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Zusammenfassung

In dieser Promotionsarbeit werden Experimente vorgestellt, in denen es gelungen ist, in
ein neues Regime der Vielteilchenphysik eines atomaren Quantengases vorzudringen. Ein
Bose-Einstein-Kondensat wird in ein dreidimensionales optisches Gitterpotential geladen,
das durch interferierende Laserstrahlen gebildet wird. Mit diesem neuartigen Quantensystem
konnte ein Quanten-Phasenübergang zwischen einer Superflüssigkeit und einem Mott Isola-
tor realisiert und das Kollabieren und Wiederaufleben eines makroskopischen Materiewellen-
feldes beobachtet werden.

Quanten-Phasenübergänge werden durch Quantenfluktuationen getrieben und können da-
her selbst am absoluten Temperaturnullpunkt auftreten, an dem alle thermischen Fluktuatio-
nen ausgefroren sind. Im ersten Teil dieser Arbeit berichte ich über die Beobachtung eines
solchen Quanten-Phasenübergangs in einem Bose-Einstein Kondensat mit repulsiver Wech-
selwirkung, das in einem dreidimensionalen optischen Gitterpotential gespeichert ist. Im su-
perfluiden Grundzustand ist jedes Atom über das gesamte Gitter delokalisiert. Im Mott Iso-
lator Zustand hingegen ist auf jedem Gitterplatz eine konstante Zahl von Atomen lokalisiert.
Wir konnten den reversiblen Übergang zwischen diesen beiden Zuständen beobachten und
die Lücke im Anregungsspektrum des Mott Isolators nachweisen.

Ein Bose-Einstein Kondensat wird üblicherweise durch ein makroskopisches Materie-
wellenfeld beschrieben. Diesem "klassischen" Feld liegt bei genauerer Betrachtung jedoch
ein quantisiertes Materiewellenfeld zu Grunde. Thema des zweiten Teils dieser Arbeit ist die
erstaunliche Dynamik, die ultrakalte Materie aufgrund dieser Quantisierung und der nicht-
linearen Wechselwirkung der Atome erfährt. Im Experiment konnten wir ein periodisches
Kollabieren und Wiederaufleben des makroskopischen Materiewellenfeldes beobachten. Wir
konnten zeigen, daß die Kollisionen zwischen jeweils zwei Atomen lediglich zu einer völlig
kohärenten Kollisionsphase im jeweiligen Vielteilchenzustand führen. Die kohärente Kolli-
sionphase ist eine wesentliche Grundlage für verschiedene Vorschläge zur Realisierung eines
Quantencomputers.

Mit diesen Experimenten ist es gelungen, in ein neues Gebiet der Physik der ultrakalten
Quantengase vorzudringen. Das stark korrelierte System wird durch die Wechselwirkung
zwischen den Atomen dominiert und kann daher nicht mehr durch die gängigen Theorien
des schwach wechselwirkenden Bosegases beschrieben werden. Durch dieses neuartige
Quantensystem eröffnet sich die einzigartige Möglichkeit, in einem ultrakalten atomaren
Gas fundamentale Fragen der modernen Festkörperphysik, Atomphysik, Quantenoptik und
Quanteninformation zu studieren.





Abstract

In this thesis I report on experiments that enter a new regime in the many body physics
of ultracold atomic gases. A Bose-Einstein condensate is loaded into a three-dimensional
optical lattice potential formed by a standing wave laser light field. In this novel quantum
system we have been able to both realize a quantum phase transition from a superfluid to a
Mott insulator, and to observe the collapse and revival of a macroscopic matter wave field.

Quantum phase transitions are driven by quantum fluctuations and occur, even at zero tem-
perature, as the relative strength of two competing energy terms in the underlying Hamilto-
nian is varied across a critical value. In the first part of this work I report on the observation
of such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions,
held in a three-dimensional optical lattice potential. In the superfluid ground state, each atom
is spread-out over the entire lattice, whereas in the Mott insulating state, exact numbers of
atoms are localized at individual lattice sites. We observed the reversible transition between
those states and detected the gap in the excitation spectrum of the Mott insulator.

A Bose-Einstein condensate is usually described by a macroscopic matter wave field.
However, a quantized field underlies such a “classical” matter wave field of a Bose-Einstein
condensate. The striking behavior of ultracold matter due to the field quantization and
the nonlinear interactions between the atoms is the focus of the second part of this work.
The matter wave field of a Bose-Einstein condensate is observed to undergo a series of
collapses and revivals as time evolves. Furthermore, we show that the collisions between
individual pairs of atoms lead to a fully coherent collisional phase shift in the corresponding
many-particle state, which is a crucial cornerstone of proposed novel quantum computation
schemes with neutral atoms.

With these experiments we enter a new field of physics with ultracold quantum gases.
In this strongly correlated regime, interactions between atoms dominate the behavior of the
many-body system such that it can no longer be described by the usual theories for weakly in-
teracting Bose gases. This novel quantum system offers the unique possibility to experimen-
tally address fundamental questions of modern solid state physics, atomic physics, quantum
optics, and quantum information.
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1 Introduction

The realization of Bose-Einstein condensation (BEC) in dilute atomic gases has enabled
numerous fascinating experiments in which fundamental quantum mechanics is studied in a
macroscopic and accessible system. For example matter wave coherence properties, vortices,
and effects of superfluid flow have been explored. In almost all experiments up to now
the Bose condensed atoms can be described by a single macroscopic wave function. The
dynamics of the weakly interacting condensates is treated in the framework of the Gross
Pitaevskii equation and Bogoliubov theory. The fact that a single macroscopic wave function
or macroscopic matter wave is sufficient to describe the many body system allows for a very
intuitive understanding of the system. Experimentally, the macroscopic wave function can
be precisely probed in interference experiments.

From a many body point of view, however, a system described by a macroscopic wave
function is the simplest of all possible many body systems. Interaction induced correlations
are neglected in such a system or treated as a small perturbation in Bogoliubov theory. There-
fore the question arises as to whether one can bring a dilute gas of bosons into the strongly
correlated regime, where interaction induced correlations are dominant and the system is too
rich and complex to be described by a macroscopic matter wave. Experiments at the onset
of this exciting regime were carried out in the group of Carl Wieman, where the collapse and
explosion of a Bose-Einstein condensate with tuned interactions has been observed [1, 2]
and in the group of Mark Kasevich, where number squeezing has been observed with a BEC
in a one-dimensional optical lattice potential [3].

In this work I will present experiments in which we have been able to enter a new field
of physics with ultracold quantum gases. By loading a Bose-Einstein condensate into a
three-dimensional optical lattice potential, a novel quantum system is created that allows
us to enter the regime of a strongly correlated boson system. In an optical lattice, neutral
atoms are trapped in the intensity maxima or minima of a standing wave light field due to the
optical dipole force. We have observed a zero temperature quantum phase transition from
a superfluid to a Mott insulator and the collapse and revival of a macroscopic matter wave
field. This new application of Bose-Einstein condensation offers the unique possibility to
experimentally study fundamental questions of modern solid state physics, atomic physics,
quantum optics, and quantum information.

Quantum phase transition from a superfluid to a Mott insulator

A Bose-Einstein condensate trapped in a three-dimensional optical lattice potential is a
nearly perfect experimental realization of the Bose-Hubbard model, which describes bosonic
particles with repulsive interactions hopping in a lattice potential [4]. This intriguing model
shows a quantum phase transition between a superfluid and an insulating state, the so-called
Mott insulator, as the ratio between the competing kinetic energy and interaction energy term
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1 Introduction

in the Hamiltonian is varied. Such a quantum phase transition is driven by quantum fluctu-
ations and therefore also occurs at absolute zero temperature, where all thermal fluctuations
are frozen out.

The fact, that a Bose-Einstein condensate trapped in a lattice potential is described by a
Bose-Hubbard model was first realized by Dieter Jaksch and coworkers [5] in the group of
Peter Zoller. In contrast to all present realizations of this model, where the bosonic systems
are either tightly bound composites of fermions that act like effective bosonic particles or
correspond to bosonic excitations, the system of ultracold neutral atoms in an optical lattice
potential has the big advantage of being highly controllable. Therefore Jaksch et al. have
predicted that a quantum phase transition from a superfluid to a Mott insulator should be
observable in such a system.

Recently we have been able to observe such a transition with a Bose-Einstein conden-
sate of 87Rb atoms, loaded into an optical lattice potential. When the lattice potential is
smoothly ramped-up and superimposed to the condensate, the condensate splits up in more
than 100.000 lattice sites, and the bosonic atoms can only move from one lattice site to the
next by tunnel coupling. In the regime where the atom-atom interaction on a lattice site is
small compared to the tunnel coupling, the ground state of the system is a superfluid state
where each atom is delocalized over the entire lattice. The atoms exhibit long-range phase
coherence and can be described by a macroscopic wave function with a well defined macro-
scopic phase on each lattice site. The atom number on a lattice site fluctuates, therefore in
a measurement one would find a random atom number on each site. In the opposite limit,
where the atom-atom interaction on a lattice site is much larger than the tunnel coupling, the
system can lower its energy when each lattice site is filled with the same number of atoms.
In this Mott insulating state each atom is localized to a lattice site and a gap in the excitation
spectrum opens up. The macroscopic phase and the long range phase coherence vanish and
the atoms can no longer be described by a macroscopic wave function.

In the experiment we can tune the ratio between the atom-atom interaction on a lattice
site and the tunnel coupling over several orders of magnitude by changing the depth of the
optical lattice potential. We have been able to demonstrate the reversible change between
the superfluid and the Mott insulator ground state when this ratio has been varied beyond a
critical value. In addition, the gap in the excitation spectrum has been detected.

The realization of the Bose Hubbard model with an ultracold gas of atoms trapped in an
optical lattice potential opens new perspectives for studying fundamental solid state physics.
Besides this the Mott insulator state is an intriguing starting point for experiments aiming
for the coherent formation of molecules [6] or for the creation of large scale entanglement
between atoms [7].

Collapse and Revival of a macroscopic matter wave field

A Bose-Einstein condensate represents the most "classical" form of a matter wave, just as an
optical laser emits the most classical form of an electromagnetic wave. Beneath this giant
matter wave, however, the discrete atoms represent a crucial granularity, i.e. a quantization
of this matter wave field, which has been inaccessible to experiments with Bose-Einstein
condensates up to now. Nevertheless, it has been recognized that such a quantization should
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1 Introduction

lead to pronounced consequences for the wave nature of matter. The coherent collisions
between the atoms lead to a periodic series of collapses and revivals of the matter wave field
of a Bose-Einstein condensate. During the collapse, the coherent collisional dynamics even
lead to the formation of Schrödinger cat states.

In the experiment, the collapse and revival of the coherent matter wave field of a Bose-
Einstein condensate has been directly observed. The experiment demonstrates that collisions
between a given number of atoms lead to a coherent collisional phase in the correspond-
ing many particle state, which induces the periodic collapse and revival of the macroscopic
matter wave field. Using a three-dimensional lattice potential has allowed us to bring the
timescale for this fundamental process into an experimentally accessible regime. The ob-
served coherent collisional phase is the cornerstone of novel quantum computation schemes
with neutral atoms. [7].

As an application, the collapse and revival of the macroscopic matter wave field has been
used to measure the sub-Poissonian atom number statistics of ultracold atoms stored in op-
tical lattice potentials. A pronounced number squeezing has been observed even before the
system is brought into the Mott insulator regime. The measured number squeezing is con-
sistent with a theoretical Gutzwiller calculation.

Overview

• The second chapter is an overview about the theory of a weakly interacting Bose gas,
the experimental apparatus and the experimental methods.

• The third chapter deals with superfluid quantum gases in optical lattice potentials. The
theory of optical dipole potentials, the band structure of a lattice, and the discrete
Gross Pitaevskii equation is discussed. The experimental part describes the generation
of optical lattice potentials and the preparation and detection of ultracold atoms in such
potentials and various experiments.

• In the fourth chapter, the quantum phase transition from a superfluid to a Mott insulator
is presented. The Bose Hubbard Model is explained and experiments demonstrating
the reversible quantum phase transition and the gap in the excitation spectrum are
discussed.

• The fifth chapter reports on the observation of the collapse and revival of a macro-
scopic matter wave field. Theory and experimental results are discussed, and it is
demonstrated how the collapse and revival can be used for measuring the sub-Pois-
sonian atom number statistic in an optical lattice potential.
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2 Bose-Einstein condensation in a weakly interacting gas
of atoms

Bose-Einstein condensates (BEC) in dilute gases provide unique opportunities for exploring
quantum phenomena on a macroscopic scale. They have first been realized 1995 in a remark-
able series of experiments with rubidium [8] and sodium [9] vapors. In these experiments
a dilute cloud of atoms is cooled to ultra low temperatures in the nano-kelvin regime. At a
critical phase space density the quantum mechanical wave packets describing the individual
bosonic atoms start to overlap and a Bose-Einstein condensate is formed. In such a conden-
sate a macroscopic number of bosonic atoms collectively occupies the lowest energy state.
In our experiments we prepare a nearly pure condensate of up to 106 atoms as a starting point
for experiments with ultracold atoms in a three-dimensional periodic lattice potential.

In the first part of this chapter an introduction to the theoretical description of a Bose-
Einstein condensate is given. In the second part our experimental setup for creating Bose-
Einstein condensates is described.

2.1 Theory of a Bose-Einstein condensates

Bose-Einstein condensation (BEC) in a gas of particles obeying Bose statistics was predicted
by Einstein in 1924 [10], based on ideas of Bose addressing the statistics of photons [11].
The original prediction was for a noninteracting gas, however, after the observation of super-
fluidity in 4He Fritz London suggested that BEC was responsible for the superfluid properties
despite the strong interactions in this system [12, 13]. Theoretically these strongly interacting
systems are very difficult to describe. In contrast BECs in weakly interacting gases are by far
better understood and can be excellently described in the framework of the Gross-Pitaevskii
equation and Bogoliubov theory1.

2.1.1 Noninteracting Bose gas

At zero temperature T = 0 a noninteracting Bose Gas is fully Bose condensed and all N
particles are described by identical single particle wave functions. The many body wave
function is therefore given by the product over these identical single particle wave functions
φ(r):

ΨN (r1, r2, ..., rN ) =
N∏

i=1

φ(ri) (2.1)

1There are several reviews of the theory of Bose-Einstein condensation in dilute gases, e.g. by Parkins and
Walls [14], Dalfovo et al. [15], Leggett [16] and Pethick and Smith [17].
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2 Bose-Einstein condensation in a weakly interacting gas of atoms

Such a Bose-Einstein condensate can be described by a macroscopic wave function or order
parameter ψ(r) [18]

ψ(r) =
√
Nφ(r), (2.2)

which is, apart from the normalization, simply the Schrödinger wave function of the single
particle state φ(r) into which the condensation occurs. The particle density is given by
n(r) = |ψ(r)|2.

For a noninteracting Bose gas and an inhomogeneous system, this single particle state is
simply the single particle ground state of the confining potential. In a harmonic trap, for
example, the ground state wave function is a Gaussian wave function, and for a periodic
potential the ground state single particle wave function is a Bloch wave function with a quasi
momentum q = 0 (see chapter 3).

In the framework of “spontaneously broken gauge symmetry” [19, 20, 21, 16], where
the many particle state is assumed to be a superposition of states with different particle
numbers N and a well defined macroscopic phase, the order parameter can be defined as the
expectation value of the single particle destruction operator ψ̂(r)

ψ(r) = 〈ψ̂(r)〉, (2.3)

This approach is very useful for describing Bose-Einstein condensates and for calculations.
In our case it is particularly useful for understanding the collapse and revival of the macro-
scopic matter wave field (chapter 5). It should be mentioned that 〈ψ̂(r)〉 = 0 for a state with
a fixed number of particles.

2.1.2 Interaction in a cold dilute gas

The atom-atom interaction in a cold dilute gas of bosonic atoms is dominated by elastic bi-
nary collisions and can be treated in the framework of scattering theory. The true interatomic
scattering potential Vat(r), where r is the spacing between the particles, is complicated and
can only be calculated for Hydrogen in an ab initio calculation. For r > 5Å it can be ap-
proximated by a van der Waals interaction potential ∝ −C6/r

6 [22, 23, 24].
For cold gases the actual inter-particle potential plays a minor role. The only relevant

scattering process is s-wave scattering, since the thermal de Broglie wavelength is much
larger than the effective extension of the interaction potential. Therefore the interatomic
potential can be replaced by an effective contact interaction

Vat(r) =
4πh̄2as

m
· δ(r) = g · δ(r), (2.4)

where r is the relative coordinate between two atoms, m is the mass of the atoms, as is
the s-wave scattering length and g = 4πh̄2as/m is the coupling constant. Therefore the
interaction is fully determined by a single scattering length as. Julienne et al. [25] have
determined the 87Rb scattering length for both the |F = 1,mF =−1〉 and |F = 2,mF = 2〉
state based on a series of experiments as as = 103 ± 5 a0 = 5.45 ± 0.26 nm, where a0 =
0.05292 nm is the Bohr radius.
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2.1 Theory of a Bose-Einstein condensates

2.1.3 Weakly interacting Bose gas

Let us consider a gas of ultracold bosons with underlying binary collisions as described
above. In second quantization, the many body Hamiltonian describing N interacting bosons
confined by an external potential Vext is given by

Ĥ =
∫
dr ψ̂†(r)

(
− h̄2

2m
∇2 + Vext(r)

)
ψ̂(r) +

1
2

∫
dr dr′ ψ̂†(r)ψ̂†(r′) Vat(r − r′) ψ̂(r′)ψ̂(r), (2.5)

where ψ̂(r) and ψ̂†(r) are the boson field operators that annihilate and create a particle at the
position r, respectively. With equation 2.4 the second term becomes

4πh̄2as/m ·
∫
dr ψ̂†(r)ψ̂†(r) ψ̂(r)ψ̂(r). (2.6)

For a dilute gas, the system can be described by a mean field description. The diluteness of
the gas is characterized by the ratio of the scattering length as and the inter particle spacing.
This ratio can be expressed as a gas parameter n a3

s, where n is the density, and is typically
less then 10−3. The basic idea of the mean field description, which was first developed by
Bogoliubov in 1947 [26], is to separate out the condensate contribution to the bosonic field
operator. If the gas is dilute enough, the Bose-Einstein condensate is basically described by a
macroscopic wave function like in equation 2.2. Therefore, assuming spontaneously broken
gauge symmetry, the bosonic field operator ψ̂(r, t) can be replaced by its expectation value
ψ(r, t) = 〈ψ̂(r, t)〉, which is a complex function, and a fluctuating field operator δψ̂(r, t):

ψ̂(r, t) = ψ(r, t) + δψ̂(r, t) (2.7)

When the fluctuations are neglected, this ansatz leads to the well known Gross-Pitaevskii
equation [27, 28]

ih̄
∂

∂t
ψ(r, t) =

(
− h̄

2∇2

2m
+ Vext(r) + g |ψ(r, t)|2

)
ψ(r, t), (2.8)

which has the form of a non-linear Schrödinger equation. The effective repulsive atom-
atom interaction is described as a mean field potential proportional to the atom density
n(r) = |ψ(r)|2. In this weakly interacting regime, the many-particle wave function is still
the product of identical single particle wave functions as for the ideal Bose gas in equation
2.1. Contrary to the noninteracting case the weakly interacting gas does not condense into
the ground state of the single particle problem but instead into a state which is determined
through the Gross Pitaevskii equation 2.8. The Gross Pitaevskii equation proved to be very
successful for both the qualitative and quantitative description of condensate properties like
interference between condensates [29], collective modes [15] or vortices [30].
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2 Bose-Einstein condensation in a weakly interacting gas of atoms

When the condensate is solely described by a macroscopic wave function, however, all
interaction induced correlations are neglected. In the weakly interacting regime n a3

s � 1
a better description beyond this mean field description can be found by including the fluc-
tuations δψ̂(r, t) of the Bogoliubov description. The fluctuations lead to a depletion of the
condensate mode since excited states different than the condensate mode get populated. This
depletion is of order (n a3

s)
1/2 and is typically small in the experiments, about 1%.

The Bogoliubov theory may be formulated in a way, such that the many body ground
state is approximated by an optimized product of identical, symmetric two particle functions
ϕ(ri, rj , t) [16]. In this particle number conserving approach2 of the Bogoliubov theory it
becomes evident that two particle correlations are incorporated in the way that configurations
in which particles i and j are close together are suppressed.

2.1.4 Paths towards strongly correlated Bose systems

The description of the condensate as a weakly interacting gas is only valid in the weak
coupling regime, when the interaction energy εint is small compared to the kinetic energy
εkin per particle. The ratio between those energies is given by [31]

εint

εkin
=

gn

h̄2n2/3/m
≈ 4π n1/3as, (2.9)

where n is the particle density. In Bose-Einstein condensates, the interparticle spacing
n−1/3 is usually much larger than the scattering length as. Therefore the ratio between the
interaction and kinetic energy is very low, typically on the order of 0.02, and the condensate
can be well described by a macroscopic wave function with only small quantum depletion.

In order to reach the strong coupling regime, where the condensate represents a strongly
correlated Bose system, the interaction energy per particle has at least to be on the same order
or larger than the kinetic energy. An obvious way to achieve this is to either raise the density
or raise the scattering length as can be seen from equation 2.9. It is indeed possible to tune
the scattering length to large values by using a Feshbach resonance. This has recently been
realized for example in 85Rb, where the scattering length has been tuned over several orders
of magnitude and a collapse and explosion of the condensate has been observed [1, 2]. The
problem of this approach, however, is that the life time of the condensate strongly decreases
due to three-body losses. The rate for this losses is given by [32]

ṅ/n ∝ h̄

m

(
na2

s

)2
(2.10)

and is therefore strongly increased when the density or the scattering length becomes large.
An entirely different approach for reaching the strongly correlated regime is discussed in

this work. By loading a Bose-Einstein condensate into a three-dimensional optical lattice
potential, the condensate is split up in more than 100.000 lattice sites with a mean occupa-
tion of 1-2 atoms per site. The atoms can only move through the lattice by tunnelling from
one site to the next. Therefore, the tunnelling energy now plays the role of the kinetic energy
and the atoms get a large effective mass [33]. When the lattice potential depth is increased,

2In this approach of the Bogoliubov theory no spontaneously broken gauge symmetry has to be assumed.
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2.1 Theory of a Bose-Einstein condensates

the effective mass gets exponentially larger and the kinetic energy is dramatically decreased.
Therefore, the ratio between the interaction and kinetic energy can become large without
increasing the density or scattering length [31]. When the interaction energy becomes im-
portant, the system can no longer be described as a weakly interacting gas and the strongly
correlated regime is entered. For a certain value of this ratio, a quantum phase transition
from a superfluid to a Mott insulator occurs [4, 5].

9



2 Bose-Einstein condensation in a weakly interacting gas of atoms

2.2 Experimental setup for a 87Rb Bose-Einstein condensate

Experiments with Bose-Einstein condensates in three-dimensional optical lattice potentials
require an exceptional optical access to the Bose-Einstein condensate. Laser light has to be
precisely focused onto the condensate from six orthogonal directions in order to create a
three-dimensional periodic dipole force potential. Previous apparatus did not provide such
a good optical access. Therefore we designed and built a new kind of BEC apparatus. The
basic idea is that the region of the magneto optical trap (MOT) is separated from the region
where the Bose-Einstein condensate is created. The atoms are transferred between those
places by moving a magnetic trapping potential in an L-shape over nearly half a meter (figure
2.1). Since there is no magneto optical trap at the final trapping site, an exceptional optical
access to the BEC from six orthogonal directions is present. The apparatus is described
in detail in my diploma thesis [34]. In this chapter I will give a short overview about the
experimental methods we use.

2.2.1 Magneto optical trap

In a vapor cell magneto optical trap (MOT) atoms are captured from the background gas
and cooled to the micro Kelvin regime [35, 36, 37, 38]. The basic idea of a MOT is to
use dissipative light forces which introduce an effective friction force to slow down and
cool an atomic gas. At the same time an inhomogeneous magnetic field is applied which
introduces a spatial dependence of the light force leading to a confinement of the atom cloud.
The schematic setup for a MOT is shown in figure 2.2. Six red detuned laser beams with
circular polarization are directed onto the trap center. The magnetic field is created by an
anti Helmholtz coil pair.

In the experiment we have realized a MOT which uses laser beams with a large beam
diameter of 40 mm and thereby enables us to capture a large number of atoms from the
background gas [39]. For the MOT beams we use light which is 18 MHz ≈ 3ΓD2 red
detuned with respect to the |F = 2〉 → |F ′ = 3〉 transition, where ΓD2 is the line width of
the D2 transition. In addition we apply a repump laser on the |F =1〉 → |F ′=2〉 transition.
This laser returns the atoms that are off resonantly excited to other states and fall into the
F = 1 ground state, back to the cycling transition. About 3 · 109 atoms are captured within
8 s in the MOT.

2.2.2 Magnetic trap setup

Generating magnetic trapping potentials

Neutral atoms can be captured in a magnetic trapping potential due to the interaction of
their magnetic moment with an inhomogeneous magnetic field [40, 41, 42]. This method
allows an efficient isolation of the atoms from the external environment. In contrast to a
MOT, a magnetic trap forms a conservative trapping potential. Limitations of the density and
temperature due to the light field and spontaneous processes in a MOT can be circumvented.

When an atom is placed in an inhomogeneous magnetic field B(r) the particle is subjected
to an external force directed towards the magnetic field minimum or maximum depending on

10
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(a)

(b)

Figure 2.1: (a) Schematic setup of the apparatus. Ultracold atoms are transferred with
a chain of quadrupole coil pairs into an ultra-high vacuum (UHV) chamber, in which the
Bose-Einstein condensate is created. By separating the region of the MOT from the spatial
region where the BEC is created, we have been able to achieve an excellent optical access
to the BEC from all six spatial directions. (b) Photo of the apparatus. On the left side the
optics for the MOT can be seen. The optics on the right side and in the background is for
generating the optical lattice potential.
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2 Bose-Einstein condensation in a weakly interacting gas of atoms

Figure 2.2: Geometry of a Magneto optical trap (MOT). The quadrupole field for the MOT
is generated by an anti Helmholtz coil pair. Laser beams with circular polarized light from
six directions are overlapped to the trap center.

the orientation of the magnetic moment. When an atom moves in such a field, it maintains the
relative orientation of the magnetic moment if the change of the direction of the magnetic
field is small compared to the Lamor frequency ωL = µB/h̄. An atom with a magnetic
quantum number mF and a Landé g-Factor gF in the hyperfine state F is therefore subjected
to a potential formed by the Zeeman energy shift

Vmag(r) = −gF mF µB B(r), (2.11)

where µB is the Bohr magneton.
The simplest magnetic trap is created by an anti Helmholtz coil pair. In the center between

two coils that carry opposite currents the magnetic field cancels and is equal to zero. From
this point, the absolute value of the magnetic field increases linearly in each direction as
B(r) ∝ √

4x2 + y2 + z2. Atoms in a low field seeking state are therefore captured in the
trap center. In our experiment we use the low field seeking ground state |F =2,mF =2〉.

Initial quadrupole trap

After a cloud of atoms is captured and cooled in the MOT, the light for the MOT is switched
off and the atoms are transferred into a quadrupole magnetic trap. This quadrupole trap
is formed by the same magnet coils which are used for the MOT (left coil pair on figure
2.1a). Therefore the center of the magnetic trapping potential is automatically aligned with
the center of the MOT if all external fields are compensated. The magnetic field of this trap
can be rapidly ramped up in about 500µs by discharging an electrolytic capacitor over the
magnet coils using an additional resistor which limits the peak current.
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2.2 Experimental setup for a 87Rb Bose-Einstein condensate

Figure 2.3: Quadrupole coil pair for generating a magnetic quadrupole trap. Two coils carry
opposite currents and form a magnetic field which vanishes in the trap center and increases
linearly in each direction.

Magnetic transport into the UHV chamber

The atoms are transported to the final trapping site by shifting the quadrupole trapping po-
tential in a L-shaped path. This is achieved without moving mechanical parts but rather by
regulating the currents in a chain of quadrupole coil pairs (see figure 2.1a). Using three pairs
of quadrupole coils at the same time enables us to smoothly move the trapping potential
without deforming the trap geometry (figure 2.4). This method significantly reduces heating
of the atoms during the transport [43]. The atoms are heated by about 10% during the com-
plete transport. We observe no losses due to shifting of the trapping potential. The efficiency
of the transport is only limited by losses due to collisions with the background gas before the
atoms enter the UHV chamber.

Ioffe-Pritchard trap

When the atoms are further cooled towards a BEC, they can not be trapped in a quadrupole
magnetic trap anymore. This is due to the vanishing magnetic field in the center of a
quadrupole trap. When atoms come close to the trap center, the orientation of the mag-
netic moment can not follow the direction of the magnetic field adiabatically and the atoms
undergo Majorana spin flips [44]. This loss and heating mechanism is negligible at the initial
temperature after the Molasses, but it becomes dominant when the atoms are further cooled
[45, 9]. To circumvent this problem, we use a Ioffe-Pritchard type trap [46, 47], which cre-
ates a harmonic magnetic confinement with a finite magnetic offset fieldB0 in the trap center.
The magnetic trapping potential is formed by two large quadrupole coils and a small QUIC
coil in between [48]. By slowly increasing the current in the QUIC coil, the Quadrupole trap
is continuously converted into a Ioffe-Pritchard type trap.
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2 Bose-Einstein condensation in a weakly interacting gas of atoms

Figure 2.4: Magnetic transport: The graphs show iso-potential lines of the magnetic trap-
ping potential for different stages of the transport. The potential is smoothly moved and a
modulation of the trap geometry can be circumvented by using three coils at the same time.
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2.2 Experimental setup for a 87Rb Bose-Einstein condensate

For an offset field B0 = 1 Gauss the trap is cigar shaped with typical radial trapping
frequencies of 220 Hz and axial trapping frequencies of 24 Hz for the |F =2,mF =2〉 state.
We have installed an additional Helmholtz coil pair in order to increase the offset field to up
to 200 Gauss. For B0 = 150 Gauss the trap is nearly spherical with trapping frequencies of
24 Hz.

Magnet coils and power supplies

As magnet coils we use pancake shaped coils made from rectangular magnet wire. The coils
are water cooled from the outside. As a power source we use four HP switching power
supplies with a maximum output voltage of 13 V and a maximum current of 150 A. The
current is controlled by the timing system and can follow arbitrary waveforms with a time
constant of ≈30 ms. Each power supply can be switched to drive different magnet coils
during the transport sequence.

2.2.3 Vacuum chamber

The vacuum system consists of two vacuum chambers. The first chamber is for the vapor
cell MOT and has a heated Rubidium reservoir. The relatively high Rubidium pressure of
about 2 · 10−9 mbar enables us to rapidly capture a large number of atoms in the MOT. The
trap life time in this chamber is limited by losses due to collisions with the background gas
and is on the order of several seconds. The second chamber is the UHV chamber, where
the BEC is created. The background pressure is on the order of 10−11 mbar leading to a
measured trap life time of 90 s. In order to maintain the pressure difference both chambers are
connected through a differential pumping tube with a length of 7 cm and a diameter of 8 mm.
The chambers are pumped with ion pumps (Star cell, Varian) and a titanium sublimation
pump in the UHV chamber. The BEC is created inside a rectangular glass cell with good
optical quality and broadband anti reflex coating. This glass cell is sealed with an aluminium
Helicoflex gasket.

2.2.4 Laser system

The laser frequencies we need for creating and imaging the BEC are centered on the Rubid-
iumD2 line with a wavelength of 780 nm. For this wavelength single mode diode lasers with
large output powers are available. We use several of these lasers and reduce their bandwidth
to about 1 MHz by operating them as grating stabilized external cavity lasers [49]. The lasers
are stabilized with various locking techniques. The repump laser on the |F =1〉 → |F ′ =2〉
transition and the pump laser on the |F = 2〉 → |F ′ = 2〉 transition are locked to the Ru-
bidium spectrum by using a doppler free spectroscopy. The lock signal is generated by a
heterodyne lock-in technique in the radio frequency domain [50, 51]. The main cooling
laser on the |F = 2〉 → |F ′ = 3〉 transition is locked relative to the pump laser. Both lasers
are superimposed on a fast photo diode that detects the beat frequency. The cooling laser is
then stabilized to a constant beat frequency [52]. The frequency of this laser can be precisely
tuned over several hundred MHz during the experiment. For the MOT this laser is amplified
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2 Bose-Einstein condensation in a weakly interacting gas of atoms

by injecting a tapered amplifier semiconductor laser to reach about 300 mW laser power [53].
After an optical fiber 110 mW are available for the MOT beams. The laser can be rapidly
detuned during the optical molasses and is also used on resonance without amplification for
absorption imaging of the BEC.

2.2.5 Time of flight absorption imaging

The spatial density distribution of an atom cloud can be measured by absorption imaging.
When an atom cloud is illuminated by resonant laser light the atoms absorb light and cast a
shadow on the light beam. This shadow can be measured by imaging the cloud with a charge
coupled device (CCD) camera.

A light beam with the spatial Intensity I0(x, y) that propagates in the z direction through
a cloud of atoms is attenuated according to the optical density D(x, y):

I(x, y) = I0(x, y) · e−D(x,y). (2.12)

The optical density D(x, y) depends on the column density ñ(x, y), which is the spatial
density n(x, y, z) integrated along the z direction

D(x, y) = D0(x, y) · 1
1 + I

Isat
+ 4∆2

Γ2

, (2.13)

with D0(x, y) = 2σ0 ·
∫
n(x, y, z) dz = 2σ0 · ñ(x, y), (2.14)

where σ0 = λ2/2π is the polarization averaged resonant scattering cross section of the
atoms, ∆ the detuning of the light, Isat the saturation intensity and Γ the natural line width
of the transition. In the measurements two images are taken: one image with atoms and one
without corresponding to I(x, y) and I0(x, y) respectively. Therefore the column density
ñ(x, y) can be directly determined using the above equations. This imaging technique is
destructive since it relies on incoherent scattering of photons and therefore leads to a strong
heating of the atomic ensemble.

Bose condensed atomic clouds can usually only be imaged after free ballistic expansion,
since the optical density is very high3. When all trapping potentials are switched off, the
cloud expands according to the momentum distribution of the condensate. For a normal
condensate the momentum distribution is strongly affected by the interaction energy, giving
rise to a post release momentum kick. In the lattice experiments, this effect is often negli-
gible and the time of flight image reveals the original momentum distribution of the atomic
ensemble.

In the experiment we use resonant light on the |F =2〉 → |F ′=3〉 transition for absorption
imaging. After time of flight periods of typically 10-20 ms the light is applied for ≈ 80µs.

3The optical density of a BEC can not be reduced by choosing a large detuning since in this case the refractive
index of the cloud gets large and leads to lens like effects. However, with phase contrast imaging techniques
the cloud can be imaged without expansion and non destructively [54, 55, 56].
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2.2 Experimental setup for a 87Rb Bose-Einstein condensate

The shadow image is recorded on a slow-scan CCD camera4 using an achromatic imaging
lens.

2.2.6 Experimental sequence

The following experimental steps are used to obtain a 87Rb Bose-Einstein condensate in the
|F =2,mF =2〉 state:

• MOT: Within 4-8 s up to 3 · 109 atoms are captured in a vapor cell magneto optical
trap. For the last 80 ms the detuning is increased to 22 MHz in order to increase the
confinement in a compressed MOT.

• Molasses: At the end of the MOT phase we further cool the atoms in an optical mo-
lasses [57]. The magnetic field is switched off and the detuning is increased to 80 MHz
within 14 ms. We apply the molasses for about 20 ms. After this time the temperature
has dropped to ≈ 50µK.

• Optical pumping: After the molasses phase we optically pump the atoms into the |F =
2,mF = 2〉 state, which is a low field seeking state and can be trapped magnetically.
This pump process is done by rapidly switching on an offset field of about 1 G and
simultaneously applying σ+ polarized light on the |F =2〉 → |F ′=2〉 and |F =1〉 →
|F ′ =2〉 transition for about 500µs. The atoms scatter only a few photons and end up
in the |F =2,mF =2〉 state, which is a dark state for these transitions.

• Quadrupole magnetic trap: In order to transfer the atoms into the magnetic trap we
rapidly switch on the Quadrupole magnetic magnetic field within ≈ 500µs to a field
gradient is 70 G/cm in the vertical direction. For this gradient the size of the atom
cloud is well matched to the trap geometry. After that we increase the trap confinement
adiabatically to a magnetic field gradient of 150 G/cm within 200 ms.

• Magnetic transport: In a first step, we move the atoms as fast as possible from the
vapor cell through the differential pumping tube into the good vacuum of the UHV
chamber by shifting the magnetic trapping potential. The transport takes two seconds
including a smooth acceleration and deceleration phase in order to avoid heating. Then
we transport the atoms within two seconds in an orthogonal direction into the UHV
glass cell, where we have an exceptional optical access to the BEC.

• QUIC trap: At the final trapping site the quadrupole trap is smoothly converted into
a Ioffe Pritchard within 500 ms. The final trapping frequencies are 24 Hz in the axial
(horizontal) direction and 220 Hz in the radial direction with an offset field of 1 G.

• Evaporative cooling: As a final cooling step we evaporatively cool the atoms by low-
ering the effective potential depth. This is done by radio-frequency (RF) induced
transitions between the Zeeman levels into untrapped states. Wa apply a RF sweep for
about 20 s and finally get a nearly pure condensate of about 5 · 105 atoms.

4AP7p from Apogee and cameras from FLI and Sony
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2 Bose-Einstein condensation in a weakly interacting gas of atoms

• Changing the confinement: The offset field of the Ioffe trap can be changed after
creating the Bose-Einstein condensate to values up to 200 G, resulting in a decreased
radial confinement of the condensate. For 150 G the trap is spherical with trapping
frequencies of 24 Hz. The offset field is typically changed within 500 ms.

After the Bose-Einstein condensate is created we can transfer it into various periodic dipole
potentials, which are formed by interfering far red detuned laser beams as described in the
next chapter. Finally the spatial distribution of the atom cloud after ballistic expansion can
be measured by time of flight absorption imaging.
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3 Superfluid Bose-Einstein condensates in optical lattice
potentials

Ultracold atoms in a periodic arrangement of microscopic trapping potentials form an in-
triguing physical system which is closely related to systems in condensed matter physics. In
this chapter I report on experiments where a Bose-Einstein condensate is adiabatically trans-
ferred in two and three-dimensional optical lattice potentials. In the first part of this chapter,
I discuss the theory of optical lattices and describe the experimental realization. The second
part of this chapter describes experiments with Bose-Einstein condensates stored in lattice
potentials, where the condensate is still in the weakly interacting regime.

Periodical optical lattice potentials have been used in various experiments with cold atoms,
for example in the context of atom diffraction [58, 59] with applications for atom optics and
atom interferometry (for a review see [60]). Atoms have been confined in one direction in
an optical standing wave [61, 62]. The first experiment where atoms have been cooled to the
micro-kelvin regime in a multi dimensional optical lattice potential was carried out by A.
Hemmerich and T. W. Hänsch [63, 64, 65], followed by Grynberg et al. [66](review [67]).
The group of C. Salomon has managed to cool a gas to a momentum spread of δp = h̄k/4 in
one direction by using one-dimensional Raman laser cooling [68] and switching on a peri-
odic lattice potential adiabatically. With this small momentum spread the momentum distri-
bution is not spread out over the whole Brillouin zone anymore and each atom is delocalized
over several lattice sites. Therefore it was possible to observe Bloch oscillations. Wannier
Stark ladders have been observed in the group of M. Raizen [69]. In the group of T.W.
Hänsch, Bragg spectroscopy has been performed on atoms in a three-dimensional lattice and
superlattices have been studied [70, 71]. In addition, far off-resonant one-dimensional lat-
tices have been realized using a CO2 laser [72]. It has been shown that in such a system
individual lattice sites can be addressed and controlled [73].

There have been various attempts to cool atoms directly in a three-dimensional optical
lattice, some of them have been mentioned above. Raman cooling has been successfully
used for cooling atoms in these potentials, and recently atoms have been cooled partially to
the ground state with filling factors on the order of one [74, 75, 76]. The successful Bose-
Einstein condensation of neutral atoms by evaporation cooling techniques, however, paved
the way for a totally different approach. In a Bose Einstein condensate extremely low tem-
peratures can be achieved. When a condensate is adiabatically transferred into an optical
lattice potential, the new ground state of the periodic lattice potential is populated without
further cooling. Tunnelling processes, Josephson dynamics, superfluidity and Bloch oscil-
lations have been studied in one-dimensional lattice potentials [77, 78, 33, 79] as well as
number squeezing [3]. Short optical standing wave pulses are also used for Raman spec-
troscopy [80, 81].
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

3.1 Theory of optical lattices

In order to have a large tunnel coupling between neighboring potentials it is highly desirable
to keep the spacing between individual lattice sites as small as possible. This can be achieved
by using the standing wave interference pattern of two counter propagating laser beams,
where the lattice spacing equals half of the laser wavelength. In such an arrangement the
atoms can be trapped in the intensity maxima or minima of the light field due to the optical
dipole force [82, 83].

In this chapter we first introduce optical dipole potentials and lattice potentials in one,
two and three dimensions. Then we discuss the form of the ground state of a Bose-Einstein
condensate in such a lattice potential. This approach is valid when the interaction energy
between the atoms is still much smaller than the tunnelling energy. The situation when this
is not the case will be discussed in chapter 4.

3.1.1 Optical dipole potentials

Neutral atoms interact with a light field in both a dissipative and a conservative way. The
dissipative component of the interaction arises due to the absorption of photons followed by
subsequent spontaneous emission. It results in a dissipative force on the atoms caused by the
momentum transfer of the absorbed and spontaneously emitted photons. This light force is
widely used for laser cooling and magneto optical traps.

In contrast to this, the conservative component of the atom - light interaction arises due
to the interaction of the light field with the light induced dipole moment of the atom. This
interaction causes a shift in the potential energy, called the ac-Stark shift. For large detunings
of the light versus the atomic resonances, spontaneous emission processes can be neglected
and the energy shift can be used to create a conservative trapping potential for neutral atoms.
By shining a spatially modulated light field onto a cloud of atoms an energy landscape can be
formed, where the local potential energy is proportional to the local light intensity [84, 85].

Oscillator model

When an atom is placed into a laser light field, the electric field E, oscillating with the
complex amplitude E at a frequency ω=2πν, induces an oscillating atomic dipole moment
d. The dipole moment oscillates at the same frequency with the complex amplitude d given
by [86]

d = α(ω)E. (3.1)

Here α(ω) is the complex polarizability which depends on the laser frequency ω. The result-
ing dipole potential is determined by time averaging over d ·E

Vdip = −1
2
〈dE〉 = − 1

2ε0c
Re(α)I (3.2)

with the laser field intensity
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I = 1/2ε0c|E|2. (3.3)

The potential energy of the atom in the light field is thus proportional to the laser intensity and
the real part of the polarizability. Spontaneous scattering on the other hand is proportional to
the imaginary part of the polarizability. The scattering rate is given by

Γsc = −〈ḋE〉
h̄ω

= − 1
h̄ε0c

Im(α)I. (3.4)

The wavelength dependent polarizability can be calculated with Lorentz’s model of a classi-
cal damped oscillator:

α(ω) = 6πε0c3
Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
. (3.5)

Here ω0 is the resonance frequency of the oscillator model and Γ is the on resonance damp-
ing rate. A more appropriate approach to calculate the atomic polarizability is given by a
semiclassical model. In this model, the atom is treated as a two-level quantum system inter-
acting with a classical field. For a large enough detuning saturation effects can be neglected
(Γsc � Γ, this is usually the case for dipole traps) and the calculation yields the same result
as equation (3.5). The damping Γ is then determined by the dipole matrix element between
ground state |g〉 and excited state |g〉 in the two-level atom

Γ =
ω3

0

3πε0h̄c3
|〈e|µ|g〉|2. (3.6)

with µ=−er representing the dipole operator. The above expressions enable us to determine
the strength of the dipole potential and the residual scattering rate as

Vdip(r) =
3πc2

2ω3
0

(
γ

ω0 − ω
+

γ

ω0 + ω

)
I(r) ≈ 3πc2

2ω3
0

Γ
∆
I(r) (3.7)

Γsc(r) =
3πc2

2h̄ω3
0

(
ω

ω0

)3 ( γ

ω0 − ω
+

γ

ω0 + ω

)
I(r) ≈ 3πc2

2h̄ω3
0

(
Γ
∆

)2

I(r) (3.8)

where ∆ = ω − ω0 is the detuning of the light field relative to the atomic resonance. On
the right hand side the rotating wave approximation has been employed. It is valid for small
detunings |∆| � ω0 and is commonly used. However, for a detuning of 10% it already
yields an error of 5% in the potential strength and 20% in the scattering rate.

The optical dipole potential in eq. 3.7 is proportional to the intensity of the light field
and the sign depends on the laser detuning. For blue detuning (∆ > 0), the sign is positive
resulting in a repulsive potential. A red detuned light field (∆ < 0) creates an attractive
potential with a negative sign.

The proper detuning for an optical dipole potential depends on the available laser power
and the maximum inelastic scattering rate which can be tolerated. On one hand, with small
detunings it is possible to create larger trap depths for a given laser intensity, since the dipole
potential scales as I/∆. On the other hand the inelastic scattering rate scales quadratically
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with the detuning as I/∆2. The scattering rate as a function of the detuning and total trap
depth is given by

h̄Γsc =
Γ
∆
Vdip. (3.9)

Therefore, the laser detuning for a dipole trap should be chosen as large as possible, within
the available laser power, in order to minimize inelastic scattering processes and create a
conservative potential.

Dressed state picture

An alternative description of dipole potentials is given by the dressed state picture [87],
where the atom is considered together with a quantized light field. Lets consider a light field
with n photons and an atom in the ground state |g〉. The unperturbed energy of this system is
εg = n·h̄ω since the atom in the ground state has a zero internal energy. If, on the other hand,
the atom has absorbed one photon, the total unperturbed energy of the atom in the excited
state and the light field with n− 1 photons is εe = h̄ω0 + (n− 1) · h̄ω = −h̄∆ + nh̄ω.

The effect of the interaction can be determined with second order perturbation theory. For
non degenerate states, an interaction described by the Hamiltonian Hint shifts the energy of
the ith state by

∆Ei =
∑
j �=i

|〈j|Hint|i〉|2
εi − εj

, (3.10)

where εi is the unperturbed energy of the ith state. The Hamiltonian of the atom - light
interaction can be written as Hint = −µ̂E with µ̂ = −er representing the electric dipole
operator. For a two level atom this simplifies toHint = −µE. The energy in the denominator
simply becomes εg − εe = h̄∆. Therefore the energy shift due to the atom - light interaction
reads

∆Eg/e = ±|〈e|µ|g〉|2
∆

|E|2 = ±3πc2

2ω3
0

Γ
∆
I (3.11)

with the plus and minus sign for the ground and excited state respectively. On the right hand
side we have used equation 3.3 and 3.6. This energy shift is also called light shift or ac-stark
shift. Since the atom is practically always in the ground state, the energy of the atom is
changed according to the light shift in the ground state which results in the effective dipole
potential Vdip = ∆Eg. This is the same result as achieved with the semiclassical approach
including the rotating wave approximation (eq. 3.7).

Multi-level atoms

For a multi level atom in a specific ground state |gi〉 transitions to all excited states |ej〉 have
to be taken into account when calculating equation 3.10. The dipole matrix element for these
transitions is given by
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µij = 〈ei|µ|gj〉 = cij‖µ‖, (3.12)

where ‖µ‖ is the reduced matrix element and cij denotes the specific line strength. The
resulting dipole potential is given by the sum over all excited states |ej〉 and can be written
as

V
(i)
dip =

3πc2Γ
2ω3

0

I ·
∑
j

c2ij
∆ij

(3.13)

with the spontaneous decay rate Γ according to equation 3.6 and the specific detunings ∆ij .

The 87Rb isotope, which is used in the experiment, is an alkali atom with a nuclear spin
I = 3/2. The fine structure splitting due to spin-orbit coupling leads to the D-line doublet
2S1/2 →2 P1/2,

2 P3/2 with transition frequencies of 795 nm and 780 nm respectively. Cou-
pling to the nuclear spin then leads to a hyperfine splitting of the ground state of about 6.8
GHz and a splitting of the excited states on the order of hundred MHz. For a laser detuning
which is large compared to the excited state hyperfine splitting the hyperfine structure is not
resolved and the following equation can be derived [82]:

Vdip(r) =
πc2Γ
2ω3

0

(
2 + PgFmF

∆2,F
+

1 − PgFmF

∆1,F

)
I(r) (3.14)

In this equation gF is the Landé factor, mF the magnetic quantum number and P = 0,±1
for linear and σ± polarized light respectively. ∆2,F and ∆1,F are the detunings relative to
the D2 and D1 line.

If the laser detuning is also large compared to the fine structure splitting and the polariza-
tion of the laser is linear, the dipole potential is simply given by the two level result (equation
3.7 or 3.10) with a detuning relative to the center of the D2 and D1 line. It is convenient to
introduce the saturation intensity Isat = h̄Γω3

0/12πc
2 which then yields

Vdip(r) =
h̄Γ2

8∆
I(r)
Isat

(3.15)

for this equation.

Red detuned focus trap

The conservative potential described above can be used to trap cold atoms. A far red detuned
laser creates an attractive potential for the atoms. Thus a confinement in three dimensions
can be realized with a tight Gaussian laser focus. The intensity profile of a Gaussian laser
beam is given by

I(r, z) =
2P

πw2(z)
e
−2 r2

w2(z) (3.16)

where w(z) = w0(1 + (z/zR)2)1/2 is the 1/e2 radius depending on the z coordinate, zR =
πw2/λ is the Rayleigh length and P is the total power of the laser light. The peak intensity
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Figure 3.1: a) Schematical drawing of a Gaussian laser focus, plotted together with a cross
section of the corresponding trapping profile for a red detuned focus trap. The trap creates
strong radial and weak axial confinement (aspect ratio of potential profile not to scale). b) In
a red detuned dipole trap the atoms are captured in the intensity maximum. c) Repulsion of
atoms from a blue detuned dipole light field.

is given by I0 = 2P/πw2
0. A Gaussian beam with these parameters forms a cylindrically

symmetric dipole trap. In the center of the trap the trapping potential can be approximated
by

V (r, z) 
 −V0

[
1 − 2

(
r

w0

)2

−
(
z

zR

)2
]
, (3.17)

resulting in trapping frequencies of ωr = (4V0/mw
2
0)

1/2 and ωz = (2V0/mz
2
R)1/2. In

Figure 3.1 a Gaussian laser focus is plotted together with the corresponding cross section of
the trapping potential (ratio of axial and radial confinement not to scale). In the following
discussion of periodic lattice potentials the radial confinement is important whereas the axial
confinement is negligible compared to other sources of confinement.

3.1.2 Periodic lattice potentials

A periodic lattice potential with tightly confining potential wells can be created by realizing
a dipole trap with superimposed counter propagating laser beams. These beams interfere and
the interference pattern results in a periodic potential landscape.

1D lattice potential

The simplest possible lattice is a 1D lattice. It can be created e.g. by retroreflecting a
Gaussian laser beam, such that a standing wave interference pattern is formed (fig. 3.2.
This results in a periodic trapping potential given by:
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V (r, z) = −Vlat · e−2r2/w2
0 · sin2(kz) 
 −Vlat ·

(
1 − 2

r2

w2
0

)
· sin2(kz), (3.18)

where w0 denotes the beam waist, k = 2π/λ is the absolute value of the wave vector of the
laser light and Vlat is the potential depth of the optical lattice. Note that this depth is four
times larger than the depth of the dipole trap without retro-reflection, due to the constructive
interference between the two counterpropagating laser beams.

Figure 3.2: A standing wave laser field is formed by retroreflecting a Gaussian laser beam.

It is convenient to specify the lattice depth in units of recoil energies Er = h̄2k2/2m
where m is the mass of a single atom. For a far detuned optical lattice potential, where the
detuning is large compared to the excited state fine-structure, the lattice potential depth can
be evaluated through:

Vlat

Er
=

2m
h̄2k2

· 3πc2

2ω3
0

· Γ
∆

· 2P
πw2

0

. (3.19)

Here, ∆ is the detuning relative to the center of the D1 and D2 line.

2D lattice potential

Periodic potentials in higher dimensions can be created by superimposing standing waves
from different directions. To form a two-dimensional lattice potential two standing waves
can be superimposed orthogonal to each other (Figure 3.3). At the center of the trap the
potential has the form

V (y, z) = −Vlat

{
cos2(ky) + cos2(kz) + 2 e1 · e2 cosφ cos(ky) cos(kz)

}
. (3.20)

Here k is the magnitude of the wave vector of the lattice light, e1 and e2 are polarization
vectors of the standing waves and φ is a time phase between them. If the polarizations of
the two standing waves are not perfectly orthogonal, they interfere with each other and the
potential is changed depending on the time phase. This leads to a variation of the potential
depth of neighboring lattice sites in a chequerboard like pattern (Figure 3.4). The resulting
lattice potential is a square lattice with a “two atomic” basis. The time phase can be stabilized
interferometrically (see chapter 3.2). However, a residual fluctuation of the time phase leads
to a fluctuating potential depth of neighboring lattice sites. This can lead to decoherence and
heating effects for certain configurations (see chapter 3.3.4).
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

(a)

(b)

Figure 3.3: Schematical drawing of multidimensional optical lattice potentials, formed by
superimposing counterpropagating, far red detuned laser beams superimposing. a) Two
standing waves orthogonal to each other form an array of tightly confining potential tubes.
b) A 3D lattice potential can be created by superimposing three standing waves.

Figure 3.4: Chequerboard like lattice structure for a 2D lattice with parallel polarization and
different time phases of φ= 0 o, 30 o, 60 o, 90 o, 120 o, 150 o and 180 o respectively.
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3.1 Theory of optical lattices

A simple square lattice with a one atomic basis can be created by choosing orthogonal
polarizations between the standing waves. In this case, the interference term in equation
3.20 vanishes and the resulting potential is simply the sum of the two superimposed 1D
lattice potentials (like in figure 3.4, central plot, where the interference term also vanishes
for a time phase of φ = 90 o). If the polarizations are not perfectly linear and orthogonal, a
residual interference term might occur. This interference term can be suppressed by choosing
different laser frequencies for both standing waves. For large frequency differences the time
phase is rotating rapidly and the residual interference cancels out due to a time averaging of
the effective potentials.

3D lattice potential

In our experiment we create a simple cubic lattice by superimposing three standing waves
orthogonal to each other. The polarization between the three standing waves is mutually
orthogonal, and we use different frequencies for the laser fields in order to time average
any residual interferences between different standing waves. The beam pairs forming the
standing wave in x, y and z direction have a Gaussian shape with 1/e2 radii wx,wy and wz .
The trapping potential for a red detuned lattice can then be written as

V (x) = −Vx·e
−2 y2+z2

w2
x ·sin2(kx) −Vy·e

−2x2+z2

w2
y ·sin2(ky) −Vz·e

−2x2+y2

w2
z ·sin2(kz). (3.21)

Here Vx, Vy and Vz are the potential depths of the three superimposed 1D standing waves. In
the center of the trap, for distances much smaller than the beam waist, the trapping potential
can be approximated as the sum of a homogenous periodic lattice potential and an additional
external harmonic confinement:

V (x) 
 Vx ·sin2(kx)+Vy ·sin2(ky)+Vz ·sin2(kz) +
m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
, (3.22)

where ω2
x,y,z are the squares of the effective trapping frequencies of the external harmonic

confinement. They are given by:

ω2
x =

4
m

(
Vy

w2
y

+
Vz

w2
z

)
=

2h̄2k2

m2

(
Vy/Er

w2
y

+
Vz/Er

w2
z

)
; ω2

y,z = (cycl.perm.). (3.23)

In the experiment an additional confinement can be achieved by leaving on the magnetic
trapping potential. In this case the squares of the trapping frequencies of the magnetic trap
can simply be added to the confinement above.

For sufficiently deep optical lattices, the confinement of an individual lattice site can be
approximated by a harmonic potential. For a given lattice depth Vlat in the x,y or z direction,
the corresponding trapping frequencies can then be related to the lattice potential depth Vlat

through:

27



3 Superfluid Bose-Einstein condensates in optical lattice potentials

ω2
lat = Vlat

2k2

m
=

Vlat

Er

h̄2k4

m2
. (3.24)

This equation is valid for the trap center. Away from the center the lattice depth is reduced
due to the Gaussian beam shape, as can be seen from the exact equation 3.21. Along the
x−axis for example, the trapping frequency on a lattice site falls off like

ωlat x(x) = ωlat x(0) · exp

(
−y

2 + z2

w2
x

)

 ωlat x(0) ·

(
1 − y2 + z2

w2
x

)
(3.25)

This reduction is negligible for our typical experimental parameters and corresponds roughly
to a 3% decrease of the external trapping frequency over the cloud of atoms. However, the
change of the trapping frequency results in a change in the ground state energy VGS =
h̄/2(ωx +ωy +ωz) which in second order tends to decrease the external confinement due to
the beam shape in equation 3.23. For an isotropic situation with Vx,y,z = Vlat, wx,y,z = w0

and r2 = x2 + y2 + z2 the effective potential of the external confinement can be calculated
as

Vext(r) = Er

(
2
Vlat

Er
−
√
Vlat

Er

)
2r2

w2
0

. (3.26)

This results in an external confinement ωext = ωx,y,z

ω2
ext =

4Er

mw0

2

·
(

2
Vlat

Er
−
√
Vlat

Er

)
. (3.27)

In contrast to equation 3.23 this value is corrected for the spatial change in the ground state
energy.

3.1.3 Bloch Bands

Characteristic for the movement of a particle in a periodic potential is the emergence of a
band structure. In this section the wave function of a single particle in a periodic lattice po-
tential is calculated and the band structure is investigated.

A particle in a periodic potential V (x) is described by the Schrödinger equation

Hφ(n)
q (x) = E(n)

q φ(n)
q (x) with H =

1
2m

p̂2 + V (x). (3.28)

Solutions of this equation are called Bloch wave functions (see e.g. [88]) and can be written
as a product of a plane wave exp(iqx/h̄) and a function u(n)

q (x) with the same periodicity
as the periodic potential:

φ(n)
q (x) = eiqx/h̄ · u(n)

q (x). (3.29)
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3.1 Theory of optical lattices

Inserting this ansatz into eq. 3.28 leads to a Schrödinger equation for u(n)
q (x):

HB u
(n)
q (x) = E(n)

q u(n)
q (x) with HB =

1
2m

(p̂+ q)2 + V (x) (3.30)

Since both the potential Vlat(x) and the functions u(n)
q (x) are periodic with the same period-

icity, they can be written as a discrete Fourier sum:

V (x) =
∑
r

Vre
i2rkx and u(n)

q (x) =
∑

l

c
(n,q)
l ei2lkx, (3.31)

with l and r integers. With these sums the potential energy term of equation 3.30 becomes

V (x)u(n)
q (x) =

∑
l

∑
r

Vre
i2(r+l)kxc

(n,q)
l (3.32)

and the kinetic term becomes

(p̂ + q)2

2m
u(n)

q (x) =
∑

l

(2h̄kl + q)2

2m
c
(n,q)
l ei2lkx. (3.33)

In the experiment, a sinusoidal lattice potential is created, such that:

V (x) = −Vlat cos2(kx) = −1
4
Vlat

(
e2ikx + e−2ikx + 2

)
(3.34)

Thus only two terms of the Fourier sum in equation 3.31 are nonzero: V−1=V1=−1/4Vlat

and V0 can be set to zero. Using these results we can write the Schrödinger equation of 3.30
in matrix form as:

∑
l

Hl,l′ · c(n,q)
l = E(n)

q c
(n,q)
l with Hl,l′ =




(2l + q/h̄k)2Er if l = l′

−1/4 · V0 if |l − l′| = 1
0 else

(3.35)
Here q is the quasi momentum, within the first Brillouin zone ranging from q = −h̄k to h̄k.
For a certain quasi momentum q the eigenvalues E(n)

q ofH represent the eigenenergies in the
nth energy band. The corresponding eigenvector c(n,q) defines the appropriate Bloch wave
function through equations 3.31 and 3.29. These eigenstates and eigenvectors can be simply
calculated if the Hamiltonian is truncated for large positive and negative l. The correspond-
ing coefficients c(n,q) become very small for large enough l, e.g. a restriction to −5 ≥ l ≥ 5
is a good choice if only the lowest energy bands are considered.

Figure 3.5 shows the band structure for a a one-dimensional sinusoidal lattice for different
potential depths. For a vanishing lattice depth, there are no band gaps and the “bands” equal
the free particle energy-momentum parabola reduced to the first Brillouin zone. When the
lattice depth is increased, the band gaps become larger and the width of the energy bands
becomes exponentially smaller.
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Figure 3.5: Band structure of an optical lattice: Energy of the Bloch state versus quasi
momentum q in the first Brillouin zone, plotted for different lattice depths between 0 and
14 Er. For deep lattices the lowest band becomes flat and the width of the first band gap
corresponds to the level spacing h̄ω on each lattice site.
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Bloch wavefunction φq  (x),  Vlat = 8 Er Density |φq  (x)|2,  Vlat = 8 Er

x x

(a) (b)
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e 
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Figure 3.6: Real part (a) and probability density (b) of the Bloch wave functions φ(1)
q (x)

in the lowest band, corresponding to a quasi momentum of q = 0 and q = h̄k. The lattice
potential is a 1D sinusoidal potential with a lattice depth of 8 Er.

Two and three-dimensional sinusoidal simple cubic lattices are in our case fully separable.
Therefore the wave functions can be calculated separately for each axis and the total energy
is given by the sum of the eigenenergies of all axes.

In figure 3.6a the real part of a Bloch wave function for an 8Er deep lattice is plotted.
The symmetric function is the Bloch function φ(n=1)

q=0 (x) in the lowest band with a quasi mo-
mentum q = 0, and the anti symmetric one is the Bloch function with q = h̄k at the border
of the Brillouin zone. Figure 3.6b shows the corresponding probability densities of the same
wave functions.

The tunnelling matrix element J which describes the tunnel coupling between neighboring
lattice sites is directly related to the width of the lowest energy band [89] through:

J = (max(E(0)
q ) − min(E(0)

q ))/4. (3.36)

3.1.4 Wannier functions

Bloch states are completely delocalized energy eigenstates of the Schrödinger equation for
a given quasi momentum q and energy band n. In contrast to this, Wannier functions con-
stitute an orthogonal and normalized set of wave functions that are maximally localized to
individual lattice sites. The Wannier function for a localized particle in the nth energy band
of the optical lattice potential is given by [90]
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wn(x− xi) = N−1/2
∑
q

e−iqxi/h̄φ(n)
q (x). (3.37)

Here xi is the position of the ith lattice site and N is a normalization constant.

Wannier function w(x),  Vlat = 3 Er Density |w(x)|2,  Vlat = 3 Er

Wannier function w(x),  Vlat = 10 Er Density |w(x)|2,  Vlat = 10 Er

x

x x

x

(a)

(b)

Figure 3.7: Wannier function and probability density for 3Er (a) and 10Er (b) deep lattices,
plotted together with a schematic lattice potential. Wannier functions constitute an orthogo-
nal set of maximally localized wave functions. For 3Er sidelobes are visible, for 10Er the
sidelobes become very small corresponding to a decreased tunnelling probability.

If a particle is in a mode corresponding to this Wannier wave function, it is well localized
to the ith lattice site. Figure 3.7 shows the Wannier function and the density square of this
function for a 3Er and 10Er deep lattice. Two side lobes of the Wannier function are visible
which can be attributed to a non vanishing probability to find the atom in the neighboring
lattice site due to tunnelling. The tunnelling matrix element J , which describes the tunnelling
between neighboring lattice sites, can be calculated through equation 3.36, or alternatively
by considering two Wannier functions of neighboring lattice sites i and j:
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J =
∫
wn(x− xi)

(
− h̄2

2m
∂2

∂x2
+ V (x)

)
wn(x− xj)dx (3.38)

For deep lattices the localized Wannier wave function can be approximated by a Gaussian
ground state wave function. However, due to the much weaker side lobes of a Gaussian, the
tunnel matrix element J is then underestimated by almost an order of magnitude.

The Wannier description becomes particulary important when the interaction between par-
ticles is taken into account. Local interactions of particles on a lattice site can best be de-
scribed in a localized Wannier basis.

3.1.5 Ground state wave function of a BEC in an optical lattice

Discretization

In the weakly interacting regime, when the tunnel coupling between neighboring lattice sites
is large compared to the interaction energy between two atoms, a Bose-Einstein condensate
trapped in a periodic lattice potential can be described by a macroscopic wave function,
which in turn can be determined through the Gross-Pitaevskii equation. If the chemical
potential is small compared to the trap depth, a tight binding picture can be used to describe
the system. In this regime the extension of the ground state wave function is much smaller
than the lattice spacing, and the condensate effectively consists of tiny BECs with phases
that are coupled due to tunnelling between the lattice sites. Such an arrangement behaves
similarly to a Josephson junction [77, 33].

In the tight binding picture the atoms on a lattice site j can be described by a localized
macroscopic wave function ϕj(x). If the chemical potential on a lattice site is much smaller
than the vibrational level spacing, the ground state wave function can be well approximated
by the noninteracting ground state wave function of the lowest vibrational level. To a first
approximation this is the Gaussian ground state wave function of a harmonic oscillator.

If the chemical potential is slightly larger, the broadening of the ground state wave function
due to the repulsive interaction between the atoms has to be taken into account. In this case
a better approximation for the ground state wave function can be found by determining an
effective width of the wave function using a variational ansatz.

For a three-dimensional simple cubic lattice with a chemical potential much smaller than
the level spacing in each direction the localized wave function can be described as the product
of three Wannier functions w(x) of the lowest Bloch band for each direction:

ϕj(x) = wx(x− xi) · wy(y − yi) · wz(z − zi), (3.39)

where xi, yi and zi denote the position of the ith lattice site.
The situation is different for a one or two-dimensional optical lattice, where the confine-

ment is usually very weak in two or one direction respectively. Along the axes of weak
confinement the ground state wave function Θ will generally be broadened due to the re-
pulsive interactions between the atoms. The resulting wave function can then be written
as:
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1D lattice: ϕj(x) = wx(x− xi) · Θ(y)(y − yi) · Θ(z)(z − zi)
2D lattice: ϕj(x) = wx(x− xi) · wy(y − yi) · Θ(z)(z − zi)

(3.40)

Using these localized wave functions we can define a macroscopic wave function which
describes the total system. This wave function is the sum of localized wave functions at each
lattice site j

Ψ(x) =
∑
j

ψj · ϕj(x); ψj =
√
nj · eiφj (3.41)

each having a well defined phase φj and an amplitude
√
nj , where nj corresponds to the

average atom number on the jth lattice site. The total atom number is given by
∑

j |ψj |2 =∑
j nj = N . For this array of weakly coupled condensates, each described by ψj , the

Hamiltonian is

H = −J
∑

<i,j>

ψ∗
i ψj +

∑
j

εj|ψj |2 +
∑
j

1
2
U |ψj |4, (3.42)

where the first summation is carried out over neighboring lattice sites only. This term char-
acterizes the Josephson energy of the system. The second term describes the inhomogene-
ity of the trapping potential, where εj is the energy offset of the jth lattice site, given by
εj = m/2 · ω2

extr
2
j . The third term describes the on-site interaction energy, where U is the

on-site interaction matrix element defined by

U =
4πh̄2a

m

∫
d3x |ϕj(x)|4, (3.43)

with a being the scattering length of the atoms.

The dynamics of this Josephson junction array can be described by a discrete nonlinear
Schrödinger equation (DNLSE), also called discrete Gross-Pitaevskii equation [33].

Ground state

In the inhomogeneous system it is important to find the new ground state of the combined
lattice and external confining potential. For a purely periodic potential the energy is mini-
mized if the phases of the wave functions on different lattice sites are equal, since then the
Josephson energy is minimal. In the Bloch picture this corresponds to the Bloch state with
zero quasi momentum (q=0).

But how will the atoms distribute over the lattice in the inhomogeneous system? In order
to be in a stationary state, the phases of the wave functions on different lattice sites have
to evolve with the same rate over time. This requires that their local chemical potentials
are equal. In a Thomas Fermi approximation we can neglect the contribution of the kinetic
energy term (which is the Josephson term in equation 3.42), so that the total energy on a
single lattice site is given by
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Figure 3.8: (a) The atoms are trapped in a periodic lattice potential with an additional exter-
nal confinement due to the Gaussian laser beam profile and the magnetic trapping potential.
(b) In the ground state the BEC is distributed over the lattice in a way that the chemical
potential µ is constant over the lattice. The local chemical potential on a lattice site can be
approximated as the sum of the energy offset εi and the interaction energy per atom, which
is proportional to the density. Therefore the BEC is distributed over the lattice with a density
profile of a Thomas Fermi parabola (c).
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Ej 
 εj|ψj |2 +
U

2
|ψj |4 = εjnj +

U

2
n2

j . (3.44)

The local chemical potential can then be calculated as

µj =
∂Ej

∂nj
= εj + U · nj = const. (3.45)

We ignore the discreteness of the lattice for the following calculation. This is justifiable if the
lattice spacing is much larger than the extension of the atom cloud in the lattice. Furthermore
we assume a spherical symmetric situation. Thus the density becomes continues ni → n(r)
and the external confinement is given by εi → ε(r) = m/2 ω2

extr
2. Note that the density is

normalized to the volume of one lattice site, thus n(r) is the atom number per lattice site in
the distance r from the trap center. The total atom number is then given by

N =
∫
n(x)

1
a3

lat

d3x =
4π
a3

lat

∫ ∞

0
r2n(r) dr (3.46)

where alat is the lattice spacing. The condition for a constant chemical potential in equation
3.45 directly leads to a density distribution over the lattice, which is the usual Thomas Fermi
parabola:

n(r) =
1
U

(
µ− 1

2
mω2

ext r
2
)

(3.47)

The corresponding Thomas Fermi radius and the chemical potential depending on atom num-
ber and trap parameters are given by

rTF =

√
2µ

mω2
ext

and µ =

(
15
16

(λ/2)3 m3/2N U ω3
ext√

2π

) 2
5

. (3.48)
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3.2 Creating multidimensional optical lattice potentials

The optical lattice potential is formed by superimposing several far red detuned standing
waves at a wavelength around 850 nm. In this chapter the experimental setup for the lattice
potential is described.

3.2.1 Laser beam setup

Our new Bose-Einstein condensate setup is designed in order to have free optical access to
the Bose-Einstein condensate on three orthogonal axes. No magneto-optical trap is needed
in the BEC chamber. Therefore, no optics for a MOT is blocking the optical access and we
can shine in laser beams for the optical lattice from six orthogonal directions.

Figure 3.9: The standing wave laser field is formed by a retroreflected Gaussian laser focus.

Various types of periodic lattice potentials can be created by overlapping standing light
waves with the atomic sample as discussed in chapter 3.1.2. The standing waves are formed
by interfering counterpropagating beams with linear polarization. Figure 3.9 shows the setup
we use. On the left side, a collimated Gaussian laser beam enters and is focused on the
atomic sample with an achromatic lens. After the sample, the beam is recollimated again
and is exactly retroreflected by an adjustable mirror. The retroreflected beam follows the
inverse path and therefore forms a nearly perfect standing wave.

For a 2D and 3D lattice, we overlap two and three standing waves respectively. The beams
are orthogonal to each other, thus forming a simple cubic lattice. For the 2D lattice we use
light with the same frequency on each axis. By changing the polarization and the time
phase of the two standing waves, we are able to control the interference term in equation
3.20. The time phase has to be stabilized interferometrically. It is measured by analyzing
the polarization of the retroreflected beams after they are recombined on the beam splitter.
The optical path length of one of the arms is adjusted by a piezo mounted mirror and a
servo loop. By controlling the time phase, different lattice structures with a two atomic
basis can be realized. However, the servo loop has a control accuracy of about 5%, and
fluctuations of the time phase can lead to heating of the ultracold atoms. Therefore better
results with little heating effects are achieved when the interference term is either minimized
by using orthogonal polarizations and a timphase of 90 o or it is maximized by choosing
parallel polarizations and a time phase of 0 o. In both cases fluctuations of the time phase
have only little effect on the resulting trapping potential.

As a simple and effective alternative to the stabilization of the time phase we use standing
waves with mutually orthogonal polarization and different frequencies on each axis. Due to
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

the different frequencies any residual interference between beams travelling in orthogonal
directions is time averaged to zero and therefore not seen by the atoms. The frequencies of
the beams are shifted by acousto optical modulators with a relative frequency difference of
about 30 MHz. This frequency is much larger than the trapping frequencies inside the lattice
of about 30 kHz, therefore the time averaging is perfect in practice. This method is used for
all experiments involving three-dimensional lattices.

The beam shape causes an additional confinement for a red detuned lattice (see Chapter
3.1.2), which adds to the confinement due to the magnetic trap. This confinement is harmonic
in the trap center. In the experiments with 1D and 2D optical lattices [91] the beam waist
w0 (1/e2 radius of the intensity) is approximately 75µm. For the Mott insulator experiment
[92] the beam waist is enlarged to 125µm.

The alignment of the laser beams is a critical task. A precise overlap between the center
of the Gaussian beams and the BEC is crucial for occupying the ground state in the lattice
potential. A misalignment leads to potential gradients which can cause excitations of the
BEC. The alignment is done in three steps: First, the position of the BEC is measured on a
camera. Then the lattice beam is adjusted by imaging it onto the same camera. Finally the
retroreflected beam is adjusted by assuring a perfect overlap of the returning beam after it
leaves the first lens again. The alignment of the lattice beams can be checked by observing
the displacement of the Bose-Einstein condensate after the lattice is adiabatically ramped up.
By this method we estimate the precision of the alignment procedure to be about 10-20 µm.

All beams are spatially filtered and guided to the experiment using single mode, polar-
ization maintaining fibers. Therefore the beam profile of the lattice beams is Gaussian to a
good approximation. The laser intensity after each fiber is measured with a fast photodiode.
Before each fiber an acousto-optical modulator controls the light intensity and shifts the laser
frequency between 70 MHz and 120 MHz in order to create the different frequencies for each
axis. The intensity is controlled by a fast servo loop with a response time of about 50µs.
This ensures that the lattice depth can be changed reproducibly or can be kept constant even
if the laser intensity or the fiber transmittance fluctuates.

3.2.2 Laser system

For the experiments with 1D and 2D lattices we have used a diode laser operating at a wave-
length of λ = 852 nm. To create a stable standing wave the coherence length should be
much larger than the length difference in the optical path between the forward and backward
travelling beam (
 0.5 m). Thus we narrow the line width of the laser by seeding it with
a grating stabilized diode laser. The injection locked laser has a line width of a few MHz,
resulting in a coherence length of about 100 m. The diode laser (manufacturer: SDL) has
an maximum output power of 150 mW. After all optical components the total power for the
optical lattice is about 40 mW.

For the Mott insulator experiments with a three-dimensional optical lattice the beam waist
has to be larger, thus more power is needed. One axis is operated by the injection seeded
diode laser described above. For the other two axis we use an injection seeded tapered
amplifier laser (TA laser chip manufactured by Toptica), seeded by the same laser. The
tapered amplifier laser is operated at an output power of about 350 mW. After spatial filtering
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and the transmission through all optical components about 2 × 50 mW is available for the
lattice.

Recently we have changed to a Ti:Saphire laser (Coherent), which is pumped with a 10 W
frequency doubled diode pumped solid state laser (Verdi V10, Coherent). At a wavelength
of 835 nm the laser delivers about 700 mW output power in a single mode. With the current
resonator mirrors, the laser can be tuned between 760 nm and 840 nm. After an optical fiber
the power of the lattice laser beams in each of the three axis can reach 100 mW.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

3.3 BEC in an optical lattice potential

3.3.1 Adiabatic loading of a BEC into a lattice potential

The Bose-Einstein condensate, which is initially trapped in a magnetic trapping potential, is
adiabatically loaded into the optical lattice by slowly ramping up the optical lattice potential.
If the lattice is ramped up slow enough, the wave function of the condensate remains in the
many body ground state of the system. Two timescales of adiabaticity are relevant:

• Adiabaticity with respect to the band population: If the lattice potential is changed
too fast, higher energy bands get populated. The time scale for adiabaticity is deter-
mined by the level spacing. The adiabaticity criterion for the transfer from the lowest
into the nth energy band of a non interacting gas is given by [68]:

|〈n, q|d/dt|0, q〉| � |E(q)
n − E

(q)
0 |/h̄, (3.49)

where |n, q〉 is the Bloch state with the quasi momentum q in the nth energy band.
For q ∼ 0, away from the border of the Brillouin zone, the right side of the equation
remains finite (|E(q)

n − E
(q)
0 | ∼ 4Er) even for low potential depths V0 ≤ 1Er. The

condition eq. 3.49 then reads [68]:

d

dt
V0/Er � 32

√
2Er/h̄ ∼ 9 · 105 s−1 (3.50)

For larger potential depths the level spacing increases and adiabaticity is more easily
fulfilled.

• Adiabaticity with respect to the extension of the cloud over the lattice in the inho-
mogeneous system [93]: For each lattice depth and for each strength of the external
confinement, the many body ground state has a certain density profile (chapter 3.1.5).
If parameters are changed, the atoms have to redistribute over the lattice in order to
maintain a constant chemical potential. Thus this change has to be slow enough to be
adiabatic.

This time scale of adiabaticity is usually orders of magnitude slower than the time scale
discussed above. For a three-dimensional red detuned lattice, however, the situation
is very favorable: The chemical potential is given by (see also equation 3.45) µ =
εj + U · nj , where εj is the energy offset due to the external confinement on the jth

lattice site, U is the onsite interaction matrix element and nj denotes the expectation
value of the atom number on a site. For red detuning the energy offsetεj , which causes
the external confinement, increases linearly with the lattice depth since the atoms are
captured in the intensity maxima. However, due to a reduced ground state extension
on each site, U also changes approximately linearly for a 3D lattice. Therefore the
increase of the external confinement is nearly perfectly compensated by the increase
of the onsite interaction due to the tighter confinement on each lattice site. This means
that the atoms hardly have to redistribute at all, and the chemical potential remains flat
over the lattice when the lattice depth is changed. Note that the situation is different
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for a blue detuned lattice, where the atoms are captured in the intensity minima. There
the change of the external confinement is small and has the wrong sign.

V
0 

[E
r]

0

V0

80 ms

τ=20 ms

t

Figure 3.10: Slope for adiabatically transferring the BEC into the optical lattice potential.
The potential depth is plotted versus time. The potential is exponentially ramped up to the
final lattice depth in 80 ms with a time constant of 20 ms.

When we load the atoms into the lattice, we start with a nearly pure condensate in the
magnetic trap. For the 1D and 2D experiments we start with a cigar shaped trap with radial
trapping frequencies of 220 Hz and axial trapping frequencies of 24 Hz. For the Mott insu-
lator experiments in a 3D lattice we start form an isotropic trapping potential by raising the
bias field of the Ioffe trap. This is done after condensation by ramping up a homogenous
offset field in about 500 ms. The resulting trapping frequencies are 24 Hz in each direction
for the (F=2,mF =2) state. When we load the atoms into the periodic lattice potential we
leave the magnetic trapping potential on. The main reason for this is to compensate for the
gravitational field, which would otherwise result in a strong potential gradient across the
cloud. Therefore we change the external confinement which is the sum of the magnetic and
optic confinement smoothly.

The periodic potential is usually ramped up with an exponential slope in about 80 ms
(Figure 3.9). We were able to check that the process is adiabatic and that the many body
ground state is occupied. The first criterion for adiabaticity can be checked by measuring
the population of the energy bands (see chapter 3.3.6) showing that there is no occupation
of higher energy bands. The second criterion is checked by probing the phases on the lattice
sites after a certain hold time. Only if the chemical potential is flat, all phases remain constant
and locked, and no excitations are visible.

3.3.2 Revealing the momentum distribution

How can we measure the macroscopic wave function of the BEC in the lattice? The lattice
spacing is just λ/2 = 425 nm, therefore the optical resolution of the imaging system is not
sufficient to resolve individual lattice sites. However, the momentum distribution can be
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

measured by a time of flight measurement. For a coherent BEC in a lattice this momentum
distribution carries in fact much more information than the spatial distribution of the atoms
in the lattice.

Figure 3.11: Simulation of the time of flight expansion for different evolution times. After
switching off the lattice potential, a matter wave is emitted from each lattice site (left). As
time evolves, the phase coherent matter waves overlap and form a multiple matter wave inter-
ference pattern. For long evolution times this pattern shows the momentum distribution with
discrete momentum peaks arranged in a periodic pattern (right). This pattern corresponds to
the reciprocal lattice and the Fourier transform of the wave function in the lattice. In the plot
the phase of the matter wave is color coded, visualizing phase gradients as stripes.

The momentum distribution can be determined by a time of flight measurement. When
all trapping potentials are switched off, the wave packets confined at each lattice site ex-
pand, start to overlap, and interfere with each other. Thus a coherent matter wave is emitted
from each lattice site, resulting in a multiple matter wave interference pattern. Figure 3.11
shows a numerical simulation of the expansion and in figure 3.12 those patterns are shown
for Bose-Einstein condensates released from 100.000 lattice sites of a 3D lattice. Narrow
momentum peaks are visible, arranged in a periodic structure. These peaks are due to the
periodicity of the lattice and require a constant macroscopic phase across the lattice sites.
Figure 3.13 shows time of flight images of a three-dimensional optical lattice, taken from
different directions.

Neglecting interaction effects during the expansion, the momentum distribution represents
the Fourier transformation of the original macroscopic wave function in the lattice. The
Fourier transform of the simple cubic lattice gives a simple cubic reciprocal lattice. There-
fore the momentum peaks are also arranged in a simple cubic structure. When no phase
fluctuations and interaction effects are present, the width of the momentum peaks is given
by the Fourier transform of the envelope of the BEC in the lattice. On the other hand the
envelope of the momentum distribution is the Fourier transform of the ground state extension
of the wave function on each lattice site. Assuming Gaussian wave functions on each lattice
site, the envelope is also Gaussian. The width of the envelope is then reciprocal to the width
of the ground state extension.

Figure 3.14 shows the strength of the momentum peaks with 2h̄k relative to the zero
momentum peak, plotted for different potential depths. This number is given by the width
of the envelope of the peaks and is therefore determined by the ground state extension of
the wave function on a lattice site. The data are compared to an ab initio calculation. In
this numerical calculation the ground state extension was assumed to be Gaussian and was
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time of flight

2 ms 6 ms 10 ms 14 ms 18 ms

Figure 3.12: Time of flight absorption images of multiple matter wave interference pattern
for different expansion times. Coherent BECs from 100 000 lattice sites expand, overlap and
interfere with each other. Narrow momentum peaks are observed, demonstrating the long
range phase coherence across the lattice

Figure 3.13: Schematical picture of the three-dimensional momentum distribution corre-
sponding to a 3D lattice, together with measured time of flight images. These images show
the projection in the direction of one lattice axis. Therefore different momentum peaks in
this direction overlap and are not distinguishable. However, images taken from different
sides show that the momentum distribution has a three-dimensional structure.
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Figure 3.14: (a) Calculated density distribution of the atoms for a lattice potential depth of
12Er. (b) Fraction of atoms with momentum p = ±2 h̄k relative to the number of atoms
with p = 0 h̄k, extracted from time of flight images. The solid line is a theoretical calculation
with no adjustable parameters.

determined using a variational ansatz, therefore also accounting for interaction effects (see
also chapter 3.1.5).

In the experiment the width of the interference peaks is slightly broadened by the repulsive
interaction during the expansion process. However, the width of the peaks can still be very
small and can give a lower bound for the coherence length of the condensate in the lattice.

More generally, the momentum distribution can be expressed in terms of the one-particle
density matrix ρ1(�R) = 〈â†�R â0〉, where â†i creates in a particle in the ith lattice site (See also

chapter 4) and �R is the separation, an integer multiple of the primitive lattice vectors. It is
then given by [94, 31]

n(�k) = n|w(�k)|2
∑
�R

ei
�k·�Rρ1(�R), (3.51)

where w(�k) is the Fourier transform of the wannier function, describing the wave packet on
each lattice site.

3.3.3 s -wave scattering

Besides the discrete momentum peaks, s-wave scattering spheres are visible in the time of
flight images under certain circumstances (see figure 3.15) [95, 96]. They occur due to
elastic scattering between atoms in different momentum components, which separate after
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3.3 BEC in an optical lattice potential

the trapping potential is switched off. The atoms are scattered out of the condensate mode,
since the relative velocity of the scattering particles is larger than a critical velocity, which is
related to the Landau critical velocity and is of the order of the speed of sound.

(a) (b)
2 hk

Figure 3.15: s-wave scattering spheres. (a) Average over 5 time of flight absorption images
of released BECs that were stored in a 2D lattice. A tight cigar shaped external confinement
leads to high densities and therefore enhances scattering processes. The lattice depth was
12Er and the expansion time 12 ms. (b) Schematic image showing the expected discrete
momentum states and s-wave scattering spheres.

In momentum space the target states for the scattering process are located on a spherical
shell around the center of mass momentum due to energy and momentum conservation in
the elastic scattering process. These target states are evenly distributed over the shell due to
the spherical symmetry in the s-wave scattering process. Therefore the scattered atoms are
visible as a circular halo in time of flight images, which represents the line-of-sight integrated
spherical shell in momentum space.

In the experiment these shells become visible if the density of atoms in the lattice is large.
This is especially the case for the situation where the optical lattice was superimposed on a
cigar shaped magnetic trap [91]. For this situation strong scattering spheres can be observed
in the horizontal direction since the large extension of the condensate in this direction leads
to long interaction times and a large scattering probability. Scattering spheres in the vertical
direction are weaker due to a shorter interaction time, but they are still visible. Even scat-
tering spheres of the diagonal momentum peaks with a momentum of

√
2 · 2 h̄k are nicely

visible.

For 2D and 3D lattices with a weak magnetic confinement and moderate atom numbers,
scattering spheres are hardly visible at all due to a much lower density. However, also in
that regime residual scattering spheres can have an effect on quantitative measurements of
the visibility of interference peaks. They appear as a non interfering background, apparently
reducing the visibility of the interference pattern.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

3.3.4 Geometrical structure factor

By choosing different polarizations and time phases for a two-dimensional lattice, the struc-
ture of the periodic trapping potential can be varied (see equation 3.20 and chapter 3.2).
The lattice structure corresponds to a square lattice with a two-atomic basis (NaCl-structure
in 2D) and a primitive lattice vector of the length

√
2 · λ/2, diagonal to the lattice beams.

Changing the time phase leads to a change between the depth of adjacent lattice sites cor-
responding to the two-atomic basis. If the difference of the potential depth is much larger
than the chemical potential, only the deeper lattice sites are populated with atoms. This is
particularly the case if the polarizations are parallel and the time phase is set to 0 o. For this
situation the interference term in equation 3.20 is maximized and every second lattice site
vanishes (see figure 3.16c). Figure 3.16d shows the corresponding time of flight image.

(a)

(b)

(c)

(d)

2 hk

Figure 3.16: Time of flight images revealing the momentum distribution for different lattice
configurations. For an optical lattice with orthogonal polarization vectors e1 · e2 = 0 (a) the
first diagonal momentum orders with |p| =

√
2h̄k are suppressed (b) due to their vanishing

geometrical structure factor. In contrast, if e1 · e2 = 1 and the time phase φ = 0 as in (c),
the resulting geometrical structure factor does not vanish for these momentum components
and they are strongly visible (d)

When the polarization between the standing waves is orthogonal, the interference term in
equation 3.20 vanishes and every lattice site has the same potential depth (figure 3.16a). For
this situation we find a complete suppression of the first order diagonal momentum compo-
nent with |p| =

√
2h̄k (figure 3.16b). This is caused by a destructive interference between

matter waves emitted from neighboring diagonal lattice planes and results in a vanishing
geometrical structure factor for the diagonal momentum components.

In the latter case, where the interference term vanishes, the depth of the potential wells
corresponding to the two-atomic basis are identical. Therefore the resulting lattice is identi-
cal to a square lattice with a one atomic basis and a primitive lattice vector of the length λ/2
parallel to the lattice beams. All the following experiments are carried out in this regime.
The polarizations between the standing waves are chosen mutually orthogonal, and residual
interferences are time averaged by using different laser frequencies on each axis. Note that
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only for this lattice configuration the lattice potential is separable in all dimensions.

3.3.5 Observing Bloch oscillations

When a Bose-Einstein condensate is adiabatically loaded into an optical lattice, the Bloch
state with a crystal momentum q = 0 is macroscopically occupied. Therefore the macro-
scopic phase is identical on each lattice site. The atoms are distributed over the lattice in
a way that the chemical potential is constant across the lattice. Therefore the phases in all
lattice sites obey the same time evolution and remain constant.

(a)

(b) (c)

lattice potential +
potential gradient

Figure 3.17: Applying a potential gradient and thereby tilting the lattice (a) leads to Bloch
oscillations in the lowest band. Experimentally measured momentum distributions for a 3D
lattice with ∆φ = 0 (b) and ∆φ = π (c), corresponding to a quasi momentum of q = 0 and
q = h̄k respectively.

By exposing the atoms to a potential gradient it is possible to imprint arbitrary phase
gradients onto the condensate in the lattice. The phase on each lattice site evolves as φi =
Ei · t/h̄ according to the local potential energy. When a linear potential gradient is applied
(Figure 3.17a), the phase difference between neighboring lattice sites ∆φ = φ(xi+1)−φ(xi)
evolves as

∆φ = −V
′ λ
2 t

h̄
. (3.52)

Here, V ′ is the strength of the potential gradient V (x) = V ′ · x.
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In a band structure picture this phase evolution corresponds to Bloch oscillations in the
lowest Bloch band. Thereby a Bloch state with an arbitrary quasi momentum q = V ′t can
be populated by applying the potential gradient for an appropriate time t.

In the experiment the potential gradient is created by shifting the harmonic magnetic trap.
A displacement of the harmonic trap by the distance xshift results in a potential which is the
sum of the original trapping potential V (x), a linear gradient V ′ · x and an offset c:

Vshift(x) =
m

2
ω2

mag(x−xshift)2 =
m

2
ω2

mag x
2−mω2

mag xshift ·x+ c = V0(x)+V ′ ·x+ c.

(3.53)
The harmonic magnetic trap can be displaced by applying magnetic offset fields. These
fields are created by driving current pulses through small coils which are mounted close
to the glass cell. The coils have about 10 windings of a 1.5 mm wire and a diameter of
about 16 mm. Two coils are mounted in different directions. The inductance is very low,
enabling the creation of short pulses without ringing. The pulse current is stabilized by a
servo loop. By applying appropriate pulse currents of up to 400 A the magnetic trap can be
shifted by different amounts. This results in variable potential gradients. The dependence of
the potential gradients on the applied currents was calculated numerically and cross checked
via the Bloch oscillation period.
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Figure 3.18: Theoretical momentum distribution for a BEC in a one-dimensional periodic
potential. The graphs show different momentum states with with phase differences of (a)
φ = 0, (b) φ = π/2 and (c) φ = π between neighboring lattice sites.

Figure 3.18 shows a calculation of the momentum distribution for different Bloch states in
a 1D lattice. In figure 3.17 b and c, time of flight images are shown revealing the momentum
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distribution of Bloch states in a 3D lattice with a crystal momentum of q = 0 (∆φ = 0) and
q = h̄k (∆φ = π) respectively.

Only for short times the time evolution of the BEC in the tilted lattice follows simple Bloch
oscillations. If the potential gradient is applied for a longer period, a dephasing of the lattice
sites and other excitations can be observed. The dephasing arises due to the nonlinearity of
the BEC. Different sources for the loss of long range phase coherence have been reported:

• Dynamical instability: A condensate with repulsive interactions in a lattice is not
stable for each Bloch state. For Bloch states close to the border of the Brillouin zone
arbitrarily small excitations get amplified and the condensate will break apart due to
dynamical instability effects [97, 98, 99, 78]. This can be qualitatively understood
through the effective mass meff of the particles. The effective mass depends on the
curvature of the energy band as 1/meff = d2E(q)/dq2. It becomes negative for quasi
momenta q close to the border of the Brillouin zone, between q ≈ h̄k and q = 2h̄k.
Therefore the sign of the interaction parameter changes, resulting in effectively attrac-
tive interactions between the atoms. Such a condensate with attractive interactions is
not stable.

• Landau instability: A dissipative behavior which is not governed by the Gross-
Pitaevskii equation can occur if the fluid velocities are larger than the local speed
of sound [78, 97]. When Landau instability occurs, the system can lower its energy by
emitting phonons.

• Solitons, vortices: The above damping mechanisms assume a pure one-dimensional
system. However, in experiments with one and two-dimensional lattices there are
usually more degrees of freedom in the direction perpendicular to the lattice axis.
Therefore, especially for an inhomogeneous system, the one-dimensional description
is not sufficient since excitations in these degrees of freedom occur. These excitations
can lead to a chaotic behavior and even lead to the formation of solitons and vortices
[100].

3.3.6 Measurement of the band population

The population of the Brillouin zones can be directly measured by adiabatically ramping
down the lattice potential and measuring the free space momentum distribution [101, 91].
Since the nnt Brillouin zone corresponds to the nth Energy band, the population of the states
in each energy band and for each crystal momentum q can be probed independently.

Mapping crystal momentum to free particle momentum

In the normal time of flight expansion images the lattice potential is rapidly switched off and
the image corresponds to the Fourier transform of the wave function, showing the momen-
tum distribution of the atoms confined in the lattice. The lattice potential can instead also be
ramped down adiabatically. If the ramp down time is slow compared to vibrational frequen-
cies in the lattice, but fast enough such that the population of the energy bands is not changed
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hω

(a) (b)

Figure 3.19: (a) Bloch bands for different potential depths. By adiabatically decreasing the
lattice depth the band population is conserved and the crystal momentum q is mapped to the
free particle momentum p (b). The nth band is therefore mapped to the nth momentum
interval of the free particle momentum.

during the ramp, the crystal momentum is conserved and a state with crystal momentum q
is finally mapped to a state with free particle momentum p = q as the lattice is turned off.
Figure 3.19 shows the situation for a 1D lattice. The nth energy band is mapped onto the nth
momentum interval of the free particle which corresponds to the nth Brillouin zone of the
lattice.

For higher dimensions the Brillouin zones are more complicated. Figure 3.20a shows the
reciprocal lattice and Brillouin zones for a two-dimensional square lattice. However, the
principle is the same and the nth energy band is mapped onto the nth Brillouin zone.

Imaging the Brillouin zones

In Figure 3.20b an experimental measurement of the band population of a dephased 2D
lattice is shown. First, the magnetic confinement is switched off and the atoms are exposed
to the linear gravitational potential. As described in chapter 3.3.5 the gradient leads to Bloch
oscillations, and various instability effects lead to a dephasing of the condensate in the lattice
and therefore to a loss of long range phase coherence. By this we prepare a homogenously
populated first Brillouin zone. After 2 ms, the BEC is dephased and the lattice is ramped
down in 2 ms starting from a potential depth of 12Er . We image the cloud after a ballistic
expansion of 12 ms. The time of flight image in figure 3.20b exhibits a square like momentum
distribution with a width of 2h̄k, coinciding with the first Brillouin zone. The distribution
of the population of momenta in the first Brillouin zone is flat, and no population in higher
Brillouin zones can be detected. This proves that the atoms occupy the lowest energy band
homogenously and that no higher bands are populated.

For a three-dimensional simple cubic lattice, the shape of the first Brillouin zone is a cube.
Therefore a dephased condensate in a cubic lattice creates a cubic cloud of gas after ballistic
expansion. This can be seen in figure 3.20c, where a schematic image of the cubic cloud
is shown together with real experimental time of flight images taken from two orthogonal
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Figure 3.20: (a) Reciprocal lattice and Brillouin zones for a two-dimensional lattice. (b)
Image of the experimentally measured band population of a dephased BEC in a 12 Er deep
lattice. The first Brillouin zone and therefore the lowest energy band is homogenously pop-
ulated with no visible population in higher energy bands. (c) The shape of the first Brillouin
zone of a 3D lattice is a cube, which is drawn schematically. The inset shows the measured
cube-like momentum distribution for a dephased BEC in a 3D lattice.
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directions.
The measurement of the band population demonstrates that it is possible to homogenously

populate the lowest energy band while having no population in higher bands. In a tight
binding picture this corresponds to a situation where in each lattice site only the vibrational
ground state is occupied by the condensate, but the phase correlation between the sites is
lost.

Populating higher energy bands

We can populate higher energy bands in the lattice by using stimulated Raman transitions,
where states in different energy bands are connected by a stimulated two-photon process
[80, 81]. In order to drive the transition we apply two Raman beams to the atoms in the lattice
(Figure 3.21b). The frequency difference δωr = δE/h̄ between the beams corresponds to
the energy difference δE between the Bloch states. The Raman beams are detuned by ∆r

with respect to an atomic transition. By changing the angle between the two beams the
momentum transfer δq of the Raman beams can be arbitrarily chosen between 0h̄kr and
2h̄kr, where kr denotes the norm of the k-vector of the Raman beams. Therefore Bloch
states in all bands and with arbitrary quasi momenta can be populated.

In a tight binding picture the Raman beams induce transitions between vibrational levels
of each potential well (see 3.21a) and the change of the quasimomentum δq corresponds to
the simultaneous change of the relative macroscopic phase between lattice sites.

(a) (b) (c)

Figure 3.21: Population of higher energy bands. (a) Higher vibrational levels on each lattice
site can be populated by stimulated Raman transitions. (b) In a Bloch picture this corre-
sponds to Raman transitions between different energy bands. (c) Measured band population
of a dephased BEC in a 2D lattice, where higher energy bands have been populated by stim-
ulated Raman transitions. Therefore population of the corresponding higher Brillouin zones
is visible.
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Figure 3.22: Band structure of a two-dimensional lattice with a lattice depth of 5Er. The
distance between the first and second band corresponds to the level spacing h̄ω of the poten-
tial wells. The second and third band overlap with each other.
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In the experiment we first prepare a dephased BEC in the lattice, where the lowest energy
band is populated homogenously. Then we shine in two Raman beams from two orthogonal
directions, parallel to the primitive lattice vectors. The momentum transfer of this setup is√

2h̄kr in the diagonal direction. However, since we start with a homogenously populated
lowest band, this band is entirely mapped onto a higher band which also gets populated
homogenously . By choosing a proper detuning we can address the final energy band.

Figure 3.21c shows a ballistic expansion image of a dephased BEC in a 12 Er deep 2D lat-
tice, where higher energy bands are populated by stimulated Raman transitions and the quasi
momentum was mapped to the free particle momentum by adiabatically decreasing the po-
tential depth. Different Brillouin zones are visible. A comparison with the Brillouin scheme
in Figure 3.20a shows that the second and third energy band can not be distinguished in the
measurement. This is because both zones correspond to overlapping and nearly degenerate
energy bands (figure 3.22), which reflect the two-fold degeneracy of the two-dimensional
harmonic oscillator levels on each potential well. Therefore both bands are equally popu-
lated by the Raman transition and the triangular shape of the corresponding Brillouin zones
is not visible.
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4 Quantum phase transition from a superfluid to a Mott
insulator

4.1 Bose-Hubbard Model of interacting bosons in a lattice

4.1.1 Bose-Hubbard Hamiltonian

In our experimental parameter regime the bosonic atoms with repulsive interactions in a pe-
riodic lattice potential are perfectly described by a Bose-Hubbard model [4], as realized by
Jaksch et al. [5] . This model is a well known model in solid state physics. It is the sim-
plest nontrivial model describing a bosonic many body system on a lattice which can not
be mapped onto a single particle problem. Nevertheless it contains intriguing effects like a
quantum phase transition from a superfluid state to a Mott insulating state.

Our starting point of the discussion is the Hamiltonian for interacting bosonic particles in
an trapping potential V (x) (see also chapter 2.1.3)

Ĥ =
∫
d3x ψ̂†(x)

(
− h̄2

2m
∇2 + V (x)

)
ψ̂(x) +

1
2

4πash̄
2

m

∫
d3x ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (4.1)

where ψ̂(x) is a boson field operator. In our system the trapping potential V (x) is the sum
of the periodic lattice potential, Vlat(x) and an external confinement Vext(x) (see equation
3.22). In the interaction term as denotes the scattering length and m is the mass of an atom.

For a periodic potential and local atom-atom interactions it is favorable to work in the
Wannier basis of wave functions localized to lattice sites (chapter 3.1.4 and equation 3.37).
If the energies involved in the dynamic of the system are small compared to excitation ener-
gies to the second band, only Wannier functions of the lowest band have to be considered.
Therefore we can expand the field operators ψ̂(x) in the basis of Wannier functions w(x−xi)
of the lowest band

ψ̂(x) =
∑

i

âiw(x − xi). (4.2)

Here âi denotes the operator for annihilating a particle in the mode of the Wannier function
w(x − xi), localized to the ith lattice site. Therefore âi and the corresponding creation op-
erator â†i describe the annihilation and creation of a boson on the ith lattice site respectively.
These operators obey the canonical commutation relations [âi, â

†
j ] = δij .
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4 Quantum phase transition from a superfluid to a Mott insulator

Using this expansion and considering only tunnelling between neighboring lattice sites
and on-site interaction Hamiltonian 4.1 reduces to the Bose-Hubbard Hamiltonian

Ĥ = −J
∑

<i,j>

â†i âj +
∑

i

(εi − µ) n̂i +
∑

i

1
2
U n̂i(n̂i − 1). (4.3)

Here n̂i = â†i âi counts the number of bosons on the ith lattice site and the first summation is
carried out over neighboring lattice sites. The Hamiltonian consist of three terms:

• The first term in the Bose-Hubbard Hamiltonian is the hopping term and describes
the tunnelling of bosons between neighboring potential wells. The strength of the
tunnel coupling is characterized by the tunnel matrix element J = − ∫ d3xw(x −
xi)(−h̄2∇2/2m+Vlat(x))w(x−xj) (see also eq. 3.38). This term of the Hamiltonian
tends to delocalize each atom over the lattice.

• The second term describes an external confinement which gives rise to an energy offset
εi = Vext(xi) on the ith lattice. For a homogenous system εi is zero. This term also
introduces the chemical potential µ. It acts as a Lagrangian multiplier to fix the mean
number of particles when a grand canonical ensemble is considered.

• The interaction of n atoms, each interacting with n − 1 other atoms on the same
lattice site, is described by the third term of the Bose-Hubbard Hamiltonian. Here
U quantifies the repulsion between two atoms on a single lattice site and is given by
U = (4πh̄2as/m)

∫ |w(x)|4d3x. Due to the short range of the interactions compared
to the lattice spacing, the interaction energy is well described by this term, which
characterizes a purely on-site interaction. The interaction term tends to localize atoms
to lattice sites.

For a given optical lattice potential U and J are readily evaluated numerically (see pre-
ceding chapter). When the potential depth of the optical lattice is increased, the tunnelling
barrier between neighboring lattice sites is raised and therefore the tunnelling matrix element
J decreases exponentially. The on-site interaction U on the oher hand is slightly increased in
a deeper lattice due to a tighter confinement of the wave function on a lattice site. Therefore
the ratio U/J can be continuously adjusted over a wide range by changing the strength of
the lattice potential.

Note that the Hamiltonian of eq. 3.42, derived from a Gross Pitaevskii equation, is the
limiting form of the more general Bose-Hubbard Hamiltonian eq. 4.3, when one can describe
the many-body state through a macroscopic wave function.

4.1.2 Superfluid and Mott insulating ground state

The Bose-Hubbard Hamiltonian of equation 4.3 has two distinct ground states depending on
the strength of the interactions U relative to the tunnel-coupling J . In order to gain insight
into the two limiting ground-states, let us first consider the case of a double well system with
only two interacting neutral atoms.
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4.1 Bose-Hubbard Model of interacting bosons in a lattice

Double well case

In the double well system the two lowest lying states for non-interacting particles are the
symmetric |ϕS〉 = 1/

√
2(|ϕL〉+ |ϕR〉) and the anti-symmetric |ϕA〉 = 1/

√
2(|ϕL〉− |ϕR〉)

states, where |ϕL〉 and |ϕR〉 are the ground states of the left and right hand side of the double
well potential. The energy difference between |ϕS〉 and |ϕA〉 will be denoted by 2 ·J , which
characterizes the tunnel coupling between the two wells and depends strongly on the barrier
height between the two potentials.

Figure 4.1: Ground state of two interacting particles in a double well. For interaction ener-
gies U smaller than the tunnel coupling J the ground state of the two-body system is realized
by the "superfluid" state a. If on the other hand U is much larger than J , then the ground
state of the two-body system is the Mott insulating state b.

In case of no interactions, the ground state of the two-body system is realized when each
atom is in the symmetric ground state of the double well system (see Fig. 4.1a). For this
situation the system is in a superposition of the state with both atoms in the left well, the
state with both atoms in the right well and the state with one atom in the left and one in the
right well. Such a situation yields an average occupation of one atom per site, however, the
single site many body state is then actually in a superposition of zero, one and two atoms.
Let us now consider the effects due to a repulsive interaction between the atoms. If both
atoms are again in the symmetric ground state of the double well, the total energy of such a
state will increase due to the repulsive interactions between the atoms. This higher energy
cost is a direct consequence of having contributions where both atoms occupy the same site
of the double well. This leads to an interaction energy of 1/2U for this state.

If this energy cost is much greater than the splitting 2 · J between the symmetric and anti-
symmetric ground states of the noninteracting system, the system can minimize its energy
when each atom is in a superposition of the symmetric and antisymmetric ground state of
the double well 1/

√
2(|ϕS〉 ± |ϕA〉). The resulting many body state can then be written as

|Ψ〉 = 1/
√

2(|ϕL〉 ⊗ |ϕR〉 + |ϕR〉 ⊗ |ϕL〉). Here exactly one atom occupies the left and
right site of the double well. Now the interaction energy vanishes because both atoms never
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4 Quantum phase transition from a superfluid to a Mott insulator

occupy the same lattice site. The system will choose this new "Mott insulating" ground state
when the energy costs of populating the antisymmetric state of the double well system are
outweighed by the energy reduction in the interaction energy. It is important to note that
precisely the atom number fluctuations due to the delocalized single particle wave functions
make the "superfluid" state unfavorable for large U .

Such a change can be induced by adiabatically increasing the barrier height in the double
well system, such that J decreases exponentially and the energy cost for populating the
antisymmetric state becomes smaller and smaller. Eventually it will then be favorable for
the system to change from the "superfluid" ground state, where both atoms are delocalized
over the two wells, to the "Mott insulating" state, where each atom is localized to a single
potential well.

Superfluid ground state

The above ideas can be readily extended to the multiple well case of the periodic potential of
an optical lattice. If the tunnelling matrix element J is much larger than the onsite interaction
U , the tunnelling term in the Bose Hubbard Hamiltonian is dominant. In the ground state
each atom is then delocalized over the entire lattice and the many-body ground state can be
described as a product state of identical Bloch waves. For N bosons on a lattice with M
lattice sites it reads:

|ΨSF 〉U/J≈0 ∝
(

M∑
i=1

â†i

)N

|0〉. (4.4)

The system can be described by a macroscopic wave function since the many-body state is a
product over identical single particle states. Therefore a macroscopic phase is well defined
on each lattice site and the system is superfluid. When the system is in the ground state this
macroscopic phase is constant across the lattice, giving rise to the narrow peaks in the mul-
tiple matter wave interference pattern discussed in the previous chapter. On the other hand
the atom number per site is uncertain, and therefore one would find a random atom number
in a measurement.

The matter wave field on the ith lattice site is characterized by the non-vanishing expec-
tation value of the field operator ψi = 〈φi|âi|φi〉. Neglecting the onsite interaction U , the
single site many-body wave function |φi〉 is equivalent to a coherent state in second quan-
tization, which is an eigenstate of âi. Therefore the many-body state on a lattice site is a
superposition of different atom number states, following a Poissonian atom number distri-
bution (figure 4.2) with a variance given by the average number of atoms on this lattice site
Var(ni) = 〈n̂i〉. For a finite U the interaction will lead to number squeezing, resulting in a
sub Poissonian number statistics (Chapter 5.3.1).

When one can describe the many-body state through a macroscopic wave function, the
expectation value of the kinetic energy term 〈−J · â†i âj〉 in the Bose Hubbard Hamiltonian
becomes −J ψ∗

i ψj . The real part of this term is equal to −J cos(ϕj − ϕi) · √n̄in̄j (where
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4.1 Bose-Hubbard Model of interacting bosons in a lattice
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Figure 4.2: (a) Poissonian atom number statistics on a lattice site for n̄ = 1 and n̄ = 2 in
the superfluid ground state at U/J = 0,. The state on a lattice site is a coherent state with
a superposition of different atom numbers and a well defined macroscopic phase. (b) In a
measurement a random atom number would be found in each potential well.

ϕj − ϕi is the phase difference of the macroscopic phase between neighboring lattice sites
and n̄i is the mean atom number on the ith lattice site) and can therefore be associated with
the Josephson tunnelling energy. Thus a state with a well defined phase is able to lower the
total energy by J per Josephson junction and atom. The expectation value of the interaction
energy U · n̂i(n̂i − 1)/2 on the other hand becomes U · n2

i /2. Therefore the Hamiltonian
of eq. 3.42, originally derived from a Gross Pitaevskii equation, is the limiting form of the
more general Bose-Hubbard Hamiltonian eq. 4.3 for a macroscopic wave function.

Mott insulator ground state

If, on the other hand, interactions dominate the behavior of the Hamiltonian, such that
U/J � 1, then fluctuations in the atom number on a single lattice site become energetically
costly and the ground state of the system instead consists of localized atomic wave functions
that minimize the interaction energy. The many-body ground state is then a product of lo-
cal Fock states in the atom number for each lattice site. In this so called “atomic limit” the
ground state of the many-body system for a homogenous system and a commensurate filling
of n atoms per lattice site is given by:

|ΨMI(n)〉J≈0 ∝
M∏
i=1

(â†i )
n|0〉. (4.5)

Now each atom is localized to a lattice site and the atom number on a lattice site is exactly
determined (figure 4.3). On the other hand, the phase of the coherent matter wave field on a
lattice site has obtained a maximum uncertainty. This is characterized by a vanishing of the
matter wave field on the ith lattice site ψi = 〈φi|âi|φi〉 = 0.

It is interesting to compare the expectation value of the interaction energy per lattice site
for coherent and Fock states. For a coherent state in the superfluid regime it yields U · n2

i /2,
whereas for a Fock state in the Mott insulator regime with ni atoms per lattice site the in-
teraction energy becomes U · ni(ni − 1)/2. Therefore in this regime the system can lower
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4 Quantum phase transition from a superfluid to a Mott insulator
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Figure 4.3: (a) Atom number statistics for the Mott insulator state for n̄=1 and n̄=2, with
Fock states in the atom number on each site. This is the many body ground state in the limit
U � J and for a commensurate filling of the lattice. The macroscopic phase of the matter
wave field has vanished, however, it is replaced by atom number correlations. (b) An atom
number measurement now yields a well defined atom number on each site.

its total energy by U/2 per atom if Fock states in the atom number are formed instead of
coherent states.

In the Mott insulator state the interactions between the atoms dominate the behavior of the
system. No macroscopic phase coherence is prevalent in the system, but perfect correlations
in the atom number exist between lattice sites. The many body state is not amenable anymore
to a description as a macroscopic matter wave, nor can the system be treated by the theories
for a weakly interacting Bose gas of Gross, Pitaevskii and Bogoliubov.

4.1.3 Quantum phase transition

When the strength of the interaction term relative to the tunnelling term in the Bose-Hubbard
Hamiltonian is changed, the system reaches a quantum critical point in the ratio of U/J , for
which the system will undergo a quantum phase transition from the superfluid ground state
to the Mott insulator ground state. This continuous quantum phase transition is driven by
quantum fluctuations [102]. Therefore such a quantum phase transition can also occur at
zero Temperature T = 0, when all thermal fluctuations are frozen out.

The quantum phase transition from the superfluid to the Mott insulator state occurs at a
quantum critical point of about (U/J)c = z ·5.8, where z is the number of nearest neighbors
[4, 103, 104, 105] For large occupations n̄ � 1 the critical value is (U/J)c = z · 4n̄, where
n̄ is the mean atom number. This value is evaluated by using a mean field approach and
agrees reasonably with more rigorous calculations for the three dimensional case [106]. In
one dimension there are deviations from the mean field approximation. The corresponding
value is (U/J)c = 3.84 for unity occupation and (U/J)c = 2.2n̄ for n̄ � 1 [107, 108].
An exact solution of the Bose-Hubbard model is not available except for the limes of infinite
dimensions, where the Gutzwiller approximation becomes exact.
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4.1 Bose-Hubbard Model of interacting bosons in a lattice

4.1.4 Bose Hubbard phase diagram

By considering a grand canonical ensemble a phase diagram of the Bose system with su-
perfluid and Mott insulator phases can be achieved. The superfluid state is characterized
by a finite long range phase coherence with a finite expectation value for the field operator
〈âi〉 �= 0 while for the Mott insulator the expectation value vanishes 〈âi〉 = 0 and the gas is
incompressible. A qualitative phase diagram was already derived in [4]. Figure 4.4 shows
a phase diagram for a two-dimensional square lattice and a homogenous system, calculated
with an analytic strong coupling series by N. Elstner and H. Monien [106]. The phase dia-
gram shows the boundary between the Mott insulating and the superfluid phase as a function
of the chemical potential µ and the tunnel coupling J , both in units of the onsite interaction
U . The two lobes represent a parameter range for which the ground state is a Mott insulator
with an atom number of one and two particles per lattice site, respectively.

0.00 0.01 0.02 0.03 0.04 0.05 0.06

J/U

0.0
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µ/U

MI (n=1)

MI (n=2)
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Figure 4.4: Superfluid - Mott insulator phase diagram, obtained in [106], for a two-
dimensional square lattice with z = 4 next neighbors. This figure is published with the
kind permission of H. Monien.

In this diagram the quantum critical point (J/U)c for a transition to a Mott insulator state
with n atoms is given by the ratio of (J/U) at the right border of the corresponding lobe. For
a larger chemical potential further lobes representing Mott insulator states with higher atom
numbers can be found. For larger n the critical point scales approximately as (J/U)c ∼ 1/n.

In the Mott insulator phase an energy gap ∆E opens up in the excitation spectrum. This
gap corresponds to particle-hole excitations (chapter 4.1.7) and its size is equal to the dif-
ference in µ between the top and bottom phase boundary at given U/J . Scaling theory [4]
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4 Quantum phase transition from a superfluid to a Mott insulator

predicts that close to the critical point (J/U)c the gap vanishes as

∆E ∼ ((J/U)c − (J/U))zν , (4.6)

where zν is the dynamical critical exponent less than unity. A mean field model with infinite
range hopping yields zν = 1/2. Therefore the gap vanishes like the square root of (J/U)c−
(J/U) and the phase boundary is parabolic. More rigorous calculations yield slightly larger
values, resulting in a pointed tip of the Mott lobe , which can be seen in figure 4.4).

4.1.5 Gutzwiller approximation

In the Gutzwiller approximation [109, 103], the many-particle physics is treated with a mean
field approach. The many body state is assumed to be a product state of localized states |Φi〉
at each lattice site

|ΨMF 〉 =
∏
M

|Φi〉, (4.7)

where the localized state is the superposition of different Fock states |n〉 with n particles on
the ith lattice site

|Φi〉 =
∞∑

n=0

f (i)
n |n〉. (4.8)

The f (i)
n are complex coefficients giving the amplitude for finding a certain atom number n

on a lattice site. Both, the Mott insulator and the superfluid ground state can be expressed
through the Gutzwiller ansatz in second quantization. For a certain ratio J/U and a fixed

chemical potential or alternatively a fixed mean atom number, the coefficients f (i)
n can be

found by minimizing the energy 〈ΨMF |HBH |ΨMF 〉. In chapter 5.3.1 this calculation is ex-
plicitly carried out in order to determine the sub Poissonian number statistics of a superfluid
state for a finite U/J , which shows a pronounced number squeezing even before the Mott
insulator regime is reached.

The factorized form of the many body state (equation 4.7) allows a very intuitive under-
standing of the physics in terms of coherent states, fock states and number squeezing, and
it is well suited for calculations. However, it should be pointed out, that the Gutzwiller ap-
proach is not an exact description of the problem. This approach fails to account for the
nontrivial correlations between different sites present at any finite J [31, 94, 110]. In the
Gutzwiller ansatz it is assumed that phase correlations are constant across the lattice and do
not depend on the distance. The local number fluctuations on a lattice site therefore com-
pletely vanish when the phase transition is crossed and when there is no long range phase
coherence anymore. In an exact theory, however, short range phase correlations remain even
when the long range phase coherence has vanished. Therefore the local number fluctuations
do not fully vanish when the Mott-insulator phase entered. Instead the local on-site number
distribution changes smoothly and fluctuations remain finite close to the transition point.
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4.1 Bose-Hubbard Model of interacting bosons in a lattice

4.1.6 Ground state of an inhomogeneous system

Up to now a homogenous system with εi = 0 was considered. However, in this case a pure
Mott insulator state can only be achieved for a commensurate filling with an integer number
of atoms per lattice site. If this condition is not fulfilled, the non-commensurate fraction of
the atoms will basically form a superfluid phase on top of the commensurate filling of the
Mott insulator state.
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Figure 4.5: Schematic contour plot (a) and 3D plot (b) of the average atom number n̄ per
lattice site for a given chemical potential µ and ratio of J/U . (a) When the ratio of J/U
is changed for a fixed n̄ the system will follow the iso-n̄ line denoted by the solid arrow.
Therefore a superfluid phase will always persist for a non-commensurate filling. If, on the
other hand, the chemical potential µ is fixed instead of n̄, the system can cross the phase
transition to a Mott insulator phase (dashed arrow). This is the case for an inhomogeneous
system, where an approximately constant local chemical can be defined. The atoms on the
other hand can redistribute over the lattice and thereby change the local density.

In Figure 4.5 the average atom number per lattice site is plotted schematically versus the
chemical potential µ and the ratio of J/U , both as a contour plot and a 3D plot. Note that
this graph is schematical and does not show a real calculation of the Bose Hubbard model.
If the ratio of J/U is changed for a fixed mean atom number, the system will follow the
isolines of fig 4.5a (solid arrow) and the chemical potential will change accordingly. This
again shows that for a fixed and non commensurate density a pure Mott insulator state will
never be reached in a homogenous system.

The situation is fundamentally different for a inhomogeneous system with a fixed total
atom number and an external confinement like it is realized in the experiment. In this case
the density of atoms in the lattice is not fixed since the atoms can redistribute over the lattice
and change the local filling factor.

The Bose Hubbard Hamiltonian has a local character since only neighboring lattice sites
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4 Quantum phase transition from a superfluid to a Mott insulator

are coupled. Therefore it is possible to define an effective local chemical potential

µi = µ− εi (4.9)

for the ith lattice site. If the change in the atom number between neighboring lattice sites is
small, the system will locally behave like a homogenous system. However, now the (local)
chemical potential in a certain area of the lattice is fixed instead of the density. Therefore
when the ratio of J/U is changed the system can locally cross the boundary between the
superfluid and the Mott insulator state (dashed arrow in 4.5a) instead of following the isoline
of density (solid arrow), even for a situation where the local density was not commensurate
in the beginning.

For such an inhomogeneous system the qualitative profile can be readily extracted from
the phase diagram. In the trap center the energy offset εi is zero and the local chemical po-
tential µi is equal to the total chemical potential µ. Going to the border of the atom cloud the
local chemical potential will continuously decrease. This radial gradient in the local chem-
ical potential leads to a shell structure with shells of Mott insulator regions and superfluid
regions in between (see Fig. 4.6).
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Figure 4.6: The profile of the many body ground state in an inhomogeneous lattice with
an external confinement can qualitatively be extracted from a phase diagram (a). The arrow
denotes the profile from the trap center where µ is maximal to the border of the atom cloud
where µ=0. She shell structure of superfluid and Mott insulating shells in (b) can be readily
extracted from the phase diagram (a).

Based on a Gutzwiller calculation a more quantitative study of the inhomogeneous system
can be carried out. Jaksch et al. have calculated the density profile and the number fluc-
tuations for a one and two-dimensional inhomogeneous system [5]. The two-dimensional
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4.1 Bose-Hubbard Model of interacting bosons in a lattice

calculation was done with a mean field approach whereas for the one-dimensional config-
uration the Bose Hubbard Hamiltonian was directly diagonalized. Figure 4.7 shows the
density and the superfluid density for the two-dimensional case. The resulting shell structure
of Mott insulating and superfluid regions can be easily identified.
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Figure 4.7: Density ρ(x, y) (a) and superfluid density |φ(x, y)|2 (b) of a two-dimensional
lattice with an external confinement and a ratio of U/J = 35 slightly across the phase tran-
sition [5]. A shell structure starts to form: Mott insulator shells with n= 1 and n = 2 are
visible, characterized by a constant density and a vanishing superfluid density. In between
those shells and at the border superfluid shells can be identified. This figure is published with
the kind permission of D. Jaksch.

Niemeyer and Monien have performed a similar mean field calculation on a larger 2D
lattice [111]. The results for different ratios of U/J are shown in figure 4.8. The “wedding
cake” structure can be nicely identified. For increasing U/J the intermediate superfluid
shells get more and more suppressed leading to sharper steps in the density. This is in good
agreement with the qualitative picture obtained by studying the phase diagram.

Kashurnikov et al. have studied a system on a smaller lattice with a Quantum Monte
Carlo continuous time worm algorithm instead of a mean field approach [94]. Their calcula-
tion show a similar behavior.

It is interesting to note that in a inhomogeneous system even though there are Mott insulat-
ing regions, the whole system should be able to adiabatically follow a change in the external
confinement if the variation is done slow enough. This is because atoms can move superfluid
on top of the commensurate Mott insulator regions and therefore move from one superfluid
shell to another in order to maintain a constant chemical potential. A Mott insulating region
should also be able to melt or grow if the chemical potential is changed on its border by
changing the external confinement. Combining these two processes it should be possible for
the Mott insulating regions to move through the lattice if the change is done very slowly.
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Figure 4.8: Density (upper row) and a profile of the Density and the superfluid order param-
eter φ (lower row) for a 2D lattice and different ratios of U/J , calculated by M. Niemeyer and
H. Monien [111] and published with kind permission. The appearance of a “wedding cake”
like shell structure and a suppression of the superfluid component can be nicely observed.

4.1.7 Excitation spectrum

An essential feature of a quantum phase transition is the change of the excitation spectrum
when the critical point is crossed. For the superfluid phase the excitation spectrum is gapless.
Arbitrarily small excitations, corresponding to finite phase differences between adjacent lat-
tice sites, can be excited. When, on the other hand, the critical point is crossed and the Mott
insulator regime is entered, a gap in the excitation spectrum opens up. This gap is responsible
for the insulating properties.

Excitations in the Mott insulator regime correspond to charge excitations changing the
atom number on a lattice site. Adding an extra atom to the ith lattice site results in a particle
excitation

|ΨMI(n); i〉part =
1√
n+ 1

â†i |ΨMI(n)〉, (4.10)

whereas the reduction of the atom number by one produces a hole excitation

|ΨMI(n); i〉hole =
1√
n
âi |ΨMI(n)〉. (4.11)

The Energy of these particle and hole excitations for a fixed µ and (J/U) can be extracted
from the phase diagram 4.4. The sum of the energy for a particle and a hole excitation is
equal to the distance in µ direction with (J/U) fixed, from the upper or lower phase boundary
respectively. For U � J the energy of those excitations becomes
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E
(n)
part =

1
2
U (n+ 1)n − 1

2
U n(n− 1) − µ = Un− µ (4.12)

E
(n)
hole =

1
2
U (n− 1)(n − 2) − 1

2
U n(n− 1) − µ = U(n − 1) − µ (4.13)

If the total number of particles is conserved, the relevant excitation processes are the creation
of particle-hole pairs. These pairs are the smallest possible excitations in the Mott insulator.
They carry the energy ∆E

∆E = E
(n)
part − E

(n)
hole = U (4.14)

which is equal to the onsite interaction U for U � J . Therefore the gap is as large as this
energy. Close to the critical point the gap opens up with the critical exponent zν (see equa-
tion 4.6).

In the Mott insulator state at T = 0 the movement of the atoms is blocked due to the gap in
the excitation spectrum. For finite temperature, however, thermal particle or hole excitations
can be created. For small nonzero temperature at constant µ, the thermally activated mobility
or conductivity of the Mott state is proportional to exp(−Ẽg/kBT ), where Ẽg is the smaller
of the particle and hole excitation energies [4]. At fixed integer density Ẽg is equal to half of
the gap energy ∆E/2.
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4 Quantum phase transition from a superfluid to a Mott insulator

4.2 Experimental observation of the quantum phase transition

Starting from a superfluid state we were able to reversibly change to a Mott insulator state
by slowly increasing the lattice potential depth. In this section the creation and detection of
the Mott insulator state is described.

4.2.1 BEC in a 3D lattice - a nearly ideal realization of the Bose-Hubbard
Hamiltonian

The Bose-Hubbard Hamiltonian, described in chapter 4.1, is an important model in solid
state physics. However, well accessible experimental systems which are governed by this
Hamiltonian have been rare up to now. Systems which can be approximated by the Bose
Hubbard model include granular superconductors [112, 113] and one and two-dimensional
Josephson junction arrays [114, 115, 116, 117, 118].

Ultracold atoms, on the other hand, which are stored in a three-dimensional optical lattice
like it is described in chapter 3, are a nearly ideal realization of the Bose-Hubbard model.
Several properties of such a system are very favorable for studying this intriguing model:

• Due to the short range of the interaction between the atoms compared to the lattice
spacing, the interaction energy is well described by a purely onsite interaction. The
residual offsite interaction between atoms on neighboring lattice sites due to a finite
overlap of their localized Wannier wave functions is about two orders of magnitude
smaller then the onsite interaction (see figure 4.10) [89]. Therefore the Bose Hubbard
Hamiltonian with purely onsite interaction is an excellent approximation.

• Neglecting higher order tunnelling processes to the second and third neighbor in the
Bose Hubbard Hamiltonian is also a very good approximation. These processes are
suppressed by about two orders of magnitude for lattice potential depths of V0 � 5Er

(see figure 4.10) [89].

• The restriction to the lowest band is well justified since higher energy bands are hardly
populated. In the measurement of the band population in section 3.3.6 no occupation
in higher energy bands was detected. These bands are well decoupled for a 3D lat-
tice since the vibrational level spacing of the order of 30 kHz is about one order of
magnitude larger than the energies relevant for the dynamics.

• The temperature of a Bose-Einstein condensate in an optical lattice is extremely low,
leading to a long range phase coherence demonstrated in the time of flight images.
In the absence of the lattice potential the temperature range is of the order of several
hundred nano Kelvin. When the lattice potential is slowly ramped up the temperature
is further decreased by adiabatic cooling. The system is well decoupled from the
environment since the optical lattice potential can be precisely controlled and forms
a conservative potential. The spontaneous scattering rate of photons from the lattice
laser light is of the order of several seconds since the lattice is far detuned. Due to a red
detuning the rate for light induced inelastic collisions is low when no photo association
line is hit [119].
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4.2 Experimental observation of the quantum phase transition

• A unique feature of the system is the possibility to dynamically change various pa-
rameters like the ratio of U/J over a wide range. This even provides the possibility
to study the dynamics of the quantum phase transition. Other parameters like an ex-
ternal potential or in future experiments the scattering length can also be dynamically
changed.

• Different parameters in the system can be probed. The multiple matter wave inter-
ference pattern in a time of flight image gives a direct measure of long range phase
coherence in the system. In chapter 5.3.1 the number squeezing in the superfluid
regime is measured.

These points show that ultracold atoms in a three-dimensional optical lattice are an intriguing
tool for studying the Bose Hubbard model and its dynamics.

4.2.2 Experimental parameters

The experimental setup for studying the quantum phase transition from a superfluid to a Mott
insulator is identical to the setup described in chapter 3. The experiments in that chapter cor-
respond to the superfluid regime described above. By changing the potential depth of the
optical lattice potential, the ratio of U/J can be changed in a continuous manner over sev-
eral orders of magnitude. Thereby the system can be brought into the Mott insulator regime,
where the interactions between the atoms dominate their behavior.

The experiments are done with 87Rb atoms in the |F =2,mF =2〉 state. Initially a nearly
pure condensate of about 2 · 105 atoms is formed in a cigar shape Ioffe type trap with radial
trapping frequencies of 240 Hz and axial trapping frequencies of 24 Hz. The confinement is
then reduced in 500 ms by ramping up an offset field of 150 Gauss. This results in a spherical
confinement of the atoms with trapping frequencies of 24 Hz in each direction. The Thomas
Fermi radius of the condensate in the final magnetic trap is 26µm.

After the condensate is prepared in the spherical magnetic trap, a three-dimensional op-
tical simple cubic lattice is superimposed as described in chapter 3. The lattice depth is
exponentially ramped up in 80 ms with a time scale of 20 ms. The laser light forming the
lattice is red detuned at a wavelength of 852 nm. The beam waist of the standing waves of
125µm creates an additional external confinement. It is chosen in a way that the Thomas
Fermi radius remains approximately constant when the lattice depth is changed. Therefore
the atoms have to redistribute over the lattice only slightly in order to maintain a constant
chemical potential. Finally 150.000 lattice sites are occupied, which corresponds to an oc-
cupation of about 65 lattice sites in a single direction. The mean atom number in the trap
center is about 2.5 atoms per site.

4.2.3 Entering the Mott insulator regime

The Mott insulator regime is entered when the lattice potential is smoothly ramped up to a
large potential depth. As a first experiment we measured the long range phase coherence for
different potential depths.
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Figure 4.9: Onsite interaction U (a), tunnelling matrix element J (b) and ratio U/J (c)
plotted versus the depth of the lattice potential Vlat. The ratio U/J can be varied over several
orders of magnitude by changing the potential depth. The values are determined through a
band structure calculation and by calculating the Wannier functions (chapter 3.1.4).
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4.2 Experimental observation of the quantum phase transition
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Figure 4.10: (a) Comparison of the onsite interaction (solid curve) with the offsite inter-
action (dash dotted curve). The offsite interaction is suppressed by about two orders of
magnitude. The dashed curve labelled H.O. shows the onsite interaction when the Wan-
nier functions are approximated by a ground state wave function of a harmonic oscillator.
(b) Comparison of nearest neighbor hopping to 2nd (dashed curve) and 3rd (dash dotted
curve) neighbor hopping. The calculations are performed for a three-dimensional lattice by
D. Jaksch [89] and published with kind permission.

The long range phase coherence of the condensate in the optical lattice can be directly
tested by observing the multiple matter wave interference pattern. It is formed after ballistic
expansion when all trapping potentials are switched off (section 3.3.2). As we increase the
lattice potential depth, the interference pattern is markedly changed. Figure 4.11 shows such
time of flight images for different potential depths. For lattice depths up to about 10Er nearly
perfect phase coherence can be observed, characterized by narrow interference maxima. As
the lattice potential is raised, the higher order interference maxima initially increase because
of a tighter localization of the atomic wave functions at a single lattice site. At a potential
depth of around 13Er the interference peaks no longer increase in strength. Instead an
incoherent background comes up and gains more and more strength as the potential depth
is further increased. At a lattice depth of about 22Er no interference peaks are visible any
more. It is interesting to note that the width of the interference peaks does not significantly
broaden when the incoherent background gains more and more strength, indicating that the
residual coherence is still predominantly long range in nature. Besides that a cross like
structure is slightly visible before all structure vanishes (see fig. 4.11). We interpret this as a
residual short range phase coherence between adjacent lattice sites.

This behavior can be explained for an inhomogeneous system if one assumes the formation
of a shell structure of superfluid and Mott insulating regions after the quantum critical point is
crossed. For a Mott insulator one would expect no interference pattern because of a vanishing
expectation value of the field operator 〈âi〉 = 0. This explains the loss of phase coherence
deep in the Mott regime. The successive appearance of the non interfering background can
be attributed to two effects. First, the superfluid shells continuously decrease for increasing
ratios of U/J and the Mott insulating fraction grows. Second, number squeezing can lead to
a reduction of the visibility of the interference pattern even slightly before the critical point is
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4 Quantum phase transition from a superfluid to a Mott insulator
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Figure 4.11: Absorption images of multiple matter wave interference pattern for different
potential depths, after a time of flight period of 15 ms. In the superfluid regime for potential
depths up to about 12Er narrow interference maxima are visible, demonstrating long range
phase coherence across the lattice. For a potential depth of 22Er deep in the Mott insulator
regime the interference pattern has totaly vanished.
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4.2 Experimental observation of the quantum phase transition

crossed and in the superfluid shells (see sec. 5.3.1). Recent numerical calculations show, that
in the Mott insulator state finite phase correlations between neighboring lattice sites persist
for ratios of U/J , where long range phase correlations have already vanished [94, 110]. This
is consistent with the observation of cross like structures before all interference structures
vanish.

4.2.4 Restoring phase coherence

In order to test the reversibility of the quantum phase transition we measured how fast the
long range phase coherence can be restored when the system is brought back into the super-
fluid regime. The measurement demonstrates that the phase coherence is restored amazingly
fast when the optical lattice potential is lowered again to a value where the ground state of
the many body system is superfluid.

For this experiment we first prepare a sample in the Mott insulator state by exponentially
ramping up the lattice potential to a lattice depth of 22Er. The ramp time is 80 ms with
a time constant of 20 ms (see fig. 4.13). After a hold time of 20 ms the lattice potential is
reduced again to a potential depth of 9Er, where the ground state of the many body system
is superfluid. This is done with a linear ramp for different ramp down times t. Immediately
after the potential depth is reduced all trapping potentials are switched off and Absorption
images are taken after free expansion of the condensate (fig. 4.13 b-d). From these images
the width of the central momentum peak is fitted as a measure for long range phase coher-
ence. In Figure 4.13 a the filled circles show the width of the central momentum peak starting
from a Mott insulator state for different ramp down times t. After only 4 ms of ramp down
time, the interference pattern is fully visible again and for a ramp down time of 14 ms the
interference peaks have narrowed to their steady-state value, proving that phase coherence
has been restored over the entire lattice.

An amazing result is that this time necessary for the transition from the Mott insulator
state to a superfluid state is on the order of the tunnelling time τtunnel = h̄/J between two
neighboring lattice sites, which is about 2 ms for a 9Er deep lattice. At first sight it seems
to be paradox that an atom, which is localized to a lattice site in the Mott insulator state, gets
delocalized over the entire lattice in the superfluid state in a time which is not much larger
than the tunnelling time to the next lattice site. However, the atoms are indistinguishable and
therefore arguing that a specific atom is first localized and then delocalized doesn’t make too
much sense. Instead, in second quantization, it seems to be enough that the number statistics
gets readjusted to a superfluid state, and this can in principle be the case after only one or
two tunnelling times. Anyway, the outcome of the experiment suggests that the time which
is necessary for the transition from a Mott insulator state to a superfluid state is short and
the dynamics is fast. On the theoretical side dynamical calculations of the Bose Hubbard
Hamiltonian across the quantum critical point are difficult.

For comparison we carried out the same experiment starting with a dephased sample, for
which the interference pattern also vanishes, instead of a Mott insulator state. The state with
random phases on each lattice site, which corresponds to a statistical mixture of all Bloch
states of the lowest band, was created by applying a magnetic field gradient over a time of
10 ms during the ramp-up period. Nonlinear effects then lead to a dephasing. By adiabati-
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4 Quantum phase transition from a superfluid to a Mott insulator

Figure 4.12: Experimental sequence for measuring the restoration of coherence when the
system is brought from a Mott insulator state back to a superfluid state. First, the lattice
is slowly ramped up to a potential depth of 22Erin 80 ms. After a hold time of 20 ms the
potential depth is decreased in a time t to 9Erwith a linear ramp.

(a)

(b) (c) (d)

Figure 4.13: Restoring coherence after ramping the lattice potential back into the super-
fluid regime. The width of the central interference peak is plotted for different ramp down
times t. In case of a Mott insulator state (filled circles) coherence is rapidly restored al-
ready after about 4 ms. The solid line is a double exponential fit with τ1 = 0.94(7) ms and
τ2 = 10(5) ms. For a phase incoherent state (open circles), using the same experimental
sequence, no interference pattern reappears again, even for ramping down times of up to
400 ms. Below, absorption images of the restored interference pattern coming from a Mott
insulator phase after ramp down times t of 0.1 ms (b), 4 ms (c) and 14 ms (d) are shown.
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4.2 Experimental observation of the quantum phase transition

cally ramping down the lattice potential we were able to measure the band population (see
section 3.3.6) and ensured that the first energy band was homogenously populated. Oth-
erwise the same experimental sequence was used. The open circles in figure 4.13 a show
the result of the measurement. No phase coherence is restored after 14 ms. Even for evo-
lution times t of up to 400 ms we didn’t observe a reappearance of the interference pattern.
This measurement demonstrates that the observed loss of coherence with increasing potential
depth is not simply due to a dephasing of the condensate wave function.

4.2.5 Probing the gap in the excitation spectrum

In the Mott insulator state we found the system to be amazingly robust against perturbations.
Even when potential gradients are applied or the system is shaken by modulating the external
potential the phase coherence can be well reestablished when the lattice depth is decreased
to a value, where the system is superfluid. This illustrates that only a low number of excita-
tions is created in the Mott insulator regime. The reason for this robustness is the gap in the
excitation spectrum that opens up after the critical point is crossed and which gives rise to
the insulating behavior (chapter 4.1.7).

zz

E

(a) (b)

Figure 4.14: The Mott insulator state is characterized by a gap in the excitation spectrum. (a)
The smallest excitation for a Mott insulator state with n = 1 atom per lattice site consists of
removing an atom from a lattice site and adding it to a neighboring lattice sites. This process
costs the onsite interaction energy U . (b) If a potential gradient is applied, the movement
of the atoms is blocked until the energy difference between neighboring lattice sites equals
the onsite interaction U . In this case, however, the atoms are allowed to tunnel again and
particle-hole excitations are created.

In order to illustrate the insulator property in a simplified picture, lets assume a Mott insu-
lator state in the regime U � J with an occupancy of one atom per lattice site (fig. 4.14 a).
If an atom hops to a neighboring lattice site, the site will be occupied by two atoms. These
atoms repel each other and therefore the energy is raised by the onsite interaction energy
U above the state with only one atom per lattice site. For this process, which corresponds
to a particle hole excitation (eq. 4.14), a finite energy U is required. It is only available in
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4 Quantum phase transition from a superfluid to a Mott insulator

virtual processes. Therefore in this Mott insulator state movement of atoms over the lattice
is blocked and each atom is pinned to a lattice site due to the interaction. This reasoning is
also valid for a Mott insulator state with a higher number of atoms per lattice site.

If a potential gradient is applied, the lattice gets tilted and the energy levels of neighboring
lattice sites are shifted with respect to each other. For small potential gradients, the atoms are
still pinned to their lattice sites and the system does not react to the gradient. It is interesting
to compare this insulating behavior with the superfluid case: In the superfluid regime the
atoms get accelerated and are able to move through the lattice even for an arbitrarily small
gradient.

However, if the potential gradient is increased and the energy difference between neigh-
boring lattice sites approaches the onsite interaction energy U , the energy level for two atoms
in the lower well is shifted to the same energy as the level of one atom in the upper well (see
fig. 4.14 b). For this situation the atom can tunnel to the next lattice site again and thereby
create a particle hole excitation. The energy U for this excitation is provided by the potential
gradient.

In order to probe the excitation spectrum for various potential depths we applied potential
gradients to the sample and measured the response of the system. Figure 4.15 a shows the
experimental sequence we used.

First the atoms are prepared in the ground state of the lattice by exponentially ramping up
the lattice potential to a certain depth Vlat = Vmax in 80 ms, with a time constant of 20 ms.
After that the potential depth Vlat is kept constant for 20 ms. Within this period, a potential
gradient with a energy difference ∆E between neighboring lattice sites is applied for a time
τperturb. It is created by shifting the harmonic magnetic trapping potential (see section 3.3.5)
and points into the vertical direction. Finally the lattice potential is lowered again within
3 ms to a potential depth of Vlat =9Er for which the system is superfluid again.

If excitations have been created during the application of the potential gradient at the po-
tential depth Vlat =Vmax we will not be able to return to a perfectly coherent superfluid state
by subsequently lowering the potential to a depth of Vlat =9Er . Instead, excitations created
in the Mott insulator state will lead to excitations in the lowest energy band of the superfluid
state after the phase coherence is restored. These excitations are fluctuations of the macro-
scopic phase between lattice sites. The strength of these statistical phase fluctuations can
be measured as the width of the interference peaks in the multiple matter wave interference
pattern, which can be achieved by a time of flight imaging.

Figure 4.15 b shows a typical time of flight image after the sequence described above is
applied. In addition a potential gradient is applied for 300µs just before the lattice potential
is switched off. Thereby the Bloch state q = 0 is shifted to the boundary of the Brillouin
zone q = h̄k with a phase difference of π between neighboring lattice sites in the vertical
direction. This procedure is used in order to create two central interference maxima which
are less affected by the mean field repulsion during the initial stage of the expansion period.
From these time of flight images the widths of the two central peaks are determined by a 2D
fit.
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4.2 Experimental observation of the quantum phase transition

(a) (b)

Figure 4.15: Experimental sequence for probing the excitation probability versus an applied
vertical potential gradient. (a) First, the optical lattice potential is slowly increased to a
potential depth V0 = Vmax. The atoms are held in the potential for 20 ms. Within this time,
a potential gradient is applied for a time τperturb. Then, the lattice potential is lowered again
within 3 ms to a value of V0 = 9Er, where the ground state is superfluid. We apply a second
potential gradient for 300µs with a fixed strength in order to populate the Bloch state with
quasi momentum q = h̄k in the vertical direction. We measure the excitations created by
the potential gradient by measuring the width of the interference peaks after the coherence
is restored (b).

By this procedure a perturbation probability can be measured as the width of the inter-
ference peaks after restoring the macroscopic phase coherence. In Figure 4.16 the width of
the interference peaks is plotted versus the applied potential gradient for different potential
depths Vmax. The perturbation times τperturb are prolonged for deeper lattice potentials in
order to account for the increasing tunnelling times. For a completely superfluid sample at
a lattice depth of 10Er the system is easily perturbed already for small potential gradients.
For larger gradients the sample is completely dephased and the measured width of the inter-
ference peaks saturates. When the potential depth is increased to 13Er, which is close to the
expected transition point, two broad resonances start to appear in the graph of the excitation
probability. And for a 20Er deep lattice potential, deep in the Mott insulator regime, the sit-
uation has dramatically changed. Two narrow resonances are visible on top of an otherwise
flat perturbation probability. The first large resonance occurs at an potential gradient with
∆E = U . It can be directly attributed to the creation of particle hole pairs. This behavior
directly demonstrates that an excitation gap has opened up. For small potential gradients,
the system is not perturbed at all. Only when the potential gradient approaches the onsite
interaction energy U the system is resonantly perturbed.

The second, weaker resonance occurs at exactly twice the energy difference of the first
stronger resonance. Different processes could be responsible for a resonance at ∆E = 2U .
For a Mott insulator phase with more than one atoms per lattice site, two atoms could tunnel
simultaneously and thereby create a double charged particle hole excitation. Alternatively
two particle hole pairs could be created simultaneously as a second order process, with only
one in the direction of the applied potential gradient. A third possibility would be a tunnelling
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(a)

(c) (d)

(b)

Figure 4.16: Width of the interference peaks after restoring coherence as a measure for the
perturbation probability, plotted versus the energy difference between neighboring lattice
sites ∆E. The gradient is applied for a time τperturb. (a) Vmax = 10Er , τperturb = 2 ms; (b)
Vmax = 13Er , τperturb = 6 ms; (c) Vmax = 16Er , τperturb = 10 ms; (d) Vmax = 20Er ,
τperturb = 20 ms. The perturbation times have been prolonged for deeper lattice potentials
in order to compensate for increasing tunnelling times. The solid line is a fit to the data based
an two Gaussians on top of a linear background
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process occurring between lattice sites with n=1 atom next to lattice sites with n=2 atoms.
This process might occur close to the boarder between Mott insulating shells with n=1 and
n=2 atoms or as a second order process after particle hole pairs are already created.

For potential depths between 10Er and 20Er a gradual crossover can be observed. When
the lattice potential is increased, the linear background in the perturbation probability de-
creases. We attribute the linear background to the superfluid shells in between the Mott
insulator regions. It decreases as the superfluid shells shrink for larger lattice potentials. On
the other hand the resonances get more pronounced as the Mott insulating regions grow, and
deep in the Mott regime the resonances seem to be more narrow. However, the absolute
values for the strength of the linear background and the hight of the resonance peaks should
be taken with care due to the qualitative nature of the measured perturbation probability.

The position of the first resonance can be seen to shift with increasing lattice potential.
This happens because the onsite interaction U increases due to a tighter localization of the
wave function on a lattice site. Figure 4.17 shows the position of the first resonance versus
the lattice potential depth Vmax. A comparison with an ab initio calculation of U , based on a
Wannier functions from a band structure calculation (chapter 3.1.4), shows a good agreement
within the experimental uncertainties. This demonstrates that the resonance indeed occurs
for a potential gradient with ∆E=U .

Figure 4.17: Potential gradient for which the Mott insulator phase can be resonantly per-
turbed, plotted versus the lattice potential depth Vmax. The filled circles show experimental
data points, together with error bars denoting a statistical error. The shaded gray area de-
notes the possible uncertainties of the experimental values due to systematic uncertainties in
the calibration of the lattice potential depth and the applied gradient. The dashed line is the
theoretical prediction for the onsite interaction matrix element U .
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4 Quantum phase transition from a superfluid to a Mott insulator

4.2.6 Determination of the transition point

The theoretical prediction for the transition point from the superfluid phase to the Mott
insulator phase is U/J = z · 5.8 for single occupancy in a lattice with z next neighbors
[4, 103, 104, 105]. It is interesting to compare this prediction with the experimental signa-
tures described above.

For an inhomogeneous system like in the experiment the transition from a superfluid to a
Mott insulator is not expected to occur suddenly. Instead, after the transition point is crossed,
first a thin Mott insulating shell with n = 1 should form, which will grow when the lattice
is raised further (see section 4.1.6). After the transition point for n = 2 is crossed, a second
Mott insulating shell with n = 2 should form and successively grow. No observable is
expected to change abruptly.

This is consistent with the experimental observation. At a lattice depth of Vlat =12(1) −
13(1)Er the multiple matter wave interference pattern starts to vanish. At about the same
potential depth the resonances in the excitation spectrum start to appear, indicating the oc-
currence of a Mott insulator state. We therefore expect the experimental transition point to
lie above Vlat =10(1)Er, where no resonances are visible and below Vlat =13(1)Er. For a
potential depth of 13Er, we calculate a ratio of U/J ≈ 36. This is in good agreement with
the theoretical prediction.

Recently it was proposed to detect the transition point by observing sidelobes in the in-
terference pattern, which form as a result of the formation of a Mott insulating shell [94].
However, these sidelobes are very small for the present experimental system and therefore
difficult to detect.
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5 Collapse and revival of a macroscopic matter wave field

The most fascinating feature of a Bose Einstein condensate is that a macroscopic number of
bosonic atoms is described by a single giant matter wave. This macroscopic matter wave
field is, in many respects, analogous to a coherent light field emitted by an optical laser.
However, the matter wave field is quantized and the individual atoms represent a crucial
granularity. This quantization was not accessible to experiments up to now. However, it has
been realized that this quantization together with the interaction between particles can lead to
pronounced effects which go far beyond the usual mean field descriptions of a Bose-Einstein
condensate [120, 121, 122, 123, 124, 125, 126].

In this chapter I report on the direct observation of the collapse and revival of a macro-
scopic matter wave field of a Bose-Einstein condensate [127]. This dynamical behavior is a
direct consequence of the quantization of the matter wave field and the interaction between
the atoms. Furthermore, this measurement shows that cold collisions between individual ul-
tracold atoms are fully coherent, which is important for novel quantum computation schemes
based on cold collisions [7, 128, 129, 130]. In the last part of this chapter I demonstrate how
the collapse and revival can be used as a tool for measuring the variance in the number
statistics of a matter wave field.

5.1 Theory of the collapse and revival

Lets assume a Bose-Einstein condensate, or alternatively a superfluid or a superconductor,
that is rapidly split into two parts, such that initially a well defined relative macroscopic
phase is established. The macroscopic phase implies that each part can be described by a
state which is close to a coherent state with Poissonian atom number statistics. However,
if interactions between the particles are taken into account, the coherent state is no longer
an eigenstate of both parts. The initially coherent state evolves in time, and an interesting
question arises: how does the macroscopic phase evolve and what happens to the macro-
scopic matter wave field? The intriguing time evolution which occurs for such a coherent
state subjected to interaction between the particles is discussed in the following sections.

5.1.1 Cold collisions

Ultracold bosonic atoms interact with each other through binary s-wave collisions. Inelastic
three body collisions can be neglected for our experimental parameters as well as higher
partial wave scattering processes. The interactions between the atoms can be quantified by
the s-wave scattering length a. For 87Rb the scattering length is positive and the atoms will
therefore repel each other.

When two such atoms are placed into the ground state of a confining potential, the atoms
collide with each other (figure 5.1). The cold collisions lead to an increase of the total energy

81



5 Collapse and revival of a macroscopic matter wave field

by the interaction energy U . This energy is given by U = 4πh̄2a/m
∫

d3x |w(x)|4, where
w(x) is the ground state wave function and m the mass of the particles. This relation is valid
when the level spacing ω is much larger than the total interaction energy.

(a) (b)

Figure 5.1: (a) two interacting atoms in the ground state of a confining potential. (b) Cold
collisions are coherent and cause no dissipation. They just increase the total energy by the
interaction energy U .

For a larger number of atoms, where each of the n atoms interact with the n − 1 other
atoms, the interaction energy is given by Eint = U n(n− 1)/2. Here U does not depend on
the atom number for Eint � h̄ω. The Hamiltonian governing the system after subtracting
the ground state energy reads

Ĥ =
1
2
U n̂(n̂− 1), (5.1)

where n̂ counts the number of atoms in the confining potential. This Hamiltonian is equal
to the Bose-Hubbard Hamiltonian 4.3 when the lattice sites are fully separated (J = 0) and
only a single site is considered.

It is interesting to note that the cold collisions do not cause dissipation. Instead they are
coherent, since the initial and final state of the scattering process is well defined. The only
effect is the increase of the total energy by the interaction energy. However, the interaction
energy corresponds to a strong nonlinearity which can have pronounced effects on the many
particle physics.

5.1.2 Coherent states

Lets assume that a coherent or Glauber state (see e.g. [131]) in second quantization is pre-
pared in the ground state of a confining potential. A sample which is described by such a
state has a well defined macroscopic phase. In general such a well defined phase can be
created artificially using a quantum measurement process [124, 132, 133] and comparing it
to a phase standard [134].

A coherent state |α〉 is the eigenstate of the annihilation operator â

â|α〉 = α|α〉. (5.2)
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5.1 Theory of the collapse and revival

The field operators â and â† are, respectively, the annihilation and creation operators for
atoms occupying the condensate mode in the ground state of the confining potential, and the
atom number operator is equal to n̂= â†â

The eigenvalue α corresponding to the coherent state |α〉 is a complex vector and describes
a classical field ψ = α. The argument denotes the macroscopic phase ϕ of the field, and the
length corresponds to the field amplitude, i.e. the square root of the mean atom number
n̄=〈n̂〉=〈â†â〉:

α =
√
n̄ · eiϕ. (5.3)

In the basis of Fock states |n〉 a coherent state is a superposition of states with different atom
numbers:

|α〉 = e−|α|2/2
∑
n

αn

√
n!
|n〉 (5.4)

Therefore the atom number remains uncertain and follows a Poissonian distribution with a
variance given by Var(n) = 〈n̂〉.

5.1.3 Dynamical evolution of a coherent state with interactions

The dynamics of the state in the confining potential is solely determined by the interaction
between the atoms and is therefore governed by the Hamiltonian in equation 5.1. The eigen-
states of this Hamiltonian are number states Ĥ|n〉=En|n〉, with eigenenergies

En =
1
2
U n(n− 1). (5.5)

The eigenenergies are quadratic in the atom number and therefore introduce a nonlinearity.
Each number state acquires a collisional phase shift and evolves in time like

|n〉(t) = |n〉 eiEn t/h̄ = |n〉 ei U n(n−1) t/2h̄. (5.6)

A coherent state, on the other hand, is no eigenstate of the Hamiltonian in equation 5.1.
It is a superposition of several number states, and each of them evolves differently in time
according to its eigenenergy.

If the eigenenergy depends only linearly on the atom number (En ∝ n), a coherent state
|α〉 remains a coherent state for all times though it is no eigenstate of the Hamiltonian. It
evolves to a different coherent state |α(t)〉 with a time dependent macroscopic phase α(t).
Therefore, only the macroscopic phase is changed.

The situation, however, is fundamentally different if the eigenenergy depends on the atom
number in a nonlinear way like in equation 5.6. With this quadratic dependence, the time
evolution of the initially coherent state is given by

|Φ(t)〉 = e−|α|2/2
∑
n

αn

√
n!

· ei U n(n−1) t/2h̄ |n〉. (5.7)
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5 Collapse and revival of a macroscopic matter wave field

Each number state acquires a nonlinear collisional phase shift, and the number states dephase
with respect to each other. Therefore the coherent state does not remain a coherent state for
all times.

Collapse

When the many particle state evolves away from a coherent state, the property of having a
macroscopic phase vanishes. This property can be quantified by the expectation value of the
field operator 〈â〉. It denotes to which extent the many particle state can be described by
a classical field ψ, which is equal to the expectation value of the field operator. It can be
calculated from equation 5.7 and reads [120, 123]

ψ(t) = 〈Φ(t)|â|Φ(t)〉 =
√
n̄
∑
n

n̄ne−n̄

n!
· ei(En−En+1)t/h̄

=
√
n̄ · exp

(
n̄(e−iUt/h̄ − 1)

)
(5.8)

For short times this can be approximated as

ψ(t) 
 √
n̄ e−in̄Ut/h̄ · e−n̄U2t2/2h̄2

. (5.9)

Therefore the macroscopic matter wave field ψ collapses with a characteristic collapse time
tc = h̄/

√
n̄U .

Revival

At the revival time trev = h/U each number state has acquired a collisional phase shift
which is an integer multiple of 2π: The state with one atom has not evolved, the state with
two atoms has obtained a shift by 2π, the state with three atoms 3·2π and so forth. Therefore
the phase of each number state has evolved to the initial phase modulo 2π and the many body
state is identical to the initial coherent state |Φ(t= h̄/U)〉 = |Φ(t= 0)〉. The macroscopic
phase is then reestablished and the macroscopic matter wave field ψ has revived at this time.

The dynamical evolution is periodic with a period equal to the revival time trev. Two
subsequent collapses and revivals are shown in figure 5.2, where the expectation value of the
field operator, which is evaluated through equation 5.8, is plotted versus time for different
atom numbers.

5.1.4 Visualization of the time evolution

The periodic time evolution described above can be visualized by plotting the Q-function,
which is used in quantum optics [135, 136]. The Q-function

Q(β, t) =
|〈β|Φ(t)〉|2

π
(5.10)
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Figure 5.2: Periodic collapse and revival of the macroscopic matter wave field. The ex-
pectation value of the field operator is plotted as |〈â〉|2/n̄ versus time for n̄= 1 and n̄= 2
respectively. First, the matter wave field collapses on a characteristic time scale given by
tc = h̄/

√
n̄U . However, at integer multiples of the revival time trev = h/U , the initial

quantum state is restored and the matter wave field revives.

denotes the overlap between an arbitrary coherent state |β〉 and the dynamically evolving
state |Φ(t)〉. It quantifies the probability to find the system in a state with a certain macro-
scopic phase ϕ = arg(β) and a certain average atom number n̄ = |β|2.

In Figure 5.3 the Q-Function is plotted for different evolution times t. For t = 0 the
many body state |φ〉 is equivalent to a coherent state |α〉. Therefore, the state has maximum
overlap with the state |β〉 = |α〉 (fig. 5.3a). However, the overlap with coherent states |β〉
which have similar phases and atom numbers does not vanish, since coherent states are only
quasi-orthogonal.

As time evolves, the macroscopic phase gets initially more and more uncertain (fig. 5.3b).
For a time h/2U , however, the state is an exact superposition of two coherent states |α1〉
and |α2〉, with α1,2 = ±iα, corresponding to the macroscopic phases of ±π/2 respectively.
This state is a Schrödinger cat state, since it is a superposition of two macroscopic quantum
states. In a measurement one would find either one or the other phase. Both phases are 180 o

out of phase and occur with the same probability. Therefore, the expectation value of 〈â〉
vanishes and the macroscopic matter wave field has collapsed. At a time h/U the original
coherent state is restored again and the matter wave field has revived.

5.2 Experimental realization

The quantum dynamics that has been described above can in principle be observed whenever
a Bose-Einstein condensate is prepared in a state with a well defined macroscopic phase.
Experimentally this can be achieved by splitting a condensate in two or more parts with a
well defined relative phase, or by other quantum measurement processes [124, 132, 133]. In
our experiment we split a condensate in many parts with a well defined relative phase by
using a three-dimensional optical lattice potential. Therefore we can assign a macroscopic
phase to each of those parts.
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Figure 5.3: Quantum dynamics of a coherent state owing to cold collisions. The contour
plots (a)-(g) show the overlap |〈β|Φ(t)〉|2 of an arbitrary coherent state |β〉 with the dynam-
ically evolving state |Φ(t)〉 for different times t. (a) t=0; (b) t=0.1h/U ; (c) t=0.4h/U ;
(d) t=0.5h/U ; (e) t=0.6h/U ; (f) t=0.9h/U ; (g) t=h/U ; The plotted overlap quantifies
the probability to measure a certain macroscopic phase ϕ = arg(β) and a certain average
atom number n̄ = |β|2. First, the macroscopic phase gets more and more uncertain (a-c).
At t = trev/2 (d) the state has evolved to a Schrödinger cat state of two coherent states,
which are 180 o out of phase. The macroscopic field has collapsed. At t= trev, however, the
coherent state is restored and the macroscopic field has fully revived
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5.2 Experimental realization

It should be pointed out that the collapse and revival of a macroscopic field has also been
theoretically predicted to occur for a coherent light field propagating in a nonlinear medium
[135, 137, 136]. However, it has never been observed experimentally because the available
nonlinearities have been much too small.

Usually a Bose Einstein condensate with a large atom number is trapped in a shallow po-
tential. For such a system various difficulties arise, which have prevented an observation
of such effects so far. The onsite interaction U for example is typically less than a Hertz.
Therefore it would take more than a second before a revival could be observed. It would be
hard to prevent a trivial dephasing due to technical fluctuations on this time scale. More-
over, in this regime the total interaction energy is much larger than the level spacing of the
confining potential. The macroscopic matter wave is therefore described by a Thomas Fermi
wave function instead of the ground state wave function w(x) of the confining potential. The
onsite interaction U then depends on the atom number n, and equation 5.8 is not valid any
more. Under certain circumstances, however, a revival should still be observable [123].

The system of a Bose Einstein condensate in a three-dimensional optical lattice is much
more favorable for studying dynamics of the many body quantum state. In order to create
a coherent state in the ground state of a confining potential, we split a Bose-Einstein con-
densate into more than 100.000 potential wells by rapidly raising the potential depth of the
optical lattice potential. In the deep lattice, the individual potential wells are isolated from
each other, and coherent states with an initially well defined macroscopic phase are pro-
jected into each potential well. Such a system with microscopic potential wells has several
advantages:

• The onsite interaction energy U is about four orders of magnitude larger (≈ 1.5 kHz)
than for a normal BEC in a magnetic trapping potential. Thereby the revival time h/U
is brought into an experimentally accessible range.

• The interaction energy is much smaller than the level spacing, therefore U is indepen-
dent on the atom number and equation 5.8 remains valid.

• The atom number inside each well n̄ ≈ 1 − 2 is small. Therefore the collapse time
is not much shorter than the revival time, which is experimentally favorable for the
detection of the revival.

After coherent states are prepared inside each of the isolated potential wells, the atom-atom
interaction affects the quantum dynamics discussed in the previous chapter. The time evolu-
tion of the matter wave field can be measured by probing the multiple matter wave interfer-
ence pattern.

5.2.1 Creating an array of coherent states

In the experiment we create coherent states of the matter wave field by loading a Bose-
Einstein condensate into a three-dimensional optical lattice potential. This system is de-
scribed by the Bose-Hubbard Hamiltonian (see chapter 4). For a shallow lattice potential,
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5 Collapse and revival of a macroscopic matter wave field

where the tunnel coupling between neighboring lattice sites J is much larger than the onsite
repulsive interaction energy U , the system is superfluid and all atoms can be described by
a macroscopic matter wave (chapter 4.1.2). Each atom is then delocalized over the entire
lattice and, for a homogenous system where N atoms are distributed over M lattice sites,
the many particle state can be written as the product state of identical single particle Bloch
states with zero quasi momentum

|Ψ〉U/J≈0 ∝
(

M∑
i=1

â†i

)N

|0〉. (5.11)

For a grand canonical ensemble this state can be written in second quantization as a product
over single site many body states |Φi〉 such that

|Ψ〉U/J≈0 ≈
M∏
i=1

|Φi〉 (5.12)

Here, a spontaneously broken gauge symmetry is assumed. For large N and M the single
site many body state |Φi〉 is almost identical to a coherent state |αi〉 with a well defined
macroscopic phase and Poissonian atom number distribution. Furthermore, all the matter
waves in different potential wells are phase coherent, with constant relative macroscopic
phases between lattice sites. For a finite ratio of U/J , the atom number distribution on each
site becomes sub Poissonian [3] owing to the repulsive interactions between the atoms, even
before entering the Mott insulator state. This situation of number squeezed coherent states
is discussed in detail in the subsequent chapter 5.3.

After creating coherent states |Φi〉= |αi〉 in each potential well, we increase the potential
depth rapidly in order to isolate the potential wells from each other. In the deep lattice, tun-
nelling between potential wells is strongly suppressed. Therefore, each well is described by
the single site Hamiltonian 5.1. The coherent states in the isolated potential wells indepen-
dently undergo the dynamics described in the previous chapter.

In the experiment we use the same setup and similar experimental parameters as in the
Mott insulator experiment. We start with a nearly pure condensate of about 1 · 105 87Rb
atoms in the |F = 2,mF = 2〉 state. The BEC is stored in a harmonic magnetic trapping
potential with isotropic trapping frequencies of ω=2π · 24 Hz. We transfer the magnetically
trapped atoms into the optical lattice potential by slowly increasing the intensity of the laser
beams forming the lattice within 80 ms. This is done in an exponential ramp with a time
constant of 20 ms. In this first step we ramp the lattice to a potential depth VA of up to
11 recoil energies Er, where the system is still completely superfluid and the ground state
can be described by states close to coherent states in each potential well. Due to the onsite
interaction, however, these states get more and more number squeezed as the potential depth
VA approaches the critical value for the Mott insulator phase transition (see section 5.3).

In a second step we rapidly increase the lattice potential depth to a value VB of up to
35Er, where the tunnelling between adjacent potential wells become negligible (Figure 5.4).
Thereby we project the superfluid ground state with coherent states at each lattice site into
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Figure 5.4: Potential depth of the optical lattice versus time. First, the potential is slowly
ramped to a potential depth Va, where the system is entirely superfluid. Then the potential
depth is rapidly increased to Vb, where the potential wells are isolated from each other. By
this procedure the superfluid state is projected into individual potential wells with coherent
states in each well. The succeeding time evolution inside each well is well described by
the Hamiltonian discussed in the previous chapter. Finally, after a variable hold time t,
all trapping potentials are switched off and a multiple matter wave interference pattern is
observed by time of flight absorption imaging.

isolated potential wells. The potential depth is increased from VA to VB in 50µs. This
timescale is chosen such that it is fast compared to the tunnelling time. Therefore the atom
number statistics is preserved during the ramp. The ramp time is also fast compared to the
collapse and revival time. On the other hand, the timescale is chosen slow enough to ensure
that all atoms remain in the vibrational ground state of each well. We can check this condition
by measuring the band population after ramping up the the lattice potential (chapter 3.3.6).

5.2.2 Time evolution of the multiple matter wave interference pattern

After preparing coherent states (which might be number squeezed) in isolated potential wells
and isolating the potential wells from each other, we want to study the time evolution due to
the interaction. Therefore we hold the atoms for different times t in the deep lattice. After
this hold time, all trapping potentials are suddenly turned off and we observe the multiple
matter wave interference pattern after a time of flight period of 16 ms. The interference
pattern reveals the long range phase coherence and only forms when the many particle state
can be described by a macroscopic matter wave field with a well defined macroscopic phase
on each lattice site.

A sequence of such time of flight images for different hold times t can be seen in figure
5.5. On the first image, a clear interference pattern with a good visibility is observed directly
after rapidly increasing the potential depth from VA = 8Er to a VB = 22Er , where the
ground state would be a Mott insulator state showing no interference pattern. The interfer-
ence pattern on this image demonstrate that we really project the states, which are described
by a coherent matter wave field, into the isolated potential wells with a constant macroscopic
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Figure 5.5: Dynamical evolution of the multiple matter wave interference pattern observed
after rapidly increasing the tunnelling barrier. After a hold time t, all trapping potentials
are shut off and absorption images are taken. The hold times are (a), 0µs; (b), 100µs;(c),
150µs;(d), 250µs;(e), 350µs;(f), 400µs;(g), 550µs; The collapse and revival of the inter-
ference pattern is caused by a collapse and revival of the macroscopic matter wave field in
each potential well.
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phase across the lattice. On the next images, the interference dims out and a non coherent
background gains more and more strength, until for a hold time of 250µs the interference
pattern has totaly collapsed. After longer hold times, the interference pattern reappears and
has nearly perfectly revived after a hold time of 550µs. The collapse and revival of the in-
terference pattern is directly related to the collapses and revivals of the individual coherent
matter wave fields in each potential well.

It is interesting to compare the outcome of a collapse and revival experiment in a double
well system to the outcome in our multiple well system. In a double well system, an inter-
ference pattern with a perfect visibility would be observed in each single realization of the
experiment for all times. However, when the matter wave fields have collapsed in both wells,
the interference patterns would change randomly for each realization. At the time, where the
Schrödinger cat state has formed, the pattern would alternate between two possible interfer-
ence pattern corresponding to identical and opposite phases on both lattice sites. Averaging
over many realizations would then yield the ensemble average value ψ=0 that indicates the
randomness of the interference pattern associated with the collapse of the matter wave fields.
For the multiple well set up used in our experiment, however, the interference pattern in a
single realization of the experiment can only be observed if the matter wave fields in each
potential well have constant relative phase to each other, which requires that ψ �= 0. The
matter wave field ψ is therefore directly connected to the visibility of the multiple matter
wave interference pattern in a single realization of the experiment.

The visibility of the interference pattern can be measured by comparing the number of
atoms in the interference peaks Ncoh to the total atom number Ntot. The numbers are ex-
tracted from the multiple matter wave interference pattern. First, a two-dimensional Gaus-
sian function is fitted to the incoherent background, excluding 130µm × 130µm squares
around the interference peaks. Then, the number of atoms in these squares is counted by a
pixel sum, from which the number of atoms in the incoherent Gaussian background in these
fields is subtracted to yield Ncoh.

In order to compare the visibility of the interference pattern Ncoh/Ntot with the matter
wave field in each potential well ψi(t) = 〈Φi(t)|â†i |Φi(t)〉, we sum the coherent fraction in
each well over all M lattice sites:

Ncoh

Ntot
=
∑M

i=1 |ψi(t)|2
Ntot

(5.13)

The dynamical evolution of the matter wave field ψi(t) depends on the mean atom number n̄,
the ratio of (U/J)A at the initial potential depth VA, which can cause a number squeezing,
and on the interaction strength UB at the final potential depth VB. For a inhomogeneous
system like in our experiment, n̄ varies over the sample, and equation 5.13 corresponds to
an average over the temporal evolution of the matter wave field for different mean atom
numbers n̄. By introducing the classical probability distribution W (n̄), which describes the
probability of finding a lattice site with n̄ atoms, the sum in eq. 5.13 can be converted to an
integral. The visibility is then given by
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5 Collapse and revival of a macroscopic matter wave field

Ncoh

Ntot
=
∫
W (n̄) |ψi(t, n̄, (U/J)A, UB)|2 dn̄

Ntot
(5.14)

In chapter 5.3, ψi(t, n̄, (U/J)A, UB) is calculated explicitly using a Gutzwiller ansatz.

0 1000 2000 3000
t (µs)

0.6

0.4

0.2

0.0

N
co

h/
N

to
t

Figure 5.6: Visibility Ncoh/Ntot of the multiple matter wave interference pattern versus
time. This collapse and revival of the interference pattern is directly related to the collapses
and revivals of the the individual coherent matter wave fields in each potential well.

Figure 5.6 shows the experimentally determined time evolution of the visibility Ncoh/Ntot

after rapidly increasing the potential depth from VA = 8Er to a VB = 22Er . Up to five
revivals are visible. The solid line is a fit of a model given by equation 5.8, where we assume
that the dynamics of the inhomogeneous system described by equation 5.14 is similar to a
homogenous system with a average atom number n̄. The fit includes an exponential damping
and a linear background.

The damping is mainly due to an inhomogeneous time evolution of the macroscopic phase
across the lattice. By rapidly jumping to the potential depth VB we abruptly change the exter-
nal confinement of the atoms given by the Gaussian beam shape of the lattice beams (chapter
3.1.5). To first order, this inhomogeneous change of the potential energy is compensated by
the change in the interaction matrix element U . However, we still obtain a parabolic profile
of the chemical potential over the cloud of atoms in the optical lattice, which leads to a broad-
ening of the interference peaks over time. This effect can be clearly identified in Figure 5.7,
where the interference peaks show a ring structure already for the second revival. When the
interference peaks become broader than the rectangular areas, in which the coherent atoms
are counted, we cannot determine Ncoh correctly anymore.

Besides this effect the slight variation of the potential depth over the lattice can lead to a
difference in U , which we estimate to be smaller then ∼ 3%. This leads to an asynchronous
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Figure 5.7: Multiple matter wave interference pattern after different evolution times. The
interference peaks in the second and third revival show a ring like structure. This structure
arises due to an inhomogeneous evolution of the macroscopic phase. After rapidly increasing
the potential depth we obtain a parabolic profile of the chemical potential across the lattice,
which leads to a broadening of the interference peaks in a ring shape. When the peaks
become broader than the rectangular area in which they are counted, the visibility cannot be
determined anymore. This is the main damping effect in the time evolution of the visibility
(figure 5.6)
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revival over the lattice, which also contributes to the damping of the visibility. The finite ini-
tial visibility of ∼ 60% can be attributed to atoms in higher order momentum peaks (∼ 10%
of the total atom number), s-wave scattering spheres (chapter 3.3.3), a quantum depletion of
the condensate for the initial potential depth from VA =8Er and a finite condensate fraction
due to the finite temperature of the system.

5.2.3 Precision measurement of the onsite interaction

Measuring the time evolution of the collapse and revival opens the intriguing possibility to
precisely measure the onsite interaction energy U as a frequency. The revival of the matter
wave field is expected to occur at times that are multiples of h/U , independent of the atom
number statistics in each well. Therefore, besides a slight variation of U over the lattice, the
interference pattern revives at the same time in each potential well.
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Figure 5.8: Revival time tr after jumping to different potential depths VB . The solid line is
an ab initio calculation of h/U . By measuring the revival time the onsite interaction U can
be measured as a frequency with high precision.

Figure 5.8 shows a plot of the revival time trev =h/U versus the final potential depth VB .
As U depends on the potential depth, we observe an increased revival time for deeper lattice
potentials. The solid line is an ab initio calculation of h/U with no adjustable parameters.
It is based on a band structure calculation. The error bars show the statistical uncertainties.
In addition to this the experimental data points have a systematic uncertainty of 15% in the
values for the potential depth.
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5.3 Number squeezing of a BEC in an optical lattice

Up to now, we assumed that the many-body state in each potential well can be described by
a coherent state in second quantization with a Poissonian atom number statistics. However,
at the initial potential depth Va, where a superfluid state is prepared before jumping into the
deep lattice, the finite onsite atom-atom interaction U causes an atom number squeezing of
the coherent states [3]. This number squeezing results in a sub Poissonian atom number
statistics.

The collapse and revival also happens for number squeezed coherent states. The revival
time trev is identical, however, the collapse time tc is changed since it depends on the vari-
ance of the atom number statistics σ2

n, such that

tc =
trev

2π σn
. (5.15)

Therefore we can directly measure the variance of the number statistics at different potential
depths Va by measuring the corresponding collapse times. The measurement in chapter
5.3.2 shows that the atom number distribution becomes pronounced sub Poissonian even
before number states are formed in the Mott insulator regime. The measurement is in good
agreement with the following Gutzwiller calculation revealing the number statistics for small
U/J .

5.3.1 Gutzwiller calculation of sub Poissonian atom number statistics

When the tunnelling matrix element J between neighboring lattice sites is much larger than
the onsite repulsion between the atoms U , the atoms are in the superfluid ground state with
long range phase coherence across the lattice. For a vanishing ratio of U/J 
 0 the many
particle states on each lattice sites corresponds to coherent states in second quantization,
with a Poissonian atom number statistics. For a finite ratio of U/J , however, the interac-
tion between the atoms lead to number squeezed states with a sub Poissonian atom number
statistics.

In a Gutzwiller calculation [109, 138, 103, 5] the many particle state |Ψ〉 can be approx-
imated by a product state of many particle states |Φi〉 which are localized to the ith lattice
site

|Ψ〉 ≈
∏
i

|Φi〉. (5.16)

These localized states can be expressed as a superposition of different number states on a
lattice site

|Φi〉 =
∞∑

n=0

f (i)
n |n〉, (5.17)
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where f (i)
n denotes the complex coefficients for the state with n atoms on the ith lattice site

and is normalized such that
∑∞

n=0 |f (i)
n |2 = 1. Therefore |f (i)

n |2 is the probability to find n
atoms on the ith site.

The ground state for a system with given parameters can be found by varying the coef-
ficients f (i)

n and minimizing the total energy. The atoms in the lattice are described by a
Bose Hubbard Hamiltonian (see also Chapter 4.1), which consists of three parts: The kinetic
energy term, the interaction energy term and a third term describing inhomogeneities and
introducing a chemical potential µ

HBH = Hkin +Hint +Hµ

= −J
∑

<i,j>

â†i âj +
∑

i

1
2
U n̂i(n̂i − 1) +

∑
i

(εi − µ) n̂i. (5.18)

The summation in the first term is carried out over next neighbors. The expectation values
for the kinetic energy term and the inhomogeneity / chemical potential term on the ith lattice
site can be easily expressed by the coefficients f (i)

n :

〈Φi|Hint |Φi〉 =
U

2
〈Φi| n̂i(n̂i−1) |Φi〉 =

U

2

∑
n

|f (i)
n |2 n(n− 1) (5.19)

〈Φi|Hµ |Φi〉 = (εi − µ) 〈Φi| n̂i |Φi〉 = (εi − µ)
∑
n

|f (i)
n |2 n (5.20)

The expectation value of the kinetic energy term can be expressed by the expectation value
of the field operator 〈âi〉 since the field operators of different lattice sites commute:

〈Ψ|Hkin |Ψ〉 = −J
∑

<i,j>

〈Φi|〈Φj | â†i âj |Φj〉|Φi〉 = −J
∑

<i,j>

〈âi〉∗ 〈âj〉 (5.21)

It is interesting to note that for coherent states |Φi〉 = |αi〉 with âi|αi〉 = αi|αi〉, where
αi =

√
n̄i · exp iϕi and ϕi is the macroscopic phase on the ith site, the product of the

expectation values of the field operators reduces to

Re(〈âi〉∗ 〈âj〉) = Re(α∗
iαj) =

√
n̄in̄j cos(ϕj − ϕi), (5.22)

which is analog to the phase term in the well known Josephson tunnelling energy between
lattice sites. In the Gutzwiller calculation, on the other hand, the expectation values are
expressed more generally by the coefficients f (i)

n

〈âi〉 =
∑
n,m

〈Φi|n〉〈n|âi|m〉〈m|Φi〉 =
∑
n

f (i)
n

∗
f

(i)
n+1

√
n+ 1 (5.23)

〈â†i 〉 =
∑
n,m

〈Φi|n〉〈n|â†i |m〉〈m|Φi〉 =
∑
n

f
(i)
n+1

∗
f (i)

n

√
n+ 1 = 〈âi〉∗ (5.24)
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5.3 Number squeezing of a BEC in an optical lattice

We now want to find the ground state of a homogenous system for a given ratio U/J . We
assume that this ground state is a product of identical states on each of the M lattice sites.
Therefore we can set

|Φi〉 = |Φ〉, |Ψ〉 =
∏
M

|Φ〉, 〈âi〉 = 〈â〉 and f (i)
n = fn. (5.25)

The expectation value of the energy per lattice site is then given by

〈H〉 = 〈Ekin〉 + 〈Eint〉 + 〈Eµ〉 with (5.26)

〈Ekin〉 =
〈Ψ|Hkin |Ψ〉

M
= −Jz|〈a〉|2 = −Jz

∣∣∣∑
n

fn
∗fn+1

√
n+ 1

∣∣∣2 (5.27)

〈Eint〉 = 〈Φ|Hint |Φ〉 =
U

2

∑
n

|fn|2 n(n− 1) (5.28)

〈Eµ〉 = 〈Φ|Hµ |Φ〉 = µ 〈n〉 = µ
∑
n

|fn|2n, (5.29)

where z denotes the number of nearest neighbors (z = 6 for a simple cubic 3D lattice).
The ground state can be determined by finding a set of {fn} which minimizes 〈H〉. This

can be either done for a given chemical potential µ, or for a given mean atom number
〈n〉 =

∑
n |fn|2 n. The set of the coefficient {fn} can be truncated for atom numbers much

larger than the mean atom number. We calculated these coefficients numerically for different
ratios of U/J .

A more analytical study can be performed by introducing a squeezing parameter g [109],
which becomes g = 1 for a coherent state and approaches zero as the state gets more and
more squeezed and finally becomes a number state. The numerically determined coefficients
f

(num)
n are well approximated by the coefficients defined through

f̃n = g
n(n−1)

2
λn/2

√
n
. (5.30)

These coefficients need to be normalized such that fn = f̃n/
∑

n |f̃n|2. The parameter
λ(g, n̄) depends on g and the mean atom number n̄ and was determined numerically. The
expectation value of the Hamiltonian can be expressed by 〈H〉 = H̄(g, n̄) (or the chemical
potential µ instead of n̄). The value for g = g(n̄, U/J) (or g = g(µ,U/J), respectively)
which minimizes 〈H〉 can then be found numerically.

An analytical result for the weakly interacting regime, where U/J � (U/J)c, is given by
[109]

g ≈ 1
1 + U

2zJ

. (5.31)

Here, z is the number of nearest neighbors.
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Figure 5.9: Squeezing parameter g, plotted versus the ratio between the onsite interaction
and the tunnelling U/J for different mean atom numbers n̄. The numerical calculation is
compared to the analytical approximation given in [109]. For vanishing onsite interaction U
the squeezing parameter is equal to g=1, corresponding to coherent states with a Poissonian
atom number statistics. For 1>g > 0 the number statistics gets sub Poissonian. The graph
shows that a pronounced number squeezing is expected even before the phase transition to a
Mott insulator is reached at about U/J 
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Figure 5.10: (a) Expectation value of the field operator, plotted as |〈â〉|2/n̄ versus g for
different n̄. The plotted value corresponds to the fraction of atoms which can be described by
the macroscopic wave function and is therefore equal to the expected visibility of a multiple
matter wave interference pattern. (b) Reduction of the strength of the onsite interaction,
achieved by number squeezing. 〈n̂(n̂− 1)〉/n̄2 is plotted versus g for different n̄.
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Figure 5.11: Atom number statistics for number squeezed states. The probability |fn|2 and
amplitude |fn| to find n atoms on a site is plotted as a histogram for different mean atom
numbers n̄ and for squeezing parameters of (a) g=1, (b) g=0.6 and (c) g=0.2 respectively.
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5 Collapse and revival of a macroscopic matter wave field

The results of the numerical calculations are presented in figures 5.9-5.11. In figure 5.9,
the squeezing parameter g is plotted versus U/J for different n̄ and compared to the an-
alytical solution equation . Figure 5.10a demonstrates the effect of the number squeezing
on the expectation value of the field operator. The plotted ratio |〈â〉|2/n̄ corresponds to the
reduction in the visibility of the interference pattern. In Figure 5.10b the reduction of the
expectation value for the onsite interaction energy due to the squeezing is illustrated. It is
characterized by 〈n̂(n̂ − 1)〉/n̄2, which is plotted versus g. Figure 5.11 shows the atom
number statistics as a bar chart of the probabilities |fn|2 and the coefficients |fn| for differ-
ent mean atom numbers and squeezing parameters g. It can be seen that the atom number
statistics is markedly changed even before the Mott insulator regime is entered.

5.3.2 Measurement of sub Poissonian atom number statistics

In order to measure the atom number statistics in the superfluid regime we carry out the
collapse and revival experiment for different initial potential depths Va. After the potential
wells are separated from each other, the number squeezed states undergo qualitatively the
same dynamics as the coherent states with a collapse and revival of the macroscopic matter
wave field. The revival time trev is identical. However, two parameters change:

• The collapse time depends on the the atom number statistics as tc = trev/(2π σn) and
is therefore changed when number squeezing occurs.

• The initial expectation value of the field operator |ψ(t)|2 = |〈â〉|2 is smaller than n̄ (see
figure 5.10). Therefore, not all atoms are described by the macroscopic matter wave
field. Instead the quantum depletion is finite. This results in a reduced visibility of the
initial interference pattern equal to |〈â〉|2/n̄.

By measuring the collapse time tc we are able to determine the number squeezing at the
initial potential depth Va.

Time evolution

After separating the potential wells, the atoms inside each well are described by the Hamil-
tonian in eq. 5.1 with the time evolution

|Φ(t)〉 =
∑
n

fn · ei U n(n−1) t/2h̄ |n〉. (5.32)

The phase of each number state, which is the eigenstate of the Hamiltonian, evolves accord-
ing to its eigenenergy.

In Figure 5.12, the collapse and revival of the matter wave field is plotted for different
squeezing parameters g. The collapse time strongly depends on the squeezing strength.
Figure 5.12 shows the Q-function (see chapter 5.1.4) for various g and t. These graphs
demonstrate that initially, for t = 0, the phase uncertainty increases with the squeezing. At
t = 0.5h/U the number squeezed states also form Schrödinger cat states.
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Figure 5.12: Collapse and revival of the macroscopic matter wave field for squeezed co-
herent states on each lattice site. The expectation value of the field operator is plotted as
|〈â〉|2/n̄ versus time for squeezing parameters g= 1, g= 0.6 and g= 0.2 and a mean atom
number n̄ = 2. The collapse time strongly depends on the squeezing parameter g.

Measurement

We measured the visibility of the multiple matter wave pattern versus time for potential
depths Va between 4Er and 13Er and Vb = 20Er. In order to extract the collapse and
revival time we fit the data with a model given by a periodic sum of Gaussian functions:

ffit =
∑
n

exp
−(t− n trev)2

t2c
(5.33)

Here tc is measured as the 1/e half width of the Gaussian function, and trev corresponds to
the spacing of the Gaussian function. In addition we allow an offset, scaling and decay. First,
we determine the revival time by fitting the distance between the first two revivals. Then we
determine the collapse time by fitting the data in the region between about 0.2 tr and 1.4 tr .

Figure 5.14a shows the data of the first revival for an initial potential depth of Va =
4Er(filled circles) and Va = 11Er(open circles) respectively. The error bars denote sta-
tistical errors. The data of both curves is scaled to the same height, in order to compare
the widths of the collapse times. The interference contrast of the curve Va = 11Eris 20%
smaller than that for Va =4Er. The solid and dashed lines are fits of the above model to the
data.

This data clearly shows a significant increase in the collapse time when jumping from
greater potential depths. For our setup, the average atom number per lattice site n̄ is almost
constant, since to first order it doesn’t depend on the potential depth Va. Therefore, the
change of the collapse time is due to number squeezing. The data indicates, that the atom
number statistics has indeed become sub Poissonian.

It is interesting to compare the measured collapse time to an ab initio calculation for differ-

101



5 Collapse and revival of a macroscopic matter wave field

0-3 3

3

0

-3

Re(β)

Im
(β

)t

t = 0

g = 1 g = 0.8 g = 0.6 g = 0.4 g = 0.2

t = 1/8 h/U

t = 1/4 h/U

t = 3/8 h/U

t = 1/2 h/U

t = h/U

...

Figure 5.13: The graph shows the overlap between the dynamically evolving state |Φ(t)〉
and an arbitrary coherent state|β〉 for various squeezing parameters g and times t, and a
mean atom number of n̄=3. For t=0 the phase uncertainty for the squeezed states is nicely
visible. At t= 0.5h/U Schrödinger cat states are formed, even in the presence of number
squeezing.
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Figure 5.14: Increase of the collapse time for number squeezed states. (a) First revival for
an initial potential depth of Va = 4Er(filled circles) and Va = 11Er(open circles). The
interference contrast Ncoh/Ntot is plotted versus time in arbitrary units. For the deeper
initial potential depth the collapse time is significantly prolonged due to number squeezing
for finite U/J . (b) Collapse time tc relative to the revival time trev. The measured data is in
reasonable agreement with a ab initio theoretical calculation, shown as a solid line.
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Figure 5.15: Fitted squeezing factor g together with an ab initio calculation of g. Taking
experimental uncertainties into account, the data is in reasonable agreement with the theo-
retical prediction and demonstrates strong number squeezing of the superfluid state in the
lattice.
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5 Collapse and revival of a macroscopic matter wave field

ent potential depths Va. In order to determine the expected collapse time, we first calculate
the number squeezed states for various potential depths and mean atom numbers n̄ through
the Gutzwiller calculation described above. Then we determine the expected time evolution
of the interference contrast for our inhomogeneous system through equation 5.14. We as-
sume a Thomas Fermi profile (eq. 3.47) with a calculated maximum mean atom number in
the trap center of n̄=2. Finally, we fit this calculated curve with the same model (equation
5.33) in order to determine an effective collapse time tc. The curve is well matched by the
fit with an RMS error in the order of one percent. Figure 5.14b shows a comparison of the
calculated collapse time and the measured data. Considering the systematic experimental
uncertainties in the determination of the potential depth Va of ≈ 15% and an uncertainty in
the total atom number of ≈ 20%, we find a reasonable agreement between both the experi-
mental data and the theoretical prediction. Close to the phase transition to the Mott insulator
the measured number squeezing is slightly less than expected from the Gutzwiller calcula-
tion. This might be due to the fact that the Gutzwiller approach underestimates the number
fluctuations close to the transition point due to residual short range correlations, which are
not included in the mean field approach [31, 94, 110] (see also chapter 4.1.5).

By analyzing the data in a slightly different way we determine the squeezing factor g
for different potential depths Va in a more direct way. This is possible by calculating the
expected collapse and revival of the interference contrast for the inhomogeneous system
through equation 5.14 depending on g. For this calculation we assume that g is independent
on n̄, which is reasonable for n̄ larger than about 0.5. Furthermore we assume a maximum
mean atom number in the trap center which was determined as n̄max = 2 with an accuracy
of about 20%. Figure 5.15 shows the fitted squeezing factors g for different potential depths
together with ab initio calculation. The data and the theoretical prediction shows a reasonable
agreement considering systematic uncertainties in the determination of the potential depth
Va of ≈ 15%.
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Bose-Einstein condensates trapped in three-dimensional optical lattice potentials allow to
enter a new regime in the many body physics of ultracold atomic gases. The realization of a
Mott insulator and the observation of a collapse and revival of the macroscopic matter wave
field described in this work demonstrates some of the new possibilities offered by this novel
quantum system. In the following I want to summarize various ideas for future experiments
that address fundamental questions of modern solid state physics, atomic physics, quantum
optics and quantum information.

Ultracold atoms in optical lattice potentials represent a rather perfect realization of the
Bose-Hubbard model with a high degree of control. Parameters like the ratio between the
onsite interaction and tunnel coupling or the filling factor can be widely adjusted, and ob-
servables like long range phase coherence or number statistics can be measured. Apart from
measurements of ground state properties, this control also allows quantitative measurements
of the dynamics in the system, which have not been possible with other realizations of the
Bose-Hubbard model so far. For example, the dynamics and time scale of the quantum phase
transition from a superfluid to a Mott insulator is still an open question. Gutzwiller calcu-
lations [6] and density-matrix renormalization group calculations [139] have recently been
performed and suggest a surprisingly fast dynamics. The calculations are consistent with the
present experimental observations discussed in this work. However, there remain a number
of open question concerning the dynamical behavior and further experiments could deliver
valuable insight in the dynamics. Another example is the response of the many body state
when a large potential gradient is applied. This process has recently been investigated the-
oretically [140, 141]. The results allows a better understanding of the measured resonant
perturbation probability, and based on the calculations refined measurement techniques have
been proposed. For future experiments the parameter regime could be extended by tuning the
scattering length through Feshbach resonances [1, 2, 142, 143]. Furthermore the application
of random potentials could be introduced to realize a Bose glass phase [4, 108].

Hamiltonians other than the pure Bose-Hubbard hamiltonian could be realized and studied
with an ultracold gas in three-dimensional optical lattice potentials. For example by using a
multi component gas and interspecies Feshbach resonances, an intriguing system could be
created. Furthermore it should be possible to extend the type of interactions to effective next
neighbor interaction [144, 145], dipolar interactions [146], or spin interaction due to spin
dependent tunnelling [147].

By loading ultracold fermionic atoms into a lattice potential, the original fermionic ver-
sion of the Hubbard model could be realized experimentally [148]. The fermionic Hubbard
Hamiltonian still contains many open questions on the theoretical side, and therefore it is es-
pecially attractive to study this Hamiltonian experimentally. In the attractive case it describes
the BCS- to Bose-crossover for Cooper-pairing and in the repulsive case antiferromagnetic
superconducting phases appear. The combination of fermionic and bosonic atoms in the
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same lattice potential would further extend the class of Hamiltonians which can be realized
and investigated with ultracold atoms.

From the perspective of atomic and molecular physics a Mott-insulating state with pre-
cisely two atoms per site is an ideal starting point for the formation of molecular con-
densates [6]. Molecules could be created in a very controlled way on each lattice site by
photo-association. Melting the resulting Mott insulator state of molecules would then form
a molecular condensate.

In a two-dimensional optical lattice potential [91] an array of tightly confining poten-
tial tubes can be created. Inside these tubes a one-dimensional quantum gas can be stud-
ied. Striking effects in such a system are the occurrence of a Tonks gas of impenetrable
bosons [149, 150, 151, 152] and the occurrence of a commensurate-incommensurate tran-
sition, where atoms are pinned to a Mott insulating state for an arbitrarily weak lattice po-
tential [153, 31]. When the interaction energy dominates the kinetic energy, the bosonic
atoms effectively behave as non-interacting fermions and a strongly correlated 1D quantum
gas is created. By using a Feshbach resonance the Tonks gas should be observable in a two-
dimensional lattice. The Tonks gas would require a very low number of atoms inside each
1D potential tube. However, the detection of the gas would benefit from the several thousand
copies of similar 1D systems in the array of potential tubes.

The creation of vortices inside a lattice potential well could allow the study of the integer
and fractional quantum hall effect in an ultracold gas. It has been recently shown that the
Hamiltonian of bosons in a rotating trapping potential is formally identical to the Hamil-
tonian of electrons in the quantum Hall effect [154, 155, 156]. The possibility of having
many copies of a system with a low atom number could enable the observation of a highly
correlated quantum liquid described by Laughlin states [157].

A new class of experiments is made possible when spin-dependent optical lattice potentials
are used. It has been suggested that by spin-dependently shifting the lattice potential, atoms
on different lattice sites can be brought into contact [158, 7]. Very recently we have been
able to realize such a coherent transport of neutral atoms in spin-dependent optical lattice
potentials [159]. After first preparing localized atomic wave functions in an optical lattice
through a Mott insulating phase, we bring each atom in a superposition of two internal spin
states by applying a microwave field. The state selective optical potentials are used to split
the wave function of a single atom and transport the corresponding wave packets in two
opposite directions. We have been able to demonstrate coherence between the wave packets
of an atom delocalized over up to 7 lattice sites. By state selectively moving atoms one could
induce interactions between almost any two atoms on different lattice sites in a controlled
way. In a preliminary experiment we have already observed the effects of a collisional phase
shift induced by bringing together atoms from neighboring lattice sites. On this basis it
should be possible to realize quantum gates between different atoms [158, 128, 130, 160] or
to create highly entangled cluster states [7, 128, 129] that could form the basis of a one way
quantum computer [130]. Furthermore, spin waves [144] and quantum random walks could
be studied [161]. A major difficulty of a quantum gate and quantum computation schemes
mentioned above is that they require the addressability of individual lattice sites for readout.
However, even without addressability a quantum computer could be realized in the sense of a
quantum simulator which could be used to simulate fundamental complex condensed matter
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physics Hamiltonians [145].
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7 Appendix

7.1 Level scheme for 87Rb

Figure 7.1: Level scheme of 87Rb with nuclear spin I = 3/2.
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7.2 Data on 87Rb

Nuclear spin I 3/2
Mass 86,9902 u [162]
g-Faktor gI -0.0009951414
Vacuum wavelength D1-transition λD1 794,979 nm [162]
Vacuum wavelength D2-transition λD2 780,241 nm [162]
Line width D1-transition ΓD1 2π × 5, 58 MHz [162]
Line width D2-transition ΓD2 2π × 6, 01 MHz [162]
Life time |52P1/2〉 28,5 ns [162]
Life time |52P3/2〉 26,5 ns [162]
Saturation intensity 1,654 mW/cm2 [162]
Ground state hyperfine splitting νhfs 6834682612.8 Hz [163]
Triplet scattering length aT 106 ± 4 a0 [164]
Singlet scattering length aS 90 ± 1 a0 [164]
|F =1,mF =−1〉scattering length a 103 ± 5 a0 [25]
Three body loss rate K3 4, 3 × 10−29 cm6/s [165]

110



Bibliography

[1] S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, and C.E. Wieman. Stable
85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett.,
85(9):1795, August 2000.

[2] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E.
Wieman. Dynamics of collapsing and exploding Bose-Einstein condensates. Nature,
412:295–299, 2001.

[3] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich. Squeezed
states in a Bose-Einstein condensate. Science, 291:2386–2389, 2001.

[4] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson localization
and the superfluid-insulator transition. Phys. Rev. B, 40:546–570, 1989.

[5] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in
optical lattices. Phys. Rev. Lett., 81:3108–3111, 1998.

[6] D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and P. Zoller. Creation of a molecular
condensate by dynamically melting a Mott insulator. Phys. Rev. Lett., 89:040402,
2002.

[7] D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller. Entanglement of
atoms via cold controlled collisions. Phys. Rev. Lett., 82:1975–1978, 1999.

[8] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Obser-
vation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269(0):198,
July 1995.

[9] K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle. Evaporative
cooling of sodium atoms. Physical Review Letters, 74:5202, 1995.

[10] A. Einstein. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung.
Sitzungber. Preuss. Akad. Wiss., 1925:3, January 1925.

[11] S. N. Bose. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik,
26:178, 1924.

[12] F. London. On the Bose-Einstein condensation. Phys. Rev., 54(0):947, December
1938.

[13] Fritz London. The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy.
Nature, 141(3571):643, April 1938.

111



Bibliography

[14] A.S. Parkins and D.F. Walls. The physics of trapped dilute-gas Bose-Einstein conden-
sates. Phys. Rep., 303(1):1, September 1998.

[15] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein
condensation in trapped gases. Rev. Mod. Phys., 71(3):463, April 1999.

[16] A. J. Leggett. Bose-einstein condensation in the alkali gases: Some fundamental
concepts. Rev. Mod. Phys., 73:307, 2001.

[17] C. J. Pethick and H. Smith. Bose-Einstein condensation in Dilute Gases. Cambridge
University Press, 2002.

[18] O. Penrose and L. Onsager. Bose-Einstein condensation and liquid helium. Physical
Review, 104:576, 1956.

[19] P. W. Anderson. Rev. Mod. Phys., 38:298, 1966.

[20] Anthony J. Leggett and Fernando Sols. On the concept of spontaneously broken gauge
symmetry in condensed matter physics. Found. Phys., 21(3):353, 1991.

[21] A.J. Leggett. Broken gauge symmetry in a Bose condensate. In A. Griffin, D.W.
Snoke, and S. Stringari, editors, Bose-Einstein Condensation, page 452. Cambridge
University Press, 1995.

[22] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne. Rev. Mod. Phys., 71:1, 1999.

[23] J. Dalibard. Collisional dynamics of ultra-cold atomic gases. In M. Inguscio,
S. Stringari, and C.E. Wieman, editors, Proceedings of the International School of
Physics - Enrico Fermi, page 321. IOS Press, 1999.

[24] D.J. Heinzen. Ultracold atomic interactions. In M. Inguscio, S. Stringari, and C.E.
Wieman, editors, Proceedings of the International School of Physics - Enrico Fermi,
page 351. IOS Press, 1999.

[25] P.S. Julienne, F.H. Mies, E. Tiesinga, and C.J. Williams. Collisional stability of double
Bose condensates. Phys. Rev. Lett., 78(10):1880, March 1997.

[26] N. Bogoliubov. On the theory of superfluidity. J. Phys., 11(1):23, 1947.

[27] E. P. Gross. Structure of a quantized vortex in boson systems. Nuovo Cimento, 20:451,
1961.

[28] L.P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2):451,
August 1961.

[29] M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, and W. Ket-
terle. Observation of interference between two Bose-Einstein condensates. Science,
275(0):637, January 1997.

112



Bibliography

[30] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a stirred
Bose-Einstein condensate. Phys. Rev. Lett., 84(5):806, January 2000.

[31] W. Zwerger. Mmott-Hubbard transition of cold atoms in optical lattices. cond-
mat/0211314, 2002.

[32] P.O. Fedichev, M.W. Reynolds, and G.V. Shlyapnikov. Three-body recombination of
ultracold atoms to a weakly bound s level. Phys. Rev. Lett., 77(14):2921, September
1996.

[33] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni,
A. Smerzi, and M. Inguscio. Josephson junction arrays with Bose-Einstein conden-
sates. Science, 293:843–846, 2001.

[34] M. Greiner. Magnetischer Transfer von Atomen - ein Weg zur einfachen Bose-
Einstein-kondensation. Master’s thesis, LMU München, 1999.

[35] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard. Trapping of neutral-
sodium atoms with radiation pressure. Physical Review Letters, 59:2631, 1987.

[36] C. S. Adams and E. Riis. Laser cooling and trapping of neutral atoms. Progress in
Quantum Electronics, 21:1, 1997.

[37] W. D. Phillips. Laser cooling and trapping of neutral atoms. Reviews of Modern
Physics, 70:721, 1998.

[38] H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Graduate Texts in
Contemporary Physics. Springer, 1999.

[39] K. E. Gibble, S. Kasapi, and S. Chu. Improved magneto-optic trapping in a vapor cell.
Optics Letters, 17(7):526, April 1991.

[40] B. Martin. Universität bonn report no. bonn-ir-75-8, Universität Bonn, 1975.

[41] N. Niehues. Universität bonn report no. bonn-ir-76-35, Universität Bonn, 1976.

[42] A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf. First
observation of magnetically trapped neutral atoms. Physical Review Letters, 54:2596,
1985.

[43] M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger. Magnetic transport of trapped
cold atoms over a large distance. Phys. Rev. A, 63:031401, 2001.

[44] E. Majorana. Atomi orientati in campo magnetico variabile. Nuovo Cimento, 9:43,
1933.

[45] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell. Stable, tightly confin-
ing magnetic trap for evaporative cooling of neutral atoms. Physical Review Letters,
74:3352, 1995.

113



Bibliography

[46] D. E. Pritchard. Cooling neutral atoms in a magnetic trap for precision spectroscopy.
Physical Review Letters, 51:1336, 1983.

[47] T. Bergeman, G. Erez, and H. Metcalf. Magnetostatic trapping fields for neutral atoms.
Physical Review A, 35:1535, 1987.

[48] T. Esslinger, I. Bloch, and T. W. Hänsch. Bose-Einstein condensation in a quadrupole-
ioffe-configuration trap. Physical Review A, 58:R2664, 1998.

[49] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic,
W. König, and T. W. Hänsch. A compact grating-stabilized diode laser system for
atomic physics. Optics Communication, 117:541, 1995.

[50] T. W. Hänsch, M. D. Levenson, and A. L. Schawlow. Physical Review Letters, 26:946,
1971.

[51] J.C. Camparo. Contemp. Phys, 26:443, 1985.

[52] U. Schünemann, H. Engler, R. Grimm, M. Weidemueller, and M. Zielonkowski. Sim-
ple scheme for tunable frequency offset locking of two lasers. Review of Scientific
Instruments, 70:242, 1999.

[53] A. Zach. Diplomarbeit LMU München, 1998.

[54] E. Hecht and A. Zajac. Optics. Addison-Wesley, 1979.

[55] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn, and
W. Ketterle. Direct, nondestructive observation of a Bose-Einstein condensates. Sci-
ence, 273:84, 1996.

[56] M. Greiner. Phasenkontrastabbildung eines rubidium bosekondensats. Praktikum-
sprotokoll FII Praktikum LMU München, 1998.

[57] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polar-
ization gradients: simple theoretical-models. J. Opt. Soc. Am. B, 6(11):2023, Novem-
ber 1989.

[58] P. L. Gould, G. A. Ruff, and D. E. Pritchard. Diffraction of atoms by light: The
near-resonant Kapitza-Dirac effect. Phys. Rev. Lett., 56:827–830, 1986.

[59] P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard. Bragg scattering of
atoms from a standing light wave. Phys. Rev. Lett, 60:515–518, 1988.

[60] C. S. Adams, M. Sigel, and J. Mlynek. Atom optics. Phys. Rep., 240:143, 1994.

[61] P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J. Y. Courtois, and G. Gryn-
berg. Dynamics and spatial order of cold cesium atoms in a periodic optical potential.
Phys. Rev. Lett, 68:3861, 1992.

114



Bibliography

[62] O. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw,
and C. I. Westbrook. Observation of quantized motion of rb atoms in an optical field.
Phys. Rev. Lett, 69:49, 1992.

[63] A. Hemmerich and T. W. Hänsch. Two-dimesional atomic crystal bound by light.
Phys. Rev. Lett, 70:410–413, 1993.

[64] A. Hemmerich, M. Weidemüller, T. Esslinger, C. Zimmermann, and T. W. Hänsch.
Trapping atoms in a dark optical lattice. Phys. Rev. Lett, 75:37–40, 1995.

[65] M. Weidemüller, A. Hemmerich, A. Görlitz, T. Esslinger, and T. W. Hänsch. Bragg
diffraction in an atomic lattice bound by light. Phys. Rev. Lett., 75:4583, 1995.

[66] G. Grynberg, B. Lounis, P. Verkerk, J. Y. Courtois, and C. Salomon. Quantized motion
of cold cesium atoms in two- and three-dimensional optical potentials. Phys. Rev. Lett,
70:2249–2252, 1993.

[67] M. Prentiss. Bound by light. Science, 260:1078, 1993.

[68] M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon. Bloch oscillations of
atoms in an optical potential. Phys. Rev. Lett, 76:4508, 1996.

[69] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen. Obser-
vation of atomic wannier-stark ladders in an accelerating optical potential. Phys. Rev.
Lett, 76:4512–4515, 1996.

[70] A. Görlitz, M. Weidemüller, T. W. Hänsch, and A. Hemmerich. Observing the position
spread of atomic wave packets. Phys. Rev. Lett, 78:2096, 1997.

[71] A. Görlitz, T. Kinoshita, T. W. Hänsch, and A. Hemmerich. Realization of bichromatic
optical superlattices. Phys. Rev. A, 64:011401, 2001.

[72] S. Friebel, C. D. Andrea, J. Walz, M. Weiz, and T. W. Hänsch. co2-laser optical lattice
with cold rubidium atoms. Phys. Rev. A, 57:R20, 1998.

[73] R. Scheunemann, F. S. Cataliotti, T. W. Hänsch, and M. Weitz. Resolving and address-
ing atoms in individual sites of a co2-laser optical lattice. Phys. Rev. A, 62:051801,
2000.

[74] V. Vuletic, C. Chin, A. Kerman, and S. Chu. Degenerate raman sideband cooling of
trapped cesium atoms at very high atomic densities. Phys. Rev. Lett, 81:5768–5771,
1998.

[75] M. T. DePue, C. McCormick, S. L. Winoto, S. Oliver, and D. S. Weiss. Unity occu-
pation of sites in a 3d optical lattice. Phys. Rev. Lett., 82:2262–2265, 1999.

[76] A. J. Kerman, V. Vuletic, C. Chin, and S. Chu. Beyond optical molasses: 3d Ra-
man sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett,
84:439–442, 2000.

115



Bibliography

[77] B.P. Anderson and M.A. Kasevich. Macroscopic quantum interference from atomic
tunnel arrays. Science, 282:1686, November 1998.

[78] S. Burger, F.S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M.L. Chiofalo, and M.P.
Tosi. Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic
optical potential. Phys. Rev. Lett., 86(20):4447, May 2001.

[79] O. Morsch, J. H. Müller, M. Christiani, D. Ciampini, and E. Arimondo. Bloch oscilla-
tions and mean-field effects of bose-einstein condensates in 1d optical lattices. Phys.
Rev. Lett, 87:140402, 2001.

[80] M. Kozuma, L. Deng, E.W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S.L. Rolston,
and W.D. Phillips. Coherent splitting of Bose-Einstein condensed atoms with optically
induced Bragg diffraction. Phys. Rev. Lett., 82(5):871, February 1999.

[81] J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, and
W. Ketterle. Bragg spectroscopy of a Bose-Einstein condensate. Phys. Rev. Lett.,
82(23):4569, June 1999.

[82] R. Grimm, M. Weidemüller, and Yu. B. Ovchinnikov. Optical dipole traps for neutral
atoms. Adv. At. Mol. Opt. Phys., 42:95–170, 2000.

[83] P. S. Jessen and I. H. Deutsch. Optical lattices. Advances in Atomic, Molecular and
Optical Physics, 37, 1996.

[84] J.E. Bjorkholm, R.E. Freeman, A. Ashkin, and D.B. Pearson. Observation of focusing
on neutral atoms by the dipole forces of resonance-radiation pressure. Phys. Rev. Lett.,
41(20):1361, November 1978.

[85] Steven Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of
optically trapped atoms. Phys. Rev. Lett., 57(3):314, July 1986.

[86] J. D. Jackson. Classical electrodynamics. Wiley, New York, 1962.

[87] Claude N. Cohen-Tannoudji. Manipulating atoms with photons. Rev. Mod. Phys.,
70(3):707, July 1998.

[88] N. W. Ashcroft and N. D. Mermin. Solid state physics. Saunders College Publishing,
Fort Worth, TX„ 1976.

[89] D. Jaksch. Bose-Einstein Condensation and Applications. PhD thesis, Leopold-
Franzens-Universität Innsbruck, Austria, 1999.

[90] C. Kittel. Quantum Theory of Solids. John Wiley and Sons, New York, 1963.

[91] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger. Exploring phase co-
herence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett., 87(16):160405,
October 2001.

116



Bibliography

[92] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Quantum phase
transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature,
415:39, January 2002.

[93] Y.B. Band, Boris Malomed, and Marek Trippenbach. Adiabaticity in nonlinear
quantum dynamics: Bose-Einstein condensate in a time-varying box. Phys. Rev. A,
65:033607, February 2002.

[94] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov. Revealing the superfluid-
Mott-insulator transition in an optical lattice. Phys. Rev. A, 66:031601, 2002.

[95] Y.B. Band, Marek Trippenbach, J.P. Burke, Jr., and P.S. Julienne. Elastic scattering
loss of atoms from colliding Bose-Einstein condensate wave packets. Phys. Rev. Lett.,
84(24):5462, June 2000.

[96] A. P. Chikkatur, A. Görlitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ketterle.
Suppression and enhancement of impurity scattering in a bose-einstein condensate.
Phys. Rev. Lett., 85:483, 2000.

[97] Biao Wu and Qian Niu. Landau and dynamical instabilities of the superflow of Bose-
Einstein condensates in optical lattices. Phys. Rev. A, 64:061603(R), November 2001.

[98] J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, , and K. Promislow. Stability of
repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E, 63:036612,
2001.

[99] F. Kh. Abdullaev, A. Gammal, Lauro Tomio, and T. Frederico. Stability of trapped
Bose-Einstein condensates. Phys. Rev. A, 63:043604, March 2001.

[100] R. G. Scott, A. M. Martin, T.M. Fromhold, S. Bujkiewicz, F.W. Sheard, and M. Lead-
beater. Creation of solitons and vortices by bragg reflection of bose-einstein conden-
sates in an optical lattice. cond-mat/0206543, 2002.

[101] A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen. Adia-
batic cooling of cesium to 700 nk in an optical lattice. Phys. Rev. Lett., 74:1542–1545,
1995.

[102] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, Cambridge,
2001.

[103] K. Sheshadri, H.R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan. Superfluid
and insulating phases in an interacting-boson model: Mean-field theory and the rpa.
Europhys. Lett., 22:257–263, 1993.

[104] J. K. Freericks and H. Monien. Phase diagram of the Bose Hubbard model. Europhys.
Lett., 26:545–550, 1995.

[105] D. van Oosten, P. van der Straten, and H. T. C. Stoof. Quantum phases in an optical
lattice. Phys. Rev. A, 63:053601, 2001.

117



Bibliography

[106] N. Elstner and H. Monien. Dynamics and thermodynamics of the Bose-Hubbard
model. Phys. Rev. B, 59:12184–12187, 1999.

[107] T. D. Kühner and H. Monien. Phases of the one-dimensional bose-hubbard model.
Phys. Rev. B, 58:R14741, 1998.

[108] S. Rapsch, U. Schollwöck, and W. Zwerger. Density matrix renormalization group for
disordered bosons in one dimension. Europhys. Lett., 46:559, 1999.

[109] D. S. Rokhsar and B. G. Kotliar. Gutzwiller projection for bosons. Phys. Rev. B,
44:10328–10332, 1991.

[110] R. Roth and K. Burnett. Superfluidity and interference pattern of ultracold bosons in
optical lattices. cond-mat/0209066, 2002.

[111] M. Niemeyer and H. Monien. private communication, 2001.

[112] B. G. Orr, H. M. Jaeger, A. M. Goldman, and C. G. Kuper. Global phase coherence
in two-dimensional granular superconductors. Phys. Rev. Lett., 56:378–381, 1986.

[113] D. B. Haviland, Y. Liu, and A. M. Goldman. Onset of superconductivity in the two-
dimensional granular superconductors. Phys. Rev. Lett., 62:2180–2183, 1989.

[114] R. M. Bradley and S. Doniach. Quantum fluctuations in chains of Josephson junctions.
Phys. Rev. B, 30:1138–1147, 1984.

[115] L. J. Geerligs, M. Peters, L. E. M. de Groot, A. Verbruggen, and J. E. Mooij. Charging
effects and quantum coherence in regular Josephson junction arrays. Phys. Rev. Lett,
63:326–329, 1989.

[116] W. Zwerger. Global and local phase coherence in dissipative Josephson-junction ar-
rays. Europhys. Lett., 9:421–426, 1989.

[117] H. S. J. van der Zant, F. C. Fritschy, F. C. Elion, W. J. Elion, L. J. Geerligs, and J. E.
Mooij. Field-induced superconductor-to-insulator transitions in Josephson-junction
arrays. Phys. Rev. Lett., 69:2971–2974, 1992.

[118] A. Oudenaarden and J. E. Mooij. One-dimensional Mott insulator formed by quantum
vortices in Josephson junction arrays. Phys. Rev. Lett., 76:4947–4950, 1996.

[119] Paul S. Julienne. Cold binary atomic collisions in a light field. J. Res. Natl. Inst.
Stand. Tech., 101(4):487, July 1996.

[120] E.M. Wright, D.F. Walls, and J.C. Garrison. Collapses and revivals of Bose-Einstein
condensates formed in small atomic samples. Phys. Rev. Lett., 77(11):2158, Septem-
ber 1996.

[121] E.M. Wright, T. Wong, M.J. Collett, S.M. Tan, and D.F. Walls. Collapses and revivals
in the interference between two Bose-Einstein condensates formed in small atomic
samples. Phys. Rev. A, 56(1):591, July 1997.

118



Bibliography

[122] M. Lewenstein and L. You. Quantum phase diffusion of a Bose-Einstein condensate.
Phys. Rev. Lett., 77(17):3489, October 1996.
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