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Abstract
We demonstrate single site detection of ultra cold atoms in a two dimensional optical

lattice. A high numerical aperture imaging system allows us to probe the atoms

in a two dimensional optical lattice with an unprecedented resolution of ∼500nm.

In contrast to previous experiments with large lattice spacings of 5µm or larger we

demonstrate single site addressability in an optical lattice with significant tunnel

coupling, making this system suitable for the study of many body physics. Exploiting

our high numerical aperture system we also demonstrate a new method of lattice

projection. Using our imaging system in reverse, we holographically project two

dimensional lattice potentials onto the atoms. This method is very flexible and not

limited to the projection of lattices. In fact arbitrary potentials may be projected

onto the atoms allowing for the creation of complex many body states. On our march

towards single site detection we demonstrate the most successful evanescent wave

surface trap to date, achieving strong confinement with long lifetimes and negligible

heating rates. We also demonstrate the use of broadband light for the trapping and

manipulation of ultra cold atoms to avoid the ill effects of stray light in our optical

potentials.
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Chapter 1

Introduction and summary

”The existence of a periodic lattice of ions lies at the heart of modern solid state

physics. It provides the basis for the entire analytic framework of the subject, and

without it comparatively little progress would have been made. If there is any one

reason why the theory of solids is so much more highly developed than the theory of

liquids, even though both forms of matter have comparable densities, it is that the ions

are arranged periodically in the solid state but are spatially disordered in liquids. It is

the lack of a periodic array of ions that has left the subject of amorphous solids in so

primitive a state compared with the highly developed theory of crystalline solids.” [5]

1.1 Introduction

Ultracold atoms in optical lattices present an exciting new platform to study con-

densed matter physics. Following the proposal of Jaksch et al. [45], the realization

of the Bose-Hubbard Hamiltonian with ultra cold atoms in optical lattices was im-

1



Chapter 1: Introduction and summary 2

plemented shortly after [35]. What followed has been an exciting period in atomic

physics with a common goal of implementing condensed matter Hamiltonians as a

guiding light [15].

To realize a model system for condensed matter, we begin by replacing the elec-

trons bound to the periodically spaced ions in a real crystal with ultra cold atoms

bound by an optical lattice potential. Model systems created in this way are very

clean with none of the impurities found in real crystals. The interactions are well

understood and can be calculated from first principles, allowing the implementation

of simple Hamiltonians that can be readily compared with theory. Additionally, lat-

tice parameters and interactions can be tuned dynamically [20, 81, 82, 33], offering a

degree of flexibility not found in real crystals.

Cold thermal atoms in optical lattices have been studied for quite some time [46],

but initial experiments were limited in two ways. Working with thermal clouds at

temperatures in the µK regime meant not only that the atoms did not occupy the

ground state of the lattice, but also that the filling factor of the lattice was quite

low. Most efforts were focused on either cooling the sample down to the ground

state after it was loaded into an optical lattice potential or increasing the low filling

fraction that characterized these early experiments [23, 83]. With the experimental

realization of Bose-Einstein condensate [3], an ultracold and dense sample of atoms

became available for optical lattice experiments - offering a way to not only load the

atoms into the ground state of the periodic potential, but also to realize high filling

factors that had eluded previous experiments.

The first experiments to combine BEC with optical lattices began shortly after the
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discovery of BEC in 1995. Initial experiments were performed using a one dimensional

optical lattice combined with a BEC [2]. While these experiments did not suffer from

low filling factors or high temperatures of earlier works, they did not have a large

enough interaction energy per particle to observe many body physics. It was not

until the experiments of Greiner et al. [35] that a BEC was loaded into an optical

lattice with interactions comparable to or larger than the kinetic energy, leading to the

first observation of a quantum phase transition from a superfluid to a Mott insulator.

In years since the observation of the Mott insulator-superfluid phase transition, the

number of groups studying optical lattices has skyrocketed - leading to many new

and exciting results [11].

1.2 Single site resolution

Great progress has been made in the study of ultracold atoms in optical lattices in

the past decade, with the number of tools to probe the system growing in complexity

and number [11]. However, one feature currently lacking in optical lattice experiments

aimed at studying many body physics is single site addressability. With single site

addressability, we would be able to address and detect single atoms on individual

lattice sites. In typical experiments where the atoms are released from the lattice and

imaged after a short time of flight [60] this is not a possibility. A number of groups

are currently working towards high resolution imaging systems to detect atoms on

individual lattice sites in situ, but so far only one has succeeded [30] albeit with

limited detection fidelity.

In our setup, single site addressability allows for the detection of single atoms
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on individual lattice sites via in situ fluorescent imaging. It should be noted that

any optical system capable of single site detection can in principle be used in reverse

to project potentials at the single site level, allowing for the creation of novel lattice

geometries, arbitrary potential landscapes, and local manipulations of internal degrees

of freedom. Our very large numerical aperture of NA=.8 allows us to take advantage

of the aforementioned possibility and indeed we create our optical lattice potentials

by using our imaging system in reverse.

Single site addressability has been achieved in systems with a large lattice spac-

ing of 5µm or greater [62, 76] but these systems were not suitable for the study of

many body physics due to their lack of tunnel coupling. This thesis reports the first

results of the quantum gas microscope, capable of resolving individual lattice sites in

a two dimensional optical lattice. Unlike previous experiments, we work in a regime

where the lattice constant is small enough that we have a significant tunnel coupling,

allowing us access to many-body physics.

1.3 Concept

The quantum gas microscope is a specialized BEC machine optimized for a very

large optical access to the atoms. A multi-functional hemispheric optic is the center-

piece of the experimental design that facilitates both the creation of evanescent wave

potentials which are instrumental in our creation of a 2D quantum gas as well as a

solid immersion effect [57] that enhances the numerical aperture of the system by a

factor of the index of refraction of the hemisphere.

In most BEC apparatuses the atoms sit deep inside of the vacuum chamber far
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2D quantum gas, 
3 microns below surface

long working distance
microscope objective

hemispheric 
front lens

3D BEC, far from 
first imaging lens

Achromat

Figure 1.1: Schematic of quantum gas microscope concept. We create a 2D quantum
gas a few microns away from a fused silica substrate. The proximity of the quantum
gas to the surface of the first imaging lens gives rise to a solid immersion effect that
allows us to enhance our numerical aperture by a factor of the index of refraction of
the glass.

from the first imaging lens (1.1a), limiting the numerical aperture to NA≈.1 which

corresponds to a resolution of 5µm. In addition to suffering from low resolution,

imaging a three dimensional BEC in this way necessarily leads to an averaging effect

along the imaging axis when a two dimensional image is produced [49]. A slicing

procedure must be employed in order for single site information to not be lost [64, 4].

We solve these problems by first increasing the numerical aperture of the imaging

system. This allows us to achieve the resolution we require while at the same time

shrinking the depth of focus of the imaging system such that only a single lattice

plane is in focus at a given time. We then create a 2D quantum gas and load it into a

single plane of the lattice allowing us to image the entire 2D quantum gas in a single
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exposure with no out of focus background or averaging effects.

The imaging setup consists of a long working distance microscope objective which

sits very close to the atoms but remains outside of the vacuum chamber, together

with an in vacuum hemispheric optic. The hemispheric optic is a custom design and

facilitates both the production of evanescent wave potentials as well as an enhanced

imaging resolution due to a solid immersion effect that we are able to exploit due to

the proximity of the atoms to the flat side of the hemisphere. The combination of the

microscope objective together with the hemispheric front lens allows us to achieve

a very large numerical aperture of NA=.8, corresponding to a diffraction limited

resolution of ≈500nm.

To realize the benefits of our high resolution system we create a 2D quantum

gas and load it into a single plane of a one dimensional optical lattice potential. By

creating a 2D quantum gas with a healing length along the imaging axis much longer

than the size of the sample, we eliminate any averaging effects during the imaging

process. Furthermore, by loading the 2D quantum gas into a single plane of an optical

lattice we eliminate all out of focus background that would otherwise be collected from

adjacent lattice planes.

We create the 2D confinement for the BEC by implementing a novel hybrid surface

trap [31] that combines magnetic fields, evanescent waves, and standing waves. The

magnetic fields are created by a group of coils that sit outside of the vacuum chamber.

Evanescent wave potentials are created by blue detuned laser beams incident upon the

planar facets of the hemisphere and then totally internally reflected from the glass-

vacuum interface that forms bottom side of the hemisphere. Standing wave potentials
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are created by reflecting a laser beam off of the bottom face of the hemisphere, creating

a standing wave in the vertical direction. By combining magnetic and evanescent wave

potentials we realize a 2D confinement for the atoms with long lifetimes just a few

microns away from the glass surface. We then load the atoms directly into a single

well of a one dimensional standing wave, which allows us to achieve an even stronger

vertical confinement. The stronger confinement takes us deeper into the 2D regime

allowing us to reach aspect ratios of 300:1:1.

With the 2D quantum gas loaded into a single plane of an optical lattice potential,

we add periodic potentials in the other two dimensions to realize a model system for

condensed matter physics. In this experiment, our high numerical aperture setup

facilitates the creation of optical lattice potentials by using the imaging system in

reverse. We holographically project periodic phase patterns onto the atoms, creating

2D lattice potentials in the plane. The periodicity and geometry of the 2D lattice

potentials in the plane can be controlled exclusively by pattern of the holographic

phase mask. The technique of holographic projection is not limited to periodic po-

tentials though. Arbitrary potential landscapes can be created and projected onto

the atoms by choosing the appropriate phase mask, making this a very powerful and

flexible tool for the creation of complex many body systems.

After adding a 2D lattice potential in the plane, we make use of the high resolution

imaging system. Ramping up a very deep near detuned lattice that pins the atoms

in place, we illuminate the atoms with an optical molasses [59] that simultaneously

cools the atoms while they scatter photons that are collected by the imaging optics.

This technique allows us to collect fluorescence photons indefinitely (only limited by
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vacuum lifetime), allowing us to obtain a signal with very high fidelity.

To realize maximally smooth optical potentials for both the creation of the 2D

conservative lattice as well as the evanescent wave and standing wave, we demonstrate

for the first time the use of broadband laser light for the trapping and manipulation

of ultra cold atoms. Using broadband light may seem like a very strange idea at

first glance, but the reality is that the temporal coherence of lasers used for creating

dipole potentials is often much more than needed and may in fact be harmful. We

minimize any unwanted interferences in the system by using broadband light with a

short coherence length of around 150µm. Stray light at the position of the atoms no

longer interferes coherently as long as it travels more than a coherence length before

returning to the atoms.

1.4 Organization of this thesis

This thesis is organized as follows:

• Chapter 2 is a brief summary of theory relevant to this experiment.

• Chapter 3 describes the parts of the apparatus necessary for creating BEC as

well as our basic production sequence.

• Chapter 4 is a description of the magnetic fields used to control the atom posi-

tion throughout the experiment.

• Chapter 5 is a summary of the construction and realization of the evanescent

wave surface trap
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• Chapter 6 describes the completion of our 2D hybrid surface trap

• Chapter 7 is a description of our novel imaging system and also presents some

the first results from the quantum gas microscope.

Figure 1.2: Hemisphere used to create evanescent wave surface trap as well as provide
enhanced imaging resolution via a solid immersion effect, it is the centerpiece of the
apparatus. The bevels mimic a prism like structure for the entry of laser beams that
create the evanescent wave potential.



Chapter 2

Theory

2.1 Bose-Einstein condensates

2.1.1 Intro

Bose-Einstein condensation (BEC) was predicted by Einstein in 1924 [25], closely

following the new work of Bose [12]. BEC occurs in an ideal gas of bosonic atoms

when the thermal de Broglie wavelength

λdB =
h√

2πmkBT
(2.1)

becomes comparable to the interparticle spacing [66]. The overlapping wave functions

give rise to a macroscopically occupied ground state of the trapping potential.

2.1.2 Dimensionality

The BEC transition temperature in a non-interacting Bose gas can be found from

the expression [66]

10
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N =
∫ ∞

0
g(ε)f(ε) dε (2.2)

where f(ε) is the Bose distribution function [12] with the chemical potential set to

µ=0, g(ε) is the density of states, and N is the total number of particles. Integrating

and solving for the critical temperature Tc we find that in free space(g(ε) ∝ εd/2−1)

there is no finite temperature phase transition below three dimensions. However,

in the presence of a harmonic trapping potential the density of states is modified

(g(ε) ∝ εd−1) and the situation is qualitatively different. Inserting the density of

states for a harmonic trapping potential into equation 2.2 we find that for the two

and three dimensional cases there is a finite temperature phase transition given by

kbTc =
h̄ωN1/α

ζ(d)1/α
(2.3)

where ζ(d) is the Riemann-Zeta function, ω is the geometric mean of the trapping

frequencies, and d is the dimensionality of the system. While condensation is pre-

dicted to occur in this instance, it has been pointed out in [11] that non-interacting

BEC in a 2D harmonic trapping potential is very fragile. In light of this observation,

we will focus our attention on the more relevant case of repulsive interactions.

2.1.3 Interacting BEC

For all discussions in this thesis, we will assume a harmonic trapping potential of

the form Vext(r) = 1
2m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2). In order to properly take interactions

into account when describing the ground state wave function of the condensate, we

must turn to the Gross-Pitaevskii equation. The Gross-Pitaevskii equation describes
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the condensate wave function in the limit that the s-wave scattering length a is much

smaller than the particle separation, n|a|3 & 1, where n is the density of the atomic

gas. The s-wave scattering length in 87Rb is ≈5nm which is much smaller than the

smallest particle separation ever reported in cold alkali vapor(1014/cm3) [22]. In

this limit we can approximate the complicated interatomic potential with a contact

interaction of the form gδ(r,r’) with g = 4πh̄2a
m , where m is the atomic mass. The

time independent Gross-Pitaevskii equation [40, 70] then yields

µφ(r) =

(

− h̄2

2m
∇2 + Vext(r) + g|φ(r)|2

)

φ(r) (2.4)

where µ is the chemical potential and g|φ(r)|2 is the mean field interaction. This

equation is difficult to solve in general but can be simplified under certain circum-

stances.

2.1.4 Thomas-Fermi approximation

For large atom numbers and repulsive interactions, which is always the case in our

experiments performed with 87Rb, we may simply neglect the kinetic term in equation

2.4, yielding µ = Vext(r)+gn(r), where we have used the fact that n(r) = φ2(r). This

equation gives the form of the in-trap density of the condensate to be

n(r) =
µ− Vext(r)

g
for µ− Vext(r) > 0 (2.5)

describing a parabolic density profile in the trap where the atoms fill up the trap to

a height of the chemical potential. This parabolic profile is maintained even after

a time of flight due to the effect of interactions as the cloud expands [14, 48]. The
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Thomas-Fermi approximation [21] allows us to calculate both the cloud radius and

chemical potential as

Ri =

√
2µ

mω2
i

(2.6)

µ3D =
152/5

2

(
Na

a

)2/5

h̄ω (2.7)

where a is the geometric mean of the oscillator lengths and ω is the geometric mean

of the trapping frequencies.

2.1.5 Dimensionality revisited

The theory of interacting BEC in two dimensions is rather involved [67, 68] and so

only a brief summary of the aspects important to this experiment will be included. For

a 2D interacting quantum gas there is a phase transition at the critical temperature

TC to a macroscopically occupied ground state which manifests itself as a bimodal

distribution in the weakly confined directions and a Gaussian distribution in the

tightly confining direction. There is much more to the story, however. Unlike the

situation in three dimensions, at the BEC transition temperature in two dimensions

there is not a uniform phase throughout the sample, but rather there are patches of

uniform phase with the patch size being larger than the healing length of the cloud,

but smaller than the size of the sample.

The lack of uniformity in the phase across the condensate is due to unbound

vortices which are present in the condensate at temperatures above the Berezenskii-

Kosterlitz-Thouless (BKT) transition temperature [7, 53]. Below the BKT transition
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temperature, the vortices exist only in bound pairs and hence they no longer affect

the spatial phase coherence of the BEC. Clearly, since we are interested in loading

a 2D BEC into an optical lattice, we need to be able to control the temperature of

the sample in order to ensure that we can ”freeze” the vortices out of the system.

Once the vortices are frozen out, there remain long wavelength phase fluctuations in

the system but these long wavelength fluctuations have not been an impediment in

previous experiments [79, 29].

The BKT transition temperature is universal and given by the expression [61]

nsλ2
T = 4, where ns is the superfluid density and λT is the thermal de Broglie wave-

length. In experiments, we measure the total density of the sample and thus need

to relate the total density to the superfluid fraction. For weak interactions, the total

density at the transition point can be calculated via Monte Carlo calculations [71]

as nλ2
T =ln(C/g̃) with C=380±3 and the dimensionless parameter g̃ =

√
8πa/lz given

by the ratio of the s-wave scattering length and the harmonic oscillator length in the

tightly confining dimension. Calculating the ratio of the two transition temperatures

for our particular trapping configuration, we find that TBKT /TBEC ≈ .46. Experi-

mentally, this means that we must have excellent control over the temperature in the

2D trap in order to be able to cool the sample sufficiently below TBKT such that it

is free of unbound vortices. A recent paper by the NIST group has investigated this

hierarchy of temperature scales in a 2D Bose gas of sodium atoms [17].
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2.1.6 2D Bose condensation

We live in a three dimensional world and so do most BECs. Taking a BEC into

the 2D regime requires that we kinematically freeze out one of the dimensions [32]

by making one of the trapping frequencies so large that the energy spacing between

adjacent harmonic oscillator levels is much larger than any other energy scale in the

system, h̄ω ) µ3D, kbT . In most experiments µ3D > kbT , so the inequality is usually

written as h̄ω ) µ3D. Alternatively, we can consider length scales instead of energy

scales. A system enters the 2D regime when the healing length (correlation length)

given by ξ = (4πna)−1/2 becomes larger than the harmonic oscillator length along the

tightly confining dimension, ξ ) xho.

2.2 Optical lattices

2.2.1 Optical potentials

Optical dipole potentials have been used for quite some time in atomic physics

to manipulate and trap neutral atoms [16, 9] via both conservative and dissipative

forces. A light field incident upon a neutral atom induces an electric dipole moment

given by [44] d = α(ω)E where α(ω) is the complex polarizability, E is the incident

electric field, and ω is the frequency of the incident light field. This induced electric

dipole moment then interacts with the incident electric field, leading to a conservative

interaction potential of the form Vdip = −1
2〈d · E〉. The laser-atom interaction also

gives rise to a dissipative force that results from the absorption and spontaneous re-

emission of photons, in contrast with the conservative dipole force that results from
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a shift in potential energy or AC-Stark shift. The dissipative force is often quantified

in terms of the spontaneous scattering rate which is given by Γsc = 1
h̄ω 〈ḋ · E〉.

Optical lattice experiments are typically performed with atoms in the nanokelvin

regime and as such require potentials that are conservative on the time scale of typical

experiments which are on the order of a few seconds. Since the strength of the

conservative potential goes down as 1/δ and the scattering rate goes down as 1/δ2,

we can minimize the scattering rate by choosing δ the laser detuning to be as large

as the laser power allows. For a two-level atom, the conservative dipole potential and

spontaneous scattering rate are given by

Vdipole(r) =
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) ≈ 3πc2

2ω3
0

× Γ

∆
I(r) (2.8)

Γsc(r) =
3πc2

2h̄ω3
0

(
ω

ω0

)3 (
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) ≈ 3πc2

2h̄ω3
0

× Γ2

∆2
I(r) (2.9)

where ∆ = ω0 − ω and the rotating wave approximation has been used to obtain the

approximate expressions on the right hand side. In our experiments with 87Rb we do

not always work in a regime where we can make the simple two level approximation.

A more general expression for the dipole potential that takes into account the multiple

energy levels is [38]

Vdipole(r) =
πc2Γ

2ω3
0

(
2 + PgF mF

∆2,F
+

1− PgF mF

∆1,F

)

I(r) (2.10)

which can be used so long as ∆ is large compared with the excited state hyperfine

splitting. Here P is ±1 or 0 for σ± or linear light respectively and ∆j,F is the detuning

from the D1 or D2 line.
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2.2.2 Gaussian beams

The spatially varying profile of a Gaussian beam gives rise to a potential that can

be used to create confinement for neutral atoms. A Gaussian beam has a profile given

by

I(r, z) =
P

πw2(z)
e
− 2r2

w2(z) (2.11)

where w(z) = w0

√
1 + ( z

zR
)2 is the 1/e2 radius, P is the power in the beam, and

zR = πw2
0/λ is the Rayleigh length. For a red detuned laser beam, the Gaussian

profile will give rise to a trapping potential with trap frequencies near the trap center

given by

ωr =

√
4V0

mw2
0

(2.12)

ωz =

√
2V0

mz2
R

(2.13)

where V0 is the maximum potential depth and ωr, ωz are the radial, axial trapping

frequencies respectively.

2.2.3 Periodic optical potentials

In this thesis we are rarely interested in the confinement from the Gaussian profile

of the laser beams, rather we are interested in using laser beams to create optical

lattice potentials that are periodic in space. The simplest periodic potential that

we can create to trap ultra cold atoms is a one-dimensional standing wave. A one

dimensional standing wave is formed by two counter propagating laser beams, creating
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a periodic potential to confine the atoms. To create higher dimensional confinement,

we need only add additional pairs of beams. In this way, we can construct one, two,

and three dimensional optical lattice potentials.

Equation Generator
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1

Figure 2.1: Two counterpropagating laser beams form a one dimensional standing
wave. Atoms are trapped in the potential minima created by the resultant interference
pattern. Note that there is a factor of 4 enhancement in the intensity due to the
interference of the light.

In this experiment we use slight variations of the counterpropagating beam con-

figuration to make our lattices as shown in figure 2.2.

For a 1D standing wave such as that in figure 2.1, if we approximate each atom

as sitting in the bottom of a harmonic well we find an expression for the trapping

frequency in the lattice as

ωx =

√
Vlat2k2

m
(2.14)

where Vlat is the lattice depth.

2.3 Band structure

The signature of a periodic potential is band structure, regardless of the fine details

of the periodic potential [37]. The classic study on band structure was performed with
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1Figure 2.2: In this experiment we do not use counterpropagating laser beams to create
our optical lattice potentials. Instead, we use configurations such as those shown in
this figure. (a) Standing wave with lattice period π/(k·cosθ) created by two beams
sent from hologram through microscope objective. (b) Standing wave with lattice
period π/(k·sinθ) created from a laser beam after reflecting off of the bottom face of
the hemisphere.
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a periodic square well potential [54]. For this thesis it is of greater utility to focus on

potentials created by laser standing waves, namely sinusoidal periodic potentials. In

our experiments performed with 87Rb we use a two dimensional square lattice that

provides a separable potential, allowing us to calculate the band structure in each

dimension separately.

2.3.1 Bloch’s theorem

Given a periodic potential V (x) with a Hamiltonian given by H = p2/2m+V (x),

Bloch’s theorem states that the eigenfunctions of the system φ(n)
q (x) will have the

following form

φ(n)
q (x) = e

iqx
h̄ · u(n)

q (x) (2.15)

where u(n)
q (x) has the same periodicity as V (x), q is the crystal momentum or quasi

momentum, and n is the band index. Using the trial wave function given above, we

can solve the system to find the structure of the energy levels for a periodic potential

of the form V (x) = V latt(1− cos(2kx)). The details of the calculation can be found

in [5].

2.3.2 Wannier functions

For shallow lattices the atoms are completely delocalized and a Bloch wave picture

is a good description of the system. For deeper lattices however, the atoms become

confined to individual lattice sites and a new basis becomes a more appropriate de-

scription of the system. Wannier functions [84] form a basis comprised of functions

that are maximally localized and can be calculated as a sum of Bloch waves given by
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Figure 2.3: Plotted are the energies of the first four Bloch waves as a function of the
quasimomentum. The energy is plotted in units of lattice recoils, ER = h2/2mλ2,
while the quasi momentum q is plotted in units of h̄k, with k related to the lattice
constant a by k = π/a.

[51]

wn(x− xi) =
1√
N

∑

q

eiqxi/h̄φn
q (x) (2.16)

where the sum is carried out over the first Brilloun zone, xi is the position of the ith

lattice site, and N is a normalization constant. With the Wannier functions in hand,

we are in position to calculate the tunneling rate and on-site interaction terms that

will come in handy later. The tunneling rate between adjacent lattice sites can be

found as follows 1

J =
∫

wn(x− xi)

(

−−h̄2

2m

∂2

∂x2
+ V (x)

)

wn(x− xj)dx (2.17)
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and the onsite interaction between atoms can be found as

U =
4πh̄2a

m

∫
|wn(x− xi) · wn(y − yi) · wn(z − zi)|4d3x (2.18)

2.4 Bose-Hubbard Hamiltonian

The Hubbard Hamiltonian was originally introduced to describe the transition

between conducting and insulating states in solid state systems [43]. The Hubbard

description is the simplest many-body Hamiltonian that cannot be reduced to a single

particle problem. Ultra cold atoms in the lowest band of an optical lattice are a nearly

pure realization of the Hubbard model [45], that had been previously regarded as a

”toy” model. The Bose-Hubbard Hamiltonian [28] can be written as follows

Ĥ = −J
∑

<i,j>

âi
†âj +

∑

i

(εi − µ)n̂i +
∑

i

U

2
n̂i(n̂i − 1) (2.19)

so that the first term is the kinetic energy term or ”hopping” term that describes

tunneling between nearest neighbor lattice sites, while the last term is the on-site

interaction energy between the atoms. When the kinetic term is dominant over the

interaction term (J ) U), the atoms are delocalized over the lattice in a superfluid

phase. On the flip side, when the interactions are dominant over the kinetic term

(U ) J), the atoms tend to localize, leading to a Mott insulating phase where the

atom number on each lattice site takes on well defined integer values. The central

term includes both an energy offset εi and the chemical potential µ.

1The expression for the tunneling matrix element J is only valid for a separable lattice potential.
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2.5 Mott insulator

In an optical lattice system, the ratio of kinetic to interaction energy can be

dynamically varied by changing the depth of the lattice potential. In this way it has

been possible to observe the Mott Insulator in an optical lattice system with both

bosons [35] and fermions [47]. While the ratio of J/U determines when the Mott

insulator phase transition occurs, if the absolute value of the tunneling J is small so

that the tunneling time is long, then the atoms do not have sufficient time to rearrange

themselves on the timescale of the experiment making the Mott insulator inaccessible.

In general we need to keep the tunneling times short via small lattice constants so

that we have access to many-body physics that results from a competition between

the different terms in the Hamiltonian.
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Creation of a Bose-Einstein

condensate

3.1 Overview

Our BEC machine is a double chamber design similar to that of Greiner et al.

[34]. The setup consists of a magneto-optical trap (MOT) [72] and a separate ultra-

high vacuum (UHV) region with an attached glass cell which acts as our ”science

chamber”. A gate valve separates the two chambers, allowing components to be

interchanged without breaking vacuum. The setup is optimized to provide maximum

optical access to the atoms sitting inside of the glass cell. We magnetically transport

the atoms approximately half a meter from the MOT chamber to the glass cell before

loading them into a quadrupole Ioffe-Pritchard configuration (QUIC) trap [27] and

performing forced RF evaporation [50]. Approximately every 40 seconds we create

BECs in the | F = 1, mF = −1〉 state with 2·105 atoms.

24
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3.2 Laser setup

Our laser system for the production of BEC is shown in figure 3.1. It consists

of two home built external cavity diode lasers [74], one tuned to the cooling tran-

sition | 5S1/2, F = 2〉 →| 5P3/2, F = 3〉 and one tuned to the repump transition

| 5S1/2, F = 1〉 →| 5P3/2, F = 2〉 of 87Rb. Both lasers are frequency stabilized to their

respective crossover transitions via radiofrequency (RF) spectroscopy [10]. Acousto-

optic modulators (AOM) are used to vary the laser frequency about the lock point.

Since the cooling laser light is used to perform absorption imaging we do not modu-

late the laser diode directly (which would add unwanted sidebands). Instead, we split

off a small amount of light from the cooling laser and use an electro-optic modulator

(EOM) to add RF sidebands directly to the laser beam. This technique ensures that

the light used for absorption imaging is free of off-resonant light from the locking

procedure.

3.3 Vacuum chamber

The vacuum chamber is pictured in figure 3.2. The MOT chamber is octagonal

and flat in order to allow for the transport coils to be placed as close as possible to the

atoms. Six windows (MDC 450020) with a large diameter of 35mm allow passage of

the laser beams that form the MOT. Directly above the MOT chamber is a reservoir

of Rb87 that creates a background vapor in the MOT chamber from which we directly

load our MOT. Directly below the MOT chamber is an ion pump (Varian 9191340)

with a viewport shutter (MDC 454001) that allows us to control the pumping speed
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Figure 3.1: Laser setup for BEC production. The MOT laser produces light on the
F = 2− > F ′ while the repumper produces light on the F = 1− > F ′.

of the ion pump.

The MOT chamber is operated at a pressure of 4 · 10−9 Torr while the UHV

chamber is operated at pressures less than 2 · 10−11 Torr. A differential pumping

tube with an inner diameter of 8mm and a length of 70mm placed between the

MOT and UHV chambers decouples the pressures allowing us to maintain the large

pressure difference. An all-metal CF16 gate valve (VAT 48124-CE01-X) allows us to

isolate the MOT and UHV chambers allowing them to be modified independently.

A five-way cross attached to the UHV chamber allows for the attachment of an
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ion pump, ion gauge, titanium sublimation cartridge, and turbo pump on the UHV

side. In our setup, turbo pumps are only used during the initial bakeout of the

chamber and are subsequently removed, leaving only the ion pumps to maintain the

vacuum. The assembly directly below the UHV chamber is separated from the main

chamber by an all-metal CF40 gate valve (VAT 48132-CE01-X). The assembly allows

us to insert custom optics into the glass cell via a translation stage (UHV Design

HLSML38-440-H and PA-35) with a stroke of 440mm. The gate valve allows us to

independently bake out and pump down the bellows region below the UHV chamber.

In this way, we can exchange optics in and out of the glass cell without having to

break vacuum in the UHV region. A glass cell attached directly above the UHV

chamber serves as our science chamber where the BEC is created and all subsequent

parts of the experiment take place. The glass cell is made of fused silica and is anti-

reflection coated to minimize stray reflections. Through a diffusion bonding process,

the wavefront distortion on all faces of the cell is kept lower than λ
10 . The dimensions

of the glass cell are 26mmx26mmx100mm.

3.4 Assembly and bakeout procedure

We inspect each part for damage/contamination upon arrival with special atten-

tion paid to the knife edges of the conflat flanges. On at least one occasion we have

received a damaged knife edge right out of the box. We have also encountered a few

new parts with large oil splotches on them. We clean all of our parts in an ultra-

sonic bath of soapy water, water, acetone, methanol, and isopropanol, in that order.

Any part with excessive oil on it is pre-cleaned with trichloroethylene (TCE should
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only be used for special cases as it has been shown to be a potent carcinogen). We

bake our chamber by first attaching temperature probes and wrapping it in thick

aluminum foil to ensure an even heating throughout the vacuum system. We then

place heater tape around the chamber as well as a final aluminum foil layer that is

loosely wrapped to keep in the heat. A turbo pump is attached to the chamber and

turned on throughout the duration of the bake out. We employ a simple feedback

loop to control the temperature of the chamber and in this way we can slowly ramp

up the temperature of the chamber to avoid any excessive thermal gradients.

We bake most of our chamber to 200C for a few days until the pressure drops to

1 · 10−7 Torr. During this time, the ion pumps are switched off and only the turbo

pump is energized. We cool it down slowly, reaching a pressure of roughly 1 · 10−10

Torr. We then turn on the ion pumps while the turbo pump is still running. We wait

for any contaminants released by the ion pump to be pumped out of the system before

isolating the turbo pump from the system by closing the isolation valve. Once the

isolation valve is closed the system no longer has any open paths to the atmosphere

making the system invulnerable to power outages. To reach the pressures required

for RF evaporation, we fire our titanium sublimation pump by pulsing on a current

of 47 Amps through one of the filaments for 1 minute. In this way, we are able to

reach pressures of < 2 · 10−11 Torr.

3.5 Magneto-optical trap

We operate a vapor cell MOT [1, 69] with a 5 gram sample of rubidium (Alfa Aesar

10315) acting as our reservoir. Our magneto-optical trap is created by six intersecting
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Figure 3.2: Schematic of our vacuum chamber design.

laser beams together with a pair of coils operated in the anti-helmholtz configuration.

The laser beams are detuned by -3Γ from the cooling transition with a power of ≈

30mW per beam. The coils are operated at a modest current of 5 amps, corresponding

to a gradient of ≈10G/cm. We load the MOT for approximately 8 seconds, collecting

roughly 1 · 109 atoms at a temperature of 100µK. After a compression and optical

molasses stage, the temperature is reduced to about 40µK.
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3.6 Magnetic transport

Following the loading of the MOT, the atoms are transported to the glass cell in

the UHV region where we perform forced RF evaporation. We transport the atoms

magnetically using a series of quadrupole coils [34] that smoothly shift the position of

the atoms over the half meter distance separating the MOT from the final position of

the atoms in the glass cell. Our transport of the atoms differs from the norm because

in the second leg of the transport, we transport the atoms vertically upward against

gravity. It is for this reason that we require stronger gradients than usual during the

final stages of the transport sequence.

3.7 RF evaporation

After the atoms arrive in the glass cell, the trap configuration is changed smoothly

from a quadrupole confinement to harmonic confinement with a non-zero offset. A

non-zero offset is necessary to avoid majorana losses [56] during the evaporation

process. For our evaporation we use a coil close to the atoms that is driven with 2

watts of RF power. As our RF source, we use the Tabor WW5061 function generator

which is capable of phase continuous frequency sweeps.

3.8 BEC production sequence

The experimental sequence to create nearly pure Bose-Einstein condensates is

shown in figure 3.3. We begin by loading our MOT for 8 seconds, followed by a

compression and molasses phase. We then optically pump the atoms to the | F =
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1, mF = −1〉 to maximize the number of atoms captured in the magnetic trap. After

loading the atoms into the magnetic trap, we shine in a resonant beam that removes

any atoms in the F=2 ground state. We then transport the atoms to the glass cell

by smoothly ramping the transport coils. After the atoms arrive at the glass cell, we

ramp up the quadrupole confinement before smoothly changing to a QUIC trap with

a cigar-type confinement. We perform forced RF evaporation to achieve quantum

degeneracy. We produce nearly pure BECs in the | F = 1, mF = −1〉 state with a

typical number of atoms being 2 · 105. After production of the BEC, we slowly raise

the offset field in the QUIC trap to achieve a nearly spherical confinement.
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Magnetic field control

4.1 Introduction

Magnetic fields are central to this experiment. Beginning with the MOT and

ending with the transfer of atoms into a two dimensional optical lattice, magnetic

fields provide us with the ability to control the position of the atoms throughout the

experiment in a very clean and reproducible way.

4.2 Magnetic trapping of neutral atoms

The potential energy of a neutral atom in a magnetic field has the form Umagnetic =

−µ · B. If the external magnetic field is small compared to the hyperfine ground state

splitting which in this case is 6.8GHz for 87Rb, then F is a good quantum number

and we can write the energy of the atom as Emagnetic = µBmF gF B where µB is the

Bohr magneton, mF is the angular momentum quantum number in the z direction,

33
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and gF is Lande’s g factor. Since it is not possible to create a static maximum in the

external magnetic confinement by Maxwell’s equations, we instead create a magnetic

field minimum to trap the atoms. This of course limits our choice of magnetic spin

states, which for Rb87 means that we can trap only the weak field seeking states,

| F = 2, mF = +2〉, | F = 2, mF = +1〉, and | F = 1, mF = −1〉. The atomic

magnetic moment precesses in the external magnetic field with a Larmor precession

frequency of ωL = µBmF gF B/h̄. As long as the external magnetic confinement

is changing slowly compared with the Larmor frequency, then the atomic spin will

follow the external field and the spin state will be preserved.

4.3 Quadrupole traps

A quadrupole trapping potential can be formed by placing two coils in the same

orientation, but spaced apart from one another and with equal and opposite currents.

This is called the anti-helmoltz configuration. Currents in opposite directions are sent

through the two coils, creating a linear potential in all directions near the center of the

two coils with B(r) = αxx̂+βyŷ+γzẑ. For circular coils with their axes aligned along

z, α = β and by taking note that ∇ ·B = 0 we also arrive at the constraint that γ =

−2α. Putting this all together, we arrive at the expression B(r) = αxx̂+αyŷ−2αzẑ.

Quadrupole potentials do very well for trapping and manipulating atomic samples

at 10µK and above. However, below this temperature they begin to suffer from

Majorana losses. As the atomic sample gets colder, the atoms spend more time near

the center of the trap where the magnetic field becomes arbitrarily small. Eventually

the atoms are not able to adiabatically follow the magnetic field because the Larmor
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frequency becomes vanishingly small. When this happens the atoms can flip their spin

and become anti-trapped and lost. It is for this reason that we need to use a magnetic

trapping potential with a non zero minimum during the forced RF evaporation prior

to achieving BEC.

4.4 Magnetic transport

While quadrupole potentials may not be suitable for RF evaporation, they are par-

ticularly well suited to magnetically transport atoms through large distances. For our

magnetic transport from the MOT chamber to the glass cell, we employ 13 quadrupole

pairs and one push coil. The atoms begin their journey in the MOT and after trav-

eling 452.5mm within a few seconds, they arrive at the glass cell ready to be loaded

into the QUIC trap for RF evaporation.

MOT

T1

T2

T3

T4

T5

T6 T7

T8 T9

T10

T11

T12

T13 QUAD
PUSH

OFFSET IOFFE

Figure 4.1: Schematic of the coils used for the magnetic transport. T1-T13 and PUSH
are used to transport the atoms from the MOT chamber to the glass cell. QUAD,
IOFFE, and OFFSET constitute the coils used to implement our QUIC trap.
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4.4.1 Calculation of currents

Transporting atoms from the MOT chamber to the glass cell requires the use

of 15 independent quadrupole pairs and one push coil near the MOT chamber. To

transport the atoms with minimal heating, we make sure that the atom position

changes smoothly during the transport process. Additionally, we need to minimize

aspect ratio changes in the quadrupole trapping potential. Energizing only three

coil pairs at a time, we are able to smoothly shift the position of the atoms while

minimizing changes in the shape of the trapping potential. We calculate the currents

in the coils as a function of position by enforcing three independent constraints as

shown below.

I1B1(x, 0, 0) + I2B2(x, 0, 0) + I3B3(x, 0, 0) = 0 (4.1)

I1
∂B1(x, 0, 0)

∂x
+ I2

∂B2(x, 0, 0)

∂x
+ I3

∂B3(x, 0, 0)

∂x
= Gradient (4.2)

I1
∂B1(x,0,0)

∂x + I2
∂B2(x,0,0)

∂x + I3
∂B3(x,0,0)

∂x

I1
∂B1(x,0,0)

∂y + I2
∂B2(x,0,0)

∂y + I3
∂B3(x,0,0)

∂y

= AspectRatio (4.3)

Figure 4.2: Constraint equations for determining the currents used to generate the
magnetic fields that transport the atoms. Equation 4.1 determines the position of
the atom cloud as a function of the position x, defined to be along the direction of
transport; equation 4.2 constrains the gradient of the magnetic field along the x axis;
equation 4.3 constrains the ratio of the gradients in the x and y direction, which
allows us to transport the atoms with minimal changes in the trap shape to minimize
heating of the atom cloud. Note that in the above formulation, the z axis is the
symmetry axis of the quadrupole pair.
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4.4.2 Circuitry for magnetic field control

In our experiment, we use a limited number of power supplies (Delta Elektronika

SM15-100, SM26-60) during the magnetic transport, meaning that these power sup-

plies must be shared amongst all of the coils during the transport process. Each coil is

connected to one of the power supplies via a MOSFET (Microsemi APTM20DUM04G,

IXYS IXFN180N20), that when energized allows current to be driven through the coil.

A circuit diagram for the magnetic field control is shown in figure 4.3. Varistors are

placed across the source to drain connection on each MOSFET to limit any voltage

spikes occurring during switchoff. Diodes are placed in series with each coil to prevent

current flow in the wrong direction.

4.4.3 Physical design of coils

The coils for the magnetic transport are wound from kapton insulated rectangular

copper wire and encapsulated in a clear epoxy as shown in figure 4.4a. The transport

coils are then mounted into a large brass plate that defines the coil positions in the

experiment as well as provides cooling via low pressure water. T1-T13, MOT, and

PUSH are all wound in this manner.

4.5 QUIC trap

Following magnetic transport from the MOT chamber, the atoms come to rest in

a quadrupole trap labeled QUAD in figure 4.1. As mentioned before, a quadrupole

trap by itself is not suitable for RF evaporation, so we smoothly ramp up the Ioffe
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Figure 4.3: Schematic of circuits that control magnetic fields in the experiment. T1-
T13 and PUSH are used to transport the atoms from the MOT chamber to the glass
cell. QUAD, IOFFE, and OFFSET constitute the coils used to implement our QUIC
trap. Quad shim, quic shim, T13, and black coil are used to control the position of
the BEC in the spherical trap.

and offset coils in figure 4.1 to smoothly change the trap geometry from a quadrupole

to a QUIC geometry. The QUIC trap is composed of a quadrupole pair, an Ioffe coil,

and a set of offset coils. The topology is based upon the original design by Esslinger

et al. [27].

4.5.1 QUIC topology

Typical setup

In the standard QUIC configuration, the current in the Ioffe coil is slowly ramped

up while the current in the quadrupole coils is held constant. During the rampup of
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(a) (b)
Figure 4.4: (a) Transport coil wound from insulated rectangular wire with a cross
section of 1mm x 2.5mm. (b) Custom made spiral coil made from bare rectangular
copper wire. The rectangular wire has a high aspect ratio of ≈30. During the winding
process we insulate it in the radial direction with a thin 50µm kapton layer, but the
top and bottom sides remain exposed.

the Ioffe coil, the quadrupole trap center is shifted significantly towards the glass cell

wall as the configuration changes from quadrupole to QUIC. The resulting trap is

cigar shaped with tight confinement along the two radial dimensions and a relatively

weak confinement along Ioffe coil axis(axial direction). To adjust the confinement to

be equal on all axes, we ramp up an independent bias field, tuning the confinement

in the radial directions to match that of the axial direction.

Our setup

Our configuration is unique in the following way. When changing the trapping

geometry from quadrupole to QUIC, we ramp up currents in both the Ioffe and offset

coils as opposed to simply ramping up the Ioffe coil alone. In our trapping geometry,

this produces a cigar confinement, unlike typical setups where this would produce a

spherical confinement. Our setup has the advantage that the quadrupole trap center
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does not shift appreciably during the transformation of the trapping potential from

quadrupole to QUIC, keeping the atoms far away from the glass cell wall at all times.

To achieve a spherical confinement in our setup, we ramp down the current in the

offset coils. This differs from other experiments where the current in the offset coils

would have to be ramped up. In some sense it is a QUIC trap with reverse logic with

respect to the offset coils. The spherical magnetic trap is the starting point for all of

our experiments with BEC, and since the offset coils are not required for the spherical

magnetic trap, they are free to be used for other purposes.
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and OFFSET energized, a cigar type QUIC confinement is realized with an offset
field of 4G. With QUAD and OFFSET, we realize a spherical QUIC trap with an
offset field of 102G.
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4.5.2 Physical design of QUIC trap

In previous experiments, coils for the QUIC trap were wound as shown in figure

4.4a. For this experiment, we implemented a new approach with the aim of maximiz-

ing thermal conductivity from the coil to the cooling source, allowing us to dissipate

more power in the coils and at the same time allowing us to minimize thermal gra-

dients in the air during the experimental cycle. In different approaches, the coils for

the QUIC trap are insulated with a layer of kapton. The kapton provides crucial

electrical isolation, but at the same time provides unwanted thermal isolation. We

decided to go with an approach that removes the kapton insulation problem.

We use thin copper foil with a rectangular cross section to make our coils. We

wind the copper foil together with a thin 50µm layer of kapton tape that insulates the

windings from one another in the radial direction, but leaves the copper exposed on

the top and bottom sides as shown in figure 4.4b. A low viscosity high temperature

epoxy (EPO-TEK 301-2) is painted on the kapton tape during the winding process

after which the coil is baked in an oven to heat cure the epoxy. The coil is then cut

to the desired thickness. Initially, we tried to achieve this using an end mill, but the

copper epoxy matrix was not suitable for this kind of machining. We found after

some trial and error that a fly cutter was the best tool for the job. After fly cutting,

the coils are sanded top and bottom with a fine grit sandpaper. It is important that

the sanding be done on a very flat surface in order to avoid any non-uniformity in

the flatness. Uniform flatness is verified by painting the coil with a black marker

and making sure that the ink comes off uniformly after only a few ”figure-eights” of

sanding. After all preparations are complete, we scan each coil into the computer
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and inspect for any short circuits due to small copper fragments bridging the tiny

gap between adjacent windings.

We glue the coils to their respective heat sinks using a thermally conductive elec-

trically insulating high-temperature epoxy (EPO-TEK 930-4). The particle size of

the Boron-Nitride powder in the epoxy is specified as less than 20 µm allowing us to

use a very thin layer to glue the coil in place. We control the thickness of this thin

layer by mixing a small amount of glass beads (r=25 µm) into the epoxy that act

as spacers, maintaining a constant thickness of epoxy between the coil and the heat

sink. This unique procedure maximizes the thermal conductivity between the coil

and heat sink. Our improved design enables us to move the QUIC trap closer to the

center of the glass cell through the dissipation of more power in the Ioffe coil relative

to the quadrupole pair, while at the same time ensuring that no part of the coil heats

to more than 35 C during the experimental cycle.

4.6 Controlling the trap position in the spherical

trap

The production of a BEC is only the beginning step of the experiment. In the next

step we will be loading atoms into an evanescent wave surface trap, requiring that

the atoms be positioned precisely in order to achieve successful loading. We control

the atom position by using a combination of coils that are placed near the glass cell

as pictured in figure 4.8. The bias coil configuration is changed from Helmholtz to

anti-Helmholtz in order to shift the atom position along the Ioffe coil axis. The quad
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(a) (e)

(f ) (g)

(d)

(c)

(b)

Figure 4.6: (a) Jig used to wind the bias and quad coils. (b) a teflon sleeve is
wrapped around the center part of the jig and a slit is cut to facilitate the beginning
of the winding process. (c) Jig used to wind the Ioffe coil. (d) Same as (b) except
smaller because it is for the Ioffe coil. (e) The winding process consists of winding
a copper tape and Kapton tape together tightly around the jig. Close inspection
of the picture reveals a brush in one of the gloved hands, applying a low viscosity
epoxy throughout the winding procedure. Immediately following the winding process,
cable ties are wrapped around the coil to keep it tight while it is baked to cure the
high temperature epoxy. (f) After the coils are wound and the epoxy fully cured, we
fly cut the coils to the desired thickness. (g) A zoomed-in picture taken through a
microscope showing the uniform spacing of the copper layers and lack of defects.
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Figure 4.7: New coil design. The copper coil is mounted with thermally conductive
epoxy to the heat sink. The heat sink is custom-designed to allow maximum optical
access to the atoms while providing mechanical support to the coil. The heat sink
consists of two copper pieces that have cooling channels milled into them before they
are soldered together. This design allows us to use low pressure water to carry away
the heat generated during the experimental cycle.



Chapter 4: Magnetic field control 45

shim coils are in a Helmholtz configuration that shifts the atoms along the quadrupole

axis and the black coil acts together with the last transport coil (T13) in order to

control the position of the atoms along the remaining axis.

Quadrupole coils

Quadrupole coils

Quad shim coils

Quad shim coils

Black coil

Io!e 
coil

Bi
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Figure 4.8: Coils surrounding the glass cell where the BEC is created. The quadrupole
coils together with the Ioffe coil form a spherical magnetic trap. The center of the
spherical magnetic trap can be adjusted in all three dimensions by using the quad
shim coils, bias coils, and the black coil. Three-dimensional control is necessary to
position the atoms directly below the center of the hemisphere (not pictured).
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Evanescent wave surface trap

5.1 Introduction

Evanescent waves were first introduced to atomic physics in the context of creating

mirrors [6, 55] for atom optics. Later, evanescent waves found use in a novel surface

trap for cold atoms [65, 41] where a two dimensional Bose-Einstein condensate (BEC)

was created [75]. Evanescent waves have proven to be a useful tool in atomic physics

when there arises a need to work with atoms near a surface. Since we require our

atomic ensembles to be within a few microns of a surface in order to realize a high

resolution solid immersion microscope for cold atoms, an evanescent wave surface trap

is natural choice for our experiment. The short length scales of evanescent waves allow

for high trapping frequencies which is an added bonus for our experiment because

the high trapping frequencies allow us to enter the 2D regime with our quantum gas.

However, previous experiments have found evanescent waves to be susceptible to stray

light scattered by impurities on surfaces [55, 75]. In our setup we explore new methods

46
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of alleviating the problem of stray light by working not only with a superpolished ultra

clean surface, but also employing broadband light [18] to mitigate the effects of any

remaining stray light in the system.

5.2 Evanescent waves

A beam of light traveling from a high index of refraction material to a low index

material will undergo total internal reflection for angles of incidence greater than the

critical angle θc = arcsin n2/n1. For angles greater than θc there is an exponentially

decaying light field penetrating into the low index material, this is what we call

an evanescent wave(EW). The intensity of the EW penetrating into the low index

material is given by the functional form I0e
−2z
Λ where I0 is the intensity of light at

the interface where the reflection occurs [39] and the decay length Λ is given by

Λ = λ/2π(n2sin2(θ)− 1)−1/2.

Evanescent waves are very useful when working with atoms near a surface because

they offer a way to overcome the van der Waals potential which is attractive and

very strong close to the surface. Using a blue detuned laser beam (δ > 0) to form

an evanescent wave creates a repulsive potential for the atoms given by equation

2.10 where the intensity has a Gaussian profile in the lateral dimensions and decays

exponentially in the direction normal to the glass-vacuum interface.

We create an evanescent wave by sending a laser beam through one of the entrance

facets of the hemisphere as shown in figure 5.1a. The laser beam is then totally inter-

nally reflected at the glass-vacuum interface, creating an evanescent wave potential

penetrating into the vacuum region. To compensate for the large angle of incidence



Chapter 5: Evanescent wave surface trap 48

(a)

θEW

EW Beam

Exit Facet

Imaging
aperture

(b)

Figure 5.1: (a) Schematic of hemisphere, formed by optically contacting a high quality
superpolished substrate with a beveled partial hemisphere. (b) Picture of hemisphere
mounted in vacuum chamber.

of the laser beam, we shape the beam to be elliptical, which allows us to achieve a

circular potential for the atoms in the lateral dimensions. We control the angle of

incidence of the EW beam by using a combination of optics and a motorized mirror

mount that allows us to change the angle of the EW beam independent of the EW

beam position in the plane of the atoms. To align the angle of the EW beam, we scan

the motorized mirror mount and record the transmitted light power on a photodiode.

Examining the data, we can perform a fit to find the critical angle as a function of

motor position. This allows us to precisely control the decay length of the evanescent

wave by setting the motor position accordingly. It is crucial to set the motor posi-

tion correctly, otherwise it is possible to have a traveling wave component mixed in

with the EW. The traveling wave component will exert transverse forces that depend

upon the vertical position of the atoms cloud, complicating the loading procedure

immensely.
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5.3 Susceptibility of evanescent waves to surface

scatter and uncontrolled interferences

Uncontrolled interferences in the experiment can lead to serious distortions of

the intended optical potential. In this experiment we make use of both standing

waves and evanescent waves, with their susceptibility to scattered light being very

different. Scattered light from a standing wave interfering coherently with the original

standing wave causes intensity modulations given by Imodulation ∼
√

ItrapIscattered.

Thus, scattered light even at the 10−6 level will cause modulations at the 10−3 level.

The EW is inherently more susceptible to stray light interferences than a standing

wave for the following reason. At the superpolished surface where the majority of

scattering occurs, the EW is maximally intense, while at the position of the atoms

the EW is only a small fraction of its initial intensity since the atoms are held a few

EW decay lengths away from the surface of the superpolished substrate. This means

that even a small scattered fraction from the surface can potentially overwhelm the

EW at the position of the atoms. It is for this reason that we take extraordinary

steps to reduce the effects of scattered light in this setup.

5.3.1 Broadband light

As our first defense against unwanted modulations in the EW trapping potential,

we disable the interference between the trap light and most of the stray light from

reflections, dust and surface imperfections by using “white” light with a very short

coherence length. The light is created by a two-stage tapered amplifier (TA) system,
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delivering 400 mW of light. The TAs are seeded with 6 mW of light from a fiber

coupled amplified spontaneous emission (ASE) source. Interference filters before and

after the TAs are used to control the bandwidth of the white light source as well

as to suppress resonant ASE components. The resulting approximately 3 nm wide

spectrum is centered around a wavelength of λtrap = 765 nm, with an incident power

of 200mW. We measure a coherence length of 160±10µm (50% decay path length

difference), which is short enough to suppress the interference effects of stray light

from multiple reflections in the glass substrate as well as most scatterers outside the

radius given by the coherence length.
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Figure 5.2: Laser setup for the generation of a high power broadband light source.
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5.3.2 Superpolished substrate

A second measure employed for reducing inhomogeneities in the optical trapping

potential is the minimization of scatter at the trapping surface by using a superpol-

ished and very clean surface with an RMS surface roughness below 1 Å. We measured

the scattering properties of the superpolished surface as follows. Our setup consists

of a high numerical aperture microscope objective focused in the plane of the super-

polished surface and a green laser beam at a grazing incidence to the superpolished

surface such that none of the green laser beam travels into the microscope objective.

We then use a CCD camera to measure the total light collected by the objective,

thereby measuring a fraction of the total light scattered from the surface. We then

normalize this number to the amount of light scattered by a piece of paper placed

in the same plane, assuming that the paper is a perfect scatterer. We find that the

superpolished surface scatters light at the level of 10−7. By changing the focal plane

of the microscope objective we can also measure the scattering from the unpolished

side as well and we find that it scatters at the level of 10−5, so the superpolishing

process wins us a factor of one hundred.

5.3.3 Adsorbates on superpolished surface

Neutral atoms in close vicinity to surfaces can also be affected by static electric

potentials. Adsorbed metal atoms on the surface form small electric dipoles. Inhomo-

geneities of the distribution of these dipoles generate potential gradients which can be

stronger than the inherent van der Waals force of the substrate. This process is well

understood [58, 63] and the fields generated decay very rapidly away from the surface.
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By minimizing rubidium deposition on the glass, detrimental effects are avoided at a

moderate distance of 1.5 µm from the surface.

5.3.4 General lab cleanliness

The optical contacting [73] of the superpolished substrate to form the hemisphere

is done under an enclosed HEPA filter, keeping the custom optic free of dust and

contamination. All of this is wasted though if the optic is contaminated upon be-

ing removed from the protected HEPA environment and inserted into the vacuum

chamber. To avoid any contamination during the transport and insertion process, we

created a clean room environment around the entire vacuum chamber. All horizontal

surfaces were wiped clean of dust and all non-essential objects were removed from

the area. Clean room suits were required to enter or work in the area in order to

maintain a low dust environment. All of these precautions allowed us to keep the

superpolished surface clean and free of dust while mounting it inside of the vacuum

chamber.

5.3.5 Mechanical mounting of the hemisphere

We mount the hemisphere inside of the vacuum chamber with a clamp and a set

of rods that are connected as shown in figure 5.3. A stainless steel clamp (5.3a) with

three extrusions protruding upwards holds the hemisphere in place while at the same

time defining the position of the hemisphere with respect to the glass cell. A long

thin rod is press fit into the clamp on one end and is connected via set screws to

the interconnect piece on the other end. The interconnect piece (5.3b) slides freely
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into the thick rod with a spring in between to allow the application of a defined force

to the assembly above and including the interconnect piece. A thick rod below the

interconnect threads directly into a conflat flange (5.3c) and is held in place with

a locking nut. The conflat flange is shown in more detail in (5.3d). In addition to

providing mechanical support to the hemisphere mounting assembly, a large hole is

cut into the flange creating optical access from below the chamber that allows us to

perform absorption imaging. The conflat flange is attached to an xy tilt stage that

allows us to position the hemisphere in the xy plane and the tilt stage is attached to

a stainless steel bellows with attached z-stage that allows us to control the z position

of the hemisphere. Using these degrees of freedom, we are able to precisely position

the hemisphere in three dimensions.
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Figure 5.3: Mechanical setup for mounting of hemisphere. Assembly is attached to
an xy tilt stage combined with a linear translation stage along z.
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5.4 Loading the evanescent wave surface trap

The evanescent wave trap configuration is formed by moving the spherical mag-

netic trap vertically upwards using external magnetic fields generated by the last

transport coil pair T13 and the black coil, see fig.4.8. We use quad shim and quic

shim respectively (fig.4.8) to control the atom position in the x-y plane. The atoms

are positioned directly below the evanescent wave potential, then the magnetic trap

center position is moved by 1.6mm in the z direction, well beyond the glass vacuum

interface. When the magnetic trap center moves beyond the surface, the atoms are

vertically held in place by the EW, giving rise to a combined opto-magnetic surface

trap (Fig. 5.4d). In the combined opto-magnetic surface trap, the vertical confine-

ment is given by the combined evanescent wave and magnetic potentials and the

lateral confinement is provided by the magnetic trap which dominates over the weak

anti-confinement due to the evanescent wave potential. While we take great care to

move the magnetic trap center as slowly as possible during the loading of the EW

trap, the length scale of the EW is sufficiently short and the trapping frequency in

the spherical magnetic trap is sufficiently small such that the loading is inherently

non-adiabatic to some degree. The non-adiabatic nature of the loading process leads

to heating of the sample by a few tens of nanokelvin.

The EW beam is an elliptic beam of 250µm×180µm size incident at an angle

θEW , 12mrad from the critical angle θc (Fig. 5.4a) corresponding to a decay length

of Λ ≈800nm. The overall potential is repulsive up to a maximum at a distance

of ≈200 nm from the surface, below which the attractive van der Waals potential

dominates (Fig. 5.4b). The short decay length of the EW gives rise to large curvatures
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Figure 5.4: (a) Setup for creating evanescent wave(EW) surface trap. (b) Combined
evanescent wave and van der Waals potential. (c) BEC in spherical magnetic trap.
(d) Atoms loaded into EW surface trap.

that allow tight confinement along the direction of the decay.

5.5 Analysis and results

Loading an evanescent wave surface trap is not a trivial exercise as the atoms

need to be aligned to the EW beam before there is any signal to optimize. Needless

to say, we were all very excited when we loaded the surface trap for the first time

and could then begin to test its performance. One of the first things we checked was

the EW confinement by measuring the trap frequency. We did this by adding a small
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modulation to the EW potential and then scanning the modulation frequency. As

we vary the modulation frequency of the EW, we expect to see an atom loss that is

peaked at the trapping frequency. The results of the trapping frequency measurement

are plotted in figure 5.5 showing a trapping frequency of close to 775Hz. We are able

to push the trapping frequency up to 1kHz in the EW configuration, allowing us to

reach the 2D regime with h̄ω ) µ3D. It is worth noting that the trapping frequency

in the vertical direction can also be found by examining the vertical extension of the

cloud in a time of flight measurement; we perform this measurement as well and find

it to be in good agreement with the parametric heating results.

The use of broadband light for the generation of the EW potential is designed

to reduce the effects of stray light in the system. However, the use of broadband

light also introduces the possibility of unwanted trap loss due to processes such as

photoassociation. It is for this reason that we were very eager to measure the lifetime

of the atoms in the EW trap. Our fears of excessive atom loss were unfounded as

we measured a 1/e atom lifetime in the EW trap of τ = 17 ± 1 s (Fig. 5.5b) that is

limited by background gas collisions.

It is of paramount importance that we obtain a low temperature sample in the

2D EW configuration to ensure that the quantum gas is below the BKT transition

temperature TBKT . After loading the atoms into the EW trap, we experimented with

a forced evaporation whereby we lowered the power in the EW beam such that the

potential barrier height to the surface was gradually lowered, allowing the hottest

atoms to tunnel to the surface, leaving behind a colder and denser sample. Unfortu-

nately, this method proved to be problematic in the following sense. The atoms that
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evaporated to the surface created localized patches of adsorbed surface dipoles which

lowered the potential barrier and eventually rendered the location unusable until the

adsorbates redistributed over the surface. Due to this effect of the adsorbates, we did

not pursue this method further and rather pursued a forced evaporation in the axial

lattice trap which is discussed in the next chapter.

The main motivation for using a superpolished substrate and broadband light

was to obtain a maximally homogeneous EW lateral potential such that we could

avoid the pitfalls of previous experiments that utilized evanescent waves. To verify

the lateral homogeneity of the resulting potential, we dynamically transported the

cloud over the diameter of the EW beam (by displacing the magnetic field center

up to 250µm) without causing significant heating or atom loss due to “holes” in the

evanescent wave.

675 750 900850800625
0.0

1.2

0.8

0.4

Frequency(Hz)

Pe
ak

 O
pt

ic
al

 D
ep

th

Figure 5.5: (a) Remaining fraction of atoms as a function of distance from glass
surface. Hollow red circles show that when the evanescent wave is off, the atoms are
lost when the quantum gas reaches the surface. Solid blue circles show that this is
not the case when the evanescent wave is on. (b) Lifetime of atoms in evanescent
wave surface trap. (c) Measurement of trap frequency via parametric heating.
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5.6 Summary and outlook

We demonstrate a successful evanescent wave surface trap with a 2D pancake like

confinement. The atoms in the EW surface trap sit only a few µm away from a fused

silica surface, allowing us to exploit a solid immersion effect that will allow for high

resolution imaging in later steps of the experiment. Implementing a novel approach

using broadband light we minimize the effects of stray light in the system, we are

able to realize a smooth EW potential with long trapping lifetimes. However, the

EW surface trap is not the end of the story as we will now load the ”pancake” into a

single well of a one dimensional standing wave in order to further insulate the atoms

from the effects of any remaining disorder due to stray light in the system.
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1D axial lattice

6.1 Introduction

The evanescent wave (EW) surface trap allows us to enter the 2D regime with our

quantum gas in a controlled and reproducible way. However, for future experiments

we require optical potentials with minimal disorder for the observation of many-body

states. To this end, we transfer the atoms from the evanescent wave surface trap

directly into a single minima of a one dimensional standing wave. The standing

wave (SW) trap enjoys multiple advantages over the evanescent wave trap. The

SW trap offers improved protection against unwanted scatter from impurities on

the superpolished surface. In contrast to the EW which has an intensity maximum

at the superpolished surface, the SW has an intensity node which minimizes the

amount of scattered light from the impurities on the surface. In this way, we realize

a maximally smooth potential for the atoms. Additionally, the SW trap provides a

tighter confinement in the vertical direction, allowing us to create condensates deep in
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the two dimensional regime even for large atom numbers. The increased confinement

in the vertical direction also increases the on-site interaction in the system, allowing

us easier access to many-body states such as the Mott insulator.

6.2 Comparison of evanescent wave trap to stand-

ing wave trap

The SW offers significant improvement over the EW in terms of creating an ef-

ficient confinement for the atoms. For a given trapping frequency of
√

4g/Λ and

assuming a distance of 2Λ from the surface, the potential depth Uew of the EW is

roughly Λmg · e4 while for the SW the potential depth Usw is given by mgλ2/(2π2Λ).

Approximating λ ∼ Λ, the ratio of potential depths is Uew/Usw ∼ 1000, meaning

that for a given trapping frequency the SW trap requires only one thousandth the

intensity of its EW counterpart.

The SW also offers a significant advantage over the EW in terms of light levels at

the surface of the hemisphere. The EW potential is maximal at the surface leading to

a maximum amount of scattered light. In contrast, the SW potential has an intensity

minimum at the surface that is a small fraction of the incoming intensity. The fraction

of light at the surface is 1+r2−2r ∼ .14 where r is reflection coefficient for the incident

electric field [42].

In our setup we use the SW to increase the vertical trap frequency by a factor of

ten while still using ten times less light intensity than the EW. Once the suppression

of scatter is taken into account at the surface of the glass, the SW has not only
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increased the vertical confinement but additionally the scattered light at the surface

is suppressed by a factor of ∼100.

6.3 Axial lattice surface trap

The standing wave potential is generated by reflecting a blue-detuned beam off

the glass surface [26] from the vacuum side as seen in figure 6.1a. Incident at an angle

θSW = 75◦ from the normal, the trap minima in the resulting potential are planes

parallel to the surface with a spacing of ≈ 1.5µm. Compared to the evanescent

wave configuration the trapping frequency is increased by a factor of more than 5.

Contrary to all current standing wave traps [80, 52, 79], the potential is formed

not by coherent light but by light from the 765 nm broadband source. This reduces

disorder from stray light interference, but does not significantly affect the interference

contrast, as the coherence length of the light is still much larger than the interfering

distance 2d · cos θSW . The SW configuration also reduces further the disorder caused

by remaining scattered light interference from those parts of the glass which are closer

than the coherence length. As the SW has an intensity minimum at the surface as

opposed to the intensity maximum of the EW, scattering from small surface impurities

is suppressed.

6.4 Setup

We reliably load all of the atoms into a single node of the standing wave, as the

spread of the wave function (zho = 250 nm) in the pure EW trap is much smaller than
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Figure 6.1: (a) Setup for creating 1D standing wave surface trap. (b) Atoms in
combined evanescent wave and magnetic potential. (c) Atoms loaded into 1D standing
wave trap.

the spacing of the SW planes. The transfer is realized by smoothly shifting power from

the EW beam to the standing wave beam over a period of 300ms. The trap frequency

in the z direction, verified by parametric excitation measurements, is increased to

5.9±0.1 kHz in this trap, taking us deep into the 2D regime with the temperature and

chemical potential both much smaller than the vertical trap frequency. We populate

the first node of the SW at a distance of ≈ 1.5µm from the surface. In this plane, the

disorder caused by surface dipoles is already strongly reduced, but the distance from

the surface is small enough to exploit the NA enhancement when imaging through



Chapter 6: 1D axial lattice 63

the substrate. In order to confirm the lateral homogeneity of the potential, we move a

bimodal ensemble 200µm back and forth across the surface within 150ms. We do not

observe any heating (∆T = −4.3nK±4.0 nK) or atom loss (∆N/N = 3.4% ± 2.4%)

during this process. Another indication for the smoothness of the potential is that

the atoms are free to leave it by moving out of the beam within a few 10ms when

switching off the magnetic potential, due to a weak remaining anti-confinement. The

1/e lifetime in the SW trap is 7.8 ± 0.4 s, and we have used both the incoherent

light and a narrow band 765 nm CW Ti:Sapphire laser for comparison. We find the

lifetimes to be the same within the error of the measurements and consistent with

loss due to spontaneous emission, indicating that there are no additional loss/heating

processes (e.g. photoassociation) associated with using the broadband light source.

6.5 Characterization of quantum gas in the 2D

regime

The 2D regime manifests itself as a change in the shape of the momentum dis-

tribution measured in time of flight along the z direction. We obtain a Gaussian

momentum profile along the vertical (Fig. 6.2a) corresponding to the harmonic con-

finement of the trap, while the profile along the other direction remains Thomas-Fermi

(Fig. 6.2b). The 2D system with ≈ 2× 104 atoms is below the expected BKT transi-

tion temperature of TBKT ≈ 40 nK at which vortices proliferate in the condensate [11].

Below TBKT , phase fluctuations in the condensate fraction can be present which are

mapped to density fluctuations [24] in time of flight as seen in Fig. 6.2c. These fluctu-
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ations decrease with the temperature of the condensate during a second evaporation

step.

6.6 RF evaporation in the standing wave

The SW configuration allows us to perform forced RF evaporation inside the 2D

trap using a radial magnetic field gradient to evaporate along the outer edge of the

trap volume. By stabilizing the current for the bias magnetic field of the QUIC trap

to ∼ 3 ppm, we obtain a stable evaporation process with reproducible atom numbers

in the desired range of several 104 atoms. The RF evaporation provides a way to

control the temperature of the ensemble in the 2D trap, allowing us to move well

below TBKT in order to realize a condensate with minimal phase fluctuations.
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Figure 6.2: Quantum gas deep in 2D regime. Time of flight images from standing
wave trap: (a) the vertical density profile is Gaussian, showing that the system is deep
in the 2D configuration. (In the lateral direction, it is well described by a bimodal
Thomas-Fermi profile with ≈ 20% thermal fraction in this case), (b) integrated lateral
profile averaged over 86 samples, (c) density fluctuations caused by thermal 2D phase
fluctuations in single profile from same data set (inset shows 140µm×280µm).
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6.7 RF spectroscopy in the 1D lattice

We can also intentionally load two planes (here the first and second) of the SW

trap by weakening the confinement and choosing a larger separation from the surface

in the initial EW configuration. When two planes are loaded, a vertical sinusoidal

interference pattern appears after ballistic time of flight (Fig. 6.3), which can be

used to detect long-range phase fluctuations and vortices in the trap [80]. In order to

quantitatively probe the distribution over the trap nodes, we employ RF spectroscopy

similar to that done in [80], using a magnetic field gradient of 33.8±0.7G/cm perpen-

dicular to the surface. The density distribution along the gradient direction is then

probed by varying the RF frequency according to a scaling of 2.43 ± 0.05 kHz/µm.

This achieves a spatial resolution better than 1µm. The vertical potential periodicity

is 1.54 ± 0.04µm, determined by diffracting atoms off the SW. The profile is shown

in Fig. 6.3d using an RF pulse length of 2 s. The two loaded sites can be clearly

distinguished. Conversely, when loading a single site, the profiling yields an upper

limit for the occupation in the second site of ≈ 5%, while the (lack of) interference

during ballistic expansion limits the fraction of the total coherent population in that

site to less than ≈ 10−3. Loading two planes of the 1D lattice also gives us a way to

observe thermally activated vortices via the interference pattern observed in time of

flight images. In this way we can verify that temperatures reached during RF evapo-

ration in the 2D trap are low enough to remove any thermally activated vortices from

the system.
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Figure 6.3: Loading of single and multiple planes in the standing wave trap. (a) atoms
loaded into a single site, imaged from the side after release and 17 ms time-of-flight,
(b) interference between atoms from two planes. (c) interference pattern between two
planes at a higher temperature showing the presence of a thermally activated vortex.
(d) The vertical density profile obtained by RF addressing shows the occupation of
two planes . The red line denotes a two-peak Lorentzian fit, which yields a peak
separation of 1.51 ± 0.06µm.

6.8 Summary

In summary, we demonstrate a novel scheme of creating a quantum gas deep in

the 2D regime close to a glass surface. The trap provides both strong confinement in

the vertical direction and smooth potentials in the 2D plane without the necessity to

load many planes simultaneously. We avoid interference of scattered light with the

trap light by employing light sources which have short coherence lengths. We create

2D quantum gases and are able to detect properties such as phase fluctuations and

thermal excitation of vortices. Through a second RF evaporation in the 2D trap we

are able to control the temperature to be below TBKT ensuring that our condensate

has a uniform phase. We now look towards our broader goal of creating a system
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for the study of many-body physics. In the next phase of the experiment we will

take advantage of our high resolution imaging system which allows us to both project

lattice potentials onto the atoms and detect single atoms on single lattice sites via

fluorescent imaging.
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2D Lattice and imaging

7.1 Introduction

Having achieved 2D confinement of our quantum gas, we are now in position to

make use of our high numerical aperture (NA=.8) imaging system for not only high

resolution imaging but also for the projection of lattice potentials. In contrast with

previous experiments, our high numerical aperture optics enable the direct projection

of optical lattices with lattice constants that are small enough to allow for the study

of many body physics. After the atoms have been successfully loaded into the 2D

lattice, we then image the entire 2D lattice via fluorescence imaging. Employing an

optical molasses during the imaging process that allows us to ”freeze” the density

distribution of the atoms in the lattice, we are able to detect single atoms with high

fidelity.

68
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7.2 Imaging system

The imaging system consists of a long working distance (18mm) microscope ob-

jective that sits outside of the vacuum chamber, together with a hemispheric lens that

sits inside of the vacuum chamber as shown in figure 7.2a. The objective is diffraction

limited with a numerical aperture of NA=.55. Since our quantum gas sits only a few

microns away from the surface of the hemisphere, the hemisphere inside the chamber

gives rise to a solid immersion effect that allows us to increase the numerical aper-

ture of the imaging system by the index of refraction of the hemisphere (n=1.45).

The numerical aperture of the combined imaging system is NA=.8, corresponding

to a diffraction limited resolution of ≈500nm. The microscope objective is aligned

interferometrically to the hemisphere (figure7.1).
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Figure 7.1: Three dimensional image of the imaging system and measured interfero-
gram showing a diffraction limited performance.
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Figure 7.2: Imaging System: (a) Schematic of the imaging system, composed of a
long working distance microscope objective together with a hemispherical front lens.
The hemispherical lens increases the numerical aperture of the system from NA=.55
to NA=.8. (b) Hemisphere mounted inside of glass cell, held in place by stainless
steel clamp.

7.3 Mounting of the microscope objective

Due to the high numerical aperture of our imaging system, it is imperative that the

imaging system does not shake with respect to the atoms. Since the atom position is

defined by the hemisphere which is mechanically defined by the glass cell, we require

that the microscope objective be mechanically attached to the glass cell to ensure that

all vibrations are common mode. We mount the microscope objective to the glass

cell via a stainless steel clamp (figure 7.3a) attached to the glass cell that acts as a

mounting platform for a hollow tube of G10 (figure 7.3b) that is machined to allow

passage of laser beams into and out of the glass cell. We then attach the microscope

objective to a slitted aluminum ring that rests on top of the G10 piece as shown

in figure 7.3c. We interferometrically align the microscope objective, allowing us to
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glue both the G10 piece and the microscope objective in place while monitoring the

system in real time to ensure that the performance remains diffraction limited even

as the glue cures. Mounting the microscope ensures that the imaging system is stable

with respect to the lattice. We observe very small drifts in the lattice position, less

than 10% of the lattice spacing in one hour with shot to shot fluctuations of less than

15% rms.

(a) (c)(b)
Figure 7.3: Equipment used to mount the microscope.(a) A 316 stainless steel clamp
is attached to the glass cell and provides mechanical support for the microscope
objective holder. A combination of insulation and appropriately placed slits allow
us to avoid eddy currents.(b) A cylindrical piece of G10 is machined to hold the
microscope objective. The irregular shape is a result of the constraints that the
holder must rest on the stainless steel clamp in(a) as well as not restrict any of the
laser beam access. The holder is tightly wrapped in aluminum foil to protect the G10
from burning by stray high power laser beams.(c) The microscope objective is then
glued to a thin slitted aluminum ring that is glued to the microscope holder. This
picture is for illustration only. In reality, we align the microscope in situ and then
glue it in place.
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7.4 Holographic projection of lattices

The large numerical aperture imaging system is capable of projecting lattice po-

tentials with small lattice constants of (a ≈ 500nm) that are compatible with the

study of many-body physics. We take advantage of this capability by directly pro-

jecting a spatial light pattern [8, 36, 77] onto the atoms. Periodic phase holograms

are projected onto the 2D quantum gas to create 2D lattice potentials. Potential

landscapes generated in this way can be arbitrary within the limits set by the avail-

able imaging aperture and by polarization effects that can arise due to the large

aperture imaging beyond the paraxial limit. Another advantage of using holographic

projection is that the lattice geometry is not dependent upon the wavelength of light

[78] with the exception of diffraction limits and chromatic aberrations in the lens for

large wavelength changes. This allows us to use spectrally broad ”white” light with

a short coherence length to reduce unwanted disorder from stray interferences in a

similar fashion to what was done in the EW and SW traps. Instead of using an ASE

source as we did for the SW and EW traps, here we use a femtosecond laser with a

spectral width of 3nm centered at 758nm to generate our far-detuned conservative

lattice potentials. All experiments in this thesis were performed with a square lattice,

but other geometries are easily obtainable by using a different phase pattern for the

hologram. We create blue detuned square lattice potentials with a lattice constant of

a = 640nm and depths of up to 35Erec where Erec = h2/8ma2.
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Figure 7.4: Schematic of lattice projection technique. A collimated beam is incident
upon a periodic phase hologram and the resulting output is filtered and then sent to
the microscope objective. After passing through the microscope objective, the beams
produce an interference pattern in the same pattern as the phase hologram. Pictured
is a triangular lattice that we image by capturing the reflection off of the flat face of
the hemisphere.

7.4.1 2D lattice setup

The basic setup is shown in figure 7.4, a general discussion of holographic pro-

jection can be found in [13]. A collimated beam illuminates the hologram and is

split into multiple diffraction orders. As we are only interested in the first diffraction

orders, we block all others. The first order diffraction beams are then guided through

the imaging system and onto the atoms where they create a lattice with the same

shape as the hologram from which they were produced. Figure 7.4 shows actual data

taken during the initial diagnostics of the holographic projection technique where a

triangular phase hologram was used. In the experiment we use a square lattice and

it is imperative that the polarizations of the beams be carefully controlled, other-
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wise elliptically polarized light will be present in the resultant lattice. Elliptically

polarized light in the lattice gives rise to effective magnetic fields [19] which are more

than capable of sabotaging sub-doppler cooling mechanisms such as optical molasses.

Since our detection scheme relies on a viable optical molasses we carefully control the

polarization of the lattice light in order to avoid any unwanted elliptically polarized

light at the local potential minima where the atoms are trapped.

A 2D square lattice requires four laser beams interfering at the position of the

atoms. We design our setup such that two orthogonally polarized pairs of beams are

incident upon the microscope objective. The polarizations of the beams are shown

in figure 7.5 and chosen such that each pair produces a 1D lattice that is linearly

polarized at the focus of the objective.

7.5 Optical molasses

With a high resolution imaging system in place and the atoms loaded into a 2D

square lattice, there is nothing in principle stopping us from imaging single atoms.

However, we must proceed with care. If we simply try absorption or fluorescence

imaging directly, the atoms will heat up due to atomic recoil and delocalize over the

lattice before we can collect enough photons to resolve their position at the single

site level. It is for this reason that we employ an optical molasses [62] to cool the

atoms during the imaging process. Due to the geometry of our setup the optical

molasses configuration is non-standard as illustrated in figure7.6. The molasses beams

are detuned 80MHz to the red of the F=2 to F’=3 hyperfine transition. A first

molasses beam is sent along the QUIC axis at a glancing incidence (15 degree) to
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Figure 7.5: The four beams that create the 2D square lattice are shown entering the
microscope objective. The polarization of the beams is indicated by the white arrows
and chosen such that the interference pattern produced at the focus of the objective
is linear at the position of the atoms.

the superpolished surface with a polarization perpendicular to the plane of incidence.

This beam is then retroreflected and the polarization is rotated such that the the

retroreflected beam has a polarization in the plane of incidence. In this way we

are able to create polarization and intensity gradients along the QUIC and vertical

axes. A second molasses beam sent along the Quad axis, also at glancing incidence

to the superpolished surface creates polarization gradients along the remaining axis.

The molasses beam sizes are kept as small as reasonably possible (around 100µm) in

order to keep the power in the beams to a minimum, a few µW per beam. Excessive

molasses power would result in a large amount of scatter being collected by the CCD



Chapter 7: 2D Lattice and imaging 76

camera during the imaging process due to the long exposure times. We also employ

the use of a repumping beam during the molasses to prevent the unwanted shelving

of atoms during the detection process.

QUIC axis
Quad axis

λ/4 retrore"ector

Quad axis
QUIC axis

(a) (b)

Figure 7.6: Optical molasses setup. The QUIC axis is along the Ioffe coil and Quad
is along the axis of the quadrupole coils see figure 4.8.

7.6 Detection sequence

A schematic of the detection sequence is shown in figure 7.7. We begin with a

2D quantum gas in the SW trap and then adiabatically ramp up the power from the

femtosecond laser source which creates a conservative 2D lattice in the plane. We

then freeze the atoms in place by ramping up a very deep, near detuned pinning

lattice derived from a continuous wave Ti:Sapphire laser. The pinning lattice is

detuned 32GHZ to the blue of the D1 line and has precisely the same geometry as the

conservative 2D lattice since it is derived from the same holographic projection setup.

The two axes of the pinning lattice are detuned from one another by at least 80MHz

in order to time average the interference between them that would otherwise disrupt

the polarization gradient cooling. For the third axis we also use near detuned light
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from the Ti:Sapphire laser to increase the confinement to 3mK, this light also being

frequency shifted relative to the other two axes in order to time average interferences.

Once the pinning lattice is ramped up and the atom distribution is frozen in place

we turn off the magnetic trap and turn on the magnetic field compensation to null

the bias field at the atom position. After the magnetic fields have stabilized we

then turn on the optical molasses beams. The optical molasses beams simultaneously

provide sub-Doppler cooling for the atoms while scattering photons that are collected

through the imaging optics. The pinning lattice depth is large compared with the

equilibrium temperature of the optical molasses, allowing us to take long exposure

images collecting thousands of photons per atom while holding the atoms in place.

Spherical Magnetic Trap

Quantum Gas in SW trap 2D Hubbard Lattice Single Atom Detection

765nm ASE source

758nm femtosecond light 795nm near detuned light

795nm near detuned light
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Magnetic Field Compensation

F=2->F’=3 Molasses Light

5500 Erec

2.5x105 Erec

Up to 35 Erec

140 Erec

F=1->F’=2 Repump Light

Figure 7.7: Single atom detection sequence.
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7.7 Results

In initial experiments we loaded the 2D lattice with a sparse thermal cloud and

then recorded an image while illuminating the atoms with an optical molasses as de-

scribed previously. Analyzing such sparse clouds as shown in figure 7.8a we were able

to characterize the imaging system and compare the performance with the diffraction

limit as shown in figure 7.8b. We measure a single atom profile with a FWHM size

of 570nm and 630nm along the x and y direction respectively, which is close to the

theoretical minimum value of ∼520nm. The theoretical minimum for our system is

a combination of the diffraction limit of the imaging system, the initial size of the

atomic wavefunction during the imaging process, and the pixel size of the camera.

Figure 7.8: (a) CCD image of a sparse thermal cloud loaded into the 2D square
lattice.(b) Response of single atom, derived from sparse image. The solid black line is
the Airy function for a perfect imaging system with a numerical aperture of NA=.8.
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Pair densities within multiply occupied lattice sites are very high due to the strong

confinement in the pinning lattice. When resonantly illuminated, such pairs undergo

light assisted collisions and leave the trap within a time on order of 100 µs, long before

they emit sufficient photons to be detected [23]. Therefore the remaining number of

atoms per site is equal to the parity of the original atom number before illumination,

as long as the initial occupation is small. For our molasses parameters, the collected

number of photons can be up to 2·104 per atom per second, and the exposure times

are typically between 200 and 1000 ms, limited by the loss of single atoms from the

trap which reduces the detection fidelity. The 1/e lifetime in the pinning lattice is

∼30 s, which is consistent with loss due to collisions with hot atoms in the background

gas.

Figure 7.9 shows an image obtained by loading a dense condensate. The fast

ramp-up of the pinning lattice within 1.5 ms switches off tunneling and projects the

superfluid state wavefunction onto Poisson distributed onsite occupations with more

than one atom per lattice site in the center of the trap. Due to the removal of pairs

the occupation detected is lowered, typically to 42%. The images are analyzed by

identifying the lattice geometry and fitting point spread functions (obtained sepa-

rately by analyzing images from sparsely filled lattices) to each lattice point. As the

background signal is weak and smooth due to the 2D geometry, we thus obtain the

total number of scattered photons per lattice site as a simple way of determining

the presence of an atom. Figure 7.10 shows the histogram of photon counts for the

central region of several images with an average filling of 34%. For these pictures

with long exposure times, the fidelity of identifying atoms at a given lattice site is
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98%, limited by the losses occurring during the integration time. To verify that the

atom distribution is preserved during imaging, we have recorded sequences of consec-

utive images spanning a total detection period of several seconds, during which no

significant hopping occurs.

Figure 7.9: CCD image of atoms in the two dimensional square lattice.
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Figure 7.10: Histogram showing the distribution of the fluorescence signal collected
per lattice site for an exposure time of 1s. The peak centered around zero corresponds
to empty lattice sites while the second peak to the right corresponds to sites with
single occupancy.

7.8 Conclusions

In the quantum gas microscope we have demonstrated a powerful new system,

capable of resolving single atoms in a two dimensional optical lattice with a lat-

tice constant small enough to explore many body physics. With the high numerical

aperture of the quantum gas microscope, we have further demonstrated the use of

holographic projection to create arbitrary potential landscapes, demonstrating a new
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and flexible way of creating short period optical lattices.

7.9 Outlook

With the quantum gas microscope we enter a new regime in the study of optical

lattices, no longer having to rely on bulk parameters alone to probe the system.

With direct access to the number statistics of the lattice it will be possible in the

future to directly detect strongly correlated states such as the Mott insulator and

antiferromagnetic states. In our lattice configuration, the Mott transition is expected

at a lattice depth of ∼ 12Erec with a tunnel coupling strength J of 20Hz at the

transition point. Lattice defects that evaded detection in past experiments will now

become quantifiable and in future experiments the measurement of such defects will

enable precision measurements of entropy or temperature. Local excitations such as

hole-pair correlations should be accessible as well.

The method of projecting lattice potentials with lithographically patterned masks

gives us full control over the lattice geometry at the single site level. In future

experiments this method will allow for the creation of arbitrary potential landscapes

including spin dependent landscapes which will enable the realization of large class of

model Hamiltonians. The projection method also allows for the local manipulation

of the quantum gas, enabling local spin flips and novel cooling schemes that will aid

in the study of quantum magnetism and d-wave superfluidity.
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Appendix A

Rubidium data

The data in the following pages is taken from Dan Steck’s fantastic alkali data

sheet for Rubidium. Please visit http://steck.us/alkalidata/ for a complete reference

on the properties of 87Rb.
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5 Data Tables

Table 1: Fundamental Physical Constants (2006 CODATA recommended values [2])
Speed of Light c 2.997 924 58× 108 m/s (exact)

Permeability of Vacuum µ0 4π × 10−7 N/A2 (exact)

Permittivity of Vacuum ε0
(µ0c2)−1 (exact)

= 8.854 187 817 . . .× 10−12 F/m

Planck’s Constant

h
6.626 068 96(33)× 10−34 J·s

4.135 667 33(10)× 10−15 eV·s

!
1.054 571 628(53)× 10−34 J·s
6.582 118 99(16)× 10−16 eV·s

Elementary Charge e 1.602 176 487(40)× 10−19 C

Bohr Magneton µB

9.274 009 15(23)× 10−24 J/T
h · 1.399 624 604(35) MHz/G

Atomic Mass Unit u 1.660 538 782(83)× 10−27 kg

Electron Mass me
5.485 799 0943(23)× 10−4 u
9.109 382 15(45)× 10−31 kg

Bohr Radius a0 0.529 177 208 59(36)× 10−10 m

Boltzmann’s Constant kB 1.380 6504(24)× 10−23 J/K

Table 2: Rubidium 87 Physical Properties.
Atomic Number Z 37

Total Nucleons Z + N 87
Relative Natural Abundance η(87Rb) 27.83(2)% [3]

Nuclear Lifetime τn 4.88× 1010 yr [3]

Atomic Mass m
86.909 180 520(15) u

1.443 160 648(72)× 10−25 kg
[4]

Density at 25◦C ρm 1.53 g/cm3 [3]

Melting Point TM 39.30 ◦C [3]

Boiling Point TB 688 ◦C [3]

Specific Heat Capacity cp 0.363 J/g·K [3]

Molar Heat Capacity Cp 31.060 J/mol·K [3]

Vapor Pressure at 25◦C Pv 3.92(20)× 10−7 torr [5]
Nuclear Spin I 3/2

Ionization Limit EI
33 690.804 80(20) cm−1

4.177 127 06(10) eV
[8]
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Table 3: Rubidium 87 D2 (52S1/2 −→ 52P3/2) Transition Optical Properties.
Frequency ω0 2π · 384.230 484 468 5(62) THz [9]
Transition Energy !ω0 1.589 049 462(38) eV

Wavelength (Vacuum) λ 780.241 209 686(13) nm

Wavelength (Air) λair 780.033 330(23) nm

Wave Number (Vacuum) kL/2π 12 816.549 389 93(21) cm−1

Isotope shift ω0(87Rb)− ω0(85Rb) 2π · 78.095(12) MHz [10]

Lifetime τ 26.2348(77) ns [18–21]

Decay Rate/
Natural Line Width (FWHM) Γ

38.117(11)× 106 s−1

2π · 6.0666(18) MHz

Absorption oscillator strength f 0.695 77(29)

Recoil Velocity vr 5.8845 mm/s
Recoil Energy ωr 2π · 3.7710 kHz

Recoil Temperature Tr 361.96 nK

Doppler Shift (vatom = vr) ∆ωd(vatom = vr) 2π · 7.5419 kHz

Doppler Temperature TD 145.57 µK

Frequency shift for standing wave
moving with vsw = vr

∆ωsw(vsw = vr) 2π · 15.0839 kHz

Table 4: Rubidium 87 D1 (52S1/2 −→ 52P1/2) Transition Optical Properties.
Frequency ω0 2π · 377.107 463 380(11) THz [10]

Transition Energy !ω0 1.559 591 016(38) eV

Wavelength (Vacuum) λ 794.978 851 156(23) nm

Wavelength (Air) λair 794.767 119(24) nm
Wave Number (Vacuum) kL/2π 12 578.950 981 47(37) cm−1

Isotope shift ω0(87Rb)− ω0(85Rb) 2π · 77.583(12) MHz [10]

Lifetime τ 27.679(27) ns [18, 19, 21]

Decay Rate/
Natural Line Width (FWHM) Γ

36.129(35)× 106 s−1

2π · 5.7500(56) MHz

Absorption oscillator strength f 0.342 31(97)

Recoil Velocity vr 5.7754 mm/s

Recoil Energy ωr 2π · 3.6325 kHz

Recoil Temperature Tr 348.66 nK

Doppler Shift (vatom = vr) ∆ωd(vatom = vr) 2π · 7.2649 kHz

Frequency shift for standing wave
moving with vsw = vr

∆ωsw(vsw = vr) 2π · 14.5298 kHz
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52S1/2

52P1/2

794.978 851 156(23) nm
377.107 463 380(11) THz

12 578.950 981 47(37) cm-1

1.559 591 016(38) eV

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F = 2

F = 1

gF o=o1/2
(0.70 MHz/G)

gF o=o-1/2
(-o0.70 MHz/G)

305.43(58) MHz

509.05(96) MHz

814.5(15) MHz

F = 2

F = 1

gF o=o1/6
(0.23 MHz/G)

gF o=o-1/6
(-o0.23 MHz/G)

Figure 3: Rubidium 87 D1 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The excited-state values are taken from [10, 11, 26], and the ground-state values are from [29]. The relative
hyperfine shifts are shown to scale within each hyperfine manifold (but visual spacings should not be compared
between manifolds or to the optical splitting). The approximate Landé gF -factors for each level are also given,
with the corresponding Zeeman splittings between adjacent magnetic sublevels.
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52S1/2

52P3/2

780.241 209 686(13) nm
384.230 484 468 5(62) THz
12 816.549 389 93(21) cm-1

1.589 049 462(38) eV

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F = 2

F = 1

gF o=o1/2
(0.70 MHz/G)

gF o=o-1/2
(-o0.70 MHz/G)

193.7407(46) MHz

72.9112(32) MHz

229.8518(56) MHz

302.0738(88) MHz

266.6500(90) MHz

156.9470(70) MHz

72.2180(40) MHz

F = 3

F = 2

F = 1

F = 0

gF o=o2/3
(0.93 MHz/G)

gF o=o2/3
(0.93 MHz/G)

gF o=o2/3
(0.93 MHz/G)

Figure 2: Rubidium 87 D2 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The excited-state values are taken from [9], and the ground-state values are from [29]. The relative hyperfine
shifts are shown to scale within each hyperfine manifold (but visual spacings should not be compared between
manifolds or to the optical splitting). The approximate Landé gF -factors for each level are also given, with the
corresponding Zeeman splittings between adjacent magnetic sublevels.
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Anti-reflection coating curves

Specified and measured coatings on the glass cell.
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!
"#$%%%&'!()&$$#&%$*+,%#-.$*.--#/$-&01#/-$$234$#&+5!
 

!!6237! )8$59:!6;7! )8,,59:!6;7! )8&+59:!6;7!
400-420 4 5 8 
532-670 1,8 2 3 

766-1064 1 1,5 2,5 
    400-750 5 - - 

750-1064 1,5 - - 
760-910 1 - - 

1064-1600 10 - - 
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