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Zusammenfassung

Wechselwirkende fermionische Quantengase sind Grundlage zahlreicher Effek-
te in der Festkorperphysik. Bei den in dieser Arbeit vorgestellten Experimen-
ten wahlen wir einen neuen Zugang zur Untersuchung solcher Systeme; wir
laden quantenentartete atomare Fermigase und Mischungen aus bosonischen
und fermionischen Atomen in dreidimensionale optische Gitter.

Die Wechselwirkung zwischen den Atomen kann in der Umgebung einer Fesh-
bach-Resonanz beliebig zwischen stark repulsiv und stark attraktiv eingestellt
werden. Dies erlaubt es, aus Paaren fermionischer Atome schwach gebundene
Molekiile im Gitter zu bilden. Durch Anwenden eines tiefen Gitterpotentials
kann die atomare Bewegung entweder auf eine Dimension oder auf einen ein-
zelnen Gitterpunkt eingeschrénkt werden. Im Falle negativer Streuldngen sind
die gebundenen Zustédnde allein durch den Einschluss des optischen Gitters
stabilisiert.

Des Weiteren stellen wir erstmals niederdimensionale Fermigase her, die {iber
p-Wellenstreuung wechselwirken. Indem wir den atomaren Spin relativ zur
Symmetrieachse des einschliessenden Potentials ausrichten, kénnen wir spe-
zifische asymptotische Streuzustédnde aufgrund ihres anisotropen Charakters
unterdriicken. Dies zeigt sich in der Abwesenheit von Atomverlusten nahe ei-
ner p-Wellen-Feshbach-Resonanz. Wir beobachten zudem eine Verschiebung
der Position der Resonanz im Vergleich zum dreidimensionalen Fall infolge
der erhohten Grundzustandsenergie.

In Mischungen bosonischer und fermionischer Atome treten zahlreiche exoti-
sche Vielteilcheneffekte auf. Wir laden solche Mischungen in dreidimensionale
optische Gitter und messen die Phasenkohérenz der bosonischen Wolke, in-
dem wir den Kontrast der Materiewelleninterferenz und die Kohérenzlange
bestimmen. Wir beobachten, dass eine grossere Beimischung der fermioni-
schen Spezies die Kohérenz reduziert. Ausserdem fiihrt die attraktive Wech-
selwirkung zwischen den beiden Spezies zu einer grosseren lokalen Dichte im
Gitter, die wir anhand von Dreikdrperstossen nachweisen.

Diese Experimente zeigen die aussergewohnliche Vielseitigkeit von atomaren
Quantengasen in optischen Gittern und bringen die Besonderheiten der Stoss-
wechselwirkung in solchen Potentialen zum Vorschein. Die Realisierung von
stark wechselwirkenden Gasen und der direkte Zugang zu niederdimensiona-
len Systemen erdffnen neue Perspektiven fiir die Erforschung grundlegender
Vielteilchenprobleme in der modernen Quantenphysik.






Abstract

Interacting fermionic quantum gases form the basis of solid state physics.
In this thesis we choose a novel approach to explore such systems by cre-
ating quantum degenerate atomic Fermi gases and mixtures of bosonic and
fermionic atoms in three-dimensional optical lattices. The collisional interac-
tion between the atoms can be arbitrarily tuned between strongly repulsive
and strongly attractive in the vicinity of a Feshbach resonance.

This tuneability allows us to create weakly bound molecules from pairs of
fermionic atoms confined to one-dimensional motion or trapped in isolated
potential wells. For negative scattering lengths the bound states are solely
stabilised by the tight confinement of the optical lattice.

In a further experiment we realise low-dimensional p-wave interacting Fermi
gases for the first time. By properly aligning the atomic spins with respect to
the symmetry axis of the confining potential we can prohibit specific asymp-
totic scattering states due to their anisotropic character. The suppressed scat-
tering manifests itself in the absence of atom losses close to the corresponding
p-wave Feshbach resonance. We also observe a shift of the resonance posi-
tion with respect to the three-dimensional case which is a consequence of the
increased ground state energy.

A range of new phenomena becomes accessible when a mixture of bosonic
and fermionic atoms is prepared. We load Bose-Fermi mixtures into three-
dimensional optical lattices and probe the phase coherence of the bosonic
cloud by means of the visibility of the matter wave interference pattern
and the coherence length. We observe that an increasing admixture of the
fermionic species diminishes the coherence. Moreover, the attractive inter-
species interaction leads to an enhanced bosonic density in the lattice, which
we measure by studying the three-body recombination.

These experiments demonstrate the unprecedented versatility of atomic quan-
tum gases in optical lattices and reveal the special nature of collisional inter-
actions in these potentials. The realisation of strongly interacting gases and
the direct access to low-dimensional systems opens up new perspectives for
the investigation of fundamental questions of modern quantum many-body
physics.
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1 Introduction

Matter at low temperatures exhibits many fascinating properties which are of wide phys-
ical and technological interest. Especially intriguing are strongly correlated quantum
phases, as for instance the Mott insulating phase or some superfluid phases, which are
governed by interaction. Gaining deeper insight into quantum many-body systems and
their underlying microscopic mechanism is therefore a central objective of modern physics.
This is usually a rather difficult task, however: theoretical models which are believed to
describe the relevant features are hard to solve. In addition, testing these models in
solid-state systems is often unfeasible since the physical parameters cannot be adjusted
independently. For instance, a complete explanation of how high-temperature supercon-
ductivity arises has so far eluded scientists, despite intensive research since its discovery
in cuprate compounds over 20 years ago [1].

In our experiment we choose a novel approach towards the study of interacting many-
body systems in periodic potentials and their quantum phases. We prepare cold atomic
Fermi gases and Bose-Fermi mixtures in the artificial crystal structure of an optical
lattice. The periodic potential of the crystal is generated by the intensity pattern formed
by the interference of counter-propagating laser beams. While this system bears striking
resemblance to electrons in a solid crystal, it also provides a very clean setting with
unprecedented controllability. All relevant parameters—the lattice filling, the tunnelling
amplitude, and the interaction strength—can be tuned in a continuous way, enabling
the investigation of static and dynamic properties in different parameter regimes. Cold
atoms in optical lattices thus constitute a toolkit to implement and test fundamental
many-body models pertinent to solid state physics. In particular, the study of regimes
where the interaction energy dominates over the kinetic energy may shed new light on
strongly correlated phases which are extremely challenging for condensed matter theory.
In this respect, our system can serve as a quantum simulator to reproduce and explore
the physics of other quantum systems.

The recent investigation of cold atomic Fermi gases in weakly confining harmonic
traps has given new insight into the many-body physics of fermions. In the strongly
interacting regime, for instance, the character of superfluidity in the BCS-BEC crossover
has been studied extensively |2, 3, 4, 5]. This thesis describes the first experiments carried
out with quantum degenerate fermions in optical lattices with the additional freedom of
a tuneable interaction strength. Previous studies have been restricted to ideal fermions
in one-dimensional lattices, where many particles reside in the same potential minimum
[6]. In our setup we are able to load 4K atoms into a three-dimensional lattice and
directly image the Fermi surface. We can adjust the filling of the lattice and therefore
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observe the dynamics of the transition from a metallic phase to a band insulator, where
the lattice sites contain one atom per spin state. These achievements are promising for
the exploration of complex many-body quantum states in a lattice.

The objective of gaining insight into the physics of strongly correlated quantum phases
demands a precise understanding of the interactions on a microscopic scale. By exploiting
a so-called Feshbach resonance we can realise gases with almost any interaction strength,
ranging from strongly attractive to strongly repulsive. This allows us to investigate
the unique scattering properties in the presence of strong confinement. An optical lattice
potential significantly alters the atomic scattering states by introducing new length scales
in the system, which have to be compared with those of the interatomic potential.

A manifestation of the influence of the strong confinement on the scattering properties
is the existence of novel two-body bound states. Weakly bound diatomic molecules
have been produced in harmonic traps by sweeping the magnetic field over a Feshbach
resonance to the side where the scattering length is positive [7, 8]. In sharp contrast, a
bound state appears also for negative scattering lengths in periodic potentials. In our
experiments we form weakly bound molecules in optical lattices of different dimensions,
confirming theoretical predictions of their binding energies. The molecules can exhibit
bosonic character and play an important role for the realisation of the BCS-BEC crossover
in those geometries |9, 10]. Furthermore, the molecule formation efficiency in a deep three-
dimensional lattice directly reflects the double occupancy of the lattice sites. Measuring
this quantity provides us with a valuable tool to determine the temperature of the Fermi
gas in the lattice.

An appealing possibility offered by deep optical lattices is the realisation of low-
dimensional systems. The atoms can be trapped in the isolated potential minima of the
laser standing wave(s) such that their motion is restricted to the dimensions of weak con-
finement. The study of p-wave scattering in low dimensions is particularly interesting due
to its anisotropic character. Moreover, spin-aligned strongly attracting fermions confined
to one-dimensional motion can be mapped to non-interacting bosons (“bosonisation”)
and represent the fermionic analogue of a Tonks gas [11]. We load a spin-polarised Fermi
gas interacting via the p-wave into an optical lattice for the first time and observe that
scattering into states oriented along the direction of strong confinement is kinematically
suppressed. Our findings are important for the realisation of exotic p-wave superfluid
phases, which have been predicted to occur [12].

The high degree of control over the relevant parameters in these experiments demon-
strates that fermionic atoms in optical lattices can be used as a model system for electrons
in a solid. We can for instance implement the Fermi-Hubbard model [13], which is essen-
tial in solid state physics. It is probably the simplest model that captures the relevant
many-body physics of strongly correlated fermions. For repulsive interaction its phase
diagram contains a Mott insulating and an antiferromagnetic phase as well as d-wave
superconductivity [14]|. By accessing the regime of strong interactions we can also study
physics beyond the single-band Hubbard model.

The range of accessible phenomena can be extended if bosonic atoms are loaded into
the lattice in addition to the fermions. The interplay between two species of fundamen-
tally different quantum statistics in the presence of intra- and interspecies interaction



entails thrilling effects beyond those of purely bosonic or fermionic particles to be discov-
ered. Theorists have already predicted a wealth of strongly correlated quantum phases,
including supersolidity [15], boson-induced superfluidity [16] and a polaronic phase [17].
We prepare a Bose-Fermi mixture consisting of bosonic 8’Rb and fermionic °K atoms in
a three-dimensional optical lattice, thereby implementing a Bose-Fermi Hubbard Hamil-
tonian. The coherence properties of the bosonic cloud for different admixtures of fermions
and the analysis of three-body losses give valuable information on the mutual interaction
effects of the two species.

Ultracold Fermi gases and Bose-Fermi mixtures in optical lattices provide a versatile
environment for the exploration of quantum many-body phenomena. The present studies
of the interaction specific to these systems are an important step towards the rich world
of strongly correlated quantum phases. In the future the excellent control over the system
should allow an “engineering” of the many-body wave function.
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Outline of this thesis

In the first part of this thesis a brief theoretical framework for Fermi gases in optical
lattices is developed. Chapter two covers cold bosonic and fermionic atoms in harmonic
traps. Chapter three then treats fermions in optical lattices, while the specific nature of
interactions in these systems is pointed out in chapter four.

An overview of our apparatus and the experimental sequence to produce degenerate Fermi
gases and Bose-Fermi mixtures in optical lattices is given in chapter five. The modifi-
cations in the setup of the optical potentials to optimise the lattice filling are emphasised.

The sixth chapter presents our experiments with ideal and s-wave interacting fermions in
optical lattices. Our measurements include the observation of Fermi surfaces, interaction-
induced coupling to higher bands, confinement-induced molecules in quasi-1D systems as
well as molecule formation in a three-dimensional optical lattice.

In chapter seven I report on our experiments with spin-polarised, p-wave interacting
fermions. I show how in low-dimensional systems specific scattering channels can be de-
liberately suppressed due to the anisotropic character of the interaction.

I describe our measurements with Bose-Fermi mixtures in a three-dimensional optical
lattice in chapter eight. The influence of the fermionic admixture on the bosonic phase
coherence is investigated.

Finally, I discuss future perspectives for our experimental setup in chapter nine. In ad-
dition, I give a review of our latest transport measurements with attractively interacting
fermions.



2 Degenerate Bose and Fermi gases

At ultralow temperatures the physics of an ensemble of particles is governed by its quan-
tum statistics, which makes a sharp distinction between bosons and fermions. Indistin-
guishable particles have a many-body wave function which is either symmetric or anti-
symmetric under the exchange of two particles. Over half a century ago Wolfgang Pauli
unveiled the connection between the quantum statistics and the spin, known as the spin-
statistics theorem [18]: The wave function has to be totally antisymmetric for particles
with half-integral spin (fermions) and totally symmetric for particles with integral spin
(bosons). Although this is popularly understood as a postulate, the anti-commutation
relation for fermions and the commutation relation for bosons can be shown to be req-
uisite in the framework of relativistic quantum mechanics [19]. They follow from the
requirements that energy must be positive and that observables on different space-time
points with a space-like distance commute [20].

In the common system of an atomic gas the quantum statistics has not been revealed
before the observation of a Bose-Einstein condensate in 1995 |21, 22|. This breakthrough
marked the starting point for a very fruitful research activity in the field of ultracold
atomic gases, which is driven by the ambition to gain deeper insight into macroscopic
quantum phenomena like superfluidity or superconductivity in complex systems. The
study of cold Fermi gases is especially promising since the building blocks of matter
around us—electrons, protons and neutrons—are all fermions. However, cooling fermionic
alkali atoms to quantum degeneracy is more challenging than cooling bosonic ones due
to the limitations set by the Pauli principle. Nevertheless, four years after the realisation
of a Bose-Einstein condensate in an atomic gas, a degenerate Fermi gas of potassium
atoms was produced for the first time [23], and presently over a dozen of laboratories
have reached the degenerate regime with fermionic gases of K [23, 24, 25, 26, 27, 28],
6Li [29, 30, 31, 32, 33, 34], 3He [35] or ™3YD [36] atoms.

2.1 Bosons

Already in 1925 Einstein predicted, based on a work by Bose on photons, that at low
temperatures massive bosonic particles macroscopically occupy the ground state of a
given potential and form a coherent matter wave. Today, Bose-Einstein condensates
(BECs) are routinely produced and investigated in many laboratories around the world.
In most of the experiments presented in this thesis a bosonic cloud is solely used in the
preparation sequence to cool the fermionic cloud sympathetically. Only the studies of
chapter 8, where the coherence of a BEC in the presence of fermions was probed, actually
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involve a Bose gas. The relevant properties in this context are summarised in the present
section. For a detailed theoretical description of atomic BECs the reader is referred to
refs. [37, 38, 39].

2.1.1 Bose-Einstein condensation of an ideal gas in a harmonic trap

In experiments with ultracold gases the atoms are confined either in a magnetic or an
optical trap. At low temperatures the atoms only experience the bottom of the trapping
potential which can to very good accuracy be approximated harmonically. In the following
we will therefore consider atoms of mass m in a three-dimensional harmonic potential

m
Virap (1) = 5 (w32? +wiy? +w22%) (21)

where r = (z,y,2) and w;, w, and w, are the trapping frequencies in the z-, y- and
z-direction, respectively. We also define the characteristic trapping frequency @ =
(wxwywz)l/ 3. The energy levels of this system are characterised by the quantum numbers
{ng,ny,n.} and are given by

1 1 1
€noinym. = (2 + nx) hw, + <2 + ny> Tuwy + <2 + nz> hw,, (2.2)

with A being the reduced Planck constant.
In the grand-canonical ensemble the quantum statistics of bosonic particles is de-
scribed by the Bose-Einstein occupation number [40]

1
Joe(E) = et 1 (2:3)
Here, p is the chemical potential, T' the temperature and kp the Boltzmann constant.
fBE(F) is the statistical probability for a boson to occupy a state with energy E. The
total particle number is obtained by summing the occupation number (2.3) over the
discrete energy spectrum (2.2). It is convenient to split off the population Ny of the
ground state with energy €y = €90 = %h(wx + wy + w;) and to write

1 1
N= eleo— “)/kBT 1 + Z e(fnm,nymz —u)/kgT 1 - NO T NT’ (24)
NgNyn .70

where Np denotes the number of thermal atoms in higher lying energy states. At low
values of the chemical potential p the ground state occupation Ny is on the order of
one. However, upon increasing u—for example by adding particles to the system at
constant temperature—Ny will diverge as the maximum value p — € is reached, while
the number of atoms in the excited states N remains finite. This is the origin of Bose-
Einstein condensation where the ground state occupation becomes macroscopically large,
i. e. on the order of the total number of atoms IN. Temperatures in typical experiments
are much higher than the level spacing of the harmonic trap, kg1 > hw. The sum over
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the discrete single-particle spectrum in expression (2.4) may therefore be replaced by an
integral over a continuum whose density of states is

2 2
p(E) = /dr(;f;)?) ) <E — ;’—m - Vm«ap(r)) = ;(;)3 (2.5)

(semi-classical approximation). Very close to or below the phase transition one may set
= €p [39] and the integration yields the number of thermal atoms

N = /E:O & e(E—Ef)(/f;T 1 2(h1w)3 (kT)’T(3)¢(3), (2.6)

where the integral has been replaced by the product of the Gamma function I'(s) =
Jo©dt t*~le~" and the Riemann Zeta function ((s) = I'(s)~! I dee®~1/(exp(e) — 1).
The critical temperature T, for the BEC phase transition, at which the ground state just
starts to become macroscopically populated, is now found by equating eqn. (2.6) with
the total atom number, N = Np. Evaluating I'(3) = 2 the result reads

N 1/3 B .
kpT. = <4(3)> hiv, with ¢(3) = 1.202... (2.7)

Below T, eqns (2.6) and (2.7) can be applied to determine the condensate fraction

No Np T\?
=1-"==1—-(=) . 2.8
N N <T> (2:8)

2.1.2 The weakly interacting Bose-Einstein condensate

In real Bose gases the interaction between atoms cannot be neglected in the physical
description of the gas. Typically, weak interactions dominate the physics by affecting the
phase space distribution and the excitation spectrum of the condensate. A striking conse-
quence is the appearance of superfluidity, one of the most fascinating quantum phenomena
that can be observed macroscopically. These topics, starting with the Gross-Pitaevskii
equation which successfully describes weakly interacting Bose-Einstein condensates, will
be addressed in this section.

The Gross-Pitaevskii equation and the Thomas-Fermi limit

The many-body problem of interacting condensed bosons can be appreciably simplified
if the interactions are weak, as is normally the case in experiments. Starting from the
Schrodinger equation in second quantisation two major steps are taken [39]. First, the
interatomic potential is modelled by an effective potential parameterised by the scatter-
ing length a which allows the application of the Born approximation (see chapter 4). The
interactions are then characterised by the mean-field coupling constant g = 4wha/m.
Second, the bosonic field operator W(r) = ¢o(r)éo + >_iz0 @i(T)a; is replaced by the clas-
sical field Wg(r) = v/Nogo(r) for the ground state mode. This Bogoliubov prescription
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corresponds to neglecting the non-commutability of the field operator, which is reason-
able at low temperatures where the ground state is occupied by a large number Ny > 1
of bosons. We then arrive at the illustrious time-dependent Gross-Pitaevskii equation
describing a weakly interacting condensate

0 h2v? )
zha\llo(r,t): 5 + Virap(7, 1) + g|Wo(r, )7 ) Wo(r,t). (2.9)

Despite the similarity to a Schrodinger equation, eqn. (2.9) describes a classical field
Wy (r,t), which plays the role of the condensate wave function and is the order parameter
of the system. It is straightforward to show that the time dependence of the stationary
solution is governed by the chemical potential = OE/ON, with q(r,t) = Wo(r)e #4/",
Inserting this into eqn. (2.9) leads to the time-independent Gross-Pitaevskii equation

< RAve

o+ Vi) 1+ ()2 ) o) = 0. (2.10)

2 we can deduce the condensate den-

From atom number conservation Ny = [ dr |[¥o(r)]
sity no(r) = [Wo(r)[*.

A further simplification can be made in the so-called Thomas-Fermi limit: The kinetic
energy term is neglected if it is small compared to the interaction term, which leads to a

simple formula for the density distribution:

ntr(r) = ;(MTF — Virap(1)), (2.11)

where the ground state chemical potential yrp = %(15Na/aho)2/5, with ap, = v/h/ma
the harmonic oscillator length, is calculated within the Bogoliubov theory (see below).
The condensate—having the shape of an inverted parabola—reflects the trapping poten-
tial, while the remaining thermal atoms have a Gaussian profile leading to a bimodal
total distribution. During expansion the condensate will eventually reverse its aspect
ratio due to the mean-field interaction Uyip = gnrp which acts as an additional potential
that is proportional to the density [41].

Coherence and superfluidity

Above we have seen that in a BEC all the atoms occupy the ground state, and we may
write the condensate wave function as

Uy = /nge’”, (2.12)

up to a constant phase factor, with S being a real number. This reflects the fact
that all the atoms in the condensate have the same phase and form a coherent mat-
ter wave, a property which was demonstrated in an eminent interference experiment [42].
The coherence manifests itself in the long-range order of the one-body density matrix
n(r,r') = (U1 (r)T(r')), which remains finite at large distances |r — /| [43].
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Contrary to the phase coherence, which also emerges in an ideal gas, superfluidity is
only enabled by interactions. Superfluid flow without dissipation requires an excitation
spectrum €(p) defining a finite critical velocity

Ve = min@. (2.13)

p p
In a fluid flowing with velocity v relative to a potential the creation of an excitation with
momentum p is then energetically unfavourable (in the frame of the static potential) if

Landau’s criterion,
v < v, (2.14)

is satisfied. As shown below, in a weakly interacting BEC these requirements can indeed
be met and the superfluid velocity is identified with the gradient of the phase of the order
parameter, vs = LV S [39].

Bogoliubov excitations and quantum depletion

The excitation spectrum of the weakly interacting gas can be obtained within the Bo-
goliubov prescription mentioned above. In the interaction term of the Hamiltonian one
retains the quadratic terms of the particle operator a, with momentum p # 0 [39]. This
corresponds to going one order beyond the Born approximation of the interatomic poten-
tial. After applying the so-called Bogoliubov transformation a, — Ep the original system
of interacting particles is described by a Hamiltonian of non-interacting quasi-particles

~

bp. Diagonalisation is then straightforward and leads to the dispersion relation

e(p) = \/i?]ﬁ + (5;)2. (2.15)

Long-wavelength excitations (p < mc) are phonon-like, €(p) ~ ¢p, with a sound velocity
¢ = y/gn/m. The critical velocity (2.13) below which the condensate flows without
dissipation is determined to be v. = ¢, showing that the condensate is indeed superfluid.

In the presence of interactions quantum fluctuations will deplete the condensate, even
at T = 0. Reversing the Bogoliubov transformation to calculate ng = <&L:0dp:0) yields
the condensate density

™

no = n (1 - 3\8f na3> , (2.16)

where n is the total density. The reduction of the condensed fraction is fixed by the
parameter vVna3 and is called quantum depletion.
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2.2 Fermions

Electrically neutral alkali atoms with an even mass number are composed of an uneven
number of electrons, protons and neutrons. They therefore possess a half-integral total
spin and are fermions obeying Fermi-Dirac statistics [40]

1

o) = ket 11

(2.17)
Comparing this function with the bosonic occupation number (2.3) the only difference is
the sign in the denominator. Yet, at low temperatures this has striking consequences, as
is illustrated by the example of liquid helium. While the bosonic species *He undergoes
Bose-Einstein condensation and becomes superfluid at 2.17 K, this is not possible for the
fermionic isotope 3He. Although 2He is also superfluid below ~ 1mK, the microscopic
mechanism is completely different. In fact, at weak attractive interactions the fermions
form Cooper pairs, which are bosonic in nature and ultimately condense.

In this chapter the main properties of normal (not superfluid) Fermi gases trapped in
a harmonic potential are described.

2.2.1 The ideal Fermi gas in a harmonic trap

Any quantum-mechanical ensemble of fermions must obey Pauli’s exclusion principle. It
states that indistinguishable atoms cannot occupy the same state, which follows directly
from the spin-statistics theorem. At T'= 0 N atoms with equal spin thus populate the
N lowest energy levels up to the so-called Fermi energy Er (ground state). The Fermi
energy also defines the Fermi wave number by h%k%/(2m) = Ep, which sets the smallest
length scale ~ k;l in the system.

The calculation of physical quantities of the gas in equilibrium is most conveniently
carried out in a local density approximation (LDA) [39]. This is equivalent to a semi-
classical approach where the quantised energy levels of the potential are incorporated in
a density of states, similar to the case of thermal bosons in paragraph 2.1.1. In the LDA
or Thomas-Fermi approximation [44] one introduces the distribution function

1
e(PZ/Qm"‘Vtrap("")_#)/kBT +1 )

fre(r,p) = (2.18)

Accordingly, the gas is assumed to have locally the same properties as the homogeneous
gas at temperature 7" with a chemical potential pypa = p — Virap and a local Fermi wave
vector ko(r) defined by urpa = h%ko(r)?/2m [45]. This requires the external potential
to vary weakly over the correlation length ~ kg 1 of the homogeneous gas, which is
admissible for large (and not too anisotropic) systems whose typical dimensions R, R,
and R, fulfill the conditions 1/ko(r) < Ry, Ry, R.. At the borders of a trapped cloud,
where kg tends to zero, the approximation fails to give accurate results.

The chemical potential u(N,T) is fixed by the normalisation condition for the total

10



2.2 Fermions

particle number. Employing the density of states (2.5) to integrate over energy, it reads

1 > 1 > E?
N=——/[drd = dFE p(FE FE)=——= dF ————F7F——.
(27Th)3 / T prF(T?p) /0 IO( )fFD( ) 2(%)3 /C; e(E_:U')/kBT—i— 1
(2.19)
While this equation is generally solved numerically, analytical solutions can be derived

1F

05 |

0 0.2 04 0.6 0.8 1
/T

F

Figure 2.1: The normalised chemical potential p/Er of non-
interacting fermions in a harmonic trap as a function of the re-
duced temperature T'/Tr. The curve was calculated by numeri-
cally solving eqn. (2.19).

in the limits 7' < Tp and T > Tr [44], where Tp = Ep/kp is the Fermi temperature.
In Fig. 2.1 the chemical potential in units of the Fermi energy is plotted as a function of
the reduced temperature T'/Tr. For values T/Tr 2 0.55 it is negative because adding
particles at constant entropy will effectively annihilate holes fairly deep in the Fermi sea
such that the energy in the system decreases. Expression (2.19) also delivers the Fermi
energy by means of its definition

Ep = u(T =0) = (6N)"/*ha. (2.20)

Typical values of the Fermi temperature Tx for N = 10° atoms in our experiment (trap-
ping frequencies w ~ 27 - 100 Hz) are a few hundred nK.

For T' = 0 it is straightforward to calculate the physical quantities of the ideal gas.
With the total energy E = [ dE Ep(E) frp(E) = (6N)*/3hw /8 the average energy per
atom evaluates to

— = ZEp. (2.21)

11



2 DEGENERATE BOSE AND FERMI GASES

The extension of the cloud in each direction ¢ = xz,y, z, the so-called Thomas-Fermi
lengths R;, can be determined by setting Er = Viyap(R;). One finds

RI=0 = (48N)1/6 h (2.22)
mw;

Experimentally physical quantities describing the Fermi gas are most often obtained
by measuring the spatial distribution of the atoms with absorption imaging. The cloud—
either in the trap or after some expansion time—is illuminated with a resonant laser
beam with a weak intensity Iy, and its transmission [ /Iy = ¢~ 9P is measured on a CCD
(Charge-Coupled Device) camera. The optical density OD at each position is propor-
tional to the atomic column density. From theoretical fits to the measured distribution
(which is integrated along the line of sight) the total atom number and the temperature
are inferred. The atomic density and momentum distributions in the trap are calculated
by integrating the function (2.18) over momentum or position space, respectively. These
integrals can be brought to the form

/wdgs —T(s + 1)Ligs1(2) (2.23)
0

6z_lef—i—l -

with s = 1/2, where Lis(z) is the polylogarithmic function (also called Fermi-Dirac
integral). For the density distribution one finds

m\ 3/2
r) = [ s Frvtrip) =~z (225 ) TG/ T) (220

S~ N,T)—m/2(z?w2+y2w?+22w? . . . .-
with Z(r,T) = exp wNT) —m/ i;{ﬁy wyteTw:) Equivalently, integration over position

space yields the momentum distribution

3/2
o) = [ g frerp) == (o ) TE/2Lisp(—30.7) (229
with Z(p,T) = exp [(u(N,T) — p?/2m) /kgT]. The shape of both distributions, (2.24)
and (2.25), is determined by the function Liz/;(—Z2), as shown in Fig. 2.2. As a con-
sequence of the semi-classical behaviour the cloud is isotropic in momentum space; a
non-interacting cloud of fermions looks spherical in time-of-flight absorption imaging.

In a gas with more than one spin component the quantities derived above hold for
each component separately. For instance, if interactions are neglected, an equal spin
mixture of spin up and spin down atoms is denser and smaller than a spin-polarised
sample containing the same total number of atoms at the same temperature.

2.2.2 |Interacting fermions

In contrast to a spin-polarised Fermi gas, in a spin mixture of ultracold fermionic atoms
particles in different spin states can interact via s-wave scattering. In the experiments
discussed in this thesis, spin mixtures are usually composed of two clouds in different
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T/T.=1.00
T/T.=0.50
T/T.=0.25

T/T.=0

n(p) (arb. units)

p/hk;

Figure 2.2: The momentum distribution of non-interacting
fermions in a harmonic trap for different temperatures T. The
plot shows a central cut through the density integrated along the
line of sight.

magnetic hyperfine states with equal atom number. For such a gas the ratio of the
expectation value of the interaction energy in the ground state of the ideal gas FEjy to
the corresponding value of the harmonic potential Ey, is [39]
Eint
ho

= 0.29kra. (2.26)

Accordingly, the relevance of the interaction in a harmonic trap is determined by the di-
mensionless parameter kra. If this quantity is small the equilibrium distributions do not
change much compared to the non-interacting case. Using a contact potential, mean-field
theory has been applied to a Fermi gas in a harmonic trap [46]. Generally, interacting
fermions in the normal state are described by Landau’s theory of Fermi liquids [47]. Ac-
cording to this, when the interaction is turned on, a fermion disturbs the surrounding ones
locally, forming together with the disturbance a quasi-particle. The (interacting) quasi-
particles have the same spin and momentum as the initially non-interacting fermions,
and their number is equal [48]. They therefore behave very similarly to non-interacting
fermions which makes their description rather simple. This picture is valid under the
assumption that no symmetry-breaking phase transition occurs under the influence of
the interaction. The one-dimensional analogue of a Fermi liquid is the Luttinger liquid
[49, 50] with its characteristic spin-charge separation [51].

As we will see in chapter 4, the scattering length in cold atomic gases can be adjusted
in the vicinity of a Feshbach resonance by means of a magnetic field, providing access
to the strongly interacting regime (krpa = 1). Owing to the Fermi pressure, a cloud of
fermionic atoms is stable also for attractive interactions, in contrast to a Bose-Einstein
condensate [52]. Superfluidity of fermionic atoms as well as of weakly bound diatomic
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2 DEGENERATE BOSE AND FERMI GASES

molecules can therefore be studied. In potassium this has been done in the experiments
of refs. [2, 53].

In the following chapter 3 I discuss Fermi gases in optical lattices, where the impor-
tance of interactions in a two-component spin mixture can be significantly enhanced.

14



3 Optical lattices

The concept of creating lattice potentials with light goes back to an idea by Letokhov who
proposed in 1968 to narrow the Doppler width of spectral lines by subjecting the atoms
to the potential produced by a standing laser wave [54, 55|. In the early days of cold
atom physics, standing light waves were mainly employed in laser cooling methods, where
dissipative light forces require frequencies close to the atomic resonance [56]. Meanwhile,
the study of quantum degenerate gases confined in the potential of far-detuned optical
lattices has become an important branch of cold atom research [57].

A major motivation of this activity is the exploration of systems reminiscent of solid
state physics. Fermionic atoms are especially promising in this respect because of their
similarity to electrons in a solid crystal. In contrast to a solid, however, the parameters
of an optical crystal are tuneable, making fermionic atoms in optical lattices an ideal
playground to test and simulate fundamental models from solid state theory. One can
therefore hope to get new insight into interesting phenomena, as for instance insulating
behaviour, magnetic order or superconductivity. Another intriguing possibility is the
realisation and study of low-dimensional systems by employing deep optical lattices. A
two-dimensional lattice, for instance, produces an array of potential tubes as shown in
Fig. 3.1. If the atomic motion in the strongly confined dimensions of the tubes is “frozen
out”, one effectively deals with an array of one-dimensional systems [58|.

Ideal Fermi gases subject to a single standing wave have been studied in the group
of Inguscio [6]. Our experiments are the first ones carried out with interacting fermions
and Bose-Fermi mixtures in one-, two- and three-dimensional lattices. In this chapter
some basics for the theoretical description of such systems are developed. We will first
derive an expression for the dipole force and then address the subject of atoms in periodic
potentials, including interactions and the external trapping confinement.

3.1 Optical dipole potentials

Alkali atoms in the intensity gradient of a laser beam far-detuned from the atomic res-
onance are subject to the conservative light force, called the dipole force, making it
possible to confine atoms in the potential of focused laser beams. In 1986, long before
far-detuned optical lattices were used, Steven Chu and collaborators trapped cold sodium
atoms for the first time in a tightly focused beam [59]. Since then the far-off resonant
trap (FORT) has become a widely used tool to trap and cool atoms. Evaporative cool-
ing by lowering the laser intensity has allowed to reach Bose-Einstein condensation [60]
as well as degeneracy in a Fermi gas [31] in an all-optical way. Compared to magnetic
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3 OPTICAL LATTICES

—

Figure 3.1: An array of tube potentials is created
by a deep two-dimensional lattice. If the transverse
ground state of a tube is populated only, the system
is effectively one-dimensional.

traps, optical potentials have the great advantage of being independent of the magnetic
sub-state, allowing for the trapping of atoms in high-field seeking states (see chapter 5).
This is essential in order to access Feshbach resonances which typically occur between

such states.

3.1.1  The dipole force

le,N>

Py

>

] hg,

c

()

|lg,.N+1>
E,(r)
(8,<0)

\/

position r

Figure 3.2: Light shifts in a two-level system and a laser
beam with a Gaussian intensity profile red-detuned from
the atomic resonance.

To illustrate how the dipole force arises, we will calculate it here in the dressed
state picture for the simple case of a two-level atom [61, 62]. Depending on the actual
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3.1 Optical dipole potentials

parameters, several assumptions can be made in order to determine realistic experimental
parameters. The different approaches are covered in the review of ref. [63].

Consider an atom in a laser beam with intensity I(r) and frequency wy = wy +
detuned by ¢, from the atomic resonance wg. We start with the two unperturbed states
lg, N+ 1) and |e, N') describing an atom in the ground state with N 4 1 photons present
and an atom in the excited state with N photons present, respectively. The laser field
couples these states, which in the dipole approximation is expressed by the operator
Hdlp = —d - E, where E is the electric field operator and d = ep the electric dipole
operator. Coupling to other, non-resonant states, such as |e, N + 1) or |g, N — 1), will
be disregarded (rotating-wave approximation). For the moment we will also neglect
spontaneous emission. Setting the zero of energy to lie between the energies of the two
unperturbed states (i. e. Holg, N+1) = —hd1,/2 and Hole, N) = hdy/2), the Hamiltonian
in this basis reads

H= H(] + Hdlp h ( Q_l((;L) Qgi’r‘) ) . (3.1)

Here we have defined the Rabi frequency Qy(r) = (2/h)|(e, N|Hgip(7)|g, N + 1)|. The
eigenvectors of H are |1) = sinf|g, N+1)4cosfle, N) and |2) = cosf|g, N+1)—sin e, N)
where the angle 6 is defined by tan20 = —Q;/d;. These states describe the atoms as
being dressed by the photons ('dressed states’), and their energies

Eo1 = £hQ(r) = £h/Q3(r) + 62 /4 (3.2)

are shifted from the bare energies by the so-called light shift or ac-Stark shift. Due
to their spatial dependence they can be regarded as potentials with associated forces
F, = —Fy = —VE(r) x VI(r) (Fig. 3.2). Now, spontaneous emission gives rise
to transitions between the two dressed states, occurring randomly on the time scale of
the atom’s decay rate I~! = 3meohc®/w? - |(e|d|g)| ™2 (c is the velocity of light and ¢
the electric constant) and causes the force to abruptly change sign. The net dipole
force is calculated by weighting F'y and F'5 by the average times the atom is found in
the corresponding states |1) and |2). These times are proportional to the stationary
populations II§¢ and II§, respectively, and we obtain for the dipole force

hL V(Q3)

F=1F, +1I$F, = (115 — TIEHYF, = — —
1P+ 115 Fy = (I3 5 )F1 45%+Q%/2

(3.3)

In the limit Q < d7 (which is usually true in the experiment) the dipole potential takes
the simple form

hoy | M +67 hQ] 3rf T
2 82 26, 26

Udip(T) = I(r). (3.4)

The dipole potential is proportional to the light intensity I = 2¢gc|E |2 and adopts the
sign of the detuning J§r,. Therefore, atoms are attracted to the intensity maximum of a
red-detuned laser beam and expelled from a blue-detuned beam.
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3 OPTICAL LATTICES

An important quantity in the context of dipole potentials is the photon scattering
rate of an atom which is given by [63]

_ 3mc? T2

= opa szl (3.5)

Photon scattering has to be minimised in order to reduce the heating and decoherence
of the atoms associated with spontaneous emission.

3.1.2 Periodic potentials

A one-dimensional optical lattice is created by two intersecting laser beams. The inter-
ference between the beams leads to a standing wave and produces a potential with a
periodicity of d = A\/2 along the beam axis, where ) is the laser wavelength. In a red-
detuned lattice atoms are attracted to the antinodes by the dipole force. The potential
depth Vj is controlled by the light intensity and is usually expressed in units of the atom’s
recoil energy, E, = h?k? /2m. h is Planck’s constant, kz, = 27/) the wave vector of the
lattice laser and m the atomic mass.

Two- or three-dimensional optical lattices are produced by two or three intersecting
standing waves. If cross-dimensional interference is to be avoided, the standing waves
need to have mutually perpendicular polarisations. Additionally, one can choose differing
frequencies so that any residual interference due to imperfect polarisation are averaged
out on the timescale of the atomic motion.

Besides the periodic potential the standing waves of an optical lattice also produce
a weak external potential, which is due to the geometric shape of the beams. Moreover,
in order to provide enough confinement for the atoms, an additional optical or magnetic
trap is often used in experiments. The potential inhomogeneity breaks the translational
symmetry of the lattice and controls the atomic distribution. However, if the length
scale of the additional confinement is much larger than the lattice spacing, we may still
consider a homogeneous system when calculating local quantities like nearest-neighbour
tunnelling or on-site interaction.

3.1.3 Trap parameters

In our current experimental setup the atoms in the optical lattice are additionally confined
by an independent FORT consisting of two perpendicularly intersecting laser beams in
the horizontal (z,y) plane. We first derive the parameters of this external trapping
potential before we consider the total optical potential including the lattice. We assume
that the Gaussian beams of the FORT have equal geometries characterised by the 1/e?
radii wy, in the horizontal and w, in the vertical direction, respectively. The trapping
potential of this configuration can be written as
2 2 2 2
V(r) = —Vr exp (—2% - 222) ~ Vi exp (—29”2 - 222) +mgz (30)
wj, w2 wj, w2
where V7, and Vr, are the potential depths of the two beams. The term proportional
to the gravitational acceleration g is responsible for a sag zg of the atomic cloud with
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3.1 Optical dipole potentials

respect to the vertical beam centre. For strongly confining traps it is given by 2y =~
—mgw?/ (4(Vr.z + Vry)). For distances not far from the cloud’s equilibrium position
(x =0,y =0,z = z) the potential (3.6) can be approximated to be harmonic:

1
Vi(r) = om (wi,a® +whyy® + Wi (2 = 20)%). (3.7)

For the trapping frequencies one finds

1% 4
2 TVyeXp —21”712)
Wre = —— )
wy, m
1% &
2 T,wexp _210712)
Wwry = —— )
wy, m
2 2
s [ vi) (1= ) e (2)
wr., = — > L (38)
Wy m

Let us now turn to the cubic optical lattice created by three mutually perpendicular
red-detuned standing waves with equal 1/e? waists wy. Its dipole potential reads

Vi(r)= —Vipzexp (—2y2+222> sin?(kpx)

w,
—Vpyexp (—2”1}#) sin?(kry)
L
— Vi, exp (—2%) sin?(kp.2). (3.9)
L

Since the lattice beams are usually adjusted to be symmetric with respect to the cloud’s
equilibrium position in the underlying trap, we do not have to include gravity here (z can
simply be replaced by z + z9). Each of the lattice beams induces an additional external
confinement in the directions perpendicular to it. Furthermore, due the Gaussian beam
shape, the lattice wells are shallower away from the trap centre, such that the trapping
frequency of an individual lattice site is reduced:

E, |V 24 22
Wsite,z (Y, 2) 2#1/ g‘j . <1 _Y w% > , (3.10)

and accordingly for wsite,y and wsite,.. Although this correction is small, the spatially
varying ground state energy of the sites results in a non-negligible effective reduction of
the external confinement [64]. Including this effect, the trapping frequencies due to the

lattice beams are
4E, o Vo
= 2— —/— ], 3.11
wL mw% ( E, E, ( )

where we have assumed a lattice with equal beams in all three directions, i. e. Vi, =
Viy=VL,.=W.

19



3 OPTICAL LATTICES

Figure 5.5 shows plots of the combined potential of a crossed-beam dipole trap and a
3D optical lattice. The trapping frequencies of the total external harmonic confinement
in this situation are simply calculated as

wi =\ [wF, +wi, (3.12)
fori ==z, vy, z.

In the following two sections we will neglect the inhomogeneity of the lattice. The
effect of the additional potential will be discussed in section 3.4.

3.2 Band structure and Bloch states

The general quantum-mechanical characteristics of particles in a periodic potential are
well known from solid state physics. The eigenstates are described by Bloch wave func-
tions, which in one dimension read [65]

Un,g() = tn,g(x)e ™", (3.13)

where uy o(x + d) = up 4(x) has the same periodicity as the potential. For a lattice with
Ny sites contained in a box of length L, the parameter g can take the discrete and equally
spaced values ¢ = z - 2w /L with (z = 0,+1,...,+=Ns — 1) and hq is called quasi- or crystal
momentum. The additional quantum number n = 1, 2,... is known as the band index.
To unambiguously define the wave functions (3.13), we choose their global phase such
that 1, 4(0) is real and positive for all crystal wave vectors g.

In the case of a one-dimensional optical lattice the periodic potential is given by

Vi(z) = —Vpsin® kpx. (3.14)

It is straightforward to calculate the energy spectrum and the Bloch states by expressing
the Hamiltonian in terms of plane waves and diagonalising it numerically [66]. The result
of such a calculation is shown in Fig. 3.3: The energy spectrum is split into Bloch bands
corresponding to the band indices n, separated by energetically forbidden gaps. With
increasing lattice depth the bands become narrower and the gaps between them larger. In
the limit V[ — oo the energy levels coincide with harmonic oscillator levels, each lattice
site becoming similar to a harmonic oscillator well.

Generalisation to a two- or three-dimensional lattice is straightforward since the prob-
lem is separable in the different dimensions. In a square or cubic lattice higher bands
(n > 1) are (partly) degenerate, as is easily understood when looking at Fig. 3.4 which
illustrates the two-dimensional case: The two lowest bands of each one-dimensional lat-
tice, with band indices n, = 1 and n, = 2 for the z-direction, and n, = 1 and n, = 2
for the y-direction, form together two square-symmetric surfaces. The surface at lower
energy corresponds to the second band, n = 2, of the two-dimensional lattice, the one
at higher energy to the third band, n = 3, and both cover the same energy range. Sim-
ilarly, the next three higher bands are created by the configurations (n, = 1, n, = 3),
(ng =3, ny =1) and (n, = 2, ny = 2) and also overlap in energy space.
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Figure 3.3: The lowest Bloch bands of a one-dimensional optical lattice of different depths
in the reduced zone scheme. It should be noted that atoms in states with an energy exceeding
the sum of the lattice depth and the external confinement are not trapped.

3.3 Tunnelling in the lowest band

The motion in a lattice is restrained but the atoms can still move through the periodic
potential by tunnelling between the sites. In what follows, we derive expressions for the
matrix elements responsible for this process and show how the tunnelling relates with
the band structure of the energy spectrum.

The Hamiltonian for a homogeneous system of non-interacting atoms in second quan-
tisation reads

272
oy =3 [ ifo) (= V@) ) o) (3.15)
For later convenience, we have summed over the spin index o € {1,|} to include two
spin components. In the following we will restrict ourselves to the lowest Bloch band
n = 1 which is the only band relevant in most of the experiments since higher bands
are usually not populated. The field operator QZJU(ZE) is expanded in the corresponding
Wannier functions,

b (z) = Z’w(x —2;)Cig- (3.16)

The creation and annihilation operators égg and ¢; , for a fermion with spin o at a site ¢
b

obey the usual anti-commutation relations. The normalised Wannier function w(x — x;)
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Figure 3.4: The lowest six Bloch
bands of a two-dimensional optical lat-
tice. Higher bands are (partly) degen-
erate, i.e. their energy ranges overlap.

localised on the lattice site i is given by
1 oz
w(r —x;) = — —1g(x)e"? (1 =1,2,..., Ny). 3.17
( i) VN, Zq:wn 17q( ) ( 5) ( )
For all available sites ¢ in the system the Wannier functions constitute a complete or-

thonormal set of wave functions describing particles localised in the potential wells.
Inserting the expansion (3.16) of the field operator into (3.15), the hopping Hamilto-

nian can be written as
Hyop ==Y Jijél 160 (3.18)
O- 27‘7

The tunnelling matrix elements

2072
Jij = — /dx w; () <— hQZ + VL(CL‘)> wj(z) = —]\1@ ZE(q)ei(’“_wi)q (3.19)

include the kinetic energy as well as the periodic potential and describe the hopping of an
atom from the site 7 to the site j. Through this tunnelling process the atoms can lower
their kinetic energy. From the second part of the equation, which is obtained by inserting
the definition (3.17) of the Wannier functions, it is obvious that the matrix elements J;;
are the Fourier coefficients of the band structure E(q) [67]. We thus find the dispersion
relation of the lowest band,

E(q)=—-Jy—2 Z Jp, cos(ngd). (3.20)
n>0
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Figure 3.5: Absolute square of the Wannier functions w(x) of the lowest Bloch band for
different lattice depths Vj.

The sum adds up all orders of tunnelling terms J,, = J;(j—;1n) between sites separated
by the distance nd (n = 1,2,...). From this formula we derive a useful relation between
the tunnelling elements and the bandwidth, AE =4, Jn. Note that higher order
tunnelling terms become less and less important in a deeper lattice as the overlap between
distant Wannier functions vanishes.

For a given crystal wave vector ¢ the dispersion relation of the lowest band can be
harmonically approximated. Comparing with the parabolic dispersion of free particles
one can then define an effective mass m* by

2 2
U = %E(q) (3.21)

For ¢ = 0 this approximation yields m* = h?/(2J1d?) or m*/m = E,/(7?J;), while m*
diverges for ¢ — +hkr /2. Atoms in shallow lattices can often be described in a simple
picture, where they are considered as free particles with a mass given by the effective
mass. For instance, the lower frequencies of dipole oscillations in the lattice as compared
to a pure harmonic trap are a consequence of effectively heavier atoms [68].

3.4 Fermions in an optical lattice

Condensed bosonic atoms accumulate in the lowest energy state of the lattice having zero
quasi-momentum. The ground state of indistinguishable fermions looks very different:
The Pauli principle admits only one atom per spin component in each quasi-momentum
state of the lowest band. In this paragraph we discuss the implications of the fermionic
quantum statistics on the measurable atomic distributions, which are significantly influ-
enced by the confining potential present in experiments.

3.4.1 The external harmonic confinement

In all experiments to date the trapped atoms are subject to an external harmonic potential
Vr(x) due to the shape of the lattice laser beams and often also due to an additional
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optical or magnetic trap. The external confinement determines the atomic distributions
and has important consequences for the energy spectrum and for the temperature of the
gas when it is loaded into the optical lattice.

Figure 3.6 shows illustrations of the combined potential of a lattice and an underlying
trap. Locally the system can still be regarded as homogeneous and energy bands may
be defined as above. However, the underlying harmonic confinement leads to a position-
dependent filling-factor of the optical lattice, usually decreasing towards the edges of
the trap. As a consequence, in certain regimes different phases may be simultaneously
present in different regions of the trap [69, 70, 71]. In order to investigate the filling in
the lattice it is instructive to look at the energy spectrum in position space [72]. In such
a picture the Bloch bands are bent in space, as shown in Fig. 3.7.

Figure 3.6: Drawings of the combined potential of an optical lattice and a weak harmonic
trap (not to scale).

energy

Figure 3.7: Illustration of the energy spec-
trum in position space for an optical lattice in

B 4) the presence of an additional harmonic poten-
“T - tial. The “bending” of the Bloch bands leads
— > to a position-dependent filling factor of the op-

position tical lattice.

In the case of an ideal Fermi gas Rigol et al. have found a simple way to specify the
atomic distribution in an inhomogeneous lattice considering a tight-binding Hamiltonian
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3.4 Fermions in an optical lattice

[73]. One defines a characteristic length (; for each lattice direction ¢ = z, y, z, which is
the distance from the centre of the trap at which the energy offset due to the harmonic
confinement balances the tunnelling energy J = J; (higher order tunnelling terms are
neglected here). It has been shown numerically that the density distribution scaled by (;
and the momentum distribution of the atoms in the lattice at 7' = 0 only depend on the
(dimensionless) characteristic density p.:

1
imw? 2= (3.22a)

N m\ 3/2
= —— = N3P (—) . 22b
Pe= e Cjas — (2,]) (3.22b)

Here, N is the atom number per spin state. As a result, systems with the same character-
istic density have the same typical filling (e. g. filling in the trap centre). A specific filling
factor in the lattice can be achieved by tuning either of the following three parameters:
the particle number N, the trapping frequency @ or the tunnelling J. This has been
exploited in the experiment of section 6.1, where samples with different fillings have been
prepared to observe the transition to a band-insulating phase.

In a translationally invariant potential particles cannot localise in the lattice wells in
the absence of interactions or disorder. In contrast, atoms in a lattice with underlying
confinement become localised when the energy offset between two neighbouring sites,
Vr(x;) — Vp(xi41), exceeds the tunnelling energy, which is more likely to happen away
from the trap centre |72, 74]. More localisation is attained by increasing either the lattice
depth (decreasing J) or the external confinement. In the tight binding limit, where all
atomic states are assumed to be localised, the density of states for the lowest band of a
three-dimensional lattice can be derived analytically |75, 76/,

2 3/2

where )\ is the wavelength of the lattice laser. From this one easily obtains the Fermi
energy

2/3 =22
(ih) _ (3N> mEA" (3.24)

E — [ =
F 2 16

Due to the different densities of states in the lattice with underlying confinement, the
entropy S o« T'//Tr is only half as large as compared to a harmonic trap [see eqn. (2.20)].
Loading the fermions adiabatically (at constant S) from a harmonic trap into the lattice
is therefore accompanied by an increase of the ratio T'/Tr by a factor of 2 [75]. This
effect is in contrast to what happens in the lowest band of a homogeneous lattice, where
T/Tr remains constant [77]. In that case T drops with T o< m*~'/2 while the lattice is
ramped up adiabatically because the effective mass m* defined in eqn. (3.21) increases.

3.4.2 Quasi-momentum distribution

In the ground state of non-interacting particles in a homogeneous lattice the Bloch levels
are occupied each by one fermion (of each spin state) up to the Fermi energy Fr. The
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3 OPTICAL LATTICES

surface separating the occupied levels from the unoccupied levels in quasi-momentum
space is called the Fermi surface. Its shape depends on the lattice filling, as is shown
in the upper row of Fig. 3.8 for a simple cubic lattice. At low fillings the Fermi surface
has the form of a sphere and gradually develops extensions towards the Bragg planes of
the first Brillouin zone as the filling increases [65]. When the lowest band is completely
filled, the Fermi surface coincides with the cube defining the first Brillouin zone.

0.8
0.6
0.4
0.2

(:(™2)/'N) Ansusp uwinjo>

o

Figure 3.8: Fermi surfaces (upper row) and quasi-momentum distributions (lower row)
in a homogeneous simple cubic lattice in the tight binding limit for different fillings. The
distributions in the lower row have been integrated along one lattice direction. The fillings
correspond to Er/AFE equal to (a) 1/6, (b) 1/3, (¢) 1/2, (d) 2/3 and (e) 5/6, where AFE is
the bandwidth of the lowest Bloch band.

At zero temperature the quasi-momentum distribution in a homogeneous system is
a function evaluating to one inside the Fermi surface and to zero outside. Integration
along one lattice direction yields the distributions plotted in the lower row of Fig. 3.8.
In the case of trapped fermions where the filling factor is position-dependent a Fermi
surface can, strictly speaking, only be defined locally. The trapping potential modifies
the global quasi-momentum distribution which can be thought of as the local distributions
integrated over the extension of the trap. Experimental data therefore do not feature the
sharp borders visible in the calculated distributions of Fig. 3.8.

The possibility to control the lattice potential makes a direct measurement of the
quasi-momentum distribution possible. For this purpose the potential is reduced adia-
batically such that the quasi-momentum is conserved and eventually mapped onto the
real momentum [78, 79]. The time scale for turning off the lattice is on the order of 1 ms,
which is too fast for the many-body wave function to follow, but still slow enough to
avoid inter-band excitations.

3.4.3 Momentum distribution

All the information contained in the quasi-momentum distribution is also encoded in the
real momentum distribution. The latter is obtained experimentally by switching off all
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3.4 Fermions in an optical lattice

confining potentials (lattice and trap) quickly and letting the atomic cloud expand. If
the interaction between the atoms is small compared to the kinetic energy, then after
long enough time of flight the momentum distribution is mapped to position space and
can be measured with absorption imaging. Since a state with a quasi-momentum Agq is a
superposition of plane waves with momenta /(g +n-2kr) (n integer), each g will produce
peaks separated by 2hk; in the momentum distribution. This can also be viewed as an
interference between the wave function components on different lattice sites. Condensed
bosons, for instance, occupy only the ¢ = 0 state and therefore give rise to an interference
pattern with sharp peaks. A gas of normal fermions, on the other hand, always has a
finite width in quasi-momentum space and produces accordingly wide peaks.

An expression for the atomic momentum distribution is readily obtained in second
quantisation [80, 81]:

n(k) = (O (k)D(k)) = / dda’ e~ p(g. 2/ (3.25)
with the one-body density matrix
plz,a’) = (1 () (x)), (3.26)

and using the expansion (3.16) one obtains

, V,=15E,
n(k) = [w(k)[*> e *Emmi ey (3.27) ’
7:7j
0.1
This corresponds to the Fourier transform of the I l |
correlation function <éjéj> enveloped by the abso- Jhk otk 0 2k 4nk
lute square of the Fourier transform w(k) of the
Wannier function. Evaluating the momentum dis- 3
_— s . = 04 1
tribution for the ground state ( e o czg) 0) 3 / I ) _
with fermions filled up to the quasi wave vector 5; ARk 2Rk 0 2Rk 4Rk =
Qmax We obtain ‘é @
gmax %
n(k) = [o(k)?Y . Y et (3.98)
4. 4="Ymax -4hk -2hk 0 2Rk 4Rk
Distributions for different values of ¢max are shown
in Fig. 3.9 for a potential depth of Vy = 15E,. 1.0 -
For fillings ¢max/kr, < 1 an interference pattern L 4
is visible. As the filling increases, the widths of -4hk 2hk 0 2Rk 4hk
the momentum peaks grow, reflecting the broader momentum

quasi-momentum distribution. When the lowest
band is completely filled (band-insulating state), Figure 3"9" Z?ro‘temper?ture mo-
the patterns of the individual atoms complement mentum distribution of non-interacting

. fermions in a homogeneous one-
each other and only the envelope function is ob- dimensional optical lattice with depth

served. In a deeper lattice the number of interfer- 15E, for different fillings.
ence peaks contained within the envelope is larger
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because the Wannier functions are more localised and thus spectrally broader. As in posi-
tion or quasi-momentum space, the harmonic confinement smoothes out the distribution
relative to the homogeneous case. Therefore, sharpness and contrast of experimentally
observed interference patterns are reduced.

3.5 Including interactions: The Fermi-Hubbard model

In 1963 J. Hubbard introduced a model to describe interacting electrons in a single
energy band of a lattice [82]. In solid state physics it attracted the interest of many
theorists, not only because of its simplicity but also because it is expected to support
high-temperature superconductivity [14]. Cold alkali atoms in optical lattices constitute
a clean implementation of the single-band Hubbard model [13, 83]. The model accurately
describes the short-range two-body interactions between alkali atoms, and its restriction
to the lowest Bloch band is most often justified by the low energy scales in these systems.
A seminal experimental demonstration of the model’s applicability to atoms in optical
lattices was the observation of the superfluid to Mott insulator transition of bosonic
atoms in 2002 [84].

The Hubbard model can be derived in a second quantisation approach starting from
the full many-body Hamiltonian including local two-body interactions [85]. In the fol-
lowing this is done for a two-component Fermi gas consisting of atoms with spin o which
can take the values T and |:

~ ~ 2 2 ~
A= % it (-G + V) + Vi) dute)
O [ adl @il @)ie @) ). (3:29)

Here, we have used a zero-range interatomic potential Viyi(x — ') = gd(x — 2’) with the
coupling parameter g = 47h%a/m and a being the s-wave scattering length. Vp(z) is an
external trapping potential which varies on a length scale much larger than the lattice
spacing d. Assuming that the atoms do not occupy higher Bloch bands, we can again
use the expansion (3.16) for the field operator to express the Hamiltonian in terms of
Wannier functions:

ZZJUcwc]UJrZZ Yistt, w}ngaCza'JrZZVT 2:)él s (3.30)

o,0' 1,5,k

In addition to the hopping (first term) and the external potential (third term) we get an
interaction term which is determined by the matrix elements

Uit = ¢ / d w? () (2w (z)wr (). (3.31)

Taking into account only the on-site interaction U = Uy = ¢ f dz w(m)4 between two
fermions (with different spins) residing on the same lattice site and the nearest-neighbour
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3.5 Including interactions: The Fermi-Hubbard model

tunnelling J = J; leads to the Fermi-Hubbard Hamiltonian:
I‘YFH = —JZ Z é;aéj,g +U Z ﬁ,’ﬁfli,l + Z Z VT(«Tz‘)ﬁz‘,m (332)
o (i,j) Q o i

where (i,j) denotes the sum over nearest neighbours (including double counting) and
i o = él-igéw is the fermionic number operator for atoms at the site ¢ with spin o. The
Hubbard model is a tight-binding description [65] and can be applied when the optical
lattice is not too shallow. At a lattice depth Vi = 5E, Js is already more than an order of
magnitude smaller than Jp, such that the Hubbard approximation is justified. The lowest
band then has the typical cosine shape Fy(q) = —Jy — 2J cos(¢d). Another limitation
is the restriction to the lowest band. If the Fermi energy Ef, the interaction energy U
or the thermal energy kpT' exceeds the gap to the next higher band, the picture is not
appropriate anymore and a multi-band model should be applied [86]. A detailed analysis
of the validity of the Fermi Hubbard model is found in ref. [87].

Analytic formulas for U and J can be obtained in the limit of large lattice depths
[80], which for a cubic lattice read:

3/4
U= \/EkLaET @3) (3.33)

4 (! Vo
J=—F, (=] exp|-2(/=]. (3.34)
VT (E) By

J is exponentially suppressed with growing lattice depth. The time scale associated
with the tunnelling process is given by 7 = h/2zJ, with z being the number of nearest
neighbours (z = 6 for a simple cubic lattice).

The physical relevance of the interaction in the Hubbard model is specified by the
ratio U/J between interaction and kinetic energy. Its value determines for example if the
system is in the Mott insulating phase or not [13, 80|. U/J can be tuned over a wide
range by changing the lattice potential depth (which mainly affects J) or by adjusting U
by use of a Feshbach resonance (see section 4.3), as can be seen in the plot of Fig. 3.10.
For a given lattice depth V;/E, the parameter U/J is fully determined by the product
kra of the lattice wave vector and the scattering length. Within the validity range of
the Hubbard model, the physics is thus governed by the two length scales a and A. New
effects come into play when the scattering length a becomes of the order of the extension
of the Wannier function in a well. In the following chapter we will see how this affects
the atomic scattering.
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Figure 3.10: The ratio U/6J as a function of the potential depth of a cubic optical
lattice. The on-site interaction energy U and the tunnelling energy J have been
calculated numerically. In this plot J denotes the total tunnelling, which at very
small lattice depths differs noticeably from the nearest-neighbour tunnelling.
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4 Interactions in cold atomic gases

The phase-space distribution of an ideal quantum gas is self-evident since the independent
atoms simply occupy the single-particle eigenstates of the trapping potential according to
the quantum statistical requirements. Interactions, on the other hand, lead to nontrivial
correlations between the atoms and give birth to exciting quantum many-body states.
Such systems become accessible with cold atomic gases by taking advantage of Feshbach
resonances.

Strongly correlated states in optical lattices are especially intriguing. The periodic
potential squeezes the kinetic energy and enhances the importance of the interaction. The
minute structure of an optical lattice can also directly influence the scattering between
atoms on a microscopic scale. The lattice potential can modify the wave function on
length scales comparable to those of the interatomic potential, and its effect is of great
importance for the understanding of interacting gases in optical lattices.

This chapter first revisits the subject of scattering between ultracold atoms, pointing
out the relevance of the length scales involved. The second part addresses Feshbach
resonances, and finally, the particularities of scattering under strong confinement are
summarised.

4.1 Scattering theory

We consider two atoms interacting through a potential V() with a range rg, where r is
the relative coordinate [88]. The stationary wave function is described by the Schrodinger
equation

h2
<2mv2 i Ek> Ur(r) = V(r)ow(r). (4.1)

The wave vector k defines the direction of the incoming wave as well as the energy
Ey = h?k%/m (k = |k|) in the center of mass frame. The asymptotic (r = |r| => )
solution can be written as the sum of the ingoing plane wave and the scattered wave,
. eirk

U(r) =BT+ — (k. k) (42)
with k' = kr/r being the wave vector of the outgoing wave. The scattering amplitude f
is given by the implicit expression f(k,k’) = — (m/2rh?) [ dr' e KTV ()i (r') and
can be treated in first order in V for weak potentials. This is known as the first Born
approximation. Replacing 1k (7) by its zeroth order approximation exp(ik - r) yields

f%ﬁ@:—é%V%—H% (4.3)
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4 INTERACTIONS IN COLD ATOMIC GASES

where V (k) is the Fourier transform of V(r). Integrating the absolute square of the
scattering amplitude over the solid angle results in the total scattering cross section:

o= /dQ|f(k:,k:’)|2. (4.4)

For a spherically symmetric potential V(r) the angular part of the wave function
¥ is expanded in partial waves given by the Legendre polynomials P;(cos(f)) of order
1 €{0,1,...}. The radial part u;(r)/r obeys the 1D Schrodinger equation for each [ with
an effective potential

2
5 (OF + B?) w(r) = Veg(r), (4.5a)
B2+ 1)

Vest(r) =V (r) + 22

(4.5b)

In the limit of very low energies (k — 0) the atoms cannot overcome the centrifugal
barrier appearing in (4.5b), and scattering into partial waves other than the isotropic
s-wave (I = 0) is suppressed. For r > ry eqn. (4.5a) reduces to ug(r) = 0 and the
asymptotic scattering wave function reads

uo(r) o r—a

Yr—o(r) ~

4.6
r r (4.6)
This is equivalent to f — —a (kK — 0) as can be seen from eqn. (4.2). The s-wave
scattering length a determines the intercept of the asymptotic scattering wave function.
More precisely, for potentials vanishing fast enough for large r, the low k expansion of
the s-wave scattering amplitude reads

1

() _ _ 4.7
Ty a~'+ik — 3k + .. (4.7)

defining the effective range r. of the potential [89, 90]. The optical theorem o(k) =
(47 /k)Im [f (k)] then gives the cross section for distinguishable particles
4ma®

7= 1+ a2k2

(4.8)
in the limit £ — 0.

It is worthwhile noting that the spatial part of the two-body wave function is sym-
metric for even [ and antisymmetric for odd I, resulting from the parity of the Legendre
polynomials. Hence, in order to fulfill quantum statistics, two fermions with equal spin
can only interact via odd partial waves. Since at low temperatures only the symmetric
s-wave is important, indistinguishable, spin-polarised fermions—having an antisymmet-
ric spatial wave function—do not interact with each other. An exception constitutes a
spin-polarised gas close to a p-wave Feshbach resonance for which the p-wave interactions
are drastically enhanced. This topic will be discussed in chapter 7.
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4.2 Emerging length scales

4.2 Emerging length scales

Quantum degenerate atomic gases are not thermodynamically stable in the strict sense.
In fact, the interatomic potential supports many bound states below the continuum
with energies much smaller than the studied temperatures [91]. However, three-body
recombination processes, in which two atoms form a deeply bound state and a third one
carries away the remaining kinetic energy, are largely suppressed due to the low density.
Indeed, the density of a degenerate Fermi gas is of the order k;g [see eqns (2.20) and
(2.22)], and the typical range ro = (s of the van der Waals potential® is much smaller
than the inter-particle spacing ~ k:l}l [45]:

krfBs < 1. (4.9)

As a result, in the absence of any scattering resonance collisions occur predominantly as
a two-body process. Another important consequence is that the scattering state can be
described by its expression in the asymptotic regime. The macroscopic properties of the
interacting many-body state thus only depend on the scattering amplitude [92]|, which
at low temperatures is usually fully determined by the scattering length a. The latter is
true in the so-called zero-range limit, where

k2|re| < |a™t 4 ik, (4.10)

as is seen from eqn. (4.7). In very tight potentials such as an optical lattice this condition
may be violated. This issue will be discussed below.

Calculating the exact interatomic potential is very complicated and the Born approx-
imation can usually not be applied [93]. Yet, the above considerations allow to replace
V(r) by Fermi’s zero-range pseudo-potential [40]

Viseudo (1) = g0(7)0rr (4.11)

with the coupling constant
4h?

m

g= a. (4.12)

It involves as the only interaction parameter the scattering length a, which has to be de-
termined experimentally. The regularising operator 9, in (4.11) removes the divergence
of wave functions which behave as 1/r for r — 0. Comparing the scattering amplitude
pseudo _ o /(1 + ika) of the pseudo-potential with the more general expression (4.7)
it is clear that the application of (4.11) is restricted to s-wave scattering in the zero-
range limit. Advantageously, for a small gas parameter kr|a| < 1 the pseudo-potential
is treatable in the Born approximation and permits mean-field approaches.
In the vicinity of a Feshbach resonance the scattering length can take arbitrarily large
values. An interesting regime accessible in experiments is the unitary limit: for a — oo
the cross section is constrained to its maximum value o = 47/k? [see eqn. (4.8)]. The

*The length scale 8¢ = (Cem/h?)/* of the van der Waals potential Vigw = —Cj /r° is defined through
the equation i%/m32 = Cs/[38.
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4 INTERACTIONS IN COLD ATOMIC GASES

last remaining length scale characterising the interatomic potential, a, then drops out of
the problem and the physics of the strongly interacting Fermi gas becomes universal, i. e.
independent of the microscopic details of the atomic species under consideration.

4.3 Feshbach resonances

In ultracold atomic physics Feshbach resonances serve as a powerful tool to control the
interaction between atoms. The scattering length can be tuned to arbitrary values by
varying an external magnetic bias field [94], and via an adiabatic sweep weakly bound
diatomic molecules can be formed. In a degenerate Fermi gas this has enabled the study of
the crossover between BCS type and BEC type superfluidity [95, 96, 5]. In optical lattices
Feshbach resonances for atoms give independent control over the on-site interaction U,
allowing to vary the parameter U/J over a large range. The formation of molecules in
lattices reveals the special nature of bound states in periodic and quasi low-dimensional
systems.

closed channel |m'_;m'_>

open channel |m_;m_,>

F1

> I

Figure 4.1: The coupling between the open entrance channel
and the closed channel potentials leads to a Feshbach resonance
when the detuning iié — 0 by applying a magnetic field.

The underlying mechanism of the enhanced Feshbach scattering is the resonant cou-
pling of the collisional entrance channel to one or several other channels. In the following
we consider two atoms in the hyperfine states |F, mp) and |F,mp3) colliding at low en-
ergy. The two-body state is in general a superposition of a spin singlet and a spin triplet,
and the corresponding interatomic potential determines the value of the background scat-
tering length ayp, (see appendix 10.1). Since the energy of the atoms lies slightly above
the continuum threshold, the entrance channel is referred to as open. Denoting the posi-
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4.3 Feshbach resonances

tions of the atoms 71 and ro and their electronic spins s1 and s, the central part of the
interatomic potential can be written as the sum of a spin-independent interaction term
Ve and a spin-spin interaction term proportional to Vs [97, 98]:

V(ry —ra) = Vo(r1 —ra2) + V(1 — 1r2) 81 - 820 (4.13)

At short distances V' couples the entrance channel weakly to other two-body states with
equal total spin Mp = mpg1 + mp2. Suppose that the open channel is coupled to a
single closed channel with different internal states |F’,m/,) and [F',m/,), as illus-
trated in Fig. 4.1. A Feshbach resonance arises when this inter-channel coﬁpling is res-
onantly enhanced by tuning the highest vibrational bound state of the closed channel
into degeneracy with the continuum threshold energy of the open channel. Since in gen-
eral the magnetic moments of the two channels differ by an amount Ay, the detuning
ho = Au(B — By) can be changed by applying a magnetic field. At resonance, B = By,
the atoms virtually populate the closed channel bound state in a second order process
before flying apart in their original internal states. This leads—in the case of an s-wave
resonance—to a divergence of the scattering length.

This behaviour is reminiscent of a basic (single-channel) problem in quantum me-
chanics, namely a square well potential with varying depth. In this case, the value of
the scattering length is increased by making the potential deeper. At some depth the
well supports a new bound state, and the scattering length a diverges to +o00. As the
potential is lowered further, a increases again from —oo and the binding energy of the
bound state increases. Likewise, in the multichannel problem of a Feshbach resonance
the divergence of the scattering length is linked to the emergence of a weakly bound
state, which is discussed in the next paragraph. It should be noted that single-channel
models can be applied to broad resonances only, whereas two-channel models [99] also
successfully describe narrow resonances.

The magnetic field dependence of the scattering length takes the generic form [100,

101]
a(B) = apg (1 - B“;()) , (4.14)

where AB is the width of the resonance and ans = a(0) the background scattering length
at zero magnetic field. Examples are shown in Fig. 4.4. In Fig. 4.2 it can be seen that
the physically relevant resonance position By does not exactly coincide with the value
Bi,es where the closed channel bound state and the dissociation threshold are degenerate.
In fact, an avoided crossing between the closed channel bound state and the highest
vibrational bound state of the entrance channel results in a significant shift [102]. The
resonance width AB depends on the inter-channel coupling as well as on the background
scattering properties [45]: AuAB = 2h*/mreaps. We will see in the next paragraph
that the width is of great significance when it comes to strongly correlated many-body
physics. A resonance is considered as broad if the effective range r. of the interaction
potential is of similar (or smaller) magnitude as the van der Waals length Gs: From the
diluteness of the gas [eqn. (4.9)] it then follows directly that the condition (4.10) for the
zero-range limit is fulfilled. In the opposite case one deals with a narrow resonance.
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4.3.1 Bound state and BCS-BEC crossover

As mentioned above, a diverging scattering length is associated with the appearance of
a bound state below the continuum threshold. A weakly bound molecular state indeed
exists on the side of the Feshbach resonance where the scattering length is positive (so-
called BEC side), as can be seen in Fig. 4.2. By tuning the magnetic field such that the
resonance is crossed starting from the side of negative scattering lengths, two colliding
atoms can be adiabatically converted into a weakly bound Feshbach molecule [103]. Its
binding energy near the resonance is given by the Wigner formula [8§]
h2

B(B) =~ (4.15)

(see inset of Fig. 4.2). This formula coincides with the energy of the only bound state
supported by the pseudo-potential. An expression extending its validity towards smaller
values of a has been derived taking into account the long-range van der Waals tail —Cf /7°
of the background scattering potential [104, 105]:

Ey(B) = — - — . (4.16)
om (a(B) — a)?

where a = (g -0.478... is the so-called mean scattering length. In the range of parameters
exploited in current experiments with “°K eqn. (4.16) agrees well with one- or two-
channel calculations [102]. It is noteworthy that the molecular wave function for a broad
Feshbach resonance has only a small amplitude in the closed channel state, meaning that
the Feshbach molecule is quite different from the unperturbed bound state. A particularly
appealing feature of molecules composed of two fermions is the long lifetime close to the
resonance. Since their size on the order of a is large compared to the interatomic distance,
the constituent atoms still experience each other as independent fermions and three-body
recombination is suppressed by the Pauli principle [106]. Farther away from resonance,
the lifetime is much shorter as the molecules become more strongly bound and smaller
in size.

Due to their bosonic nature the molecules can undergo a phase transition to a Bose-
Einstein condensate, which has been observed in groundbreaking experiments [53, 107,
108, 96]. On the side of the resonance where a is negative (so-called BCS side), no weakly
bound two-body state exists in a shallow confinement. However, in the regime of weak
attractive interaction, Cooper pairs form if the temperature is low enough and the many-
body state is described by the BCS theory of superfluidity [109]. The BCS and the BEC
side are connected by a crossover where the scattering length is very large. In this regime
resonance superfluidity of pairs [110] occurs at temperatures which are experimentally
achievable [2, 3]. Furthermore, in the unitary limit the inter-atomic distance n~'/3 is
left as the only relevant length scale, such that the gas exhibits universal thermodynamic
behaviour [111]. Owing to this remarkable property, the physics of other strongly inter-
acting Fermi systems such as neutron stars or quark-gluon plasmas, can be investigated
in experiments with cold atoms.
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energy E

magnetic field B ! B

0

Figure 4.2: Energies of the coupled channels as a function of
magnetic field. The green horizontal lines correspond to the dis-
sociation threshold (solid) and the highest vibrational bound state
(dashed) of the open channel and the red tilted line (dashed) to
the highest vibrational bound state of the closed channel. The
inter-channel coupling results in the energy states shown in blue.
The inset magnifies the region of small binding energies of the
Feshbach molecule where expression (4.15) is valid.

Reaching the unitary limit requires a broad Feshbach resonance fulfilling the zero-
range limit condition and the condition kpre < 1, which ensures that the entire Fermi
gas is in the same interaction regime (the effective range r. characterises the energy width
of the resonance, see above) (90, 45].

4.3.2 Resonances in ‘K

For K two broad s-wave Feshbach resonances and one p-wave Feshbach resonance are
known for the lowest hyperfine manifold ' = 9/2. They can all be easily accessed in
experiments owing to the moderate magnetic field values of their positions:

{mp1,mpa} | partial wave position [G] width [G] | references
—9/2,~7/2 s 202.1 £ 0.1 78 | 112, 2|
-9/2,-5/2 s 224.21 £0.05 9.7+0.6 | [113]
—7/2,-7/2 p ~198.8+0.5 (T = 0) [114]

Table 4.1: Parameters of the Feshbach resonances in “°K used in our experiments.

The s-wave resonance at 202.1 G is the most utilised in experiments and is described
in some more detail in the following. It involves the two lowest magnetic hyperfine
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levels |F' = 9/2,mp = —9/2) and |9/2,—7/2) (Fig. 4.3) which do not suffer from spin-
exchange collisions [115]. In appendix 10.1 it is shown that the atoms in these states are
in an almost pure triplet configuration. For this reason the background scattering length
ang = 174ag is nearly identical to the triplet scattering length [116]. The positive value
is due the fact that the highest vibrational level of the background scattering potential
lies an amount of £y = h - 8.75MHz below the dissociation threshold (see Fig. 4.2)
[102]. Tt is this state which is responsible for the shift of the resonance position of
By — Bres = —9.274G. To get an idea of the origin of the Feshbach resonance we can
consider the potential (4.13) for the spin-spin interaction. Since it conserves the total
spin projection Mp = mp1 + mpa = m/p, + mp, = —8, the only possible coupling is
between the [9/2, —7/2) atom and an atom in the state |7/2,—7/2) [97]. Owing to the
difference in magnetic moment of Ay ~ 14/9 up, the bound state of the closed channel
can be brought into resonance with the entrance channel by applying a magnetic field.
Feshbach molecules created at this resonance have a fraction of at most 8% associated
with the closed channel.

--- |F=7/2>
- © |F=9/2>
m,=-9/2, -7/2

Figure 4.3: Level scheme of the lowest hyperfine states of °K at
nonzero magnetic field. The quantum number mpy increases from
left to right. The vertical line indicates the Feshbach coupling
between the channels.

As described in chapter 5, we prepare our degenerate Fermi gas on the BCS side of the
resonance (see Fig. 4.4). From there we can lower the magnetic field to access arbitrary
negative values of the scattering length, or increase it to approach the background value.
On the other hand, it is not obvious how large positive scattering lengths can be achieved
since crossing the resonance would result in the formation of molecule. In this respect,
the existence of a second resonance at 224 G is very helpful: we can transfer the atoms
from the state |9/2,—7/2) to the state |9/2,—5/2) using a radio-frequency pulse and
access the BEC side of that resonance from magnetic fields lying below. In this way, the
experimentally accessible range of positive values of the scattering lengths is not limited
by the background value ay,g.
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Figure 4.4: The scattering length (in units of the Bohr radius) as a
function of magnetic field for the two s-wave Feshbach resonances in
the F' = 9/2 hyperfine manifold of “°K. We cool our Fermi gas at the
indicated point and can then—after applying an rf-pulse—access large
scattering lengths.

4.4 Scattering in optical lattices

Whilst interactions are the source of fascinating many-body phenomena predicted to
occur for a Fermi gas in an optical lattice, the two-body interaction itself already entails
impressive features when the particles are subject to a tight confinement. Hence, it is
instructive to examine the scattering between atoms in deep lattices, where the sites are
isolated and can be regarded as harmonic potential wells with frequency w | in the strongly
confined direction(s). In such a well the ground state energy ~ hw, is considerable and
the extension of the atomic wave functions along the standing waves are constrained
to the harmonic oscillator length a; = y/Ai/mw,;. When these quantities are of the
same order of magnitude as the energy and length scales of the interatomic interaction
new scattering effects, which are not encountered in weakly confining potentials, can be
observed.

A unique system is realised when the temperature and the chemical potential of the
gas are much smaller than the level spacing in the strongly confined dimension:

kT < hw . (4.17)

In this case the atoms basically only occupy the Gaussian ground state in the transverse
directions, effectively reducing the system to two, one or “zero” dimensions. An example
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4 INTERACTIONS IN COLD ATOMIC GASES

of the kinematic restriction in low-dimensional systems is the suppression of specific
anisotropic scattering channels in a gas interacting through p-wave scattering, as will be
shown in chapter 7. Let us first focus on the less exotic s-wave problem in one dimension,
i.e. a system with two perpendicular strong standing waves. The interaction strength
can be parameterised by an effective 1D coupling parameter g;p in the limit of small
scattering lengths (or weak confinement), |a| < a; [117|. By averaging the 3D pseudo-
potential (4.11) over the radial ground state density profile one obtains g1p = 2w, - a.
Near a Feshbach resonance where a > a; a more rigorous approach is required to solve
the scattering problem. Olshanii found the following behaviour for the coupling strength
in the resonant case (|a| < r.) [118]:

2

gip =

a (1 - C\/iaaj - (4.18)

2
mas

with C' = —((1/2) = 1.4603..., where ¢ denotes the Riemann zeta function. If a becomes
of the same magnitude as a;, a divergence leads to a so-called confinement-induced
resonance. This is similar to a Feshbach resonance, the transverse modes of the con-
finement playing the roles of open and closed scattering channels [119]. An exceptional
feature here is the existence of a two-body bound state also for negative values of the
scattering length a < 0, which is solely stabilised by the confinement. Our experiment
demonstrating confinement-induced molecules will be described in chapter 6.2.

In the case of a deep three-dimensional lattice, one can consider the problem of
two interacting particles in a three-dimensional harmonic well with frequency wgite. For
a pseudo-potential interaction this has been solved analytically in ref. [120], and the
eigenenergies depend on the scattering length via

I'(—E/2hw) 1 apo

T(—E/2hw—1/2) 2 a’ (4.19)

where I'(z) denotes the Gamma function and ayp, = \/i/Mmwsite. The energy spectrum
as a function of a/ay, is plotted in Fig. 4.5. For a = 0 the energy levels coincide with
the unperturbed harmonic oscillator states, and the effect of the interaction is a coupling
between these states. The lowest branch of the spectrum contains a molecular bound
state for positive values of a, which can be accessed by crossing a Feshbach resonance
to tune the scattering length from negative values over its singularity to positive values.
Section 6.3 reports on the formation and detection of molecules in a deep 3D lattice.
From Fig. 4.5 it is also apparent what happens if a Feshbach resonance is crossed in
the opposite direction: tuning the scattering length from a > 0 to a < 0 two initially
non-interacting atoms in the ground state can be adiabatically transferred into the first
excited state. In the language of the periodic lattice potential this means that atoms in
the lowest Bloch band shift to the next highest band. It is then obvious that the validity
of the single-band Hubbard model introduced in the previous chapter breaks down as
soon as the interaction energy U becomes comparable to the level spacing, U ~ fuw [86].
The interaction-induced coupling of Bloch bands has been observed in our experiment
described in section 6.1.
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E/ho

Figure 4.5: Energy spectrum of the relative motion of two in-
teracting particles in a 3D harmonic potential as a function of the
scattering length in units of the harmonic oscillator length. The
blue dashed lines correspond to the energies on resonance and the
red short-dashed lines to the eigenenergies of the non-interacting
system.

In shallow lattices the atoms are delocalised over several sites and the scattering states
are again different. A molecular state then exists below a critical negative value of the
scattering length which depends on the dimension of the lattice and its potential depth
[121].

So far we have quietly assumed that the interaction is well described by a pseudo-
potential. However, this assumption is not obvious since the new length scale a; (or
apo) introduced by the optical lattice could violate the assumptions made in section 4.2.
The energy scale thtop /m = hw, associated with the harmonic oscillator redefines the
typical wave vector ki, = agol. For very tight lattice confinement the product kiyp 36 can
be on the order of 1 or larger such that the condition (4.9) (with kp replaced by kiyp) is
not satisfied. In that case the scattering wave function is not in the asymptotic regime,
which questions the application of the usual pseudo-potential [122]|. Furthermore, close
to a Feshbach resonance the diverging scattering length drops out in the condition (4.10)
for the zero-range limit. One must then check that the harmonic oscillator length of a
site apo is larger than the effective range r.. Otherwise one has to employ an energy-
dependent (three-dimensional) pseudo-potential beyond the zero-range limit by replacing
the scattering length a by the effective range expansion [123, 124|

11 -1
ap = ( — 2k2re> : (4.20)

a
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4 INTERACTIONS IN COLD ATOMIC GASES

where k = vmE /h is the usual scattering wave number (see section 4.1). As we will see
in chapter 6.1, in our experiments we have an, > (06,7¢), such that the usual energy-
independent pseudo-potential models the interaction fairly well.
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5 Preparation of the quantum degenerate gases

For the experiments described in this thesis we used a state-of-the-art apparatus to cool
bosonic rubidium (87Rb) and fermionic potassium (*°K) atoms to quantum degeneracy
and to load them into an optical dipole trap and a three-dimensional optical lattice.
It was built, starting in 2001, with the goal to combine the research fields of ultra-
cold fermions and three-dimensional optical lattices [125, 58]. The setup consists of two
main parts, complemented by a considerable amount of electronic control devices: the
ultrahigh vacuum system (UHV) and the laser system. An excellent vacuum is necessary
to thermally isolate the trapped atoms as well as possible. The lasers deliver the coherent
light at different wavelengths used to cool, trap, manipulate and detect the atoms. All
lasers are situated on a separate optical table, together with the optical and electro-optical
elements necessary to control their frequencies and intensities. The beams are then input
coupled into polarisation-maintaining optical fibres and guided to another optical table
which supports the vacuum system and the optics used to direct the light through the
chamber and the glass cell. The original design of the vacuum system integrating a
magnetic transport is due to M. Greiner [126] and allows for excellent optical access to
the cell where experiments in a three-dimensional lattice are performed.

This chapter gives an overview of the experimental setup and the parameters used
to prepare the quantum degenerate gases, attaching more importance to the parts in the
setup which have been implemented or changed during my PhD. More details on the
original apparatus and its components can be found in the theses of my predecessors,
T. Stoferle [125] and H. Moritz [58].

5.1  Overview of the cooling cycle

In the first chamber of the vacuum system (pressure 10~% mbar) about 107 fermionic 4K
atoms and 2 x 10° bosonic 8’Rb atoms are trapped and cooled to a temperature of roughly
100 uK in a three-dimensional double-species magneto-optical trap (MOT). The magnetic
quadrupole field is then switched off to perform further polarisation gradient cooling in
an optical molasses before the atoms are optically pumped into low-field seeking Zeeman
sub-states. At this stage the clouds are recaptured in a purely magnetic trap, allowing for
their magnetic transportation from the MOT vacuum chamber to the glass cell (pressure
~ 10~ mbar), see Fig. 5.1. In a magnetic trap microwave (MW) evaporative cooling is
applied on the rubidium atoms to bring the gases to quantum-degeneracy. The fermionic
cloud is thereby cooled sympathetically by the thermal contact with the bosons. When
the bosonic species is removed completely, we are left with (1-1.5)x 108 spin-polarised “°K

43
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Figure 5.1: Timeline of the experimental sequence and scheme of the vacuum system.

atoms at a temperature of 0.35TF. In order to cool the fermions further, it is necessary
to prepare a spin mixture, thereby allowing for s-wave collisions between atoms with
different spin. This is accomplished in a crossed-beam dipole trap into which the atoms
are first transferred. By lowering the intensity of the beams, the hottest atoms are
evaporated from the trap, ultimately obtaining a fermionic cloud of (1-2)x10° atoms at
a degeneracy of (0.15-0.25)T'/Tr. After the preparation of the desired spin states and
adjustment of the magnetic bias field, the atoms are loaded into the optical lattice. This
concludes the preparation stage, and the actual experiments can be pursued subsequently.

5.2 % Rb and *’K and their cooling transitions

Cooling alkali gases with laser light works well thanks to the simple electronic structure
of the atoms. For the single electron in the outermost shell, closed optical transitions
exist, reducing the atom effectively to a two-level system under certain conditions.

Figure 5.2 shows the hyperfine structure relevant for the D; and the Dy transitions
of 9K and 8 Rb. The D, transitions indicated by thick arrows are those used for laser
cooling. Atoms accidentally escaping the transition cycle are repumped by lasers resonant
with the transitions indicated by the thin arrows. The hyperfine structure of 9K is
somewhat special in the sense that it is inverted (the level with the largest hyperfine
quantum number F' = 9/2 has the lowest energy) and that it has a rather small splitting.
The reason for this is in the relatively small nuclear magnetic moment which is antiparallel
to the nuclear spin I. In particular, the small hyperfine splitting in the 42P; /2 manifold
makes sub-Doppler cooling very difficult [127]. More details about the atomic species can
be found in appendix 10.2.
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Figure 5.2: Schemes of the hyperfine level structures of °K and 8"Rb and of the optical
transitions in the Dy-lines used for laser cooling. Energies are not to scale.

In our experiment all (near-)resonant light sources used for cooling and optical pump-
ing are provided by grating stabilised external cavity diode lasers and tapered amplifiers.
Their frequencies are stabilised to features of the atomic absorption spectra by performing
frequency modulation spectroscopy [128] on rubidium and potassium vapour cells.

5.3 Atom sources and MOT

The 8"Rb source consists of an ampul filled with 2g rubidium placed in an heatable
extension of the vacuum chamber. Due to the vapour pressure, which we control by the
temperature, atoms diffuse into the MOT chamber where they can be captured. The
low natural abundance of *°K requires an enriched source in order to capture sufficiently
large clouds at reasonably low pressures. Initially we were using dispensers built following
a design by DeMarco et al. [129], which, when heated by an electric current, produce
40K atoms from a reaction between potassium chloride salt enriched in “°K and calcium.
When we exchanged the dispensers for the first time, we also installed an ampul of 50 mg
potassium enriched to 7% %K *. After a few days of heating at temperatures of up to
80 °C we were able to load a large number of atoms from the background vapour into the
MOT. Currently, we heat the ampul to 40-60 °C in continuous mode during operation of
our cold atom machine, without operating the dispensers.

A MOT constitutes the first cooling stage in experiments with ultra-cold atoms [130].

*The potassium chloride powder was bought from Trace Sciences International Corp., Richmond Hill,
Canada. The metallic potassium was obtained by distillation into a quartz glass ampul by Technical
Glass, Inc., Aurora, USA.
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5 PREPARATION OF THE QUANTUM DEGENERATE GASES

Atoms are cooled by the dissipative light forces of three mutually perpendicular pairs
of counter-propagating beams. The frequency of the beams is red-detuned from the
cooling transition and the Doppler effect makes the force velocity-dependent. In addition,
a magnetic quadrupole field introduces a position-dependence via the Zeeman effect,
confining the atoms in the centre region. After the MOT phase, we switch off the magnetic
field and increase the frequency detuning to apply polarisation gradient cooling in an
optical molasses [131]. The cooling light for both atomic species and the repumping light
for potassium (produced by an electro-optical modulator) is input coupled into a single
optical fibre and follows the same optical path, while another fibre guides the repumping
beam for rubidium. The following table summarises the parameters of the double-species
MOT and the optical molasses:

parameter Of 8TRb
cooling power (fibre output) 550 mW 140 mW
repumping power (fibre output) 120 mW 5 mW
cooler detuning Acool 575 T 3T
repumper detuning Arepump 5.7 T or
magnetic field gradients (-5,-5,10) G/cm | (-5,-5,10) G/cm
loading duration 11.5s 3s
atom number ~ 107 2x 10?
molasses detuning 37T -0
molasses duration 6 ms 6 ms

Table 5.1: Summary of the parameters for the sequence of the MOT and the
optical molasses cooling.

5.4 Magnetic trapping and evaporative cooling

After completion of the laser cooling stage the atoms are transferred to a magnetic trap
for evaporative cooling.

The concept of magnetic trapping of neutral atoms is based on the atom’s interaction
with a spatially varying magnetic field B(r). An atom in a hyperfine state |F,mp)
has a dipole moment pu = pupgrF/h (Zeeman regime) leading to a magnetic energy
E,(r) = —p - B(r), where g is the Landé factor and up the Bohr magneton. If p is
antiparallel to B, the atom is called a low-field seeker because the force F,, = —VE,,
pushes it towards smaller values of |B|. Low-field seeking neutral atoms can therefore be
confined in the proximity of a minimum of a magnetic field B(r). The field of a magnetic
trap is usually produced by a combination of several magnetic coils [132].

In our experiment the atoms are after the molasses phase optically pumped into low-
field seeking states by o"-polarised light resonant with the F' = 2 to F/ = 2 Da-transition
for rubidium and with the FF = 9/2 to F’ = 9/2 Ds-transition for potassium, while a small
constant magnetic field provides the quantisation axis. After 1.8 ms almost all rubidium
and potassium atoms have ended up in the maximally polarised states |F' = 2, mp = 2)
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5.4 Magnetic trapping and evaporative cooling

and |F = 9/2,mp = 9/2), respectively, and can be trapped magnetically. For this
purpose, the current in the MOT coils is switched on again, producing a quadrupole field
which is mode-matched to the size of the atomic clouds. A sequence of magnetic coil
pairs in anti-Helmholtz configuration is then consecutively turned on to transport the
clouds through a narrow tube over a distance of 40 cm around the corner into the glass
cell (see (2) in Fig. 5.1). The glass cell and the surrounding coils are enclosed in a mu-
metal box for magnetic shielding. The narrow tube between the MOT chamber and the
UHV chamber provides a differential pumping stage. A 751/s ion pump and a titanium
getter pump maintain a UHV pressure of about 107! mbar. The resulting cloud lifetime
is long enough to perform evaporative cooling (see stage (3) in Fig. 5.1).

A prerequisite for reaching quantum degeneracy is a large enough cross section for
elastic collisions between atoms, which ensures thermal equilibrium during the cooling
of the gas. However, we saw in chapter 4 that spin-aligned fermions do not collide in
at ultralow temperatures: the minimal distance between two equal fermions given by
the de Broglie wavelength is very large compared the range of the interatomic potential.
Elastic collisions which are essential for evaporative cooling thus have a negligible cross
section. The presence of bosonic atoms circumvents this problem since thermalisation
of the fermions is ensured by inter-species collisions. This so-called sympathetic cooling
works nicely in our experiment owing to the favourable collisional properties between the
87Rb and the *°K atoms [133]. During the evaporative cooling the clouds are confined by
the harmonic potential of a magnetic trap in the quadrupole-Ioffe configuration, known as
QUIC-trap [134]. A field minimum of By = 3.1 G avoids losses due to Majorana spin flips
[135]. The hottest 8"Rb atoms are selectively removed from the trap, whereas the remain-
ing ones thermalise at a lower temperature—the fermions “°K are cooled sympathetically
by thermal contact with the bosons. The evaporation is carried out by microwave radi-
ation at approximately 6.8 GHz which transfers rubidium atoms from the state |2,2) to
the anti-trapped high-field seeking state |1,1) while the potassium atoms remain unaf-
fected. Because of the Zeeman shift the microwave is resonant only for atoms at a certain
magnetic field and therefore determines a shell in the trap where evaporation occurs. A
large shell corresponding to a high microwave frequency, for instance, is solely traversed
by the trajectories of hot atoms. By lowering the frequency exponentially in time, the
temperature of the gas is continuously decreased during a total time of 26s. At the same
time, the trap is slightly decompressed to reduce inelastic three-body losses. We also
apply an additional MW-field of constant frequency to remove atoms in the state |2, 1)
at the trap bottom which appear during evaporation and cause unfavourable collisions
with the fermionic atoms leading to loss. The final frequency of the sweep determines
how many cold bosons are kept for the experiment with the fermions. For instance, we
can produce a Bose-Einstein condensate of (3-5)x10° 8"Rb atoms in the presence of up
to 10% 4°K atoms at a degeneracy of T/Tr = 0.35. The final trapping frequencies of the
QUIC are w, = 27 - 29Hz, wy, = 27 - 180Hz and w, = 27 - 183 Hz for potassium and
accordingly scaled by the mass scaling factor \/mg /mpgy, &~ 0.68 for rubidium (neglecting
the difference in the gravitational sag).
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5 PREPARATION OF THE QUANTUM DEGENERATE GASES

Figure 5.3: The atom traps used at the different stages of the experimental sequence: (a)
magneto-optical trap (MOT), (b) magnetic QUIC trap, and (c) crossed-beam dipole trap
(FORT).

5.5 Setups for the optical potentials

To be able to access a Feshbach resonance, the atoms have to be prepared in the magnetic
hyperfine states of the corresponding entrance scattering channel. Since these are high-
field seeking states which cannot be trapped magnetically, the atoms are first transferred
from the magnetic trap into an optical dipole trap (FORT) consisting of two perpendicular
laser beams in the horizontal plane intersecting at the position of the cloud. The atoms are
attracted to the intensity maximum of the far red-detuned light and trapped independent
of their spin state (see paragraph 3.1). In the next step the atoms are loaded into an
optical lattice.

For our most recent experiments, including our studies of Bose-Fermi mixtures pre-
sented in chapter 8 of this thesis, our original setup of the FORT and the optical lattice
has been modified. In the following I will describe both the previous and the new con-
figuration.

5.5.1  The first setup

In our first as well as in our new setup, the laser beams for the dipole trap are derived
from two tapered amplifiers seeded by a single diode laser at a wavelength of 826 nm,
which can be stabilised to a high-finesse cavity yielding a line width of about 10kHz.
Their frequencies are offset with respect to each other by several tens of MHz in order to
avoid cross-dimensional interference. In the previous configuration they were focused to
waists of approximately 50 ym (z-axis) and 70 um (y-axis), respectively. The maximum
trapping frequencies for potassium were wr, = 27 -93 Hz, wr, = 27 - 154Hz and
wr,, = 2m - 157 Hz.

To transfer the atoms from the magnetic to the optical trap, the intensities of the
two beams are ramped up to 80 mW in 100ms. Next, the currents in the QUIC coils
are turned off in 100 ms, whereas a magnetic bias field of 13 G produced by two large
coils centred on the z-axis is maintained. A short radio-frequency (rf) sweep drives a
Landau-Zener transition transferring all *°K atoms from the state |F' = 9/2, mp = 9/2)
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to the state |[F' = 9/2,mp = —9/2). An equal incoherent spin mixture of [9/2,—-9/2)
and |9/2,—7/2) atoms is produced by a 200 ms long rf-pulse resonant with the transition
between the two states at a bias field of 232.9 G. At this field well above the Feshbach
resonance located at 202.1 G [112] the scattering length has a value of about 130ag, and
the gas can be further cooled evaporatively by lowering the laser intensities [136] by
approximately a factor of three. After 2s we end up with a spin mixture of up to 2 x 10°
atoms at T'/Tp =0.2-0.25.

Previously, the laser beams of the FORT were subsequently used to create the stand-
ing waves for the optical lattice in the horizontal plane. Together with an additional
standing wave along the vertical z-direction (waist 70 um) they created the simple cubic
lattice. Prior to loading the atoms into the optical lattice we tuned the magnetic field to
the zero-crossing at (210 +0.1) G of the Feshbach resonance, where the scattering length
between the two states vanishes. Then the standing wave along the vertical direction
is turned on. After ramping down the intensity of the trapping beam along the y-axis,
the mechanical shutter in front of a retro-reflecting mirror is opened, and the intensity
is ramped up again resulting a standing wave, followed by the same procedure for the
z-axis. In order to load the atoms into the lowest band of the lattice as adiabatic as
possible the intensities of the lasers are slowly increased (decreased) using exponential
ramps with time constants of 10ms (25ms) and durations of 20 ms (50 ms), respectively.

5.5.2 The new setup

The fact that the optical lattice is generated by the same laser beams which are previously
used for the FORT entails some crucial drawbacks apart from implying a complicated
ramping sequence for the laser intensities (as detailed in the previous paragraph). During
the ramping of the beams the sag changes several times such that Bloch oscillations [137]
may be induced. These occur because the atoms experience a potential gradient in the
lattice as soon as they are not in their equilibrium position anymore.

In view of the objective to realise strongly correlated quantum phases the old setup
had a further disadvantage. Many interesting quantum states such as the fermionic Mott
insulator or the antiferromagnetic state appear at a lattice filling factor of around one
half (83, 138|. This in turn requires a Fermi gas with a low density to be loaded into
the optical lattice. In the former setup the rather tight beam waists resulted in a strong
harmonic confinement where this was hard to achieve.

For these reasons, the setup to create the optical potentials was modified in the second
half of 2005 and a solid-state Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet)
laser was integrated to create an optical lattice independent of the FORT. An overview
of the parameters of the current optical potentials is given in Table 5.2 at the end of this
section. Great care was taken to make the beams mechanically stable and to achieve
small M? values. We use polarisation maintaining single-mode fibre optics whose facets
on the output side are angle-cut such that no standing wave can build up between the
facets and any other optical element in the optical path. This eliminates the need of
optical isolators which could affect the beam quality. All optical elements including the
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5 PREPARATION OF THE QUANTUM DEGENERATE GASES

high-stability fibre couplers’ are mounted on massive posts to minimise mechanical drifts.

Cooling in the new dipole trap

The waists of both beams were increased to approximately 50 pm and 150 ym in the
vertical (z) and horizontal (x, y) directions, respectively, in order to create a large volume
trap such that lower densities in a degenerate Fermi gas can be achieved. The beams
have elliptical Gaussian profiles with tighter waists in the vertical direction to facilitate
holding the atoms against gravity. Optimisation of the cooling parameters in the new
optical trap rewarded us with larger atom numbers at lower temperatures.

Initially, our intention was to transfer some 8"Rb atoms together with the 4°K to
the FORT for sympathetic cooling with the spin mixture. Due to their larger sag the
rubidium atoms experience a shallower potential and are evaporated out of the trap
before the potassium atoms. After ramping up the dipole trap to a depth of 3.5 uK the
rubidium is transferred to its absolute ground state |F' = 1,mp = 1) by a microwave
pulse with constant frequency while sweeping the magnetic bias field in 5 ms from 13.4 G
to 12.8 G, followed by the Landau-Zener transition of the potassium to the state |F =
9/2, mp = —9/2). If the rubidium instead is in the |F = 2, mp = 2) state, large losses
are observed. After the preparation of the spin mixture |F' = 9/2,mp = —9/2) and
|FF = 9/2,mp = —7/2) as described above, the magnetic bias field is tuned to a value
of 203.3 G where the scattering length is approximately —1000aq. It turns out that on
this side of the Feshbach resonance atom loss due to three-body recombination processes
is uncritical in contrast to the repulsive side [112, 139]. We lower the power of the
trapping lasers exponentially in one second with a time constant of 0.5s by a factor of
three to four to obtain a Fermi gas of (1-2)x10° atoms at (0.15-0.2) T/Tr. Ultimately,
the trap is slightly re-compressed, having frequencies of wr,; = wr, = 27 - 35Hz and
wr, = 2 - 120 Hz in its final configuration.

With the optimised parameters for the preparation of a purely fermionic quantum gas,
it turned out that nearly all bosonic rubidium atoms are evaporated from the magnetic
trap, and none or very few are transferred into the optical trap. When preparing a
Bose-Fermi mixture a modified sequence, which is described in chapter 8, is applied.

The new optical lattice

In the new configuration the lattice beams are independent of the trapping beams and
derived from a Nd:YAG laser! emitting light at a wavelength of 1064 nm with a line width
of 1 kHz. The light is split into three beams (z-, y- and z-axis) which are frequency offset
from each other by several tens of MHz by means of acousto-optical modulators and have
mutually perpendicular linear polarisations to avoid cross-dimensional interference. Fig-
ure 5.4 sketches the optical setup for the dipole trap, the optical lattice and the imaging
beams. Behind the glass cell the lattice beams are retro-reflected by dichroic mirrors to

fThe fibre optics as well as the inclined fibre couplers were purchased from Schifter+Kirchhoff GmbH,
Hamburg, Germany.
#Mephisto laser from Innolight, Hannover, Germany, with a power of 2W.
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Figure 5.4: Optics setup for the laser beams of the optical lattice, the dipole trap and the
imaging light in the horizontal z- and y-direction.

create the standing waves, whereas the FORT beams (in the horizontal plane) and the
imaging light are supposed to pass without being reflected. However, the mirrors—not
being perfectly dichroic—still reflect about 1% of the light at 826 nm, such that an addi-
tional weak standing wave builds up which noticeably disturbs the optical potential. We
solved this problem by inserting a polarising beam splitter cube in front of the mirrors
(2- and y-axis) to reflect off the light from the dipole trap. In principle, this arrangement
allows us to tune the intensity of a super lattice by changing the polarisation angle of
the 826 nm beams.

The three lattice beams have powers of 130 mW each and are focused to 1/e? radii of
(160, 180, 160) pm along the (x,y, z)-directions centred at the position of the Fermi cloud
in the optical trap. Their intensities are simultaneously ramped up in 100 ms following a
smooth spline curve, while a magnetic bias field corresponding to a scattering length of
about 50ag is maintained to ensure thermodynamic adiabaticity. The radial confinement
caused by the Gaussian shape of the beams is very weak, so that the external trapping
potential of the FORT is only slightly increased in the horizontal z- and y-directions.
In addition, the combination with the large volume dipole trap allows the realisation of
systems with low fillings. Figure 5.5 shows plots of the combined potential created by
the dipole trap and the 3D optical lattice.

To calibrate the power of the lattice beams we modulate the light intensity (amplitude
modulation) and measure the parametric heating of a condensed bosonic cloud. Atoms
are excited from the lowest to the third Bloch band (which has the same parity) if the
modulation frequency matches the band separation [140]. From the measured resonance
frequency we infer the potential depth of the lattice beams.
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Figure 5.5: The combined potential of our crossed-beam optical dipole trap
in the horizontal (x,y) plane, a three-dimensional optical lattice (z,y, z) and
gravity for 9K atoms (see section 3.1.3). (a) Potential in the horizontal di-
rection (y = 0 and z = zp) and (b) in the vertical direction (xr = y = 0).
Positions are given relative to the geometrical centre of the trap laser beams.
The trap beams have a power of 35mW each (Vp, = Vr, = 4FE,) result-
ing in a sag of zp = —11.46 um. The lattice beams each have a depth of
Vie =Vi,y = Vi, = 5E,. All other parameters are as given in Table 5.2.



5.5 Setups for the optical potentials

crossed-beam dipole trap (x, y)

wavelength 826 nm
horizontal waists wy, 150 pm
vertical waists w, 50 pm
maximum beam power 120 mW
trap frequencies wr (., ) for 40K (45mW) | 27-(40, 40,160) Hz
trap depth for 4°K (45mW) 1.02 uK
3D cubic optical lattice
wavelength A 1064 nm
spectral line width < 1 kHz
beam waists wr,, (x,y, 2) (160, 180, 180) pm
maximum power per beam 130 mW
maximum lattice depth for 40K 7TE.
external confinement wy, for °K (5 E,.) 27- 33 Hz

Table 5.2: Summary of the parameters characterising the current op-
tical potentials (see paragraph 3.1.3 for designations). The values given
are approximate as most of them depend on the actual beam alignment.
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6 s-wave interacting fermions and molecules
In optical lattices

The exploration of quantum degenerate gases of fermionic atoms is driven by the ambi-
tion to get deeper insight into long-standing problems of quantum many-body physics,
such as high temperature superconductivity. Not long ago, the cross-over regime between
a strongly interacting two-component Fermi gas and a molecular Bose-Einstein conden-
sate has been studied in harmonic traps [112, 95, 3, 141, 96]. These experiments mark
a milestone towards the understanding of superfluidity of fermionic atoms. However,
the analogy to an electron gas in a solid is limited since there the electrons experience
a periodic lattice potential. The lattice structure is in fact a key ingredient for most
models describing quantum many-body phenomena in materials. It has been suggested
that strongly interacting fermionic atoms in optical lattices could be employed for stud-
ies of high-T.-superconductivity [83], Mott insulating phases [69], Bose condensation of
fermionic particle-hole pairs [142], or interacting spin systems [143].

In this chapter we report on our experiments with ideal and s-wave interacting
fermions in different optical lattice configurations. This allows us to explore the physics
in crystal structures as well as in low-dimensional systems.

6.1 Fermionic atoms in a three-dimensional optical lattice

Previous experiments in three-dimensional optical lattices employed bosonic atoms, and

the analogy to solid state physics was limited. This section describes an experiment
bridging the gap between current ultracold atom systems and fundamental concepts in
condensed matter physics. A quantum degenerate Fermi gas is prepared in the crystal
structure of a three dimensional optical lattice potential created by three crossed standing
laser waves. The unique control over all relevant parameters in this system allows us
to carry out experiments which are not feasible with solid-state systems. We directly
image the Fermi surface of the atoms in the lattice by turning off the optical lattice
adiabatically. Because of the confining potential, gradual filling of the lattice transforms
the system from a normal state into a band insulator. The dynamics of the transition
from a band insulator to a normal state is studied, and the time scale is measured to be
an order of magnitude larger than the tunnelling time in the lattice. Using a Feshbach
resonance, we increase the interaction between atoms in two different spin states and
dynamically induce a coupling between the lowest energy bands.

Parts of this section are published in [25].
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Previous experiments with far-detuned three dimensional optical lattices [144, 84,
145] were always carried out with bosonic atoms, and experiments with fermions were
restricted to a single standing wave [146]. In the latter situation many atoms can reside
in each standing wave minimum and the formation of a band insulator is prevented by the
weak transverse confinement. The observed inhibition of transport [68] is due to localised
states and therefore differs qualitatively from the band insulator which we create in the
three dimensional optical lattice.

6.1.1 Experimental procedure

As described in section 5 we cool fermionic °K atoms in a magnetic trap sympathetically
with 8”Rb atoms, on which microwave evaporation is performed. After reaching quantum
degeneracy for both species with typically 6 x 10° potassium atoms at a temperature
of T/Tr = 0.32 (Tr = 260nK is the Fermi-temperature of the non-interacting gas)
all the rubidium atoms are removed from the trap. The potassium atoms are then
transferred from the magnetic trap into a crossed beam optical dipole trap, as detailed
in paragraph 5.5.1. In the optical trap we prepare a spin mixture with (50 + 4)% in
each of the |FF = 9/2,mp = —9/2) and |F = 9/2,mrp = —7/2) spin states using a
sequence of two radio frequency pulses. By lowering the depth of the optical trap on a
time scale of 2 seconds we further evaporatively cool the potassium gas. This is done at
a bias magnetic field of B = 227 G, which is well above the magnetic Feshbach resonance
centred at By = 202.1 G [112] and the s-wave scattering length between the two fermionic
spin states is @ = 118ag (ap is the Bohr radius). At the end of the evaporation we reach
temperatures between T//Tr = 0.2 and 0.25 with 5 x 10* to 2 x 10° particles, respectively.
The cloud is now loaded into the three-dimensional optical lattice (see paragraph 5.5.1)
whose potential depth V, , . is proportional to the laser intensity and is conveniently ex-
pressed in terms of the recoil energy E, = h%k?/(2m), with k = 27 /) and m being the
atomic mass. The lattice depth was calibrated by modulating the laser intensity and
studying the parametric heating. The calibration error is estimated to be < 10%.

6.1.2 Observing Fermi surfaces

The potential created by the optical lattice results in a simple cubic crystal structure and
the Gaussian intensity profiles of the lattice beams give rise to an additional confining
potential which varies with the laser intensity. As a result, the sharp edges characterising
the T = 0 distribution function for the quasi-momentum in the homogeneous case [65] are
expected to be rounded off (see section 3.4). A quantitative picture for the inhomogeneous
system can be obtained by considering the characteristic density (3.22) introduced in
section 3.4. The density distribution scaled by (, and the momentum distribution of the
atoms in the lattice only depend on the characteristic density p. = Nd>/ C2CyCz, where d
is the lattice spacing [69]. For a three-dimensional lattice with 20 x 20 x 20 sites we have
numerically calculated the characteristic density for the onset of a band insulator to be
pe =~ 60. For this value of p. the occupation number at the centre of the trap is larger
than 0.99. It has been pointed out that a fermionic band insulator in an optical lattice
with confining potential constitutes a high fidelity quantum register [147].
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Figure 6.1: Observing the Fermi surface. Time of flight images obtained
after adiabatically ramping down the optical lattice. The lower row shows the
images obtained with a numerical simulation for the same parameters as in the
experiment. The characteristic density increases from left to right. (a) 3500
atoms per spin state and a potential depth of the optical lattice of 5 E,.. Images
(b)-(e) were obtained with 15000 atoms per spin state. The potential depths of
the optical lattices were 5 E,. (b), 6 E, (¢), 8 E,. (d) and 12 E, (e). The images
show the optical density (OD) integrated along the vertically oriented z-axis
after 9ms of ballistic expansion.

In the experiment we probe the population within the first Brillouin zones by ramping
down the optical lattice slowly enough for the atoms to stay adiabatically in the lowest
band whilst quasi-momentum is approximately conserved [126]. We lower the lattice
potential to zero over a timescale of 1ms. After 1 ms we switch off the homogeneous
magnetic field and allow for total of 9 ms of ballistic expansion before we take an absorp-
tion image of the expanded atom cloud. The momentum distribution obtained from these
time of flight images, shown in Fig. 6.1, reproduces the quasi-momentum distributions of
the atoms inside the lattice. With increasing characteristic density the initially circular
shape of the Fermi surface develops extensions pointing towards the Bragg planes and
finally transforms into a square shape completely filling the first Brillouin zone deeply in
the band insulator. We have observed population of higher bands if more atoms are filled
into the lattice initially. In Fig. 6.2 the experimental data for momentum distributions
along the line with quasi-momentum hg, = 0 are compared to the results of numerical
simulations using the same characteristic densities.

When imaging the cloud along the z-direction we find a homogeneous filling of the
band in the vertical (z-) direction, probably due to the change in the harmonic confine-
ment while loading the lattice combined with the presence of gravity. This asymmetry
between the horizontal z-, y-, and the vertical z-directions vanishes when the gas ap-
proaches the band insulating regime. We have examined the level of adiabaticity of our
loading scheme into the optical lattice by transferring the atoms from the band insulator
back into the crossed beam dipole trap. There we find a temperature of 0.35Tr when
the initial temperature prior to loading into the lattice was 0.2 Tp.
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Figure 6.2: Analysis of the density distributions. The dots are cuts through the
measured density distribution for quasi-momentum ¢, = 0 after adiabatically ramp-
ing down the optical lattice. (a) Normal state with p. = 14.5, (b) band insulator with
pe = 137, (c¢) band insulator with p. = 2500. We have numerically calculated the mo-
mentum distribution function of fermions in the lowest band of a three-dimensional
lattice with 20 x 20 x 20 sites and characteristic lengths (,/d = 3.2, {,/d = 2.6,
¢./d=2.5((a) and (b)) and (,/d =1, {,/d = 0.8, ,/d = 0.8 (c), assuming zero tem-
perature (solid lines). Experimental data of (c) are averaged over 5 images. Imperfect
adiabaticity during the switch-off of the optical lattice may cause the rounding-off of
the experimental data at the edge of the Brillouin zone in (b) and (¢). The calcu-
lated momentum distribution function is scaled to match the experimental data using
identical scale factors for all graphs.

6.1.3 Redistribution dynamics

We have studied the dynamic response of the non-interacting Fermi gas to a change in
the characteristic density from a value deep in the band insulating regime to a value
below. In the latter regime the fermions are delocalised over several sites of the optical
lattice and an interference pattern is observed when the atoms are abruptly released
from the lattice. The width of the interference peaks is a measure of the length scale over
which the atoms are delocalised in the lattice or, equivalently, their coherence length.
We change the characteristic density in situ by varying the strength of the lattice laser
beams. Starting from an initial characteristic density of p. = 16 in an optical lattice
with a potential depth of 5 E,. we create a band insulator with a characteristic density of
pe = 2700 at a potential depth of 15 E,.. After holding the atoms for 5 ms we reduce the
potential depth back to 5 E,., using an exponential ramp with duration and time constant
t,. This is followed by a rapid switch off of the lattice (see Fig. 6.3a). We measure the
width of the central momentum peak in the time of flight images for different durations
t, and obtain the time scales 7, = (2.7 £ 0.4)ms and 7, = (3.8 £ 0.3)ms in the z-
and y-direction, respectively, on which the coherence is restored. This corresponds to
approximately ten times the timescale for tunnelling given by h/2z.J at a potential depth
of 5 E,, where z is the coordination number of the lattice. This non-trivial dynamics
appears to be significantly slower than the time scale measured for the transition of a
Mott insulating state to a superfluid state using bosonic atoms in an optical lattice [84].
The comparatively slow dynamics of delocalisation of the fermions when approaching the
normal state is most likely due to Pauli blocking which prevents tunnelling of atoms in
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6.1 Fermionic atoms in a three-dimensional optical lattice

regions where the lowest band is full and the atoms are well localised.

6.1.4 Interaction induced coupling to higher Bloch bands

We have seen in section 3.5 that interacting fermionic atoms are in many cases well de-
scribed by the Fermi-Hubbard model. However, for large enough interactions physics
beyond this model becomes accessible. We investigate the interacting regime in the
lattice starting from a non-interacting gas deep in a band insulator with V, = 12 E,
and V,, = V, = 18 &, and corresponding trapping frequencies of w, = 27 x 50kHz and
wy = w, = 27 x62kHz in the individual minima. A short radio-frequency pulse is applied
to transfer all atoms from the |F' = 9/2,mp = —7/2) into the |F = 9/2,mp = —5/2)
state, with the atoms in the |F = 9/2,mp = —9/2) remaining unaffected. We ramp
the magnetic field with an inverse sweep rate of 12 us/G to different final values around
the Feshbach resonance (see Fig. 6.4a) located at B = 224G [7]. The sweep across
the Feshbach resonance goes from the side of repulsive interactions towards the side of
attractive interactions. When using this direction of the sweep there is no adiabatic
conversion to molecules. After turning off the optical lattice adiabatically and switching
off the magnetic field we measure the momentum distribution. To see the effect of the
interactions we determine the fraction of atoms transferred into higher bands. For final
magnetic field values well above the Feshbach resonance we observe a significant increase
in the number of atoms in higher bands along the weak axis of the lattice, demonstrating
an interaction-induced coupling between the lowest bands [86, 148|. Since the s-wave
interaction is changed on a time scale short compared to the tunnelling time between
adjacent potential minima we may regard the band insulator as an array of harmonic
potential wells. It has been shown that increasing the s-wave scattering length for two
particles in a harmonic oscillator shifts the energy of the two-particle state upwards until
the next oscillator level is reached [120] (see also section 4.4). In our case this leads to
a population of higher energy bands. The fraction of atoms transferred is smaller than
expected from the solution of an effective Hamiltonian [86]. It could be limited by the
number of doubly occupied lattice sites and by the fast tunnelling in the higher bands.
The number of doubly occupied sites could be measured by studying the formation of
molecules in the lattice (see section 6.3). In addition, we observe a shift of the position
of the Feshbach resonance from its value in free space to larger values of the magnetic
field (see Fig. 6.4a), which has been predicted for tightly confined atoms in an opti-
cal lattice [149]. This mechanism for a confinement induced resonance is related to the
phenomenon predicted for one-dimensional quantum gases [118] which we have experi-
mentally observed and is described in the next section. For a quantitative description
of this strongly interacting Fermi gas on a lattice a multi-band Hubbard model could be
considered but these are even in the static case notoriously difficult or even impossible
to solve with present methods [150].

6.1.5 Conclusions

In conclusion we have created a fermionic many-particle quantum system on a lattice.
We have demonstrated the dynamic control over the parameters of the system such as
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filling and interactions which is not feasible in solid state systems. For the non-interacting
static regime we find good agreement between our measurements and a theoretical model.
Both the dynamic measurements and the strongly interacting case pose challenges for the
present theoretical understanding of many-particle fermionic systems on optical lattices.

As the Feshbach resonance is approached in our experiment, the population of higher
bands excludes the existence of a band insulator. A key question is therefore the following:
Does the system undergo a phase transition from the initial band insulating state to any
other phase? Within a simple model Ho found that above a critical on-site interaction
the ground state is a correlated Mott insulating phase exhibiting the spin dynamics of
a spin-1 Heisenberg antiferromagnet [151]. The observation of this transition would give
an even deeper insight into the physics of strongly interacting fermions in optical lattices,
but is still hampered by the lowest achievable temperatures in current experiments.
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Figure 6.3: Restoring phase coherence. (a) Control sequence for
the depth of the optical lattice. (b) Pseudo colour image of the
momentum distribution after releasing the atoms from the initial
optical lattice of 5 F,. and 7 ms ballistic expansion. It reveals the
central momentum peak and the matter wave interference peaks at
+2hk. The data are averaged over 5 repetitive measurements. (c)
Width of the central momentum peak obtained from Gaussian fits
to the atomic density distribution. The initial width is determined
by the momentum spread of an atom localised in the vibrational
ground state of a lattice well. The 10% difference in this size comes
from slightly different magnifications of the imaging system in the
two orthogonal directions. The difference in the asymptotic values
of the width can most likely be attributed to the loading sequence
of the lattice and to the asymmetry of the confining potentials due
to the different beam waists. The error bars show the statistical
error of 4 repetitive measurements.
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Figure 6.4: Interaction-induced transition between Bloch bands.
(a) Transferring fermions into higher bands using a sweep across
the Feshbach resonance (filled symbols). The inverse magnetic
field sweep rate is 12 us/G. The line shows a sigmoidal fit to the
data. The open symbols show a repetition of the experiment with
the atoms prepared in the spin states |F' = 9/2,mp = —9/2)
and |F = 9/2,mrp = —7/2) where the scattering length is not
sensitive to the magnetic field. The magnetic field is calibrated
by rf spectroscopy between Zeeman levels. Due to the rapid ramp
the field lags behind its asymptotic value and the horizontal error
bars represent this deviation. (b) Fraction of atoms in higher
bands for a final magnetic field of 233 G for different magnetic field
sweep rates. The vertical error bars show the statistical error of 4
repetitive measurements. (¢) Momentum distribution for a final
magnetic field of B = 233G and a 12 us/G sweep rate. Arrows
indicate the atoms in the higher bands.
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6.2 Confinement-induced molecules in one-dimensional Fermi gases

The study of two particles forming a bound state has a long history both in physics and
chemistry because it constitutes the most elementary chemical reaction. In most situa-
tions, such as atoms in the gas phase or in a liquid, the two particles can be considered as
being in free space and their collisions can be described by standard quantum mechanical
scattering theory. For ultracold atoms undergoing s-wave interaction a bound molecular
state is only supported when the scattering length between the atoms is positive whereas
for negative scattering length the bound state is absent [153].

We have observed two-particle bound states of atoms confined in a one-dimensional
matter waveguide. These bound states exist irrespective of the sign of scattering length,
contrary to the situation in free space. Using radio-frequency spectroscopy we have mea-
sured the binding energy of these dimers as a function of the scattering length and con-
finement and find good agreement with theory. The strongly interacting one-dimensional
Fermi gas which we create in a two-dimensional optical lattice represents a realisation of
a tunable Luttinger liquid.

6.2.1 Bound states in quasi-1D systems

Weakly bound diatomic molecules in ultracold atomic gases can be produced using
magnetic field induced Feshbach resonances [154, 7, 155, 156, 157, 158, 8, 159, 160].
The scattering length between the atoms and thus the binding energy of the molecules
can be tuned by an external magnetic field. The fundamental property that a bound
state exists only for positive scattering length was clearly revealed experimentally [7].
For negative scattering length pairing due to many-body effects has been observed in
fermionic atoms [4, 161]. In this section we report on the observation of bound states of
atoms with negative scattering length where the particles are subject to one-dimensional
confinement. The reduced dimensionality strongly affects the two-particle physics pro-
vided that the scattering length and the size of the transverse ground state are similar
[118, 162, 119, 163]|. This contrasts with previous studies of interaction-induced phenom-
ena in one-dimensional quantum systems where the reduced dimensionality affects only
the many-body properties, such as spin-charge separation in cuprates [164], the Mott
insulator transition for bosonic atoms in an optical lattice [145], and the fermionisation
of a Bose gas [165, 166, 167].

Tight transverse confinement alters the scattering properties of two colliding atoms
fundamentally and a bound state exists irrespective of the sign of the scattering length.
This peculiar behaviour in a one-dimensional system arises from the additional radial
confinement which raises the continuum energy to the zero point energy of the confin-
ing potential, e. g. the two-dimensional harmonic oscillator ground state energy hw, .
The energy of a bound or quasi-bound state remains nearly unaffected by the external
confinement as long as the effective range of the interaction is small compared to the ex-
tension of the confined ground state. Therefore, a quasi-bound state, which for negative

Parts of this section are published in [152].
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scattering length a lies above the continuum in free space, is below the new continuum
in the confined system.
The binding energy Ej of dimers in a one-dimensional gas is given by [119]

a V2
ar (/2= Eyp/2hor)’ oY

where a; = y/h/mw, is the extension of the transverse ground state (with m being the
atomic mass) and ¢ denotes the Hurwitz zeta function. For negative a and |a| < a, a
weakly bound state with Ej, ~ —mw? a® exists which has a very anisotropic shape [168].
In the limit |a| > a, the binding energy takes the universal form Ej ~ —0.6 fiw; and for
positive a and a < a, the usual 3D expression for the binding energy Ej, = —h?/ma? is
recovered.

A trapped gas is kinematically one-dimensional if both the chemical potential and the
temperature are smaller than the level spacing due to the transverse confinement. For a
harmonically trapped Fermi gas the Fermi energy Er = N - hw, must be smaller than
the energy gap to the first excited state in the transverse direction Aw,. N denotes the
number of particles and w, is the trapping frequency along the weakly confining axis. In
our experiment we employ a two-dimensional optical lattice in order to create 1D Fermi
gases. For atoms trapped in the intensity maxima of the two perpendicular standing wave
laser fields the radial confinement is only a fraction of the optical lattice period [126].
The much weaker axial trapping is a consequence of the gaussian intensity envelope of the
lattice laser beams. The resulting aspect ratio w, /w, = mw/ is determined by the waist
w and the wavelength A\ of the beams. The two-dimensional optical lattice creates an
array of several thousand 1D tubes. This array fulfills the 1D condition N < w /w, & 270
in each tube while simultaneously providing a good signal-to-noise ratio in absorption
images.

So far one-dimensional quantum gases have only been realised with bosons [169, 145,
165, 166, 167], and the scattering length in those experiments could not be tuned. Here
we overcome this by using a magnetic field induced Feshbach resonance between two
different spin states of the atoms, which allows us to access any value of the scattering
length and study the predicted bound states in 1D.

6.2.2 Molecules and rf-spectroscopy

In the optical dipole trap we prepare a spin mixture with (50 £+ 2)% in each of the
|F''=9/2,mp = —9/2) and |F = 9/2,mp = —7/2) spin states using a sequence of
two radio-frequency pulses, as in the previous section. From now on we will refer to the
atomic state only with its respective mp number. By lowering the optical trap depth at a
magnetic field of B = 227 G, which is well above the magnetic Feshbach resonance centred
at By = 202.1G [112], we evaporatively cool the potassium cloud to a temperature of
T/Tr = 0.2 with 1.5 x 10° particles.

The atoms are loaded into the optical lattice at a magnetic field of B = 210 G, where
the s-wave scattering length between the two states vanishes. The magnetic field strength
is calibrated by radio-frequency spectroscopy between different Zeeman levels of “°K and
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the uncertainty is below 0.1 G. The lattice depth was calibrated by intensity modulation
and studying the parametric heating. The calibration error is estimated to be < 10%.

We create molecules by ramping the magnetic field from the zero crossing of the scat-
tering length at B = 210G in 10 ms to its desired value close to the Feshbach resonance.
Depending on the final value of this sweep the binding energy of the molecules varies ac-
cording to eqn. (6.1). We measure the binding energy Ej, of the dimers by radio-frequency
spectroscopy [7]. A pulse with a frequency vgr and a duration of 40 us dissociates the
molecules and transfers atoms into the initially unpopulated |—5/2) state which does not
exhibit a Feshbach resonance with the state |—9/2) at this magnetic field. We vary the
detuning = vrr — v from the resonance frequency vy of the atomic |-7/2) — |—5/2)
transition. The power and duration of the pulse is optimised to constitute a m-pulse
on the free atom transition. The number of atoms in each spin state is detected using
absorption imaging after ballistic expansion. For this we ramp down the lattice exponen-
tially with a duration of 1ms and time constant of 0.5ms from the initial depth Vj to
5 E, to reduce the kinetic energy of the gas in the transverse directions and then quickly
turn off the trapping potential. The magnetic offset field is switched off at the start of
the expansion, so that no molecules can be formed in the short time that it passes the
Feshbach resonance. We apply a magnetic field gradient during 3 ms of the total 7ms of
ballistic expansion to spatially separate the spin components.

6.2.3 Binding energy spectra

Figure 6.5 shows rf spectra for one-dimensional gases with a potential depth of the optical
lattice of Vy = 25 E,., which corresponds to w; = 27 x 69kHz. In Fig. 6.5a the magnetic
field is detuned 0.57 G below the Feshbach resonance, i.e. @ > 0. This spectrum exhibits
two resonances: one corresponds to the |—7/2) — |-5/2) transition for free atoms at
60 = 0, the other at § > 0 corresponds to dissociated molecules. The constituent atoms
of the dimers are observed in the |—9/2) and |—5/2) states. At this magnetic field,
the molecules are not detected by our state-selective imaging procedure unless the are
dissociated by an rf-pulse. This is due to the fact that they are transformed into deeply
bound molecules during the switch-off of the magnetic field.

In Fig. 6.5b the magnetic field is chosen 0.95 G above the resonance, i.e. a < 0. Again,
the appearance of a second peak in the |-5/2) atom number at 6 > 0 demonstrates the
existence of bound state in our 1D geometry. These bound states are confinement induced
since no molecules exist without confinement above the Feshbach resonance. They are
only stabilised by the presence of the confining potential. Ramping down the lattice
before detection dissociates the dimers and therefore all atoms should be detected in the
image and the total particle number is expected to remain constant. This is reflected in
our data, where the |—7/2) atom number decreases upon dissociation while the |—5/2)
atom number increases. We attribute the slight increase of atoms in |[—9/2) to reduced
losses of the rf dissociated atom pairs during the 1 ms lattice turn off which follows the
radio-frequency spectroscopy. The fragments in the |—9/2) and |-5/2) state do not
experience the enhanced inelastic losses characteristic to the molecules, which are near
the |[—9/2) < |—7/2) Feshbach resonance.
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Figure 6.5: Radio-frequency (rf) spectroscopy of a one-
dimensional gas at magnetic fields 201.5 G (a) and 203.1 G (b,
¢). The atom number in the respective spin states is plotted ver-
sus the detuning of the applied rf pulse in (a) and (b). The solid
lines are single or double Lorentzian fits. (c) Kinetic energy of the
|—9/2) atom cloud along the 1D tube direction after 7ms time-
of-flight obtained from a fit to the atomic density distribution.
The horizontal line marks the average energy for an off-resonant
rf pulse, the other the increase at the molecule dissociation thresh-
old.

The rf pulse not only breaks the pairs if the detuning § exceeds the binding energy Ep,
but also imparts the kinetic energy AFE = 27hd — Ep to the fragments. In the 1D tubes
only the kinetic energy along the tube axis increases as the motion in the other direction
is frozen out for AFE < fw, . The kinetic energy shown in Fig. 6.5¢ is extracted from the
momentum distribution obtained from time of flight images. We use this characteristic
to determine the binding energy. With a linear fit we identify the threshold position at
which the kinetic energy exceeds the energy of a cloud with off-resonant rf-pulse. The
latter is determined by the Fermi statistics of the trapped atoms and the interaction
of the |=9/2) with the |—7/2) atoms close to the Feshbach resonance. The decrease at
d ~ 0 is due to the particle transfer into the |—5/2) state and an accordingly weaker
interaction energy. Owing to this complication we estimate the systematic error of our
binding energy measurements in all data sets to be 10 kHz.

We have investigated the dependence of the binding energy of the 1D dimers on the
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Figure 6.6: 1D and 3D molecules. Confinement induced molecules
in the 1D geometry exist for arbitrary sign of the scattering length.
The solid lines show the theoretical prediction of the binding energy
with no free parameters (see text). In the 3D case we observed no
bound states at magnetic fields above the Feshbach resonance (verti-
cal dashed line). The error bars reflect the uncertainty in determining
the position of the dissociation threshold.

magnetic field (Fig. 6.6) and we observed bound states for every examined magnetic field
strength. The dimers at magnetic fields above the Feshbach resonance are induced by the
confinement. The data is in good agreement with the theoretical expectation calculated
from eqn. (6.1) (solid line) with no free parameters. For this calculation we compute the
effective harmonic oscillator length a; and the ground state energy Aw, by minimising
the energy of a gaussian trial wave function in a single well of the lattice to account for
the anharmonicity of the potential. To calculate the scattering length we use a width
of the Feshbach resonance of AB = 7.8G [112] and the background scattering length
apg = 174 ag [113].

For a comparison with the situation in free space we created molecules in a crossed
beam optical dipole trap without optical lattice where confinement effects are not rel-
evant. The binding energy in 3D is measured with the same rf spectroscopy technique
as for the 1D gas and we find molecules only for scattering lengths a > 0. The binding
energy is calculated according to [104] as

_ ‘b g — 2y1/a_ L (3/4)
Eb73D = m with a = (mC6/h )

2v/2I(5/4)

being the effective scattering length and Cs = 3897 (in atomic units) [170]. The deviation
of the theory from the measured data for more deeply bound molecules is probably due
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to limitations of this single channel theory. A multi-channel calculation would determine
the binding energy more accurately. In ref. [171] Dickerscheid et al. have compared our
results with a two-channel theory and found excellent agreement.

Exactly on the Feshbach resonance where the scattering length diverges, the binding
energy takes the universal form Ej ~ —0.6Aiw, and is solely dependent on the external
confinement. We have varied the potential depth of the optical lattice and thereby the
transverse confinement and measured the binding energy. We find good agreement of our
data with the theoretical prediction (see Fig. 6.7). For a very low depth of the optical
lattice the measured data deviate from the 1D theory due to the fact that the gas is not
one-dimensional anymore.

0

20

40

binding energy |E, | (kHz)
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Figure 6.7: Changing the confinement. The spectra are taken very
close to the Feshbach resonance at a magnetic field of B = 202.0 G.
The binding energy is measured by rf spectroscopy. For Vi > 30 E,
no increase in kinetic energy could be detected and we used the rising
edge in the |—5/2) atom number in the spectrum to determine the
binding energy. The error bars reflect the uncertainty in determining
the position of the dissociation threshold. The solid line shows the
theoretically expected value Ep = 0.6 fw .

In conclusion, we have realised an interacting 1D Fermi gas in a two-dimensional
optical lattice. Using a Feshbach resonance we have created molecules and measured
their binding energy. We find two-particle bound states for arbitrary sign of the scattering
length, which in the case of negative scattering length are stabilised only by the tight
transverse confinement. We find good agreement with theory describing the two-particle
physics. The strongly interacting 1D Fermi gas realises an atomic Luttinger liquid and
fascinating many-body phenomena are predicted in this system [51, 172, 173]. Especially
intriguing appears the BCS-BEC crossover for which exactly solvable models exist in one
dimension [168, 10].
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6.3 Molecules of fermionic atoms in a three-dimensional optical
lattice

In the vicinity of a Feshbach resonance the collisional interaction strength between two
atoms is tunable over a wide range. For two fermionic atoms on one lattice site strong
interactions change the properties of the system qualitatively and physics beyond the
standard Hubbard model becomes accessible. In section 6.1 we have seen that crossing
the Feshbach resonance in one direction leads to an interaction induced coupling between
Bloch bands which has been described theoretically [86]. Crossing the resonance in the
other direction converts fermionic atoms into bosonic molecules. These processes have
no counterpart in standard condensed matter systems and demand novel approaches to
understand the mixed world of fermions and bosons in optical lattices [175, 176, 177, 178].
Descriptions based on multi-band Hubbard models are extremely difficult to handle and
therefore the low-tunnelling limit is often used as an approximation.

We create molecules from fermionic atoms in a three-dimensional optical lattice us-
ing a Feshbach resonance. In the limit of low tunnelling, the individual wells can be
regarded as independent three-dimensional harmonic oscillators. The measured binding
energies for varying scattering length agree excellently with the theoretical prediction for
two interacting atoms in a harmonic oscillator. We demonstrate that the formation of
molecules can be used to measure the occupancy of the lattice and perform thermometry.

6.3.1 Two interacting atoms in a harmonic oscillator well

The harmonic oscillator with two interacting atoms has been studied theoretically and
the eigenenergies have been calculated in various approximations [175, 120, 123, 124, 73|.
Its physics is governed by several length scales (see section 4.4). The shortest scale is the
characteristic length of the van der Waals interaction potential between the atoms. The
next larger length scale is given by the s-wave scattering length characterising low-energy
atomic collisions. However, near the Feshbach resonance it may become much larger than
the extension of the harmonic oscillator ground state. A precise understanding of the
interactions in this elementary model is a prerequisite in order to comprehend the many-
body physics occurring in optical lattice systems with resonantly enhanced interactions.

We study a spin mixture of fermionic atoms in an optical lattice and their conversion
into molecules by means of a Feshbach resonance. The binding energy as a function
of the s-wave scattering length between the particles is measured and compared with
theoretical predictions. Moreover, we demonstrate that the molecule formation can serve
as a measure of the temperature of the atoms in the lattice. The temperature is a key
parameter for mapping out the phase diagram of many-body quantum states in the lattice.
So far, temperature has not been measured in a lattice since standard methods — such
as observing the rounding-off of the Fermi surface — turned out to be dominated by the
inhomogeneity of the trapping potential rather than by temperature [73]. However, we
find that the occupancy of the lattice depends strongly on the temperature [148, 179, 180|

Parts of this section are published in [174].
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and the conversion of pairs of atoms into molecules is a sensitive probe, similar to the
case of harmonically trapped fermions [181].

In a previous experiment, deeply bound molecules of bosonic atoms have been created
in an optical lattice by photo-association and were detected by a loss of atoms [182, 183].
There the binding energy is only determined by the atomic properties and does not
depend on the external potential, nor can the scattering properties between the molecules
be adjusted. In low-dimensional systems molecules produced by a Feshbach resonance
using fermionic atoms have been observed recently [159, 152].

6.3.2 Molecule production and detection

In the optical trap we prepare a mixture of the |F' = 9/2,mp = —9/2) and the |F =
9/2,mp = —7/2) state with (50 & 4)% in each spin state (which in the following will
be abbreviated by |mp)) and perform additional evaporative cooling at a magnetic field
of B = 227G. At the end of the evaporation we reach temperatures of T/Tr = 0.25
with up to 2 x 10 particles. The temperatures are determined from a fit to the density
distribution of the non-interacting atomic cloud after ballistic expansion. The atoms are
then transferred into the optical lattice formed by three orthogonal standing waves.

In the optical lattice we create a band insulator for each of the two fermionic spin
states [25]. Subsequently, the molecules are formed by ramping the magnetic field from
the zero crossing of the scattering length at B = 210G in 10ms to its final value close
to the Feshbach resonance located at By = 202.1 G [112]. From the parameters of our
magnetic field ramp we estimate that the molecule formation is performed adiabatically.
We measure the binding energy Ej, of the dimers by radio-frequency spectroscopy |7, 4,
152]. A pulse with a frequency vgrrp and a duration of 40 us dissociates the molecules
and transfers atoms from the state |—7/2) into the initially unpopulated state |—5/2)
which does not exhibit a Feshbach resonance with the state |—9/2) at this magnetic field.
Therefore the fragments after dissociation are essentially non-interacting (see Fig. 6.8a).
We vary the detuning § = vrrp — g from the resonance frequency 1y of the atomic
|-7/2) — |—5/2) transition. The power and duration of the pulse is chosen to constitute
approximately a m-pulse on the free atom transition. The number of atoms in each spin
state is determined using absorption imaging after ballistic expansion. For this we ramp
down the lattice exponentially with a duration of 1 ms and time constant of 0.5 ms from
the initial depth V4 to 5 E; to reduce the kinetic energy of the gas and then quickly turn
off the trapping potential within a few us. The magnetic offset field is switched off at
the start of the expansion, so that no molecules can be formed in the short time that it
passes the Feshbach resonance. We apply a magnetic field gradient during 3 ms of the
total 7ms of ballistic expansion to spatially separate the spin components.

6.3.3 Binding energy and molecular fraction

Figures 6.8(b) and 6.8(c) show rf spectra of atoms and molecules trapped in a three-
dimensional lattice with a potential depth of of Vi = 22 E,., which corresponds to a
trapping frequency of w = 27 x 65 kHz in the potential wells of the lattice. The spectrum
in Fig. 6.8(b) is taken at a magnetic field of B = 202.9 G, corresponding to a/an, = —1.3.
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Figure 6.8: a) Illustration of the rf spectroscopy between
two atoms (left side) and two bound states (right side)
within a single well of the optical lattice. Two atoms in the
initial states |—7/2) and |—9/2) are converted into a bound
dimer by sweeping across a Feshbach resonance. Subse-
quently we drive an rf transition |—7/2) — |—5/2) to dis-
sociate the molecule. b) rf spectrum taken at B = 202.9 G,
i.e. for a < 0. c) rf spectrum taken at B = 202.0 G, i.e. for
a > 0. All data are taken for a lattice depth of 22 E,.. The
lines are Lorentzian fits to the data.
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We have calculated the ground state radius ap, = 64 nm by minimising the energy of a
Gaussian trial wave function inside a single well of our lattice potential. As compared to
a Taylor expansion of the sinusoidal potential around the minimum this results in slightly
more accurate values. The s-wave scattering length is denoted by a. For negative scat-
tering length the molecules are only bound when they are strongly confined whereas no
bound state would exist in the homogeneous case. The spectrum exhibits two resonances:
the one at 6 = 0 corresponds to the atomic transition from the |—7/2) into the |—5/2)
state. This transition takes place at all lattice sites which initially were only singly occu-
pied and no molecule has been formed. The second resonance at § > 0 corresponds to the
molecular dissociation and is shifted from the atomic resonance by the binding energy.
Simultaneous with the increase in the |—5/2) atom number we observe a loss of atoms
in the |—7/2) state, whereas the |—9/2) remains unaffected. This is expected since the
rampdown of the lattice before detection dissociates all molecules and the |—9/2) atom
number should be fully recovered. Residual fluctuations of the |[-9/2) atom number are
probably due to uncertainties in the atom number determination since we do not observe
a specific pattern in our spectra.

With the magnetic field tuned to B = 202.0 G [see Fig. 6.8(c)|, which corresponds to
a/ap, = 16.8, the spectrum changes qualitatively. For this value of the scattering length
stable molecules exist even in free space but the molecules formed in the lattice are not
detected by our state-selective imaging procedure unless they are dissociated by the rf-
pulse. Therefore only rf dissociated atom pairs show up in the time-of-flight images,
resulting in an increasing number of atoms in the |—5/2) and the |—9/2) state at the
molecular resonance.

In contrast to earlier work, where molecules were dissociated into a continuum and
the fragments were essentially free particles |7, 4, 152|, the fragments in our configuration
occupy an energy eigenstate of the confining potential. In such a bound-bound transi-
tion no extra kinetic energy is imparted onto the dissociated fragments since any excess
excitation energy would have to match the band gap. We determine the binding energy
from the separation of the atomic and the molecular peak. Moreover, since there is at
most one molecule present per lattice site, collisional shifts [184, 185| are absent and we
can estimate the error in the binding energy from the fit error which is less than 5 kHz.

We have investigated the dependence of the binding energy of the molecules on the
scattering length (Fig. 6.9). The scattering length is derived from the magnetic field
using the usual parametrisation (4.14) of the Feshbach resonance, with ap, = 174 aq
[113] and AB = 7.8G [112]. We compare our data with the theory for two particles
trapped in a harmonic oscillator potential interacting via an energy-independent pseudo-
potential [120] (see paragraph 4.4). We find the normalised binding energy Ej/hw to
be independent of the strength of the lattice and all data points agree well with the
theoretical prediction of eqn. (4.19) without adjustable parameters. It was shown in
section 4.4 that a pseudo-potential approximation is valid, as long as ay, is large compared
to the characteristic length scale of the van der Waals potential between the two atoms
Bs = (mCg/h%)'/* [123, 124], which for our experiments is ay,/Gs > 10. However, for
a > ape an energy-dependent pseudo-potential will model the system more accurately.
We have calculated the effective range of the interaction to be r. = 98ag [89] and the
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Figure 6.9: The measured binding energy of molecules in a three-
dimensional optical lattice. The data are taken for several poten-
tial depths of the optical lattice of 6 F, (triangles), 10 E, (stars),
15 E, (circles), and 22 E,. (squares). The solid line corresponds to
the theory of ref. [120] with no free parameters, the dashed line
uses an energy-dependent pseudo-potential according to ref. [123].
At the position of the Feshbach resonance (a — %00) the binding
energy takes the value E, = —hw.

eigenenergies using an energy-dependent pseudo-potential [123] (dashed line in Fig. 6.9).
Both models agree to within a few percent, which is small compared to experimental
uncertainties. Further theoretical improvements taking into account more details of the
atom-atom interaction in a two-channel model have been suggested [124, 175] and could
be tested with our data.

From a quantitative analysis of the spectra we obtain information about the occu-
pancy of our lattice. We measure the ratio between the atomic and the molecular peak
heights in the spectra of the |—5/2) atoms and determine the fraction of atoms that
where bound in a molecule. Figure 6.10 shows the measured data for a lattice with a
potential depth of 15 E,.. The detected molecular fraction decreases for large values of
1/a, i.e. for deeply bound molecules, because of the small overlap of the initial molecular
and the final atomic wave function in the rf transition. The analytical wave function of
the molecular state in relative coordinates is given by [120]

Yieo(r) = 3r Y2 e PR () (-0, 5 1), (62)

where U(n, m, x) is the confluent hypergeometric function and v = Ej/(2hw) — 3/4. We
calculate the overlap integral of this function with the harmonic oscillator ground state
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wave function ¥y, (r) = (ra?,)~3/* exp(—r?/2a3,),

2

‘ [ ar oo (63)

which determines the relative strength of the molecular transition assuming that the
centre-of-mass motion remains unaffected by the rf transition. We fit the overlap integral
to our experimental data and obtain the fraction of molecules in the lattice to be (43+5)%
(solid line in Fig. 6.10).
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Figure 6.10: The fraction of molecules detected by rf-
spectroscopy at a potential depth of 15 E,.. For weakly bound
molecules (apo/a < —1) the dissociation works well since the over-
lap between the molecular and the atomic wave function is large.
For deeply bound molecules apo/a > 0 the detected molecular
fraction is suppressed due to the vanishing overlap between the
wave functions. The solid line shows the theoretical expectation
for a constant molecular fraction of 43%.

We measure the lifetime of the molecules in the lattice to be on the same order
of magnitude as of molecules in an optical dipole trap [112]. This is probably related
to the tunnelling rate, which for our lattice parameters is on the order of 100 Hz and
therefore the rate of three-body collisions is comparable to the optical trap. We expect
that the lifetime of the molecules will significantly increase if the lattice depth becomes
larger than 30 E,.. Another possible mechanism which could lead to a loss of molecules
is photo-association induced by the lattice laser beams.
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6.3.4 Thermometry in the lattice

The temperature of the atoms in the lattice is of importance for many proposed experi-
ments in which phase transitions of fermions in lattices are studied, and special cooling
techniques to reach these temperatures have been devised [83, 186, 77, 138]. The molecu-
lar fraction in the lattice turns out to be an ideal quantity to determine the temperature.

Because the atoms are well localised in the sites of the deep lattice, molecules can
only be formed when two particles reside at the same lattice site. The observed fraction
of molecules is thus primarily determined by the filling of the lattice. To study the
relation between the temperature and filling we have numerically calculated the density
of states for non-interacting fermions in an optical lattice including the Gaussian confining
potential due to the transverse envelope of the lattice lasers. In the low-tunnelling limit
we find that the density of states approaches p(E) o< E¥ with v = 1/2 independent of the
lattice depth [179]. The fraction of doubly occupied lattice sites in a 50:50 spin mixture
depends on v and T/Tp. This makes the molecule fraction a quantity well suited for
thermometry. Assuming that the occupation probability per spin state and lattice site ¢
is 0 < n; < 1, the probability of finding two atoms with different spin state on a lattice
site is n?. We identify the molecule fraction with the mean value of n? over the whole
lattice. From a comparison with a numerical calculation [179] we can conclude that the
temperature of the atoms in the optical lattice is at most T'/Tp = 0.45 +0.03. A similar
result for our experimental parameters was computed in [148]. This value gives an upper
limit to the temperature since it assumes adiabatic formation of molecules at all doubly
occupied sites and a perfectly equal mixture of the spin states. During the ramp across
the Feshbach resonance the density distribution might slightly change as compared to the
initial non-interacting case, which limits the accuracy of the temperature determination.

More generally, the molecular fraction is determined by the fraction of doubly occu-
pied states rather than doubly occupied sites:

_ No(T) _ [0 dE p(E) fEn(E,T) (6.4)

n2(T) = —; [ dE p(E)frn(E,T)

In a shallow lattice, where the atoms are delocalised over several sites, two atoms occupy-
ing the same state can always form a molecule, assuming the formation to be adiabatic.
For instance, at T'= 0 one can always expect a 100% conversion of molecules, ng(0) = 1,
independent of the filling. As has been shown in the case of atoms in a harmonic trap
[181], the conversion efficiency is solely determined by the phase space density of the gas.

In conclusion, we have studied molecules in a three-dimensional optical lattice. We
have measured the binding energies and find good agreement with the fundamental the-
oretical model of two interacting particles in a harmonic potential well. Moreover, we
have measured the filling of the lattice by determining the fraction of molecules formed.
This allows for thermometry in the lattice, which has previously been unaccessible. The
fraction of created molecules gives direct access to the number of doubly occupied lattice
sites in a two-component Fermi gas. Therefore it could be employed to characterise a
Mott insulating phase where the double occupancy should be strongly reduced.

75



6 S-WAVE INTERACTING FERMIONS AND MOLECULES IN OPTICAL LATTICES

76



7 p-wave interactions in low-dimensional Fermi
gases

The atomic motion and the dimensionality of the trapping geometry can be controlled
using optical lattices. Yet, it is the collisional interaction between atoms which provides
the avenue towards the physical richness of the strongly correlated regime [83, 69, 85, 25].
In contrast to s-wave interactions studied in the previous chapters, p-wave collisions are
anisotropic. This makes their study in an optical lattice particularly intriguing since
scattering in specific directions can be suppressed by reducing the dimensionality.

7.1 p-wave scattering

The scattering of two atoms with angular momentum [ = 1 shows interesting properties
absent in s-wave collisions. Most importantly, it introduces an anisotropy in the asymp-
totic scattering states which shows up in their angular dependance given by the spherical
harmonics Y7 ,,,(0, #). The quantum number m € {—1,0,1} stands for the projection of
the angular momentum [ onto the quantisation axis. If considering scattering into specific
directions it is helpful to use a different basis:

pe = Yipo
1
Py = ﬁ(yl,—l -Yi1)
7
Pz = *7(1/1,71 + Yl,l)- (71)

The angular dependance is illustrated in Fig. 7.3(a) which shows the surfaces parame-
terised by (|pi|%,0, ¢) for i = z,y, z. From the definition (7.1) it is evident that the states
py and p. both contain m = —1 and m = 1 scattering while p, is identical with the
m = 0 state.

Another consequence of the finite angular momentum is that the atoms feel an ef-
fective potential including a centrifugal barrier [see eqn. (4.5)], as shown in Fig. 7.1. At
ultralow temperatures the atoms do not have enough energy to overcome the barrier and
p-wave scattering is suppressed. In %°K the p-wave cross section is orders of magnitude
smaller than the s-wave cross section at temperatures in the pK regime [188, 116] (in ab-
sence of any scattering resonance). Exploiting a p-wave Feshbach resonance |7, 189, 190|

Parts of this chapter are published in [187].
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Figure 7.1: The effective interatomic potential for
[ > 0includes a centrifugal barrier due to the angular
momentum.

this suppression can be overcome. Similar to the effective range expansion (4.7) in the
s-wave problem, the p-wave phase shift §; can be expressed in a low-k approximation
tan o1 1

B —u 4k (7.2)

where the role of the scattering length is now played by the scattering volume v defined
as
tan d; (k
o(k) = — Tim 2001E)

fim ==, (7.3)

and c is the second coefficient in the expansion. These quantities can be used to param-
eterise the p-wave Feshbach resonance. Because the atoms have to tunnel through the
centrifugal barrier to couple to the bound state, the position as well as the width of the
very narrow resonance are energy dependent.

Due to magnetic dipole-dipole interactions between two atoms a p-wave Feshbach
resonance is split in two resonances [116]. The Hamiltonian

23(R- 31)(R- 82) — 81+ 82

Hy = —a = (7.4)

leads to an interplay between the atomic spins s1 and sy and the partial waves (R is
the interatomic distance) and lifts the degeneracy between the states with m = 0 and
|m| = 1. In a classical picture as illustrated in Fig. 7.2 this is easily understood: While
the atoms orbit, the two spins in a) alternatingly change from an attractive head-to-tail
to a repulsive side-by-side configuration, while in b) they always stay side-by-side. The
m = 0 scattering state thus has a lower energy (if the quantisation axis is chosen along
the spin) and its resonance occurs at lower magnetic fields.
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Figure 7.2: The magnetic dipole-dipole interaction depends on
the angular momentum in the direction of the spin. It is in (a)
perpendicular to the spin, m = 0, and in (b) parallel to the spin,
|m| =1 (quantisation axis along x).

Figure 7.3: Illustration of the anisotropic scattering states p,, p, and p, and their
suppression by the lattice confinement. (a) Without confinement (no lattice), (b) in
a 2D system (1D lattice) and (c) in 1D system (2D lattice). The radial coordinate
corresponds to the absolute square of the scattering amplitude (see text).

7.2 Suppression of scattering by reducing the dimensionality

We investigate p-wave collisions in a spin-polarised Fermi gas in an optical lattice in the
vicinity of a Feshbach resonance controlled by the magnetic field. We study the resonant
behaviour of the atom losses as a function of the magnetic field and observe distinct
features depending on the dimensionality and the symmetry of the system.

For a three-dimensional gas a double-peaked structure appears, as has previously
been reported by Ticknor et al. [116]. This characteristic survives when the dimen-
sionality is reduced to two dimensions (2D) but appears shifted in magnetic field. For
one-dimensional (1D) geometries only a single shifted resonance peak is observed. All
resonantly enhanced losses vanish when the spin-polarised gas is loaded into the lowest
band of a three-dimensional optical lattice, in which each site can be regarded as a system
of "zero dimensions®.

These observations can be qualitatively explained by considering the symmetry of
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Figure 7.4: Spin-alignment dependent interactions in 1D and 2D. In the two-
dimensional configuration of a) all projections of the angular momentum in the
p-wave collision are allowed. b) and ¢) show a one-dimensional spin-polarised
Fermi gas with the spins aligned orthogonal and parallel to the extension of the
gas, respectively. In b) only the |m| = 1 projection of the p-wave contributes
to the scattering, in c) only the m = 0 projection.

the collisions, as illustrated in Figs. 7.3 and 7.4. The external magnetic field orients
the polarisation of the atoms and its direction x may be chosen as the quantisation
axis. Alignment of the scattering state parallel to the quantisation axis corresponds
to the spherical harmonic p, = Y70 and alignment in the plane perpendicular to the
quantisation axis corresponds to superpositions p, and p. of the spherical harmonics
Y1 4+1. The dipole-dipole interaction between the electronic spins lifts the degeneracy
between the |m| = 1 and the m = 0 collisional channels which leads to a splitting of
the Feshbach resonance [116]. In the two- and three-dimensional configurations both
collisional channels are present, giving rise to the observed doublet feature (see Fig. 7.7a
and b). In one dimension, with the spin aligned orthogonal or parallel to the atomic
motion, either the |m| =1 (see Fig. 7.7c) or the m = 0 (see Fig. 7.7d) collisional channel
is contributing, leading to a single peak. In "zero dimensions”™—as realised in a three-
dimensional optical lattice—p-wave collisions and the corresponding losses are absent
(see Fig. 7.7e). In these low-dimensional systems the asymptotic scattering states are
kinematically restricted. However the atomic collision process is still three-dimensional
since the size of the ground state is large compared to the range of the interatomic
potentials. Hence the strongly confined directions can contribute to the collision energy
[191].

One- and two-dimensional fermionic quantum systems have been realised in semicon-
ductor nanostructures [192, 193] and recently with non-interacting [146| and interacting
[159, 152 atomic gases in optical lattices. As shown in section 6.2, in these systems the
strong confinement modifies the scattering properties of the particles: It stabilises molec-
ular states and shifts the position of Feshbach resonances. This has been predicted for
one- [118, 119] and two-dimensional systems [194, 195| interacting via s-wave scattering.
Similarly, for spin-polarised Fermions in one dimension a confinement induced shift of
p-wave Feshbach resonances is predicted [196].
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7.3 Preparation of a spin-polarised Fermi gas

In 4K we have access to a p-wave Feshbach resonance located around 199 G for atoms in
the |FF = 9/2,mp = —7/2) spin state. Since we work with spin-polarised atoms, s-wave
interactions are completely suppressed.

After the usual cooling sequence in the magnetic trap we prepare the atoms in the
| = 9/2,mp = —7/2) state in the optical trap at a magnetic bias field of 232.9 G
using two radio frequency (rf) sweeps. To remove residual atoms in the |F = 9/2, mp =
—9/2) state we change the magnetic field in 100 ms to a value of 201.7 G, close to the
s-wave Feshbach resonance between |F' = 9/2,mp = —9/2) and |F = 9/2,mp = —7/2)
[7, 152], where we encounter inelastic losses resulting in a pure spin-polarised Fermi gas.
Subsequently we increase the magnetic field within 100 ms to 203.7 G. Then we evaporate
atoms by lowering the optical trapping potential during 2.5s to a final value of 7 E,. in
each of the two beams, where E, = h?k?/(2mx) denotes the recoil energy, k = 27/ the
wave vector of the laser and my the atomic mass. The preparation of the gas is completed
by rapidly (< 1ms) decreasing the magnetic field to 194.4 G, which is below the p-wave
Feshbach resonance. We have calibrated the magnetic field by rf spectroscopy between
Zeeman levels with an accuracy better than 100 mG, and we estimate the reproducibility
of our magnetic fields to be better than 50 mG.

Successful cooling of a spin-polarised Fermi gas is not evident as the gas is non-
interacting away from the p-wave Feshbach resonance. To be sure, the hottest atoms
escape from the dipole trap when the laser intensities are reduced, but due to the lacking
collisions no thermalisation of the remaining particles can take place. To our astonish-
ment, we nevertheless observe momentum distributions which indicate that our clouds
are only marginally hotter than a two-component spin mixture with equal atom number
(see previous chapter).

7.4 Three-dimensional gas

For comparison with the low-dimensional situations we first study the p-wave Feshbach
resonance in the crossed-beam optical trap where motion in all three dimensions is pos-
sible. We sweep the magnetic field from its initial value of 194.4 G using a linear ramp
within 1 ms to its final value in the vicinity of the Feshbach resonance. There the atoms
are subject to inelastic losses |7]. After a hold time of 6.4ms we switch off both the
magnetic field and the optical trap and let the atomic cloud expand ballistically for 7 ms
before we take an absorption image. From the image we extract the remaining number
of atoms. In these data (see Fig. 7.7a) we observe the doublet structure of the p-wave
Feshbach resonance.

The decay constant of the atom number close to the Feshbach resonance is on the
order of 1 ms, which is comparable to the settling time of the magnetic field. Therefore we
encounter a systematic shift on the order of +0.1 G due to the direction of the magnetic
field ramp. We have actually observed the opposite systematic shift when reversing the
direction of the final sweep.
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7.5 Two-dimensional gas

In a next step, we additionally apply a single optical standing wave along the vertical
z-axis. The standing wave with a potential depth V, creates a stack of two-dimensional
Fermi gases in the horizontal z-y-plane. The lattice laser intensity is increased using an
exponential ramp with a time constant of 10ms and a duration of 20 ms. The beam for
the vertical optical lattice is derived from a diode laser at a wavelength of A = 826 nm and
is focused to a 1/e?-radius of 70 um. The magnetic field is aligned along the horizontal
r-axis, as depicted in Fig. 7.4a. In the two-dimensional Fermi gas we have studied the
p-wave Feshbach resonance analogous to the method described above, only the release
process of the atoms is slightly altered: within 1ms before the simultaneous switch-off
of the magnetic and the optical potentials, we lower the lattice intensity to V, = 5 E,
to reduce the kinetic energy. This results in a more isotropic expansion which allows to
determine the atom number more precisely.

For the two-dimensional gas we observe a similar doublet structure of the Feshbach
resonance but shifted towards higher magnetic field values with respect to the position
without strong confinement (see Fig. 7.7b). Due to the angular momentum in a p-wave
collision there is a centrifugal barrier in addition to the interatomic potential, which
results in a pronounced energy dependence of the scattering. In the confined gas the
collision energy is modified by the motional ground state energy and the larger Fermi
energy of the gas due to the confinement. Moreover, a confinement induced shift of the
resonance could be envisaged, similar to what has been studied for s-wave interactions
in two dimensions [194, 195].

We experimentally find that the shift of the resonance feature depends on the strength
of the optical lattice. In Fig. 7.5 we compare the measured shift with a model in which
we set the collision energy of the particles to be the Fermi energy plus the ground state
energy. We numerically calculate the Fermi energy for the non-interacting gas in the
full three-dimensional configuration of the optical lattice and the harmonic confining
potential. We use a tight-binding model for the direction of the lattice laser and a
harmonic oscillator potential in the transverse directions. Using the parametrisation of
the Feshbach resonance according to [116], we obtain the shifted position of the resonance
for a given lattice depth. For the |m| = 1 branch of the resonance we find good agreement
of our data with the theory whereas for the m = 0 branch the observed shift is larger
than predicted by our model. There may be an additional confinement induced shift of
the p-wave resonance which depends on the m-quantum numbers in the collision process
[196], however no quantitative theory is available. The observed increasing width of the
Feshbach resonance is also due to a larger collision energy [116].

7.6 One-dimensional gas

Reducing the dimensionality further, we study the effect of the alignment of the electronic
spins on the p-wave interaction in a one-dimensional quantum gas. Therefore all spins are
lined up either orthogonal (see Fig. 7.4b) or parallel (Fig. 7.4c) to the orientation of the
gas. We prepare the one-dimensional Fermi gases by superimposing a second standing
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Figure 7.5: a) Shift of the Feshbach resonance position when
tuning the gas from three to two dimensions. Open symbols indi-
cate the position of the m = 0 branch, solid symbols the |m| =1
branch of the resonance. The error bars denote the statistical er-
ror of 3 measurements. The solid lines show a calculation of the
expected positions (see text). b) Evolution of the full width at
half maximum (FWHM) of the loss feature.

wave laser field onto the two-dimensional quantum gases [152]|. Either the z- or the y-
direction of the optical dipole trap is slowly turned off and replaced by an optical lattice
along the same direction and having the same beam geometry.

We now consider the orthogonal configuration where only collisions with |m| = 1
are possible, and correspondingly we observe only this branch of the Feshbach resonance
(see Fig. 7.7¢c). To study the suppression of the m = 0 branch quantitatively we create
a two-dimensional optical lattice along the x- and the z-direction with V, = 25 E,. and
adjustable V. We have measured the peak loss on the m = 0 and the |m| = 1 resonance
position, respectively. In Fig. 7.6a we plot the ratio of the peak loss versus the tunnelling
matrix element along the z-direction, i. e. between the tubes of the optical lattice. For no
tunnelling the one-dimensional gases are well isolated and losses on the m = 0 branch are
completely suppressed. For larger tunnelling rates hopping of atoms between the tubes is
possible and the system is not kinematically one-dimensional anymore but in a crossover
regime. Therefore collisions in the m = 0 branch become possible which give rise to
losses. The measurement directly verifies suppressed tunnelling between neighbouring
lattice tubes and proves that the gases in the individual lattice tubes are kinematically
one-dimensional. Orienting the one-dimensional quantum gases parallel to the magnetic
field axis, we observe the m = 0 branch of the Feshbach resonance only (see Fig. 7.7d).
Note that the width and the position of crossover regime is determined by the time scale
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7 P-WAVE INTERACTIONS IN LOW-DIMENSIONAL FERMI GASES

of the physical processes under investigation: in this experiment we are one-dimensional
with respect to atomic collision time scales but not necessarily for slower dynamical
processes such as collective oscillations [169].
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Figure 7.6: a) Suppression of collisional losses in the m = 0
partial wave versus the tunnelling matrix element between the
one-dimensional quantum gases. The bars reflect the errors de-
termined from the fit to the loss peaks of two measurements. The
grey box indicates the crossover region from a 2D to a 1D quan-
tum gas as inferred from the inhibition of transverse collisions.
b) Shift of the position of the Feshbach resonance when tuning
the gas from 2D to 1D. Open symbols indicate the position of
the m = 0 branch in the y-z-lattice (see Fig. 7.4c) and the solid
symbols the |m| = 1 branch of the resonance in the x-z-lattice
(see Fig. 7.4b). The solid lines show a calculation of the expected
positions (see text). ¢) Width of the Feshbach resonance loss fea-
ture.
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Figure 7.7: Loss measurements of the p-wave Feshbach reso-
nance. a) Atoms are held in a crossed-beam optical dipole trap.
b) Two-dimensional Fermi gas (V, = 25 ;). ¢) One-dimensional
Fermi gas with the motion confined orthogonal to the direction
of the magnetic field (V, = V, = 25E,). d) One-dimensional
Fermi gas with the motion confined parallel to the direction of
the magnetic field (V, = V, = 25E,). e) Fermi gas in a three-
dimensional optical lattice (V, =V, =V, = 25 E,.) The solid lines
are Lorentzian fits to the data from which we extract the position
and the width of the resonance.

For the one-dimensional Fermi gases we observe a further shift of the resonance posi-
tion and a broadening of the loss feature as compared to the higher-dimensional config-
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urations. A confinement induced shift of the p-wave resonance in one dimension for the
m = 0 branch has been predicted in addition to the increased ground state and Fermi
energy [196]. We apply the calculation technique as described above to obtain the Fermi
energy of the gas and use the same parametrisation of the Feshbach resonance. For the
m = 0 branch we additionally include the theory of ref. [196] for all lattice depths. This
introduces a small error in the 2D and crossover regime. We note, however, that the
confinement induced shift is small as compared to the shift due to the increased collision
energy. A comparison between the resulting shift and the experimental data is shown in
Fig. 7.6b. The increasing width of the loss feature is expected because the width of the
Feshbach resonance also depends on the energy of the particles involved in the collision
process [116].

By using three orthogonal standing waves, we prepare a band-insulating state in a
3D optical lattice [25] where the atoms are localised in the potential wells with at most
one atom per lattice site. In this "zero-dimensional” situation all p-wave scattering is
completely inhibited (see Fig. 7.7e) and no loss features are observed.

In conclusion, we have studied spin-polarised interacting Fermi gases in low dimen-
sions using a p-wave Feshbach resonance. We demonstrate that in reduced dimensions
the direction of spin-alignment significantly influences the scattering properties of the
particles. Moreover, we find a confinement induced shift of the resonance position and
observe good agreement with a theoretical model. Strongly interacting low-dimensional
Fermi gases offer a wealth of fascinating many-body phenomena [197].
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8 Bose-Fermi mixtures in a three-dimensional
optical lattice

Quantum fluids and quantum gases are remarkable objects which reveal macroscopic
quantum phenomena, such as superfluidity and Bose-Einstein condensation. These fun-
damental concepts have profoundly influenced our understanding of quantum many-body
physics. The distinct behaviour observed for purely bosonic or purely fermionic systems
sheds light on the role played by quantum statistics. New insights can be attained by
mixing bosonic and fermionic species. One of the most prominent examples is a mix-
ture of bosonic *He and fermionic *He. There it has been observed that with increasing
admixture of He the critical temperature of the transition between the superfluid and
the normal fluid phase is lowered and below the tricritical point phase separation is
encountered [199].

8.1 Bose-Fermi mixtures in atomic quantum gases

In trapped atomic gases mixing of bosonic and fermionic species has led to the observation
of interaction induced losses or collapse phenomena |24, 200| and collisionally induced
transport in one-dimensional lattices [72|. In this work we report on the creation of a
novel quantum system consisting of a mixture of bosonic and fermionic quantum gases
trapped in the periodic potential of a three-dimensional optical lattice. The optical lattice
allows us to change the character of the system by tuning the depth of the periodic
potential. This leads to a change of the effective mass and varies the role played by
atom-atom interactions. The fascinating physics of purely bosonic [13, 84] and purely
fermionic [83, 25| quantum gases in optical lattices becomes even richer when both species
are mixed. The additional interaction between the bosonic and the fermionic atoms
interconnects two systems of fundamentally different quantum statistics. A wealth of
theoretical work has been devoted to Bose-Fermi mixtures in optical lattices and new
quantum phases have been predicted at zero temperature [201, 17, 202, 203|. Moreover,
the coupling between a fermion and a phonon excitation in the Bose condensate mimics
the physics of polarons [204]. At finite temperature phase transitions to a supersolid
state and phase separation are anticipated [15].

In our experiment, we prepare fermionic *°K atoms together with a cloud of Bose-
Einstein condensed 87Rb atoms. The qualitative behaviour when changing the mixing
ratio between bosons and fermions is depicted in Fig. 8.1. The momentum distribution

Parts of this chapter are published in [198].
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8 BOSE-FERMI MIXTURES IN A THREE-DIMENSIONAL OPTICAL LATTICE

of the pure bosonic sample shows a high contrast interference pattern reflecting the long-
range phase coherence of the system. Adding fermionic particles results in the loss of
phase coherence of the Bose gas, i. e. a diminishing visibility of the interference pattern
and a reduction of the coherence length.
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Figure 8.1: Interference pattern of bosonic atoms released from a three-
dimensional optical lattice for varying admixture of Np fermionic atoms at
a value Upg/zJp = 5. The bosonic atom numbers are Ng = 1.2 x 10° (a and
b) and N = 8 x 10* (c) and the image size is 660 ym x 660 pm.

8.2 Preparing and characterising the mixture in the lattice

The fermionic “°K and the bosonic 8”Rb atoms are cooled in the magnetic trap, as
for the experiments with pure fermionic gases and described in chapter 5. The potas-
sium atoms are in the hyperfine ground state |F' = 9/2,mp = 9/2) and the rubidium
atoms in the hyperfine ground state |F' = 2,mp = 2). After reaching quantum de-
generacy for both species we transfer both clouds into the crossed beam optical dipole
trap operating at a wavelength of 826 nm (see paragraph 5.5.2). In the optical trap
we perform evaporative cooling by lowering the power in each of the laser beams to
~ 35mW. After recompression, the optical dipole trap has the final trapping frequencies
(Wa, wy, w,) = 2w x (30, 35, 118) Hz for the rubidium atoms. We estimate the condensate
fraction to be 90% and use this value to obtain the temperature of both clouds. The Fermi
temperature T in the optical dipole trap is set by the number of potassium atoms and
the trapping frequencies, and we obtain T'/TF ~ 0.3, which is in agreement with a direct
temperature measurement of the fermionic cloud. For the mixing fractions investigated
in this experiment the extension of the Fermi cloud was larger than the Thomas-Fermi
radius of the BEC.

The three-dimensional optical lattice is generated by three mutually orthogonal laser
standing waves at a wavelength of A = 1064nm and a mutual frequency difference of
several 10 MHz. Each of the standing wave fields is focused onto the position of the
quantum degenerate gases and the 1/e? radii of the circular beams along the (z,v, 2)-
directions are (160, 180,160) ym. To load the atoms into the optical lattice we increase
the intensity of the lattice laser beams using a smooth spline ramp with a duration of
100ms. This ensures adiabatic loading of the optical lattice with populations of bosons
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and fermions in the lowest Bloch band only. We have checked the reversibility of the
loading process into the optical lattice by reversing the loading ramp and subsequently
let the particles equilibrate during 100 ms in the optical dipole trap without evaporation.
We measure that for both the pure Bose gas and the Bose-Fermi mixture the condensate
fraction decreases by ~ 1.4% per E, of lattice depth, where E, = h?/2mgpA? denotes
the recoil energy and mgy, the mass of the rubidium atoms.
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Figure 8.2: Tunnelling and interaction parameters for the Bose-Fermi mixture 8"Rb and
40K. (a) Ratio of the tunnelling matrix elements for the bosons and the fermions. (b) Boson-
boson and fermion-boson on-site interaction normalised to the tunnelling matrix element of

8TRb.

The physics of the Bose-Fermi mixture in an optical lattice is described by the Bose-
Fermi Hubbard model [205]. A derivation similar to the Fermi-Hubbard model (3.32)
leads to the Hamiltonian:

., 1 o

fige == 5> (Jpaly s+ Jebly b)) + e (8.1a)
UBB~. . I

+ 5 npi(np; —1) + Upp ZnBinpi (8.1b)

+ Z (Veitgi + VFifip;) - (8.1c)

)

Solving this model is a difficult theoretical task, however, its parameters are well known
in the experiment. The first term (8.1a) of the Hamiltonian contains the tunnelling
matrix elements Jp and Jp, respectively (see section 3.5). Due to their smaller mass, the
fermionic potassium atoms experience a shallower lattice potential (Vy/E, o m) than
the bosonic rubidium atoms. Since the tunnelling only depends on Vj/E,., they are much
more mobile (see Fig. 8.2(a)). The interaction part in the second line (8.1b) is specified
by the on-site interaction strengths Ugp between two bosons and Ugr between a boson
and a fermion. Knowing the Wannier functions w!"(r) and w?(r) from the band structure
allows to calculate Upr by computing the integral

Ugr = /dr \wF(r)|2|wB(r)]2, (8.2)
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where myeq = (mgmgp)/ (MK + mrp) is the reduced mass of the two species. Using the
most recent experimental value of the K-Rb s-wave (triplet) scattering length for atoms
in the absolute ground state, apr = —215 £ 10ag [206], and agg = 100aq [207] we obtain
Upr/Upp ~ —2 in the parameter range of our experiment (Fig. 8.2(b)). Finally, the
external trapping potential is described by the last term (8.1¢) of the Hamiltonian.

8.3 Measuring the phase coherence of the superfluid

We have studied the phase coherence of the bosonic atoms in the optical lattice for
various admixtures of fermionic particles. We switch off the optical lattice quickly and
allow for 25ms of ballistic expansion before taking an absorption image of the atomic
cloud. From the absorption image we measure the visibility of the interference pattern,
which is analogous to eqn. (3.27) given by:

= ()’ 1o ()5 (6= 5) s
S(k) = e*rimi) ala)) (8.3b)
2%

This formula is valid if the interactions have a negligible effect during the expansion of
the atoms [208|. We determine the maximum np,,x and the minimum ny,i, of the density
of the atoms at a momentum |g| = 2hk with k = 27/\ (see inset in Fig. 8.1a) [209]. From
this we calculate the visibility V = (nmax — "min)/("max + "min) = (Smax — Smin)/(Smax +
Smin)-

The phase coherence of the bosons in the lattice is not only described by the visibility
of the interference pattern but also by the coherence length of the sample [145, 210]. In a
superfluid state the coherence length is comparable to the size of the system. It is related
to the inverse of the width of the zero-momentum peak plus a small contribution from
the repulsive interaction between the bosonic atoms.
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Figure 8.3: Two different quantities to extract information about
the bosonic coherence: a) visibility of the interference pattern, and
b) width of the central interference peak.
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8.4 Adding fermions to the condensate

In the case of a purely bosonic gas the ground state for different lattice depths is well
known [13, 80]. For shallow three-dimensional lattices, the kinetic energy dominates over
the interaction energy and the bosons are superfluid, showing long-range phase coherence.
As the lattice depth is increased beyond a certain value of U/J (= 6-5.8 in 3D) it becomes
energetically favourable for the atoms to localise on the lattice sites, thereby avoiding to
pay the interaction energy U when hopping to an already occupied neighbouring site. In
this Mott insulating phase all the sites have the same integer occupation number, and
the absence of number fluctuations destroys the phase coherence. The quantum phase
transition from the superfluid to the Mott insulating state has been observed in a famous
experiment in a three-dimensional system [84] and also in one dimension [145].
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Figure 8.4: a) Visibility of the Bose-Fermi mixture in the opti-
cal lattice for various mixing ratios between bosons and fermions.
The intersection between the dashed lines defines the characteris-
tic value (Upp/zJB).. The inset shows the principle of the mea-
surement (see text). b) Measurement of the width of the central
momentum peak which reflects the inverse of the coherence length
of the gas. The inset shows how the peak width is extracted from
the column sum of the optical density. The dashed line indicates
the upper constraint of the width imposed by the fitting routine
and the error bars reflect the fit uncertainty.

In this experiment we obtain for a pure bosonic cloud results similar to previous
measurements [145, 209, 211|. In our data (see Fig. 8.1a), the visibility V starts to drop
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off at a characteristic value (Upp/zJp). ~ 6.5. For larger values of Ugp/z.Jp the decrease
in visibility is approximated by V o« (Upp/zJp)" with v = —1.41(9), which is consistent
with our earlier measurement in a different lattice setup giving v = —1.36(5) [145] but
different from the exponent v = —0.98(7) obtained in ref. [209]. For a mixture of bosonic
and fermionic atoms the results change; see also [200]. Whereas in the superfluid regime
for very low values of Upp/zJp the visibility is similar to the pure bosonic case, the
presence of the fermions decreases the characteristic value (Upg/zJp). beyond which
the visibility drops off significantly. Nevertheless, the visibility still shows a power-law
dependence on Upp/zJp with an exponent in the range of —1 < v < —1.5.

To quantify the shift of the visibility data towards smaller values of Upp/zJp we
have fitted the power-law decay for large values of Upp/zJp and extrapolated the slope
to the visibility for the superfluid situation (dashed lines in Fig. 8.1a). The intersection
defines the characteristic value (Upp/zJp). which depends on the mixing ratio between
fermions and bosons Nr/Np as shown in Fig. 8.5. From this graph it is evident that
even very small admixtures of fermionic atoms change the coherence properties of the
bosonic cloud significantly.
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Figure 8.5: Decrease of the coherence of the Bose gas in the
lattice vs. the admixture of fermions.

Measuring the central peak width we find for the pure bosonic case we find that
it starts to increase at a value of (Upp/zJB). = 9 (see Fig. 8.1b). For the case of a
Bose-Fermi mixture the value of (Upp/zJp). beyond which the peak width increases is
dramatically altered: for an increasing admixture of fermionic atoms to the bosonic sam-
ple, its value decreases and it behaves very similar to the corresponding value (Ugp/zJp).
for the visibility (see Fig. 8.5).
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8.5 Fermion-driven condensate depletion

Our interpretation of the simultaneous decrease of both the coherence length and the
visibility with increasing admixture of fermions is that the superfluid phase is left. While
for the pure bosonic case this indicates a Mott insulator transition [145, 209]|, for the
mixture the analysis is more delicate due to the different interactions and the different
quantum statistics of the two species. The full understanding of the observed effects
including strong interactions and finite temperature is challenging. We will consider two
limiting situations, namely a strongly interacting Bose-Fermi mixture at T'= 0 in which
polarons and composite fermions are formed, and a non-interacting mixture at finite
temperature. In both explanations we encounter a destruction of the superfluid with
increasing fermionic admixture which qualitatively reflects our results.

At zero temperature several quantum phases of the system are predicted [15, 204,
17, 202], depending on the sign and the strength of the Bose-Fermi interaction. At low
depth of the optical lattice the interaction of the Bose-Einstein condensate with the Fermi
gas leads to the depletion of the condensate and to the formation of polarons where a
fermion couples to a phonon excitation of the condensate [204]. The coupling strength
of the fermions to the phonon modes depends on Upp and the ratio Ugg/Jp. If the
coupling becomes very strong the system is unstable to phase separation (Ugp > 0) or to
collapse (Upp < 0). In the stable regime, the polarons can form a p-wave superfluid or
induce a charge density wave, as has been analysed in one spatial dimension [204]. The
enhanced bosonic density around a fermionic impurity increases the effective mass of the
fermion and might enhance the tendency of the bosons to localise. For our parameters, the
phonon velocity is comparable to the Fermi velocity, a regime that is usually unaccessible
in solids. On the other hand, the interaction of the Bose gas with the second species leads
to an effectively attractive interaction between the bosons which would favour a Mott
insulator transition at a larger depth of the optical lattice [204]. At a larger depth of
the optical lattice other effects come also into play. Composite fermions consisting of
one fermion and npg bosons form when the binding energy of the composite fermion
exceeds the gain in kinetic energy that the particles would encounter by delocalising. An
effective Hamiltonian for these (spinless) composite fermions with renormalised tunnelling
and nearest neighbour interaction has been derived and their quantum phases have been
investigated theoretically [201, 17|. In this situation, the Bose-Einstein condensate can
be completely depleted by the interactions between bosons and fermions.

For the finite temperature model of the non-interacting gas we consider the entropy
of the cloud of bosons and fermions, which is S = aNpT/Tr + BNg(T/T.)3. Tr =
hop(6NF)'/3 denotes the Fermi temperature for Ng fermions in a trap with frequency
wp and T, = hwp(Np/¢(3))Y/? the critical temperature for Bose-Einstein condensation
with a and ( being numerical constants. When increasing the depth of the optical
lattice adiabatically, the temperatures of the two species remain equal to each other due
to collisions, while T, and Tr evolve very differently. This is due to the fact that the
tunnelling rates for the fermions are up to an order of magnitude larger than for the bosons
for our lattice parameters. Since the effective masses mp p oc 1/Jp F [see eqn. (3.21)]
enter into the degeneracy temperatures, T, decreases much faster than Tr. At constant

93



8 BOSE-FERMI MIXTURES IN A THREE-DIMENSIONAL OPTICAL LATTICE

entropy, this results in adiabatic heating of the bosonic cloud (7'/T. increases) and a
reduction of the condensate fraction [212]. Simultaneously the fermionic cloud is cooled
adiabatically (T'/Tr decreases), similar to the situation considered without a lattice in
[213]. For the non-interacting mixture with our parameters one expects a reduction of
T/Tr by a factor of approximately 2 at a lattice depth of 20 E,. From a very recent
theoretical treatment [214] it has been found that below a certain initial temperature
the lattice ramp-up gives rise to an adiabatic cooling (7" decreases), whereas above this
threshold temperature adiabatic heating takes place. The absolute temperature of the
mixture is always higher than for the pure bosonic case.

8.6 Change of the bosonic site occupation

In the experiment we have further studied the occupation of the optical lattice by mea-
suring three-body recombination. Lattice sites with a higher occupation than two atoms
are subject to inelastic losses where a deeply bound molecule is formed and ejected from
the lattice together with an energetic atom. Independent of their occupation all lattice
sites are furthermore subject to loss processes such as off-resonant light scattering, back-
ground gas collisions, or photo-association due to the trapping laser light. The attractive
interaction between the bosons and the fermions changes the occupation of bosons on
the sites of the optical lattice. For the given ratio of the on-site interaction strength
of Upr/Upp ~ —2 it is energetically favourable to have up to five bosons per site if a
fermion is present.

The experimental sequence to study the three-body decay starts from an initially
superfluid Bose gas at a potential depth of 10 E,.. We use a ramp time of 30 ms to increase
the potential depth of the lattice from zero to 10 E, during which we do not observe a
loss of atoms. Subsequently, we freeze the atom number distribution by quickly changing
the lattice depth to a large value of 18 F, where the tunnelling time of the bosons is
T8 = h/zJp = 23ms. We monitor the total atom number as a function of the hold
time in the deep optical lattice (see Fig. 8.6) and observe two distinct time scales of the
decay of the atoms. The fast initial time scale is due to three-body losses from multiply
occupied lattice sites. The slower decay is due to single-particle loss processes.

To extract quantitative information from the loss curves we fit the data with the
following model. We assume that any singly or doubly occupied site decays with a single
particle loss rate I';. Multiply occupied sites decay with a rate determined by the three-
body loss constant KP = 1.8 x 1072 cm® /s [215] and the three-body density [n(r)]® at
the lattice site. Since we start from a superfluid the number distribution at the lattice
sites can be approximated by a coherent state with a third order correlation function
being equal to unity [216]. We calculate the three-body loss rate assuming gaussian
ground state wave functions at each lattice site to be I'3 = 0.24 x n% s~!, where np is
the number of bosons on the site. By fitting the data with this model we extract the
occupation of the lattice. We obtain nj 9 = 67(3)% of the sites with single or double
occupation, ng = 23(9)% sites with triple occupation and ny = 10(8)% of lattice sites
with occupation four. A mean field calculation neglecting tunnelling yields the theoretical
values 11 o = 58%, n3 = 33%, and n4 = 17% which gives reasonable agreement given the

94



8.7 Conclusions

simplicity of the model. The slow decay rate is determined to be 0.35(7)s™!.
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Figure 8.6: Decay of a pure bosonic gas (squares) and a Bose-Fermi
mixture (circles) in the optical lattice. The fast initial decay of the
bosons is much more pronounced in the mixture, reflecting the higher
density due to Bose-Fermi attraction. For the fermions hardly any
loss is observed. The error bars indicate statistical errors from three
repetitive measurements.

Upon adding fermions to the system we find a much faster initial decay due to three-
body loss for the rubidium atoms. The single particle loss constant is, however, the same.
In contrast, for the fermionic atoms we do not observe a particle loss of a comparable
order of magnitude. This suggests that the observed loss is only due to three-body
recombination between three rubidium atoms. Recent results have suggested that the
three-body loss constant KP¥ for K-Rb-Rb collisions is an order of magnitude larger
than for Rb-Rb-Rb collisions [200]. This is not consistent with our data since we do not
observe the corresponding fast loss of potassium atoms, similar to previous results [217].

8.7 Conclusions

In conclusion, we have investigated a Bose-Fermi mixture in a three-dimensional optical
lattice. We have observed that the presence of fermions changes the coherence properties
of the Bose gas and substantially enhances the three-body loss of bosonic atoms. Bose-
Fermi mixtures in an optical lattice promise to be an extremely rich quantum system
[201, 17, 202, 204, 15]. A number of Feshbach resonances between 8”Rb and 4°K [218, 219]
exists which will give access to various quantum many-body regimes predicted in the
literature as well as to the creation of ultracold heteronuclear molecules.
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9 C(Conclusions and outlook

In recent years cold atoms in optical lattices have emerged as an important domain in
the research of dilute quantum gases. In this thesis I have presented the first experiments
with interacting fermionic “°K atoms and Bose-Fermi mixtures of “°K and 8"Rb in optical
lattices. These systems bridge the gap between cold atomic physics and solid state physics
and open the way towards the exploration of intriguing quantum phases in lattices.

In the following the experimental results described in the previous chapters are sum-
marised and future perspectives are pointed out.

9.1 Controlling the interactions of fermions in a lattice

In a three-dimensional optical lattice we prepared the two most elementary states of ideal
fermions in a periodic potential, a metallic and a band-insulating state, and dynamically
induced a transition between them. Imaging the Fermi surface provides direct access
to the quasi-momentum distribution in either state. In order to investigate the specific
scattering properties of atoms confined in an optical lattice we exploited a Feshbach
resonance to adjust the scattering length. Crossing the resonance adiabatically from one
side, we created weakly bound molecules in 1D systems and in deep cubic lattices. The
measured energy spectra demonstrate the the strong influence of the lattice confinement
on the atomic scattering. Crossing the Feshbach resonance from the other side, atoms
are transferred to higher bands, which reveals the limits of single-band Hubbard models.

Furthermore, the combination of low-dimensional geometries and anisotropic scatter-
ing gives rise to new phenomena not previously encountered for s-wave interactions. We
realised p-wave interacting Fermi gases in low dimensions for the first time, making use
of a p-wave Feshbach resonance for spin-aligned atoms. The anisotropy of the scattering
allowed us to suppress the asymptotic wave functions extending in the transverse direc-
tions of the confinement. In one dimension, strongly attracting spin-aligned fermions can
be mapped to non-interacting bosons. Such a fermionic Tonks should display a bosonic
density distribution which has yet escaped experimental observation. Other intriguing
perspectives include the exploration of the BCS-BEC crossover in 1D [10] and the obser-
vation of exotic p-wave superfluid phases [220].

Our experiments demonstrate the amazing versatility of cold fermionic atoms in op-
tical lattices and their use as a model system for quantum many-body physics. The
high degree of control over the parameters permits us to test and simulate interesting
Hamiltonians and to discover new phenomena.
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9.2 Quantum simulation with fermions

Experiments with two-component spin mixtures in optical lattices are to a great extent
motivated by the possibility of simulating the Fermi-Hubbard model, on which a sub-
stantial part of modern condensed matter physics is based. One can, for instance, study
s-wave superfluidity and the BCS-BEC crossover for attractive interactions in a lattice
[83, 9]. The domain of repulsive on-site interaction (positive U-Hubbard model) is espe-
cially exciting since it embodies the physics of high-temperature superconductors [221].
For fillings close to one half corresponding to n = 1 atom per site, an antiferromagnetic
phase (AFM) forms below the critical Néel temperature Ty, as illustrated in Fig. 9.1.
At temperatures not much above T, the fermions tend to localise in the lattice sites for
sufficiently large U/J and build a Mott insulating state (MI). A d-wave superfluid phase
(d-SF) is expected for very low temperatures and fillings slightly below one half. Interest-
ingly, in the limit of large U/J, where the tunnelling term can be treated perturbatively,
the Hubbard model maps to the Heisenberg model with a spin coupling of Jap = 4J%/U
[138]. This energy scale gives an estimate for the Néel temperature Ty, which is of the
order of 0.1 TF. Achieving such low temperatures poses a new challenge for experiments,

(a) (b)
n=1
PM
T/) T/J Ml
AFM
0 0
0 u/J

Figure 9.1: Schematic phase diagrams of the repulsive Fermi-Hubbard model:
Critical temperatures in units of the tunnelling J, in (a) versus the filling n and
in (b) versus the interaction U/J for half filling (n = 1). Around half filling an
antiferromagnetic phase (AFM) appears at low temperature, while for lower
fillings a d-wave superfluid phase is expected. Above the Néel temperature the
system is Mott insulating (MI) for sufficiently large U/J. (PM) denotes the
unordered paramagnetic phase.

and proposals for new cooling mechanisms as in refs [138, 222| are very desirable. In this
respect the realisation of a fermionic Mott insulator seems definitely within closer reach
for current experiments than the spin-ordered phases.

A concrete example of quantum simulation is our investigation of the transport prop-
erties of an interacting Fermi gas within the negative-U Fermi-Hubbard model. These
experiments were carried out during the writing of this thesis and are detailed in the
preprint of ref. [223|. In short, we prepare an attractively interacting gas and displace
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the minimum of the external trapping potential to observe the relaxation of the cloud
towards the new equilibrium position in the lattice. For attractive interactions we have
amazingly good control over the atomic motion in the lattice by tuning the scattering
between different negative values. For large values of U/J we find that the cloud re-
laxes very slowly as a consequence of the low tunnelling rate of weakly bound local pairs
[224, 225|. The presence of these pairs also leads to an increase of the local density in the
lattice wells, which we observe in a larger fraction of Feshbach molecules formed after a
magnetic field sweep.

It is conceivable to explore a phase transition to a Mott insulating state with a
similar experiment for repulsive interactions. Furthermore, measuring the fraction of
doubly occupied lattice sites in a Mott insulator by molecule formation should reveal
the interaction-induced localisation of atoms in different lattice sites. For magnetic field
sweeps faster than the tunnelling time between adjacent sites, one expects the fraction of
formed molecules to vanish. In the meantime we have integrated a more powerful lattice
laser in our setup which achieves potentials deep enough to freeze the site occupation and
thereby facilitates non-adiabatic molecule formation. A Mott insulating phase is further
characterised by an energy gap in the excitation spectrum, which may be measured
spectroscopically by modulating the lattice potential [226].

9.3 Tuning the interaction between fermions and bosons

By loading bosonic and fermionic atoms simultaneously into a 3D optical lattice we
realised a Bose-Fermi mixture. We observed that the presence of fermions changes the
coherence properties of the Bose gas and substantially enhances the three-body loss of
bosonic atoms.

Future prospects for Bose-Fermi mixtures in optical lattices are promising, especially
when the interspecies interaction is tuneable via a Feshbach resonance [219]. Similar
to phonons in a solid, the bosonic atoms can mediate an effective attractive interaction
between the fermions, and enable superfluid pairing [16]. Moreover, the existence of
a supersolid phase has been predicted, where superfluid (off-diagonal long-range) order
and crystalline (diagonal long-range) order are both present [15]. While the first one is
associated with phase order in the Bose condensate, the latter is imprinted on the bosonic
density by the interaction with the fermions which form a density wave.

Another exciting perspective is the creation of hetero-nuclear K-Rb molecules. In the
vibrational ground state these molecules have a permanent electric dipole moment of the
order of 1 Debye, resulting in a long-range dipole-dipole interaction. This would give
access to new phenomenology and allow the manipulation via electric fields for quantum
computing applications [227]. Ideally, in a 3D optical lattice each site is populated
with one boson and one fermion so that isolated Feshbach molecules can be created
via a magnetic field sweep [228]. In contrast to the situation in a weakly confining
trap, in the lattice molecule-molecule collisions are suppressed. Moreover, a favourable
Frank-Condon factor should facilitate transferring the weakly-bound molecules to their
vibrational ground state via a two-photon Raman transition [229].

The experiments presented in this thesis have initiated the exploration of interacting
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fermions and Bose-Fermi mixtures in optical lattices. The almost boundless possibilities
of controlling experimental parameters promise thrilling physics to be discovered in the
future.
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10 Appendix

10.1 Singlet and triplet character of the scattering length

In this section I show with a specific example how the s-wave scattering length for two
atoms in certain hyperfine states can be estimated from the knowledge of the singlet and
triplet scattering lengths, ag and ap, for the considered isotopes.

We are interested in the F = 9/2 hyperfine ground state of the “°K isotope with
total nuclear spin I = 4 and electronic angular momentum J = S = 1/2. We consider
two independent atoms in the lowest magnetic sub-levels of the hyperfine ground state,
|9/2,-9/2) and |9/2, —7/2), respectively, where the states are denoted as |F,mp) with
mp being the projection of the total spin F' onto the quantisation axis. What is the
electronic spin configuration of the two-body state? The atoms are in superpositions of
states with electron spin up |1) (mg = 1/2) and down |]) (mg = —1/2). To determine
the singlet and triplet character of the electronic spin we do the Clebsch-Gordan decom-
position into states |my, mg) with definite projections m; and mg of the nuclear and the
electronic spin, respectively,

9/2,-9/2) = |—4, 1) (10.1a)
/8
B

For the two-particle state of the atom pair we can now write

19/2,~7/2) = %\—47 0+ Y2123, 0). (10.1b)

9/2,-9/2) ©19/2,-7/2) = |4 ) & <§|—4, N+ L ¢>>

= S DA 4 D4, 1) (10.22)

Fr (DD A D)+ e (0a)

In the last expression the term (10.2a) is a singlet state whereas the terms (10.2b) cor-
respond to triplet states. The squares of their amplitudes give the probabilities Pg and
Pr for the pair to be in the singlet or the triplet state, respectively:
Ps =1/18 (10.3a)
Pr=17/18. (10.3b)
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10 APPENDIX

The pair [9/2,—9/2) and [9/2,—7/2) has thus an almost pure triplet character. The
same is then true for the scattering length which in the elastic approximation [230] is

given by
a ~ Psag + Prar. (10.4)
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10.2 Atomic properties

10.2 Atomic properties

10.2.1 Fermionic potassium “°K
natural abundance 0.0117(1) % [231]
atomic mass m 39.9639985 u [231]
vapour pressure at 50°C 3.8 x 107 mbar [231]
nuclear spin [ 4 [231]
nuclear gr factor 0.000176490(34) * [232]
gs factor (425 )5) 2.00229421(24) [232]
wavelength of Dy line 766.7017 nm [233]
wavelength of D line 770.1098 nm [233]
natural line width of D transition I 27 -6.09 MHz [234]
ground state hyperfine splitting 27 - 1285.7 MHz [232]
van der Waals coefficient Cg 3927 £ 50 aSa’m.c? | [114, 116, 235]
range of van der Waals potential (g 130 ag [114]
singlet scattering length ag 104.0 ag [116]
triplet scattering length arp 174 ay [116]
background scattering length aj,g 174 ag [116]
effective range r, 98 ag [89]
10.2.2 Bosonic rubidium 8"Rb
natural abundance 27.83(2) % [231]
atomic mass m 86.90918053 u [231]
vapour pressure at 20°C 3.1x 1077 mbar [231]
nuclear spin [ 3/2 [231]
nuclear g7 factor -0.0009951414(10) * [232]
gs factor (525 5) 2.00233113(20) [232]
wavelength of Dy line (vacuum) 780.241209686(13) nm [237]
wavelength of D; line (vacuum) 794.9788509(8) nm [237]
natural line width of Dy transition I 27 - 5.746(8) MHz [234]
ground state hyperfine splitting 27 - 6834.6823 MHz [232]
background scattering length apg 100 ag [207]

40K -87Rb interspecies background scattering length (B = 0): (—185+7) ag [219, 206].

*The nuclear gyromagnetic ratio is defined through the nuclear magnetic moment pnuer = —grusl,

where pp is the Bohr magneton.
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Figure 10.1: Magnetic sub-levels of the ground state 45, /5 and the excited state 4P 5 fine
structure manifold in “°K. The zero of energy is defined as the energy of the fine structure
levels in absence of hyperfine interactions at B = 0. For each hyperfine manifold F' the
magnetic sub-level with mp = —F is plotted as a dashed line. The energies were calculated
by exact diagonalisation [236].
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Figure 10.2: Magnetic sub-levels of the ground state 551/, and the excited state 5P; /9
fine structure manifold in 8”Rb, analogous to Fig. 10.1
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10.3 Publications

The following table lists articles that were published within the frame of my PhD work:

Paper Title Published Citation
1 Fermionic Atoms in a Three Dimensional Op- 2005 [25]
tical Lattice: Observing Fermi Surfaces, Dy-
namics, and Interactions

2 Confinement Induced Molecules in a 1D 2005 [152]
Fermi Gas

3 Molecules of Fermionic Atoms in an Optical 2006 [174]
Lattice

4 Strongly interacting atoms and molecules in 2006 [179]
a 3D optical lattice

5 p-Wave Interactions in Low-Dimensional 2005 [187]
Fermionic Gases

6 Bose-Fermi Mixtures in a Three-Dimensional 2006 [198]
Optical Lattice

7 Realization of a Magnetically Guided Atomic 2004 [238]

Beam in the Collisional Regime
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