or T = 0 bosons. Non-condensed bosons exhibit super-Poissonian

statistics [154], while identical Fermions exhibit sub-Poissonian statistics [155].

132
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level using time-of-flight resonant absorption imaging. We estimate that our number counting
technique is sensitive enough to observe -14 dB of number squeezing, i.e. a variance in Nr 14 dB
below the shot-noise level. This sensitivity sets the stage for the creation and observation of num-
ber squeezed clouds in future work. The bulk of the chapter is devoted to the phase and atom
number counting measurement and analysis methods which support this result. The chapter
closes with a discussion of the prospects for observing sub-Poissonian relative number fluctu-
ations in future work in our experiment, as well as the types of measurements which become
accessible using the number and phase measurement tools described here.

7.1 Measuring relative phase

Matter wave interference is a direct method for determining the relative phase between two
BECs. If the two BECs are prepared completely independently, a well-defined relative phase φ
can be measured in any single realization of an interference experiment, but the value of φ is com-
pletely random and unpredictable from experiment to experiment [36, 48]. The opposite is true
if the two BECs are created “coherently” out of the same initial BEC. In the ideal case, repeated
φ measurements are peaked around zero, with an rms width determined by the number-phase
uncertainty relation ∆φ = 1/∆Nr, where ∆Nr is the spread in relative atom numbers [67]. In
practice, we expect to observe a distribution of phases about a mean value 〈φ〉 ≈ 0 with a width
broadened by technical fluctuations [29].

This section describes measurements of the relative phase between the left and right sides
of a BEC split using an RF double-well potential. We focus on the analysis of time-of-flight
matter wave interference patterns, from which we measure the “shot-to-shot” (i.e. experiment-
to-experiment) phase variance. We demonstrate evidence for coherent splitting of the BEC, and
characterize the phase sensitivity. We show that the phase measurement tool developed here can
be used to characterize double well dynamics predicted by the BJJ model described in Ch. 2.

7.1.1 Phase measurement procedure

We start with a 87Rb BEC prepared in a static Z-trap with an RF trap bottom Ω0 = 2π × 420 kHz
(B0 ' 0.6 G) and oscillation frequencies ωx,z = 2π × 1.75± 0.05 kHz and ωy = 2π × 13± 1 Hz.
The BEC is split by dynamically deforming the single well into an RF dressed adiabatic double
well (see Ch. 6). The RF is applied in two stages: “dressing” and “splitting”, described schemat-
ically in Fig. 6.7a. The applied RF field is generated by RF currents in two RF antenna wires on
the Toronto chip (see Secs. 4.4.3 and 4.6.2).

Dressing The RF amplitude Brf is ramped on from 0 to 320 mG at a constant RF detuning
δ = ω − Ω0 = −2π × 20 kHz in 100 ms. This decreases the potential curvature along x, but does
not yet introduce a potential barrier (see Fig. 6.6b).
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Splitting The potential barrier height b is increased in the centre of the trap until b ∼ µ, where µ
is the chemical potential of the condensate. This is accomplished using either frequency splitting
(a ramp of ω) or “amplitude splitting” (a ramp of Brf, see Sec. 6.2.2). For N = 104 87Rb atoms,
typical double-well parameters are a well separation ∆x ∼ 2−3 µm , barrier height b ∼ 2−3 kHz,
and µ ∼ 1− 2 kHz.

Aside The 10 ms timescale is long compared to the initial and final transverse oscil-
lation period of the unsplit and split wells 2π/ω⊥ ∼ 1 ms, but short compared to the
longitudinal period 2π/ω‖ ∼ 100 ms. Though this introduces the possibility of lon-
gitudinal excitations during splitting, we find that for split times longer than 10 ms
the interference contrast becomes too small to accurately measure the fringe spacing
and phase. The decrease in contrast may be caused by asymmetric longitudinal dis-
placement of the clouds during splitting. A transverse optical dipole trap was added
to the experiment in 2009 to further investigate and mitigate this effect.

Matter wave interference After splitting, the double-well potential is abruptly switched off
and the two separated BECs expand, overlap and interfere during times of flight on the order
of 20 ms. The interference pattern in the expanding density profile is detected using resonant
absorption imaging along the longitudinal y-axis (see Fig. 6.9).

An unsplit cloud released from the anisotropic, needle-shaped Z-trap expands most rapidly
in the radial x and z directions, reaching a flat “pancake” shape in the xz plane for t � ω−1

x,z , i.e.
t & 10 ms in our traps. When the trap is dressed, but not yet split, as depicted in Fig. 6.6b, the
reduced radial curvature of the potential results in broader in-trap density distribution along the
splitting direction x, and therefore a narrower density distribution at long times of flight [46].
The smallest x-direction cloud width roughly corresponds to the minimum potential curvature
along x. Increasing Brf or ω from this point leads to interference fringes of decreasing fringe
spacing as the barrier height and double well separation increase.

Single-shot phase measurement We analyze the fringe spacing, visibility and phase of a single-
shot interference pattern by summing the two-dimensional optical density (OD) image along
the direction parallel to the fringes to increase signal to noise, and fitting the resulting one-
dimensional interference pattern to

f(x) = G(x)
[
1 + V cos

(
2π(x− x0)

∆x
+ φ

)]
, (7.1)

where G(x) is a Gaussian envelope centred at x = x0, ∆x is the fringe spacing, V is the visibility,
and φ is the phase. As discussed in Sec. 2.3.2, φ is the relative phase of the two BECs. Fig. 7.1
shows examples of OD interferograms, and a fit to two-dimensional summed data.

The time-of-flight (TOF) must be large enough that the fringe spacing is discernible in the
interferogram, given our ∼20 µm optical resolution. Fig. 7.2b shows the trade-off between mea-
surements taken at shorter and longer times of flight. Working at larger TOF increases ∆x and
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Fig. 7.1: (a) Raw OD data in the xz plane of 87Rb interference fringes imaged on resonance after 19.5 ms
TOF (see text). Axes are in units of 7.4 µm pixels. (b) A 10-image average demonstrates the fringe tilt angle
α, which can result from potential asymmetry and/or stray magnetic field gradients during trap turn-off. (c) The
raw two-dimensional OD profile from (a) is averaged long the direction (θ) which optimizes fringe visibility, then
fit to a gaussian-times-cosine function to extract the fringe spacing, phase and visibility (see text). Error bars
in the figure are statistical from the 1D average. A fit to these data gives V = 0.6 ± 0.1, φ = −40◦ ± 18◦ ,
and ∆x = 5.8 ± 0.1 pixels, where uncertainties are statistical from the fit. The lower panel shows normalized
residuals.
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Fig. 7.2: Detecting BEC interference fringe spacing and visibility as a function of time-of-flight (TOF). Fringes
are not discernible at TOF < 13 ms, at which point the fringe spacing coincides with the 20 µm resolution of the
imaging system (“1st generation”, see Ch. 4). Fitting interferograms to a gaussian-plus-cosine function (see
text) also becomes challenging for V < 0.1.

V , but decreases the overall optical density and signal to noise in the absorption image. This
results in the larger error bars (standard deviations) at TOF & 20 ms in the figure. Conversely,
working at smaller TOF increases the signal to noise, but decreases the fringe spacing, making
an accurate fit more difficult. At TOF = 25 ms we estimate the following statistical uncertainties
for the fringe spacing, visibility and phase:2 δ(∆x) ≈ 0.1 pixels ≈ 1µm , δ(V) ≈ 0.1 and δφ ≈ 20◦.
In principle, we expect maximum fringe visibility (V = 1) from the single-shot interference pat-
tern of two interfering BECs at T = 0, whether the splitting process was coherent or not (see
Sec. 2.3.2). In practice, V = 0.4 to 0.6 is typical of our measurements. We attribute the reduced
visibility to technical effects, including slight misalignment of the probe beam with respect to
the interference pattern, and the incoherent contribution of the small background thermal cloud.
The data in Fig. 7.2 were collected using a quasi-pure BEC of N ∼ 104 87Rb atoms released from
a dressed static trap in the Orsay setup with Ω0 = 2π × 1023 kHz and oscillation frequencies
ωx,z ' 2π × 1.7 kHz.

Shot-to-shot phase fluctuations The variance in the relative phase Var(φ) ≡ (∆φ)2 is mea-
sured using successive repetitions of the BEC preparation, splitting and measurement steps, and
compared to the expected values for coherent and number-squeezed BEC states.

2These estimates are for the “1st generation” imaging system (MicroPix CCD, see Sec. 4.5.1). The current “2nd
generation” imaging system (Pixis CCD and 4x objective, see Sec. 4.5.2) has δ(∆x) ≈ 0.3 µm .
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Fig. 7.3: (a) The shot-to-shot fluctuation in the relative phase is ∆φ = 33◦±3◦, measured with atoms released
from the trap immediately after splitting. Typical values of ∆φ measured immediately after splitting range from
20◦ to 40◦ in our experiment. (b) A polar plot of single-shot phase and visibility for the data in (a) shows
evidence of coherent splitting. (c) Phase coherence between the split BECs is significantly decreased after an
in-trap hold time of 1.0 ms, evidenced by the broadened phase distribution. ∆φ = 86◦ ± 5◦ and α = 0.4± 0.3
for this data.

7.1.2 Results

Example data of the shot-to-shot relative phase fluctuations are depicted in Fig. 7.3. The his-
togram of relative phases was built up by preparing quasi-pure BECs (no discernible thermal
cloud) of N = 2 × 104 atoms in a Z-trap with Ω0 = 2π × 770 kHz, ω⊥ = 2π × 1.7 kHz and
ω‖ ' 2π × 14 Hz. The potential was dressed in 100 ms and split using a 40 ms ramp of Brf,
after which the trap was immediately switched off. The interference pattern was detected on
resonance after 19 ms of time-of-flight.

Evidence for coherence The data clearly show that the distribution of relative phases is not
random, which suggests that the splitting process is coherent. The measured mean and vari-
ance of the phase distribution are 〈φ〉 ' 2◦ and (∆φ)2 ' (33◦)2, whereas the corresponding
values for a random distribution of phases between −180◦ and 180◦ are 0◦ and roughly (105◦)2,
respectively [31]. Typical values of ∆φ measured immediately after splitting range from 20◦ to
40◦ in our experiment, comparable to values measured in similar experiments in the Ketterle
[31] and Oberthaler [76] groups. Following [42] we also compute the coherence α = 〈cosφ〉 di-
rectly from the single-shot phases, which is a better measure of coherence (“non-randomness”)
for the circular variable φ [31, 74]. As discussed in Sec. 2.3, α ≈ 1 implies coherent splitting with
∆φ ≈ 0, while α ≈ 0 implies incoherent splitting and random phases. The data in Fig. 7.3a give
α = 0.9±0.3; the uncertainty is based on the single-shot uncertainty in φ. Fig. 7.3b shows a polar
plot of the phase and visibility for the same data presented in Fig. 7.3a. Fig. 7.3c shows the results
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of a similar experiment in which the split BECs were held in the trap for 1.0 ms before release,
leading to dephasing and broadening of the phase distribution; we measure ∆φ = 86◦ ± 5◦ and
α = 0.4± 0.3 after the hold time.

Quantum and thermal phase fluctuations As discussed in Sec. 2.3.4, we expect ∆φ to reflect
quantum and thermal fluctuations in φ from the equilibrium value [42, 76, 74], as well as technical
fluctuation introduced by the measurement (e.g. statistical error from the fits, and stray magnetic
fields during time-of-flight) and by technical fluctuations in the double-well potential itself.

The T = 0 quantum phase fluctuations can be estimated using the number-phase uncertainly
relation ∆Nr∆φ ≥ 1 (see Sec. 2.3.3). For N atoms in a number squeezed state characterized by
squeezing parameter s ≡

√
N/∆Nr [31], the phase width due to quantum fluctuations is

∆φq =
1

∆Nr
=

s√
N
. (7.2)

Using Eq. 7.2 we can see that our measured ∆φ is much larger than the predicted value from
quantum fluctuations. For example, with N = 104 atoms in a shot-noise-limited s = 1 coherent
state, ∆φq ≈ 0.6◦. Even for a -10dB number squeezed state with N = 104, for which s =

√
10 and

∆Nr = 10, ∆φq ≈ 2◦. This is far less than our the 20◦ – 40◦ typical of our measurements, but we
note that our 20◦ single-shot phase measurement uncertainty makes this comparison difficult.

Using the two-mode model of a split BEC in a double well (see Sec. 2.3), we can estimate
the effects of thermal fluctuations on ∆φ. Assuming the Boltzmann distribution of temperatures
drives thermal phase fluctuations, we associate an energy kBT/2 to each one-dimensional classi-
cal degree of freedom in the Josephson Hamiltonian (see Eq. 2.63)

1
2
kBT =

1
2
Ej〈φ2

th〉 ⇒ (∆φ)2 ≈ 〈φ2
th〉 =

kBT

Ej
. (7.3)

where Ej is the Josephson energy describing inter-well tunnelling and assuming that phase fluc-
tuations are small (see Sec. 2.3.4). To obtain the Josephson energy Ej , we numerically solve the
3D Gross-Pitaevskii equation in our potential using a standard split-step iteration algorithm and
propagation in imaginary time. For N = 2 × 104, we estimate Ej ∼ h × 5 kHz. Using a rough
estimate of temperature for this data T ∼ 100 nK, we obtain ∆φth ∼ 40◦, which is in rough
agreement with the measured values of 20◦ to 40◦. According to this estimate, our observed
shot-to-shot relative phase fluctuations are dominated by thermal fluctuations. The estimate is
only approximate, however, since Ej is strongly dependent on the exact shape of the potential.

7.2 Measuring relative atom number

The relative atom number Nr is the complementary observable to the relative phase φ, as dis-
cussed in Sec. 2.3. One might imagine using phase measurements alone to infer the magnitude
of ∆Nr: using the number-phase uncertainty relations predicted by the two-mode BJJ model
(Eqs. 2.61 and 2.64), or using the rate of phase diffusion in the time after splitting to infer ∆Nr, as
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in [31]. We opt instead to measure the relative atom number directly, by measuring the left-hand
and right-hand double well populations after splitting using time-of-flight absorption imaging.
This allows ∆Nr to be determined independently of any model of the double-well system.

In this section, we describe the Nr measurement procedure and discuss in detail the correc-
tion for systematic measurement errors, which are dominated by fluctuations in the total atom
number, and by OSN in absorption images. The main result is the demonstration of Nr fluctu-
ations at the shot-noise level, which is presented in Sec. 7.2.5. We show that our atom number
counting methods are limited by OSN, but estimate that they are sufficiently sensitive to observe
number squeezing of as much as -14 dB.

7.2.1 Number measurement procedure

The procedure for creating and splitting the BEC is similar to that used to measure the relative
phase. The major differences are (a) that the double well separation is dramatically increased
after splitting to permit optical resolution of the left-hand and right-hand clouds, and (b) that the
two BECs are imaged at small times of flight to prevent any overlap of the expanding clouds.

Dressing and splitting The initial dressing step is identical to that of Sec. 7.1.1. To damp out
collective modes excited by the RF dressing (which would lead to increased left-right population
fluctuations), we hold the BEC in the dressed trap for up to 800 ms. Splitting is then carried out
by ramping the RF frequency ω from below to above resonance in roughly 100 ms at a rate of
200 Hz/ms.

Separation Since we cannot optically resolve the two split clouds after splitting (when their
separation is on the order of 2 to 5 µm), we apply a separation step in which the double well
separation is further increased to ∼ 160 µm using an 2.5 MHz/ms sweep of ω in 30 ms. The RF
amplitude is also increased linearly during the separation stage to prevent loss due to Landau-
Zener tunnelling between adjacent dressed states; in a dressed atom chip Z-trap, the dressed
Zeeman level spacing decreases with increasing well-separation at a fixed Brf, as described in
Sec. 6.2.3.

We verify that the atom number is maintained constant during splitting and separation. As
discussed in the next section the predicted shot-noise level in relative atom number, to which
we compare measured Nr fluctuations, depends on the total atom number N . Since we only
measure N after splitting and separation, preserving N during these two steps allows us to infer
the initial atom number using the measured left and right atom numbers N ≡ NR +NL.

7.2.2 Imaging, background OD subtraction, and atom number calculation

After separating the two clouds, the static and RF magnetic fields are switched off3 and the two
clouds are imaged with a resonant absorption probe after a 2 ms time-of-flight. The signal (probe
+ atoms), reference (probe only) and background (background light and noise only, no probe)

3The slowest of the bias coils has a 1/e time constant of 400 µs.
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Fig. 7.4: (a) A false-colour OD image in the xz plane showing the demarcation of regions (“boxes”) used for
atom number analysis. The two bright spots correspond to two atom clouds, imaged here after a 2 ms time-
of-flight, and separated by 160 µm . Region B (”background”) is chosen so as to contain none of the atomic
signal, and is used to define the mean background level ODbg (see text). Pixel-by-pixel sums of the OD in
regions L and R (“left” and “right”) are used to compute the atom numbers NL and NR. The dashed horizontal
line indicates the position of the atom chip surface. The colour bar at bottom shows the OD colour scaling for
the image. (b) Imaging geometry for split clouds.

images used to construct the OD image (see Sec. 5.4.1) are collected 410 µs apart using “Kinetics
mode” on a Pixis 1024BR CCD camera and the “2nd generation” imaging system (see Sec. 4.5).
Each exposure lasts 100 µs. The probe intensity is tuned to I ≈ 0.2 mW/cm2 (I/Isat ' 1/10)
which corresponds to roughly 190 scattered photons per atom in 100 µs.

The divided OD image is constructed according to Eq. 5.23. The left and right atom numbers
NL and NR are computed using a pixel-by-pixel sum of the OD [56] in the “L” and “R” image
regions (see Fig. 7.4a)

NL,R =
1

σ̃λ(δ)

∑
〈i,j〉

[
OD(i, j)−ODbg

]
Apix(i, j) =

Apix

σ̃λ(δ)

∑
〈i,j〉

[
OD(i, j)−ODbg

]
(7.4)

where the sums run over all pixels within the image region L or R, σ̃λ(δ) is the calibrated atomic
absorption cross-section as a function of the probe detuning δ (see Sec. 5.4.1), Apix is the area of a
single image pixel, and ODbg is the mean background OD in the divided image.

Background OD subtraction Any mismatch in probe beam intensities between the signal and
reference images will lead to a systematic offset in the background OD, and thus in the measured
atom number. To correct for this effect we construct a mean OD for the image using a background
group of pixels far from the atomic signal. The mean OD in this background region ODbg is then
subtracted on a per-pixel basis from eachOD(i, j) value, as noted Eq. 7.4. |ODbg| . 0.03 is typical
of our data. A full account of systematic errors in OD is given in Sec. 7.2.4
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Fig. 7.5: (a) An OD image ofN ∼ 7000 87Rb atoms imaged after a 2 ms time-of-flight showing square analysis
boxes of side lengths 30, 18 and 5 pixels. The peak OD is 0.25 and the Gaussian cloud widths are roughly
4 pixels (13 µm ). (b) We work in a regime in which atom number counting and variance of the relative atom
number are insensitive to the box size. A typical working box size is indicated by the vertical dashed line.
Too-small boxes lead to an underestimate of N and overestimate of Var(Nr) (see text).

Choosing analysis box sizes The analysis regions (“boxes”) in a data set are chosen indepen-
dently for “L” and “R” (see Fig. 7.4a); the same box definitions are used for all images in a given
data set. Boxes must be large enough to capture all of the atomic absorption signal without
overlapping, which would lead to double-counting atoms in the left and right clouds. Smaller
analysis boxes reduce the systematic error due to OSN, as discussed in Sec. B.2. If boxes are
chosen too small, however, then we underestimate NR and NL, and hence Nr and Var(Nr) by
ignoring the atomic signal at the edges of the clouds. Another danger of “too-small” boxes is
the conversion of shot-to-shot time-of-flight cloud position jitter into apparent relative number
fluctuations; this “noise” leads to an overestimate of Var(Nr). The effects of box size on N and
Var(Nr) are demonstrated in Fig. 7.5b, which also shows a range of box sizes for which atom
number counting and Var(Nr) are insensitive to the box size. To minimize OSN, we use the
smallest boxes in the size-insensitive regime, denoted by the vertical dashed line in the figure
for this data set. We find in general that box side lengths of roughly 5σ, where σ is the Gaussian
width of one cloud, safely capture all the atoms without spuriously increasing Var(Nr).

7.2.3 Quantifying relative number fluctuations

We repeatedly create and split a cold cloud and calculate the total and relative atom numbers

N ≡ NR +NL (7.5)

Nr ≡ NR −NL. (7.6)

in each repetition. The variance Var(Nr) over n repetitions of this process is computed directly
from the Nr ensemble data, and is compared to the variance predicted by binomial statistics.
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The statistical prediction defines the shot-noise level for ideal, non-interacting particles. The
measured fluctuations in Nr are compared to the shot-noise level using the normalized variance
Ṽ :

Ṽ ≡ Var(Nr)meas’d

Var(Nr)binom (7.7)

where

Var(Nr)binom = 4NpR(1− pR) + (2pR − 1)2σ2
N . (7.8)

Fluctuations in Nr at the shot-noise level correspond to Ṽ = 1, those larger than shot noise to
Ṽ > 1, and those smaller than shot noise to Ṽ < 1.

Shot noise from binomial statistics Eq. 7.8 is the variance in Nr from a binomial splitting
process in which each atom is imagined to have probabilities pR and 1 − pR of populating the
right-hand and left-hand clouds, respectively, after splitting (see Appendix B for the derivation).4

The mean values of the left and right atom numbers are NL = pLN andNR = pRN , respectively.
Eq. 7.8 reduces to the more recognizable binomial shot noise expression Var(Nr) = N in the case
of perfectly “balanced splitting”, i.e when pR = 1/2 and NR = NL.

The total atom number N is allowed to fluctuate over the n repetitions of the experiment
with a variance Var(N) = σ2

N in the derivation of Eq. 7.8; in each of the n repetitions, N is chosen
from a Gaussian probability distribution of mean N and width σN . Eq. 7.8 demonstrates that
for imbalanced splitting (pR 6= 1

2 ), fluctuations in N add to the observed variance in Nr. Thus,
it is important to include N fluctuations in the statistical derivation of the shot-noise level. This
allows us to identify actual fluctuations in Nr independent of fluctuations in N , and ensures that
Ṽ = 1 corresponds to true shot noise in Nr.

The quantities in Eq. 7.7 are all calculated directly from the NR, NL data according to the

4Eq. 7.8 is the “N-analysis” (as it is known in the lab) corrected to account for non-zeroN fluctuations. Appendix B
also describes and evaluates two alternate analysis methods: the “p-analysis”, and the “Heidelberg analysis”, which
is described in the supplementary material of [43]. All three methods produce identical results for pR = 1/2. The
three methods agree to well within statistical uncertainties for our data, which has pR typically between 0.47 and 0.53.
The ”N-analysis” is used here since it is the simplest conceptually, and easily applied to “blanks” analysis.
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following formulae (the index i = 1..n denotes data from the ith splitting repetition):

Var(Nr)meas’d =
1
n

n∑
i=1

(N (i)
r −N r)2, where (7.9)

N r =
1
n

n∑
i=1

(N (i)
R −N

(i)
L ); (7.10)

N =
1
n

n∑
i=1

(N (i)
R +N

(i)
L ); (7.11)

pR ≡
〈
NR

N

〉
=

1
n

n∑
i=1

N
(i)
R

N
(i)
R +N

(i)
L

; (7.12)

σ2
N = Var(N) =

1
n

n∑
i=1

(N (i) −N)2. (7.13)

7.2.4 Correcting for systematic errors in OD – “blanks” analysis

Systematic errors in the measurement of absorption images and the creation of OD images can
result in spurious contributions to the measured atom number and variance Var(Nr). We divide
the dominant systematic imaging effects in our experiment into three categories:

1. OSN in the measured probe beam intensity

2. a non-zero background OD resulting from mismatched probe beam intensity between the
signal and reference images

3. residual fringes in the OD image due to mechanical vibrations in the imaging system or
vacuum chamber during imaging, diffraction lines in the probe beam scattered from the
atom chip surface, aberrations introduced by the imaging optics, or dust and other debris
on optical surfaces.

Of these, only OSN cannot be eliminated; it is a fundamental noise which would exist in any
apparatus or measurement procedure, assuming classical states of light are used [40]. Even with
perfectly stabilized probe beam intensities and mechanically rigid imaging optics, shot noise in
the photodetection process sets a finite lower bound on the measured value of Var(Nr). A num-
ber of probe photonsNph incident on a CCD camera generates a certain number of photoelectrons
Npe = ηqeNph, where ηqe is the camera’s quantum efficiency. Since the absorption of a photon
and the creation of a photoelectron is a quantized and probabilistic process, we expect Poissonian
image-to-image shot noise fluctuations

√
Npe in the photoelectron number [40]. CCD read noise

and dark counts contribute to the technical noise at the level of ∼ 1% of OSN (see Sec. B.2).
We correct for these statistical OD effects as follows. The effect of unequal signal and ref-

erence probe intensities is compensated by subtracting a background OD offset from the OD
in each pixel, for each image, as described in Sec. 7.2.2. Fringes in the OD are suppressed tak-
ing advantage of the rapid multiple exposures possible with our Pixis 1024BR CCD camera (see
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Sec 4.5.2), which was purchased specifically for its low read noise and rapid imaging capabili-
ties. The remaining spurious contribution to Var(Nr) – which is now dominated by OSN, after
hard work at suppressing other technical fluctuations in our images – is quantified by analyzing
images collected without atoms, and subtracted from the measured relative number variance as
described in the following paragraph.

Blanks correction We identify two contributions to the measured normalized variance Var(Nr)meas’d

described in Secs. 7.2.2 and 7.2.3: the first is our target signal from actual relative atomic popu-
lation fluctuations during splitting, which we denote Var(Nr)∗; the second is the spurious con-
tribution of the systematic OD effects described in the previous paragraph, which we denote
Var(Nr)blanks [158]. We assume that the two effects are uncorrelated. Since OSN, OD offsets and
OD fringes are a function of the probe beam, imaging optics and CCD camera, they are present in
images taken with or without atoms present. Therefore, we quantify these effects by examining
OD images constructed according to Eq. 5.23 without atoms present – “blanks” images. We cal-
culate the spurious contribution to the normalized variance Var(Nr)blanks by analyzing a data set
of “blanks” images using the same analysis regions and procedure used for with-atoms images
(see Sec. 7.2.2 and 7.4).

Because these two contributions to Var(Nr)meas’d are uncorrelated, their variances can be
added and subtracted directly. We use this property to isolate the target signal Var(Nr)∗ from
measured signal Var(Nr)meas’d

Var(Nr)∗ = Var(Nr)meas’d − Var(Nr)blanks (7.14)

and use it to define the corrected normalized variance

Ṽ ∗ ≡ Var(Nr)∗

4NpR(1− pR) + (2pR − 1)2σ2
N

≡ Ṽ meas’d − Ṽ blanks. (7.15)

Var(Nr)meas’d, N , pR and σ2
N = Var(N) are all computed directly from “with-atoms” images

using Eqs. 7.9 to 7.13; Var(Nr)blanks is constructed according to Eq. 7.9 directly from “blanks” im-
ages. All corrected normalized atom number variances are computed according to Eq. 7.15. This
method allows the spurious systematic contributions to the measured atom number variance –
due to technical measurement noise and/or any noise introduced by the imaging processing and
analysis software – to be subtracted in a single step.

Rapid imaging for OD fringe suppression We minimize technical noise from fringes in the
OD image by minimizing the time between the signal and reference images ∆timg. In principle,
any fringes in a single-shot image of the probe beam (due to partial reflections from surfaces of
imaging optics, aberrations or other sources) should be common to both signal and references
images, and thus be “divided out” in the OD construction. In practice, mechanical vibrations
of imaging optics and other elements in the probe beam path on timescales faster than ∆timg

can result in imperfect cancellation of these effects in the OD, leading to residual fringes in OD
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Fig. 7.6: (a) The standard deviation of the spurious relative atom number due to blanks noise (circles) ap-
proaches that calculated for OSN (squares) as the time ∆timg between signal and reference absorption images
is decreased. We work at ∆timg = 420 µs, at which the contribution of OSN to the blanks variance is roughly
60% (see text). Error bars are based on uncertainties in OD due to OSN from Eq. B.54. These data assume a
C2 = 1.7 atom number calibration factor (see Sec. 5.4.3.1). (b) After the 100 µs signal image exposure, 87Rb
atoms in |F = 2,mF = 2〉 are depumped into the dark state |1, 1〉, then re-imaged with the σ+, |2, 2〉 ↔ |3, 3〉
imaging probe (see text). The number of atoms remaining in |2, 2〉 is shown as a function of the depump pulse
duration at a fixed intensity. There is no discernible atomic signal after 420 µs (dashed line) when the reference
image is collected. An exponential fit (solid line) gives a 1/e lifetime of 68 µs.

images.
The benefits of rapid imaging are demonstrated in Fig.7.6a, which shows the spurious contri-

bution to the standard deviation ofNr measured in blanks data as a function of ∆timg.5 The figure
also shows the calculated standard deviation of Nr due to OSN (OSN) for each data set, demon-
strating that the standard deviation of Nr from blanks images approaches that calculated from
OSN as ∆timg is reduced. At our working ∆timg = 420 µs for these data, Var(Nr)blanks = (77±14)2

and Var(Nr)OSN ' (59 ± 9)2, which roughly corresponds to an 60% contribution of OSN to the
total atom number variance. Error bars are statistical. Each ∆timg data point was computed from
a data set of 66 to 70 blank images collected with a probe intensity I ≈ Isat/10. The contribution
of OSN to the measured atom number variance is discussed in further detail in Sec. B.2.

Depumping to facilitate rapid imaging The rate of free-fall of the atomic cloud limits the min-
imum time between signal and reference images ∆timg in regular absorption imaging; a proper
“no-atoms” reference image requires waiting for the falling cloud to completely exit the imaging
field of view before exposing the reference image. With our imaging field of view of 416 µm ×
3328 µm the free-fall wait time after 2 ms time-of-flight is 9 ms. Mechanical vibrations of imaging
optics, the CCD camera and the atom chip on timescales faster than 9 ms result in fringes in the

5To be clear, ∆timg is the time elapsed between the end of the 100 µs signal image exposure and the beginning of
the 100 µs reference image exposure.
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divided OD image.
We eliminate the free-fall wait-time requirement by optically depumping the atoms into a

dark state immediately after the signal image is collected. A weak depumping beam tuned to
|F = 2,mF = 2〉 ↔ |F ′ = 2,m′F = 2〉 in 87Rb is applied along x in the time after the sig-
nal image exposure ends and before the reference image exposure begins. Atoms populate the
|F = 1,mF = 1〉 dark ground state – dark with respect to the imaging probe beam polarized σ+

on the 87Rb cycling transition – by spontaneous decay from the |F ′ = 2,m′F = 2〉 excited state.
The depumping beam is actually polarized σ+ with respect to the x direction, but the π com-
ponent of this beam with respect to the imaging quantization axis (defined by a weak magnetic
bias field along y during this time – see Sec. 5.4.1) provides sufficient coupling to transfer the
population into the |1, 1〉 dark state. Fig. 7.6b shows the effect of the depumping beam on the
|2, 2〉 population as function of time.

With the atoms having been made to “disappear” in this way, ∆timg can be reduced to a
few hundred microseconds, dramatically reducing the amplitude of fringes in the OD images.
After implementing the depumping technique the practical lower bound on ∆timg becomes the
CCD shift rate. Following the 100 µs exposure of the signal image (with atoms), the Pixis camera
should take 128 × 3.2 µs = 409.6 µs CCD shift time before exposing the subsequent image. We
find that ∆timg = 420 µs is the smallest useable value, and use it for all imaging. The atoms are
depumped during this shift time.

7.2.5 Results: shot-noise level number fluctuations

Using the measurement and analysis methods described in Secs. 7.2.3 and 7.2.4, we observe
relative atom number fluctuations at the shot-noise level over successive repetitions of 87Rb BEC
splitting. Fig. 7.7 shows an example shot noise data set of left and right atom numbers NL and
NR, and the resulting total and relative atom numbers N = NR +NL and Nr = NR −NL.

Table 7.1 summarizes the “measured”, “blanks” and ultimate “blanks-corrected” fluctuations
for this data set. The first two rows of Table 7.1 show the measured variance and standard devi-
ation of Nr; the third row shows the calculated OSN contribution in “blanks” data; the last three
rows show the normalized variance, and the statistical and systematic uncertainties in the blanks-
corrected normalized variance. The most important values in the table are the blanks-corrected
normalized variance Ṽ ∗ and its associated statistical and systematic uncertainties, which are
shown in the lower-right hand corner.

The sensitivity of our Var(Nr) measurements is limited by technical optical noise, which
itself is dominated by OSN, as described in Sec. 7.2.4. Since we subtract the blanks variance
Var(Nr)blanks from the measured variance Var(Nr)meas’d, the uncertainty in the blanks-corrected
variance Var(Nr)∗, and ultimately the normalized, blanks-corrected variance Ṽ ∗, depends on the
uncertainties δVar(Nr)blanks and δVar(Nr)meas’d. We summarize these uncertainties here, noting
that further detail is available in Appendix B.
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Fig. 7.7: Example raw data showing atom number fluctuations at the shot noise level. This data set has
N ' 6851, Var(N) ' (421)2, pR = 0.486, calculated from na = 56 “with-atoms” images. All 56 images were
collected consecutively, each using an experimental cycle lasting roughly 30 s. Thus, the entire data set was
collected in roughly 28 minutes.

measured blanks blanks-

(with atoms) (no atoms) corrected

measured Nr variance Var(Nr)meas’d = 13230 Var(Nr)blanks = 4811 Var(Nr)∗ = 8419

measured Nr std. dev. σmeas’d
Nr

= 115.0 σblanks
Nr

= 69.4 σ∗Nr = 91.8

calculated OSN Nr variance Var(Nr)OSN = (53.9)2

normalized variance Ṽ meas’d = 1.92 Ṽ blanks = 0.69 Ṽ ∗ = 1.22

statistical uncertainty δṼ ∗ = 0.37

systematic uncertainty δṼ ∗ = 0.2

Tab. 7.1: Nr error analysis summary of typical shot-noise-level data set, for which Ṽ ∼ 1 would be expected.
This data set has pR = 0.486, N ' 6851, σN ' 421, na = 56 “with-atoms” images, nb = 141 blanks
images. The statistical error is dominated by na, and can be decreased by increasing na (see Eq. B.1.4).
The systematic uncertainty δṼ ∗ reflects the 20% uncertainties in the the total atom number calibration factor
C2 = 1.7± 0.3 (see Sec. 5.4.3.1).
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Systematic error The systematic error in Ṽ ∗ reflects the uncertainty in the atom number calibra-
tion factor C2 = 1.7± 0.3, and adds a ∼ 20% systematic uncertainty to Ṽ ∗. The C2 measurement
is based on a comparison of Tc measured with a 87Rb BEC to the value predicted for N atoms
(see Sec. 5.4.3.1).

Statistical error The net statistical uncertainty δṼ ∗ is typically between 0.3 to 0.5 for our data,
roughly twice the systematic uncertainty. Statistical uncertainties are computed using standard
error propagation techniques (see Eq. B.38 and Sec. B.1.4). For roughly balanced splitting data
(pR ≈ 1/2), the uncertainty in the blanks-corrected variance δVar(Nr)∗ is dominated by (a) the
standard error in the variances Var(Nr)meas’d and Var(Nr)blanks

δVar(Nr)meas’d = Var(Nr)meas’d
√

2
na − 1

and δVar(Nr)blanks = Var(Nr)blanks,

√
2

nb − 1
(7.16)

and (b) the standard error on in the mean total atom number

δN =
σN√
na − 1

(7.17)

[159, 156]. na is the number of “with-atoms” images; nb is the number of “blanks” images. We
typically observe atom number fluctuations about a stable mean value (N r ≈ 0) over 40 – 80
consecutive experimental repetitions (roughly 15 – 30 minutes in real time) within a larger data
set. Fig. 7.7 shows raw data from a single 56-repetition data set. Longer contiguous data sets are
susceptible to slow experimental drifts in both N and Var(Nr). Blanks data are collected using
shortened experimental cycle times6, and are thus much less susceptible to long-term drift. We
typically use nb = 100 – 150 images, which is enough to reduce their statistical contribution δṼ ∗

below 1%. Statistical uncertainties in the atom number data can be reduced by using larger with-
atoms data sets – either by improving experimental stability on the 0.5 hr to 2 hr timescale or by
amalgamating data sets as in [43].

Sensitivity and detection limits We assume that the measured variance is always larger than
blanks variance: Var(Nr)meas’d ≥ Var(Nr)blanks (see Sec. 7.2.4). The smallest detectable relative
atom number variance is

Var(Nr)∗min = 0± δVar(Nr)min (7.18)

where the uncertainty δVar(Nr)min represents the detection limit of atom number variance in
our experiment. Using the data from Tab. 7.1 and setting Var(Nr)meas’d ≡ Var(Nr)blanks we
obtain δVar(Nr)min = 375. This corresponds to a relative atom number fluctuation (standard
deviation) of

√
375 ' 20 atoms. Thus, the minimum detectable number squeezing factor s,

assuming balanced splitting with a variance of 375 and a total atom number of N = 104, is

6Blanks data require only the imaging portion of the experimental apparatus. Eliminating the trapping and cooling
stages of the experimental cycle to collect blanks images greatly reduces the cycle time.
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s =
√
N/Var(Nr) ' 5. This corresponds to roughly -14 dB of number variance squeezing. As-

suming that technical optical noise is completely dominated by OSN, Var(Nr)meas’d ≡ Var(Nr)blanks ≡
Var(Nr)OSN = 31.7 from Tab. 7.1 gives δVar(Nr)min = 225 and s ' 7, roughly -16.5 dB of squeez-
ing. As noted in Sec. B.2.2.1, the OSN contribution can always be reduced by reducing the anal-
ysis box size to increase the atom number sensitivity.

To summarize, although we so far have not observed repeatable, robust sub-shot-noise fluctu-
ations in Nr, these estimates show that sub-shot-noise fluctuations are well within the sensitivity
of our measurement and analysis methods.

7.3 Outlook: prospects for observing number squeezing

In Sec. 7.2.1, we demonstrate relative atom number fluctuations at the shot-noise level in a split
BEC, and show that our number counting method is sensitive to Nr fluctuations well below the
shot-noise level. Though we expect shot noise fluctuations in Nr in a rapidly split BEC, the two-
mode BJJ model of the system (discussed in Sec. 2.3) predicts sub-shot-noise Nr fluctuations for
adiabatic splitting. This prediction has recently been verified experimentally with the observa-
tion of number squeezing in split BECs in the Ketterle [31] and Oberthaler [43] groups. In this
section we explore the prospects for observing number squeezing in future work in our experi-
ment.

Number squeezing by adiabatic splitting Number squeezing arises from nonlinear repulsive
atom-atom interactions during the splitting process, which favour states with smaller relative
atom number fluctuations [63, 157, 79]. At the beginning of splitting, we imagine the system to
be in the strong tunnelling Josephson regime of the two-mode BJJ model, which is characterized
byEj/Ec � N , whereEj is the “Josephson tunnelling” energy, andEc is the “on-site interaction”
or “charging” energy (see Sec. 2.3). During splitting, inter-well tunnelling and Ej are reduced by
increasing the potential barrier and double-well separation. In particular, if the wells are sepa-
rated linearly in time, the two-mode model predicts an exponential decrease of Ej and a roughly
constant Ec and chemical potential µ during splitting [79]. Since the relative number variance is
given by (∆n)2 = (∆Nr)2/4 =

√
Ej/Ec in the Josephson regime, we expect decreasing relative

number fluctuations as the BEC is split [157, 153].

Experimental realizations Jo et al. [31] report -20 dB of relative number squeezing7 from an
indirect measurement based on the rate of phase diffusion of a split BEC. Their experimental ge-
ometry is very similar to ours, involving the splitting of an anisotropic BEC using RF potentials.
It remains unclear whether or how this result can be reconciled with the two-mode BJJ model,
since their temperature range (they quote Tc ∼ 1 µK and µ ∼ kB×300 µK) would suggest thermal
atom number fluctuations well above their measurements (see below). Estève et al. [43] report

7We report the amount of squeezing in variance terms: “dB of squeezing” ≡ −10 log [N/Var(Nr)]. -20 dB of
squeezing corresponds to a “squeezing factor” s ≡

p
N/Var(Nr) = 10 [31].
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a more modest -3 dB of squeezing in a more isotropic, all-optical splitting experiment, and use
direct atom number counting similar to the methods we described in Sec. 7.2.1.

Estimates for our system We estimate the expected amount of number squeezing in our ex-
periment using recent two-mode treatments the splitting process [79, 153]. For slowly varying
Ej , the system can adiabatically evolve into a final state with sub-shot-noise fluctuations in Nr

[63, 157, 79, 153]. However, as tunnelling and Ej decrease with increasing well separation, the
splitting process will eventually become non-adiabatic; the two-mode level-separation vanishes
as Ej → 0. Following Leggett and Sols [36, 71], Burkov et al. [153] estimate a final relative
number rms fluctuation in the fully split system of

∆Nr =

√
5N

4µτsplit
(7.19)

in the Thomas-Fermi regime for a BEC initially in a harmonic trap, where τsplit is the splitting
time. Eq. 7.19 predicts -20 dB of squeezing from our most recent experimental parameters (N =
5000 and τsplit = 20 ms), which is well below our shot-noise-level observations. However, the
prediction of Eq. 7.19 is supported by the results of Jo et al. [31], as noted in [153].

The role of finite temperatures – a continuing investigation One possible explanation for this
discrepancy is the effect of thermal fluctuations on the observed variance of Nr at finite tem-
peratures. Assigning an energy kBT/2 to each degree of freedom of the harmonic oscillator BJJ
Hamiltonian of Eq. 2.62 results in

Ṽth =
5kBT

2µ
, (7.20)

which expresses the expected normalized variance of relative atom number fluctuations due to
thermal excitations of the BJJ in terms of the temperature T and the chemical potential µ (in the
Thomas-Fermi regime, for a BEC initially in a harmonic trap). Using parameters typical of our
experiment (N = 5000, µ = h × 1 kHz, and Tc ≈ 250 nK), Eq. 7.20 implies that temperatures
T . 20 nK are required to observe sub-shot-noise fluctuations with Ṽ . 1. We measure initial
BEC temperatures in the single harmonic trap before splitting of T ∼ 80 nK – 120 nK, which, if
taken as the BEC temperatures during splitting, would imply normalized variances of Ṽth ∼ 4
– 6. By contrast, we observe Ṽ ∼ 1. Our data might be explained by the presence of adiabatic
cooling as the single well is deformed into the double well during splitting, as suggested in [43].
This effect could result in temperatures much below the initial 80 nK – 120 nK values during
splitting, and might thus reduce thermal fluctuations enough to allow shot-noise or sub-shot-
noise fluctuations in Nr .

Looking ahead The role of finite temperature fluctuations in BEC splitting experiments contin-
ues to be a topic of interest in the field, particularly in light of the results of [31] and [43]. Because
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of the contrasting geometries of these two experiments – strongly anisotropic vs. isotropic dou-
ble wells – they also raise questions about the role of dimensionality in adiabatic BEC splitting,
and about the validity of the two-mode model in strongly anisotropic potentials. Our experi-
ment combines the geometry and splitting methods of [31] with the direct atom number detec-
tion methods of [43]. These aspects of our experiment, combined with the relative number and
relative phase measurement tool developed in this thesis, make our experiment well suited to
contributing to this ongoing discussion.

7.4 Summary

This chapter describes the dynamic splitting of a 87Rb BEC confined to an RF double-well po-
tential. The RF splitting technique allows the inter-well tunnelling strength to be tuned over a
wide range by changing the potential barrier height and well separation. The focus of the work is
the measurement of fluctuations in the relative atom number and relative phase over successive
experimental repetitions of the splitting process. The relative atom number Nr is the difference
in the right-hand and left-hand well populations, which are measured using resonant absorption
imaging at short times of flight. The relative phase φ is measured from the interference pattern
formed by the two overlapping clouds in long times of flight. The main results of the chapter are
(a) the demonstration of a non-random distribution of relative phases, which suggests coherent
splitting, and (b) direct measurements of atom number fluctuations at the shot-noise level. We
show that our atom number counting methods are limited by OSN, but estimate that they are
nevertheless sensitive enough to observe number squeezing of as much as -14 dB. The number
and phase measurement tools described in this chapter lay the foundation for future investiga-
tions of number squeezing in BEC splitting experiments, particularly the role of temperature and
trap geometry on number and phase fluctuations in the double well system.
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Conclusions and outlook

This thesis describes experiments with quantum degenerate Fermi and Bose gases confined to
static and dynamic micromagnetic atom chip traps. The experimental apparatus was designed
and built with the specific goal of achieving a DFG of 40K on an atom chip via sympathetic
cooling with 87Rb. With this relatively simple, single-chamber apparatus we first achieved BEC
and DFG in 2005. These were the first DFG on an atom chip in the ultra-cold atoms research
community, and the third BEC in Canada. Having established dual-species quantum degeneracy,
we implemented radio-frequency dressed magnetic double-well potentials for 87Rb and 40K. We
established techniques for measuring the relative atom number and relative phase of a BEC in a
dynamically split double-well potential. Here we summarize and comment on the main results
of this thesis, and close with outlines of new research directions stemming from this work.

DFG on an atom chip The union of Fermi gases and atom chip technology is an important
step forward in degenerate quantum gas research. We demonstrate for the first time that a DFG
can be produced via sympathetic cooling with a BEC using a single-chamber apparatus. The
strong confinement and large inter-species collision rate afforded by the micromagnetic atom
chip trap permits a more rapid sympathetic radio-frequency evaporation to quantum degener-
acy than has so far been possible in magnetic traps [27]. Our approach represents a significant
technical achievement in that it obviates the need for the minutes-long vacuum lifetimes, multi-
chamber vacuum systems and Zeeman slowers required in conventional DFG experiments [50].
We also demonstrate dramatically shortened experimental cycle times from atomic vapour to
DFG, which is a point of practical value in day-to-day laboratory research.

Using a DFG/BEC mixture we studied 87Rb-40K cross-thermalization during our evapora-
tion. We observed a sharp reduction in the cross-section at the high-temperature start of our
sympathetic evaporation, which we attribute to the Ramsauer-Townsend effect [27, 45, 33]. We
demonstrate that the high-temperature Ramsauer-Townsend reduction in the 40K-87Rb elastic
scattering cross-section is an important aspect of sympathetic cooling in 40K-87Rb mixtures.
Despite the reduced evaporation efficiency at high temperatures, we demonstrate sympathetic
evaporation to 40K DFG at temperatures as low as T ≈ 0.1TF in as little as six seconds, and
observe Fermi pressure in the time-of-flight expansion of the gas upon its release from the chip
trap.
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RF double-well potentials for BEC and DFG We have implemented radio-frequency dressed
double-well potentials for fermionic 40K, bosonic 87Rb and 40K-87Rb mixtures. We demonstrate
for the first time that the RF-dressed potentials are species-selective, permitting the formation of
simultaneous 87Rb double-well and 40K single-well potentials in a 40K-87Rb mixture, and vise
versa. Using a dynamically split BEC, we develop measurement and analysis techniques to mea-
sure fluctuations in the relative atom number and relative phase over many experimental realiza-
tions, based on direct atom number counting and matter wave interference. These measurements
can be used to characterize the dynamics of the split BEC system. We observe shot-noise level
fluctuations in the relative atom number using time-of-flight absorption imaging. These mea-
surement tools lay the foundation for future investigations of thermal and quantum fluctuations
in this system, and of and matter wave coherence in BEC and DFG systems.

Looking ahead, the combination of Bose and Fermi degeneracy, double-well atom chip poten-
tials, and number and phase measurement tools suggest several new research directions.

Number squeezing by dynamic splitting of a BEC Two recent experiments have reported rela-
tive number squeezing in a dynamically split BEC [43, 31]. The first [31] uses a chip-based
anisotropic RF double well very similar to the ones described in this thesis, but their mea-
surement procedure is based on phase measurements alone. By measuring the rate of phase
diffusion in the split BEC, they infer a number squeezing factor much larger than that
predicted by the two-mode BJJ model. The second experiment [43] uses nearly isotropic
optical double-well potentials, and reports much more modest number squeezing. These
two contrasting results raise questions about the validity of the two-mode Bose Josephson
junction model in strongly anisotropic systems, and the precise roles of trap geometry and
finite temperature fluctuations in producing number squeezed states in this system. The
RF double well and measurement tools described in this thesis combine elements of both
experiments, and are thus an excellent fit for this problem. We measure both number and
phase directly as in [43], but work with strongly anisotropic BECs which are split along
their narrow, transverse axis as in [31].

Bose-Fermi mixtures and double-well potentials The species selectivity of RF-dressed double-
well potentials may be useful in studying boson-fermion interactions in ultra-cold atomic
mixtures. The strong attractive interaction between 40K and 87Rb, known to impede sym-
pathetic cooling in 40K–87Rb mixtures, depends on the inter-species collision rate, and
hence the 40K and 87Rb number densities [22, 122, 26, 27]. Adiabatic RF manipulation could
be used to reduce the 87Rb peak density by decompressing them′(Rb)F = 2 effective potential
at the centre of the trap during sympathetic RF evaporation. Ideally, the RF-dressed colli-
sion rate would be small enough to avoid a density-driven collapse, but still large enough
to maintain good inter-species rethermalization for sympathetic cooling.

These potentials are also amenable to the study of phase coherence in the 40K–87Rb mixture
as the potential barrier is raised. Recent studies of phase-coherent RF splitting of 87Rb
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BECs on atom chips [30, 31, 29] and in optical traps [77, 43] have focused on interactions
and tunnelling. An interesting extension of this work would be to assess the effects of a
background, unsplit fermion “bath” on the tunnelling dynamics and coherence properties
of this system.

Fermion splitting statistics To our knowledge, we are the first group to apply double-well po-
tentials to an ideal Fermi gas. In a BEC, sub-Poissonian relative atom number fluctuations
are made possible by repulsive atom-atom interactions. The non-interacting ideal Fermi
gas may also exhibit sub-Poissonian relative number statistics during splitting as result of
spatial antibunching [155]. Spatial bunching in bosons has been observed in an anisotropic
Bose gas above Tc using in-situ density correlation measurements [160]. Double well poten-
tials and dynamic splitting are alternative methods which may be used to explore number
fluctuations in Fermi systems [161, 162, 155], and coherence effects in multi-component
Fermi gases [163, 164].



A
Magnetic field of finite-width and finite-length

wire segments

This appendix presents derivations of the expressions used to calculate magnetic fields generated
by atom chip wires. Sec. A.1 presents the expression for an infinitesimally thin wire segment of
finite length. Sec. A.2 builds on this to arrive at the full expression for the finite-width, finite-
length wire segment. The magnetic field models of Ch. 3 build up a total Z-wire magnetic field
by summing the contributions of individual straight wire segments according to the expressions
derived here.

A.1 Finite length, infinitesimal width

Consider a wire segment of zero width and height, but of finite length 2L as shown in, Fig. A.1.
The wire segment bears a DC current I in the +x direction. The vector r connects a given point on
the wire segment to the observation point P. According to the Biot-Savart formula (see Eq. 3.10)
the magnitude of the differential magnetic field dB at P is

dB =
µ0I

4π
d` r sinφ

r3
=
µ0I

4π
dx cosα

r2
, (A.1)

evaluating the cross product and using a change of variables. From the diagram, α = φ − π/2,
x = r sinα and dx = r cosαdα. Also z = r cosα and so dx = z dα. The magnitude of the total
field B = |B| in the yz plane may now be evaluated by integrating dB with respect to α between
α1 and α2:

B =
∫ α2

α1

dB =
µ0Iz

4πr2

(∫ α2

0
dα cosα +

∫ 0

α1

dα cosα
)

=
µ0Iz

4πr2

(
sinα1 − sinα2

)
. (A.2)

Generalizing to a wire segment parallel to the x axis, but along the line y = R in the xy
plane, as shown in Fig. A.2, we can now re-write Eq. A.2 in terms of the perpendicular distance
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Fig. A.1: Calculation of the magnetic field at point P due to current in wire segment of length 2L can be carried
out by integrating the Biot-Savart formula over the limits α ∈ [α1, α2].

d =
√

(y −R)2 + z2 from the line y = R to the point P:

B =
µ0I

4πd
(

sinα2 − sinα1

)
. (A.3)

Using Eq. A.3, and recognizing that

sinα2 =
x+ L√

(x+ L)2 + d2
and sinα1 =

x− L√
(x− L)2 + d2

(A.4)

from Fig. A.2, the full expressions for the magnetic field and field amplitude at P = (x, y, z) may
be written as [165]

B(x, y, z) =
µ0I

4πd

(
x+ L√

d2 + (x+ L)2
− x− L√

d2 + (x− L)2

)(
−z
d
y +

y −R
d

z
)

(A.5)

B(x, y, z) =
µ0I

4πd

(
x+ L√

d2 + (x+ L)2
− x− L√

d2 + (x− L)2

)
. (A.6)

A.2 Finite length, finite width

The magnetic field due to a wire segment of finite length and width is obtained by summing
the contributions of many parallel, infinitesimally thin wire segments spread across the segment
width w, and normalizing the total current to be nominal value I . To build up an expression for
the total field of a wire of thickness w, we integrate Eq. A.5 with respect to R from R1 = R− w/2
to R2 = R+ w/2, and normalize the integration by the factor

∫ R2
R1 dR = w. The x component of
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Fig. A.2: Magnetic field at point P due to current in a wire segment of length 2L running parallel to the x axis
at y = R.

the field Bx = 0. The y-component of the field is:

By =
1
w

∫ R2

R1
dR

µ0I

4π

(
L+ x√

d2 + (x+ L)2
+

L− x√
d2 + (L− x)2

)(
− z

(y −R)2 + z2

)
= −µ0I

4π
1
w

{
− tan−1

(
(L− x)(R− w

2 − y)

z
√

(L− x)2 + (R− y)2 + z2

)
− tan−1

(
(L+ x)(R− w

2 − y)

z
√

(L+ x)2 + (R− y)2 + z2

)
+ tan−1

(
(L− x)(R+ w

2 − y)

z
√

(L− x)2 + (R− y)2 + z2

)
+ tan−1

(
(L+ x)(R+ w

2 − y)

z
√

(L+ x)2 + (R− y)2 + z2

)}
. (A.7)

The z-component of the field is:

Bz =
1
w

∫ R2

R1
dR

µ0I

4π

(
L+ x√

d2 + (x+ L)2
+

L− x√
d2 + (L− x)2

)(
y −R

(y −R)2 + z2

)
=

µ0I

4π
1
w

{
− tanh−1

(√
(L− x)2 + (R− w

2 − y)2 + z2

L− x

)
− tanh−1

(√
(L+ x)2 + (R− w

2 − y)2 + z2

L+ x

)
+ tanh−1

(√
(L− x)2 + (R+ w

2 − y)2 + z2

L− x

)
+ tanh−1

(√
(L+ x)2 + (R+ w

2 − y)2 + z2

L+ x

)}
. (A.8)
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Using these expressions, the total magnetic field and the and field magnitude at point P =
(x, y, z) can be calculated according to

Bthick−fin.(x, y, z) = (0, By, Bz), and (A.9)

Bthick−fin.(x, y, z) =
√

Bthick−fin.(x, y, z) ·Bthick−fin.(x, y, z). (A.10)

These full expressions are quite cumbersome and have been omitted here. Analytic calculations
are implemented using Eqs. A.7 and A.8 directly.

A.3 A simplified expression along z

A expression for the magnetic field amplitude as a function of z of an infinitely long wire of
width w is given in [14, 166]:

B(z) =
µ0

π

I

w
cot−1

(
2z
w

)
. (A.11)

Eq. A.11 corresponds to a special case of the general expressions derived in this appendix. Setting
x = 0, y = 0 and R = 0 in Eq. A.7 yields

By = −µ0I

πw
tan−1

(
Lw/2

z
√
L2 + z2

)
and Bz = 0. (A.12)

Taking the limit L→∞ for an infinitely long wire,

B(0, 0, z) = By →
µ0

π

I

w
tan−1

( w
2z

)
=
µ0

π

I

w
cot−1

(
2z
w

)
, (A.13)

in agreement with Eq. A.11. This leads to an w-dependent expression for the trap position z0,
analogous to Eq. 3.15:

z0 =
w

2

[
tan

(
wπBbias

µ0I

)]−1

. (A.14)
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Analysis of relative atom number fluctuations

This appendix describes in detail the analysis of relative atom number fluctuations in the RF
double well splitting experiments of Ch. 7. The main results are (a) the development of a binomial
model of splitting for distinguishable, non-interacting particles, which defines the “shot-noise”
level, and (b) an analysis of optical shot noise (OSN) in our imaging, and its role in limiting the
sensitivity of atom number counting in these experiments.

B.1 Atom shot noise and binomial splitting statistics

In this section we calculate the relative number fluctuations in an idealized splitting experiment
assuming non-interacting classical particles and binomial splitting statistics. In particular, we
focus on accounting for shot-to-shot fluctuations in the total atom number N so that fluctuations
in Nr can be accurately estimated with respect to shot noise. The results of the calculations
presented here are implemented in data analysis described in Sec. 7.2.

We assume a lossless splitting process in which the total atom number N and relative atom
number Nr are defined by

N ≡ NR +NL (B.1)

Nr ≡ NR −NL (B.2)

in each repetition. The variance Var(Nr) over n repetitions of this process is computed directly
from the Nr ensemble data, and compared to the variance predicted by binomial statistics. The
statistical prediction defines the shot-noise level for ideal, non-interacting particles. The mea-
sured fluctuations in Nr are compared to the shot-noise level by introducing a the normalized
variance Ṽ :

Ṽ ≡ Var(Nr)meas’d

Var(Nr)binom . (B.3)

Fluctuations exceeding the shot-noise level correspond to Ṽ > 1, while those smaller than shot
noise correspond to Ṽ < 1.
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B.1.1 Binomial splitting with fixed N

We first consider N atoms at the input of an idealized atomic “beam-splitter”, and assume that
each atom is “beam-split” independently of the others. We imagine that each atom exits the
beam-splitter in one of two output ports, “left” (L) and “right” (R). After allN atoms have passed
through the beam-splitter, the left and right populations are NL and NR, respectively.

The beam-splitter is assumed to have the following properties:

• the fixed, a priori probabilities that a single atom exits through the left and right outputs
are pL and pR, respectively;

• pL and pR are independent of N ;

• the beam-splitting process is lossless and conserves the total atom number, so that

pL + pR = 1 (B.4)

NL +NR = N. (B.5)

In the language of statistics, the N atoms represent N “independent trials” of the statistical
splitting process. The act of sending N atoms through the beam-splitter constitutes a single
“experiment”. If we define a “success” event as a single atom exiting from output port k (k = L,R

for left and right), then the probability that Nk atoms exit from the k output port is given by
binomial distribution [156, 159]:

P (Nk successes in N trials) = BN,pk(Nk) =
(
N

Nk

)
pNkk (1− pk)N−Nk . (B.6)

If the splitting experiment is repeated n times, with exactlyN atoms in each repetition, we expect
a binomial distribution of NL, NR and Nr.

The binomial splitting model presented above is a useful starting point, but suffers from three
conceptual flaws:

1. In reality, the total atom number N is not constant from experiment to experiment (“shot-
to-shot”), but rather fluctuates randomly with a standard deviation of roughly 0.15N as
each cloud is freshly prepared for splitting.

2. The a priori probabilities pk are not known. We can only approximate pk with the ensemble
mean value pk = 〈Nk/N〉 computed directly from the raw atom number data. The symbol
〈X〉 ≡ X represents the ensemble mean of the random variable X from n independent
experiments.

3. Systematic errors (such an asymmetry in the double well splitting potential) can lead to
a correlation between pk and N , counter to the assumption that these two quantities are
independent.
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In the following subsections we present and compare more realistic statistical models which
account for shot-so-shot variation in N . We also consider the a priori probabilities pk and show
that the approximation pk ≈ pk is valid.

The naive model: fixed total atom number The simplest model of splitting assumes that a
sample of exactly N atoms is prepared for splitting in each of the n repetitions of the experiment,
and is a useful for demonstrating how the shot-noise level is calculated from binomial statistics.

Using Eq. B.6, the mean and variance of Nk (k = L,R) are given by [156, 159]:

Nk ≡ 〈Nk〉 = Npk (B.7)

Var(Nk) = σ2
Nk

= Npk(1− pk) (B.8)

using the symbols X ≡ 〈X〉, Var(X) and σX to represent the ensemble mean (“expected value”),
variance and standard deviation of a random variable X . The variance may be expressed in
terms of expected values in the usual way [159]:

Var(X) = 〈X2〉 − 〈X〉2. (B.9)

The mean and variance of the relative atom number Nr are

N r = 〈NR −NL〉 = NR −NL (B.10)

Var(Nr) = Var(2NR −N) = 4Var(NR) = 4NpR(1− pR) (B.11)

using Eq. B.8 and the fact that Var(N) = 0 by assumption. The normalized variance in the naive
model is thus defined as

Ṽnaive ≡
(σmeas’d
Nr

)2

4NpR(1− pR)
(B.12)

where (σmeas’d
Nr

)2 = Var(Nr)meas’d is the measured variance in Nr, and pR is the ensemble mean
“probability”. Both quantities are computed directly from experimental data according to

Var(Nr)meas’d =
1
n

n∑
i=1

(N (i)
r −N r)2, where (B.13)

N r =
1
n

n∑
i=1

(N (i)
R −N

(i)
L ) and (B.14)

pR ≡
〈
NR

N

〉
=

1
n

n∑
i=1

N
(i)
R

N
(i)
R +N

(i)
L

. (B.15)

The superscripts denote data measured in the ith repetition of the splitting experiment.
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B.1.2 Binomial splitting with fluctuating N

Over the course of n repetitions of the splitting experiment, fluctuations in the total atom number
N will invariably add noise to the raw NL, NR and Nr data. This is apparent in the fact that
naive expressions for Var(Nk) and Var(Nr) in Eqs. B.8 and B.11 depend explicitly on N . The
measured variance in Nr will therefore contain two broad contributions: the first from statistical
fluctuations in NL and NR, which is the “signal” we wish to measure; the second from random
fluctuations inNr due to a randomly fluctuating total atom numberN . This subsection describes
a method of accommodating a fluctuating total atom number in binomial models of splitting.

B.1.2.1 Joint probability distribution functions

In the language of repeated trials, we are interested in the mean value and variance of a random
variable X (e.g. Nr) over n repetitions of an experiment, given that the number of independent
trials N in each experiment is not constant from one experiment to the next. The expected value
of X over n experiments is then given by a sum involving the joint probabilities P (N ∩X) – the
probability of X successes and exactly N independent trials in a given experiment:

X ≡ 〈X〉 =
∞∑
N=0

N∑
X=0

X P (N ∩X) =
∞∑
N=0

N∑
X=0

X P (N)P (X|N). (B.16)

P (X|N) is the conditional probability – the probability of obtainingX successes inN trials, given
that the number of independent identical trials is exactlyN .1 P (N) is the a priori probability that
the number of identical trials in a given experiment is exactly N . Note that the sum over N runs
over all possible numbers of repeated trials (from 0 to ∞), while the sum over X runs over all
possible numbers of successes (from 0 to N ), so that

∞∑
N=0

P (N) =
N∑
X=0

P (X|N) = 1 (B.17)

The conditional probability distribution function (PDF) is just the binomial distribution func-
tion of Eq. B.6, and is well approximated by a normalized Gaussian PDF of the same mean and
standard deviation for a fixed value of the probability p when N is large [156, 159]:

P (X|N) = BN,p(X) ≈ GX,σX (X) (B.18)

with X = pN and σ2
X = Np(1− p) (B.19)

as in Eqs. B.7 and B.8, and

GX,σX (X) =
1

σX
√

2π
exp

[
−(X −X)2

2σ2
X

]
. (B.20)

1That P (A∩B) = P (A)P (B|A) for two dependent eventsA andB is an expression of the “conditional probability
theorem” (cite). It may seem obvious. It is important to remember that P (B|A) is the probability of event B given
that event A has occurred or will occur. If B is not conditional on A, then P (B|A) = P (B).
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Since we are interested in means and variances of roughly continuous atom number variables,
we can approximate the sums as integrals. Eq. B.16 then becomes

X ≈
∫ ∞

0
dN

∫ N

0
dX X P (N)GX,σX (X) (B.21)

To compute the mean values and variances of a random variable X (e.g. Nr), we require a
PDF describing the fluctuating total atom number. In what follows we use a Gaussian distribu-
tion of total atom numbers. In other words, we assume that for each experiment consisting of
N independent splitting events (i.e. N atoms passing through the beam-splitter and being split
independently),N is chosen from a Gaussian probability distribution P (N) ≡ GX,σX (X) centred
at N = N , and with standard deviation σN .

As an example calculation using joint probabilities, consider the mean and variance of Nk in
the presence of a fluctuating total atom number N . The mean is given by

Nk ≡ 〈Nk〉 ≈
1

2πσNkσN

∫ ∞
0

dN

∫ N

0
dNkNk e

−(N−N)2/2σ2
N e
−(Nk−Nk)2/2σ2

Nk

≈ 1
2πσNkσN

∫ ∞
−∞

dx

∫ ∞
−∞

du (u+Nk)e−x
2/2σ2

N e
−u2/2σ2

Nk

defining x ≡ N −N and u ≡ Nk −Nk = Nk − pkN,

and assuming that N � N −N and N � Nk −Nk

=
1

2πσNkσN

∫ ∞
−∞

dx

∫ ∞
−∞

du (u+ pk(x+N))e−x
2/2σ2

N e
−u2/2σ2

Nk

= pkN. (B.22)

B.1.2.2 A priori splitting probabilities pk

Using the joint-probability approach, we can also address the conceptual difficulty presented by
the a priori probabilities pk. As in Sec. B.1.1, we continue to assume here that the a priori prob-
abilities pk are constant from experiment to experiment. Since our data consists purely of atom
number populations after splitting, we have no way to measure the pk in a given N -atom split-
ting experiment. Instead, we approximate pk as an average quantity over the entire n-experiment
data set in our analysis (see Eq. B.15).

It should be emphasized that pk is an approximation to an idealized, fixed a priori probability
pk. The validity of this approximation can be tested by computing the expected value of Nk/N
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from n repetitions of the N -atom splitting experiment. Using the approximation of Eq. B.21,

pk ≡
〈
Nk

N

〉
≈
∫ ∞

0
dN

∫ N

0
dNk

Nk

N
P (N)GNk,σNk

(Nk)

≈
∫ ∞

0
dN

P (N)
N

∫ ∞
−∞

dx (x+ pkN)G0,σNk
(x) (B.23)

defining x ≡ Nk −Nk = Nk − pkN

and assuming that N � N −N and N � Nk −Nk

= pk

∫ ∞
0

dN P (N)

= pk (B.24)

Thus, the expected value of the ratio Nk/N is just the a priori probability pk. Despite the fact that
we cannot measure pk directly, Eq. B.23 justifies the approximation pk ≈ pk = 〈Nk/N〉, which is
obtained directly from data.

B.1.3 Three methods of accounting for fluctuations in N

In this subsection we present three data analysis methods, each of which attempts to extract
the true statistical Nr variance from the raw Nr data. Each analysis method is presented along
with the corresponding shot-noise level predicted by binomial statistics. The performance of
each model in the face of large fluctuations in N are compared using simulated data. The three
models are referred to as “N-analysis”, “p-analysis” and “Heidelberg analysis” in lab slang. N.B.
The “N” and “p” analysis presented here are corrected updates from the original 2007/2008
implementations, and now properly account for non-zero N fluctuations. All three methods
produce nearly identical results for pR = 1/2. In real data pR is roughly bounded by 0.47 and
0.53, for which the three methods agree to well within statistical uncertainties. We present ”N-
analysis” results in Ch. 7 since it is the simplest conceptually, and easily applied to “blanks”
analysis.

B.1.3.1 N-analysis

In the “N-analysis” method, the fluctuations in Nr are examined directly. The variance in Nr is
computed from the experimental data using Eqs. B.13 and B.14. Following Eq. B.3, a normalized
variance in Nr is constructed by comparing the measured variance Var(Nr)meas’d to the binomial
expectation Var(Nr)binom. Assuming Gaussian shot-to-shot fluctuations in N with a mean value
N and variance Var(N) = σ2

N = N , Var(Nr)binom can be calculated using the joint probability
approach of Sec. B.1.2:

Var(Nr)binom = 4NpR(1− pR) + (2pR − 1)2σ2
N . (B.25)

Note that the for perfectly balanced splitting (i.e. pR = 1/2) all common mode fluctuations in NR

and NL due to fluctuations in N exactly cancel in the measured relative number Nr, rendering
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the measured variance in Nr completely independent of fluctuations in N . In the more realistic
case of slightly imbalanced splitting the second term in Eq. B.25 becomes appreciable, scaling as
σ2
N .

The normalized variance in the N-analysis is defined as

ṼN ≡
Var(Nr)meas’d

4NpR(1− pR) + (2pR − 1)2σ2
N

. (B.26)

Eq. B.26 reduces to the “naive” expression given in Eq. B.12 when N is fixed (σN = 0), which
we intuitively expect. This method is used in the analysis of data presented in this thesis (see
Ch. 7).

B.1.3.2 p-analysis

In the “p-analysis” method, the raw NL and NR data are divided by the total atom number N
for each repetition of the splitting experiment as a way of eliminating the effects of fluctuations
in N . This transforms the raw data from sets of atom numbers into sets of left-hand, right-hand
and relative splitting fractions

fL ≡
NL

N
, fR ≡

NR

N
and fr ≡

Nr

N
(B.27)

The variance in fr is computed from the experimental data using

Var(fr)meas’d =
1
n

n∑
i=1

(f (i)
r − f r)2 and (B.28)

f r =
1
n

n∑
i=1

(
N

(i)
R −N

(i)
L

N
(i)
R +N

(i)
L

)
(B.29)

where the superscripts denote data measured in the ith repetition of the splitting experiment.
The expected variance in the relative splitting fraction Var(fr)binom can be calculated using

the joint probability approach of Sec. B.1.2:

Var(fr)binom ' 4pR(1− pR)
N

[
1 +

(
σN

N

)2
]

(B.30)

up to second order in σN/N . The calculation of Eq. B.30 is valid for fluctuations in N small
enough that N −N � N . N −N has a standard deviation of at most 0.15N in our experiment.

The normalized variance in the p-analysis is defined as

Ṽp ≡
N Var(fr)meas’d

4pR(1− pR)
[
1 +

(
σN/N

)2] . (B.31)
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B.1.3.3 Heidelberg analysis

The Heidelberg analysis method [43, and its supplementary material] has similarities to the both
N-analysis and the p-analysis. Like the p-analysis, it counteracts fluctuations in N with a shot-
by-shot correction to the measured Nr. The correction is a subtraction of a quantity reminiscent
ofN r, unlike in the p-analysis in which the correction is a division byN . The Heidelberg analysis
consists of computing the variance-like quantity

∆M2 ≡ 1
n

n∑
i=1

[
N

(i)
R −N

(i)
L

2
− (pR − 1

2)(N (i)
R +N

(i)
L )

]2

, (B.32)

where M ≡ Nr/2; the superscripts denote the ith repetition of the splitting experiment, and pR

has the same definition as in Eq. B.15 [43]. We use the symbol ∆M2 to distinguish the quantity
in Eq. B.32 from the conventional variance in M , Var(M). In particular, we note that Var(M) =
Var(Nr)/4 6= ∆M2. This can be verified by writing out Var(M) following Eq. B.13:

Var(M)meas’d =
1
n

n∑
i=1

[
N

(i)
r

2
− N r

2

]2

=
1
n

n∑
i=1

N (i)
r

2
− 1
n

n∑
j=1

f
(j)
r N (j)

2

2

=
1
n

n∑
i=1

N (i)
R −N

(i)
L

2
− 1
n

n∑
j=1

(f (j)
R −

1
2)(N (j)

R +N
(j)
L )

2

6= ∆M2. (B.33)

In the Heidelberg analysis, the total atom number N (j)
R + N

(j)
L is not averaged in the sum over

j as in the N-analysis, but is left to vary from shot to shot. The sum over j then reduces to the
ensemble mean value

1
n

n∑
j=1

(f (j)
R −

1
2) = fR − 1

2 = pR − 1
2 . (B.34)

The subtle difference between the Heidelberg analysis and the N- and p-analyses is revealed
by the statistically expected variance. Unlike in the N- and p-analyses, the construction ∆M2 of
Eq. B.32 is completely independent of σN ! Using the joint probability approach of Sec. B.1.2,

Var(M)binom = Np̄R(1− p̄R) (B.35)

for any Gaussian distribution of N with width σN . The normalized variance in the Heidelberg
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analysis is defined as

ṼH ≡
(∆M2)meas’d

NpR(1− pR)
. (B.36)

B.1.3.4 Model performance comparison using simulated data

Here we compare the performance of the four data analysis models using simulated splitting
data. The simulated data consists of pairs of NL and NR data chosen pseudo-randomly from a
Gaussian distribution function, given an initial choice of the target mean atom number N and its
standard deviation σN , the mean splitting probability pL, the target normalized variance Ṽ target in
the relative atom number, and the number of experimental repetitions n. The goal of this exercise
is to compare the relative success of each model at reproducing the target value Ṽ target = 1 as a
function of the amplitude of total number fluctuations.

Fig. B.1 shows plots of normalized variance as a function of the fractional atom number fluc-
tuation σN/N calculated using the naive, N-, p- and H-analysis methods for two values of the
mean splitting probability: pL = 0.55 and pL = 0.52.

As expected, Fig. B.1 shows that the naive model (see Eq. B.12) greatly overestimates Ṽ target

for all but the very smallest values of σN/N . The overestimate is less severe when the splitting is
closer to balanced (i.e. pL closer to 1

2 ). The N- and H-analyses both reproduce Ṽ target = 1 even for
large fractional fluctuations inN . The p-analysis also reproduces Ṽ target = 1 for σN/N . 0.2. The
p-analysis is not as robust to fluctuations in N as the N- and H-analyses, however, as evidenced
by the overestimate of Ṽ target for σN/N & 0.25 when pL = 0.55.

The simulated data used here would be considered very unstable compared to our best
laboratory data: we routinely generate splitting data with σN/N ∼ 0.15 and splitting fractions
0.48 . pL . 0.52. This exercise is therefore a very demanding test of the analysis methods. From
these tests, we conclude that

• The naive analysis is completely inadequate for σN 6= 0,

• the p-analysis overestimates the true normalized variance in cases of σN/N & 0.25 and
pL & 0.55, but

• the p-analysis, N-analysis and H-analysis all recover the true normalized variance at ex-
perimentally realistic levels of splitting imbalance and total number fluctuation.

B.1.4 Statistical uncertainty in Ṽ ∗

The standard error in a measured variance V is V
√

2/(n− 1), where n is the number of samples
[159]. To calculate the statistical error in the corrected normalized variance in the relative atom
number Ṽ ∗ = Var(Nr)meas’d − Var(Nr)blanks (see Eq. 7.14), we add the contributions of the raw
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Fig. B.1: A comparison of the normalized variance calculated from the naive, N-analysis, p-analysis and H-
analysis methods. The plots demonstrate to what degree each method reproduces the true variance Ṽ target = 1
using simulated splitting data with N = 5000, n = 104, and pL = 0.55 or 0.52 (see text). The data are
normalized variances calculated according to Eqs. B.12, B.26, B.31 and B.36. The horizontal axes are σN/N .
The black vertical lines indicate the amplitude of typical experimental fluctuations in N of roughly 15% of N ,
i.e. σN/N ∼ 0.15.
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“measured” variance and “blanks” variance in quadrature

δVar(Nr)∗ =

√
(Var(Nr)meas’d)2

(
2

na − 1

)
+ (Var(Nr)blanks)2

(
2

nb − 1

)
(B.37)

where na is the number of regular “with-atoms” images, and nb the number of blanks images
used in the analysis. Applying conventional error propagation techniques [156] to the Eq.. B.26
expression for the normalized blanks-corrected variance Ṽ ∗, the statistical uncertainty in the
blanks-corrected normalized variance in the relative atom number Ṽ ∗ from the “N-analysis” is
given by

δṼ ∗ = Ṽ ∗

√
α

β2
+
γ2ε2 + δ2ζ2

(γ + δ)2
, where (B.38)

α ≡ [Var(Nr)meas’d]2
2

na − 1
+ [Var(Nr)blanks]2

2
nb − 1

(B.39)

β ≡ Var(Nr)meas’d − Var(Nr)blanks (B.40)

γ ≡ 4NpR(1− pR) (B.41)

δ ≡ (2pR − 1)2σ2
N (B.42)

ε ≡
σ2
N

(na − 1)N2 +
σ2
pR

(na − 1)p2
R

+
σ2
pR

(na − 1)(1− pR)2
(B.43)

ζ ≡ 2
na − 1

+
16σ2

pR

(na − 1)(2pR − 1)2
. (B.44)

For pR ≈ 1/2 the quick estimate Ṽ ∗
√

2/(na − 1) only overestimates δṼ ∗ by about∼ 20%. Eq. B.38
is used to compute the statistical error bars on all number fluctuation results presented Sec. 7.2.5.

B.2 Quantifying optical shot noise

In this section we calculate and measure the contribution of OSN in our images. After suppress-
ing fringe noise in our optical density (OD) images (see Sec.7.2.4), OSN is the dominant source
of technical optical noise in our atom number counting experiments.

Read noise We expect read noise (RN) and CCD dark counts to be almost negligible compared
to OSN in absorption imaging. An I ' Isat/10 probe intensity registers as roughly 6100 e−

(photoelectrons) per pixel. OSN is therefore on the order of
√

6100 ≈ 78 e−, versus the 12.2 e− rms
read noise predicted by the CCD camera manufacturer. This RN agrees with our independent
estimates of∼ 13 e− from dark image statistics and 12 e− from analysis of the low-light-intensity
pixels in blanks images (see Sec. 7.2.4). Dark counts are negligible – a mean value of less than
1× 10−5 e− per pixel in our cooled CCD chip, according to the manufacturer – and in any event
are subtracted off each image during the analysis. Adding these three values in quadrature give
a total noise 79 e− per pixel – a 1% increase with respect to OSN alone.



B.2. QUANTIFYING OPTICAL SHOT NOISE 170

B.2.1 Optical shot noise and optical density

Here we calculate the effect of OSN in the probe beam intensity on the OD and relative atom
number fluctuations from blanks images (see Sec. 7.2.4). In CCD detection of probe laser light,
an incident number of photons Nph generates a certain number of photoelectrons Npe = ηqeNph

in the CCD, where ηqe is the camera’s quantum efficiency. Since the absorption of a photon and
the creation of a photoelectron is a quantized and probabilistic process, we expect Poissonian
image-to-image shot noise fluctuations

√
Npe in the photoelectron [40].

In absorption imaging a two-dimensional OD profile is computed using the signal (probe
beam + atoms), reference (probe beam only) and background (no probe, no atoms) images, as
described in Eq. 5.23. To estimate the effects of OSN on a measured atom number, we need to
know the total number of photoelectrons detected in the given analysis region (“box”) of the CCD
image in the 100 µs exposure time for each signal and reference image in the data set. Referring
to the total signal and reference photoelectron numbers in a given analysis box as Nsig and Nref,
we can re-write Eq. 5.23 to express the total analysis box OD as

eOD =
Nref

Nsig
. (B.45)

Poissonian OSN is characterized by fluctuations of the measured photoelectron numbers
about their mean values N sig and N ref over the ensemble data set of n images

δNsig =
√
N sig and δNref =

√
N ref, (B.46)

which lead to fluctuations in the mean value eOD. Since there are no atoms present in blanks
data, OD ≈ 0 in each pixel. This allows us to make the following approximation:2

eOD ≈ eOD. (B.47)

For photoelectron numbers large enough thatN � δN , i.e. N �
√
N , the following approxima-

tion is also valid [167]:(
Nref

Nsig

)
≈ N ref

N sig
. (B.48)

For a typical probe intensity I ≈ Isat/10, Npe ≈ 1500 per pixel (4 × 105 to 6 × 105 per analysis
box), which justifies Eq. B.48. Taking Eqs. B.45, B.47 and B.48 together, we can write the following
expression relating the mean values of the OD and photoelectron numbers in a given analysis
box, computed over the ensemble of images:

eOD =
N ref

N sig
. (B.49)

2〈ex〉 ≈ e〈x〉 for x� 1.
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We can now work out the fluctuation in optical density δOD due to OSN in the analysis box
as follows. From Eq. B.49,

δ(eOD) = δ

(
N ref

N sig

)
, which implies

(δOD) eOD =
N ref

N sig

√(
δN sig

N sig

)2

+
(
δN ref

N ref

)2

= eOD
√

1
N sig

+
1
N ref

(B.50)

using Eqs. B.45 and B.46, and the fact that fluctuations in Nsig and Nref are independent (since
the signal and reference images are collected separately). Dividing Eq. B.50 by eOD and using
Eq. B.45, we arrive at the expression for δOD [158]:

δOD =

√
N sig +N ref

N sigN ref
=

√
1 + eOD

N ref
. (B.51)

The corresponding expression for the fluctuation in the atom number over many repeated images
due to OSN is obtained by multiplying Eq.B.51 by the area of the analysis box

Abox ≡ npixApix, (B.52)

where npix is the number of image pixels in the analysis box (typically 300 to 400) and Apix is the
area of one image pixel, and dividing by the absorption cross-section σ̃λ(δ), according to [158]:

(δN)OSN =
Abox

σ̃λ(δ)

√
1 + eOD

N ref
. (B.53)

Equation B.53 can be further simplified using the fact that and OD ≈ 0 for each image pixel in
blanks analysis, and eOD ≈ 1 +OD:

(δN)OSN ≈
Abox

σ̃λ(δ)

√
2
N ref

(B.54)

Assuming that shot noise fluctuations in photoelectron number are completely uncorrelated
from one CCD pixel to another, the apparent, spurious NR and NL values obtained in blanks
images should be completely independent. Their OSN contributions can therefore be added in
quadrature:

(δNr)2
OSN = (δNR)2

OSN + (δNL)2
OSN. (B.55)

We use Eqs. B.54 and B.55 to compute the contribution of OSN to the spurious variance in
the relative atom number, and compare it to the total OD systematic noise measured from blanks
images (see Sec. 7.2.4. Eq. B.54 is exact only for OD = 0, but is an excellent approximation since
OD ≈ 0 across the entire blanks image. Analysis of typical blanks data shows that Eq. B.54
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underestimates (δNr)2
OSN by less than 1% compared to the results of Eq. B.53 and

(δN)OSN =

√√√√∑
i

(
Apix

σ̃λ(δ)
δOD

(i)
)2

=
Apix
σ̃λ(δ)

√√√√∑
i

1 + eOD
(i)

N (i)
ref

(B.56)

which is the result of applying Eq. B.53 pixel-by-pixel, where i denotes the ith pixel in the analysis
box.

B.2.2 Optical shot noise analysis of real blanks data

Including read noise in blanks analysis We measure the fluctuations in OD using blanks data
and compare the results to the OSN prediction. The spatial non-uniformity of the probe leads to
CCD intensities between roughly 0 to 2500 ADC per pixel across each signal and reference blanks
image. Thus read noise (RN) can become comparable or even exceed OSN at in the low-intensity
regions of the blanks image. Our typical analysis boxes are near the centre of each OD image (see
Fig. 7.4a) where the probe intensity is large enough RN is negligible compared to OSN. In the
present more careful analysis of the entire blanks image, however, we explicitly account for RN.

Since RN and OSN are independent effects, we add their variances in quadrature to obtain
the total OD variance in blanks images

Var(OD)blanks = Var(OD)OSN + Var(OD)RN. (B.57)

An expression for Var(OD)RN can be worked out following the procedure for OSN in Eq. B.50:

(δOD)RN =

√(
δN sig

N sig

)2

+
(
δN ref

N ref

)2

(B.58)

where theN and δN are the mean and rms fluctuations of photoelectron numbers over the blanks
data set due to RN alone in the signal and reference images. Assuming that the mean and rms
fluctuations are roughly equal in the signal and reference images, we can write

Var(OD)RN ≡ (δOD)2
RN =

2 σ2
RN

N 2
ref

(B.59)

using the notation σRN ≡ δN ref ≈ N sig to denote the rms fluctuation in photoelectrons due to
RN. From Eq. B.57 and Eq. B.51 we can thus write to total expression for the blanks variance in
OD due to OSN and RN

Var(OD)blanks =
2
N ref

+
2 σ2

RN

N 2
ref

. (B.60)

Eq. B.60 is compared with OD variances computed from blanks data in Fig. B.2.
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B.2.2.1 OSN and analysis box size

Following-up on Sec. 7.2.4 we explore the role of analysis box size on the measured blanks OD
variance. Working with an ensemble of blanks images, each full image area is divided into square
analysis boxes of area Abox ≡ a2

box. (We typically use abox ∼ 20.) For each analysis box size we
calculate the ensemble variance of the OD in each box Var(OD), as well as the mean raw CCD
values NADC in the reference image, calculated over all blanks images in the data set. “ADC”
stands for analog-to-digital counts; the ADC value is related to the number of photoelectrons by
the conversion factor α, NADC = αN , which is determined by the camera electronics. The re-
sulting per-box NADC values from the binned images span the full range of intensities contained
in the roughly-Gaussian probe envelope – anywhere from roughly 10 to 10000 ADC counts de-
pending on the box size used.

Fig. B.2 shows a scatter plot of Var(OD) vs. 1/NADC (OD noise vs. inverse probe intensity).
Analyses of the single blanks data set using box sizes abox = 1 to 22 are shown on the same axes
for comparison, along with best fit curves of representing Eq. B.60. Each data point represents
a single analysis box averaged over the blanks data set. Thus there are more single-pixel data
points (red) than abox = 22 data points (pink).

Fig. B.2 shows that for a given box size, Var(OD) due to OSN is smaller for higher probe
intensities (smaller 1/NADC) and larger at lower probe intensities (larger 1/NADC. This behaviour
agrees with Eq. B.51, and with the qualitative expectation that OSN is a smaller effect (fraction-
ally) at high optical intensities that at low optical intensities. At the smallest box size (single-pixel
boxes, red) the blanks data is shot-noise limited; the red points lie along the dashed black line,
which is a fit of Eq. B.60.

Fits A fit to this data of the form y = ax2 + bx with a and b as free parameters gives the ADC-
to-e− conversion factor α = 3.8 e−/ADC and an rms RN σRN = 12.3, in good agreement with
the manufacturer’s specifications of 4.04 e−/ADC and 12.22 e−. We estimate uncertainties of
roughly 5% and 25%, respectively, due to the huge single-pixel OD fluctuations at the smallest
probe intensities, which have been manually truncated from this data. The larger-box data lies
increasingly above the dashed OSN+RN line with increasing box size (and thus increasing probe
intensity ∝ NADC per box). This behaviour agrees with the qualitative expectation that OSN-
limited imaging more difficult to achieve at higher probe intensities (lower 1/NADC in this case).

The solid black line that overlaps and obscures the dashed line at large 1/NADC is the dashed
curve forced to a constant Var(OD) as NADC → ∞. In the ideal case, we expect Var(OD) → 0
as the probe intensity is increased. In real blanks data, shot-to-shot technical fluctuations in the
relative signal and reference image probe intensities – even without OSN – contribute a finite
Var(OD). We estimate this effect in our blanks data using a single 500 × 70 mega-box which
captures highest probe intensities in the image. The single data point from this analysis gives
1/NADC = 2.6 × 10−8 and Var(OD) = 6.24 × 10−7 (orange dot). The solid black line is the
OSN+RN fit added to this measured offset. This curve lies much nearer to the high-intensity
(large box) data than the pure OSN+RN fit, suggesting that technical probe intensity fluctuations
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fit y = ax2 + b to

Fig. B.2: Variance in OD versus inverse probe beam intensity (in raw ADC units) calculated over a set of
100 blanks images. Each colour represents analysis of the same blanks data using a different analysis box
size (in pixels); each data point corresponds to Var(OD) and 1/NADC for one box. The black dashed and
overlapping solid lines are based on fits to the “optical-shot-noise-plus-read-noise” expression of Eq. B.57.
OD noise is closer to the OSN+RN limit for smaller boxes. Smaller boxes also lead to greater atom number
detection sensitivity (smaller detectable “effective” atom numbers). Atom numbers are calculated using the
C2 = 1.7± 0.3 imaging calibration factor (see text).



B.2. QUANTIFYING OPTICAL SHOT NOISE 175

are an important effect at large box sizes. Note that we see the effect of probe intensity fluctu-
ations despite subtracting a background OD from each OD image before number counting, as
described in Sec. 7.2.2.

Atom number sensitivity The blanks analysis of Fig. B.2 can also be used to estimate the limits
on atom number detection imposed by OSN and other technical optical noise. The basic idea is
to convert the observed fluctuation in OD into an effective atom number fluctuation for a given
box size.

The atom number in a given box measured by absorption imaging is

N = AboxOD/σ̃λ(δ) = Apixa
2
boxOD/σ̃λ(δ) (B.61)

where σ̃λ(δ) is the calibrated absorption cross-section [158, 56]. OD noise characterized by Var(OD)
therefore translates into an effective atom number standard deviation of

σNeff ≡
Apixa

2
box

√
Var(OD)

σ̃λ(δ)
' 1.7× 36.36× a2

box

√
Var(OD) (B.62)

for resonant imaging (δ = 0) and a C2 = 1.7 calibration factor (see Sec. 5.4.3.1). To estimate
Var(OD) for a given box size from the blanks data, we first calculate 1/NADC per box by multi-
plying 1520 ADC per pixel at I = Isat/10 by the number of pixels in the box a2

box. The 1/NADC

per box values are indicated by vertical dashed lines in Fig. B.2. The corresponding Var(OD) val-
ues for each box size are indicated by solid horizontal lines, marked at the positions where the
vertical lines cross the centre of the data. The effective atom number fluctuations are indicated
to the right of each horizontal line. By this method we estimate our single-pixel sensitivity to be
roughly 2 atoms, and our single- 22× 22-pixel-box sensitivity to be roughly 41 atoms, each with
statistical uncertainties of 2%. The relative atom number sensitivity for a 22× 22 box would thus
be around

√
412 + 412 ' 58. This estimate roughly agrees with the typical blanks variances mea-

sured with conventional two-box blanks analysis (see Sec. 7.2.4): Var(Nr)blanks = 60 in Fig. 7.6a
and Var(Nr)blanks = 53 in Tab. 7.1. More broadly, this result shows that the lower bound on de-
tectable atom number imposed by OSN decrease with decreasing box size. We could increase our
detection sensitivity by imaging at smaller times-of-flight or working with colder and/or denser
clouds, both of which would reduce the cloud size in the image, permitting smaller analysis
boxes for a fixed total atom number and probe intensity.



References

[1] H. M. van Driel and A. D. May, Boris P. Stoicheff: A tribute on the occasion of his 75th birthday,
Can. J. Phys. 78, xiii (2000). 1

[2] J. J. Garcia-Rippol, M. A. Martin-Delgado, and J. I. Cirac, Implementation of Spin Hamiltoni-
ans in Optical Lattices, Phys. Rev. Lett. 93, 250405 (2004). 1

[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev.
Mod. Phys. 80, 517 (2008). 1

[4] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices
and superfluidity in a strongly interacting Fermi gas, Nature 435 (2005). 1

[5] A. L. Fetter and A. A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein condensate, J.
Phys.: Condens. Matter 13, R135 (2001). 1

[6] M. A. Kasevich, Coherence with atoms, Science 298, 1363 (2002). 1, 3, 132

[7] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation
of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198 (1995). 1

[8] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. van Druten, D. S. Durfee, D. Kurn, and
W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969
(1995). 1

[9] C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hulet, Evidence of Bose-Einstein Condensa-
tion in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687 (1995). 1

[10] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle,
Observation of interference between two Bose condensates, Science 275, 637 (1997). 1, 3, 103,
132

[11] B. DeMarco and D. S. Jin, Onset of Fermi degeneracy in a trapped atomic gas, Science 285, 1703
(1999). 2, 78

[12] N. W. Ashcroft and N. W. Mermin, Solid State Physics, Thomson Learning Inc., USA (1976).
2

[13] R. K. Pathria, Statistical Mechanics, Butterworth Heineman, Woburn, MA, 2nd edn. (1996).
2, 7, 13, 14, 15, 16

[14] J. Reichel, Microchip traps and Bose-Einstein condensation, Appl. Phys. B 75, 469 (2002). 2, 26,
30, 35, 158

[15] J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys. 79,
235 (2007). 2, 26, 112, 113

176



REFERENCES 177

[16] H. Ott, J. Fortágh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Bose-Einstein
condensation in a surface microtrap, Phys. Rev. Lett. 87, 230401 (2001). 2, 24, 26, 85

[17] W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, Bose-Einstein condensation on a
microelectronic chip, Nature 413, 498 (2001). 2, 24, 26, 85

[18] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, Observa-
tion of Fermi pressure in a gas of trapped atoms, Science 291, 2570 (2001). 2

[19] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Sa-
lomon, Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea, Phys. Rev. Lett. 87,
080403 (2001). 2, 78

[20] S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, All-Optical Production of a
Degenerate Fermi Gas, Phys. Rev. Lett. 88, 120405 (2002). 2

[21] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, and W. Ket-
terle, Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases, Phys. Rev. Lett. 88,
160401 (2002). 2

[22] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Fermi-Bose Quantum Degenerate 40K-87Rb
Mixture with Attractive Interaction, Phys. Rev. Lett. 89, 150403 (2002). 2, 78, 86, 87, 98, 153

[23] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm,
Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas, Phys. Rev. Lett.
92, 120401 (2004). 2

[24] M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger, Fermionic Atoms in a Three
Dimensional Optical Lattice: Observing Fermi Surfaces, Dynamics, and Interactions, Phys. Rev.
Lett. 94, 080403 (2005). 2, 78

[25] C. Silber, G. Günther, C. Marzok, B. Deh, P. W. Courteille, and C. Zimmermann, Quantum-
degenerate mixture of fermionic lithium and bosonic rubidium gases, Phys. Rev. Lett. 95, 170408
(2005). 2, 78, 99

[26] C. Ospelkaus, S. Ospelkaus, K. Sengstock, and K. Bongs, Interaction-driven dynamics of
40K / 87Rb Fermi-Bose gas Mixtures in the Large-Particle-Number limit, Phys. Rev. Lett. 96,
020401 (2006). 2, 78, 86, 87, 98, 153

[27] S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H.
Thywissen, Rapid sympathetic cooling to Fermi degeneracy on a chip, Nature Physics 2, 384
(2006). 2, 4, 69, 78, 86, 87, 98, 99, 152, 153

[28] J. D. Weinstein and K. G. Libbrecht, Microscopic magnetic traps for neutral atoms, Phys. Rev.
A 52, 4004 (1995). 2, 26, 74, 85



REFERENCES 178

[29] T. Schumm, S. Hofferberth, L. M. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer,
and P. Krüger, Matter-wave interferometry in a double well on an atom chip, Nature Physics 1,
57 (2005). 2, 3, 103, 109, 133, 154

[30] S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, and P. Krüger, Radio-
frequency dressed state potentials for neutral atoms, Nature Physics 2, 710 (2006). 2, 103, 113,
154

[31] G. B. Jo, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, and D. E. Pritchard, Long Phase
Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip, Phys.
Rev. Lett. 98, 030407 (2007). 2, 3, 63, 103, 112, 132, 137, 138, 139, 149, 150, 151, 153, 154

[32] J. J. P. van Es, S. Whitlock, T. Fernholz, A. H. van Amerongen, and N. J. van Druten, Lon-
gitudinal character of atom-chip-based rf-dressed potentials, Phys. Rev. A 77, 063623 (2008). 2,
103

[33] M. H. T. Extavour, L. J. LeBlanc, J. McKeever, A. B. Bardon, S. Aubin, S. Myrskog,
T. Schumm, and J. H. Thywissen, Fermions on atom chips, In V. Vuletic and J. Reichel
(eds.), Atom Chips, Wiley-VCH (In press, 2009). 2, 4, 78, 102, 123, 152

[34] Y. J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss,
R. A. Saravanan, R. Segal, and S. Wu, Atom Michelson interferometer on a chip using a Bose-
Einstein condensate, Phys. Rev. Lett. 94, 090405 (2005). 2

[35] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field
coupling for Bose-Einstein condensates in an optical cavity on a chip, Nature 450, 272 (2007). 2

[36] A. J. Leggett and F. Sols, On the Concept of Spontaneously Broken Gauge Symmetry in Condensed
Matter Physics, Found. of Phys. 21, 353 (1990). 3, 20, 21, 132, 133, 150

[37] Y. Castin and J. Dalibard, Relative phase of two Bose-Einstein condensates, Phys. Rev. A 55,
4330 (1997). 3, 17, 20, 21, 112, 132

[38] J. Javanainen and S. M. Yoo, Quantum Phase of a Bose-Einstein Condensate with an Arbitrary
Number of Atoms, Phys. Rev. Lett. 76, 161 (1996). 3, 17, 20

[39] W. Li, A. Tuchman, H.-C. Chien, and M. A. Kasevich, Extended Coherence time with Atom-
Number Squeezed States, Phys. Rev. Lett. 98, 040402 (2007). 3, 132

[40] R. Loudon, The Quantum Theory of Light, Oxford University Press, 3nd edn. (2000). 3, 143,
170

[41] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two
weakly-coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quan-
tum self-trapping, Phys. Rev. A 59, 620 (1999). 3, 6



REFERENCES 179

[42] R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J. Phys. B: At. Mol. Opt. Phys.
40, R61 (2007). 3, 6, 17, 18, 19, 20, 21, 22, 137, 138

[43] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Squeezing and entangle-
ment in a Bose-Einstein condensate, Nature 455, 1216 (2008). 3, 19, 132, 142, 148, 149, 150,
151, 153, 154, 166

[44] S. Aubin, M. H. T. Extavour, S. Myrskog, L. J. LeBlanc, J. Estève, S. Singh, P. Scrutton,
D. McKay, R. McKenzie, I. D. Leroux, A. Stummer, and J. H. Thywissen, Trapping fermionic
40K and bosonic 87Rb in a chip trap, J. Low Temp. Phys. 140, 377 (2005). 4, 79

[45] M. H. T. Extavour, L. J. LeBlanc, T. Schumm, B. Cieslak, S. Myrskog, A. Stummer, S. Aubin,
and J. H. Thywissen, Dual-species quantum degeneracy of 40K and 87Rb on an atom chip, In
C. Roos, H. Häffner, and R. Blatt (eds.), Atomic Physics, Proceedings of the 20th International
Conference on Atomic Physics, vol. 20, 241 – 249, American Institute of Physics (2006). 4, 78,
79, 86, 102, 123, 126, 152

[46] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University
Press, Cambridge, UK (2002). 6, 8, 9, 10, 20, 134

[47] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation
in trapped gases, Rev. Mod. Phys. 71, 463 (1999). 6, 8, 9, 10, 11, 12, 20

[48] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev.
Mod. Phys. 73, 307 (1990). 6, 10, 19, 20, 21, 22, 133

[49] A. Griffin, D. W. Snoke, and S. Stringari, Bose-Einstein Condensation, Cambridge University
Press, Cambridge, UK (1996). 6

[50] W. Ketterle and M. Zwierlein, Making, probing and understanding ultracold Fermi gases, In
M. Inguscio, W. Ketterle, and C. Salomon (eds.), Ultra-cold Fermi Gases, Proceedings of the
International School of Physics “Enrico Fermi”, IOS Press, Amsterdam, Oxford, Washing-
ton DC (2008). 6, 87, 99, 152

[51] Y. Castin, Basic theory tools for degenerate Fermi gases, In M. Inguscio, W. Ketterle, and
C. Salomon (eds.), Ultra-cold Fermi Gases, Proceedings of the International School of Physics
Enrico Fermi, vol. 164, 289 – 349, IOS Press (2008). 6, 12, 15

[52] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Condensate fraction and critical temperature of a
trapped interacting Bose gas, Phys. Rev. A 54, R4633 (1999). 9

[53] F. Gerbier, J. H. Thywissen, S. Richaud, M. Hugbert, P. Bouyer, and A. Aspect, Critical
Temperature of a Trapped, Weakly Interacting Bose Gas, Phys. Rev. Lett. 92, 030405 (2004). 9, 93

[54] J. Dalibard, Collisional dynamics of ultra-cold atomic gases, In C. E. W. M. Inguscio, S. Stringari
(ed.), Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of



REFERENCES 180

Physics “Enrico Fermi”, 321–349, IOS Press, Amsterdam, Oxford, Washington DC (1999).
9

[55] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar, Interisotope
Determination of Ultracold Rubidium Interactions from Three High-Precision Experiments, Phys.
Rev. Lett. 88, 093201 (2002). 10, 98

[56] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, Making, probing and understanding Bose-
Einstein condensates, In M. Inguscio, S. Stringari, and C. E. Wieman (eds.), Bose-Einstein
Condensation in Atomic Gases, Proceedings of the International School of Physics “Enrico
Fermi”, 67–176, IOS Press, Amsterdam, Oxford, Washington DC (1999). 11, 12, 30, 87, 89,
92, 140, 175

[57] G. M. Bruun and C. W. Clark, Ideal gases in time-dependent traps, Phys. Rev. A 61, 061601
(2000). 12, 16

[58] S. Bagnato, D. E. Pritchard, and D. Kleppner, Bose-Einstein condensation in an external poten-
tial, Phys. Rev. A 35, 4354 (1987). 13, 84

[59] D. A. Butts and D. S. Rokhsar, Trapped Fermi gases, Phys. Rev. A 55, 4346 (1997). 14, 16

[60] J. Reichel and J. Thywissen, Using magnetic chip traps to study Tonks-Girardeau quantum gases,
J. Phys. IV France 116, 265 (2004). 14

[61] K. Huang, Statistical Mechanics, John Wiley & Sons, USA, 2nd edn. (1987). 16

[62] D. Ananikian and T. Bergeman, Gross-Pitaevskii equation for Bose particles in a double-well
potential: Two-mode models and beyond, Phys. Rev. A 73, 013604 (2006). 17, 18, 19

[63] C. Menotti, J. R. Anglin, J. I. Cirac, and P. Zoller, Dynamic splitting of a Bose-Einstein conden-
sate, Phys. Rev. A 63, 023601 (2001). 17, 19, 132, 149, 150

[64] M. Naraschewski, H. Wallis, A. Schenzle, J. I. Cirac, and P. Zoller, Interference of Bose con-
densates, Phys. Rev. A 54, 2185 (1996). 17

[65] R. W. Spekkens and J. E. Sipe, Spatial fragmentation of a Bose-Einstein condensate in a double-
well potential, Phys. Rev. A 59, 3868 (1999). 17, 18, 19

[66] B. J. Dalton, Two-mode theory of BEC interferometry, J. Mod. Opt. 54, 615 (2007). 17, 19

[67] J. Javanainen and M. Wilkens, Phase and Phase Diffusion of a Split Bose-Einstein Condensate,
Phys. Rev. Lett. 78, 4675 (1997). 17, 19, 133

[68] M. Lewenstein and L. You, Quantum Phase Diffusion of a Bose-Einstein Condensate, Phys.
Rev. Lett. 77, 3489 (1996). 17

[69] H. Wallis, A. Röhrl, M. Naraschewski, and A. Schenzle, Phase-space dynamics of Bose con-
densates: Interference versus interaction, Phys. Rev. A 55, 2109 (1997). 17



REFERENCES 181

[70] F. Sols, Randomization of the phase after suppression of the Josephson coupling, Physica B 194-
196, 1389 (1994). 17

[71] A. J. Leggett and F. Sols, Comment on “Phase and Phase Diffusion of a Split Bose-Einstein
Condensate”, Phys. Rev. Lett. 81, 1344 (1998). 17, 19, 150

[72] J. Javanainen and M. Wilkens, Javanainen and Wilkens reply, Phys. Rev. Lett. 81, 1345 (1998).
17, 19

[73] J. Javanainen and M. Y. Ivanov, Splitting a trap containing a Bose-Einstein condensate: Atom
number fluctuations, Phys. Rev. A 60, 2351 (1999). 17, 19

[74] L. Pitaevskii and S. Stringari, Thermal vs Quantum Decoherence in Double Well Trapped Bose-
Einstein Condensates, Phys. Rev. Lett. 87, 180402 (2001). 17, 19, 20, 21, 22, 137, 138

[75] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a
Bose-Einstein condensate, Nature 449, 579 (2007). 17

[76] R. Gati, J. Estève, B. Hemmerling, T. B. Ottenstein, J. Appmeier, A. Weller, and M. K.
Oberthaler, A Primary Noise Thermometer for Ultracold Bose Gases, New J. Phys. 8, 189 (2006).
17, 18, 20, 21, 23, 137, 138

[77] R. Gati, M. Albiez, J. Foelling, B. Hemmerling, and M. K. Oberthaler, Realization of a single
Josephson junction for Bose-Einstin condensates, Appl. Phys. B 82, 207 (2006). 17, 154

[78] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct
Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction,
Phys. Rev. Lett. 95, 010402 (2005). 17, 23

[79] L. Pezzé, A. Smerzi, G. P. Berman, A. Bishop, and L. Collins, Dephasing and breakdown of
adiabaticity in the splitting of Bose-Einstein condensates, New J. Phys. 7 (2005). 19, 21, 132, 149,
150

[80] M. Naraschewski and R. J. Glauber, Spatial coherence and density correlations of trapped Bose
gases, Phys. Rev. A 59, 4595 (1999). 20

[81] R. Gati, Bose-Einstein Condensates in a Single Double Well Potential, Ph.D. thesis, Combined
Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University
of Heidelberg, Germany (2007). 23

[82] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Hermann and John Wiley
& Sons, Inc., France (1977). 24, 25, 88, 99, 104, 107, 108

[83] W. Wing, On neutral particle trapping in quasistatic electromagnetic fields, Progress in Quantum
Electronics 8, 181 (1984). 25

[84] K. Diekmann, Bose-Einstein Condensation with High Atom Number in a Deep Magnetic Trap,
Ph.D. thesis, Van der Waals-Zeeman Institute, University of Amsterdam (2001). 25



REFERENCES 182

[85] G. Breit and I. I. Rabi, Measurement of nuclear spin, Physical Review 38 (1932). 25

[86] E. Majorana, Atomi orientati in campo magnetico variabile, Nuovo Cimento 9 (1932). 26

[87] S. Gov, S. Shtrikmann, and H. Thomas, Magnetic trapping of neutral particles: Classical and
Quantum-mechanical study of a Ioffe-Pritchard type trap, J. Appl. Phys. D 87 (2000). 26

[88] J. Reichel, W. Hänsel, and T. W. Hänsch, Atomic micromanipulation with magnetic surface
traps, Phys. Rev. Lett. 83, 3398 (1999). 26, 42, 79, 85

[89] J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndić, K. S. Johnson, R. M. Westervelt, and
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