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Abstract

Two sets of studies are described in this thesis. In the first set, an atom interferometry
technique was developed for the measurement of the fine structure constant using a Bose-
Einstein Condensate. In the second set, degenerate Fermi gases were prepared and their
properties explored in a regime of strong interactions.

We have developed an atom interferometer which is capable of measuring with high
precision the “photon recoil frequency” (ωrec). ωrec corresponds to the kinetic energy of an
atom recoiling due to absorption of a photon. ωrec can be used to determine the quantity
h/matom and the fine structure constant, α. A preliminary measurement using a 23Na Bose-
Einstein Condensate yielded ωrec with a precision of 7 × 10−6 which deviated by 2 × 10−4
from the currently accepted value. Plausible upgrades to the apparatus should produce a
precision of 10−9 which would bring within reach a measurement of h/matom and α in the
10−9 range. Such accuracy would be of considerable scientific and metrological import.

A quantum degenerate gas of 6Li fermions was produced by sympathetic cooling with
23Na bosons in a two-species atom trapping apparatus. The cooling strategy was optimized
to enable production of fermions with atom numbers up to 7 × 107 at half the Fermi
temperature (TF ), or temperatures down to 0.05TF ∼ 100 nK with 3× 107 atoms. We can
also produce degenerate Bose-Fermi mixtures with several million atoms in each species.

We studied the behavior of mixtures of fermi gases in regimes of strong interactions near
“Feshbach” resonances. A study of system stability enabled the experimental observation
of two such Feshbach resonances.

We carried out a theoretical study to interpret the observation (by many experimental
groups) of hydrodynamic behavior of fermi gases during expansion out of an atom trap in a
strongly-interacting regime. The study concluded that this behavior was not a qualitative
signature of fermionic superfluidity and could arise from classical collisions.

Finally, radio-frequency (RF) spectroscopy was used to probe interaction in 6Li. We
demonstrated the absence of mean field “clock” shifts of RF transitions in a two-(spin)state
fermion system. Using a three-state system, we measured the interaction strength between
different spin states. The measurements near Feshbach resonances indicate a saturation
of the interaction strength at a large negative value. This result is of relevance in the
continuing quest for fermionic superfluidity in atomic gases.

Thesis Supervisor: David E. Pritchard
Title: Cecil and Ida Green Professor of Physics

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacArthur Professor of Physics
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Chapter 1

Introduction

Over the last century, the scientist’s understanding of the world has undergone a profound
change. The gradual realization of the underlying discreteness of nature has shaped a
“quantum” picture of the world. In this picture, Nature is divided into very small but
discrete units called quantum states. The behavior of particles which cannot be described
without assuming this underlying disreteness is called quantum behavior. Typically, such
behavior is exhibited at very small microscopic scales of length, energy, etc. However,
experimental advances can sometimes lead to spectacularmacroscopic quantum phenomena.
One such incredible advance occurred in 1960 with the invention of the optical laser [13, 14].
A laser is created when particles of light, photons, occupy a single quantum state. Since
all the photons are in the same state, they share the same energy, polarization, direction of
propagation and so on. This is the reason for the spectacular difference between laser light
and ordinary light for example from a light bulb.

With the turn of the century, a new paradigm of macroscopic quantum phenomena is
rapidly establishing itself. Particles of matter, atoms, can also occupy a single quantum
state. This marks a phase transition into a new state of matter - the Bose-Einstein Con-
densate (BEC). This phase transition was observed in dilute alkali metal vapors in 1995
[15, 16, 17]. Since then, gaseous BECs have been in the limelight of science.

As with lasers, BECs can be applied towards spectroscopy and metrology[1]. The weak
interactions in dilute gas BECs make it an ideal testing ground for basic quantum theories.
This was not possible for the previous realization in 4He[18]. In addition, gaseous atomic
systems are equipped with a whole range of experimental “knobs” which allow studies in
a wide regime of temperatures, densities, interaction strengths, internal state composition,
and so on.

The early achievements of BEC in 87Rb[15], 7Li[16], and 23Na[17], have been followed by
the creation of BECs in other dilute atomic gases: 1H[19], 85Rb[20], metastable 4He[21, 22],
41K[23], 133Cs[24], and 174Yb[25]. This list is constantly growing.
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1.1 Degenerate Atomic Gases

There are only two types of particles in nature. Identical particles which can occupy the
same quantum state (such as photons and 23Na atoms) are called bosons. The other type
of particles are called fermions. Two identical femions cannot occupy the same quantum
state.

Pronounced quantum behavior of atomic gases can occur when the number of available
quantum states approaches the number of identical particles in the system. Such conditions
induce behavior which begins to depart dramatically from the classical characteristics of
room temperature gases. BEC is an example of such behavior. Let’s estimate the conditions
for this to happen.

The Heisenberg Uncertainty principle of quantum mechanics relates the size ∆x and
momentum ∆p of a quantum state:

∆x∆p = �.

Using the kinetic energy relation (for a particle of mass m at temperature T ):

(∆p)2

2m
= kBT

then gives the de-Broglie wavelength

∆x ≈ λdB =
h√

2mkBT
.

λdB describes the spatial extent of the quantum state at temperature T . For a gas of
particles of mass m at temperature T , quantum behavior will ensue if the density n of the
gas is large enough to cause overlap between the different quantum states. This requirement
produces the condition:

nλ3dB � 1 ⇒ nT− 3
2 � (

2mkB
�2

)3/2. (1.1)

Under these conditions, quantum phenomena can be expected to occur. Very often, the
phrase “quantum degenerate” is applied to a gas under these conditions.

At room temperature (∼ 300K), Eqn. 1.1 gives a degeneracy density for 23Na atoms
of n ∼ 1027 cm−3. At these densities, the system is no longer a gas at room temperature.
The phase transition to liquid and then solid will mar the approach to degeneracy. Several
technical advances have been required to keep the particles in a gaseous state while lowering
their temperature in order to reach degeneracy. In current experiments on alkali metal
vapors, degeneracy is reached at a temperature of � 1µK (a billion times colder than air).
Eqn. 1.1 then implies a density of ∼ 1014 cm−3. This requirement makes the gas dilute and
allows for simplified theoretical treatments.
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1.2 Different Quantum Matters

Bosons and fermions, behave differently near degeneracy. This is formally understood from
the difference in their quantum statistics which relates equilibrium state occupation prob-
abilities with thermodynamic quantities.

Bosonic degeneracy involves the formation of the Bose-Einstein Condensation - macro-
scopic occupation of a single quantum state. Fermionic degeneracy involves single occu-
pation of “nearest neighbor” quantum states. This tight packing creates a Fermi Sea of
particles. A minimum size is thus maintained giving rise to the so-called Fermi pressure.
Additional particles cannot penetrate into the Fermi Sea, giving rise to a “Pauli blocking”
behavior.

The first observation of Fermi degeneracy in 1999 was in 40K[26] by the group of D. Jin
at the University of Colorado. Since then five other groups have made similar observations
in 6Li[27, 28, 29, 3] as well as in 40K[30].

Several groups are now actively trying to observe another kind of quantum behavior
which arises when degenerate fermions attract each other and form particle-pairs with long
range correlations. This state is known as the Bardeen-Copper-Schreiffer (BCS) super-
fluid[31]. For reasons similar to those mentioned in the case of BEC, in spite of previous
realizations in 3He and superconductors, gaseous fermionic superfluids should provide a
whole new range of tests and explorations.

This thesis reports on studies using both degenerate bosons and degenerate fermions
with particular emphasis on experiments towards creating the BCS superfluid.

1.3 Outline of this thesis

The work reported in this thesis can be divided into two parts. The first part was performed
under the supervision of Dave Pritchard and involves an application of BECs to high preci-
sion measurements. We developed a BEC atom interferometer using optical standing waves
that is capable of precisely measuring ωrec, the recoil frequency (energy) of an atom due to
absorption of a photon. ωrec in turn can be used to determine h/matom and α, the fine struc-
ture constant. This work is described in Chapter 2. Our publication of a “first-generation”
measurement of ωrec in sodium is included as AppendixA.

The second part of the thesis was performed under the supervision of Wolfgang Ketterle
and involves the development of a new quantum system which holds promise for producing
a BCS superfluid of paired gaseous atoms. Chapter 3 describes some theoretical aspects
necessary for a motivation and understanding of the experiments while Chapter 4 describes
the apparatus used for the work. The remaining chapters discuss our experimental and
theoretical results.

Chapter 5 describes our studies of stability in strongly interacting fermion systems which
resulted in the first observation of Feshbach resonances in 6Li. Chapter 6 describes a theo-
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retical study of the role of Pauli blocking of collisions during the expansion of an interacting
Fermi gas. Our results are relevant for understanding the observations (in many labora-
tories) of hydrodynamic behavior during expansion of a strongly-interacting Fermi gas.
Chapter 7 describes studies of fermionic interactions by observations of resonance shifts of
radio-frequency transitions in ultracold gases. The relevant publications are included as
AppendicesB,C, D, and E.
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Chapter 2

Atom Interferometry for h/m and α

We have demonstrated a new atom interferometer configuration capable of measuring the
“photon recoil frequency” to high accuracy. The photon recoil frequency is the frequency
corresponding to the kinetic energy of an atom recoiling due to absorption of a photon.
This frequency is an important ingredient for a high accuracy measurement of α, the fine
structure constant. Our publication describing the first generation measurement using
Bose-Einstein Condensates is included in AppendixA:

• S. Gupta, K. Dieckmann, Z. Hadzibabic, and D.E. Pritchard, “Contrast Interferom-
etry using Bose-Einstein Condensates to measure h/m and α” Phys. Rev. Lett, 89,
140401 (2002) [1]. Included in Appendix A.

A key aspect of our atom interferometer is the use of optical standing waves as diffraction
gratings. Methods of atom manipulation using optical standing waves are described in
Section 2.2. This section is taken from our review paper:

• S. Gupta, A.E. Leanhardt, A.D. Cronin and D.E. Pritchard, “Coherent manipulation
of atoms with standing light waves.” Special Issue of Compte rendus de l’académie
des sciences, Série IV - Physique Astrophysique 2, 479 (2001) [2].

Matter-wave duality is one of the fascinating features of quantum mechanics. This dual-
ity can also be disturbing since it departs so directly from everyday experience. Matter-wave
duality lies at the heart of the relatively new fields of atom optics and Bose-Einstein con-
densates (BECs). The combination of these two fields should then be even more fascinating.
In addition, the traditional experiments with atom interferometers: testing of fundamental
principles, studies of atomic properties, applications as inertial sensors, and measurements
of fundamental constants [32] can benefit from the brightness (intensity and small momen-
tum spread) of BEC sources. Finally, the coherence properties of condensates may allow
BEC based atom interferometers to approach the Heisenberg detection limit [33]. This cor-
responds to a measurement precision which scales like 1/N for N atoms and not like 1/

√
N

as for independent measurements on N atoms.
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As techniques of atom manipulation and those for creating condensates have developed,
the last few years have seen the birth of BEC atom-optics. Free falling condensates have
been coherently manipulated with standing waves of light creating “free-falling” atom inter-
ferometers [34, 35, 1]. “Trapped” BEC atom interferometers have also been created using
optical potentials [36]. This chapter deals with our efforts towards developing a free-falling
atom interferometer for measuring the photon recoil frequency.

Section 2.1 contains a discussion of the requirements for making an atom interferome-
ter. I then introduce the tools of standing wave diffraction gratings that can be used to
construct a BEC atom interferometer in Section 2.2. Section 2.3 discusses a simple Mach-
Zehnder interferometer geometry and its realization with a BEC. In Section 2.5, I present
our scheme to measure the recoil frequency and the “first-generation” results. Finally, in
Section 2.6.1 I discuss prospects for scaling up our interferometer for scientifically significant
measurements.

2.1 Atom Interferometers

Interference is an underlying principle of quantum mechanics embedded in the superposition
principle. An interferometer is a device designed to exploit this principle to measure some
useful physical quantity.

The working of an atom interferometer can be broken into 3 simple steps: (1) starting
from a single atom source, coherently create multiple states1 (sometimes called “paths”), (2)
let these multiple states evolve over some time during which the interaction to be measured
occurs, and (3) recombine the states and then detect the (interference pattern of) atoms.
Measurements are then sensitive to the different evolution characteristics of the different
states/paths. Various interferometer “architectures” or “geometries” based on atom beams
as well as laser-cooled atomic sources have been summarized elsewhere [32].

A basic requirement of atom interferometers is then state manipulation, in order to
accomplish steps (1) and (3). The usefulness of the interferometer is dependent on what
happens during step (2). For example, one can place diffraction gratings (∼ 200 nm) in the
path of a supersonic sodium atomic beam (∼ 1000m/s). This results in a splitting into
different transverse momentum states travelling at a small angle from each other. These
follow physically different paths which can be bent with additional gratings and recombined
at an atom detector. An electric field placed in a way that affects the different paths
differently will affect the phase of the final atom signal. This can then be used to measure
the electric polarizability of an atom [37].

Although different atomic internal states can be used to make an interferometer[38],
the use of different external momentum states turns out to be advantageous[39]. Most of
the work towards making a meaningful measurement usually comes from trying to isolate

1Here “coherently” means that the different states have a definite phase relationship with each other
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the system into feeling only the interaction of interest (in the above example, the electric
field) and nothing else. The use of a single internal state can reduce many perturbations
to “common mode” so that they do not shift the relative atom phases. Perturbations from
light shifts and magnetic fields can be suppressed in this way[39, 1]. Optical standing waves
can be used to manipulate momentum states of atoms in a very controlled manner to create
arbitrary interferometer geometries.

2.2 Manipulation of Atoms with Standing Waves of Light

When an atom scatters a photon, it recoils due to the momentum exchanged with it.
Thus photons can change the momentum of atoms. The recoil from spontaneous scattering
processes is the key element of laser cooling[40].

The photon absorbed by an atom from a laser beam can be spontaneously emitted
(scattered), making the atom recoil in a random direction. If the atom is exposed to two laser
beams, the photon absorbed from one beam can scatter in a coherent stimulatedmanner into
the other beam. If the stimulated process is faster than the spontaneous process, the atom
recoils in the direction given by the difference in wavevectors of the two laser beams. This
condition can be achieved with sufficient detuning of the laser beams from the electronic
resonance. The two beams of course form a standing wave, and an equivalent description of
this process can be given in terms of atom diffraction off the resulting standing wave. For
momentum state manipulation, counter-propagating laser beams are usually used, which
constrains the atom to change its momentum in multiples of 2�k, where k is the wavevector
associated with a single photon.

Two standard processes used in the manipulation of external states of neutral atoms
using optical standing waves are the Bragg and the Kapitza-Dirac processes. These are
used in the construction of our atom interferometer. The rest of this section is taken from
[2] and describes these processes in some detail.

2.2.1 Bragg Scattering, Ref. 2

Although it can be difficult to realize the physical conditions that assure its occurrence,
Bragg scattering is the simplest example of coherent momentum transfer to atoms by light.
Consider a standing wave light grating formed by two counter-propagating plane waves
(travelling parallel to the z-axis) of equal amplitude, E0, wavevector, k, frequency, ω, po-
larization vector, ê, and temporal envelope function, f(t):

�E(z, t) = E0f(t) sin(kz − ωt)ê+ E0f(t) sin(kz + ωt)ê, (2.1)

= 2E0f(t) sin(kz) cos(ωt)ê. (2.2)
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Figure 2-1: (a) First and (b) N th
B order Bragg transition diagram. The atomic kinetic energy

lies on the parabola N2
�ωrec, N = 0,±1,±2, . . . where the associated atomic momentum

is given by N�k.
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We would like to work with momentum states as our basis, thus it is easiest to consider the
description of the electric field driving the transitions in terms of two counter-propagating
travelling waves of definite momentum (Equation 2.1), as opposed to the single standing
wave they jointly form (Equation 2.2).

Momentum is transferred by paired stimulated absorption and emission processes, re-
sulting in a transfer of photons between the travelling waves. An N th

B order diffraction
process transfers NB photons from one travelling wave to the counter-propagating travel-
ling wave and changes the atomic momentum by 2NB�k. Furthermore, atomic population
is transferred only between |g,−NB�k〉 and |g,+NB�k〉, where |g(e),±N�k〉 denotes a two-
level atom in its ground (excited) state with momentum ±N�k parallel to the standing
wave axis. The excited state remains nominally unpopulated so long as the temporal en-
velope function, f(t), does not have strong frequency components near the laser detuning,
δ = ω − ω0, where ω0 is the unperturbed frequency of the atomic transition. Furthermore,
for a given initial state (|g,−NB�k〉) the uniqueness of the final state (|g,+NB�k〉) comes
about because of the fundamental assumption that makes Bragg scattering so simple to
describe; the uncertainty in the photon energy driving the transitions is small compared to
the energy separation between neighboring momentum states. A quantitative discussion of
the validity of this assumption will be given later.

We now calculate the probability, PB
1 (τ), of the first order (NB = 1) Bragg process

taking an atom from |g,−�k〉 to |g,+�k〉 when the atoms interact with a constant light
intensity for a time τ (i.e. in Equations 2.1 and 2.2 f(t) is a square wave of unit amplitude
and duration τ). The transition is depicted in Figure 2-1(a). In the electric dipole approx-
imation, the interaction Hamiltonian is Hint(t) = −�µ · �E(t). By momentum conservation,
only the plane wave travelling in the ±ẑ direction couples the |e, 0〉 ↔ |g,∓1〉 transitions.
By using this argument, we are effectively viewing the electric field as a quantum mechan-
ical operator. Expanding the sinusoidal variation of the electric field in terms of complex
exponentials and treating the spatially dependent complex exponential terms as quantum
mechanical momentum translation operators (e±ıkẑ|g(e), n�k〉 = |g(e), (n ± 1)�k〉) yields
the interaction Hamiltonian [41, 42, 43]:

Hint(t) = −ıe−ıωt
�ωR
2
(|e, 0〉〈g,−1| − |e, 0〉〈g,+1|) + h.c., (2.3)

where the depicted terms are responsible for absorption and the hermitian conjugate (h.c.)
terms give rise to stimulated emission. The light-atom interaction is parameterized by the
single-photon Rabi frequency,

ωR =
µE0

�
, (2.4)

where µ = 〈e|e�r|g〉 · ê is the electric dipole matrix element connecting the ground (|g〉) and
excited (|e〉) states of the atom. Without loss of generality, we will take µ and hence ωR to
be positive, real-valued quantities. In formulating Hint, we have neglected any frequency
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components associated with the sudden switch on of the fields and the finite duration of
the light-atom interaction. The total Hamiltonian, H(t) = H0(t) +Hint(t), follows simply
by including the electronic and kinetic energy terms,

H0(t) = �ω0|e, 0〉〈e, 0|+ �ωrec(|g,−1〉〈g,−1|+ |g,+1〉〈g,+1|), (2.5)

where the single-photon recoil energy, Erec, of an atom of mass m is given by:

Erec = �ωrec =
�
2k2

2m
. (2.6)

Making the ansatz for the solution wavefuntion as,

|Ψ(t)〉 = c−1(t)e−ıωrect|g,−1〉+ c0(t)e−ıω0t|e, 0〉+ c+1(t)e−ıωrect|g,+1〉, (2.7)

and substituting into the Schrödinger equation yields the three coupled first order differential
equations:

ċ±1(t) = ∓ωR
2

eı∆tc0(t), (2.8)

ċ0(t) =
ωR
2

e−ı∆t(c+1(t)− c−1(t)), (2.9)

where ∆ = δ + ωrec. Differentiating Equation 2.8 and substituting Equation 2.9 into the
result yields the two coupled second order differential equations:

c̈±1(t)− ı∆ċ±1(t) +
ω2R
4
(c±1(t)− c∓1(t)) = 0. (2.10)

With the initial conditions,

c−1(0) = 1, (2.11)

c0(0) = 0 =⇒ ċ±1(0) = 0, (2.12)

c+1(0) = 0, (2.13)

and the assumption ∆2 � ω2R, the solutions to Equation 2.10 read:

c−1(t) = e−ı
ω
(2)
R
2

t cos(
ω
(2)
R

2
t), (2.14)

c+1(t) = ıe−ı
ω
(2)
R
2

t sin(
ω
(2)
R

2
t), (2.15)

where the two-photon Rabi frequency is:

ω
(2)
R =

ω2R
2∆

→ ω2R
2δ

, |δ| � ωrec, (2.16)
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with both transitions driven at equal single-photon Rabi frequencies, ωR.
Substituting the solution of Equation 2.14 or 2.15 into Equation 2.8 yields an expression

for the excited state amplitude:

c0(t) = −ı
ωR
2∆

e−ı∆te−ıω
(2)
R t. (2.17)

This will be important in calculating the rate of spontaneous emission events later.
The solutions for c−1(t) and c+1(t) oscillate with the interaction duration, τ , yielding

the result for the |g,−�k〉 → |g,+�k〉 transition probability:

PB
1 (τ) = |c+1(τ)|2 = sin2

(
ω
(2)
R

2
τ

)
. (2.18)

Thus, the system oscillates between the two momentum states |g,−�k〉 and |g,+�k〉 in
a manner analogous to the Rabi oscillation of atomic population between two resonantly
coupled states. This solution with oscillatory probabilities for the two Bragg coupled states
is known as the Pendellösung and has been observed for atoms [44], neutrons [45], and
x-rays [46].

Viewing Bragg scattering as a two-photon transition from the initial ground state to the
final ground state with opposite momentum illuminates the close connection with a Raman
transition between two internal substates of the ground state manifold, each with its own
external momentum state. The formalism describing the Raman transition is basically the
same as that presented here, except the two transitions can be driven at different single-
photon Rabi frequencies, ωR1 and ωR2, so that the generic two-photon Rabi frequency is
given by ω

(2)
R = ωR1ωR2/2∆, where ∆ is the detuning from the intermediate state.

An N th
B order Bragg process (similar to a 2NB-photon Raman process) is a coherent

succession of NB two-photon transitions with 2NB − 1 intermediate states of the form
|e, (−NB +1)�k〉, |g, (−NB +2)�k〉, . . . , |g, (NB − 2)�k〉, |e, (NB − 1)�k〉. Such a process is
characterized by a 2NB-photon Rabi frequency given by [47]:

ω
(2NB)
R =

[ωR]2NB

22NB−1∆1∆2 · · ·∆2NB−1
, (2.19)

where ∆n is the detuning from the nth intermediate state. Figure 2-1(b) shows what this
process would look like for an N th

B order Bragg transition where the intermediate state
detunings are given by:

∆n =

{
δ + (2NBn− n2)ωrec : n odd

(2NBn− n2)ωrec : n even
. (2.20)

Substituting these detunings into Equation 2.19 yields the N th
B order Bragg transition 2NB-
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photon Rabi frequency, ω(2NB)
R [47]:

ω
(2NB)
R =

[ωR]2NB

24NB−3[(NB − 1)!]2δNBωNB−1
rec

, (2.21)

where we have assumed |δ| � N2
Bωrec.

To ensure that the system truly undergoes Bragg scattering, and validate the assumption
that only states of equal kinetic energy and opposite momentum are coupled, the overall
exposure time, τ , of the atoms to the fields must be limited both from below and above.

The lower bound on τ is necessary to resolve the final momentum state (|g,NB�k〉) from
neighboring momentum states (|g, (NB ± 2)�k〉) two photon recoil momenta away. This
bound also prohibits resonant transitions from the initial momentum state (|g,−NB�k〉)
to its neighboring momentum states (|g, (−NB ± 2)�k〉) two photon recoil momenta away.
For first order Bragg scattering processes (NB = 1) the initial and final state are only
separated by two photon recoil momenta, thus the nearest lying momentum states that
may be mistakenly populated are |g,±3�k〉. Avoiding population transfer into these states
requires τ � π/4ωrec. For all higher order (NB > 1) Bragg scattering processes, the nearest
momentum states are |g,±(NB − 2)�k〉, which limits the interaction time to:

τ � π

2(NB − 1)ωrec , (2.22)

which for NB � 1 reduces to:
τ � π

2NBωrec
. (2.23)

The upper bound on the interaction duration is necessary to avoid spontaneous emis-
sion. The interaction duration must be short enough so that the expected number, Ns, of
spontaneous emission events per atom during the time τ is negligible. Ns is simply given by
the product of the excited state fraction (Equation 2.17) and the probability of spontaneous
decay given that the atom is in the excited state:

Ns = |c0(t)|2Γτ = ω2R
4∆2

Γτ, (2.24)

where Γ is the natural decay rate of the excited state. Avoiding spontaneous emission
(Ns � 1) while still having a significant probability for transitions (ω(2NB)

R τ � π), is a
practical requirement to maintain coherence. For a first-order Bragg process, this requires
∆� Γ.

Bragg scattering of atoms from a standing light wave was first observed at MIT in
1988 [44]. A supersonic atomic beam was diffracted from a standing wave of near-resonant
laser light. The angle between the atomic beam (of thermal wavelength λdB) and the light
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grating (of periodicity λL/2) was tuned to the appropriate Bragg angle, θB, where:

λdB = λL sin(θB), (2.25)

and population transfer corresponding to both first and second order Bragg scattering was
observed. The experiment required a sub-recoil transverse momentum spread of the atomic
beam in order to resolve the different momentum states in the far field and limit the final
state to only one diffracted order. The Pendellösung was observed as an oscillation in
population transfer as a function of standing wave intensity, I ∝ ω

(2)
R , for a fixed interaction

time, τ .
Atomic beam diffraction from an optical standing wave is a continuous-wave (CW) ex-

periment in which the selectivity needed for the Bragg process is imposed by good angular
resolution of the particle beam and a high degree of parallelism between the light crystal
planes. This ensures that of the various final Bragg orders allowed by momentum conser-
vation, only one conserves energy (energy conservation is exact in a CW experiment). For
atoms scattering from a light crystal, parallelism of the crystal planes requires highly paral-
lel photon momentum that implies a minimum width of the standing wave (the diffraction
limit for the collimated photons). The transit time, τ , of the atoms across this width then
exceeds the lower bound given in Equation 2.22.

The excellent collimation required of the atomic beam to ensure resolution of the Bragg
scattered atoms reduces the intensity of the source by many orders of magnitude. A Bose-
Einstein Condensate (BEC) is an attractive alternative source of atoms because its momen-
tum spread is typically an order of magnitude below a single-photon recoil momentum. To
Bragg diffract atoms initially in a stationary BEC, it is easier to move the light crystal than
to accelerate the condensate. This is done by simply frequency shifting one of the travelling
waves so that the resultant standing wave formed by its interference with the unshifted
travelling wave moves with the proper velocity (NB�k/m) relative to the stationary atoms
to impart the necessary momentum. The Bragg scattered atoms will then have momentum
2NB�k in the laboratory frame. The resonance condition thus becomes a condition on rel-
ative detuning, δNB

, between the two laser beams forming the diffraction grating. For N th
B

order Bragg diffraction, the relative detuning is given by:

δNB
=
2NB�k2

m
= 4NBωrec. (2.26)

The first demonstration of Bragg scattering in a BEC was at NIST in 1999 [48]. They
used Bragg scattering mainly as a tool to manipulate the momentum of the BEC, observ-
ing up to sixth order processes. At MIT the interaction time was lengthened (to ≈ 100
times the lower bound of Equation 2.22 for first order Bragg scattering), creating a new
type of spectroscopy called Bragg Spectroscopy. This was used to observe the momentum
distribution of a BEC in a magnetic trap [49].
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2.2.2 Kapitza-Dirac Scattering, Ref. 2

In 1933, Kapitza and Dirac predicted that an electron beam incident onto a properly
orientated standing light wave would undergo stimulated Compton scattering and be re-
flected [50]. Since then, scattering that can be properly described by neglecting particle
motion over the duration of the interaction (the Raman-Nath approximation) has become
known as Kapitza-Dirac scattering. Atoms may also undergo such scattering from a stand-
ing light wave.

To restrict the atomic motion during the interaction time to distances small compared
to the characteristic dimensions of the interaction potential requires short interaction times.
Mathematically, this regime can be treated by neglecting the atomic kinetic energy term in
the Hamiltonian (the Raman-Nath approximation). This is equivalent to the eikonal(thin-
lens) approximation for scattering(optics). For a standing wave interaction, this approxi-
mation is well satisfied if the atomic motion during the interaction time is small compared
to the wavelength of the illuminating radiation. As a result, Kapitza-Dirac scattering is
limited (relative to Bragg scattering) to short interaction times, τ , generally much smaller
than the inverse recoil frequency (τ � 1/ωrec). To observe appreciable population transfer
at such short times, large intensities are needed. Since Kapitza-Dirac scattering is a coher-
ent process, the interaction time must also be short enough to make spontaneous emission
negligible. Thus the constraint Ns � 1 (Equation 2.24) holds in this regime as well, where
Ns is the expected number of spontaneous emission events per atom during the time τ .

The standing wave interaction may be treated by considering the standing wave (AC
Stark shift) potential resulting from the applied fields given in Equations 2.1 and 2.2:

U(z, t) =
�ω2R
δ

f2(t) sin2(kz), (2.27)

where we have assumed δ2 � Γ2/4.
The quickest route to the momentum distribution of the diffracted atoms in the Kapitza-

Dirac regime is to use the eikonal approximation for treating the scattering of the incident
atomic waves after passing through the AC Stark shift potential of the standing wave.
Given the initial atomic wavefunction, |Ψ0〉, the atomic wavefunction imediately after the
interaction is given by:

|Ψ〉 = |Ψ0〉e− ı
�

∫
dt′U(z,t′), (2.28)

= |Ψ0〉e−ı
ω2

R
2δ
τeı

ω2
R

2δ
τ cos(2kz), (2.29)

where τ =
∫
dt′f2(t′) and the integral is over the interaction duration. With the use of the

identity for Bessel functions of the first kind, eıα cos(β) =
∑∞

n=−∞ ınJn(α)eınβ , the atomic
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wavefunction can be written as:

|Ψ〉 = |Ψ0〉e−ı
ω2

R
2δ
τ

∞∑
n=−∞

ınJn

(
ω2R
2δ

τ

)
eı2nkz, (2.30)

= e−ı
ω2

R
2δ
τ

∞∑
n=−∞

ınJn

(
ω2R
2δ

τ

)
|g, 2n�k〉, (2.31)

where the position space representation of the momentum states has been used (|g, p〉 =
N eı

p
�
z, with N an arbitrary normalization factor) and we have taken |Ψ0〉 = |g, 0〉.

It is now clear that states with 2N�k of momentum are populated with probability [51,
52]:

PN = J2N (θ), N = 0,±1,±2, . . . , (2.32)

where

θ =
ω2R
2δ

τ = ω
(2)
R τ (2.33)

is the pulse area. This leads to a transverse rms momentum of the diffracted atoms that is
linearly proportional to the pulse area [51]:

prms =
∞∑

n=−∞
(n�k)2Pn = 21/2θ�k. (2.34)

Kapitza-Dirac diffraction of atoms was first observed at MIT in 1986 [51]. Diffraction of
a well-collimated (sub-recoil) supersonic atomic beam was observed after passage through
the tightly focused waist of a near-resonant standing wave. Significant diffraction into
momentum states |g,±10�k〉 was observed [51]. Even higher diffracted orders should be
observable in the future using laser beams directed at small Bose-Einstein Condensates for
somewhat longer times.

2.3 A simple atom interferometer - the Mach-Zehnder con-

figuration

Steps (1) and (3) of creating an atom interferometer (Section 2.1) can be performed by
either Bragg or Kapitza-Dirac processes. If the momentum states used to construct the
interferometer physically separate between steps (1) and (3), an intermediate process to
ensure their spatial overlap during recombination is necessary. This is often the case with
interferometers based on optical gratings, since the photon recoil momentum ωrec can be
quite large. In such situations, an intermediate “reversal” diffraction grating can be ap-
plied which reverses the relative momentum of the interferometer arms. The interferometer
would then consist of three diffraction grating. In this section, a simple 3-grating atom
interferometer based on the Bragg process is discussed.
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First consider the first order Bragg process applied on a BEC (Eqn. 2.18, and Eqn. 2.26
with NB = 1). A π/2−pulse (ω(2)R τ = π

2 ) splits the atom 50-50 into the two momentum
states (a 50-50 beamsplitter). A π−pulse (ω(2)R τ = π) puts the entire atom into the other
momentum-state (a mirror2). As we will see shortly, such beamsplitters and mirrors can be
used to construct interferometers for atoms.

A simple interferometer geometry known as the Mach-Zehnder interferometer is shown
in Fig.2-2. This was the configuration of choice in MIT’s first atom interferometer which
was constructed using material gratings to deflect thermal beams [53]. This configuration
has also been used to demonstrate a BEC atom interferometer [34]. Understanding this
simple geometry elucidates several aspects of atom interferometry, so let’s go through it.

2

1

1st order
Bragg
π/2-pulse

T 2T0
1st order
Bragg
π-pulse

1st order
Bragg
π/2-pulse
 

TOF

|0>

|2hk>

Figure 2-2: Schematic of a Mach-Zehnder interferometer. Paths 1 and 2 are in states |0 �k〉
and |2 �k〉 for equal lengths of time T . This makes this interferometer insensitive to the
photon recoil.

Beginning with atoms at rest , the first π/2−pulse creates an even superposition of
momentum states |0 �k〉 (at rest, path 2) and |2 �k〉 (in motion, path 1). The two paths
have a relative velocity of 2 photon recoils (6 cm/s for sodium). After time T , they are

2The analogy between a Bragg π−pulse and a mirror is not entirely correct because of their action
on a distribution of momenta. In the reference frame of a real mirror, all incoming atoms will reverse
their momentum �katom → −�katom. This means different incoming momentum states receive different
momentum kicks. For standing wave diffraction, all incoming atoms receive the same momentum kick =
2�kphoton.
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“reflected” by the Bragg π−pulse and the momenta are swapped. The third pulse projects
the phase of the atomic interference pattern onto the fractional population of the two
momentum states.

I now derive the interferometer signal, trying to emphasize the relevant physics. I first
present a derivation following the treatment of light pulse interferometers by Steve Chu
et. al. [54]. Gravity is neglected in this derivation, making this a 1-D problem, with
the only direction defined by direction of the optical standing wave (vertical in Fig. 2-2).
Immediately before the first pulse is applied, the atoms are at rest:

|Ψ〉 = |0〉

Let the 3 diffraction gratings have spatial phases φ1, φ2, φ3 relative to any fixed position,
with positive being upwards in this 1-D problem (Fig. 2-2). These phases can be manip-
ulated by the RF synthesizers controlling the AOMs but may also vary randomly due to
vibrations of the apparatus. The first π/2-pulse rotates the statevector in Hilbert space
into an even superposition of the two states given by [54]:

|Ψ〉 = 1√
2

(
|0〉 − ieiφ1 |2�k〉

)

Path 2 acquires the energy phase −Et/� relative to path 1 during the time T . The wave-
function immediately before the second pulse:

|Ψ〉 = 1√
2

(
|0〉 − iei(φ1−4ωrecT )|2�k〉

)

The action of the π-pulse is another coherent rotation:

|Ψ〉 = 1√
2

(
−ei(φ1−φ2−4ωrecT )|0〉 − ieiφ2 |2�k〉

)

Evolution for another time T produces the following wavefunction immediately before the
third pulse:

|Ψ〉 = 1√
2

(
−ei(φ1−φ2−4ωrecT )|0〉 − iei(φ2−4ωrecT )|2�k〉

)
The third pulse produces the final wavefunction:

|Ψ〉 =
1
2

(
−ei(φ1−φ2−4ωrecT ) − ei(φ2−φ3−4ωrecT )

)
|0〉

+
1
2

(
iei(φ1−φ2+φ3−4ωrecT ) − iei(φ2−4ωrecT )

)
|2�k〉 (2.35)

The probabilities for being in the two states (which can be called the output ports of
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the atom interferometer) is just the amplitude squared of the respective components:

P0 = |1
2

(
ei(φ1−φ2−4ωrecT ) + ei(φ2−φ3−4ωrecT )

)
|2 = 1

2
(1 + cos(φ1 + φ3 − 2φ2))

P2�k = |1
2

(
ei(φ1−φ2+φ3−4ωrecT ) − ei(φ2−4ωrecT )

)
|2 = 1

2
(1− cos(φ1 + φ3 − 2φ2))(2.36)

The phase of the interferometer, φ1+ φ3− 2φ2, is a result of the interference of the two
paths with this phase difference at time 2T . Let’s represent the phase picked up by path i

as Φi. After pulse 1,
Φ1 = φ1, Φ2 = 0.

After time T free evolution,

Φ1 = φ1 − 4ωrecT, Φ2 = 0.

After the second pulse,

Φ1 = φ1 − 4ωrecT − φ2, Φ2 = φ2.

After time 2T ,
Φ1 = φ1 − 4ωrecT − φ2, Φ2 = φ2 − 4ωrecT.

After the third pulse, there are actually 4 paths. At the |0 �k〉 port:

Φ1 = φ1 − 4ωrecT − φ2, Φ2 = φ2 − 4ωrecT − φ3.

At the |2 �k〉 port:

Φ1 = φ1 − 4ωrecT − φ2 + φ3, Φ2 = φ2 − 4ωrecT.

Thus, Φ1 − Φ2 = φ1 + φ3 − 2φ2, as expected. Now, any interaction placed differentially on
one of the arms would be picked up by Φ1 − Φ2 and show up in the interferometer signal.
Thus a Mach-Zehnder interferometer can be used to for example measure rotational phases,
gravitational phases, electric polarizability, or index of refraction of gases [32].

2.4 Atom Optics with Bose-Einstein Condensates

In this section, we will see how the ideas of the previous sections can be experimentally
realized with a BEC source.
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2.4.1 Standing Wave Diffraction of sodium Bose-Einstein Condensates

To make and control the optical diffraction gratings, one needs control over the intensity,
timing and relative detuning of the two laser beams comprising the standing wave. All
these features are provided by acousto-optic modulators (AOMs)3 driven by standard RF
electronics. Phase control is another feature which can easily be incorporated and has
proven to be useful in the diagnosis of our atom interferometer. The switching time for
AOMs is ∼ 100 ns.

AOM #0
(80 MHz)

AOM #1 (30 MHz)

AOM #2 (30 MHz)

BEC

  pinhole
(at image
  plane)

PMT

   vacuum windows 
(in recessed flanges)

  pick-off
photodiode 1

  pick-off
photodiode 2

 mechanical
shutter (MS1)

(a)

(b)

Bragg Fiber
input (60% eff.)

Bragg Fiber
    output

stainless steel
vacuum parts

from 899 dye laser

BS#2

BS#1

 mechanical
shutter (MS2)

z

yx

Figure 2-3: Top view of apparatus for the BEC contrast interferometer. (a) shows the
beam derived from the sodium dye laser and coupled into the Bragg fiber. (b) shows the
setup next to the vacuum chamber. The standing waves were horizontal and along the
long axis (z-axis) of the condensate in the trap. The reflected beam was separated from
the ingoing beam by beamsplitter BS#2, sent through a 100µm pinhole at an intermediate
image plane of the atoms and then imaged once more onto the photomultiplier tube (PMT).
The standing waves are applied along the z-axis while atoms are imaged along the x-axis.

The details of the apparatus to produce sodium BECs in the |1,−1〉 state can be found
3these are commercial devices in which an RF drive (∼ 100MHz-∼ 1GHz) applied to a crystal (usually

Tellurium Dioxide) sets up a phonon wave. A laser beam travelling through a well aligned crystal can be
Bragg diffracted off the phonon grating, resulting in a diffracted beam which is shifted both in frequency and
in direction (usually only first order diffraction is used). Note that AOMs also depend on Bragg diffraction!
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in earlier theses [9, 10]. For the experiments described in this chapter, we used light
tuned close to the F = 2 → F ′ = 3 transition to create the diffraction gratings (fig.2-
3). This is ∼ 1.8GHz (approximately the hyperfine splitting) red-detuned from the D2 line
(3S1/2 →3 P3/2) for the F = 1 atoms in the BEC. We used an 80MHz AOM (AOM#0)
as a switch for this light. The light was then sent though an optical fiber to clean up the
mode and transported to the experiment. The output of the fiber was split in two and
sent through independent 30MHz AOMs (AOM#1 and AOM#2). These were controlled
with Stanford Research Systems SRS DS-345 synthesizers. The two light beams were then
aligned counter-propagating and horizontal through the vacuum windows of the apparatus
(z-axis in fig.2-3).

z

y

Figure 2-4: Resonant absorption images of BECs diffracted by pulsed standing waves.
The images were taken with a resonant laser beam which propagated through the vacuum
chamber along the (vertical) x-axis (see Fig. 2-3). Pulses were applied a few ms after release
of the BEC from the magnetic trap. The standing waves were aligned in the z-direction
(see Fig. 2-3). Total time-of-flight was 20ms. (a) No pulse was applied. The position of the
BEC in the image corresponds to the state |0 �k〉 . (b) A 600 ns Kapitza-Dirac pulse was
applied which split the BEC into 3 momentum states |0 �k〉 , |2 �k〉 , and | − 2 �k〉 . (c)
A 1µs Kapitza-Dirac pulse with similar intensity. The second orders |4 �k〉 and | − 4 �k〉
can now be seen. (d) A 10µs Bragg pulse with 200 kHz detuning was applied and caused a
near-perfect transfer into the state | − 4 �k〉 .

Let’s estimate some numbers necessary for the implementation of Bragg and Kapitza-
Dirac pulses on a stationary BEC. First we introduce the usual definition of the saturation
intensity:

Γ2

2
I

Isat
= ω2R, (2.37)

For sodium, the saturation intensity Isat = 6mW/cm2, the natural linewidth Γ = 2π ×
10MHz and the recoil frequency ωrec = 2π × 25 kHz. This gives, 1/ωrec ∼ 6µs, giving
us the timescale separating Bragg and Kapitza-Dirac processes. Assume 2mm diameter
beams at 1.8GHz red-detuning. Using Eqns.2.16, 2.37, and 2.18, the power needed for
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a 10µs long, first order Bragg π/2−pulse is ∼ 0.4mW in each beam of a standing wave
with relative detuning 100 kHz. Using Eqn. 2.21, the power needed for a 10µs second order
Bragg π−pulse is ∼ 1.7mW, with 200 kHz relative detuning. A ∼ 3.3mW 1µs pulse with 0
relative detuning will operate in the Kapitza-Dirac regime and populate both states |±2�k〉
with 25% of the original condensate (Eqn. 2.32).

The diagnosis of momentum states in atom trapping experiments is traditionally done
by turning of the atom trap suddenly and observing the ballistic expansion of atoms. Long
time-of-flight (TOF) converts the momentum information into spatial information which can
then be directly detected using standard absorption imaging techniques. The sub-recoil mo-
mentum spread of BEC’s implies the complete separation of momentum states/diffraction
orders separated by 2�k.

Fig.2-4 shows time-of-flight images of BECs split into different momentum states by
optical standing wave pulses. The standing wave pulses were applied after releasing the BEC
from the trap in order to reduce the density and associated mean-field effects. Combinations
of such gratings can be used to create atom interferometers.

2.4.2 BEC Mach-Zehnder interferometer

The extension of atom diffraction to an atom interferometer follows directly with the ap-
plication of multiple diffraction pulses in succession.

A frequency difference of δ1 = 2π × 100 kHz (Eqn. 2.20) between AOMs 1 and 2 ful-
filled the requirements for a first order Bragg process. Using 2 phase locked SRS DS-345
synthesizers to control the 2 AOMs, we were able to control the relative phase of the RF
supplied to the AOMs from the front panel of the instruments. This in turn controlled the
phase of the optical standing wave (φi). Varying the relative phase of the second grating,
we obtained the interferometer signal shown in Fig. 2-5. The contrast or visibility is defined
as (max-min)/(max+min) of an interference signal. The contrast in Fig. 2-5 is � 90%, a
result of the extreme sub-recoil nature of the atom source. A large momentum distribution
would cause the Bragg resonance condition (Eqn. 2.26) to be different for different initial
momenta. This would mean that the π/2-pulse and π-pulse condition could not be fulfilled
simultaneously for all the atoms and lead to a reduced contrast. This makes the use of a
BEC with its narrow momentum spread particularly useful for atom interferometry with
standing light waves.

The Mach-Zehnder interferometer just described is an example of a “phase” interferome-
ter, where the signal is sensitive to the phase of the atomic interference pattern. The phase
is of course sensitive to mirror vibrations (via the φi’s) and interferometers constructed
on this principle in general require considerable vibration isolation to achieve high accu-
racy measurements [55]. As I will show, a signal sensitive to the contrast of the atomic
interference pattern might not have this problem. The following section discusses a con-
trast interferometer scheme for measuring the photon recoil frequency. The scheme has
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Figure 2-5: Signal from the BEC Mach-Zehnder Bragg interferometer of Fig. 2-2. The 1st-
order condition was met by applying a frequency detuning 100 kHz between AOM#1 and
AOM#2. The time between pulses is 50µs for this example. The pulse time τ was 10µs
for each pulse. Pulse 2 was twice as intense as pulses 1 and 3.

additional advantages (beyond vibrational immunity) which make it a viable high accuracy
measurement scheme.

2.5 First Generation Recoil Measurement

The techniques for condensate manipulation with standing waves can be applied to mea-
suring the fine structure constant.

2.5.1 Motivation for measuring α

α, the fine structure constant, is a fundamental quantity of physics. It lies at the very
heart of quantum electrodynamics (QED), since it plays an important role whenever the
electromagnetic interaction is involved. This makes α essentially ubiquitous. Measurements
of α are therefore relevant for various subfields of physics. In turn, a whole range of
independent physical measurement methods have been developed with several competing
values below the ppm (part-per-million) level [56]. Fig. 2-6 shows some of these.

Our experiment is relevant to the atomic physics route to measure α, based on the
relation [57]:

α2 =
(
e2

� c

)2
=
2R∞
c

h

me
=
2R∞
c

M

Me

h

m
. (2.38)

Here e is the electron charge, c is the speed of light, R∞ is the Rydberg constant,Me(me) is
the electron mass in atomic (S.I.) units andM(m) is the mass of some test particle in atomic
(S.I.) units. For a particular choice of test particle (atom), interferometry can provide ωrec,
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which is related to h/m by the relation:

ωrec =
1
2

�

m
k2 (2.39)

All the other quantities are either already known to sub-ppb (part-per-billion) accuracy or
are accurately accessible for alkalis (see [1] for details). An atom interferometer developed
in Steve Chu’s group at Stanford has measured ωrec in cesium to 15 ppb accuracy [58].
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h/mn
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quantum Hall

He fs (prelim)

g-2

-150 -100 -50 0 50 100

{( α/α98) - 1} x 109

Figure 2-6: Best measurements of α shown as ppb deviation from the 1998 CODATA value
[59].

2.5.2 Scheme of Contrast Interferometer

First consider the phase interferometer of Fig. 2-7(a). It is a 2-path scheme, just like the
Mach-Zehnder, but has an important difference in how the 2 paths are recombined. Instead
of a first order Bragg π−pulse, a second order one is applied. In the Mach-Zehnder, both
paths are in the |0 �k〉 and |2 �k〉 states for the same length of time T , though not simul-
taneously. This means that the phase difference between the 2 paths at 2T is not sensitive
to the photon recoil frequency ωrec (Eqn. 2.36). In contrast, path 1 in the interferometer
of Fig. 2-7(a) is in the state |2 �k〉 for time T and state | − 2 �k〉 for time T , whereas
path 2 is always in the state |0 �k〉 . Around t=2T , a moving matter wave grating, with
spatial periodicity λ/2 (wavevector 2k = 2π

λ/2), is formed due to the overlap and interfer-
ence of the two paths. The phase of this grating at 2T is determined by the relative phase
Φ1−Φ2 = 8ωrec T , accumulated between paths 1 and 2 due to the difference in their kinetic
energies. A measurement of this phase for different values of T will then determine ωrec.

Using the reasoning presented earlier, after the first pulse,

Φ1 = φ1, Φ2 = 0.
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After time T free evolution,

Φ1 = φ1 − 4ωrecT, Φ2 = 0.

After the second pulse,

Φ1 = φ1 − 4ωrecT − 2φ2, Φ2 = 0

(second order Bragg pulse gives −2φ2). After time 2T ,

Φ1 = φ1 − 8ωrecT − 2φ2, Φ2 = 0.

At time 2T , the phase difference between the two paths contains the recoil frequency. This
is the element we want to exploit for our measurement. We note at this point that if Nth
order and 2Nth order Bragg processes had been used in the interferometer of Fig. 2-7(a),

Φ1 − Φ2 = φ1 − 2φ2 − 8N2ωrecT, (2.40)

giving us a quadratic sensitivity to the number of photon recoils applied.
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Figure 2-7: Space-Time representation of the contrast interferometer. (a) shows a simple
2-path interferometer sensitive to the photon recoil phase. The 2k matter wave grating is
shown at 2T and at 2T + π/4ωrec. The extension to the 3-path geometry is shown in (b).
The overall 2k grating has large contrast at 2T and zero contrast at 2T + π/4ωrec.

The extension of the phase interferometer into a contrast interferometer is shown in
Fig. 2-7(b). Three momentum states (paths 1, 2 and 3) are generated by replacing the first
Bragg pulse with a short Kapitza-Dirac pulse. At t=2T , there are now two matter wave
gratings with period λ/2, one from paths 1 and 2 and one from paths 2 and 3. These move
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in opposite directions at a relative speed 4�k/m. If the maxima of the two gratings line
up to produce large contrast at time t, the maxima of one will line up with the minima of
the other at t + π/4ωrec, to produce zero contrast. This results in an oscillatory growth
and decay of the contrast of the overall pattern with time. The recoil induced phase can be
determined from this temporally oscillating contrast.

Extending the two path analysis to three paths, we find at time 2T ,

Φ1 = φ1 − 2φ2 − 8ωrecT, Φ2 = 0, and Φ3 = −φ1 + 2φ2 − 8ωrecT.

Let ai be the amplitudes of the three paths determined by the splitting in pulse 1. The
wavefunction at time 2T is then

|Ψ〉 = a1e
iΦ1 |2�k〉+ a2e

iΦ1 |0〉+ a3e
iΦ1 | − 2�k〉.

This is a 1-D problem, so lets use |2 �k〉 = ei2kz, etc. The atomic interference due to the
three paths at time 2T .

〈Ψ�|Ψ〉 =
(
a1e

−iΦ1e−i2kz + a�2e
−iΦ1 + a�1e

iΦ1ei2kz
)
×

(
a1e

iΦ1ei2kz + a2e
iΦ1 + a1e

iΦ1e−i2kz
)

= 2a21 + a22 + 2a1a2 (cos(2kz +Φ2 − Φ1) + cos(2kz +Φ3 − Φ2)) + 2a21 cos(4kz +Φ3 − Φ1)
= 2a21 + a22 + 2a1a2 cos(Φ2 −

Φ1 +Φ3
2

) cos(2kz +Φ3 − Φ1) + 2a21 cos(4kz +Φ3 − Φ1)

The contrast of the 2kz matter wave grating is proportional to cos(Φ2 − Φ1+Φ3
2 ). At time

2T , we can probe this matter wave grating by reflecting a probe beam off it. The process is
equivalent to Bragg scattering of an optical travelling wave off a matter wave grating. The
intensity of the reflected light is then proportional to the square of the density modulation
(strength of the matter wave grating). Thus the reflected signal is proportional to:

cos2(Φ2 − Φ1 +Φ3
2

) = cos2(8ωrecT ). (2.41)

Note that Eqn. 2.41 has a phase which evolves with ωrec, the recoil frequency and does
not contain any of the φi’s. This makes it insensitive to vibrations (i.e, phase shifts) of
the pulses. Allowing for phase offsets due to diffraction phase shifts, light shifts and other
effects, the reflected signal becomes cos2(4ωrecT +φ′

off). At an arbitrary time t, the reflected
signal can then be written as

S(T, t) = C(T, t) sin2(8ωrecT + 4ωrec(t− 2T ) + φoff). (2.42)

where C(T, t) is an envelope function which goes to zero for t much different from 2T . The
extent of C in the variable t − 2T is the coherence time of the matter wave grating. It is
caused by the momentum spread of the atom source, and can be quite large for a BEC.
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The diffraction phase shift contributing to φoff has been modelled for this interferometer in
the group of J. Vigué in France [60]. They find a value π/6 for our geometry. Note that
this phase offset has no direct consequence since we only want to determine the slope of the
measured phase vs T , as I discuss in the next subsection.

2.5.3 Advantages of the contrast interferometer

The phase interferometer of Fig. 2-7(a) captures the essential spirit of our measurement.
Pulse 1 starts the clock and creates a component of the wavefunction on path 1 which
accumulates phase at a multiple of the recoil frequency. Path 2 serves as the zero phase
reference. Since optical wavelengths have considerable recoil momentum, pulse 2 is used to
reverse the momentum of path 1, without disturbing its phase evolution. At time 2T , the
2 paths are back together. The phase of their interference is then a direct measure of ωrec
if the time T is known.

Lets see how an error in the phase measurement is related to the uncertainty in the
recoil frequency determined. We expect a linear relationship between phase and time:

Φ = 8ωrecN2T + φoff

where φoff is the sum of all possible offset phases. The relative errors are then given by:

∆Φ
Φ

=
8N2(ωrec∆T + T∆ωrec) + ∆φoff

8ωrecN2T + φoff
.

We will be measuring large phases, so 8ωrecN2T � φoff :

∆Φ
Φ

≈ (ωrec∆T + T∆ωrec)
ωrecT

.

The relative error in the phase will be much larger than that in T . Thus:

∆Φ
Φ

≈ ∆ωrec
ωrec

, (2.43)

the relative error in the recoil frequency is simply the relative error in the phase4. To improve
the precision of the experiment, we should try to reduce the error in the measurement of
the recoil phase and try to increase the largest recoil phase we can measure.

This phase vs time measurement is very similar in concept to the way mass measurements
are performed in Dave Pritchard’s Penning trap experiments at MIT [62]. Extending the
scheme into a contrast interferometer suppresses several “common mode” noise sources,
improving both the precision and accuracy of the measurement.

4Even if ∆T
T

is comparable to ∆Φ
Φ
, the linear relationship between phase and time allows Eqn. 2.43 to still

hold [61].

37



Using Eqn. 2.43, one can make an estimate of what to expect from the recoil measure-
ment. For 105 atoms contributing to the reflected signal detected at the shot noise level, the
phase error ∆Φ is ∼ 2/

√
105 ∼ 6.3mrad (the factor of 2 comes from using the cos2 function).

To set the scale, take N = 1 and T = 1ms. Then Φ is 8×12×2π×25 kHz×1ms∼ 1.3×103
and ∆Φ

Φ ∼ 5 × 10−6. Scaling this value with T = 50ms and N = 10, one would estimate
∆Φ
Φ ∼ 1 × 10−9 i.e, 1 ppb! This is the result for a single shot! Averaging over many shots
would beat this value down even further. Allowing the very conservative 60 s per shot (dom-
inated by the formation time of the BEC), one would still obtain < 10−10 with less than 2
hours of data. This simple calculation demonstrates the inherent power of the method. I
will return to this point in the final section of this chapter.

The precision is a measure of the sensitivity of the device to the effect of interest.
The device can also be sensitive to other systematic perturbations which if not properly
taken into account may make the final measurement inaccurate. Almost all high accuracy
measurements are limited not by precision but by accuracy. Even if a small accuracy is
quoted, there could still be some perturbation that the experimenter has not thought of
yet! For a quantity as important as α, it is thus important to make different types of
measurements to see how they compare against each other. This is well exemplified in
Fig. 2-6.

I now summarize the properties of this scheme which make it a viable choice for the
photon recoil measurement:

• The use of a single internal state reduces systematics from AC Stark shifts. This has
been a major source of systematic in the Stanford experiment, which relies on Raman
transitions between different internal states [55].

• The contrast scheme is insensitive to mirror vibrations between pulses. This is imme-
diately obvious from the form of Eqn. 2.41. The vibration phase picked up by path 1
is opposite in sign to that picked up by path 3. Path 2 is not diffracted at all and so
does not pick up vibrational phase. Thus Φ2 − Φ1+Φ3

2 = 0 for the vibrational contri-
bution. Vibrations during a diffraction pulse are equivalent to a phase modulation.
This may make the grating depart from the Bragg condition. However, the typical
pulse durations of 10µs are much shorter than the typical timescales of vibrations in
the laboratory (� 1 kHz). T , the interferometer evolution time, should be scaleable to
hundreds of ms. The Stanford scheme uses a fairly elaborate vibration isolation sys-
tem to fight this problem for a phase interferometer [55]. Our contrast interferometer
should not require such an elaborate system.

• The recoil phase is proportional to kinetic energy. This makes the interferometer
quadratically sensitive to the number of recoils. This is useful for scaling up the
interferometer towards high precision. For comparison, the Stanford scheme is linearly
sensitive to the number of recoils.
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• The symmetry of the 3-path geometry suppresses effects from stray magnetic bias
fields and gradients. This scheme is sensitive only to ∂2B/∂z2, the magnetic field
curvature5. The time dependence of ambient magnetic fields enters the phases Φi
through the time integrals over the energies. Thus time-dependent stray bias and
gradients are also suppressed.

• Immunity to accelerations, including those from gravity. This follows from the same
reasoning as the vibrational immunity. Insensitivity to gravity forgives to a large
extent any accidental vertical component to the beam alignment.

• The use of Bragg processes allows for arbitrarily high diffraction orders to be generated
(limited by heating due to spontaneous scattering). This issue will be dealt with in
more detail in the Outlook section.

• The contrast readout allows for a high S/N, since the entire photon signal comes out of
a small solid angle (diffraction-limited by the size of the BEC) and the corresponding
background is thus reduced by this small fraction ÷ 4π.

2.5.4 Contrast Interferometer Signal

1.00.50.0-0.5-1.0
t ( µ s)

-10 -5 0 5 10
time t - T (µ s)

(a) (b)

Figure 2-8: Pulse 1 and pulse 2 of the interferometer sequence. (a) Pulse 1 is ∼ 1µs long,
square. (b) Pulse 2 is near-Gaussian shaped. The best fit Gaussian with 1/e full width of
7.6µs is also shown. The vertical scale for (a) and (b) are different and arbitrary.

The “first-generation” experiment was performed on the “old” sodium BEC machine,
with horizontal laser beams. We wanted to demonstrate that the scheme worked and obtain
the best measurement of ωrec without major changes to the BEC machine. Learning from
this initial phase could then be incorporated into plans for a high-accuracy measurement
using a vertical fountain geometry (Section 2.6).

5All odd spatial derivatives are suppressed by the symmetry. If someone up comes with a way to cancel
the sensitivity to curvature, then we would only be sensitive to ∂4B/∂z4.
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The first generation experiment demonstrated the concept of the scheme and produced
a value for ωrec in sodium to 7 ppm precision and 200 ppm accuracy. This is several orders
of magnitude away from a competitive value. However the demonstration of the useful
features of the scheme bodes well for future high accuracy work.

Each interferometer shot measured Φ(T ), the phase of S(T, 2T ) in Eqn. 2.42 for a given
T . The shot consisted of making a BEC in the magnetic trap, releasing it for a variable
TOF, followed by the 3 pulse sequence forming the contrast interferometer and then readout
by Bragg back-scattering. We also monitored the atom number by imaging the atoms after
a long time-of-flight (Fig. 2-10). The standard technique for |F = 1,mF = −1〉 BEC
production was followed[63, 9]. We loosened the trap at the end of evaporation to final
trapping frequencies of about 50Hz radially and 20Hz axially. Almost pure BECs (negligible
thermal component) of a few million atoms were then released suddenly and allowed to
expand for ∼ 15ms before the application of the interferometer pulses. Loosening the trap
effectively “decompresses” the atoms thereby reducing the density. Both the decompression
and initial TOF stages were important to lower the atomic density (to∼ 1013 cm−3), thereby
reducing superradiance [64] and mean-field effects. The initial decompression also lowered
the momentum spread and allowed for more efficient Bragg diffraction (2nd pulse).

104010201000980960

 t [µs]

t=2T

readout 
  pulse

contrast
 signal

Figure 2-9: Typical single shot signal from the contrast interferometer. T = 502.5µs, for
this example. Ten oscillations with ≈60% contrast and ≈30µs width are observed during
the 50µs readout. A low-pass filter at 300 kHz (12dB per octave) was applied to the signal.

To form the interferometerof Fig. 2-7(b), we phase-locked two SRS DS-345 synthesizers
and applied the same frequency to both AOM#1 and AOM#2 for all pulses. Examples
of pulses 1 and 2 are shown in Fig. 2-8. We used laser beams with 1.8mm waist. For
pulse 1, the Kapitza-Dirac symmetric splitting pulse, we obtained ∼ 25% of the condensate
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pulse 1 and 2 only pulse 1, 2 and 
strong pulse 3

z

y

Figure 2-10: Atom signal from the contrast interferometer. When only pulses 1 and 2 were
applied, the TOF atom signal was symmetric about the 0 momentum state. When a strong
readout pulse was applied, clear asymmetry is observed between the |2 �k〉 (upper) and
|−2 �k〉 (lower) states, in keeping with the direction of reflection of the readout pulse (Fig. 2-
3). These pictures are from the first night that we observed the interferometer signal and
provide clear evidence that we had reflection from a matter wave grating. For actual data
collection we reduced the intensity of the readout pulse, and measured the backscattered
light.

in each of paths 1 and 3 (Eqn.2.32). For the second-order Bragg grating (pulse 2), we
used a near-Gaussian light pulse (to suppress other unwanted orders of diffraction) and
obtained a diffraction efficiency greater than 90%. The timing control computer used in all
our BEC experiments has a resolution of 10µs and is therefore inadequate to control these
pulses. We used Wavetek 50MHz pulse generators, Model 801 to trigger the Bragg AOMs.
For the readout pulse, we simply switched off AOM#2 and back-reflected the light from
AOM#1 onto a photomultiplier tube (PMT, Fig. 2-3). A typical signal from the contrast
interferometer is shown in Fig. 2-9.

There was some effort to obtain this “typical” signal. Since the probing beam and
the reflected beam counter-propagated and essentially overlapped each other, we used a
non-polarizing beam splitter cube (BS#2) to separate them (figure 2-3). However, this also
meant that the probe beam reflected off BS#2 and other optics (including the vacuum
windows) could get into the PMT. Angling the beam relative to the optics by a small
amount (few degrees) was enough to get rid of most of the reflections by physical blocks.
The light due to the leakage RF driving AOM#2 was blocked with a mechanical shutter.
A pinhole (100µm) was placed at an image plane of the atoms to allow only the light from
the condensate to go through towards the PMT. This pinhole was in turn imaged onto the
PMT, to further improve the signal-to noise.

Fig. 2-10 shows the atom signal corresponding to the contrast interferometer. For a
strong readout pulse, an obvious asymmetry was observed between |2 �k〉 and | − 2 �k〉 .
This was our first sign (even before we obtained a PMT signal) that the contrast scheme
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was working. Such a strong readout quickly destroys the matter wave grating. We lowered
the readout pulse and measured perturbatively to obtain the recoil frequency.

2.5.5 Measurement of the Recoil Frequency

We fit the reflected signal with a gaussian-weighted sinusoid and obtained the recoil phase
Φ(T ). The results of five iterations of the signal at different time points T are shown in Fig. 2-
11. We chose two ranges of times T for our measurements. The short time T ∼ 0.5ms, was
restricted by the closing time of a mechanical shutter (∼ 300µs) which blocked the leakage
from AOM#2 (MS2 in Fig 2-3). The long time T ∼ 3ms was limited by the atoms falling
out of the (∼ 2mm diameter) horizontal beam due to gravity.
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Figure 2-11: Measurement of ωrec in sodium. Two sets of recoil phase scans, around T =
0.5ms and T =3ms, are shown in (a). Each point is the average of five measurements. The
slope of the linear fit gave ωrec to 7 ppm. The error bars (≈ 0.05− 0.1 rads) are shown with
the fit residuals in (b). The total time for this measurement was ∼ 2 hours.

Our measurement for sodium from these data is ωrec = 2π×24.9973 kHz(1±6.7×10−6).
The precision was limited by ∼ 200mrad shot-to-shot variations of the fitted value of Φ.
Our measured value is 2×10−4 lower than the sub-ppm value calculated using the published
measurements of αg−2 [65, 66], R∞ [67, 68], MNa [62], Me [69], and λNa[70] in Eqs. 2.38 and
2.39.

The shot-to-shot deviation of 200mrad far exceeds the expectation from the shot noise
limit for ∼ 105 atoms (∼ 6.3mrad, Section 2.5.3) which is approximately the atom number
contributing to our signal. It is possible that this is due to fluctuating differential mean
field shifts in the different interferometer arms arising from fluctuations in atom number.
This is discussed in Section 2.6.2. Another possibility is the different diffraction phase shifts
from fluctuations in light intensity as suggested by [60].
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2.5.6 Insensitivity to Vibrations
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Figure 2-12: Vibration insensitivity of the contrast interferometer. (a) shows the measured
recoil phase at T = 502.5µs from the contrast interferometer as a function of the applied
phase θ. The recoil phase is constant and demonstrates our insensitivity to phase noise from
the gratings. (b) shows the fractional population of the |0 �k〉 state from the phase-sensitive
interferometer (inset) for a similar scan of θ at T =50µs. Also shown is the best-fit sinusoid
of the expected period.

To demonstrate the insensitivity of the measurement to phase noise of the light due
to mirror vibrations, we intentionally varied the phase θ of the second grating relative to
the first one. The contrast signal was not visibly affected by such phase variations (Fig. 2-
12(a)). We compared this to a phase-sensitive readout method (Fig. 2-12(b), inset). This
was realized by replacing the readout pulse with a third pulsed 1µs light grating in the
Kapitza-Dirac regime, phase-locked to the first two pulses. This projected the phase of
the 2k pattern at t = 2T onto the fractional populations of the states |0 �k〉, |2 �k〉, and
| − 2 �k〉 which leave this interferometer. The populations were measured by time-of-flight
absorption imaging. The |0 �k〉 fraction is shown for the same variation of θ, in Fig. 2-12(b).
The oscillation demonstrates the phase sensitivity of any position-sensitive readout.

Both the Mach-Zehnder interferometer signal (Fig. 2-5) and the phase interferometer
signal (Fig. 2-12(b)) became much more noisy and essentially random for T ≥ 3ms. This
is probably due to the mechanical vibrations of the apparatus. The contrast interferometer
on the other hand retains a steady signal as can be judged from the small error bars of
Figure 2-11 at the large times.
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2.5.7 N2 scaling
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Figure 2-13: Demonstration of the quadratic scaling of the recoil phase with additional
photon recoils. (a) shows the N = 1 (inner) and N = 2 (outer) interferometers used. (b)
shows the recoil phase at the recombination time under variation of T1.

The quadratic scaling with number of recoils N was demonstrated using the interfer-
ometer geometry shown in Fig. 2-13(a). For an intermediate time T1, paths 1 and 3 were
transferred into states |4 �k〉 and |−4 �k〉 respectively. The two paths were simultaneously
addressed by driving AOMs 1 and 2 with two frequencies (using an RF mixer), centered
at 29MHz (near the AOM central frequency) but separated by 300 kHz. The pulses were
square and 10µs long and adjusted in intensity to match the 1st order Bragg π-condition.
Paths 1 and 3 were then resonant with only the frequencies (one from each beam) satisfying
the Bragg condition.

During the period T1, paths 1 and 3 accumulate phase 22 = 4 times faster in the
N = 2 scheme than in the N = 1 scheme. Additional time T1 is required for the three
paths to overlap in the N = 2 scheme. For this geometry, the N = 2 recoil phase should
therefore evolve three times faster as a function of T1 than the N = 1 recoil phase. The
corresponding data sets are shown in Fig. 2-13(b). The linear fits give a slope ratio of
3.06± 0.1, demonstrating the quadratic scaling.

2.6 Outlook

The first-generation recoil measurement demonstrates the validity of the contrast inter-
ferometer scheme. Having accomplished this, we can move on to planning a future high-
accuracy measurement. The purpose of this section is to outline our preliminary ideas in
this direction. Subsection 2.6.1 describes conceptually how a vertical geometry with an in-
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creased number of diffraction pulses can scale up the current precision by a few orders of
magnitude. Subsection 2.6.2 provides some estimates of the BEC mean field contribution
to both precision and accuracy.

2.6.1 Scaling up the Contrast Interferometer - improving the precision

As argued earlier (Section 2.5.3), scaling up the precision of the contrast interferometer in-
volves increasing the interferometer time T , increasing the number of recoils N and reducing
the shot-to-shot measurement error ∆Φ. The limitations on T are mainly from gravity and
finite beam size. This can be remedied by setting up a vertical geometry where the atoms
fall down the beams and not out of the beams. For a given vertical extent, even longer times
can be achieved by launching the atoms upwards before starting the interferometer pulse
sequence, as shown in Figure 2-14. The parameters of T = 50ms and N = 10 chosen for the
figure should allow ppb precision for detection at the shot noise limit (Section 2.5.3). One
drawback of the vertical geometry is that Doppler corrections to the relative frequencies of
the Bragg gratings are needed to compensate for the changing velocities of the dropping
atoms. However, this is a small overhead if such an elaborate setup is indeed constructed.
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Figure 2-14: Scaling up the contrast interferometer - vertical fountain configuration. The 3
path scheme in a vertical geometry allows long evolution times and multiple pulses without
the problem of the atoms “falling” out of the beams. The case of a fountain launch with
velocity 0.5m/s, Bragg π-pulse acceleration up to N = 10 recoils and T = 50ms, is shown.
This setup should approach the ppb-precision and is only 6 cm in vertical extent.

Fountain geometries can provide free fall times of a few hundred milliseconds[71]. Ad-
ditional Bragg acceleration π-pulses to increase the interferometer order N can then be
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applied.

2.6.2 The Mean Field Contribution

The first-generation experiment has yielded a result for ωrec,Na accurate to 2×10−4. We have
not performed experimental studies of systematic effects in the interferometer. However,
we believe the mean field to be the main contribution to the deviation of our measurement
from the accepted value. Here we provide some estimates of the contributions from the
mean field due to atom-atom interactions in a BEC.

As shown in Eqn. 2.41, the phase of the reflected signal at time 2T is Φ2− Φ1+Φ3
2 , where

Φi is the phase accumulated by path i. Any mechanism which can shift the relative phases
of the three paths such that Φ2 − Φ1+Φ3

2 is affected, is a possible source of a systematic
error. Atom-atom interactions (mean field) can introduce errors into the measurement in
this manner.

Strong atom-atom interactions in dense sodium BECs can easily produce mean field
energies as large as 2π× 5 kHz [72]. Since ωrec,Na ∼ 2π× 25 kHz, energy shifts due to mean
field interactions can be an important systematic in our interferometer. A gas of ultracold
bosons at density n and interacting with s-wave scattering length a, has a mean field energy
of[73]6:

Emf =
4π�

2

m
na (2.44)

For 23Na in the |F = 1,mF = −1〉 state, a = 2.8 nm. This means that a density of
n = 3.4 × 1014 cm−3 produces Emf = 2π × 5 kHz. If different arms of the interferometer
have different densities, then Φmeas = Φ2 − Φ1+Φ3

2 may be affected. If we have control over
the interferometer pulses to allow a maximum fractional arm imbalance of x, the systematic
contribution will be:

∆Φ
Φmeas

=
Emf2Tx
8ωrecN2T

(2.45)

In our first-generation measurement, we used a peak density of n ∼ 1013 cm−3. For an
arm imbalance of ∼ 25%, this would contribute at a relative level of ∼ 4× 10−4, twice the
obtained error. Further, if the mean field is larger in path 2 than the sum of the mean field
in paths 1 and 3, the interferometer will measure a lower value for ωrec, since the difference
in total energy between an extreme path (1 or 3) and path 2 is then smaller that 4ωrec.
This is consistent with our measurement being less than the currently accepted value.

We also note that atom number fluctuations will change the density shot-to-shot and
give rise to variations of the measured recoil phase. Few percent variations in arm imbalance
could then explain our observed shot-to-shot variations of ∆Φ ∼ 200mrad (Section 2.5.4).

The way to reduce the mean field contribution is to control the interferometer imbalance
and reduce the atomic density. Further, even though this systematic scales with the inter-

6a discussion of basic scattering processes can be found in Chapter 3
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ferometer time T , it is insensitive to the number of recoils N . Using x = 0.05 and N = 20
in Eqn. 2.45, we get the requirement of n � 1011 cm−3 in order to be at the ppb-level. Such
low densities have recently been achieved in sodium BECs[74].

Another method to suppress the mean field contribution would be to alter the scattering
length a to negligible values by means of a magnetic field Feshbach resonance (Section 3.3).
This may be possible to do with the recently achieved cesium BEC because of the availability
of such resonances at low magnetic field [24].
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Chapter 3

Interacting Fermi Gases

From the late 70’s to the early 90’s, the prospect of creating a dilute gas superfluid from
atomic vapor was a holy grail in the field of ultracold atoms. The realization of such a
superfluid - the Bose-Einstein Condensate in 1995 opened the doors for a rich variety of
exploration, both experimentally and theoretically. The previous chapter on atom interfer-
ometry with BEC’s represents one such avenue of research.

Fermionic superfluidity is the next holy grail which has emerged in the field of ultracold
atoms. At very low temperatures, interacting fermions can undergo a pairing transition
resulting in a BCS type superfluid. The quest for this is now well underway with fermions
being routinely produced in the quantum degenerate state in 6 laboratories around the
world. This degeneracy is an essential ingredient towards superfluid pairing. Our group
at MIT is one of these six to produce Fermi degenerate gases. The next step is to induce
interactions between fermions. Several groups, including ours, have made steady progress
in this endeavor over the last couple of years. The rest of this thesis deals with our efforts
at inducing and studying strong interactions in ultracold fermions.

In this chapter, I discuss theoretical concepts which play a key role in understanding
the current state of the field of interacting fermions. Although this chapter nominally deals
with theory, I try to make the connection with the relevant experimental aspects in various
parts of the presentation. The discussion is divided into five groups:

(1) In Section 3.1, I introduce the non-interacting Fermi gas and its static properties in
a harmonic trap. Strength of interactions can be gauged by the (observed) deviations of
the gas from this ideal behavior.

(2) In Section 3.2, different types of collision processes are introduced with particular
attention given to s-wave collisions, the dominant interaction mechanism in ultracold gases.

(3) In Section 3.3, I introduce the concept of a Feshbach resonance. This is our main
experimental tool to tune interaction strengths between fermions.

(4) In Section 3.4, I discuss the ground state hyperfine structure of 6Li, the fermionic
atom that we use for experiments. Using the ideas from the previous sections, I outline the
reasons why certain choices of internal states are more suited for studying interactions.
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(5) The final part of this chapter, Section 3.5, discusses the predicted transition of in-
teracting fermions to a superfluid state.

3.1 Non-interacting Fermi Gases

An intermediate goal towards BCS is the production of degenerate Fermi gases. We can
produce a spin-polarized 6Li Fermi gas in a harmonic trap at ultra high degeneracy. Since
s-wave interactions are forbidden by fermionic antisymmetry, this is essentially a non-
interacting gas. A full description of such gases can be found elsewhere[75]. I present
here a few basic results. The Fermi-Dirac distribution function is

f(ε) =
1

eβ(ε−µ) + 1
,

where β = 1
kBT

. f(ε) is the occupation probability of a state with energy ε. The chemical
potential µ is given by the normalization condition for the total number of atoms N in the
trap:

N =
∫

dεf(ε)g(ε), (3.1)

where g(ε) is the density of energy states. Only harmonic traps with cylindrical symme-
try will be discussed (the usual experimental scenario). If the trapping frequencies are
(ω1, ω2, ω3) = (ω⊥, ω⊥, ωz), and defining the aspect ratio λ = ωz/ω⊥, the density of states
g(ε) = ε2

2λ(�ω⊥)3
has a quadratic dependence on energy. Integrating Eqn. 3.1 at T = 0 gives

the Fermi energy EF (N) ≡ µ(T = 0, N):

EF = �ω⊥(6Nλ)1/3 (3.2)

Since the exact wavefunctions in a harmonic trap are well-known, the properties of a har-
monically trapped gas can in principle be directly computed by summing over these states.
However it suffices (and is usually computationally necessary) to make the semi-classical
“Thomas-Fermi” approximation which is valid in the large N limit [75] and consists of la-
belling the state of each atom by a position x and momentum p. This is equivalent to the
local density approximation where each position x is associated with local Fermi quantities
- density, temperature, and the Fermi temperature. Essentially, the gas is considered lo-
cally homogeneous and all the formulas used to describe homogeneous Fermi gases can be
applied. The local Fermi energy is given by:

EF (x) =
�
2k2F (x)
2m

= EF − Uh(x),
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where kF (x) = pF (x)/m is the local Fermi wavevector and Uh(x) = 1
2

∑
i ω
2
i x
2
i . This now

gives the local density as simply the volume of the momentum space Fermi sea:

n(x, T ) = − 1
Λ3T

g 3
2
(−e−(Uh(x)−µ)/(kBT )), (3.3)

where ΛT =
√

2π�2

mkBT
is the thermal de-Broglie wavelength and gα(x) =

∑∞
k=1 x

k/kα is the
poly-logarithm function. The zero-temperature density reduces to:

n(x;T = 0) =
k3F (x)
6π2

=
4
3
π

(
2mEF

h2

)3/2
(1− m

2EF
Σiω2i x

2
i )
3/2 (3.4)

We now have an expression for a direct experimental observable. Eqn. 3.3 forms the basis
of fitting functions for characterizing our experimentally produced degenerate Fermi gas
(Chapter 4). Our standard detection method of absorption imaging measures a 2-D “col-
umn” density distribution. The fitting function is then a spatial integral of Eqn. 3.3 which
is an expression in the poly-logarithm function g2. The 1-D projection involves another spa-
tial integral and results in g5/2. We use both 2-D and 1-D fits to characterize our ultracold
gases.

Absorption imaging can also be applied after turning off the trap suddenly and allowing
the gas to expand ballistically for a variable time-of-flight (TOF). The spatial distribution
in TOF from a harmonic trap is obtained by a substitution of coordinate xi by xi√

1+ω2
i t

2
,

accompanied by the necessary volume rescaling 1

Πi

√
1+ω2

i t
2
[76]. Thus, the density distri-

bution for a non-interacting zero-temperature Fermi gas in time-of-flight out of a harmonic
trap is (from Eqn. 3.4):

n(x, t;T = 0) =
4
3
π

(
2mEF

h2

)3/2 (1− m
2EF

Σi
ω2

i x
2
i

1+ω2
i t

2 )3/2

Πi(1 + ω2i t
2)1/2

(3.5)

3.2 Interactions in Trapped Fermi Gases

At the heart of every interaction is a collision process. In this section I introduce the
different collision processes that will be discussed in this thesis.

For the µK temperatures common in ultracold atom traps, interactions are dominated
by two-body s-wave scattering. This is because, for typical collisions, kR � 1, where
�k is the relative momentum (determined by the temperature) and R is the range of the
potential. This is equivalent to the de-Broglie wavelength being much larger than the range
of the interatomic potential. The de-Broglie wavelength of 6Li at 1µK is ∼ 200 nm, while
the potential range R ∼ 50a0 ∼ 2.5 nm. Since a spin-polarized Fermi gas is non-interacting,
all the s-wave interactions between 6Li atoms will occur in mixtures of different internal
states. Most of the activity in the ultracold atom field takes place in the weakly interacting

50



(k|a| � 1) and dilute (n|a|3 � 1) limit where a is the s-wave scattering length which
parametrizes the strength of the interaction and n is the gas density. This allows the use
of an effective contact interaction between particles [73, 77, 78]:

U(x− x′) =
4π�

2a

m
δ(x− x′) = U0δ(x− x′), (3.6)

where m is the mass of an atom. In this description, particles only interact when they are
“on top of” or “in contact with” each other. The determination of the scattering length
a involves solving the Schrodinger equation for scattering from the molecular potentials.
Although straightforward in principle, this scattering problem is fairly difficult to solve
accurately, principally because of insufficient knowledge of the real molecular potentials.

The interaction potential of two ground state alkali atoms is relatively simple compared
to multi-electron atoms since alkalis possess only one valence electron. The interaction po-
tential is composed of two parts - one corresponding to the electric dipole-dipole interaction,
often called the central part U c and the other corresponding to the magnetic dipole-dipole
interaction Umd [73]. The central part can be divided into two broad classes of interactions:

U c = UsP0 + UtP1, (3.7)

the singlet Us and the triplet Ut interactions. P0 and P1 are the projection operators for
the two-electron singlet and triplet states respectively. The singlet interaction corresponds
to the valence electrons approaching in an antisymmetric spin combination, whereas the
triplet interaction involves them approaching in a symmetric spin combination. As may be
expected, the singlet and the triplet potentials are identical at large distances, decaying with
the usual attractive van der Waals 1/r6 behavior. The difference occurs only in the short
range part where the spatial wavefunction is symmetric (singlet) or antisymmetric (triplet).
At very short internuclear distances, the potential is essentially hardcore repulsive.

3.2.1 Collision Channels

A set of internal quantum numbers (like the spin projection, total spin and so on) which
describes a two-particle state is referred to as a “channel”. In this language, collisions
which only couple the entrance channel to itself are single-channel processes whereas those
which can couple the entrance channel to a different exit channel are called multi-channel
processes.

The kinetic energy of s-wave collisions is usually too small to allow endothermic processes
between different channels which have energy separations on the order of hyperfine energies.
Thus, in ultracold atoms, the entrance channel is often called the “open” channel while
higher lying channels are called “closed” channels (Fig. 3-1). Atoms cannot leave each other
after a collision in any closed channel.
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Figure 3-1: Intermolecular potentials for 2 body scattering. The free atoms approach along
the open channel. The closed channel corresponds to a molecular state that can couple to
the open channel via U c or Umd. The difference in threshold (kinetic energy K.E. → 0)
energies ∆Ehf between the two channels is on the order of hyperfine energies and typically
much larger than the kinetic energies available in ultracold atom clouds.

3.2.2 Inelastic Collisions

Inelastic collisions change the total kinetic energy of collision partners by changing concur-
rently some internal degree of freedom. Typically, these result in a decay of the system
under study. I review very briefly the standard inelastic decay mechanisms that occur in
atom trapping experiments.

Background gas

Collisions with the background gas in a vacuum chamber causes an exponential (single-
body) loss: Ṅ = −N/τ . The effects of these collisions can be reduced by improving the
pressure in the system. Pressures of ∼ 10−11mbar, the ultra-high-vacuum (UHV) typical in
ultracold atom experiments, results in lifetimes of several tens of seconds (or even hundreds).
In our experiments, we take extra precautions to maintain these UHV conditions.

Spin Exchange Collisions

This process involves two-body collisions from the central potential U c which change the
internal states of the collision partners while preserving the total spin. The rate for this
process is proportional to atomic density (since it is a 2-body process) and independent
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of relative velocity. Therefore it becomes an increasing problem in an atom cooling exper-
iment as the temperature is lowered and the density increases. The usual solution is to
choose atomic states in which either spin-exchange collision channels do not exist or are
endothermic (as shown in the example of Fig 3-1) and thus suppressed at low temperatures.

Dipolar Decay

This process involves two-body scattering from the interatomic magnetic dipole-dipole po-
tential Umd. Total spin need not be preserved in such collisions. The potential can change
the relative angular momentum of the spatial wavefunction by 2�[73]. The rate for this
process is also proportional to atomic density, however, as mentioned earlier, it becomes
significant only if spin-exchange collisions are suppressed. As usual, experimental states
should be carefully chosen to eliminate or at least minimize this loss channel.

Three-Body Decay

Three-body recombination is a process in which two atoms form a bound state and a third
atom carries away the energy (including molecular binding energy) and momentum to sat-
isfy the usual conservation requirements. Since three particles need to collide, the rate scales
with the square of the density. For dense BECs, this is usually the loss mechanism that
limits the lifetime in an atom trap. Three-body decay can also be enhanced near scattering
resonances (Section 3.3) and form a strong decay channel in such regimes. However, the
symmetry/antisymmetry of the collision partners can suppress this rate since the process
does require multiple particles to be in close proximity. As one might expect, at low tem-
peratures, the rate for fermions is indeed suppressed. Threshold (K.E. → 0) laws have been
derived for 3-body recombination in [79]. These calculations show that for a spin-polarized
Fermi gas, the rate is suppressed as T 2 (or T 2F for T < TF ) and for a 2-spin gas, as T (or
TF ). Bosons as well as distinguishable particles approach a rate independent of energy at
threshold.

3.2.3 Elastic Collisions

Elastic collisions refer to scattering from the central potential U c in which the incoming
and exiting channels are the same. They play an important role in the field of ultracold
atoms because they preserve the internal state of the system and only change the external
state towards thermal equilibrium. Elastic collisions have to always compete against the
deleterious effects of inelastic collisions, to preserve the stability of the system.

S-wave elastic collisions at low temperature in weakly interacting and dilute gases lead to
energy shifts in the form of mean field interactions. The connection between thermalizing
collisions and interaction shifts will now be discussed. They are both important in the
strongly interacting regime that we want to explore.
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The s-wave scattering amplitude

Eqn. 3.6 describes the effective contact interaction that is used to describe elastic interactions
in ultracold gases. It correctly predicts the mean field shift as 4π�

2a
m n for interaction of a

particle with a gas of density n. However, it is only correct to lowest order in ka. This thesis
will be concerned with behavior of ultracold gases for ka � 1. Therefore, I now introduce
the more correct form for the contact interaction where the scattering length a is replaced
by −f0(k), the s-wave scattering amplitude [77, 73]:

U(x− x′) = −4π�
2f0

m
δ(x− x′). (3.8)

The scattering amplitude can be derived from the usual partial wave analysis for a spheri-
cally symmetric potential and is related to the s-wave scattering length as [80]:

f0(k) = − a

1 + ika
= − a(1− ika)

(1 + ika)(1− ika)
= − a

1 + k2a2
+ i

ka2

1 + k2a2
. (3.9)

The real part corresponds to the usual mean field interaction, except now we have
the behavior appropriate for ka > 1. The imaginary part corresponds to the decay of
the (relative) momentum state and is responsible for the thermalization of the system.
The optical theorem relates the imaginary part to the more common expression for the
thermalization scattering cross-section:

Im(f0) =
kσ

4π
=⇒ σ =

4πa2

1 + k2a2
(3.10)

For small ka, this is recognizable as the s-wave cross-section for distinguishable particles
4πa2. For large ka, this approaches the unitarity limit 4π

k2 , independent of a.
The real part corresponds to collisions that do not change the relative momentum of the

scatterers. These collisions are experimentally detectable as energy shifts. The imaginary
part contributes to what is usually meant by elastic collisions. Using Eqns. 3.8, 3.9, and 3.10,
the scattering cross-section can be used to rewrite the imaginary part of the interaction (for
a gas density n) as:

4π�
2

m
n

ka2

1 + k2a2
= �nσv = �Γscat

where Γscat = nσv is the usual scattering rate for collisions at relative velocity v.
Eqn. 3.9 also suggests the analogy of an atom wave and a light wave propagating through

an atomic medium of density n. The real part corresponds to the refractive index while the
imaginary part to the absorption in the medium. Thus, the real part gives rise to “coherent”
scattering while the imaginary part to “incoherent” scattering.

It is important to re-iterate that this form of the interaction is valid for any value of ka
provided kR � 1. In particular, it may be used to understand (at least qualitatively) the
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behavior near scattering resonances, where a diverges (Section 3.3).
Introducing the scattering amplitude thus draws the distinction between coherent and

incoherent collisions and extends our interpretation of s-wave interactions into the ka � 1
regime near Feshbach resonances.

Low temperature, Pauli blocking

Fermions at temperatures satisfying kR � 1 are below the p-wave threshold and do not
interact in the same state1. Another qualitative threshold occurs when the gas becomes
deeply degenerate and a large fraction of states below TF are occupied. As a rule of thumb,
this is about 0.3−0.4TF , since this is where observed collision rates start to deviate strongly
from the classical predictions [81]. The deviation arises due to the significant population
of energetically accessible final states for an elastic collision. This effect, often called Pauli
blocking, reduces the rate of incoherent collisions and decreases the efficiency of cooling
fermions. The two energy scales corresponding to kR ∼ 1 (mK) and TF (µK) are separated
by about three orders of magnitude in typical atom trapping experiments. As the system
cools, the s-wave regime is reached first. Substantial further cooling must take place before
the regime of Pauli blocking is reached.

Since coherent collisions do not involve an overall change in momentum of collision
partners, they are not affected by Pauli blocking of final states. Thus, there are no incoherent
elastic collisions in a trapped zero-temperature two-spin Fermi gas with finite interstate
scattering length. However, mean field energy exists in such a gas. As we will see in
Chapter 6, this zero-temperature Fermi gas may undergo elastic collisions when released
from the atom trap.

3.2.4 Observations of Interactions

Typically, inelastic collisions in a trapped atom cloud result in a release of kinetic energy
and/or the production of un-trapped states. Thus the experimentally observed gas (column)
density will correspond to an increased temperature as well as a reduced density. The system
will thus “decay” away. Generally, a stable system corresponds to a lifetime limited only
by background losses. A study of the stability of a strongly-interacting system 6Li system
by monitoring inelastic losses is reported in Chapter 5 [4].

We have also experimentally observed effects from both the real and the imaginary parts
of the scattering amplitude. The effect of incoherent elastic collisions was observed in the
mutual thermalization of a two-spin state mixture (Section4.5). Chapter 6 discusses effects
that manifest due to a very large rate of incoherent collisions as well as the role of Pauli
blocking.

1p-wave interactions do contribute, but only with a cross-section which goes to zero according to the
Wigner threshold law[80]
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The effect of coherent elastic collisions can be observed in shifts of transition frequencies
between internal atomic states. Chapter 7 describes our use of radio-frequency techniques
to measure such shifts and thus scattering lengths.

3.3 Feshbach Resonance

Scattering resonances correspond to a divergence of the scattering length. One instance of
such a resonance occurs when a vibrational state in the open channel becomes just bound
at threshold (K.E. → 0). This is a phenomenon familiar from the treatment of scattering
from a square well potential. The zero-energy scattering length diverges as a function of
well depth, whenever the potential can just support a new bound state. Another example
is a “shape” resonance. A shape resonance occurs if the potential characterizing a collision
process can support a virtual bound state at the collision energy. This occurs for kR � 1,
higher partial wave scattering.

Internuclear Separation (r)

E
ne

rg
y

Open channel

Closed channel
Bound state

Figure 3-2: Schematic of a Feshbach resonance. The solid lines represent the potential
energy as a function of internuclear separation. The free atoms interact via the open channel.
The closed channel corresponds to the potential experienced by atoms in a different two-
particle superposition of hyperfine states. The two channels are coupled by the hyperfine
interaction. A resonance occurs if a bound state in the closed channel crosses the open
channel asymptote. The effective scattering length corresponding to the figure is large and
negative.

The above examples are single-channel effects and can occur in atoms which have no
internal structure. However, the presence of internal structure allows multi-channel scatter-
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ing to occur via the electrostatic potential U c (Section 3.2). This allows the possibility of
Feshbach resonances which occur when a bound state in one of the closed channels comes
into resonance with the kinetic energy in the open channel (Figure 3-2). Far away from
scattering resonances, a will have a small non-resonant value. Typically, this is on the order
of the interatomic potential range (∼ 50a0). However, near a Feshbach resonance, one of
the molecular bound states becomes important and dominates the scattering behavior. If
a molecular bound state has a different magnetic moment than the total magnetic moment
of the free atomic collision partners, then the position of the bound state can be adjusted
relative to the open channel threshold by simply changing the external magnetic field. The
scattering length undergoes a resonance when the bound state is tuned across this thresh-
old. Such a resonance is known as a Feshbach resonance. Near a Feshbach resonance, the
scattering length changes from a → ∞ for bound state below threshold (real molecule) to
a → −∞ bound state above threshold (“virtual” molecule). Fig. 3-2 corresponds to a large
attractive interaction for atoms at zero kinetic energy.

The usual parametrization of a near a Feshbach resonance is[82]:

a(B) = anr(1 +
∆

B −B0
), (3.11)

where anr is the non-resonant scattering length far away from the resonance (of the order
of the range of the potential R). B0 is the position and ∆ is the width of the Feshbach res-
onance. The positions and widths of Feshbach resonances can be calculated by performing
coupled-channel calculations using potentials derived from up-to-date experimental data.

3.3.1 Strongly Interacting Fermi Gases

Resonant Enhancement of the Scattering Length, Unitarity Limit

Strongly interacting gaseous systems can be “engineered” by utilizing Feshbach resonances.
At a divergence of a, the behavior of the effective scattering length aeff = −f0 can be
obtained by taking the a → ∞ limit of Eq.3.9:

a → ∞ ⇒ Re(aeff)→ 1
k2a

and Im(aeff)→ −1
k
. (3.12)

The real part approaches zero near a scattering resonance, which may seem astonishing
at first. However, this is understandable on the basis of the analogy with the dispersive
light-atom interaction. The real part of the index of refraction goes to zero on resonance.
The imaginary part of aeff reaches an a-independent plateau corresponding to the usual
unitarity limit of collisions. The behavior of the effective scattering length aeff is shown in
Fig 3-3 as a function of the bare scattering length a.

In a gas, the momentum-dependent aeff should be averaged over the different collision
momenta. For a two-spin gas, each with Fermi momentum kF , the momentum average at
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Figure 3-3: The thin lines show (a) -Re(f0) and (b) Im(f0) as a function of a (Eq. 3.9 with
relative momentum k = 1). The thick lines show the averages over a zero temperature
Fermi distribution with Fermi momentum kF = 1 for each spin state. The thick line in (a)
deviates from the thin line for a ≥ 1(1/kF ) and approaches zero much more gently. The
thick line in (b) has a similar rise as the thin line with a but saturates at the higher value
of 2.4.

T = 0 produces the thick lines shown in Fig. 3-3. Thus, the real part suppression at large
a becomes slower, since the average contains contributions from ka � 1 as well. These
ka � 1 contributions initially decrease (slightly) and eventually increase (factor > 2) the
imaginary part, proportional to σ, the scattering cross-section2. However, the qualitative
behavior of both real and imaginary parts remain the same in spite of the averaging.

Universality of the Unitarity Limit in two-spin Fermi gases

It has been shown theoretically [83, 84, 85] that the unitarity-limited mean field for inter-
acting fermions is negative and proportional to the Fermi energy. Defining β as the relevant
many-body parameter, we have:

Umf = −βEF , kFa � 1. (3.13)

This is a surprising result because it implies that for very large and repulsive two-body
interactions, the effective many-body interaction is attractive. In the context of achieving
fermionic superfluidity, this is good news because it increases the parameter range of strong
attractive interactions.

β has been calculated at zero temperature [83, 84] and measured at < 0.1TF [86, 87]
yielding consistent numbers of 0.4 − 0.6. The fact that this attractive mean field is never
stronger than the repulsive Fermi pressure, means that a two-spin interacting Fermi gas does
not undergo phase separation or implosion and is mechanically stable even at a Feshbach

2Even though the scattering cross-section is finite, at T = 0, the scattering rate is zero because of Pauli
blocking (see Section 3.2.3 and Chapter 6).
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resonance. This is an important requirement towards producing a fermionic superfluid.
The experimental observation of this effect[87] demonstrates another distinction from the
behavior of Bose gases where phase separation between two spin components has been
observed[88, 89]3.

The density distribution of the interacting gas deviates from that of the non-interacting
gas (Eqn. 3.3), due to the attractive (repulsive) mean field shrinking (stretching) of the
cloud. In the unitarity-limited regime, where Eqn. 3.13 is valid, the effect of the mean field
is simply a rescaling of the trapping frequencies by 1√

1+β
. Fitting the spatial distribution in

the trap by such a rescaling and using β as a fit parameter can then be used to determine
β [86, 87].

Resonant Enhancement of three-body Decay

Near a Feshbach resonance, the three-body recombination rate is also enhanced. This was
the signal used for the first observation of a Feshbach resonance in ultracold atoms [82]. As
shown by [90] and [91], the three-body decay rate for bosons for a � R (as near a Feshbach
resonance) scales as a4 in the ultracold limit where the collision energy goes to zero. For an
ultracold two-spin fermion system, this rate gets an additional factor ∼ E/εbind [92] where
E is the kinetic energy of the collision and εbind ∼ �

2/ma2[93] is the binding energy of the
molecular state. Thus the rate goes to zero at threshold (E → 0). This can be understood
as the requirement for at least two identical fermions to approach each other within the size
of the bound molecular state. Thus, for an ultracold two-spin fermion system, the 3-body
decay rate near a Feshbach resonance should scale as ∼ a6EF . Our observations of inelastic
decay near a Feshbach resonance (Chapter 5) is probably due to this mechanism.

3.4 Ground State of 6Li

In this section, I describe the hyperfine ground state of 6Li, our fermion of choice. Fig. 3-4
shows the Breit-Rabi diagram for 6Li (I = 1, J = 1/2). In Fig. 3-4(a), the six ground
hyperfine states are labelled with the low magnetic field basis |F,mF 〉. In Fig. 3-4(b), the
notation common to the field is adopted, where the six states are labelled |1〉 through |6〉
in order of increasing energy.

As will be discussed in Chapter 4, we cool 6Li to degeneracy in state |6〉 by sympathetic
collisions with 23Na in a magnetic trap. We then transfer the 6Li to an optical dipole trap
(ODT) which can trap any of the states |1〉 through |6〉. The most stable pair of states in
which to try to induce interactions is the |1〉 − |2〉 combination. This has the least number
of inelastic decay channels. Most of the symmetry-allowed processes are endothermic at
ultralow temperatures and thus suppressed. The only possible two-body inelastic decay

3Note that a three state mixture of fermions may be mechanically unstable [84].
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Figure 3-4: Ground state hyperfine levels of 6Li.

channel is the dipolar process:

|1〉+ |2〉 −→ |1〉+ |1〉. (3.14)

If a |1〉 and a |2〉 atom collide s-wave, the symmetry of the dipolar operator (Section 3.2.2)
can only allow the final products to leave d-wave. Since, the final states are identical, this
is not allowed. Thus dipolar decay corresponding to Eqn. 3.14 is forbidden for the s-wave
input channel. p-wave dipolar decay is allowed but highly suppressed at the typical ultralow
temperatures of our experiment.

In addition to the promise of stability, the |1〉−|2〉 mixture also features s-wave Feshbach
resonances at accessible magnetic fields (Fig. 3-5). Thus, the |1〉 − |2〉 mixture is the ideal
choice of states to try to induce strong interactions. Feshbach resonances also exist in other
binary combinations of |1〉, |2〉 and |3〉 (Fig. 3-5). This rich resonance structure opens up a
large parameter space to study interactions.

3.5 Fermionic Superfluidity

In this section, I briefly outline the ideas of fermionic superfluidity. The realization of these
predictions is a major goal for the field.
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Figure 3-5: Prediction of interstate s-wave Feshbach resonances in the ground state of 6Li.
Broad Feshbach resonances exist in a12 at 812G, in a13 at 680G and in a23 at 843G.
In addition, a narrow Feshbach resonance exists in a12 at 547G. This calculations by the
group of B.J. Verhaar at Eindhoven, the Netherlands and includes all currently available
experimental data to create the interaction potentials. Other (older) calculations will also
be presented in this thesis at some points to preserve the story-line.

3.5.1 BCS Pairing

BCS pairing of fermions occurs via attractive interactions between particles. In the standard
theory [31] which explains superconductivity in metals, electrons near the Fermi (momen-
tum) surface of a metal can attract each other by phonon exchange. At a low enough
temperature, this attraction can overcome Coulomb repulsion and electrons can undergo a
pairing transition into a superfluid state. For metals, BCS pairing occurs at temperatures
of ∼ 1K, which is about 105 times lower than the Fermi energy. The gap energy �∆ char-
acterizes the minimum excitation energy of the system. �∆ = kBTc at zero temperature
and decreases smoothly to zero as T goes to Tc.

The basic idea of BCS pairing has been applied to the case of trapped weakly-interacting
atomic gases as well, with atomic mean-field interactions taking over the role of the phonon-
mediated interaction[94, 95, 96, 97]. In this theory, s-wave pairing of a spin-mixture of
fermions with inter-state scattering length a(< 0) has been predicted to occur at a temper-
ature of [94]:

Tc � TF exp(− π

2kF |a|), kFa � 1 (3.15)

Although other pairing mechanisms have been investigated[95, 96], this one has the highest
values of Tc/TF for a given a. However, the weakly-interacting criterion k|a| � 1 immedi-
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ately precludes an experimentally accessible Tc. Using some typical numbers of a ∼ 50a0
and TF ∼ 1µK, we get Tc ∼ TF exp(−100), far below current experimental accessibility.

In addition to this very low Tc, the relevant timescale for formation of the superfluid
should be related to the gap as 1/∆ ∼ exp(+100) s. This is also far larger than typical
system lifetimes, or any other experimental timescale for that matter. A more sophisticated
calculation performed by [98] also gives similar pair formation time in the weakly interacting
limit.

Achieving fermionic superfluidity will therefore require stronger interaction strengths.
With their wide tunability, Feshbach resonances seem the ideal choice of mechanisms to
enhance interactions. However, when kF |a| becomes comparable to 1, Eqn 3.15 starts to
break down. A modified BCS theory is therefore needed to determine whether fermionic
superfluidity is possible for large kF |a|. A theory of “resonance superfluidity” has emerged
over the last few years which aims to answer exactly this question.

3.5.2 Resonance Superfluidity

Near a Feshbach resonance, the scattering length a becomes very large, invalidating the
na3 � 1 assumption. Consequently, the appropriate interaction between atoms cannot
be the usual mean-field, as assumed in Eqn. 3.15. However, an effective mean-field theory
can still be derived in the s-wave (kR � 1) limit by explicitly including the bound state
responsible for the Feshbach resonance in the interaction. Such a theory named resonance
superfluidity has been developed by Murray Holland and others [99, 100, 101]. Their pre-
dictions of Tc/TF ∼ 0.5 for both 40K and 6Li is very encouraging for the prospect of a
near-future experimental realization of dilute gas fermionic superfluidity.

Although the BCS transition is yet to be achieved in dilute gases, several interaction
phenomena have been observed which are interesting in their own right. The results reported
in Chapters 5, 6, and 7 describe some of these.
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Chapter 4

Experimental Techniques

This chapter describes several aspects of the apparatus on which the experiments described
in this thesis were performed. Although originally designed to Bose-condense 23Na atoms
[17], the apparatus has recently been upgraded into a two-species machine for 23Na bosons
and 6Li fermions. Using forced evaporative cooling of the bosons and sympathetic cooling of
the fermions by the bosons, we are now capable of producing degenerate bosons, fermions or
Bose-Fermi mixtures. Features have also been added to produce fermion spin-state mixtures
of tunable interaction strengths.

Descriptions of all the elements of the machine that are required for Bose condensation
of 23Na can be found in previous theses [9, 10]. The basic BEC setup was used to construct
the atom interferometer described in Chapter 2. The major additions to allow two-species
operation are a combined 23Na-6Li atomic beam and laser light (at 671 nm) to cool and
trap 6Li. Details of these additions can be found in the concurrently written thesis of Zoran
Hadzibabic [12].

In this chapter, I will first briefly discuss the sympathetic cooling part of the experiment
which produces a degenerate, spin-polarized Fermi gas that is essentially non-interacting.
An attached paper reports on the technique and results:

• Z. Hadzibabic, S. Gupta, C.A. Stan, C.H. Schunck, M.W. Zwierlein, K. Dieckmann,
and W. Ketterle, “Fifty-fold improvement in the number of quantum degenerate fermionic
atoms” [6]. e-print available at arXiv:cond-mat/0306050. Included in Appendix B.

I will follow the sympathetic cooling discussion with a description of the additional tech-
nical elements which have allowed us to produce and study a system of strongly interacting
fermions. These are: (1) an optical trap for 6Li, (2) the creation of magnetic fields which
bring the system near Feshbach resonances and (3) the manipulation and detection of spin
compositions.
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4.1 Production of a Degenerate Fermi Gas

As with the production of degenerate alkali bosons, the initial cooling phase for alkali
fermions can also proceed via the well established techniques of laser cooling and magneto-
optical trapping[40]. In the case of bosons, atoms from the magneto-optical trap (MOT)
are transferred into a magnetic trap1, after which forced evaporative cooling is applied to
cool the gas into degeneracy. The key ingredient for this last step to work is the existence of
a large collision rate which can thermalize the gas. The typical degeneracy temperature for
dilute alkali gases of ∼ µK implies that the gas only interacts via s-wave collisions (kR �
1). As mentioned earlier (Chapter 3), fermionic antisymmetry prohibits elastic collisions
between identical fermions at ultralow temperatures, and makes evaporative cooling of
spin-polarized fermionic samples impossible. The solution to this problem is to use some
form of mutual or sympathetic cooling between two types of distinguishable particles, either
two spin states of the same atom[26, 29], or two different atoms[27, 28, 3, 30]. Our solution
involves the use of bosonic 23Na as a sympathetic cooling agent for fermionic 6Li.
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Figure 4-1: Ground state hyperfine structures of (a) 6Li and (b) 23Na. The states are
labelled in the low field, |F,mF 〉 basis. Lithium (sodium) is loaded into the magnetic trap
in the |F = 3/2,+3/2〉 (|F = 2,+2〉) state from the MOT. Sodium is evaporated on the
|F = 2,+2〉 → |F = 1,+1〉 hyperfine transition near 1.7GHz.

In our experiment, laser-cooled 23Na and 6Li atoms are transferred from a two-species
MOT [3, 12] into a common magnetic trap (fig. 4-2). Forced evaporation cools 23Na atoms,

1Optical traps based on the AC Stark effect are also used in a few laboratories such as [102].
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which in turn thermalize and thus cool the 6Li atoms “sympathetically”. Using this pro-
cedure, we can efficiently cool both species into simultaneous degeneracy. A critical re-
quirement for our strategy to work is the dominance of cross-species elastic collisions over
inelastic decay mechanisms. We are fortunate that this is indeed the case.

Anti-bias coil Curvature coilGradient coils

   Trapped 
atomic cloud

z

x

y

Figure 4-2: Schematic of current-carrying coils for magnetic trapping and production of
magnetic fields near 6Li Feshbach resonances. Running current through the gradient, cur-
vature and antibias coils in the directions shown create a conservative trapping potential
about a field minimum for atoms that are weak-field seekers. The potential is harmonic
near the minimum and has symmetry about the z-axis. The optical trap is aligned along
the z-axis (Section 4.2). The Feshbach field is applied by running current only through the
antibias coils (Section 4.3).

Lithium is sympathetically cooled in the stretched |F = 3/2,+3/2〉 state2 by sodium
in the |F = 2,+2〉 state (Fig. 4-1). Evaporation from the |F = 2,+2〉 to the untrapped
|F = 1,+1〉 state is carried out by applying a microwave field at ∼ 1.7GHz. This frequency
is far from any lithium resonance.

A schematic of the magnetic trap used for cooling is shown in Fig. 4-2. This design is
based on the clover-leaf configuration first demonstrated by our group in 1996[63, 9]. The
combination of gradient, curvature and antibias coils produce a magnetic field minimum. At
the minimum, the field points along +z. For a weak field seeking state, there is confinement
which is harmonic near the minimum with cylindrical symmetry about z. The confinement
is stronger radially (x, y), making the atom cloud cigar-shaped. The real trap consists
of current-carrying wires wound in the shapes shown and packed together tightly using
epoxy. They are rigidly mounted outside the stainless steel vacuum chamber used for
the experiment. The shapes of the coils are chosen to simultaneously optimize magnetic
confinement, vacuum requirements and optical access. A full description of our magnetic

2this was identified as state |6〉 in the previous chapter.
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trap can be found in the diploma thesis of Christian Schunck [103]. Our typical trapping
currents give rise to a Fermi energy EF ∼ kB ×N1/3600 nK where N is the atom number
expressed in millions (Eqn 3.2).

The mixture of stretched states has an extremely favorable ratio of elastic to inelastic
collisions. After about 30 s of cooling, we can produce up to 7× 107 magnetically trapped
6Li atoms at less than half the Fermi temperature (TF ). Further, in samples containing up
to 3 × 107 atoms, we observed temperatures as low as 0.05TF . The final temperature of
the fermions is ultimately limited by the finite heat capacity of the bosons. The numbers
quoted above represent the current upper limits of the system capability. On a day-to-day
basis, we can produce 30-50 million atoms at � 0.5TF or 10-30 million at � 0.2TF .

Fermi Diameter

(b)
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(a)

z

y

Figure 4-3: Large and ultra-degenerate Fermi sea. (a) Absorption image of 3 × 107 6Li
atoms released from the magnetic trap and imaged after 12ms of free expansion. (b) Axial
(z-axis) line density profile of the cloud in (a). A semiclassical “Thomas-Fermi” fit (thin
line) yields a temperature T = 93nK= 0.05TF . At this temperature, the high energy wings
of the cloud do not extend visibly beyond the Fermi energy, indicated in the figure by the
momentum-space Fermi diameter (1D projection of the momentum space Fermi surface).

The atoms are probed along the (usually) x-direction with resonant absorption imag-
ing onto a CCD (charge-coupled device) camera. An example image is shown in Fig. 4-3.
The semi-classical fit to the line density profile (Section 3.1) yields a degeneracy parameter
T/TF = 0.05.

Although our (current) primary goal for sympathetic cooling is the production of large
numbers of degenerate fermions, the system can be adjusted to produce pure 23Na BECs
with up to 10 million atoms3, or simultaneously quantum degenerate Bose-Fermi mixtures,
each containing several million atoms (Fig. 4-4).

3this also represents the first production of evaporatively cooled sodium BECs in the upper hyperfine
state.
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Figure 4-4: Two-species mixture of degenerate Bose and Fermi gases. Absorption images of
6Li and 23Na clouds on the same CCD camera using separate light pulses (see Section 4.4).
The times of free expansion of the two gases can be varied independently. This dual-
imaging technique allows for optimizing the cooling strategy for either single- or two-species
experiments. For the displayed image, the expansion times were τLi = 8ms and τNa = 25ms
and the atom numbers were NLi ∼ 107 and NNa ∼ 6 × 106. Sodium was cooled below the
condensation temperature, corresponding to ∼ 0.2TF for the lithium cloud.

The sympathetic cooling discussed in this section has become standard in our laboratory
since the end of 2002. An older strategy, based on keeping 23Na in the |F = 1,−1〉 state,
was used for about a year before that and is detailed in [3, 12]. The newer strategy increased
the atom number by two orders of magnitude and reduced T/TF by one order of magnitude.
The experiment described in Chapter 5 was performed using the older sympathetic cooling,
while the results of chapters 6,7 were obtained using the newer one.

4.2 Optical Trapping of Lithium

The most promising 6Li spin mixture for inducing strong interactions is the |1〉 − |2〉 com-
bination (Section 3.4). In particular, the interstate s-wave scattering length a12 exhibits a
very broad Feshbach resonance at ∼ 810G and a narrow one at 545G (Fig. 4-5(b)). At
these high fields, both states are strong field seekers (Fig. 4-5(a)). Therefore neither can be
magnetically trapped, necessitating the use of an optical dipole trap (ODT).

An atom exposed to a laser beam detuned to the red of an internal transition feels a
force which is directed towards higher optical intensity. This optical dipole force can be
used to confine atoms at a local intensity maximum such as the focus of a laser beam.
Atoms then feel a conservative potential which is generally known as the AC Stark shift.
This is the basis of the ODT.
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Figure 4-5: (a) Ground state hyperfine levels of 6Li. (b) Prediction of interstate s-wave
Feshbach resonances in the ground state of 6Li. Calculations by the group of B.J. Verhaar
at Eindhoven, the Netherlands. Broad Feshbach resonances exist in a12 at 810G, in a13 at
680G and in a23 at 845G. In addition, a narrow Feshbach resonance exists in a12 at 545G.

We use light at 1064 nm from a 20W IPG Photonics fiber laser to trap lithium fermions
(671 nm optical resonance). This large detuning from the optical resonance makes all 6
spin states of 6Li (Fig. 4-5(a)) feel identical trapping potentials in our ODT. Although our
group has been trapping Bose-Einstein Condensates in ODT’s since 1998 [104], trapping of
ultracold fermionic clouds is more challenging simply because of its larger size/energy (see
Fig. 4-4). To get a crude estimate of this difference, we can compare the chemical potential
µ of a BEC to the Fermi energy EF of a zero temperature Fermi gas (assuming the same
number of particles N and same mean trapping frequency ω̄ = (ω1ω2ω3)1/34):

µ

EF
∼ (�4ω̄6N2ma2)1/5

�ω̄N1/3
=

(
�ω̄N1/3

(�2/ma2)

)1/5
∼

(
EF

(�2/mR2)

)1/5
(4.1)

for a ∼ R, the range of the interatomic potential, which is usually the case far away from
resonances. In the s-wave regime, EF � (�2/mR2). This simple argument shows that
the optical potential will need to be deeper to accommodate degenerate Fermi clouds. By
assuming the same density for bosons and fermions, a relation similar to Eqn. 4.1 can be de-
rived, except with a 1/3 power instead of 1/5 power on the right-hand side. Experimentally,
we have found that we need considerably more optical power to trap degenerate fermions
than to trap BECs.

The 20W output of the laser is sent through an acousto-optic modulator (AOM), which
acts as a switch and a variable attenuator for the 1064 nm radiation. In order to maximize

4note that neither of these assumptions are quantitatively valid, but they are made only to emphasize
the role of quantum statistics in this technical problem.
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the available intensity, we do not send the beam through an optical fiber (typically 50%
efficiency). Instead, after passing through the AOM, the light goes directly through beam
shaping optics and enters the vacuum chamber along the z-direction (Fig. 4-2). The focus
of the beam is aligned with the position of the atoms in the magnetic trap. The (< 100%)
efficiency of the AOM together with losses in the shaping optics restrict the total available
power at the atoms to about 5W. The position and shape of the focus can be monitored
on a CCD camera placed at an imaging plane of the atoms. The size of the focus w (=1/e2

radius) varies from about 14µm to 16µm, depending on the exact alignment of all the
optics. The Rayleigh range of the gaussian beam is then πw2

λ ∼ 0.8mm for w = 16µm and
λ = 1064 nm. Using the AC Stark shift potential for a gaussian laser beam [72]5, we can
derive simple relations for the trap depth Utrap, radial(axial) trapping frequencies ω⊥(ωz),
Fermi temperature EF , and the zero-temperature peak density n0 in our system:

Utrap = 166µK× (16µm
w

)2 × P

1W

ω⊥ = 2π × 9.3 kHz× (16µm
w

)2 × ( P

1W
)1/2

ωz = 2π × 130Hz× (16µm
w

)3 × ( P

1W
)1/2

TF = 20.9µK× (16µm
w

)7/3 × ( P

1W
)1/2 × ( N

1million
)1/3

n0 = 1.9× 1014 cm−3 × (16µm
w

)7/2 × ( P

1W
)3/4 × ( N

1million
)1/2 (4.2)

Ultracold atoms confined in the magnetic trap are transferred into the optical trap by
adiabatically (compared to trap frequencies) turning on the ODT. Typically, we remove all
the 23Na atoms by evaporation and are left only with the non-interacting fermions before
turning on the ODT. After the optical power is ramped up to the desired value, the magnetic
trap is switched off. This procedure allows up to 20 million atoms to be loaded into the ODT
at about the Fermi temperature. Atoms in state |3/2,+3/2〉 = |6〉 are then transferred to
(now trappable) state |1〉 using a single photon transition at 228MHz near zero field. This
transfer is close to 100% efficient. Arbitrary spin states can then be prepared at arbitrary
magnetic fields (Section 4.4). Additional cooling can also be performed in the optical trap
(Section 4.5).

4.3 Magnetic Fields

A schematic of the magnet coils currently used in the experiment is shown in Fig. 4-2. An
optically trapped 6Li spin mixture can be brought near a Feshbach resonance by sending
current only through the antibias coils (Fig. 4-2). To preserve the quantization axis of

5it is important to include the counter-rotating term as it contributes about 18% of the trap depth for
6Li atoms trapped in 1064 nm light.
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the atoms in the z-direction, this current is run in the opposite direction than during the
magnetic trapping phase (Fig. 4-2).
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Figure 4-6: Homogeneity of the Feshbach field. Comparison of the (calculated) antibias
fields from (a) old and (b) new magnetic traps. The new antibias coils are placed in
a Helmholtz configuration and produces larger bias and far less curvature than the old
antibias coils.

Full details of the design and construction of the magnetic trap can be found in [103].
This trap was built as a replacement to another one of similar design when the latter devel-
oped a short. The new magnetic trap improves on the old one in two important ways: (1)
a high pressure water cooling system allows us to apply fields ≥ 1000G continuously. Pre-
viously, we were restricted only to magnetic field pulses (≤ 1 s at 1000G). (2) an optimized
“Helmholtz” placement of the antibias coils has dramatically reduced the field curvature
accompanying the application of large bias fields (Fig. 4-6). The curvature from the old
trap was anti-trapping at the Feshbach resonance fields (Fig. 4-5) and reduced the effective
trap depth. This caused substantial spilling of atoms from the ODT. Very careful optical
alignment was required to match the centers of the ODT and the magnetic “anti”-trap, in
order to minimize this spilling. With the new trap, this issue is non-existent.

The antibias coils produce a magnetic bias field of 2.06G/A (Gauss/Amp) and a field
curvature of ∼ 0.002 (G/cm2)/A. The bias was calibrated by locating optical resonances
of 6Li at large magnetic fields (500− 1000G) and comparing the resonance positions with
the Breit-Rabi predictions for the energy levels. The curvature was measured during the
“bench”-test of the magnetic trap prior to installation, and is about 30 times lower than
that of the older trap.

Magnetic fields of up to 1000G can therefore be applied using a commercial 500A power
supply. This range encompasses all the Feshbach resonances of Fig. 4-5. As shown in Fig. 4-
7(a), we can switch on these fields in a few milliseconds (limited by the power supply). The
switch off time is a few hundred microseconds (Fig. 4-7(b)) and is fundamentally limited by
the inductance of the coils.
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Figure 4-7: Current turn on and shut off in Feshbach (antibias) coils. Currents of 500A
(magnetic fields of 1000G) can be (a) turned on in a few ms and (b) switched off in a few
hundred µs.

4.4 Spin State Manipulation and Detection

We have spent substantial effort in developing flexible methods of spin state manipulation
and detection in the optical trap at arbitrary magnetic fields. This can be useful for several
reasons:

(1) Studies of interactions by imaging at near zero-field after turning off the Feshbach
fields may be inadequate because (a) the timescale for turning off the field could compete
with the timescales of dynamics that we wish to study or/and (b) the system could undergo
inelastic decay while going through a loss resonance at a lower field during current turn-off.
These inadequacies are remedied by imaging the atoms at the magnetic field of interest.

(2) As shown in Fig. 4-5, each binary mixture of states |1〉, |2〉 and |3〉 has at least one in-
terstate Feshbach resonance. The ability to create and diagnose arbitrary spin compositions
near these resonances opens up a large parameter space for studying strongly interacting
fermions.

(3) Since fermionic superfluidity involves pairing of momentum states near the Fermi
surface, the particle numbers (determining the Fermi surfaces, Eqn. 3.2) in the spin com-
ponents need to be controlled. The degree to which this “Fermi surface matching” will be
required for the superfluid transition is as yet unclear. However, tunability of the matching
provides an experimental knob in the search for this transition.

(4) Mean field interactions can be directly measured as resonance shifts in transitions
between spin states. These transitions can be monitored by detecting the spin state com-
position. Chapter 7 describes such experiments performed in our system.
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Beginning with atoms in state |1〉 in the optical trap (Section 4.2), we can ramp up the
field to any desired value (Section 4.3) and create an arbitrary composition of states |1〉, |2〉
and |3〉 using standard ∼ 80MHz (Fig. 4-8) radio-frequency (RF) techniques. This involves
an RF synthesizer, an amplifier and an RF coil - standard features of the experiment[105].
The new feature that was required was the implementation of simultaneous spin-selective
imaging at arbitrary magnetic fields.
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Figure 4-8: Energy difference between (a) states |2〉 and |1〉 and (b) states |3〉 and |2〉.

Imaging at arbitrary magnetic fields is accomplished by frequency shifting (with an
AOM) the laser light used for cooling and trapping of 6Li to the optical resonance at the
desired field. The AOM has sufficient frequency tunability to encompass the Feshbach
resonances shown in Fig. 4-5. More details can be found in [12].

Fig. 4-9 shows the ground 2S1/2 state and excited 2P3/2 state hyperfine structure of
6Li. In the excited state, the mI sub-levels are always unresolved within each mJ level
(Fig. 4-9). Thus, optical transitions from states |1〉, |2〉 and |3〉 to any mJ level of the
2P3/2 state are separated only by the ground state hyperfine splitting. At the Feshbach
resonance fields (Fig. 4-5), these splittings are ∼ 80MHz (Fig. 4-8), well above the natural
linewidth of 6MHz. Thus, two beams separated in frequency by this splitting could each
be selectively resonant with only one of the states. Both this frequency difference and the
spatial separation required for independent imaging can be provided by an additional AOM.

An AOM which frequency downshifts light resonant with |2〉 at a particular magnetic
field B, by the |2〉 − |3〉 splitting at B, simultaneously produces spatially separated laser
beams resonant with |2〉 (zeroeth order) and |3〉 (first order). These beams can then both
be directed onto a |2〉 − |3〉 binary mixture (either trapped or in free expansion). After
passing through the atoms the two beams can be sent to two different parts of the CCD
chip on the imaging camera. In this way, overlapping atom clouds can be simultaneously
imaged onto different parts of the camera. An absorption image using such a geometry is
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Figure 4-9: High field imaging of 6Li. ν1 and ν2 are two optical transitions that we currently
use for high field imaging. Each mJ level in the excited state has 3 unresolved mI states.
The optical frequencies from the ground mJ = −1/2 state are separated only by the ground
state Zeeman separations of ∼ 80MHz at high fields. Within each of these optical lines, we
select the state to be imaged (|1〉, |2〉 or |3〉) with AOMs as described in the text.

shown in 4-10(a).
Using a charge shifting feature of a CCD chip, we can extend the above simultaneous

imaging capability to image all three states. It is possible to take multiple absorption images
in quick succession by shifting (fast: ∼millisecond) the charge corresponding to an image
to a shielded part of the CCD chip before reading out the charge (slow: ∼ second). This is
often called the “kinetics” mode of operation of a CCD camera. Two images can then be
taken which are separated by a variable time. This time is only limited from below by the
charge shifting time of ∼ 600µs for a typical 3mm×3mm exposure area. This separation
time can be used to shift the light to the frequency appropriate to image the third state
(state |1〉 in Fig. 4-10(b)) as well as provide a variable expansion time for a released atom
cloud. Fig. 4-10(b) shows the image of a ternary mixture using this technique.

Using these imaging techniques, we have established a fairly flexible and robust system
to prepare and study interacting fermions. Two consecutive images with an adjustable
separation/expansion time using the kinetics mode also allows us to take images of 23Na-
6Li mixtures as in Fig. 4-4. In this case, the yellow (sodium) and red (lithium) imaging
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Figure 4-10: Simultaneous multiple state imaging in kinetics mode. The dashed line sepa-
rates two different exposures in each image. Arbitrary spin compositions can be measured
independently at high magnetic field. (a) shows a binary mixture of states |2〉 and |3〉. (b)
shows a ternary mixture of states |1〉,|2〉 and |3〉.

beams are sent along identical imaging paths after being combined on a dichroic mirror.

4.5 Evaporative Cooling in the Optical Trap

A binary spin-mixture interacting with a finite interstate scattering cross-section will ther-
malize and evaporatively cool in a finite depth optical trap. Beginning with a 50-50 mixture,
efficient cooling can be performed in this way [29]. The thermalization rate or alterna-
tively atom loss can be used to measure the scattering cross-sections in interacting fermions
[106, 107].

We have observed cooling and atom loss for the |1〉− |2〉 mixture in our ODT at various
magnetic fields. Fig. 4-11 shows the behavior of |1〉− |2〉 mixtures at two different magnetic
fields: 530G and 900G. At 530G, the mixture shows no change on a 100ms timescale while
at 900G, there is a visible atom loss and cloud size shrinkage, reflecting the cooling. This
is consistent with the magnetic field dependence of a12 shown in Fig. 4-5.

A modestly degenerate (T � TF ) cloud loaded into the ODT has an evaporation pa-
rameter η given using Eqns. 4.2 by:

η =
Utrap
TF

= 8× ( w

16µm
)1/3 × ( P

1W
)1/2 × (1million

N
)1/3 (4.3)

If we load 16million atoms into a 4W trap (near optimum conditions) and make a 50-
50 mixture, η = 8, small enough for atom loss and cooling to take place even without
lowering the trapping potential. This is consistent with our observations. Currently we can
achieve temperatures of � 0.5TF in the ODT. Careful characterization and optimization
of this cooling process [29, 86] should produce degeneracies comparable to those observed
in the magnetic trap. Such conditions would doubtless bring us even closer to fermionic
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Figure 4-11: Mutual cooling of states |1〉 and |2〉 in the optical trap. The images are taken
using the simultaneous imaging technique at an expansion time of 500µs. The trap depth
is kept constant at ∼ 330µK.

superfluidity.
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Chapter 5

Decay of an Ultracold Fermi Gas

near a Feshbach Resonance

This chapter focuses on the experiment reported in the following publication:

• K. Dieckmann, C.A. Stan, S. Gupta, Z. Hadzibabic, C.H. Schunck, and W. Ketterle,
“Decay of an Ultracold Fermi Gas near a Feshbach Resonance” Phys. Rev. Lett., 89,
203201 (2002) [4]. Included in Appendix C.

This chapter describes our first experiments in an interacting regime with ultracold
lithium atoms. We successfully located two Feshbach resonances between the two lowest
Zeeman sub-levels of the ground state (states |1〉 and |2〉) by observing the magnetic field-
dependent decay of a mixture of these two spin components. We also determined the lifetime
of the |1〉 − |2〉 mixture in the Feshbach resonance regime where fermionic superfluidity is
predicted to occur[99, 108, 100]. The measured lifetimes are favorable compared to the
estimated creation time of the predicted superfluid state.

As described in Section 3.4, for 6Li, the natural choice of interacting states in an optical
trap is the |1〉−|2〉 combination. This mixture has no energetically-accessible spin-exchange
channels. In addition, the only energetically-accessible dipolar decay channel is forbidden
s-wave, while p-wave contributions are suppressed by our ultralow temperatures.

The question arises as to what would be the most direct signature of a Feshbach reso-
nance. Prior to our experiment, the JILA group had measured such a resonance in fermionic
40K using a thermalization time measurement [109]. However, the first observation of Fesh-
bach resonances in ultracold atoms was via the measurement of enhanced, field-dependent
losses in a BEC in our group [82]. This is a straightforward measurement if the system does
indeed have a resonantly-enhanced decay mechanism.

Guided by this previous experience in our group, we simply followed the steps of optical
trapping, mixture preparation and magnetic field application and in true experimentalist
fashion tried to “see what happens”. We indeed saw atom loss as a function of magnetic field.
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The losses that we observed were the first experimental signatures of scattering resonances
in the 6Li |1〉 − |2〉 combination.

Since our publication [4], (Appendix C) details all the salient experimental aspects,
I will restrict myself to a short summary of the experimental method and results. The
interpretation of the nature of the observed decay will also be discussed.

5.1 Resonant Decay of an Ultracold Fermi Gas

5.1.1 Observation of Field-Dependent Losses
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Figure 5-1: (a) Ground state hyperfine levels of 6Li. (b) Predicted s-wave scattering length
a12 between states |1〉 and |2〉 (thick lines in (a)). Feshbach resonances are predicted at
∼ 800G and ∼ 20, 000G. a12 goes through zero near 500G. At the experimentally accessible
Feshbach resonance at 800G, states |1〉 and |2〉 are both high-field seeking, making optical
trapping a necessity. Figure (b) is from reference [110].

As shown in Fig. 5-1, states |1〉 − |2〉 of the 6Li ground state were predicted to have an
interstate s-wave Feshbach resonance at∼ 800G. To achieve the corresponding experimental
situation, we first created a degenerate gas in the |2〉 state in the magnetic trap using our first
sympathetic cooling scheme (Chapter 4,[3]). After loading the gas from the magnetic trap
into the optical trap, we created a mixture of states |1〉 and |2〉 by an RF-induced spin flip at
a field of ∼ 1.5G. The magnetic field was then ramped up to a specific value where the atom
number was monitored for two different wait times - 50ms and 500ms. We repeated this
procedure at many different magnetic field values in order to map out the field dependence
of loss processes. The number was measured using absorption imaging after turning off
the field. Taking the ratio of the two obtained numbers served as a normalization process
guarding against systematics from loading losses. A second guard against systematics was
carried out by doing the same experiments on the pure states |1〉 and |2〉. As a function of
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magnetic field, the pure states were mostly featureless (not shown) while the 50-50 mixture
showed pronounced loss features (Fig. 5-2).
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Figure 5-2: Feshbach resonances identified by losses. Beginning with a 50-50 mixture of
states |1〉 and |2〉, the survival fraction is plotted as a function of the magnetic field. (a) is
a scan over the range 200G-850G and shows the survival fraction calculated as the ratio
of the atom number after wait times of 500ms and 50ms. The scan shows a pronounced
loss feature peaked at ∼ 680G. In addition, a narrow loss feature at ∼ 550G can also
be seen. The magnetic field scan in (b) covers a narrower range, has a higher density of
measurements, and shows the survival fraction calculated from wait times of 2 s and 50ms.
The 550G resonance is now obvious.

We saw a broad decay resonance at 680G, near the predicted Feshbach resonance (800G)
and also discovered a narrow one at 550G [4]. Although our decay peak for the broad
feature occurred more than 100G away from the predicted value [110], it was still within
the predicted (unusually large) width (Fig. 5-1(b)). Our observation of a decay resonance
at 550G was followed soon after by the prediction of a narrow Feshbach resonance at this
field value [106]. The older and the newer theoretical predictions are displayed in Fig.5-3.
Our measurements therefore experimentally located two s-wave Feshbach resonances in the
|1〉 − |2〉 mixture.

The new theoretical prediction (Fig. 5-3(b)) benefitted from a careful measurement of
the zero-crossing of a12 (at ∼ 530G) by a group at Duke university[106]. The zero-crossing
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was measured independently and with good agreement by a group at Innsbruck [107]. The
field dependent losses for the wide resonance were also observed (almost simultaneously) in
the Duke group [106] as well as (later) by the Paris group [111].
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Figure 5-3: (a)Old prediction and (b)New prediction of s-wave Feshbach resonances between
states |1〉 and |2〉. Figure (a) from reference [110] and Figure (b) from reference [106]. Note
that (a) has a logarithmic x-scale, while (b) has a linear x-scale.

5.1.2 Decay Curves on resonance

The nature of the decay was studied by monitoring the system at various wait times for
the same magnetic field. The decay curves obtained at 680G is shown in Fig. 5-4. For a
two-body (three-body) process, the loss rate of atoms ṅ is proportional to n2 (n3), where
n is the atomic density. For our modest degeneracies (in this experiment T ∼ TF ), the
density distribution is essentially classical and therefore should be proportional to atom
number N , provided the temperature does not change. Thus Ṅ should be proportional
to N2 (N3), for a two-body (three-body) process. This means that two-body processes
should show a linear dependence of 1/N with time, while three-body processes should show
a linear dependence of 1/N2 with time. The measurements shown in Fig. 5-4 are consistent
with a two-body decay mechanism. Changes in temperature during decay which would
invalidate our analysis were hard to characterize because of the low signal-to-noise as the
cloud decayed1.

1It can be shown that for a T = 0 Fermi gas, keeping track the changing volume due to atom loss actually
results in 1/N changing linearly in time for a 3-body process. This was pointed out to us by Jean Dalibard.
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Figure 5-4: Decay of the atom number at 680G. (a) The data plotted as 1/N show a linear
time dependency, consistent with two-body decay. (b) The same data plotted as 1/N2

clearly show non-linear dependency, inconsistent with three-body decay. For the resonance
at 550G, the comparison of least square fits also revealed consistency with a two-body
decay.

5.2 Loss Mechanism

Two questions naturally arise from our results:
(1) what is the collision process responsible for the observed decay?
(2) why is the loss peak shifted such a large amount in magnetic field (> 100G) from

the (predicted) divergence of the s-wave scattering length?
Let’s examine question (1). The |1〉 − |2〉 combination is immune to spin-exchange

losses as well as dipolar losses in an incoming s-wave channel (Section 3.4). The leading
inelastic 2-body collision which could contribute to the observed losses is then dipolar decay
in an incoming p-wave channel. Our ultracold temperatures would highly suppress such a
process. It is still possible that such a process contributes, for example in the presence of a
p-wave Feshbach resonance [112]. However, theorists have concluded that there are no such
resonances in the relevant magnetic field region[101]. The possibility of a non-resonant p-
wave process being enhanced by the s-wave resonance as a collisional cascade is also unlikely
because the shape of the loss curve deviates strongly from the predicted shape of the s-wave
scattering cross-section (Fig. 5-3 and Eqn. 3.10).

Resonant enhancement of 3-body decay near a 2-body Feshbach resonance is another
possibility. This mechanism may also answer question (2). As argued by Petrov [92], if the
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binding energy released upon formation of the molecule does not exceed the trap depth, the
2 collision products (molecule + 3rd atom) can remain trapped. For large and positive a12,
the binding energy is positive and is given near resonance by the relation ([93]):

εbind =
�
2

ma212
(5.1)

This means that the energy released is smaller closer to the divergence of a12 (as the bound
state tunes closer to threshold). The scattering length at which the loss should peak is then
related to the trap depth Utrap as:

aloss ∼ �/
√

mUtrap. (5.2)

For our experimental trap depth, this corresponds to a field of ∼ 620G, in the ballpark
of the measured value. Currently, we believe that this 3-body loss mechanism is the most
probable cause of the observed decay. The position of the same loss resonance observed
by a group in Paris shows agreement with Eqn. 5.2[111]. This group has also observed a
dependence of the position of the decay peak with trap depth [113].

The temporal behavior of the decay (Fig. 5-4) follows the characteristics of a two-body
process rather than a three-body process. It is possible that near the resonance, long-lived
|1〉−|2〉 quasi-bound states are formed (step 1) which can collide with either single spin state
in a three-body process (step 2). Since the quasi-bound state is long-lived, it would take a
long time to form. The timescale for this overall process would then be determined by step
(1) and the subsequent decay rate would have the characteristics of a two-body process.
Such a 2-step mechanism has been discussed in the context of recombination processes in
spin-polarized atomic hydrogen [114].

5.3 Outlook

Our experiment proves that the |1〉 − |2〉 mixture is stable on a timescale of 100ms for all
magnetic fields of interest and for typical densities of a few times 1013 cm−3. If resonance
high-Tc superfluidity (Section 3.5) were to occur, the gap energy �∆ would be ∼ (0.5kBTF ).
This should give the relevant timescale for the formation of the superfluid as 1/∆ < 1µ s,
for our typical parameters. The magnitude of this timescale relative to our loss timescale
bodes well for the realization of superfluidity in the 6Li system.

The experiment reported in this chapter represents our first observations of interacting
fermions. Since then, the apparatus has been upgraded in several ways. As of the end of
2002, we had implemented new magnetic coils, high-field and multiple-state imaging, as
well as a new sympathetic cooling scheme which increased our atom number a hundred-fold
(see Chapter 4). The experimental results reported in the rest of this thesis were performed
using the improved apparatus.
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Chapter 6

Collisions in zero temperature

Fermi Gases

This chapter focuses on the theoretical results reported in the following paper:

• S. Gupta, Z. Hadzibabic, J.R. Anglin and W. Ketterle, “Collisions in Zero Temper-
ature Fermi Gases” [8]. Included in AppendixD. e-print available at arXiv:cond-
mat/0307088.

A simple and useful tool to diagnose the behavior of trapped atomic gases is to release
them suddenly from their confines and observe the evolution of the spatial density. This
merely involves switching off the magnetic or optical trap and subsequently imaging the
atom cloud with near-resonant light - features which usually come for free during setup of
an atom trapping experiment. This is a fundamentally new knob that atomic physicists
possess over their traditional condensed matter counterparts. Hydrodynamic expansion
from an anisotropic trap results in a reversal of anisotropy after a sufficiently long time
(several radial trapping frequencies). This arises due to the different pressure gradients
along different directions. The “smoking gun” demonstration of an interacting BEC is
the observation of anisotropic hydrodynamic free expansion. This chapter deals with the
behavior of interacting Fermi gases during free expansion.

Considerable excitement was generated in the ultracold atom field with the observation
of anisotropic hydrodynamic expansion of an interacting Fermi gas [86]. This had followed
rapidly in the wake of the theoretical prediction that a fully superfluid Fermi gas would
expand hydrodynamically (just like its bosonic counterpart) [115]. This idea necessarily
needs to be modified with the idea of classical hydrodynamics in a strongly interacting
system [116]. Interacting Fermi gases realized near Feshbach resonances can be collisionally
hydrodynamic because of the large cross-section for incoherent collisions (Section 3.2.3).
This has been observed in various groups [86, 117, 111] as well as by us (unpublished,
Section 6.2). The distinction (if any) between classically collisional and superfluid behavior
hinges critically on the role of Pauli blocking for degenerate fermions.
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A highly degenerate Fermi gas is of course almost collisionless in the trap, even in the
vicinity of a Feshbach resonance. However this Pauli suppression of collisions breaks down
when an interacting system is released from a spatially anisotropic atom trap. Even in a
zero temperature Fermi gas, the expansion deforms the Fermi surface and allows collisions
to take place. We have found theoretically that more than half the classically allowed
collisions can take place for highly anisotropic traps [8].

In this chapter, I first introduce the standard theoretical treatment for analyzing the
expansion behavior of atomic gases. I then present our data exhibiting hydrodynamic
expansion of a strongly interacting Fermi gas. Finally, I discuss our theoretical results
regarding the collisional behavior of degenerate Fermi gases which are detailed in the paper
attached (AppendixD, [8]).

6.1 Free Expansion of Atomic Gases

6.1.1 Expansion of non-degenerate gases

The expansion of classical Boltzmann gases, Bose gases above Tc, as well as Fermi gases
in the normal (non-superfluid) phase, can be described by means of a scaling formalism
[116, 118]. This theory is valid in the semi-classical limit, where the thermal energy is large
compared to the separation between the energy eigenvalues of the potential.

The Boltzmann-Vlasov equation can be used to describe the dynamics of the phase-space
distribution f(x,p, t):

∂f

∂t
+

p
m

.
∂f

∂x
− ∂(Uh + Umf)

∂x
.
∂f

∂p
= Γcoll[f ] (6.1)

This is simply the standard Boltzmann equation [77] with the addition of the mean-field
potential Umf . Uh is the harmonic trapping potential. The right hand side is the usual
Boltzmann collision integral. Free expansion distorts the local phase space distribution
while collisions try to preserve the local equilibrium. The local equilibrium corresponds to
an isotropic thermal distribution where all the local quantities of Chapter 3 can be defined.
In the limit of no collisions, Γcoll[f ] = 0, we obtain the equations of ballistic expansion. For
cylindrically symmetric traps (frequencies ω⊥, ωz), the aspect ratio (radial size/axial size)
is given by:

Aballistic(t) =
ωz
ω⊥

√
1 + ω2⊥t2

1 + ω2z t
2

(6.2)

This will be derived in Section 6.3. An initially anisotropic cloud approaches spatial isotropy
as t → ∞. The final spatial distribution mirrors the initial momentum space isotropy.

In the opposite limit, where the collision timescale is shorter than all the other timescales
in the system, the local phase space distribution f is always in equilibrium and isotropic.
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One then obtains the classical hydrodynamic scaling solutions [116, 118]:

b̈i =
ω2i

(bxbybz)2/3bi
(6.3)

where bi is the scaling parameter in the i direction. The spatial distributions retain their
original form (Gaussian, Bose-Einstein, or Fermi-Dirac) but get scaled in size linearly by
the bi’s. For cylindrically symmetric traps, the aspect ratio during expansion is:

Ahydro(t) =
ωz
ω⊥

b⊥(t)
bz(t)

. (6.4)

The collision rate competes with the inverse trap frequency to determine whether the
gas expands ballistically or hydrodynamically. Comparing the collision rate with the inverse
trap frequency is equivalent to comparing the collisional mean free path with the initial size
of the cloud. Collisional hydrodynamics ensues when the mean free path is much smaller
than the cloud size.

The expansion behavior of gases in the (experimentally relevant) regime between bal-
listic and hydrodynamic has only recently been examined using an extension of the scaling
analysis [118]. However, the case of ultra-degenerate normal fermionic gases (where Pauli
blocking becomes important) is not covered by this analysis. Our work (Section 6.3) pro-
vides some rudimentary results in this regime.

6.1.2 Expansion of Superfluid Gases

The hydrodynamic equations of superfluids are applicable if the healing length is much
smaller than the size of the sample [115]. This implies that the whole system behaves similar
to a superfluid. The hydrodynamic description is based on the equation of continuity:

∂

∂t
n+

1
m

∂

∂x
(np) = 0,

and on the Euler equation:

∂p
∂t
+

∂

∂x
[µ(n) + Uh +

p2

2m
] = 0

where µ(n) is the chemical potential of a uniform gas calculated at the density n. If the
equation of state is a power law µ ∼ nγ , then the above equations have scaling solutions
during expansion. If the Thomas-Fermi radii evolve according to Ri(t) = Ri(0)bi(t), then
the scaling parameters bi obey [115]:

b̈i =
ω2i

(bxbybz)γbi
(6.5)
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For a BEC,
µ ∼ n1, γ = 1,

[73]. For a Fermi superfluid, the authors [115] use

µ ∼ n2/3, γ = 2/3,

the relation in a normal gas at zero temperature1. The scaling prediction for a classical gas
and a superfluid Fermi gas in the hydrodynamic limit are then identical (Eqn. 6.3). Note
that the prediction for a BEC is different. However, this difference only becomes significant
in pancake shaped traps and is negligible in cigar shaped traps [116].

For cylindrical geometries, defining τ = ω⊥t, λ = ωz
ω⊥ (initial aspect ratio) and for

γ = 2/3, we get the non-linear differential equations:

d2b⊥
dτ2

=
1

b
7/3
⊥ b

2/3
z

(6.6)

d2bz
dτ2

=
1

b
4/3
⊥ b

5/3
z

. (6.7)

These equations can be solved numerically quite easily in Mathematica.

6.2 Observation of hydrodynamic expansion in a strongly-

interacting Fermi gas mixture

Anisotropic expansion of interacting Fermi gases out of a cylindrically symmetric trap have
been observed recently by several groups [86, 117, 111]. We have also observed this phe-
nomenon. Fig. 6-1 shows simultaneous absorption images of states |1〉 and |2〉 at different
times-of-flight after release from our cylindrically symmetric optical trap in a regime of
strong interactions (900G). The reversal of anisotropy during expansion is obvious.

The expansion data were fitted with 2-D gaussians. The resulting aspect ratio is plot-
ted in Fig. 6-2. Also shown are the expectations from ballistic and hydrodynamic scaling
(Eqns. 6.2,6.4 and 6.6 solved for γ = 2/3 using Mathematica). Clearly, we are deep in the
hydrodynamic regime.

The classical collision rate is given by ΓCl = nσv where n is the density, σ is the scattering
cross-section and v is the relative velocity. During the expansion, the density drops and
the expansion of strongly interacting systems falls out of the hydrodynamic regime very
quickly. However in the unitarity limit, the scattering cross-section also changes with the
density. Eqn. 3.12 gives σ ∼ 1/k2F ∼ 1/n2/3, where kF is the local Fermi momentum.

1The difference essentially stems from the fact that a BEC has essentially 0 kinetic energy and µ is
dominated by the mean field interaction energy proportional to n and the fermion kinetic energy is set by
the Fermi energy proportional to n2/3.
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Figure 6-1: Anisotropic expansion of 6Li from the optical trap at 900G (about 1.5 million
atoms in each state). The atoms were cooled for 500ms at 900G. This lowered the temper-
ature from ∼ TF to ∼ 0.5TF . (a) in trap, (b) 900µs TOF, (c) 1500µs TOF. The reversal
of the anisotropy is obvious. States |1〉 and |2〉 are imaged simultaneously as explained in
Section 4.4.

The relative velocity scales as v ∼ kF ∼ n1/3. This gives ΓCl = nσv ∼ n2/3. When the
system is unitarity limited, the scattering rate actually drops slower during expansion and
hydrodynamic conditions can be maintained for longer expansion times. This n2/3 drop is
maintained until the local Fermi momentum no longer satisfies akF � 1. Thereafter, the
usual scaling with n is restored.

6.3 Expansion of a zero temperature Fermi gas

I now discuss collisions in zero temperature Fermi gases. The manuscript attached as
AppendixD [8] presents our results in great detail. This section is meant to be a supplement
to that presentation. I only summarize the major aspects of the paper and detail some
subtleties.

6.3.1 Momentum Space Fermi Surface

The momentum space Fermi surface can be constructed by using the simplification allowed
by zero temperature Heaviside distribution functions and harmonic traps. The local Fermi
surface is then a sphere in the trap:

Σip2i /2m = EF − Σimω2i x
2
i /2, (6.8)

which deforms into an ellipsoid during time-of-flight:

Σi
(1 + ω2i t

2)
2m

(
pi − mxi

t

ω2i t
2

1 + ω2i t
2

)2
= EF − Σi mω2i x

2
i

2(1 + ω2i t
2)
, (6.9)
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Figure 6-2: Aspect ratio vs time for the conditions of Fig.6-1. (a) shows the measured
aspect ratio as a function of time of flight up to ∼ 3ms for an initial aspect ratio λ = 0.015
(our trap). For the longest expansion times, the aspect ratio climbs up to > 2.5. The
lines are theoretical predictions for 2W power, and 16µm waist giving trapping frequen-
cies of 13.2 kHz and 197.6Hz. 1ms then corresponds to ω⊥t ∼ 83 inverse radial trapping
frequencies. (b) shows the asymptotic behavior expected from hydrodynamics. The calcu-
lated aspect ratio grows strongly even after several thousand inverse trapping times! The
asymptotic aspect ratio expected from full hydrodynamic scaling is ∼ 0.38/λ ∼ 25 [119].

via the ballistic property x(0) = x(t) − pt/m. For a cylindrically symmetric trap, the
momentum space aspect ratio is: √

1 + ω2z t
2

1 + ω2⊥t2
. (6.10)

Fig. 6-3(a,b) shows an example of this variable aspect ratio (or deformation).
This momentum space picture allows a direct calculation of the spatial density. Using∫

dxdp = h, the phase-space volume for a quantum state in 1-D, the volume for N fermions
is

∫
d3xd3pf(x,p, t) = h3N . The spatial density is simply the integral of the phase space

distribution over momentum space with the appropriate 1/h3 factor. Thus:

n(x, t) =
1
h3

∫
d3p f(x,p, t)

= volume of momentum ellipsoid

=
4
3
π product of semi− axes

=
4
3
π

(
2mEF

h2

)3/2 (1− m
2EF

Σi
ω2

i x
2
i

1+ω2
i t

2 )3/2

Πi(1 + ω2i t
2)1/2

, (6.11)
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(a) (b)

01310 01310
2    2mEF

Figure 6-3: (a) Deformation of the momentum space Fermi surface at x = 0, from a
sphere to an ellipsoid during expansion from an anisotropic harmonic trap. The case of
cylindrical symmetry is shown, where the three-dimensional distribution is symmetric about
the vertical axis. The parameters chosen are an aspect ratio λ = 0.2 and expansion times
ω⊥t = 0,1,3 and 10. (b) The deformation at a position radially displaced by

√
EF /mω2⊥.

Note that the central momentum also changes with time for x �= 0 (Eqn. 6.9), an effect
which is not shown in the figure. However, this has no effect on the collision rate.

as in Eqn 3.5. Notice that for long times, the spatial aspect ratio goes to 1 as expected for
ballistic expansion and with the scaling given by Eqn. 6.2.

6.3.2 Collisions in the Perturbative Limit

For a two-spin system interacting with a finite s-wave scattering cross-section σ, the collision
integral of Eqn. 6.1 can be written as:

Γ(x,p1, t) = − σ

4πh3

∫
(x,t)

d3q1d
2Ω

|p1 − q1|
m

× (6.12)

[f(p1)f(q1)(1− f(p2))(1− f(q2))− f(p2)f(q2)(1− f(p1))(1− f(q1))]

Eq. 6.12 has a σ in front, integrates over the momentum ellipsoid and has the relative
velocity in the integrand. It thus has the general form nσv, a collision rate. The collision
integral takes into account the availability of final states (the (1 − f) terms), the basis
of Pauli blocking. Fig. 6-4(a) shows the geometrical representation of elastic collisions in
the local phase space picture. Collisions have the tendency to restore the deformed Fermi
surface into a spherical shape corresponding to an equilibrium Fermi-Dirac distribution2.

2The concept of Pauli blocking removal by ballistic expansion can be applied also to other situations such
as p-wave collisions in a single-spin system.
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Figure 6-4: Geometrical representation of collisions in momentum space. (a) The two spin
states have identical distributions and are labelled with p and q. The deformation of the
Fermi surface into an ellipsoid opens up final states for scattering. The processes p1+q1 →
p2 + q2 and p1 + q1 → p3 + q3 are examples of allowed collisions in a zero-temperature
gas. (b) For collisions involving p1 at the center of the ellipsoid (calculation done in the
paper), a minimum deformation of 1 :

√
3 is needed before energetically accessible final

states become available. The process p1 + q1 → p2 + q2 is among the first contributing
collisions as a function of increasing deformation (all final states on the horizontal ring
formed by rotating p2 − q2 about p1 − q1 as well as the symmetric ring in the lower
hemisphere start contributing simultaneously).

One can work out the collision integral of Eqn. 6.12 corresponding to ellipsoids for differ-
ent ballistic expansion times (Eqn. 6.9) using numerical integration in Mathematica. This
forms a perturbative result for the collision rate and the effects of Pauli blocking. The result
for Γ(0,0) is shown in Fig. 6-5. This is compared to the result neglecting Pauli blocking
(setting all the (1− f) terms to zero, ΓCl,p in the figure). Fig. 6-5(b) shows that as the ini-
tial aspect ratio λ approaches 0 (high anisotropy), the total number of collisions allowed by
Fermi statistics approaches ∼ 0.55 of the number neglecting Pauli blocking. This of course
shatters the assumption of high Fermi degeneracy suppressing collisions during expansion.
Zero temperature Fermi gases can collide strongly during expansion.

Two aspects of the calculation are now explained. The fact that the collision rate
abruptly rises from zero at a finite expansion time in Fig. 6-5(a) is because a minimum
deformation is needed before the center of the ellipsoid (0,0) can collide with any other
point in the momentum ellipsoid (Fig. 6-4(b)). From the figure, one easily sees that this
point corresponds to an aspect ratio

√
3 (simple coordinate geometry). Using this relation
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Figure 6-5: (a) Collision rate as a function of expansion time in the perturbative approxi-
mation for the initial aspect ratio λ = 0.03. Dashed line - total classical collision rate Γcl,
thin line - Γcl,p, thick line - Γ. Γ and Γcl,p are defined in the text. Γcl is defined as the
first term on the right-hand-side of Eqn. 6.12 with the 1− f factors artificially set to 1 and
corresponds to what is usually called the classical collision rate. The displayed rates were
evaluated at x = 0 and p = 0 and give an effective upper bound on the Fermi suppression.
(See AppendixD for details). (b) Allowed fraction of collisions F (λ) for a zero-temperature
two-spin Fermi gas. For an initial aspect ratio λ = 0.05, F is 0.5. For large anisotropy
(λ → 0), F approaches ∼ 0.55.

in Eqn. 6.10, one can solve to get ω⊥t = τ =
√

2
1−3λ2 . For λ = 0.03, this dimensionless time

is ∼ √
2 ∼ 1.4, in agreement with the calculation (Fig. 6-5(a)). A similar reasoning explains

why the collision rate in Fig. 6-5(b) rises above zero only below a finite λ. The critical time
of ω⊥t = τ =

√
2

1−3λ2 is never reached when the denominator is imaginary i.e., for λ � 0.58
(in agreement with the figure). A calculation summing the contribution over all p1 would
smoothen the rise of both these curves from t = 0 (Fig. 6-5(a)) and λ = 1 (Fig. 6-5(b)).

6.3.3 Perturbation from Hydrodynamic Behavior

For a strongly-interacting system, one can look at the effect of expansion deformation
as a perturbation on the isotropy required by local equilibrium. The expansion-driven
anisotropy is damped (strongly) by collisions. James Anglin, our local theorist, found to
lowest order in the momentum space anisotropy, the zero temperature collisional response
of the Fermi-Dirac distribution to the deformations of time-of-flight. His result is included
in the manuscript attached in AppendixD [8]. A more quantitative calculation with enough

90



detail to differentiate between superfluid and collisional hydrodynamics in expansion may
warrant a re-examination of the current expansion data available in different laboratories.
This remains a theoretical goal in the field.

6.4 Concluding Thoughts

The easy to use diagnosis of time-of-flight expansion and absorption imaging turns out
not to be a qualitative tool for distinction between superfluid and normal gases in the
strongly-interacting regime. However, if the collisional hydrodynamics contribution could be
discarded by working away from Feshbach resonances and thus lowering the collisional cross-
section, then hydrodynamic behavior could be unambiguously interpreted as a signature of
superfluidity. However, as Section 3.5 discusses, the low temperatures that would then be
required are way beyond current experimental possibilities.

The last section alluded to the theoretical goal of obtaining a full description of the
collisional expansion of a normal gas in order to find quantitative differences from the
behavior of a superfluid. This approach also requires a full understanding of the expansion
of a superfluid. If for example, the pairing only takes place near the Fermi surface, then
the whole system may not behave hydrodynamically, thus negating the approach of [115]
and modifying the hydrodynamic predictions for superfluids. These are hard questions
for the theoretical community to resolve. The experimentalists have moved on to explore
other possible signatures for fermionic superfluidity, such as those involving radio-frequency
techniques (next chapter).

Hydrodynamic behavior also manifests itself in the shift of collective oscillation frequen-
cies [120, 116, 118]. This can also be used to measure the transition from collisionless to
hydrodynamic behavior [121]. This is of course a more difficult measurement than free
expansion. However, Pauli blocking is important in the trap. Evidence of in-trap hydrody-
namic behavior at ultra-low degeneracy may therefore indeed be proof of superfluidity. At
least one experimental group is currently pursuing such experiments [122].
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Chapter 7

RF Spectroscopy of Ultracold

Fermions

This chapter focuses on the experiments reported in the following publication:

• S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck,
E.G.M. van Kempen, B.J. Verhaar and W. Ketterle, “RF Spectroscopy of Ultracold
Fermions” Science 300, 1723 (2003) [5]. Included in Appendix E.

Radio-frequency(RF) spectroscopy has been a valuable tool for atomic physicists for
several decades since Fermi and Rasetti introduced it in 1925 [123]. The technology to
produce and manipulate these frequencies is now standard (Chapter 4).

The extension of RF spectroscopy to ultracold fermions (Boulder - 40K [117], MIT -
6Li [5]) was motivated by the possibility of studying the strong interactions near Feshbach
resonances with the sensitivity and ease of RF methods. In addition to being sensitive to
interactions in normal Fermi gases, RF probes may also be able to detect the superfluid
phase [124, 125, 126].

Using RF methods, we observed a number of effects in ultracold Fermi gases which are
described in this chapter:

(1) In the s-wave regime, an RF transition in spin-polarized fermions is unshifted in
frequency from the single particle resonance. Our observation of this effect verifies this
simple yet startling hypothesis and also opens the door for future atomic clocks based on
fermions. The current standard based on bosons is limited by interaction “clock” shifts. We
have also demonstrated the absence of interaction shifts in a two-spin mixture of fermions
[7, 12].

(2) Interactions between fermions can be measured by forming a statistical mixture of
two spin states and then driving transitions to a third state. Using a mixture of the two
lowest hyperfine states and driving transitions from the second to the third hyperfine state,
we were able to map out interactions in 6Li as a function of magnetic field.
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(3) At ultracold temperatures (kR � 1), these interactions are proportional to the s-
wave scattering length a, for small a. At an s-wave Feshbach resonance, where a diverges,
we leave the dilute gas approximation. Using RF methods we observed saturating of the
interaction energy at a large negative value regardless of the sign of the two-particle scat-
tering length a. Although this result is not yet fully understood, it is consistent with some
many-body theory predictions in the ka � 1, kR � 1 regime (section 3.3) [83, 84, 85]).

7.1 Clock Shifts

Atomic clocks are based on the notion that the energy difference between eigenstates of
isolated atoms are a constant of nature. The unit of time is then defined from the energy
(frequency) difference between any two atomic eigenstates. In practice, two states are
chosen whose energy difference is amenable to easy measurement with the least amount
of perturbation from external sources. Perturbations can change the atomic resonance
frequency resulting in a “clock shift”. Researchers have now studied the systematics of such
measurements to levels which allow probing of changes of fundamental constants, such as
the fine structure constant α, which determines the separations between energy eigenstates
[71].

Since 1967, the SI unit of time, the second, has been based on defining the ground-state
hyperfine transition in 133Cs to be 9 192 631 770Hz. Currently, the best realization of the
second is via Ramsey spectroscopy of this transition in laser cooled atomic fountains [71].
Laser cooled atoms are launched upwards and interact with a microwave field twice - once
on its way up and once on its way down. This microwave field (∼ 9GHz) is generated
by an external oscillator, like a quartz crystal1. This setup is analogous to the separated
oscillatory fields of the Ramsey method [127, 128, 129]. The atoms are detected after the two
interactions and the fractional populations in each state exhibit the usual Ramsey fringes
as a function of microwave detuning. An error signal generated from these fringes is then
fed back to the quartz crystal. The macroscopic oscillator (crystal) is thus locked to the
microscopic oscillators (atoms). The crystal can now provide a standard of time based on
an atomic transition.

Laser cooled clouds are of course composed of a large number of particles, rendering
the isolated atom assumption flawed. Current experiments are sensitive to the mean field
interaction arising from coherent collisions between atoms in the cloud. In fact, the mean
field clock shift is the limiting systematic in current atomic clocks [130, 71]. Consider a
bosonic atom with the hyperfine ground states |1〉 and |2〉. At ultracold temperatures, only
s-wave interactions are allowed. Let the s-wave scattering lengths be a11, a12 and a22.
Adopting the usual convention that positive scattering length a corresponds to a repulsive
two-particle interaction, for a gas of |1〉 atoms at density n, the mean field shift of the

1more recently sapphire cryogenic oscillators are the external oscillators of choice.
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transition is given by

∆νB =
2�
m

n(a12 − a11). (7.1)

S-wave interactions between atoms are in effect during the coherent drive to transfer state
|1〉 to state |2〉. For a perturbative drive, we can neglect the density in state |2〉. Every
atom transferred therefore needs an additional energy given by the difference in mean field
energy of a state |2〉 atom in a bath of state |1〉 and a state |1〉 atom in a bath of state |1〉,
as described by Eqn.7.1.

1

2

νB = ν12 + ∆νB

Bosons
1

2

νF = ν12

Fermions

(a) (b)

Figure 7-1: The difference in the clock shift for Bose and Fermi atoms. (a) In bosons, the
s-wave interaction between identical particles shifts the initial and final states connected by
the RF unequally. (b) In fermions, s-wave interactions cannot take place between identical
particles and an RF drive then connects two states which have the same energy difference
as in an isolated atom.

S-wave interactions are absent in spin-polarized fermions. A spin-polarized fermionic
gas remains spin-polarized during a coherent drive and therefore no interactions take place
between atoms. This results in an absence of the clock shift for ultracold fermions, ∆νF = 0.
A schematic of this difference between the two types of fundamental particles is shown in
Fig.7-1.

The error from the clock shift for bosons is at the level of 10−16 in current cesium clocks
[71, 130], constituting the dominant systematic. Experiments with rubidium have a much
lower contribution - ∼ 50 times less [130, 71]. Efforts are underway to determine the overall
feasibility of rubidium atomic clocks.

Gibble and Verhaar have pointed out the use of fermion clocks to suppress the mean-field
shift problem [131]. The experiment described in the following subsection constitutes the
first observation of this feature of fermions - the absence of the clock shift in a spin-polarized
gas.
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7.1.1 Absence of the Clock Shift in Fermions

For ease of applying RF methods, a transition must be chosen that is relatively insensitive to
fluctuations of the magnetic field. For alkali bosons, the popular choice is the (appropriately
named) “clock” transition |I−1/2, 0〉 → |I+1/2, 0〉, in the ground state hyperfine manifold,
at near zero bias fields. The clock transition is first order magnetic field insensitive and
therefore less prone to systematics from magnetic field fluctuations both in space and in
time2.

For alkali fermions, since I is always an integer, the state |F, 0〉 does not exist. However,
one can find first order field independent transitions. For example, in 6Li, the transition
|1/2,−1/2〉 → |3/2,+1/2〉 is first order field independent at low fields (Fig. 4-8). However,
for this particular case, the two states are not stable against spin-exchange, and would
not be a practical system at high density. At large enough magnetic fields (above I.J
decoupling), the electron spin dominates the splitting and the sublevels due to the nuclear
spin are essentially parallel to each other within each electron spin level 3 (fig.4-8). We used
the |1〉 → |2〉 transition at high field (see Chapter 4 for the magnetic field sensitivity of this
transition). As argued in chapter 5, this is also a stable combination of states.

1

2

∆ν12 > 0

|1> --> |2>
1

2

∆ν12 < 0

|1> --> |2>

(a) (b)

Figure 7-2: Shift in equilibrium energy in a 2-level Fermi system for (a) all the atoms in
state |1〉 (b) all the atoms in state |2〉.

For bosons, the clock shift is usually determined by extracting the microwave frequency
from the Ramsey fringes as a function of density [71]. Since this is linear in the density

2other options include the |I−1/2, I−1/2〉 → |I+1/2, I−1/2〉 transition in ground state alkalis. Though
this is first order field insensitive, it is formally unstable against spin-exchange, the notable exception being
87Rb [132, 133, 134].

3The Zeeman energy levels deviate from their simple linear form due to I.J decoupling which gives rise
to the “Back-Goudsmit” linear levels at moderately high fields. These persist upto L.S decoupling, which
in turn gives rise to the linear “Paschen-Back” levels at even higher fields.
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(Eq. 7.1), the intercept of a straight line fit gives the unshifted value. The error bar on the
slope then includes the error contribution from cold collisions.

Our approach to demonstrate the absence of the clock shift was based on measuring the
resonance frequency of the |1〉 − |2〉 system using a single oscillatory field (Rabi technique
[135]). This technique is in general less sensitive than the two-pulse Ramsey method [127]
but is quite adequate for our purpose. Varying the density of one of the states and measuring
the (lack of) change in the transition frequency to the other state is a rather cumbersome
task. We instead compared the transition frequency of the |1〉 → |2〉 transition and the |2〉 →
|1〉 transition on identical pure state samples of |1〉 and |2〉 respectively. The expectation
from assuming that the frequency is shifted by the equilibrium energies (for a perturbative
transfer) is shown in Fig.7-2. For any finite scattering length a12, equilibrium energies of
the transferred atoms shift in the same direction (higher for positive scattering length).
The spectra thus might be expected to shift in opposite directions. Our measurement then
determines a suppression of this effect from the (small) difference in the two Rabi spectra.

Fig. 7-3(a) shows the Rabi spectra taken for the |1〉 → |2〉 and |2〉 → |1〉 transitions
at 570G. The pulse length used was 140µs and dominates the broadening of the spectra.
The scattering length a12 at this field is ∼ 150 a0. The measurements were performed at
a density of 3 × 1013 cm−3. The equilibrium energy shifts are ±5 kHz in this case. The
Gaussian fits are separated by 0.04± 0.35 kHz. The deduced suppression is then ≈ 30.
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Figure 7-3: Absence of the clock shift in fermions. RF transitions were driven between
states |1〉 and |2〉 on a system prepared purely in state |1〉 (filled circles), and purely in state
|2〉 (open circles). (a) Experiment at 570G. Mean-field interactions would result in 5 kHz
shifts for the two curves in opposite directions. Gaussian fits (solid lines) to the data are
separated by 0.04± 0.35 kHz. This gives a clock shift suppression factor of 30. (b) Absence
of clock shift at 860G with three orders of magnitude suppression. The pulse length used
is 1msec which is responsible for the much narrower width than in (a). The magnetic field
sensitivity ∂ν/∂B is 0.5 kHz/G about 10 times lower than at 500G, allowing the application
of longer pulses and the correspondingly smaller widths.
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Fig. 7-3(b) shows the suppression of the clock shift in a regime of unitary-limited inter-
actions - 860G, near the divergence of the bare scattering length [106]. In this unitarity
limited interaction regime, one cannot use the bare scattering length a12 to estimate the
interaction energy, as will be shown later. However, we can estimate the equilibrium en-
ergy from expansion measurements. Using the measurements of [111], and scaling to our
parameters, we arrive at a suppression factor of more than three orders of magnitude.

For bosons, the intercept of the shift vs density line provides the clock transition fre-
quency. Additionally, the slope of this line gives a relation for the scattering lengths in the
system (Eq. 7.1). Such a measurement is of course impossible for fermions with coherent
drives on a pure state. Since, our initial reason to pursue RF spectroscopy of fermions was
the measurement of interactions (scattering lengths), we had to come up with a different
system.

Our solution was to use a 3-level system (Fig. 7-4). After forming a superposition state
and waiting for it to decohere (next section), the equilibrium energy levels are as shown in
Fig. 7-4. Transitions to a third level are then independent of the |2〉 − |3〉 scattering length
a23 (absence of clock shift out of a pure state) and are only by the interactions of state |1〉
with states |2〉 and |3〉 (a12 and a13):

∆ν =
2�
m

n1(a13 − a12) (7.2)

1

2

∆ν = ∆ν13 - ∆ν12

3

Figure 7-4: The RF resonance is sensitive to mean field shifts in a 3-level system. The
diagram shows the case for positive a12 and a13 with a13 > a12.
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Since the shift in this resonance takes place over a finite time, the decoherence time,
probing the |2〉 → |3〉 transition at varying times also provides a way to measure the
decoherence time of our system.

7.2 Emergence of Mean Field Shifts in a Fermi System

The evolution of a superposition state into a statistical mixture has been the subject of
numerous discussions involving topics ranging from NMR to error correction in quantum
computation. The understanding of the mechanisms of decoherence presents another av-
enue of research with degenerate fermions. In this section, I will first discuss the decohering
mechanisms in our system. Next, I will present an experiment which measured this deco-
herence time using RF methods.
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Figure 7-5: Decoherence rate due to inhomogeneous magnetic fields. Plot of B × ∂ν12/∂B.
The maximum of B × ∂ν12/∂B is at ∼ 57.46G.

7.2.1 Decoherence in our system

Since spin-polarized ultracold fermions are very near the epitome of a non-interacting sys-
tem, all decohering mechanisms must be related to single atom effects. These would then
include any spatial variations of the energy difference of the two spin components across the
phase space experienced by the particles. Other effects might be collisions with background
gas particles or interactions with ambient photons. Without going into detailed study of all
these effects, we can with some confidence say that the most relevant mechanism is magnetic
field inhomogeneity. The finite sensitivity of the transition to magnetic field quantified by
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∂ν
∂B acts together with the imperfections of the magnetic field (which scales with B, for stan-
dard power supplies energizing the magnetic field coils). The product ∂ν

∂B × B is then the
quantity which determines the decoherence time. A plot of this quantity for the |1〉 → |2〉
transition is shown in fig.7-5.

This has to be contrasted with the case of ultracold bosons where s-wave interactions do
take place at all temperatures. This means that mean field is an additional contribution to
decoherence. A remarkable experiment in Eric Cornell’s group at JILA actually uses these
two effects to cancel each other and increase the coherence time in a bosonic system [134].

There may be additional effects coming in once partial decoherence has already occurred.
For example, elastic collisions do start to occur once any degree of non-orthogonality exists
in a system. The level of decoherence from these elastic collisions is still not fully understood.
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Figure 7-6: Emergence of mean field shifts due to decoherence at 500G. Decoherence leads
to a reduction of the |2〉 → |3〉 transfer at the unperturbed resonance ν23. An exponential
fit to the data (solid line) gives the time constant of 12ms.

We measured the decoherence time of our |1〉 − |2〉 system by driving the transition
|2〉 → |3〉 (see fig.7-4) at varying times after creating a superposition state of |1〉 and
|2〉. For a pure superposition state, the resonance occurs at the unperturbed frequency
νcoh = ν23. For a fully decohered state, the resonance is shifted by ∆ν (Eq. 7.2), i.e.,
νdecoh = ν23 +∆ν = ν23 + 2�

mn1(a13 − a12). For a finite ∆ν and a broadening dominated by
trap inhomogeneity, the transfer at ν23 decays in time. We measured the transfer fraction
as a function of time at 500G and fit an exponential curve (Fig.7-6). We did not study the
evolution dynamics from the pure superposition to the statistical mixture. 4. Therefore our
choice of the exponential curve may not be accurate.

We also measured longer decoherence times at higher fields (∼ 800G), in agreement
with the expectation from fig. 7-5. In principle, the decoherence times can be arbitrarily
extended by tuning the field variation across the sample. A perfectly flat bias field would

4this could form the subject of a future project!
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give rise to extremely long decoherence times. Our field curvature produces ∼ 2Hz trapping
frequency at 500G.

7.3 RF Spectroscopy of a 3-level system

Our experimental scheme to measure the interactions given by Eq.7.2 is shown in Fig.7-7.
The main idea is to measure ∆ν. This can be obtained from the difference in the |2〉 → |3〉
spectrum of the pure |2〉 state and a statistical mixture of |1〉 and |2〉 and the knowledge of
the |1〉 density n1.
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Figure 7-7: (a) Hyperfine structure of the ground state of 6Li. (b and c) Experimental
scheme: (b) preparation of a mixture of atoms in states |1〉 and |2〉, and (c) RF spectroscopy
of the |2〉 → |3〉 transition.

Starting from the pure state |1〉 at low field in the ODT, we first ramped up the field
to 500G in a few ms. Here, the choice of state was made. By applying a slow, adiabatic
Landau-Zener frequency sweep, a pure state |2〉 sample was created. By applying a fast, non-
adiabatic sweep and letting the superposition decohere in 200ms (� 12ms), the statistical
mixture was prepared. The Rabi technique was used with pulses of 140µs duration. Typical
parameters for the decohered |1〉− |2〉 mixture were mean-density n1 ∼ 2.4×1013 cm−3 and
temperature T ∼ 0.7TF . Here the mean density is lower than the peak density by 2

√
2 for

our modest degeneracy, where the Gaussian approximation can be used.
Using the triple imaging technique described in Chapter 4, we monitored the appearance

of atoms in state |3〉 and the disappearance of atoms in state |2〉. Recording state |1〉
provided the required density n1. Using the separation ∆ν of the two spectra for the
transferred fraction N3

N2+N3
and n1 for normalization, (a13 − a12) can be determined from

Eq. 7.2. A typical spectrum (at 480G) is shown in Fig.,7-8. In addition to the easily resolved
separation of the two peaks (∼ 16 kHz), the spectra also show considerable difference in
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Figure 7-8: (a) Fraction of atoms transferred from |2〉 to |3〉, with |1〉 atoms absent (filled
circles), and present (open circles). The mean-field shift is computed from gaussian fits to
the data (solid lines). (b) Spatial images of state |3〉 for the perturbed resonance. The
optical trap was turned off immediately after the RF pulse and absorption images of the
atoms were taken after 120µs expansion time. The central section of ∼ 150µm vertical
extent was used to extract the transferred fractions in (a). (b) also shows images of states
|2〉 and |1〉 for zero RF detuning. States |3〉 and |2〉 were imaged simultaneously to observe
their complementary spatial structure. State |1〉 was imaged after 760µs expansion time to
record its density for normalization purposes.

their widths. For the pure state transfer (filled circles), the broadening is dominated by
the pulse width. For the incoherent mixture (open circles), the width is dominated by the
inhomogeneous density distribution according to Eq. 7.2. The measured ∆ν for a wide range
of magnetic fields 300− 750G, are shown in Fig. 7-9(a).

We compared our measurements with calculations from the Eindhoven group (Fig. 7-
9)(b). The calculated scattering lengths and the measured density were used to compute
the theoretical curve for ∆ν as a function of magnetic field. We see that there is good
agreement at low fields. The RF method is sensitive to the narrow Feshbach resonance at
545G and the sign change in Eq.7.2 at ∼ 600G. Although the data tracks this theory quite
well for fields below 630G, substantial deviations occur near the wide Feshbach resonances
at 680G (a13) and 810G (a12).
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Figure 7-9: Spectroscopic measurement of interaction energy. (a) Frequency shift vs. mag-
netic field of the |2〉 → |3〉 resonance due to atoms in state |1〉. The shifts are computed
by monitoring the arrival fraction in state |3〉 for 140µs RF pulses, except at 750G. Here,
because of strong inelastic losses between |3〉 and |1〉 atoms, we monitored the loss of atoms
in state |2〉 after applying RF sweeps of 3ms duration and 2 kHz width. All the data points
are normalized to the same atom number in state |1〉. The fit at low fields (solid line) uses
Eq. 7.2 with n1 = 2.2× 1013 cm−3 and the theoretical calculations of the scattering lengths.
The error bars reflect uncertainty in the state |1〉 atom number, and the uncertainty in the
gaussian fits to the spectra. The dashed line indicates the position of the predicted a13
resonance. (b) s-wave Feshbach resonances in a12 and a13. s-wave scattering lengths a12
and a13 as a function of magnetic field, obtained from a highly model-independent quantum
scattering calculation. The calculation makes use of the presently available 6Li experimental
data [136] in a coupled channel approach to deduce accumulated phases that characterize
the less well-known short range parts of the 6Li + 6Li scattering potential [137]. a12 has
a narrow Feshbach resonance at 550G and a wide one at 810G. a13 has a wide Feshbach
resonance at 680G.

7.4 Observations of Unitary and Universal Behavior

The Feshbach resonances in a12 and a13 are wide and overlap substantially. This distin-
guishes it from the 40K system where the Feshbach resonances are narrow and well separated
[109, 117]. Even though the width is in some sense forgiving - one does not need to have
great magnetic field stability to be in the vicinity of the resonance, the overlap of different
resonances makes understanding the 3-level RF spectra more complicated.

As can be seen in Fig.7-9(a), the shifts for fields up to ∼ 630G lie in agreement with the
expectation from Eq.7.2. Above this field, there is a noticeable deviation from this simple
prediction. This is because the two assumptions of dilute gas mean field theory: ka � 1,
na3 � 1 start to break down. The broad structure of the Feshbach resonances allows us to
see the unitary behavior over large magnetic field ranges.

102



The description of quantum mechanical unitarity in Chapter 6 helps us see some of this
deviation. The mean field, proportional to Re(f) reaches a maximum near 1/kF and then
starts to decrease gently. This means, that the shifts can never diverge like the scattering
length does. Once both interactions a12 and a13 are unitarity limited, they have the same
magnitude. This implies that they should cancel each other giving near zero spectroscopic
shifts when they are of the same sign. This explanation works below 680G where a13

diverges. However between 680G and 810G, a13 and a12 are large and of opposite sign and
should then produce a large negative shift. However, we observe close to zero shifts in this
region as well.

The explanation of this puzzle may lie in our having left the low density limit and entered
a regime where higher order many-body effects can become important. Some recent many-
body calculations [83, 84, 85] do indeed suggest a universality of interaction energy in the
unitarity limit, making the “mean field” independent of the sign of the bare two-particle
interaction. This is a possible explanation of what we see and is consistent with other
measurements in highly interacting Fermi systems - both by expansion energy measurements
[138, 106, 111] and by RF spectroscopy methods [117]. The fact that these theories predict
a universal negative (attractive) sign of the interaction is of course good news from the point
of view of achieving superfluidity in these strongly interacting systems.

7.5 Outlook

The use of RF methods to study ultracold fermions has generated considerable excitement
in the field. In addition to RF spectroscopy [117, 5], RF photodissociation has also been
used to detect molecules formed out of a mixture of ultracold fermions [139]. The RF tool
remains the best way to tailor the spin composition, an important component en route to
superfluidity. Finally, the proposals of Zoller et. al. [125, 126] to use Raman methods
to couple the superfluid and normal states can be modified to RF methods and remains a
possible method to detect the superfluid fraction.
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Chapter 8

Conclusions and Outlook

Two sets of experimental studies were reported in this thesis. The first involved the de-
velopment of a new atom interferometer scheme which shows promise for high accuracy
metrology using Bose-Einstein condensed gases. The second involved the production and
exploration of a strongly interacting Fermi gas mixture which is predicted to undergo a
superfluid phase transition under current experimental conditions.

We have demonstrated an atom interferometer using optical standing wave diffraction
gratings which has several desirable features for a high precision measurement of the pho-
ton recoil frequency ωrec [1]. ωrec can be used in conjunction with other measurements to
determine the fine structure constant α, a fundamental constant of physics. Our prelim-
inary result for ωrec,Na at 7 × 10−6 precision obtained using a 23Na BEC and horizontal
standing waves deviates from the currently accepted value at the 2 × 10−4 level. We be-
lieve that this deviation arises from the mean-field interaction between atoms. A future
measurement would involve converting to an atomic fountain setup with vertical standing
waves to increase the interaction times in the interferometer. The precision in such a ge-
ometry should approach ppb values. The mean-field systematic should be suppressible to
this level using very low density BECs[74]. We hope to obtain a � 1 ppb value for ωrec in
a second generation experiment in which BECs are created elsewhere and transported into
the interferometer[140].

We have upgraded our 23Na BEC machine with the capability to cool and trap 6Li
fermions. By cooling 6Li sympathetically with 23Na in a magnetic trap, we can produce
quantum degenerate Bose-Fermi mixtures as well as very large and deeply degenerate Fermi
gases. Optimization of our sympathetic cooling strategy has established a (currently) un-
matched system performance in terms of atom number (both in the mixture and pure
fermion operation) as well as degeneracy of pure fermions (0.05TF ) [6]. Degenerate Bose-
Fermi mixtures promise to be fertile research ground [141, 142]. We have however concen-
trated on studying the degenerate Fermi gas in a strongly interacting regime.

Using the variation of interaction strength offered by magnetically-tunable Feshbach
scattering resonances, we have explored physical regimes in which a new type of BCS su-
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perfluid is predicted to form [99, 100, 108] at modest degeneracies (high Tc) of ∼ 0.5TF . The
creation of this fermionic superfluid would establish a model system for studying superfluid
phenomena at densities which are a billion times lower than in previous realizations in 3He
and superconductors.

Since suitable Feshbach resonances in 6Li only exist in spin states that cannot be mag-
netically trapped, we transfer our degenerate gas into an optical trap. By monitoring the
magnetic field dependent stability of a two-spin mixture of 6Li fermions, we have located
two s-wave Feshbach resonances [4]. The measured stability in the strongly interacting
regime is encouraging for the prospects of creating the superfluid state in 6Li.

In the vicinity of Feshbach resonances, several groups [86, 117, 111] including us (un-
published) have observed strong hydrodynamic behavior in a fermion spin mixture during
expansion out of an asymmetric trap. The possible interpretation of this behavior as a
signature of superfluidity (as in the case of BEC) has been considered [115, 86]. However,
classical collision processes can also give rise to such behavior, mitigated only by the Pauli
suppression of collisions at low temperatures. By examining the deformation of the Fermi
surface during expansion out of anisotropic traps, we theoretically analyzed the collisional
behavior of an expanding, zero-temperature gas[8]. Our calculations indicate that unlike
in the case of a BEC, hydrodynamic expansion of Fermi gases near Feshbach resonances
cannot be a dramatic, qualitative signal for the existence of the superfluid state, regardless
of the temperature of the gas.

Another proposed method to detect the BCS state is to monitor shifts of resonances
between atomic internal states due to the presence of the superfluid [125, 126] (corresponding
to a pair-breaking energy). Our efforts in this direction (and those at JILA[117]) using radio-
frequency (RF) transitions betweens 6Li (40K) spin states have not (yet) observed such a
shift. However, we have measured shifts in RF transitions due to interactions between
different spin states in a three-state system. Our measurements indicate a saturation of the
interaction energy near Feshbach resonances which has a negative sign regardless of the sign
of the bare (two-particle) interaction. Although this is consistent with other measurements
[111], there is no clear agreement on the mechanism which would cause such behavior.
While some many-body theorists predict a universally negative interaction parameter in
the strongly interacting s-wave regime (n|a|3 � 1, nR3 � 1) of current experiments, others
propose an explanation based on molecule formation [111, 143]. Using RF techniques we
also observed the absence of interaction shifts in two-state fermion systems [5, 7]. This is
encouraging for the prospects of using fermions in future atomic clocks. The use of the RF
tool to observe a fermionic superfluid remains on our experimental agenda.

The experimental observation of fermionic superfluidity is currently the foremost goal in
our research group. For a robust observation and characterization of the superfluid state, a
relatively direct and easy-to-implement experimental diagnostic would be ideal. For BEC’s
time-of-flight expansion serves such a purpose. As indicated above, in the current regime
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of experiments, such a diagnostic cannot be a qualitative tool. On the other hand, RF
diagnostics still appears promising.

A new direction currently being followed by some groups involves the creation of molecules
from a two-spin Fermi gas by adiabatically varying the magnetic field across a Feshbach res-
onance [139, 143, 144]. Trapped, long-lived (upto 10 s [144]) molecules have been created in
this way [143, 144]. These molecules could undergo Bose-Einstein condensation if they are
cooled to below the critical temperature. The production of such a molecular BEC would
alone be an achievement of considerable scientific significance. Additionally, the molecular
BEC could cross-over into a BCS state [145] by a further tuning of the interaction with the
magnetic field.

It seems quite safe to predict that the observation of fermionic superfluidity in dilute
gases will cause an explosion of interest and activity in the field as in the case of bosonic
superfluidity (1995 onwards). The range of new and exciting physics that the creation of
such a system will produce is difficult to overestimate. An important theme will be the
understanding of the behavior of other Fermi systems such as high Tc superconductors.
Probably the most interesting studies will be the ones that we cannot predict at this point.
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Appendix A

Contrast Interferometry using

Bose-Einstein Condensates to

Measure h/m and α

This appendix includes the following paper [1]: S. Gupta, K. Dieckmann, Z. Hadzibabic,
and D.E. Pritchard, “Contrast Interferometry using Bose-Einstein Condensates to Measure
h/m and α”, Phys. Rev. Lett. 89, 140401 (2002).
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Contrast Interferometry using Bose-Einstein Condensates to Measureh=m and�

S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge,

Massachusetts 02139
(Received 19 February 2002; published 10 September 2002)

The kinetic energy of an atom recoiling due to absorption of a photon was measured as a frequency,
using an interferometric technique called ‘‘contrast interferometry.’’ Optical standing wave pulses were
used to create a symmetric three-path interferometer with a Bose-Einstein condensate. Its recoil phase,
measurable with a single shot, varies quadratically with additional recoils and is insensitive to errors
from vibrations and ac Stark shifts. We have measured the photon recoil frequency of sodium to 7 ppm
precision, using a simple realization of this scheme. Plausible extensions should yield sufficient
precision to attain a ppb-level determination ofh=m and the fine structure constant�.

DOI: 10.1103/PhysRevLett.89.140401 PACS numbers: 03.75.Dg, 03.75.Fi, 06.20.Jr, 39.20.+q

Comparison of accurate measurements of the fine
structure constant� in different subfields of physics
offers one of the few checks for global errors across these
different subfields. The�g�2� measurement for the elec-
tron and positron, together with QED calculations, pro-
vides a 4 ppb measurement of� [1,2]. This has stood as
the best measurement of the fine structure constant since
1987. The second most accurate published value of�, at
24 ppb, comes from condensed matter experiments [3].
This is worse by a factor of 6, limiting the scientific value
of cross-field comparisons. A new and more robust route
based on atomic physics measurements has emerged in
the past decade [4]:
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The Rydberg constantR1 is known to 0.008 ppb [5,6]
and the electron massMe to 0.7 ppb [7].M andm are the
mass of some test particle in atomic and SI units, respec-
tively. Equation (1) offers the possibility of a ppb-level
measurement of� if M and h=m can be determined
accurately.

h=m can be measured by comparing the de Broglie
wavelength and velocity of a particle, as demonstrated by
Krüger, whose measurement using neutrons has yielded a
73 ppb value forh=mn [8]. For an atom,h=m can be
extracted from a measurement of the photon recoil fre-
quency,

!rec � 1

2

�h
m
k2; (2)

wherek is the wave vector of the photon absorbed by the
atom. Recent experiments allow Eqs. (1) and (2) to be
applied to cesium.MCs is known to 0.17 ppb[9] andkCs to
0.12 ppb [10].!rec;Cs has been measured at Stanford using
an atom interferometer based on laser-cooled atoms to
6 ppb [11–13]. Similar experiments are also possible with
alkali atoms such as sodium and rubidium, whereM has
been measured [9] andk is accurately accessible [10].

In this Letter, we demonstrate a new atom interferom-
eter scheme which shows promise for a high precision
measurement of!rec. Our symmetric three-path configu-
ration encodes the photon recoil phase in thecontrastof
the interference fringes, rather than in theirphase.
Because it is insensitive to the fringe phase, the method
is not sensitive to vibrations, accelerations, or rotations.
The symmetry also suppresses errors from magnetic field
gradients, and our use of only one internal state sup-
presses errors arising from differences in the ac Stark
shifts between different internal states. A crucial aspect
of this new interferometer is the use of atomic samples
with subrecoil momentum distribution. We use a Bose-
Einstein condensate (BEC) as a bright subrecoil atom
source. This allows the contrast oscillations to persist
for many cycles, permitting precise determination of
the recoil phase in a single ‘‘shot.’’ This also allows for
extra photon recoils to be added within the interferom-
eter, increasing the recoil phase shift and, hence, the
measurement precision quadratically.

The Stanford scheme to measure!rec uses different
internal states to separately address different interferom-
eter paths, allowing a linear increase of measurement
precision by additional photon recoils. However, vibra-
tions and ac Stark shifts have been of great concern in this
scheme [12]. An alternative interferometer to measure the
photon recoil using laser-cooled atoms in a single internal
state was demonstrated using rubidium atoms [14]. Like
ours, this scheme also incorporates a symmetric arrange-
ment and operates by measuring contrast. This interfer-
ometer should also suppress vibration noise and
systematics arising from ac Stark shifts between different
internal states. However, different paths cannot be indi-
vidually addressed in this scheme, making it difficult to
extend to competitive precision. Our interferometer ex-
tends these previous schemes and combines their advan-
tages. The precision of the Stanford scheme increases
linearly with additional recoils. Quadratic scaling
schemes have been proposed [15] and demonstrated in a
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multipath interferometer based on dark states [16].
However, the number of additional recoils in this scheme
is limited by the internal atomic structure.

Our scheme is based on the asymmetric interferometer
of Fig. 1(a). At time t�0 a BEC is split coherently into
two momentum components, j2 �hki and j0 �hki, by a first
order Bragg �=2 pulse [17]. These are shown as paths 1
and 2 in the figure. At time t�T, a second order Bragg �
pulse reverses the direction of path 1, while leaving path 2
unaffected. Around t�2T, a moving matter wave gra-
ting, with spatial periodicity �=2 (wave vector 2k � 2�

�=2 ),
is formed due to the overlap and interference of the two
paths. The phase of this grating at 2T is determined by the
relative phase 
1 �
2 � 8!recT, accumulated between
paths 1 and 2 due to the difference in their kinetic
energies. A measurement of this phase for different values
of T will then determine !rec. If the momentum of path 1
is increased N times by additional photon recoils, the
corresponding grating phase will be 
1 �
2 �
N28!recT, leading to an N2-fold improvement in the
measurement precision. The fringes of all atoms will be
in phase at 2T, forming a high-contrast matter wave
grating. This dephases in a time 1

k�v , the coherence
time, where �v is the atomic velocity spread.

Extension of this interferometer to a symmetric three-
path arrangement is shown in Fig. 1(b). Three momentum
states (paths 1, 2, and 3) are generated by replacing the
first Bragg pulse with a short Kapitza-Dirac pulse [17]. At
t�2T, there are now two matter wave gratings with
period �=2, one from paths 1 and 2, and one from paths
2 and 3. These move in opposite directions at a relative
speed 4 �hk=m. If the maxima of the two gratings line up to
produce large contrast at time t, the maxima of one will
line up with the minima of the other at t� �=4!rec, to
produce zero contrast. This results in an oscillatory
growth and decay of the contrast of the overall pattern

with time. The recoil induced phase can be determined
from this temporally oscillating contrast.

The time evolution of this contrast can be monitored by
continuously reflecting a weak probe beam from the
grating (the additional grating formed by paths 1 and 3
has period �=4, which does not reflect the probe beam).
The reflected signal can be written as

S�T; t� � C�T; t� sin2
�

1�t� �
3�t�

2
�
2�t�

�

� C�T; t� sin2	8!recT � 4!rec�t� 2T�
; (3)

where C�T; t� is an envelope function whose width is the
grating coherence time, 1

k�v . This motivated our use of a
BEC atom source. This allowed many contrast oscilla-
tions in a single shot. Using the phase of the reflection at
t�2T, 
�T� � 8!recT, !rec can be determined by vary-
ing T. Vibrational phase shifts and the effect of magnetic
bias fields and gradients cancel in the evaluation of

1�t��
3�t�

2 �
2�t�, due to the symmetry of our scheme.
In this experiment, we realized the scheme of Fig. 1(b)

and measured !rec;Na to 7 ppm precision. We also demon-
strated the insensitivity of the contrast signal to vibra-
tions and the N2 scaling of the recoil phase.

We used sodium BECs containing a few million atoms
in the jF�1; mF� � 1i state as our atom source. The
light pulses were applied �15 ms after releasing the
BEC from a weak magnetic trap. This lowered the peak
density to about 1013 cm�3, thus preventing superra-
diance effects [18] and reducing frequency shifts from
mean field interactions. Two horizontal counterpropagat-
ing (to �1 mrad) laser beams were used for the diffrac-
tion gratings. The light for the gratings was red-detuned
by 1.8 GHz from the sodium D2 line. Rapid switching ( <
100 ns) and intensity control of the light pulses was done
by an acousto-optic modulator (AOM) common to the
two beams. The phase and frequency of each beam were
controlled by two additional AOMs, driven by two phase-
locked frequency synthesizers.

The interferometer pulse sequence was started with a
1 �s, square Kapitza-Dirac pulse, centered at t�0. We
adjusted the beam intensity, to put �25% of the conden-
sate in each of the j
2 �hki diffracted orders. This choice
yielded the best final contrast signal. The second order
Bragg pulse was centered at t�T and was close to
Gaussian shaped, with a width of 7:6 �s. The intensity
was chosen to effect a � pulse between the j
2 �hki
states. The smooth pulse shape reduced the off-resonant
population of undesired momentum states, yielding a
transfer efficiency of >90%. The third pulse, used for
reading out the contrast signal, was centered at t�2T and
was typically 50 �s long. One of the Bragg beams was
used as the readout beam while the other was blocked.

The light reflected from the atoms was separated from
the readout beam path using a beam splitter and directed
by an imaging lens onto a photomultiplier. A typical

FIG. 1. Space-time representation of the contrast interferom-
eter. (a) A simple two-path interferometer sensitive to the
photon recoil phase. The 2k matter wave grating is shown at
2T and at 2T � �=4!rec. The extension to the three-path
geometry is shown in (b). The overall 2k grating has large
contrast at 2T and zero contrast at 2T � �=4!rec.
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interferometer signal is shown in Fig. 2. We observed the
expected contrast oscillations at frequency 8!rec, corre-
sponding to a 5 �s period for sodium. We obtained the
recoil phase 
�T� from the contrast signal by fitting to a
sinusoidal function as in Eq. (3).

The signal also contained a small pedestal of similar
width as the envelope. This consists of a constant offset
from residual background light and a smoothly varying
contribution from a small asymmetry between the j 

2 �hki amplitudes of <5%. This asymmetry creates a non-
oscillating component of the 2k matter wave grating
which decays with the same coherence time. The uncer-
tainty of the fitted phase is about 10 mrad, even if we
neglect the envelope function, and assume a constant
amplitude extended over a few central fringes. Similar
uncertainty was obtained for large times T�3 ms. We
observe a shot-to-shot variation in the fitted value of the
phase of about 200 mrad. We attribute this to pulse in-
tensity fluctuations which randomly populated undesired
momentum states at the <10% level. This resulted in
spurious matter wave gratings which shifted the observed
recoil phase.

The recoil frequency was determined by measuring the
recoil phase around T�0:5 ms and around T � 3 ms
(Fig. 3). An upper bound on T was set by the atoms falling
out of the 2 mm diameter beams. A straight line fit to
these data produced a value for the sodium photon recoil
frequency !rec;Na � 2�� 24:9973 kHz �1
 6:7� 10�6�.
This is 2� 10�4 lower than the sub-ppm value calculated
using the published measurements of �g�2, R1, MNa [9],
Me, and �Na [19] in Eqs. (1) and (2). The systematic mean
field shift due to larger population in the middle path than
the extreme paths probably explains this deviation.
Estimated errors from beam misalignment and wave
front curvature have the same sign as the observed de-
viation but several times lower magnitude.

To demonstrate the insensitivity of the measurement to
phase noise of the light due to mirror vibrations, we
intentionally varied the phase � of the second grating
relative to the first one [20]. The contrast signal is not
visibly affected by such phase variations [Fig. 4(a)]. We
compared this to a phase-sensitive readout method
[Fig. 4(b), inset]. This was realized by replacing the
readout pulse with a third pulsed 1 �s light grating in
the Kapitza-Dirac regime, phase-locked to the first two
pulses. This projected the phase of the 2k pattern at t�2T
onto the fractional populations of the states j0 �hki, j2 �hki,
and j�2 �hki which leave this interferometer. The popu-
lations were measured by time-of-flight absorption imag-
ing. The j0 �hki fraction is shown for the same variation of
�, in Fig. 4(b). The oscillation [21] demonstrates the phase
sensitivity of any position-sensitive readout.

These two interferometers respond differently to mir-
ror vibrations. For large T, we have observed the effect of
the mirror vibrations directly. At T�3 ms, the shot-to-
shot fluctuations of the phase-sensitive interferometer
was of the order of the expected fringe contrast. This
agrees with observations with a standard Mach-Zehnder
interferometer constructed both by us and in [22]. In
comparison, the stability of the contrast interferometer
signal is independent of T within our measurements. This
can be seen from the comparable statistical error bars for
short and long times in Fig. 3(b). In fact, the residuals and
the corresponding error bars are smaller at the longer
times. We attribute this to the decreased amplitude of
some of the spurious gratings at longer times, due to
reduced overlap of the contributing wave packets.

The quadratic scaling of the accumulated recoil phase,
with the number of transferred recoils N, was demon-
strated by comparing N�1 and N�2 interferometers.
An N�2 geometry, shown in Fig. 5(a), was realized
using two additional first order Bragg � pulses spaced
T1 apart and affecting only the extreme paths. The accel-
eration pulse at t�60 �s drove transfers from j
2 �hki to

104010201000980960

 t [µs]

t=2T

readout 
  pulse

contrast
 signal

FIG. 2. Typical single-shot signal from the contrast interfer-
ometer. T�502:5 �s, for this example. Ten oscillations with �
60% contrast and �30 �s width are observed during the 50 �s
readout. A low-pass filter at 300 kHz (12 dB per octave) was
applied to the signal.
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FIG. 3. Measurement of !rec in sodium. Two sets of recoil
phase scans, around T�0:5 ms and T�3 ms, are shown in (a).
Each point is the average of five measurements. The slope of the
linear fit gave !rec to 7 ppm. The error bars ( � 0:05� 0:1 rad)
are shown with the fit residuals in (b).
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j
4 �hki. The deceleration pulse at t�T1 � 60 �s �T �
60 �s drove transfers from j
4 �hki back to j
2 �hki.
During the period T1, paths 1 and 3 accumulate phase
22 � 4 times faster in the N�2 scheme than in the N�1
scheme. Additional time T1 is required for the three paths
to overlap in the N�2 scheme. For this geometry, the
N�2 recoil phase should therefore evolve 3 times faster
as a function of T1 than the N�1 recoil phase [Fig. 5(b)].
The corresponding linear fits give a slope ratio of 3:06

0:1. At present, we do not have sufficient control over the
timing and phase of the intermediate pulses to improve
our N�1 measurement precision by using N>1.

In conclusion, we have demonstrated a contrast inter-
ferometer which has several desirable features for a high
precision measurement of the photon recoil frequency.
Such a measurement would involve converting to an
atomic fountain setup with vertical Bragg beams. In
this geometry, T can be extended by nearly 2 orders of
magnitude. Our insensitivity to phase noise from mirror
vibrations should greatly alleviate vibration isolation re-
quirements of the system for long T [12]. The order N of
the interferometer must also be increased, requiring im-
proved timing and phase control of laser pulses. Direct
scaling of our current precision of � 0:01 rad=shot results
in an estimated precision of <1 ppb=shot for T�100 ms
and N�20. A rigorous study of systematics will have to
be undertaken to increase the accuracy of our measure-
ment. Estimates show that mean field effects can be sup-
pressed to the ppb-level by reduction of atomic density to
� 1011 cm�3, together with pulse control for <5% im-
balance between populations in the middle and extreme

paths. In addition, our methods may provide a way to
study mean field effects with interferometric precision.
We hope to obtain a <1 ppb value for !rec in a second
generation experiment in which BECs are created else-
where and transported into the interferometer [23].
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[8] E. Krüger et al., Metrologia 35, 203 (1998).
[9] M. P. Bradley et al., Phys. Rev. Lett. 83, 4510 (1999).

[10] Th. Udem et al., Phys. Rev. Lett. 82, 3568 (1999).
[11] D. S. Weiss et al., Phys. Rev. Lett. 70, 2706 (1993).
[12] B. C. Young, Ph.D. thesis, Stanford, 1997.
[13] J. M. Hensley, Ph.D. thesis, Stanford, 2001.
[14] S. B. Cahn et al., Phys. Rev. Lett. 79, 784 (1997).
[15] Atom Interferomtery, edited by P. Berman (Academic,

New York, 1997), see pp. 281–282 and 379–381.
[16] M. Weitz et al., Appl. Phys. B 65, 713 (1997).
[17] S. Gupta et al., C.R. Acad. Sci. IV-Phys. 2, 479 (2001).
[18] S. Inouye et al., Science 285, 571 (1999).
[19] P. Juncar et al., Metrologia 17, 77 (1981).
[20] We scanned � by electronically shifting the phase of the

rf signal used to drive one of the two Bragg AOMs.
[21] The division of population into threeoutput ports caused

74% ( <100%) contrast. We have seen �100% contrast in
a standard Mach-Zehnder interferometer.

[22] Y. Torii et al., Phys. Rev. A 61, 041602 (2000).
[23] T. L. Gustavson et al., Phys. Rev. Lett. 88, 020401 (2002).

650

640

630

φ(
T 1

) 
[r

ad
ia

ns
]

400390380
T1 [µs]

 N = 1

 N = 2
 

(b)

1

T

2TT 2T+T
1T0

(a)

 N = 1

 N = 2

x

60 µs 60 µs

FIG. 5. Demonstration of the quadratic scaling of the recoil
phase with additional photon recoils. (a) The N�1 (inner) and
N�2 (outer) interferometers used. (b) The recoil phase at the
recombination time under variation of T1.

-3

-2

-1

0

1

2

3

R
ec

oi
l p

ha
se

 φ
 [r

ad
ia

ns
]

3.02.01.00.0

Applied phase, θ [radians]

T=502.5µs

0.8

0.6

0.4

0.2

0.0

Z
er

o 
or

de
r 

fr
ac

tio
n

3.02.01.00.0

Applied phase, θ [radians]

T=50µs

(a) (b)

θ

FIG. 4. Vibration insensitivity of the contrast interferometer.
(a) The measured recoil phase at T�502:5 �s from the con-
trast interferometer as a function of the applied phase �. The
recoil phase is constant and demonstrates our insensitivity to
phase noise from the gratings. (b) The fractional population of
the j0 �hki state from the phase-sensitive interferometer (inset)
for a similar scan of � at T�50 �s. Also shown is the best-fit
sinusoid of the expected period.

VOLUME 89, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 30 SEPTEMBER 2002

140401-4 140401-4



Appendix B

Fifty-fold improvement in the

number of quantum degenerate

fermionic atoms

This appendix includes the following paper [6]: Z. Hadzibabic, S. Gupta, C.A. Stan, C.H.
Schunck, M.W. Zwierlein, K. Dieckmann and W. Keterle, “Fifty-fold improvement in the
number of quantum degenerate fermionic atoms”, arXiV:cond-mat/ 0306050(2003), ac-
cepted in Phys. Rev. Lett.
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Fifty-fold improvement in the number of quantum degenerate fermionic atoms

Z. Hadzibabic, S. Gupta, C.A. Stan, C.H. Schunck, M.W. Zwierlein, K. Dieckmann, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

MIT, Cambridge, MA 02139

(June 3, 2003)

We have produced a quantum degenerate 6Li Fermi gas with up to 7× 107 atoms, an improvement
by a factor of fifty over all previous experiments with degenerate Fermi gases. This was achieved by
sympathetic cooling with bosonic 23Na in the F = 2, upper hyperfine ground state. We have also
achieved Bose-Einstein condensation of F = 2 sodium atoms by direct evaporation.

PACS numbers: 05.30.Fk, 32.80.Pj, 39.25.+k, 67.60.-g

Over the last few years, there has been significant
progress in the production of quantum degenerate atomic
Fermi gases (40K [1,2] and 6Li [3–6]) and degenerate
Bose-Fermi mixtures (7Li-6Li [3,4], 23Na-6Li [6], and
87Rb-40K [2]). These systems offer great promise for
studies of new, interaction-driven quantum phenomena.
The ultimate goal is the attainment of novel regimes of
BCS-like superfluidity in a gaseous system [7–10]. The
current efforts to induce and study strong interactions in
a Fermi gas [11–20] are complemented with the ongoing
efforts to improve fermion cooling methods, which would
lead to lower temperatures and larger samples.

The main reason why studies of degenerate Fermi
gases are still lagging behind the studies of atomic Bose-
Einstein condensates (BECs), is the complexity of cooling
methods. The Pauli exclusion principle prohibits elastic
collisions between identical fermions at ultra-low temper-
atures, and makes evaporative cooling of spin-polarized
fermionic samples impossible. For this reason, cooling
of fermions must rely on some form of mutual or sympa-
thetic cooling between two types of distinguishable parti-
cles, either two spin states of the same atom [1,5], or two
different atoms [2–4,6]. A key element in fermion cool-
ing is the design of better “refrigerators” for sympathetic
cooling.

In this Letter, we report the first production of degen-
erate Fermi samples comparable in size with the largest
alkali BECs [21]. We successfully cooled up to 7 × 107

magnetically trapped 6Li atoms to below half the Fermi
temperature (TF ). This is an improvement in atom num-
ber by a factor of 50 over the largest previously re-
ported Fermi sea [20]. Further, in samples containing
up to 3 × 107 atoms, we observed temperatures as low
as 0.05TF , the lowest ever achieved. At these tempera-
tures, the fractional occupation of the lowest energy state
differs from unity by less than 10−8.

As in our previous work [6], 6Li atoms were magnet-
ically trapped in the F = 3/2, upper hyperfine ground
state, and sympathetically cooled by bosonic 23Na. The
crucial improvement was our achievement of forced evap-
oration of sodium in the |F, mF 〉 = |2,+2〉, upper hyper-
fine ground state, producing large and stable BECs with
up to 107 atoms. This allowed us to create a magneti-

cally trapped 23Na-6Li, Bose-Fermi mixture which is sta-
ble against spin-exchange collisions at all densities, and
dramatically boosted our fermion atom number.
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FIG. 1. Hyperfine structures of 6Li and 23Na. The states
are labelled in the low field, |F, mF 〉 basis. (a) Due to fi-
nite trap depth of ∼ kB × 300µK in the |1/2,−1/2〉 state,
lithium can be efficiently loaded into the magnetic trap only
in the upper, F = 3/2 hyperfine state. (b) Sodium is mag-
netically trappable in the |1,−1〉, and in the |F = 2, mF ≥ 0〉
states. Previously, sodium has been evaporatively cooled to
BEC only in the |1,−1〉, lower hyperfine state.

The criteria for designing sympathetic cooling experi-
ments include the heat capacity of the refrigerator, and
the inter-species collisional properties, both elastic and
inelastic. Large and stable 23Na condensates are an ap-
pealing choice for sympathetic cooling of fermions. Fur-
ther, a favorable mass ratio allows for simultaneous Zee-
man slowing of 23Na and 6Li [6], and for simultaneous
magnetic trapping without large differences in the grav-
itational sag. The inter-species collisional properties are
generally not predictable, and have to be tested experi-
mentally. In order to minimize all possible inelastic pro-
cesses, the natural choice is to magnetically trap both
species in their lower hyperfine ground states. However,
at temperatures reachable by laser cooling (≥ 300µK),
6Li can be efficiently magnetically trapped only in the
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upper hyperfine state, F = 3/2 [4,6] (Fig. 1(a)). On the
other hand, until now sodium has been successfully evap-
orated only in the lower, F = 1 hyperfine state. This was
a limiting factor for sympathetic cooling of 6Li, since the
mixture of sodium in the lower, and lithium in the upper
hyperfine state is not stable against spin-exchange colli-
sions. The inelastic loss rate increases as the temperature
is lowered and the density grows. In our previous work
[6], we partially overcame this problem by transferring
lithium atoms into the lower hyperfine state after an ini-
tial sympathetic cooling stage to ∼ 50µK. By achieving
forced evaporative cooling and Bose-Einstein condensa-
tion of sodium in the F = 2 state, we have now realized a
more robust sympathetic cooling strategy, and dramati-
cally improved the size and temperature of a degenerate
Fermi system.

We loaded ∼ 3 × 109 sodium and up to 108 lithium
atoms in their upper hyperfine states from a two-species
magneto-optical trap (MOT) into the magnetic trap.
The adverse effect of light assisted collisions in a two-
species MOT [6,22] was minimized by slightly displac-
ing the two MOTs with respect to each other. During
the typical 30 s of evaporative/sympathetic cooling, we
observed no significant inelastic loss of lithium atoms
(by three-body collisions or dipolar relaxation), the fi-
nal number of degenerate atoms being at least half of
the number initially loaded into the trap. On the other
hand, we observed a favorable rate of elastic collisions
between the two species, with the inter-species thermal-
ization time being shorter than 1 s. Therefore, sodium
atoms in the upper hyperfine state have ideal properties
as a refrigerant for 6Li.

Since our primary interest was cooling of fermions, we
evaporated all sodium atoms in order to get lithium to
the lowest possible temperatures. Even in our largest 6Li
samples, of ∼ 7 × 107 atoms, we achieved temperatures
below 0.5TF . Temperatures in the range 0.05 − 0.2TF

could be achieved by reducing the 6Li atom numbers only
slightly, to ∼ 3×107. Such big clouds had a high enough
optical density for crisp absorption imaging even after
ballistic expansion to a size larger than one millimeter
(Fig. 2(a)).

Temperatures were extracted from absorption images
of expanding clouds released from the trap, using a semi-
classical (Thomas-Fermi) fit to the Fermi-Dirac momen-
tum distribution [6,23] (Fig. 2(b)). The quoted temper-
ature range reflects both the shot-to-shot and day-to-
day reproducibility, and the fact that the Fermi distribu-
tion is very insensitive to the temperature in this ultra-
degenerate limit.

In these experiments, the 6Li atom number was ad-
justed during the loading phase. Somewhat lower tem-
peratures could possibly be achieved if the maximum
lithium atom number was loaded into the magnetic trap,
and then the hottest part of the cloud was selectively re-
moved by direct evaporation once the sodium atom num-

ber dropped to the point where the heat capacities of the
two species become comparable. However, at this point it
appears unlikely that temperatures below 0.05TF could
be conclusively extracted in order to differentiate the two
strategies.

Fermi Diameter

(b)

3 mm

(a)

FIG. 2. Large and ultra-degenerate Fermi sea. (a) Absorp-
tion image of 3 × 107 6Li atoms released from the trap and
imaged after 12ms of free expansion. (b) Axial (vertical) line
density profile of the cloud in (a). A semiclassical fit (thin
line) yields a temperature T = 93 nK= 0.05 TF . At this tem-
perature, the high energy wings of the cloud do not extend
visibly beyond the Fermi energy, indicated in the figure by
the momentum-space Fermi diameter.

We also produced two-species degenerate Bose-Fermi
mixtures with several million atoms in each species
(Fig. 3). The mixture was stable, with a lifetime of sev-
eral seconds, limited only by the three-body decay of the
sodium cloud.

1
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m

Li  6 Na23

FIG. 3. Two-species mixture of degenerate Bose and Fermi
gases. After release from the magnetic trap, both 6Li and
23Na clouds were imaged onto the same CCD camera using
separate light pulses. The times of free expansion of the two
gases could be varied independently. This dual-imaging tech-
nique allowed for optimizing the cooling strategy for either
single- or two-species experiments. For the displayed image,
the expansion times were τLi = 8ms and τNa = 25ms, and
the atom numbers were NLi ∼ 107 and NNa ∼ 6 × 106.
Sodium was cooled below the condensation temperature, cor-
responding to ∼ 0.2 TF for the lithium cloud.

In the rest of the paper, we summarize the numerous
steps which were introduced to prepare sodium in the
F = 2 state as a refrigerant.
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In contrast to 87Rb, condensation of sodium by evapo-
rative cooling was previously achieved only in the lower,
|1,−1〉 hyperfine state. F = 2 sodium condensates could
thus be studied only by transferring optically trapped
F = 1 BECs into this state [24,25]. Condensation in the
upper hyperfine state of sodium is more difficult than in
the lower state for two reasons: (1) The requirement for
efficient optical pumping in dense laser-cooled samples,
and (2) an order of magnitude higher three-body loss rate
coefficient [24].

The basic setup of our experiment is described in [6].
In 10 s, we collected typically ∼ 1010 23Na atoms, and ∼
108 6Li atoms in a magneto-optical trap (MOT). Typical
MOT temperatures were 0.7-1mK. Sodium was collected
in a dark-SPOT variant of the MOT [26], and therefore
most of the atoms were in the F = 1 hyperfine state.
Lithium was collected in a “bright” MOT, with about
2/3 of the atoms in the F = 3/2 state.

Before the transfer into the magnetic trap, the atoms
were optically pumped into the stretched hyperfine
ground states, |2,+2〉 for 23Na, and |3/2,+3/2〉 for 6Li.
A magnetic guide field of 3G was applied, and the atoms
were optically pumped for 2ms, using σ+ polarized light.
To achieve both F (hyperfine) and mF (Zeeman) pump-
ing, two light beams where used for each species, reso-
nant with the |F = I ± 1/2〉 → |F ′ = I ± 1/2〉 tran-
sitions. Here, I is the nuclear spin (I = 3/2 for 23Na,
and I = 1 for 6Li), and F ′ is the total spin in the ex-
cited electronic state. In this way, almost all the lithium
atoms could be pumped into the |3/2,+3/2〉 state. On
the other hand, the density of sodium atoms in the dark-
SPOT is ≥ 1011 cm−3, and Zeeman pumping is notori-
ously difficult at such high densities. In our experiments,
the fraction of atoms pumped into the |2,+2〉 state was
limited to about 30%, with most of the remaining atoms
distributed among the other mF sub-levels of the F = 2
manifold.

After the optical pumping stage, the atoms were loaded
into a Ioffe-Pritchard magnetic trap with a radial gra-
dient of 164G/cm, and axial curvature of 185G/cm2.
Sodium atoms in all three |F = 2, mF ≥ 0〉 states are (at
least weakly) magnetically trappable (Fig. 1(b)). How-
ever, only pure |2,+2〉 samples are stable against inelas-
tic spin-exchange collisions. A crucial step in prepar-
ing the samples for efficient forced evaporation was to
actively remove |F = 2, mF = 0,+1〉 atoms from the
trap, before they engaged in inelastic collisions with the
|2,+2〉 atoms. The atoms were loaded into a weak mag-
netic trap, with a high bias field of 80G. This field
splits the F = 2 Zeeman sub-levels by ∼ kB × 2.8mK.
Since this splitting was larger than the temperature of
the cloud, the different states could be resolved in mi-
crowave or rf spectroscopy, and the |F = 2, mF = 0,+1〉
atoms could be selectively transferred to the untrapped
|F = 1, mF = 0,+1〉 lower hyperfine states. This transfer
was done with a microwave sweep near the 23Na hyperfine

splitting of 1.77GHz. In this way, all the |2,+2〉 atoms
initially loaded into trap could be preserved. We were
even able to “recycle” some of the untrapped atoms by
optically pumping them out of the F = 1 ground states,
thus giving them a “second chance” to fall into the |2,+2〉
state. The final setup consisted of two microwave sweeps,
the first of 0.8 s duration with the optical pumping light
on, and the second of 2.4 s duration without the light. In
this way, the overall transfer efficiency from the MOT to
the magnetic trap was improved to about 35%, compa-
rable to our standard F = 1 BEC experiments [27].

After this purification of the |2,+2〉 sample, the mag-
netic trap was tightened by reducing the bias field
to 3.8G in 2.4 s. Resulting trapping frequencies were
204Hz (400Hz) radially, and 34Hz (67Hz) axially for the
sodium (lithium) stretched state. This provided good
conditions for forced runaway evaporation of sodium.
Evaporation was done on the |2,+2〉 → |1,+1〉 mi-
crowave transition near 1.77GHz. In contrast to radio-
frequency evaporation, this insured that 6Li was far off
resonance. Further, microwave evaporation avoided any
undesirable aspects of “incomplete evaporation” into the
|F = 2, mF = 0,+1〉 states, which could lead to inelastic
losses [28].

After 15 s of evaporation, the sodium atoms reached a
temperature of T ∼ 10µK. At this point, to avoid three-
body losses in the |2,+2〉 state [24], the trap was weak-
ened to frequencies of 49Hz (96Hz) radially, and 18Hz
(35Hz) axially for sodium (lithium). The final evapora-
tion to BEC took another 15 s. In this way, in the absence
of lithium atoms, we could produce almost pure |2,+2〉
BECs containing up to 10 million atoms. The lifetime of
the BEC in the weak trap was longer than 3 s. In contrast
to our previous work [24,25], studies of F = 2 conden-
sates are now possible without the added complexity of
an optical trap.

In conclusion, by creating a superior refrigerant for
sympathetic cooling of 6Li, we have produced the cold-
est and by far the largest quantum degenerate Fermi gas
so far. With the number of atoms comparable with the
largest alkali BECs, and the temperatures reaching the
practical detection limit, we have fully exploited the po-
tential of laser and evaporative cooling to engineer sam-
ples of ultracold fermions. In analogy with Bose-Einstein
condensates, we expect these large samples to insure
sufficient signal-to-noise ratio for all the standard tech-
niques of BEC research, such as velocimetry using long
expansion times, rf spectroscopy with Stern-Gerlach sep-
aration during ballistic expansion, direct non-destructive
imaging of the trapped clouds, and Bragg spectroscopy.
The next challenge is to maintain a similar combina-
tion of number and temperature for an interacting two-
component Fermi gas [19].

We thank A. E. Leanhardt for critical reading of the
manuscript. This work was supported by the NSF, ONR,
ARO, and NASA.
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Lithium Gas near a Feshbach

Resonance

This appendix includes the following paper [4]: K. Dieckmann, C.A. Stan, S. Gupta, Z.
Hadzibabic, C.H. Schunck and W. Ketterle, “Decay of an Ultracold Fermionic Lithium Gas
near a Feshbach Resonance”, Phys. Rev. Lett. 89, 203201 (2002).

117



Decay of an Ultracold Fermionic Lithium Gas near a Feshbach Resonance
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We studied the magnetic field dependence of the inelastic decay of an ultracold, optically trapped
fermionic 6Li gas of different spin compositions. The spin mixture of the two lowest hyperfine states
showed two decay resonances at 550 and 680 G, consistent with the predicted Feshbach resonances for
elastic s-wave collisions. The observed lifetimes of several hundred ms are much longer than the
expected time for Cooper pair formation and the phase transition to superfluidity in the vicinity of the
Feshbach resonance.

DOI: 10.1103/PhysRevLett.89.203201 PACS numbers: 05.30.Fk, 32.80.Pj, 34.50.-s, 39.25.+k

Interactions between atoms can be strongly modified
by tuning magnetic fields to Feshbach resonances where a
molecular state has the same energy as the colliding
atoms. This mechanism has been used to dramatically
alter the properties of ultracold bosonic gases [1–4].
For degenerate Fermi gases, such control over the inter-
action strength is crucial in the search for a superfluid
phase transition. For dilute Fermi gases, the predicted
phase transition occurs at temperatures that are experi-
mentally not accessible [5], unless the scattering length
is resonantly enhanced. In this case, as was pointed out
by [6–10], the transition temperature can be compar-
able to the temperatures achieved in current experi-
ments [11–16].

Promising candidates for an experimental observation
of fermionic superfluidity are 6Li and 40K. For an opti-
cally trapped mixture of two spin states of 40K, a
Feshbach resonance has been observed by measuring
the thermalization time of the gas [17]. For an optically
trapped spin mixture of the two lowest Zeeman states of
6Li, a wide s-wave Feshbach resonance has been predicted
first by [18]. Experiments with 6Li have so far observed
only a magnetic field dependence of the elastic cross
section far away from the predicted resonance [14].
Near Feshbach resonances, the enhancement of the scat-
tering length is usually accompanied by enhanced inelas-
tic collisions which lead to rapid trap loss. This signature
was used to identify Feshbach resonances in bosonic
gases [20–22]. However, inelastic losses have also posed
a severe limitation for experiments near Feshbach reso-
nances, in particular, at high atomic densities. The super-
fluid phase transition for fermions will be observable only
if the time for the formation of Cooper pairs is shorter
than the decay time of the gas. For fermions, inelastic
decay in the s-wave channel can be suppressed due to the
Pauli exclusion principle. However, even in the zero-
temperature limit the kinetic energy of the cloud is of
the order of the Fermi energy. Therefore, inelastic colli-
sions for higher partial waves are expected to limit the
lifetime of the gas.

This Letter is the first report on the study of inelastic
collisions in a fermionic system near Feshbach reso-
nances. We have observed resonant magnetic field depen-
dent inelastic decay of an ultracold, optically trapped spin
mixture of 6Li.

The ultracold lithium samples were prepared by sym-
pathetic cooling of 6Li by 23Na as described previously
[15]. The remaining 23Na atoms were removed from the
magnetic trap by rf induced spin flips to untrapped states.
This typically produced 3� 105 lithium atoms in the
j1=2;�1=2i state at a temperature of 400 nK, equal to
half the Fermi temperature. The atoms were transferred
into an optical trap formed by a single far detuned beam
with up to 1 W of power at 1064 nm. The beam had a
14�m waist and was aligned horizontally along the
symmetry axis of the magnetic trap. This generated a
175�K deep trapping potential, with 12 Hz radial and
200 Hz axial trapping frequencies. Prior to the transfer,
the cloud was adiabatically decompressed in the radial
direction during 1 s to improve the spatial overlap with
the optical trap. After this stage, the trap frequencies in
the magnetic trap were 149 Hz radially and 26 Hz axially.
We then adiabatically ramped up the power of the optical
trap over 500 ms. Subsequently, the magnetic trapping
fields were ramped down in 100 ms, leaving a 1.5 G
guiding field along the trap axis. After the transfer, the
cloud contained 3� 105 atoms at 3� 1013 cm�3 peak
density and 22�K temperature, close to the 21�K Fermi
temperature. We attribute the rise in temperature relative
to the Fermi temperature to residual excitations during
the transfer into the optical trap. (We often observed axial
oscillations of the cloud after the transfer.)

We studied inelastic decay for three different spin
compositions of the cloud. The lithium atoms were either
trapped purely in the lowest (j1i), or the second to lowest
(j2i) energy state, or in a 50%-50% mixture of these
two Zeeman states. At low magnetic fields, the states j1i
and j2i correspond to the jF;mFi � j1=2;�1=2i
and j1=2;�1=2i states, respectively. A full transfer
j1=2;�1=2i ! j1=2;�1=2i was done at low magnetic
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field by applying a 1 s rf-driven adiabatic passage between
the two states, which was > 95% complete. The spin
mixture was produced by a faster, nonadiabatic rf sweep
of 200 ms duration. The population of the states was
analyzed by applying a 7 G=cm magnetic field gradient
along the trap axis with a 6.5 G offset field in the center,
and reducing the strength of the optical confinement. This
resulted in full spatial separation of the two spin states in
the optical trap. Resonant absorption imaging was used to
determine the atom number in each of the spin states.
Using a full transfer we compared the absorption cross
sections for circularly polarized light for the two spin
states and found a ratio of 1:1:2. Taking this into consid-
eration, we were able to control the relative population of
the spin states by rf sweeps with an accuracy of 
4%.

In order to study the decay of the cloud near the
Feshbach resonance, predicted to occur at about 800 G
[18], we applied magnetic fields up to 900 G using the
antibias coils of the cloverleaf magnetic trap [23]. The
magnetic field strength was calibrated in two independent
ways to 2% accuracy. For calibration of magnetic fields up
to 100 G, we loaded 23Na into the optical trap and drove rf
transitions to magnetically untrapped states. Resonances
were observed by measuring the remaining atom number
after recapture into the magnetic trap. As a second
method at about 700 G, we used direct absorption imag-
ing of 6Li in the optical trap in the presence of higher
magnetic fields. The magnetic field values were then
derived from the frequency shifts of the observed reso-
nances from the lithium D2 line. We also verified that
drifts of the magnetic field during the pulses, occurring
from thermal expansion of the coils due to the high
current load, were negligible.

We measured the magnetic field dependence of the
decay by measuring the atom number at two different
times, 50 and 500 ms, after switching on the magnetic
field within about 4 ms. For measuring the remaining
atom number, the magnetic field was rapidly switched off
within 100 �s, and the cloud was probed by absorption
imaging at low magnetic field. Normalizing the number at
long time to the number at short time made the measure-
ment less sensitive to atom number drifts and initial
losses from the optical trap. These losses can occur due
to the sloshing motion of the cloud and due to initial
evaporation.

For the cloud purely in state j2i, we observed no
significant decay over the entire range of magnetic fields,
as can be seen in Fig. 1(a). This also confirmed that during
the measurement interval, one-body decay (e.g., due to
collisions with particles from the background gas) was
negligible.

The surviving fraction of the mixture is shown in
Fig. 1(c). No significant decay was observed at low mag-
netic fields. At higher magnetic field, we found two decay
resonances. A strong resonance occurred at 680 G with
considerable losses over a range of approximately 100 G.

At even higher magnetic fields, the decay persisted at a
weaker but constant level. In a more detailed scan, shown
in Fig. 1(d), a second, much weaker and narrower reso-
nance was found at 550 G, with an approximate width of
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FIG. 1. Magnetic field dependence of inelastic decay in
clouds of fermionic 6Li. The fraction of atoms remaining after
the 500 ms magnetic field pulse is shown for different spin
compositions of the cloud. (a) For the state j2i, no significant
loss was observed. (b) The energetically lowest state j1i ex-
hibits a weak decay resonance at � 680 G. (c) The 50%-50%
mixture of two spin states shows two decay resonances, at 550
and 680 G. (d) The two resonances are shown with higher
density of data points and for 2 s magnetic field pulses. Each
data point represents an average of three measurements.
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20 G. The weaker resonance became more pronounced
after 2 s of dwell time in the magnetic field, whereas the
stronger resonance showed ‘‘ saturation’’ broadening.

We also measured the time evolution of the atom num-
ber at the two resonances. For a two-body (three-body)
process the loss rate of atoms _NN is proportional to N2

(N3), where N is the number of trapped atoms. The decay
curves at 680 G are shown in Fig. 2. At both resonances
we found that the values for 1=N showed a linear depen-
dence on time, characteristic for a two-body process. In
order to test for three-body decay we plotted the same
data as 1=N2. The nonlinear behavior is not compatible
with a simple three-body decay process.

Another experimental observation is the almost com-
plete disappearance of the mixed cloud in Fig. 1(d). A
resonantly enhanced three-body process would involve
two atoms of opposite spin colliding, and a third in either
of the spin states. Starting with a 50%-50% mixture, the
decay would stop when all atoms in state j1i (or in state
j2i) are used up. Therefore, three-body decay can be
consistent with the observation of complete disappear-
ance only if the decay rate does not depend on the spin
state of the third particle. In case of strongly different
rates for the two spin orientations, the surviving fraction
could not drop below 25%.

With the observation of two resonances and the posi-
tion of the strongest decay of the main resonance deviat-

ing from the theoretical prediction [18], the question
arises whether the observed decay of the spin mixture
can be interpreted as a signature of the Feshbach reso-
nance for elastic s-wave collisions. After the submission
of this paper new improved theoretical calculations ex-
hibited a second narrow Feshbach resonance for elastic
collisions in the s-wave channel at 550 G [19], in good
agreement with the position of the narrow decay reso-
nance. The predicted magnetic field for the main reso-
nance is 860 G. However, due to the huge width of the
resonance it seems possible that the decay observed at
680 G is related to this s-wave resonance.

The measured decay curves suggest a two-body type of
decay. Because of the Pauli exclusion principle dipolar
relaxation is not possible in the s-wave channel [24].
Dipolar relaxation in the p-wave channel is possible, as
even in the zero-temperature limit the kinetic energy of
the cloud is of the order of the Fermi energy, and colli-
sions in the p-wave channel do not completely freeze out.
However, no occurrences of resonances in the dipolar
decay are theoretically predicted [25].

Therefore, it is most likely that the observed decay is a
signature of the Feshbach resonances for the elastic col-
lisions, resulting in enhanced three-body decay. At
present no exact theoretical description for the three-
body decay mechanism of fermions near a Feshbach
resonance is available. Three-body decay is not supported
by the measured decay curves. However, one possibility is
that the decay curve is affected by a change in tempera-
ture. An accurate measurement of the temperature was
difficult due to technical reasons and a low signal-to-
noise ratio, as the absorption signal drops significantly
during the decay. If the sample had cooled down during
the decay (e.g., due to an energy dependence of the loss
rate) it could speed up the decay in a way that three-body
loss results in a decay curve similar to a curve for two-
body losses at constant temperature. Another possibility
for the deviation from a three-body decay curve would be
heating due to three-body recombination followed by trap
loss due to evaporation, or other processes involving
secondary collisions [26]. It should be noted that the
observed resonances do not resemble the predicted mag-
netic field dependence for elastic collisions [18]. There-
fore, our decay data cannot be explained by elastic
collisions leading to evaporation.

We also observed resonant decay at 680 G of a cloud
purely in state j1i, as shown in Fig. 1(b). The fact that this
resonance is at the same magnetic field as for the mixture
suggests that the observed loss is due to a contamination
of the cloud with atoms in state j2i. For three-body of
decay, our measured > 95% purity of the preparation of
state j1i allows for a maximum of 15% decay of the
cloud, compared to the measured 21%. Further measure-
ments are needed to investigate whether there is an en-
hancement of losses by secondary collisions, or whether
there is a decay mechanism for atoms purely in state j1i.
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FIG. 2. Decay of the atom number at 680 G. (a) The data
plotted as 1=N show a linear time dependency, consistent with
two-body decay. (b) The same data plotted as 1=N2 clearly
show nonlinear dependency. For the resonance at 550 G, the
comparison of least square fits also revealed consistency with a
two-body decay.
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In conclusion, we observed two decay resonances for
the 6Li spin mixture and one resonance in the lowest spin
state. Comparing our observations with recent theoretical
calculations which exhibit two s-wave Feshbach reso-
nances suggests that the observed decay is a signature
of those resonances. Even on resonance, the observed
decay happened on a time scale longer than the trap
oscillation time, the time for elastic collisions, and the
expected submillisecond time needed for the formation
of Cooper pairs [27,28]. Therefore, the 6Li system is well
suited for the study of an interacting Fermi gas in the
vicinity of an elastic Feshbach resonance, in particular,
for the search for the phase transition to a superfluid state.

This research was supported by NSF, ONR, ARO,
NASA, and the David and Lucile Packard Foundation.
C. H. S. acknowledges the support of the Studienstiftung
des deutschen Volkes.
Note added.—After the submission of this paper sev-

eral groups reported related results. Measurements of the
elastic cross section near the zero crossing associated
with the Feshbach resonance have recently been per-
formed by [19,29]. Inelastic decay of 6Li fermionic clouds
near the Feshbach resonance was recently also observed
in the groups of Thomas [19], and C. Salomon, and for
40K in the group of D. S. Jin.

[1] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner,
D. M. Stamper-Kurn, and W. Ketterle, Nature (London)
392, 151 (1998).

[2] P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van
Abeelen, and B. J. Verhaar, Phys. Rev. Lett. 81, 69 (1998).
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Appendix D

Collisions in Zero Temperature

Fermi Gases

This appendix includes the following paper [8]: S. Gupta, Z. Hadzibabic, J.R. Anglin and W.
Keterle, “Collisions in Zero Temperature Fermi Gases”, arXiV:cond-mat/ 0307088(2003).
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Collisions in zero temperature Fermi gases

Subhadeep Gupta, Zoran Hadzibabic, James R. Anglin, and Wolfgang Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

MIT, Cambridge, MA 02139

(July 3, 2003)

We examine the collisional behavior of two-component Fermi gases released at zero temperature
from a harmonic trap. Using a phase-space formalism to calculate the collision rate during expan-
sion, we find that Pauli blocking plays only a minor role for momentum changing collisions. As a
result, for a large scattering cross-section, Pauli blocking will not prevent the gas from entering the
collisionally hydrodynamic regime. In contrast to the bosonic case, hydrodynamic expansion at very
low temperatures is therefore not evidence for fermionic superfluidity.

PACS numbers: 03.75.Ss, 03.75.Kk, 34.50.-s

The last few years have seen rapid progress in the field
of ultracold atomic Fermi gases [1–6]. Most recently,
regimes of strong interactions have been observed in these
gases near Feshbach resonances [7–10]. Studies of these
systems are of particular importance because of the pos-
sibility of creating BCS-like superfluids [11,12]. Such a
realization would establish highly controllable model sys-
tems for studying novel regimes of fermionic superfluid-
ity.
A unique feature of atomic systems is the ability to

analyze the gas by turning off the trapping potential
and observing the expansion. The expansion behavior
can reveal the momentum distribution and the effects
of mean-field interactions and collisions. Hydrodynamic
behavior can be easily detected when the gas is released
from an anisotropic atom trap. In that case, the spatial
anisotropy of the cloud reverses during free expansion.
This is caused by the larger pressure gradient along the
tightly confining direction, which leads to a faster expan-
sion, and subsequent reversal of the spatial anisotropy.
This anisotropic expansion was used to identify the for-
mation of the Bose-Einstein condensate [13,14].
A BEC obeys the hydrodynamic equations of a su-

perfluid [15]. However collisional hydrodynamics arising
from a high elastic collision rate also results in anisotropic
expansion [16,17]. Thus, the normal component can also
expand anisotropically [18]. For the bosonic case, two key
points make the distinction between the two fractions ob-
vious: (i) At the typical transition temperature, the BEC
has much less energy than the normal cloud, so the two
components are clearly separated in size. (ii) The scat-
tering rate needed to achieve condensation is usually not
large enough that the normal gas is in the hydrodynamic
regime. For these two reasons, the appearance of a dense
anisotropic cloud during expansion is considered to be
the “smoking-gun” for the formation of a Bose-Einstein
condensate.
A superfluid Fermi gas is predicted to obey the su-

perfluid hydrodynamic equations of motion [19–22] and
therefore should show strong anisotropic expansion when
released from an anisotropic harmonic trap [22]. The re-
cent observation of anisotropic expansion of an ultracold,

interacting, two-spin fermionic mixture [7–9] has created
considerable excitement and raised the question under
what conditions is this expansion a signature of fermionic
superfluidity and not of collisional hydrodynamics. There
are two major differences from the bosonic case: (i) Since
the energy of ultracold fermions always remains on the
order of the Fermi energy, the size in expansion for both
normal and superfluid components will be similar. (ii)
Current efforts towards inducing BCS pairing all take
place in strongly interacting systems. This results in a
large scattering rate modified only by the effects of Pauli
blocking at low temperatures.
The interpretation of the observed anisotropic expan-

sion in strongly interacting Fermi gases is therefore crit-
ically dependent on the role of Pauli blocking of colli-
sions during the expansion. The tentative interpretation
of anisotropic expansion as superfluid hydrodynamics [7]
was based on the assessment that collisions are strongly
suppressed at sufficiently low temperatures [7,23–28].
Here we show generally that the collision rate becomes

independent of temperature and prevails even at zero
temperature, if the Fermi surface is strongly deformed.
This happens in an extreme way during ballistic expan-
sion. In the small cross-section limit, we find that less
than half of the total number of momentum changing col-
lisions is suppressed. For a large scattering cross-section,
the absence of suppression results in strong collisional
behavior of normal Fermi gases during expansion for all
initial temperatures. This result has the important con-
sequence of rendering expansion measurements of Fermi
gases near Feshbach resonances ambiguous for differenti-
ating between superfluid and normal components.
We first consider the expansion of a single component

Fermi gas. At ultralow temperatures, fermionic anti-
symmetry prevents s-wave scattering in a single compo-
nent and renders the gas completely collisionless. The
phase space occupation f(x1, x2, x3, p1, p2, p3) = f(x,p)
at zero temperature in a harmonic trap with frequencies
(ω1, ω2, ω3) can be written as

f(x,p) = Θ(EF − Σimω2
i x2

i /2− Σip
2
i /2m)

where m is the particle mass, Θ is the Heaviside step
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function defined as Θ(x) = 0(1) for x ≤ 0(x > 0) and
EF = h̄(6NΠiωi)

1/3 is the Fermi energy for N particles.
At time t = 0, the trapping potential is turned off sud-
denly, allowing the gas to expand freely. At t = 0, the
momentum space Fermi surface at x = (x1, x2, x3) is

Σip
2
i /2m = EF − Σimω2

i x2
i /2, (1)

a sphere of radius
√
2m(EF − Σimω2

i x2
i /2). In this non-

interacting system, the evolution of the Fermi surface
can be derived from the simple evolution law for ballistic
expansion x(0) = x(t)−pt/m. Substituting this in Eq. 1,
we obtain:

Σi
(1 + ω2

i t2)

2m

(
pi − mxi

t

ω2
i t2

1 + ω2
i t2

)2

= EF − Σi
mω2

i x2
i

2(1 + ω2
i t2)

,

(2)

which is an ellipsoid with generally unequal axes√
2m(EF − Σi

mω2

i
x2

i

2(1+ω2

i
t2)
)( 1√

1+ω2

1
t2

, 1√
1+ω2

2
t2

, 1√
1+ω2

3
t2
).

The anisotropy of the Fermi surface during expansion can
be understood generally by noting that for long times t,
at any position x, the spread in momentum ∆pi(t) can
only arise from the initial spread in position ∆xi(0). For
anisotropic traps this gives rise to an anisotropic mo-
mentum distribution during ballistic expansion. For a
mixture of two spin states, this deformation of the Fermi
surface from a sphere into an anisotropic ellipsoid re-
moves Pauli blocking of final states and allows collisions,
as will be shown.
The momentum distribution at position x given by

Eq. 2, also allows us to simply calculate the spatial den-
sity distribution as the volume of the momentum-space
ellipsoid,

n(x, t) =
4

3
π

(
2mEF

h2

)3/2 (1− m
2EF

Σi
ω2

i
x2

i

1+ω2

i
t2
)3/2

Πi(1 + ω2
i t2)1/2

, (3)

in agreement with other derivations [29]. For long expan-
sion times t, the spatial distribution becomes isotropic,
mirroring the isotropic momentum distribution in the
trap.
Specializing to the experimentally relevant case of

a cylindrically symmetric trap, ballistic expansion de-
forms the local Fermi surface into a momentum ellip-

soid of cylindrical symmetry with aspect ratio
√

1+ω2
z
t2

1+ω2

⊥
t2

(Fig. 1(a,b)). Here ω⊥(ωz) is the radial (axial) trapping
frequency. For long times t, this deformation reaches the
asymptotic aspect ratio ωz/ω⊥ = λ, the initial spatial
aspect ratio in the trap.
Now consider an equal mixture of two spin states which

interact via a finite s-wave scattering length. We assume
that the trapping frequencies are identical for the two
states (standard experimental conditions) and special-
ize to the usual case of two-body elastic collisions in the

local-density approximation. These collisions have an ap-
pealing geometrical picture in the local phase-space de-
scription (Fig. 1(c)). Each elastic collision involves one
particle from each spin state. We label with p’s and q’s
the momenta of the two different spin states. Consider
the collision p1+q1 → p2+q2. Conservation of momen-
tum and kinetic energy mandates p2+q2 = p1+q1 and
|p2−q2| = |p1−q1|. These relations restrict p2 and q2

to lie on diametrically opposite ends of the sphere with
p1−q1 as a diameter. The deformation of the Fermi sur-
face during expansion opens up unoccupied final states
p2,q2 and therefore allows collisions to take place even
in a zero temperature Fermi gas (Fig. 1(c)).

(a) (b) (c)

01310 01310

2    2mEF

p1

q1

p4

q4

p3

q3

p2

q2

FIG. 1. (a) Deformation of the momentum space Fermi sur-
face at x = 0, from a sphere to an ellipsoid during expansion
from an anisotropic harmonic trap. The case of cylindrical
symmetry is shown, where the three-dimensional distribution
is symmetric about the vertical axis. The parameters chosen
are an aspect ratio λ = 0.2 and expansion times ω⊥t = 0,1,3
and 10. (b) The deformation at a position radially displaced

by
√

EF /mω2
⊥
. (c) Geometrical representation of collisions

in momentum space. The two spin states have identical dis-
tributions. Three different types of collisions are shown for
particles with initial momenta p1 and q1 - none, one or both
of the final states are occupied.

The effect of collisions can be formally calculated from
the Boltzmann transport equation for the evolution of
the phase space distribution f(x,p, t). In the absence
of external potentials and neglecting mean field we have
[30]:

∂f

∂t
+ v.

∂f

∂x
= Γcoll[f ] (4)

where v = p/m and Γcoll[f ] describes the effect of col-
lisions. Collisions attempt to restore local equilibrium
by countering the deformation of the momentum space
Fermi surface during free expansion (Eq. 2).
Γcoll[f ] can be written as the collision integral:

Γ(x,p1, t) = − σ
4πh3

∫
(x,t) d3q1d

2Ω |p1−q1|
m ×

[f(p1)f(q1)(1− f(p2))(1 − f(q2))

− f(p2)f(q2)(1 − f(p1))(1− f(q1))] (5)
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where σ is the momentum-independent scattering cross-
section, f(pi) = f(x,pi, t), f(qi) = f(x,qi, t) and Ω
points along p2−q2. The integral over q1 is over the mo-
mentum ellipsoid at position x and time t for one of the
spin states. The first term in the integrand is the collision
rate for the process p1+q1 → p2+q2. The second term
corresponds to the reverse process p2+q2 → p1+q1, and
ensures that only distribution changing collisions con-
tribute.
Pauli blocking is expressed in the suppression factors

for the final states (1 − f) in Γ. The collision integral
neglecting Pauli blocking, ΓCl,p, is furnished by setting
the suppression factors all equal to 1 in Eq. 5. This is
the rate for classical collisions which change the momen-
tum distribution. The total classical collision rate ΓCl

is the first term on the right hand side of Eq. 5 without
any suppression factors. In addition to ΓCl,p, this also
contains the rate for collisions which do not change the
momentum distribution: if both final states are occu-
pied, then the reverse process has the same rate. These
additional collisions do not affect observables of the sys-
tem. Fig. 1(c) shows examples of these different types of
collisions. p1 + q1 → p2 + q2 contributes to ΓCl, ΓCl,p

and Γ. p1 + q1 → p3 + q3 contributes to ΓCl and ΓCl,p.
p1 + q1 → p4 + q4 contributes only to ΓCl. To deter-
mine the effect of Pauli blocking, we compare Γ and ΓCl,p

for a small cross-section σ. The collision rate at a par-
ticular time t can then be calculated perturbatively, by
propagating the system ballistically for the time t and
then evaluating Eq. 5 with and without the suppression
factors.
Fig. 2(a) displays the numerically calculated collision

rates Γ, ΓCl,p and ΓCl, evaluated at x = p = 0, as a
representative case, for an initial aspect ratio λ = 0.03.
Both Γ and ΓCl,p increase initially as the deformation
of the Fermi surface becomes more pronounced. For
long times (ω⊥t � 1), they are both suppressed be-
cause both the density (

∫
d3q1) and the relative ve-

locity ( |p1−q1|
m ) drop. The two curves approach each

other with time since Pauli blocking becomes less ef-
fective with stronger deformation. The fraction of mo-
mentum changing collisions which are not affected by
Pauli blocking, F (λ) =

∫
dtΓ(0,0, t)/

∫
dtΓCl,p(0,0, t),

is shown in Fig. 2(b). The main result of our paper is
the inefficiency of Pauli blocking during expansion from
anisotropic traps. For λ < 0.05, F > 0.5, and approaches
∼ 0.55 as λ approaches 0. Most experiments work in this
regime of trap aspect ratio.
The above results form an upper bound on the Fermi

suppression even if we consider all the possible collisions
occurring in the system, for arbitrary x and p. First, we
observe that for all x, at any time t, the Fermi surface
is identically deformed and different only in size accord-
ing to the local density (Eqs. 2,3, Fig. 1(a,b)). We have
checked numerically that to within 5%, the central mo-

mentum provides a lower bound on Γ within a momen-
tum ellipsoid, at all x and for all times t. Next, we note
that for x 	= 0, the density n(x, t) puts more weight at
longer times than n(0, t) (Eq. 3). Since Fermi suppres-
sion becomes less effective with time, Pauli blocking is
most effective at x = 0. The calculation for x = p = 0

thus provides an effective upper bound for the overall
collisional suppression in the system. We conclude that
more than half of all the possible collisions are not Pauli
blocked for typical experimental values of λ.
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FIG. 2. (a) Collision rate as a function of expansion time
in the perturbative approximation for the initial aspect ratio
λ = 0.03. Dashed line - total classical collision rate Γcl, thin
line - classical rate for momentum changing collisions Γcl,p,
thick line - collision rate for fermions Γ. The displayed rates
were evaluated at x = 0 and p = 0 and give an effective upper
bound on the Fermi suppression. (b) Allowed fraction of col-
lisions F (λ) for a zero-temperature two-spin Fermi gas. For
an initial aspect ratio λ = 0.05, F is 0.5. For large anisotropy
(λ → 0), F approaches ∼ 0.55.

So far, we have not considered the effect of the colli-
sions themselves on the momentum distribution. Colli-
sions drive the system towards equilibrium, which cor-
responds to an isotropic Fermi-Dirac distribution. If
this collisional relaxation (Eq. 5) is much faster than the
non-equilibrium perturbation due to ballistic expansion
(Eq. 2), the momentum distribution maintains local equi-
librium at all times. If local equilibrium is maintained,
the Boltzmann equation leads to the hydrodynamic equa-
tions [30]. For free expansion from anisotropic atom
traps, these equations lead to the reversal of anisotropy
[16,17]. Even if equilibrium is not fully maintained, col-
lisions always have the effect of transferring momentum
from the weakly confining axis to the strongly confining
axis resulting in an eventual spatial aspect ratio > 1 [17].
We now want to reconcile our new result that Pauli

blocking is inefficient during free expansion, with pre-
vious results [26] which show that at low temperatures,
collisional damping of collective excitations is suppressed.
For this, we derive an equation of motion for the momen-
tum space anisotropy α to leading order in α and T/TF

[31]:

α̇ =
1

3
(∂xvx + ∂yvy − 2∂zvz)− nσpF

m
C

(
α,

T

TF

)
(6)
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where C describes the collisional relaxation and has the
asymptotic forms:

C

(
α,

T

TF

)
=
3π2

5

(
T

TF

)2

α, α 

(

T

TF

)

96

49
α3, α �

(
T

TF

)
. (7)

In terms of α, the aspect ratio of the momentum space

ellipsoid is
√

1−α
1+2α . pF , T, TF are the local Fermi momen-

tum, temperature and Fermi temperature respectively.
This equation was derived from the second momentum
moment of the Boltzmann equation (Eqs. 4,5), using a
Fermi-Dirac distribution with an anisotropic Fermi sur-
face as ansatz [32]. The numerical coefficients in Eq. 7
were obtained by analytic integrations over momentum
space.
At zero temperature, there is no linear term in α in

Eq. 7. This shows that Pauli blocking is efficient as long
as the anisotropy is small. This is the case for small am-
plitude excitations in a trapped degenerate gas [26]. How-
ever, for the large anisotropies of ballistic expansion, the
α3 term, which is independent of temperature and not
affected by Pauli blocking, is responsible for collisional
relaxation.
Eqs. 6,7 allow us to distinguish collisionless from hy-

drodynamic behavior in different regimes. The driving
term involving v is on the order of the trap frequency
ω⊥ and the damping term has a prefactor nσvF . There-
fore, the dimensionless parameter characterizing the at-
tainment of the hydrodynamic limit is Φ0 = nσvF /ω⊥. If
Φ0 
 1, then one can neglect collisions entirely, and the
gas will expand ballistically. For small anisotropies, hy-
drodynamic behavior requires Φ0(T/TF )

2 � 1. For large

anisotropies, hydrodynamic behavior requires Φ
1/3
0 � 1.

At ultralow temperatures, the expansion after release
from a highly anisotropic trap may be collisionless ini-
tially, but as α grows, the α3 term in Eq. 7 will become
important, and induce hydrodynamic behavior.
Our calculations clearly predict that for parameters

of current experiments, Φ0 > 1, free expansion will not
be collisionless, but show behavior which is at least in-
termediate between collisionless and hydrodynamic [17].
Full hydrodynamic behavior may not be achieved, since
for small values of α, Pauli suppression becomes effective
again. More quantitative studies are necessary in order
to assess how much this behavior would differ from su-
perfluid expansion. This could be realized by extending
analytical studies [17] to high degeneracies or by Monte-
Carlo techniques [33]. Our main conclusion is clear, how-
ever, that the breakdown of Pauli blocking under free
expansion means that hydrodynamic expansion will not
be the dramatic, qualitative signal for superfluidity in
strongly interacting fermions, the way it was for BEC.
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Radio-Frequency Spectroscopy of
Ultracold Fermions

S. Gupta,1* Z. Hadzibabic,1 M. W. Zwierlein,1 C. A. Stan,1

K. Dieckmann,1 C. H. Schunck,1 E. G. M. van Kempen,2

B. J. Verhaar,2 W. Ketterle1

Radio-frequency techniques were used to study ultracold fermions. We ob-
served the absence of mean-field “clock” shifts, the dominant source of sys-
tematic error in current atomic clocks based on bosonic atoms. This absence
is a direct consequence of fermionic antisymmetry. Resonance shifts propor-
tional to interaction strengths were observed in a three-level system. However,
in the strongly interacting regime, these shifts became very small, reflecting the
quantum unitarity limit and many-body effects. This insight into an interacting
Fermi gas is relevant for the quest to observe superfluidity in this system.

Radio-frequency (RF) spectroscopy of ultra-
cold atoms provides the standard of time.
However, the resonance frequencies of ultra-
cold atoms are sensitive to interactions be-
tween atoms, leading to the so-called clock
shifts of the unperturbed resonances (1).
These shifts limit the accuracy of current
atomic clocks (2, 3), but can also be used to
characterize atomic interactions.

RF spectroscopy has previously been ap-
plied to cold atoms to determine the size and
temperature of atom clouds (4, 5). RF meth-
ods have also been used for evaporative cool-
ing, for preparing spinor Bose-Einstein con-
densates (BECs) (6, 7), and as an output
coupler for atom lasers (5, 8). In all these
experiments, shifts and broadenings due to
atomic interactions were negligible. Recent-
ly, density-dependent frequency shifts of RF
transitions were observed in rubidium (9) and
sodium (10) BECs. These frequency shifts
are proportional to the difference in mean-
field energies of two internal atomic states
and allow scattering lengths to be extracted.
Mean-field shifts in BECs have also been
observed by optical spectroscopy (11, 12).

Here, we apply RF spectroscopy to ultra-
cold clouds of fermions and demonstrate sev-
eral phenomena: (i) the absence of a clock
shift in a two-level system because of fermi-
onic antisymmetry, (ii) the emergence of
mean-field shifts in a three-level system after
the relaxation of pair correlations, (iii) the
limitation of mean-field shifts because of the
unitarity limit, and (iv) the universality of the

interaction energy in a dense cloud, indepen-
dent of the attractive or repulsive nature of
the two-particle interactions.

Research in ultracold fermions has ad-
vanced rapidly, with six groups now having
cooled fermions into quantum degeneracy (13–
18). A major goal of this research is to induce
strong interactions by tuning magnetic fields to
scattering resonances (called Feshbach reso-
nances). Under these conditions, Cooper pairs
of fermions may form, leading to superfluidity.
This would establish a model system for study-
ing Bardeen-Cooper-Schrieffer (BCS) pairing
at densities nine orders of magnitude lower than
in previous realizations in 3He and supercon-
ductors. We show that RF spectroscopy can be
used to characterize interactions between fermi-
ons in the regime where superfluidity has been
predicted (19, 20).

Our experimental technique for preparing
ultracold fermions has been considerably
improved since our earlier work (17, 21).
Because the Pauli exclusion principle sup-
presses elastic collisions between identical
fermions at low temperatures and prevents
evaporative cooling, we cooled fermionic 6Li
sympathetically with bosonic 23Na loaded
into the same magnetic trap. In contrast to
previous work, we cooled both species in
their upper hyperfine states (23Na: �F,mF� �
�2,�2�, 6Li: �F,mF� � �3⁄2,�3⁄2�, where F and
mF are the quantum numbers for the total spin
and its z component, respectively. This led to
a reduction of inelastic loss processes and
boosted our final fermion atom numbers by
two orders of magnitude. We could produce
BECs that contained up to 10 million sodium
atoms in the �2,�2� state by evaporatively
cooling pure bosonic samples in the magnetic
trap. For a Bose-Fermi mixture, the finite
heat capacity of the bosons limited the final
lithium temperature after the 30-s evapora-
tion cycle to �0.3 TF for 10 million fermi-

ons and �TF for 50 million fermions (22),
where TF is the Fermi temperature.

The spin states of 6Li of most interest for
superfluid pairing are the two lowest states
�1� and �2� (�1⁄2,�1⁄2� and �1⁄2,�1⁄2� at low
field), which are predicted to have an inter-
state s-wave (23) Feshbach resonance at
�800 G (24, 25). However, both states are
high-field–seeking at these fields, which
makes them unsuitable for magnetic trapping.
We therefore transferred the atoms into an
optical trap. For these experiments, 6 to 8
million �3⁄2,�3⁄2� lithium atoms were loaded
into the optical trap at temperature T � TF �
35 �K (26). The atoms were then transferred
to the lowest energy state �1�, with an adia-
batic frequency sweep around the lithium
hyperfine splitting of 228 MHz. Magnetic
fields of up to �900 G were applied, a range
that encompasses the �1� � �2� Feshbach
resonance. Using RF-induced transitions near
80 MHz, we could create mixtures of states
�1�, �2�, and �3� (�3⁄2, �3⁄2� at low field) and
explore interactions between fermions in
these states.

Collisions between atoms cause a shift of
their energy, which is usually described by the
mean-field effect of all the other atoms on the
atom of interest. For example, atoms in state �2�
experience an energy shift, [(4�	2)/(m)]n1a12,
that is due to the presence of atoms in state �1�.
Here 	 is Planck’s constant h divided by 2�, m
is the mass of the atom, n1 is the density of �1�
atoms, and a12 is the interstate scattering length
between states �1� and �2�. We use the conven-
tion that positive scattering length corresponds
to a repulsive interaction. Density-dependent
shifts of the resonance frequency for the tran-
sition that connects two states have been ob-
served in laser-cooled (1) and Bose-condensed
(9, 10) clouds.

In the case of ultracold fermions, only
interactions between different internal states
are allowed. For a system of density n, let us
compare the energy of a gas prepared purely
in state �1� to a gas in which one atom is
transferred into state �2�. The energy differ-
ence is h
12 � [(4�	2)/(m)]na12, where 
12
is the resonance frequency of the noninteract-
ing system. Similarly, the energy difference
between a gas prepared purely in state �2� and
a gas in which one atom is transferred into
state �1� is h
12 � [(4�	2)/(m)]na12.

However, these energy shifts should not
affect the resonance for a coherent transfer
out of a pure state. For fermions in the initial
pure state, the pair-correlation function van-
ishes at zero distance because of the antisym-
metry of the wave function. During any co-
herent transfer process, the state vectors of all
the atoms rotate “in parallel” in Hilbert space;
i.e., the superposition of the two spin states
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has the same relative phase for all atoms.
Thus, the atoms remain identical and cannot
interact in the s-wave regime. The mean-field
energy is thus established only after the co-
herence of the superposition state is lost and
the pair correlations have relaxed, forming a
purely statistical mixture of the two states.

It is a consequence of Fermi statistics
that spectroscopic methods do not measure
the equilibrium energy difference between
the initial and final state of the system, but
rather measure the unperturbed resonance
frequency. The expected absence of the
clock shift has led to suggestions for the
use of fermions in future atomic clocks
(27 ). Our work presents an experimental
demonstration of this phenomenon.

We determined the transition frequency be-
tween states �1� and �2�, first starting with a pure
state �1� and then with a pure state �2� sample.
The absence of a splitting between these two
lines proves the suppression of the clock shift.
Fig. 1 shows an example of such measure-
ments. The magnetic field was ramped up to
570 G with the cloud in state �1�. At this field,
a12 � 150a0. Therefore, the expected equilib-
rium mean-field shifts were �
 � �5 kHz for
our mean density of 3 
 1013 cm�3 (28). The
interaction between states �1� and �2� at this
magnetic field was also observed in the mutual
evaporative cooling of the two states in the
optical trap. RF pulses 140 �s in duration were
applied at frequencies near the unperturbed res-
onance 
12 � 76 MHz. Atoms in states �1� and
�2� could be monitored separately by absorption
imaging, because they are optically resolved at
this field. We observed a suppression of the
clock shift by a factor of 30 (Fig. 1). Using the
same method, we observed the absence of a
clock shift at several other magnetic fields. In
particular, we observed a suppression of more
than three orders of magnitude at �860 G (29).

P-wave interactions (23) could lead to a
nonvanishing clock shift. However, at these
low temperatures, they are proportional to T
or TF, whichever is higher, and are therefore
strongly suppressed.

We can observe mean-field shifts and
scattering lengths spectroscopically by driv-
ing transitions from a statistical mixture of
two states to a third energy level. [While this
work was in progress, use of a similar method
to measure scattering lengths in fermionic
40K was reported (30).] Specifically, we re-
corded the difference between the RF spectra
for the �2� 3 �3� transition in the presence
and in the absence of state �1� atoms. The
presence of atoms in state �1� is then expected
to shift the resonance by (31).

�
 �
2	

m
n1(a13 � a12) (1)

In our experimental scheme to determine the
interaction energy at different magnetic fields
(Fig. 2), the system was prepared by ramping
up the magnetic field to 500 G with the atoms

in state �1�. Either partial or complete RF
transfer to state �2� was then performed. The
number of atoms in state �1� was controlled
by adjusting the speed of a frequency sweep
around the �1� 3 �2� resonance. A fast, non-
adiabatic sweep created a superposition of the
two states, whereas a slow, adiabatic sweep
prepared the sample purely in state �2�. A
wait time of 200 ms was allowed for the
coherence between states �1� and �2� to decay
and the system to equilibrate.

Typical parameters for the decohered �1�
– �2� mixture were mean-density n1 �
2.4 
 1013 cm�3 and T � 0.7 TF. The
magnetic field was then changed to the
desired value, and the transition from state
�2� to state �3� was driven with 140-�s RF
pulses (Fig. 2C). We monitored the appear-
ance of atoms in state �3� and the disap-
pearance of atoms from state �2�, using
simultaneous absorption imaging. Fig. 2D
shows the unperturbed and perturbed reso-
nances at the magnetic field B � 480 G.
The position of the unperturbed resonance

Fig. 1. Absence of the clock shift. RF transitions
were driven between states �1� and �2� on a
system prepared purely in state �1� (solid cir-
cles) and purely in state �2� (open circles).
Mean-field interactions would have resulted in
5-kHz shifts for the two curves in opposite
directions. Gaussian fits (solid lines) to the data
are separated by 0.04 � 0.35 kHz. This gives a
clock-shift suppression factor of 30. Arb., arbi-
trary units.

Fig. 2. Schematic of the mean-
field measurement and represen-
tative spectra at 480 G. (A) Hy-
perfine structure of the ground
state of 6Li. (B and C) Experimen-
tal scheme: (B) Preparation of a
mixture of atoms in states �1�
and �2�, and (C) RF spectroscopy
of the �2� 3 �3� transition using
a variable radio frequency (
RF).
(D) The fraction of atoms trans-
ferred from �2� to �3�, with �1�
atoms absent (solid circles) and
present (open circles). The
mean-field shift is computed
from Gaussian fits to the data
(solid lines). (E) Spatial images of
state �3� for the perturbed reso-
nance. The optical trap was
turned off immediately after the
RF pulse and absorption images
of the atoms were taken after
120 �s of expansion time. The
central section of �150-�m ver-
tical extent was used to extract
the transferred fractions in (D).
(E) also shows images of states
�2� and �1� for zero RF detuning.
States �3� and �2� were imaged
simultaneously to observe their
complementary spatial struc-
ture. State �1� was imaged after
760 �s of expansion time to
record its density for normaliza-
tion purposes.
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23 also determines the magnetic field to an
accuracy of �0.1 G. Fig. 2E shows absorp-
tion images of atoms in state �3�, obtained
for different values of the applied radio
frequency. One can clearly see the spatial
dependence and thus the density depen-
dence of the mean-field shift: Close to the
unperturbed resonance, the low-density
wings of the cloud are predominantly trans-
ferred, whereas the high-density central
part of the cloud is transferred only at
sufficient detuning. To suppress spurious
effects from this spatial dependence, only a
small central part of the images was used to
extract the transferred atomic fraction.

To ensure that our mean-field measure-
ments were performed on a statistical mix-
ture, we measured the time scale for decoher-
ence in our system. The decay of the �1� � �2�
coherence at 500 G was observed by moni-
toring the �2� 3 �3� transfer at the measured
unperturbed resonance 
23, as a function of
wait time (Fig. 3). For wait times that are
small compared to the decoherence time of
the �1� � �2� superposition, the �2�3 �3� RF
drive places each atom in an identical three-
state superposition. All mean-field shifts are
then absent and the resulting transfer is un-
changed from the unperturbed case. For long-
er wait times, the �1� � �2� superposition
decoheres and mean-field interactions set in.
This shifts the resonance frequency of the �2�
3 �3� transition, reducing the transferred
fraction at 
23. The measured decoherence
time of �12 ms was attributed mainly to the
sensitivity of 
12 to magnetic field variations
across the cloud. These inhomogeneities
cause the relative phase of the �1� � �2�
superposition in different parts of the trap to
evolve at different rates, given by the local

12. Atoms that travel along different paths
within the trap therefore acquire different
phases between their �1� and �2� components.
Being no longer in identical states, s-wave
interactions between them are allowed. The
inhomogeneities scale with B, whereas the
sensitivity of the transition scales with �
12/

�B. We would thus expect the decoherence
time to vary inversely with the product of
these two quantities. Our hypothesis is sup-
ported by our observation of longer decoher-
ence times at higher fields, where B 
 �
12/
�B is lower.

Fig. 4A summarizes the results of our
mean-field measurements for a wide range of
magnetic fields up to 750 G. For magnetic
fields up to 630 G, our data can be explained
fairly well by using Eq. 1 with the theoretical
calculations of the scattering lengths shown
in Fig. 4B and an effective density of n1 �
2.2 
 1013 cm�3, which is consistent with
the initial preparation of the system at 500 G.
A narrow resonance of a12 at �550 G (21,
25, 32) is indicated by the data but was not
fully resolved. We also see additional struc-
ture near 470 G, which is not predicted by
theory and deserves further study.

For fields above 630 G, the measured shifts
strongly deviated from the predictions of Eq. 1,
indicating a different regime of interactions. In
the region between 630 G and 680 G, the two
scattering lengths are expected to be large and
positive, with a13 �� a12 (Fig. 4B). Eq. 1 would
thus predict large positive mean-field shifts. In
contrast, we observe very small shifts, indicat-
ing almost perfect cancellation of the two con-
tributions. We also observe essentially no mean-
field shifts between 680 G and 750 G, where the
two scattering lengths are predicted to be very
large in magnitude and of opposite signs, and in
a simple picture should add up to a huge nega-
tive shift. These results are evidence for phe-
nomena in a strongly interacting system, where

the scattering length becomes comparable to
either the inverse wave vector of interacting
particles or the interatomic separation.

Eq. 1 is valid only for low energies and
weak interactions, where the relative wave
vector of the two particles, k, satisfies k ��
1/�a�. For arbitrary values of ka, the s-wave
interaction between two atoms is described
by replacing the scattering length a with the
complex scattering amplitude f.

f �
� a

1�k2a2 (1�ika) (2)

The real part of f, Re( f ) determines energy
shifts, and hence the ground state properties of
an interacting many-body system. The imagi-
nary part, Im( f ) determines the (inverse) life-
time for elastic scattering out of a momentum
state, and hence the dynamic properties of the
system such as thermalization rates. For k�a�3
�, the elastic cross-section � � 4�Im( f )/k
monotonically approaches the well known
“unitarity-limited” value of 4�/k2. On the other
hand, the two-particle contribution to the mean-
field energy, proportional to �Re( f ) � a/(1 �
k2a2) peaks at �a� � 1/k and then, counter-
intuitively, decreases as 1/�a� for increasing �a�.
Averaging Re( f ) over a zero-temperature
Fermi distribution with Fermi momentum 	kF
limits its absolute value to 1.05/kF and marked-
ly weakens its dependence on the exact value of
a in the kF�a� � 1 regime (33). This results in a
prediction for the mean-field energy that is
sensitive to the sign of the scattering length,
remains finite for kF�a� �� 1, and never exceeds
0.45 EF, where EF is the Fermi energy. Hence,

Fig. 3. Emergence of mean-field shifts due to
decoherence at 500 G. Decoherence leads to a
reduction of the �2� 3 �3� transfer at the
unperturbed resonance 
23. An exponential fit
to the data (solid line) gives a time constant of
12 ms.

Fig. 4. Spectroscopic measurement of interaction energy. (A) Frequency shift versus magnetic field
for the �2�3 �3� resonance due to atoms in state �1�. The shifts are computed by monitoring the
arrival fraction in state �3� for 140-�s RF pulses, except at 750 G. At 750 G, because of strong
inelastic losses between �3� and �1� atoms, we monitored the loss of atoms in state �2� after
applying RF sweeps 3 ms in duration and 2 kHz in width. All the data points are normalized to the
same atom number in state �1�. The fit at low fields (solid line) uses Eq. 1 with n1 � 2.2 
 1013

cm�3 and the theoretical calculations of the scattering lengths. The error bars reflect uncertainty
in the state �1� atom number and the uncertainty in the Gaussian fits to the spectra. The dashed
line indicates the position of the predicted a13 resonance. (B) S-wave scattering lengths a12 and a13
as a function of magnetic field, obtained from a highly model-independent quantum-scattering
calculation. The calculation makes use of the presently available 6Li experimental data (40) in a
coupled channel approach to deduce accumulated phases that characterize the less well-known,
short-range parts of the 6Li � 6Li scattering potential (32). a12 has a narrow Feshbach resonance
at 550 G and a wide one at 810 G. a13 has a wide Feshbach resonance at 680 G.
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this approach could qualitatively explain our
results in the 630 to 680 G region, but it is in
clear contradiction with negligible resonance
shifts in the 680 to 750 G region (34).

We suggest that these discrepancies might
be due to the fact that we are in the high-density
regime, where n�a�3 approaches unity. In a de-
generate Fermi gas, the interparticle spacing is
comparable to the inverse Fermi wave vector,
kF
3 � 6�2n. Hence, the unitarity limit coincides
with the breakdown of the low-density approx-
imation (n�a�3 �� 1) and higher order many-
body effects can become important. Some re-
cent many-body calculations (35–37) suggest
that in the regime kF�a� �� 1 (or n�a�3 �� 1), the
interaction energy is always negative and inde-
pendent of both sign and magnitude of a. This
suggests that whenever the scattering length is
large, either positive or negative, the interaction
energy is a universal fraction of the Fermi en-
ergy (33). This is a possible explanation for the
small line shifts that we observed for fields
higher than 630 G, where the interactions are
strong in both states.

This picture is consistent with other recent
experimental observations (30, 33, 38, 39).
Expansion energy measurements in a mixture
of states �1� and �2� of 6Li (39) showed a
negative interaction energy at 720 G, which is
on the repulsive side of the predicted Fesh-
bach resonance. RF spectroscopy in 40K (30)
has also shown some saturation of the mean
field in the vicinity of a Feshbach resonance,
which may reflect the unitarity limit.

In characterizing an interacting Fermi gas by
RF spectroscopy, we have demonstrated ab-
sence of clock shifts in a two-level system and
introduced a three-level method for measuring
mean-field shifts. For strong interactions, we
have found only small line shifts that may re-
flect both the unitarity limit of binary collisions
and many-body effects. It would be very impor-
tant to distinguish between two-body and many-
body effects by studying the gas over a broad
range of temperatures and densities. In a very
dilute and very cold gas, the weakly interacting
limit could be extended to very large values of
�a�, thus allowing for direct verification of mo-
lecular calculations. This presents experimental
challenges, because cooling changes the density
and the temperature together. It would also be
interesting to study similar phenomena in
bosonic gases, in order to distinguish to what
extent the high density many-body effects de-
pend on quantum statistics. This insight into the
physics of strongly interacting Fermi gases must
be taken into account in the search for superflu-
idity in these systems.
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The Interface Phase and the
Schottky Barrier for a Crystalline

Dielectric on Silicon
R. A. McKee,1* F. J. Walker,1,2 M. Buongiorno Nardelli,1,3

W. A. Shelton,1 G. M. Stocks1

The barrier height for electron exchange at a dielectric-semiconductor interface
has long been interpreted in terms of Schottky’s theorywithmodifications from
gap states induced in the semiconductor by the bulk termination. Rather, we
showwith the structure specifics of heteroepitaxy that the electrostatic bound-
ary conditions can be set in a distinct interface phase that acts as a “Coulomb
buffer.” This Coulomb buffer is tunable and will functionalize the barrier-height
concept itself.

When Schottky (1) and Mott (2) formulated the
barrier-height theory for a metal-semiconductor
junction and later when Anderson (3) formulated
the band-edge offset problem for semiconductor-
semiconductor junctions, there was no consider-
ation given to interface states as contributions

to the electrostatic boundary conditions. The
charge distribution at the interface was treated
simply as a superposition of the bulk-terminated
junction. Certainly these theories have been in-
sightful, but they consistently misrepresent the
barrier height or band-edge offsets because
real interfaces, apparently from interfacial
structure variations, modify the intrinsic band
alignment (4–6).

Although the bulk-termination view of the
problem has been enhanced over the years with
an ever-increasing formalization of theoretical
techniques (7–15), recent bond polarization ar-
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