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Thermisch induzierte Fluktuationen in einem bosonischen Josephson Kon-
takt

Ein bosonischer Josephson Kontakt kann mit Hilfe eines Bose-Einstein Kondensates
in einem Doppelmuldenpotential erzeugt werden. Dies ermöglicht es, das Kondensat
in zwei lokalisierte Wellenfunktionen aufzuspalten. Der endliche Überlapp der Wellen-
funktionen im Bereich der Doppelmuldenbarriere führt zu einer Kopplung der beiden
Moden durch tunnelnde Atome. Im Rahmen dieser Arbeit werden thermische Effekte in
einem solchen Kontakt untersucht, die zu Fluktuationen der relativen Phase zwischen
den Moden führen. Diese thermischen Phasenfluktuationen werden als Funktion der
Temperatur und der Tunnelkopplung gemessen.

Die Phasenfluktuationen werden zur Bestimmung der Temperatur eines Bose Gases
weit unterhalb der kritischen Temperatur herangezogen. In diesem Regime versagen
Standardmethoden, da diese von der Meßbarkeit des thermischen Anteils des Bose Gases
abhängen. Des weiteren wird das Aufheizen eines Bose Gases in einer dreidimensionalen
harmonischen Falle gemessen. Die daraus resultierende Wärmekapazität ist konsistent
mit der theoretisch erwarteten eines idealen Bose Gases.

Thermally Induced Fluctuations in a Bosonic Josephson Junction

A Bosonic Josephson Junction is realised by loading a Bose-Einstein condensate into
a double-well potential which allows to split the condensate into two localized wave
functions. The finite overlap of the wave functions in the region of the double-well
barrier leads to a coupling of the two condensates due to tunnelling. In this thesis, we
investigate finite temperature effects in such a junction that result in fluctuations of the
relative phase between the wells. These thermal phase fluctuations are measured as a
function of temperature and tunnelling coupling.

We use these phase fluctuations to determine the temperature of a Bose gas far below
the critical temperature. In this regime standard methods are not applicable since they
rely on the observation of the thermal component of the Bose gas. We further measure
the heating up of the Bose gas in a three-dimensional harmonic trap. The deduced heat
capacity is consistent with the prediction for an ideal Bose gas.
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Chapter 1

Introduction

The invention of quantum mechanics in the last century revised the understanding of
the microscopic world completely. Among the most fascinating - with classical theory
not explainable - results are the wave nature of massive particles [1] and the resulting
matter wave interference of these particles. The first experiments on interfering electrons
have been realised by Davisson and Germer in 1927 [2]. These effects can be explained
by describing the quantum particles with a wave function whose absolute square corre-
sponds to the probability density. However, the propablility description implies that it
is necessary to do many measurements in order to fully charaterize the wave function of
a particle. This situation is different with a Bose-Einstein condensate (BEC). The phe-
nomenon of Bose-Einstein condensation, a result of the theoretical investigations done
by Bose in 1924 on photons and Einstein 1925 on massive bosons [3, 4], predicts that a
macroscopic number of bosons can occupy the same quantum state. In such a system the
wave function can be fully characterized by doing just one measurement. In this sense
a BEC, representing a macroscopic matter wave, is an extraordinary probe for doing
quantum mechanical investigations.

One way to generate a Bose-Einstein condensate is cooling a dilute bosonic vapor
below the critical temperature, where the condensation takes place. Since this critical
transition is usually found in the micro-Kelvin regime, the experimental realisation is
an enormous technical challenge. It took seventy years after the theoretical prediction
to generate the first Bose-Einstein condensate in a dilute vapor. The experiments have
been done by Wiemann, Cornell, Hulet and Ketterle in 1995 [5, 6, 7]. Since then, this
new type of matter has provided a useful tool for studying matter wave dynamics, as for
instance the interference of two Bose-Einstein condensates which has been accomplished
for the first time by Ketterle in 1997 [8].

Josephson Junctions

Another fundamental but also in the classical sense contradictory effect is the tunnelling
of massive particles through regions that are forbidden from a classical point of view. This
effect can also be accessed with a Bose-Einstein condensate by loading the condensate
into a double-well potential. This setup is referred to as Bose-Einstein or Bosonic Joseph-
son Junction (BJJ). The condensate in such a junction splits in two modes and populates
both wells. These two modes are weakly coupled by particles that tunnel through the
barrier of the double-well potential. The reason for calling it Bosonic Josephson Junc-
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tion is, that it is very similar to the well-known Josephson junction in solid state and
condensed matter physics. There, people did extensive studies about weak links between
two modes of superfluid helium (see [9] for a review article on that) and weak links of
two superconductors. For the latter the barrier consists of a thin insulator. However,
the similarity arises from the fact that all three systems are describable within a similar
model. The modes are associated with two macroscopic wave functions with an overall
phase for each. These wave functions are assumed to overlap in the region of the barrier
what results in a weak coupling. The coupling itself is then physically given by particles
that tunnel through the barrier.

The origin of these junctions relies on a theoretical prediction of Brian D. Josephson in
the year 1962 [10] who claimed one should observe a current across the insulating barrier
in the case of the superconductors. This current depends on the relative phase of the
two macroscopic wave functions that describe the Cooper pairs in each superconductor.
The origin of this current - as mentioned above - was supposed to be Cooper pairs that
tunnel through the barrier. This tunnelling effect has been proven one year later in 1963
[11]. Nowadays, the superconducting Josephson junction has many useful applications,
such as SQUIDS (superconducting quantum interference devices) [12], consisting of two
Josephson junctions, with which it is possible to measure magnetic field variations to
a very high accuracy. Furthermore, the Josephson junction have lead to high accuracy
measurements on the ratio of the electron charge to the Planck constant and it has
provided the basis of the nowadays used voltage standard.

However, the implementation of a Bose-Einstein Josephson Junction has recently
been accomplished for the first time in our group by loading a condensate into an optical
double-well potential. The tunnelling dynamics - given by the temporal evolution of the
relative phase and the population imbalance between the two modes - has been subject
to experiments in our group [13]. A profound theoretical description of such a BJJ can
be found for instance in [14, 15, 16].

Finite Temperature Effects in a Bosonic Josephson Junction

A Josephson Junction with a Bose-Einstein condensate can be utilized to investigate
finite temperature effects resulting from the thermal component of the condensate. The
interaction of the thermal particles with the particles in the condensate fraction leads
to a scrambling of the relative phase of the two macroscopic wave functions, whereas
the coherent coupling of the wave functions by particles tunnelling through the barrier
stabilizes it. This results in shot-to-shot1 fluctuations of the relative phase. The process
is investigated by studying interference measurements with the two modes in the BJJ.
The resulting interference pattern, that corresponds to the momentum distribution of the
condensate, can be used to directly deduce the relative phase of the two modes. In the
scope of this thesis these phase fluctuations are quantitativley studied by measuring the
coherence factor, which represents the visibility of the average of many single interference
patterns, as a function of tunnelling coupling and the temperature.

Since the coherence factor depends on the temperature it can be used for doing ther-
mometry. What makes it so interesting is the fact that this method is applicable in a

1Shot-to-shot means that one measurement can be done with one condensate since the condensate
is destroyed during the measurement. After that a new condensate needs to be created under the same
experimental conditions.
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regime where standard methods fail. The commonly used methods rely on measuring the
expansion of the thermal cloud, since it is directly connected to the temperature. How-
ever, this is only suitable where the thermal cloud is observable and can be distinguished
from the background noise. Since for temperatures far below the critical temperature
only a few atoms occupy higher states, this method is not applicable anymore. But, in
this regime the thermal phase fluctuations are still present and thus can be utilized to
deduce the temperature.

In the scope of this thesis this new thermometer is demonstrated by measuring the
heating up of a Bose gas in a three dimensional harmonic trap. In order to validate
the new method, the result is cross-checked with a standard method in a regime where
both are applicable. Furthermore, for higher temperatures a change in the heating up
is supposed to be seen as soon as the critical temperature is crossed. This different
behaviour results from a discontinuity in the heat capacity of the Bose gas due to a
phase transition at the critical temperature.

Contents of this Thesis

The following thesis is divided into four chapters: In chapter two and chapter three, the
theoretical description of the considered phenomena and the system is given. First, the
basic theoretical description of the appearance of Bose-Einstein condensation of a dilute
Bose gas in a harmonic trap and the heat capacity of this configuration is discussed.
After introducing the non-linear Schrödinger equation, i.e. the so-called Gross-Pitaevskii
equation that predicts the condensate dynamics, in chapter three a two-mode approxi-
mation of a Bose-Einstein condensate in a double-well potential (BJJ) is described. The
main part of chapter three focusses on quantum mechanical and thermal fluctuations
concerning two dynamical variables - the relative phase and the population imbalance
- that are defined within the scope of the two-mode model. Furthermore, the momen-
tum distribution of the condensate in the Bosonic Josephson Junction is discussed with
respect to thermal fluctuations of the relative phase.

Chapter four gives an overview of the experimental setup used to realize the BJJ.
Here, the main steps of cooling a dilute Rubidium-87 vapor down to quantum degeneracy
and preparing the resulting condensate in an optical double-well potential is explained.
The last part of this chapter deals with the calibration of the relevant and accessable
experimental parameters.

In chapter five the experimental results on the thermal fluctuations of the relative
phase between the two-modes of the condensate are presented. Furthermore, a technique
is discussed how to apply these results as a new tool for thermometry. This point is
studied in the context of heating up a Bose gas in a harmonic trap.

After summarizing the results and giving an outlook for future prospects, the last part
of this thesis contains appendices considering mathematical and numerical calculations
for the two-mode model and the used non-linear Schrödinger equation. Furthermore, a
numerical comparison of the used classical Hamiltonian for the two-mode model and the
exact Hamiltonian in second quantization is given.
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Chapter 2

Theory of Bose-Einstein
Condensation

The fact that identical particles are indistinguishable in quantum mechanics leads to new
phenomena. For instance the statistical behaviour of a many particle system is different
than predicted by classical theory. It depends on the quantum nature of particles as
there are fermions and bosons. Considering bosons one prominent phenonemon is the
Bose-Einstein condensation where a macroscopic number of particles occupies a single
quantum mechanical state. This is not possible with fermions since they have to obey
the Pauli principle. The Bose-Einstein condensation has been predicted by Bose [3] in
1924 for photons and by Einstein [4] in 1925 for massive bosons. In the following chapter
we theoretically discuss the occurance of condensation for dilute Bose gases at very low
temperatures. Since this effect comes along with a quantum phase transition we also
study the heat capacity of a bose gas in this regime.

Furthermore, in order to consider dynamics of a Bose-Einstein condensate the Gross-
Pitaevskii equation, a non-linear Schrödinger equation, is discussed. It describes the
temporal evolution of the wave function with which a Bose-Einstein condensate is asso-
ciated.

2.1 Bose-Einstein Condensation in a Harmonic Trap

We consider a non-interacting Bose gas within the grand canonical ensemble. The atoms
shall be in a trapping potential with discrete single particle states. The mean number of
atoms 〈ni〉 found in the ith state with energy εi is given by the Bose-Einstein distribution

〈ni〉 =
1

e(εi−µ)/kBT − 1
(2.1)

where µ is the chemical potential and T the temperature of the gas (see standard text-
books [17]). The chemical potential, being the energy needed to transfer a particle from
infinity to the system, is always smaller than the lowest eigenenergy ε0. Otherwise, the
number of atoms in a particular state is less than zero which is not physical.

We assume the average number of atoms N in the gas to be constant1

N =
∑

i

〈ni〉 (2.2)

1The sum is to be taken over all possible single particle states.
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This constraint defines the chemical potential µ implicitly. For evaluating this sum we
replace it by an integral. This is valid if the spacing between the energy levels is small
compared to the temperature. By introducing the density of states g(ε) at a given energy
we replace the sum by ∑

→
∫
dεg(ε) (2.3)

While doing this we have to consider the following problem: If the density of states is
zero at the lowest state, this state is not taken into account. This problem arises for
instance when we consider a harmonic trapping potential. In order to correct this error
we separate the first term of the sum before integrating. We write Eq. (2.2) as

N = N0 +

∫
ε>ε0

dεg(ε)
1

e(ε−µ)/kBT − 1︸ ︷︷ ︸
Nex

(2.4)

where N0 is the number of particles in the ground state and Nex the number of particles
in the excited states.

As the density of states depends on the external potential, we consider a gas of bosons
with mass m in a three dimensional harmonic oscillator potential

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.5)

This is a good approximation to real trapping potentials since nearly all experiments use
potentials of parabolic shape or ones that can be approximated by a parabola to some
extend. The density of states2 is then given by [18]

g(ε) =
1

2

(
1

~ω̄

)3

ε2 with ω̄ = 3
√
ωxωyωz (2.6)

If we insert this expression into Eq. (2.4) we find that the integral on the right hand
side is finite for all temperatures, corresponding to the fact that the number of particles
in the excited states is finite at any given temperature. If we decrease the temperature
(while keeping the number of atoms constant, accompanied by an increase of the chemical
potential until µ ≈ ε0) we will reach a temperature where the number of particles which
are allowed to occupy the excited states is less than the total atom number. Decreasing
the temperature further will leave only one possibility to the atoms, namely occupying
the ground state. This results in a macroscopic occupation of the ground state and
is called Bose-Einstein condensation. The point where this transition takes place is
characterised by the critical temperature Tc. Another possibility to reach condensation
is to increase the total number of particles to more than the critical value in the excited
states at a given temperature.

We calculate the transition point in the thermodynamical limit3 where we set µ =
ε0 = 0

N = Nex (T = Tc, µ = 0) =⇒ kBTc = ~ω̄
(
N

ζ(3)

)1/3

(2.7)

2The number of states G(ε) can be calculated by summing over all possible quantum numbers in
order to get all possible states at a given energy. The density is then defined as g(ε) := ∂εG(ε).

3This means N → ∞, ~ω → 0 with N · ~ω = const.. Taking a finite number of particles and finite
size effects into account leads to a non-discrete transition temperature.
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With this result we can find a power law for the number of atoms which occupy the
ground state. If we solve Eq. (2.4) and insert the critical temperature we find

N0

N
= 1−

(
T

Tc

)3

(2.8)

For a real system with interacting particles these calculations are a good approximation
as long as na3 � 1, where n is the atom number density and a is the s-wave scattering
length.

2.2 Heat Capacity of a Bose-Einstein Condensate

The heat capacity of a gas of classical particles is expected to be constant and non-
zero for all temperatures. This is in contradiction to the third law of thermodynamics
which states that the heat capacity should vanish while the temperature is approaching
absolute zero. Thus, the inclusion of quantum nature of particles is necessary for a
correct description of the heat capacity. Especially, below the critical temperature,
quantum effects become significant and we expect a behaviour different to that predicted
by classical description. In the following, we discuss the heat capacity of a Bose gas both
for temperatures above and below the transition temperature (see also [18, 19]).

The heat capacity per particle is defined as the amount of energy gained or lost while
changing the temperature

c :=
1

N

(
dE

dT

)
(2.9)

We calculate the energy E of a bosonic atomic ensemble. This is done by taking the
sum over all energy levels weighted with their occupation number

E =
∑

i

εi〈ni〉 ≈ ε0N0 +

∫
ε>ε0

dε
εg(ε)

e(ε−µ)/kBT − 1
(2.10)

We again consider the case of atoms confined in a harmonic potential. If we evaluate
the integral above in the thermodynamic limit (ε0 = 0) we find

E =

(
g4(z)

ζ(3)

)
3kBNT

(
T

Tc

)3

(2.11)

where we have introduced the fugacity z = exp (µ/kBT ) and the generalized Riemann
Zeta function

gν(z) =
∞∑
l=1

zl

lν
(2.12)

For temperatures lower than the critical temperature we can set the fugacity z = 1 and
the specific heat can be directly calculated. For temperatures higher than Tc we have
to determine z(T ) and thus µ(T )4. The heat capacity for the whole temperature range

4In order to do this we insert the density of states (Eq. (2.6)) into the Eq. (2.4) and set N0 = 0.
This integral is then to be solved numerically since µ(T ) is only given implicitly.
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then reads

c(T ) =



(
4
ζ(4)

ζ(3)

)
3kB

(
T

Tc

)3

(T < Tc)

(
4
g4(z)

g3(z)
− 3

g3(z)

g2(z)

)
3kB (T ≥ Tc)

(2.13)

We consider the results in the limit of very high temperatures. In this case z(T ) � 1
and can be expanded to second order. The heat capacity then reads

c(T � Tc) =

(
1 +

ζ(3)

23

(
Tc

T

)3
)

3kB −→ 3kB (T →∞) (2.14)

The fact that the heat capacity goes asymptotically to 3kB is consistent with the value
expected from classical theory.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

2
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Figure 2.1: The heat capacity per particle of a Bose gas in units of the Boltzman constant vs tem-
perature is shown. The black curve corresponds to the heat capacity of a Bose gas in a 3D harmonic
oscillator. The blue curve shows the same for a Bose gas confined in a 3D box. In both cases we see
a deviation from the values predicted by classical theory which are indicated by the dashed horizontal
lines.

The results from above are summarized in Fig. 2.1. If we cool down a Bose gas
starting from a high temperature, the gas undergoes a second-order phase transition
since the heat capacity is discontinuous at the critical temperature. The jump at the
discontinuity is ∆ ≈ 6.58kB. Cooling further yields that c ∝ T 3. Thus, c → 0 as
predicted by the third law of thermodynamics. Also depicted is the behaviour of the
heat capacity for a bosonic vapor in a three dimensional box. It can be calculated in the
same way by using the corresponding density of states g(ε) ∝

√
ε. In this case we have

a first-order phase transition at the critical temperature. The slope below the critical
temperature is proportional to T 3/2.
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2.3 Temporal Evolution of a BEC within a Mean-

Field Approach

To accurately describe the dynamics of a realistic system composed of many bosons, one
has to take atom-atom interaction into account. To overcome the problem of exactly
solving the resulting many body Schrödinger equation we work with a mean-field de-
scription at zero temperature. This means that for one particle the interaction with the
other particles is described by an average potential. It reduces the many body problem
to a one-body problem. The condensate is then described by a one-body wave function5

Ψ(r, t) where the absolute square of the wave function is equal to the atomic density

n(r, t) = |Ψ(r, t)|2 (2.15)

The resulting equation that describes the temporal evolution of the condensate wave
function is called the Gross-Pitaevskii equation (GPE). It was first developed by Gross
[20, 21] and Pitaevskii [22]. For most experimental realizations the GPE is a very good
approximation and is suitable to describe the dynamics of most nowadays experiments.

2.3.1 The Gross-Pitaevskii Equation

One way to derive the Gross-Pitaevskii equation, is using the quantum least action
principle with the corresponding action functional6 (see [18, 23] for more details). The
GPE is then the Euler-Lagrange equation of the action functional. It reads

ı~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∆ + Vext(r, t) + g |Ψ(r, t)|2

]
Ψ(r, t) (2.16)

The wave function Ψ(r, t) is normalized to the number of atoms∫
dr|Ψ(r, t)|2 = N (2.17)

The GPE is similar to the Schrödinger equation with an additional non-linear term
g |Ψ(r, t)|2 which accounts for the atom-atom interaction. The constant g is only de-
pending on the mass m and the s-wave scattering length a since for dilute gases at low
temperatures elastic s-wave scattering between the atoms is dominant. The interaction
constant is given by g = 4π~2a

m
.

If we want to consider the stationary case we factorize time and space in the wave
function as Ψ(r, t) = Ψ(r) exp(−ıµt/~). Putting this into Eq. (2.16) yields the stationary
GPE

µΨ(r) =

[
− ~2

2m
∆ + Vext(r) + g |Ψ(r)|2

]
Ψ(r) (2.18)

In general one cannot solve the GPE analytically. There are two limits to the GPE
where this is possible in some cases as for the harmonic oscillator. In the first regime

5In the mean-field approach this one-body wave function Ψ(r, t) equals the expectation value of the
bosonic field operator Ψ(r, t) = 〈Ψ̂(r, t)〉.

6The action functional here reads S =
∫
dtdrΨ∗(r, t)

[
ı~∂t + ~2/2m∇2 − Vext(r)− gN/2|Ψ(r, t)|2

]
Ψ(r, t).
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we neglect the interaction between the atoms and the GPE simplifies to the well-known
linear Schrödinger equation. In the opposite case we are in the Thomas-Fermi limit, i.e.
the kinetic energy term is neglected. Here we directly write down a solution as7

|Ψ(r)|2 =
1

g
(µ− Vext(r))Θ(µ− Vext(r)) (2.19)

If we are in the intermediate regime it is necessary to take the kinetic and interaction
energy into account. As mentioned above it is difficult to find solutions of the GPE even
for simple potentials due to its non-linearity. Thus, it is necessary to do a numerical
approach to the GPE. Since for some experimental situations it is suitable to consider a
quasi one-dimensional gas we discuss this approach with a dimensional reduced GPE.

2.3.2 Gross-Pitaevskii Equation in one dimension

We assume the condensate to be in an external potential which is harmonic in the
transverse direction and of arbitrary shape in x direction

Vext(r, t) = Vext(x, t) +
1

2
mω2

⊥(y2 + z2) (2.20)

We make an ansatz for the wave function with a gaussian shape in the transverse direction
which reads

Ψ(r, t) =
1√
πσ2

⊥
Ψ(x, t) exp

(
−y

2 + z2

2σ2
⊥

)
(2.21)

The width of the transverse gaussian σ⊥ is either assumed to be constant or it can vary
in time and x-direction. The first case applies to a quasi-one dimensional situation where
the transverse dynamics can be neglected. The second case takes transverse dynamics
to some extend into account. We discuss the results of both cases in the following.

One-dimensional Gross-Pitaevskii Equation

We insert the ansatz Eq. (2.21) into the 3D-GPE and integrate over the y and z-direction.
Here, the transverse width σ⊥ is set to be constant and equal to the ground state width
of a harmonic oscillator

σ⊥ =

√
~

mω⊥
(2.22)

The result is a one-dimensional Gross-Pitaevskii equation which reads

ı~
∂

∂t
Ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+ Vext + g1d|Ψ(x, t)|2

)
Ψ(x, t) (2.23)

with an effective one-dimensional interaction constant g1d = 2a~ω⊥.
Since the interaction couples the dynamics in all three spatial dimensions the one-

dimensional GPE is only valid if the interaction energy is small compared to the energy
of the transverse ground state, i.e. g1d|Ψ(x, t)|2 � ~ω⊥/2. This can be re-written in
terms of the s-wave scattering length as a|Ψ(x, t)|2 � 1.

7Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0
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Non-Polynomial Schrödinger Equation

In many situations a more accurate approach to tackle quasi one-dimensional problems
is to include a variable transverse width. Using the ansatz Eq. (2.21) for the quantum
least action principle one finds (see [24])

ı~
∂

∂t
Ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ Vext(x) + g1d

|Ψ(x, t)|2√
1 + 2a|Ψ(x, t)|2

+
~ω⊥
2

(
1√

1 + 2a|Ψ(x, t)|2
+
√

1 + 2a|Ψ(x, t)|2
)]

Ψ(x, t) (2.24)

with σ⊥(x, t)2 =

(
~

mω⊥

)√
1 + 2a|Ψ(x, t)|2 (2.25)

This equation is called a Non-Polynomial Schrödinger equation (NPSE). It turns out that
it is in good agreement with the exact solution of the 3D-GPE (see [24] for a numerical
comparison).

The NPSE can be handled numerically more easily than the GPE since only a one-
dimensional equation is to be solved. A numerical solution of the NPSE with a Fourier
split-step algorithm is discussed in Appendix C.
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Chapter 3

Theory of a Bosonic Josephson
Junction

Quantum mechanics predicts that massive particles tunnel through energetically forbid-
den regions. In solid state physics many investigations of the tunneling phenomena have
been done with Superconducting Josephson Junctions (SJJ). A SJJ consists of two su-
perconductors serparated by a thin insulating barrier. In such a junction the electron
cooper pairs in the superconductors can tunnel through the barrier. This results in a
supercurrent accross the barrier which has been predicted by Josephson in 1962 [10].
We study a similar situation but instead of cooper pairs in superconductors, we consider
bose condensed Rubidium-87 atoms confined in a double-well potential. As described
in the following sections the Bose-Einstein condensate splits up in two modes, that are
localized in each well, which are coupled by tunnelling through the barrier in between.
This is called a Bosonic Josephson Junction (BJJ). It is in close analogy to a BJJ of
superfluid 3He-A [9].

The condensate modes are described by two macroscopic wave functions that are
overlapping in the region of the barrier. A similar description is valid for the cooper
pairs in a SJJ. Thus, we expect both situations to be described by a similar model which
results in similar dynamics.

In this chapter a theoretical description of the dynamics occuring in such a Bosonic
Josephson Junction is given. The used model results in two relevant dynamical vari-
ables, the relative atom number and the relative phase between the two modes of the
condensate. Since these are conjugate variables we furthermore discuss the quantum
mechanical uncertainty of their corresponding operators. In the last part of this chapter
finite temperature effects in a Bosonic Josephson Junction that manifest themselves by
fluctuations in the dynamical variables are considered.

3.1 The Two-Mode Model

We discuss the dynamics of a Bose-Einstein condensate with N atoms in a double-well
potential. This can be realized by the superposition of a three dimensional harmonic po-
tential and a one-dimensional periodic potential. Thus, we assume the external potential
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to be of the form

Vext(x) =
1

2
m(w2

xx
2 + w2

yy
2 + w2

zz
2) +

V0

2

(
cos

(
2π

q0
x

)
+ 1

)
(3.1)

First, we study some properties of this potential. It is depicted for the x-direction in
Fig. 3.1(a) for a harmonic confinement of wx = 2π×90Hz, a spacing of q0 = 4.78µm. The
solid black line shows the pure harmonic trap (V0 = 0) whereas the green solid line shows
a double-well potential (V0 > 0). We define the effective barrier of the double-well as the
difference between the local maximum in the center and the minimum of the potential.
The effective barrier is useful when comparing the barrier with energy scales that are in
respect to the minimum of the trap. The difference between the effective barrier and the
barrier height1 V0 is depicted in Fig. 3.1(b) as a function of V0. For larger values of V0

the difference is approximately given by an offset.
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Figure 3.1: An example of the potential Eq. (3.1) is shown for a harmonic confinement of wx =
2π × 90Hz and a spacing of q0 = 4.78µm. (a) shows the potential in x-direction. The solid black line
depicts the case of a pure harmonic potential, i.e. V0 = 0. The solid green line depicts the case of V0 > 0
leading to a double-well potential. Also seen in the picture is the definition of the effective barrier as
the difference between the local maximum in the center and the minimum of the potential. The red
dashed line shows a harmonic approximation of the potential in one of the wells. (b) The difference
between the effective barrier and the barrier height is shown. The dashed line depicts the bisecting line.
For larger values of V0 the deviation to the effective barrier height increases and levels to an offset. (c)
shows the frequencies resulting from the harmonic approximation in one of the wells. The behaviour
can in very good agreement be fitted with a square root function (Eq. (3.2)).

In order to estimate a timescale inside one of the wells we approximate the potential
harmonically and compare the result with a harmonic oscillator with the frequency ωDW.
This is depicted in Fig. 3.1(a) by the red dashed line. In Fig. 3.1(c) the frequencies for
the well are plotted as a function of the barrier height. It can be approximated by a
square root function. The corresponding fit (dashed red line in the figure) yields as a
thumb rule for the harmonic frequency of the well

ωDW = 2π × 10.58Hz ·
√
V0[Hz]− 80 (3.2)

1This has to be calculated numerically since the zero points of the first derivative of the double-well
potential are only implicitly given.
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The function is shifted since for barrier heights smaller than V0 = 80Hz the potential
is not consisting of two clearly distinguishable wells. For these values the harmonic
potential is only flattened around the minimum. It should be noted that these numbers
are only valid for the considered example of ωx = 2π × 90Hz and q0 = 4.78µm. For
other parameters the values of the double-well frequency and the effective barrier height
is different. We will refer to these parameters later again.

After this preliminary thoughts we study the eigenenergie spectrum of the double-well
potential. In Fig. 3.2 a comparison between the harmonic potential and the double-well
potential is shown. Increasing the barrier in the middle decreases the energy gap between
the first excited and the ground state. The other states are less shifted.

Harmonic Potential Double-Well Potential

E
n
er

g
y

�E

Figure 3.2: Schematic comparison between the eigenenergie spectrum (blue lines) of a harmonic
potential and a double-well potential. The harmonic potential has equidistant levels. Introducing a
barrier by adding a cosine potential leads to a smaller splitting of the ground and the first excited state.
The higher energy states are less influenced. See Appendix C for a numerical comparison.

Since this energy gap is small compared to the distance to the higher states we only con-
sider the first two states being populated2 wherease higher states are neglected. For the
following discussion we denote the groundstate eigenfunction as ϕ+ and the eigenfunction
of the first excited state as ϕ−. They satisfy the stationary GPE

β±ϕ±(r) =

(
− ~2

2m
∆ + Vext(r) + g |ϕ±(r)|2

)
ϕ±(r) (3.3)

where β± is the corresponding chemical potential. The two eigenfunctions are or-
thornomal 〈ϕi|ϕj〉 = δij with i, j ∈ {+,−} and due to the symmetry of the potential we
have ϕ±(x) = ±ϕ±(−x).

As shown in Fig. 3.3 we combine these eigenfunctions to construct two modes ϕ1 and
ϕ2 which account for the left and right well separately

ϕ1,2(r) =
1√
2
(ϕ+(r)± ϕ−(r)) (3.4)

With the considerations above we assume the wave function describing the condensate
to be a superposition of the wave functions ϕ1 and ϕ2 with the complex amplitudes ψ1

and ψ2

Ψ(r, t) = ψ1(t)ϕ1(r) + ψ2(t)ϕ2(r) (3.5)

2For real experimental parameters it turns out that the first two states are nearly degenerated (see
Appendix C).
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This ansatz is commonly referred to as the Two-Mode Approximation. ψ1,2(t) are the
time-dependent amplitudes of the corresponding mode ϕ1,2(x) with

ψ1,2(t) =
√
N1,2(t)e

ıθ1,2(t) (3.6)

where N1,2(t) is the number of atoms in the left and right well, repectively. The functions
θ1,2(t) correspond to the phase of each mode of the condensate. It should be emphasized
that in this model the phase is assumed to be constant over the well but it can vary
in time. This description is suitable as long as the coupling of the two modes, which is
resulting from the overlap of both, is small (see [25] for a detailed investigation on this).
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Figure 3.3: Two-Mode Approximation of the wave function in a double-well potential. (a) The
black curve corresponds to the external double-well potential. The symmetric ground state ϕ+ and
the antisymmetric first excited state ϕ− is plotted (red curve) with the energy gap ∆E. (b) The two
superpositions |ϕ1,2|2 of the ground and the first excited state are plotted with ϕ1,2 = (ϕ+ ± ϕ−)/

√
2.

The dotted curve shows the resulting superposition |ϕ1 + ϕ2|2.

In order to consider the relative dynamics between the two wells it is convenient to define
new dynamical variables

n(t) =
1

2
(N1(t)−N2(t))

φ(t) = θ2(t)− θ1(t)

(3.7)

The new quantity n(t) is the number of atoms which are transferred from one mode
to the other starting with the symmetric case. φ(t) corresponds to the relative phase
between the two modes.

In order to obtain the temporal evolution of the dynamical variables we first derive
the describing equations for ψ1,2(t). We put the two-mode ansatz Eq. (3.5) into the time-
dependent Gross-Pitaevskii equation, multiply by ϕ1,2(x) respectively and integrate over
space. We end up with two coupled differential equations for ψ1,2(t) describing their
temporal evolution. The coupling of the equations will be given in terms of a tunneling
parameter. In the following we discuss two approaches to these equation. The first
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approach (we will refer to this as the Standard Two-Mode Model [16]) neglects all mixed
terms that are of higher order than two in ϕ1,2. In contrast to this the second approach
takes all terms into account (Improved Two-Mode Model [25, 26]). We study these two
models in the following sections.

3.1.1 The Standard Two-Mode Model

With the ansatz (Eq. (3.5)) as described above we find two coupled differential equations
for ψ1,2 (see Appendix A for the main steps of the derivation)

ı~
∂ψ1

∂t
= (E1 + U1N1)ψ1 −Kψ2

ı~
∂ψ2

∂t
= (E2 + U2N2)ψ2 −Kψ1

(3.8)

with the following definitions

E1,2 =
∫
dr
(

1
2
|∇ϕ1,2|2 + |ϕ1,2|2Vext

)
U1,2 = g

∫
dr|ϕ1,2|4

K = −
∫
dr
( ~

2m
(∇ϕ1∇ϕ2) + ϕ1Vextϕ2

) (3.9)

Here, E1,2 is the energy of each mode and U1,2 is the on-site interaction energy. The
coupling term K accounts for the amplitude of tunnelling between the two wells since it
contains the overlap of the two modes ϕ1,2. In this model K is assumed to be constant
and does not depend on the interaction.

With the use of the relative quantities (Eq. (3.7)) we rewrite Eq. (3.8) and find for
the time evolution of the phase difference and the population imbalance

dφ

dt
= 2U · n−

(
4K

N

)
· n√

1− 4n2/N2
cosφ

dn

dt
= −KN

√
1− 4n2/N2 sinφ

(3.10)

These are the coupled dynamical equations for n and φ. They describe the temporal
evolution of the population imbalance and the relative phase between the two modes of
the BEC in the double-well potential.

We can write the dynamical Eq. (3.10) in canonical form like in Hamiltonian classical
mechanics (see standard textbooks [27])

dφ

dt
=
∂H

∂n
;

dn

dt
= −∂H

∂φ
(3.11)

The Hamiltonian then reads

H(n, φ) = U · n2 −NK ·
√

1− 4n2

N2
cosφ (3.12)

This Hamiltonian can be seen in a mechanical analogy. It corresponds to a non-rigid
pendulum with deviation angle φ and angular momentum n. The length of the pendulum
l is given by l =

√
1− 4n2/N2 (see also [16]).
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3.1.2 The Improved Two-Mode Model

In the scope of the Improved Two-Mode Model the terms of higher order in ϕ1,2 are not
neglected. Again, the main steps of the derivation are given in the Appendix A (for a
detailed derivation see [25]). The equations describing the temporal evolution of ψ1,2 are
of the same form as in the Standard Two-Mode Model (Eq. (3.8))

ı
∂ψ1

∂t
= M1ψ1 −K1ψ2

ı
∂ψ2

∂t
= M2ψ2 −K2ψ1

(3.13)

For clarity the quantities M1,2 and K1,2 are defined in the Appendix A. Here, the
dynamical equations for n and φ read

dφ

dt
=

(
2A

N

)
· n+

(
2B

N

)
· n√

1− 4n2/N2
cosφ−

(
2C

N

)
· n cos(2φ)

dn

dt
= −

(
NB

2

)√
1− 4n2

N2
sinφ+

(
NC

2

)
·
(

1− 4n2

N2

)
sin(2φ)

(3.14)

Again, for the definition of the quantities A,B and C see Appendix A. In this case the
Hamiltonian

H =

(
2A

N

)
· n

2

2
−
(
NB

2

)
·
√

1− 4n2

N2
cosφ+

1

2

(
NC

2

)
·
(

1− 4n2

N2

)
cos(2φ) (3.15)

leads to the canonical form for n and φ.
We discuss this Hamiltonian in more detail. In order to understand the new quantities

A,B and C we compare these to the ones defined in the Standard Two-Mode model.
With the mathematical relation which can be found in Appendix A we see that B is
comparable with the tunnelling parameter K whereas A and C account for the atomic
interaction. The quantity C can be expressed in terms of ϕ1,2 as

C = g

∫
drϕ2

1ϕ
2
2 (3.16)

We see that the overlap of the two wave functions Ψ1,2 is crucial for the value of C since
it contains ϕ1,2 both in second order. For our experimental parameters it turns out that
C is always small compared to B (the quantities A,B and C are plotted in the Appendix
A). Thus, we neglect this term in the following considerations.

We define the charging energy Ec := 2A/N and the Josephson tunnelling energy
EJ := NB/2. With these new quantities and the considerations above the Hamiltonian
reads

H(n, φ) =
1

2
Ecn

2 − EJ

√
1− 4n2

N2
cosφ (3.17)
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In Appendix B this Hamtilonian is plotted as a function of φ and n.
For investigating the dynamical regimes of this Hamiltonian we first consider the

limit of small n and φ. As mentioned above we can write the dynamical equations
(Eq. (3.14)) in canonical form with the two conjugate variables n and φ. For this reason
it is appropriate to search for analogies with other Hamiltonian systems. We expand the
Hamiltonian to second order in both variables

H(n, φ) =
1

2

(
Ec +

4EJ

N2

)
n2 +

1

2
EJφ

2 − EJ +O(φ3) +O(n3) +O(n2φ2) (3.18)

Associating the variables φ and n with a spatial variable x and the corresponding mo-
mentum p Eq. (3.18) is similar to the Hamiltonian of a particle moving in a harmonic
potential potential (H = p2/2m+mω2x2/2). Thus, we expect sinusoidal oscillations for
small n and φ. Comparing the two cases yields

ωp =
1

~

√
EJ

(
Ec +

4EJ

N2

)
=

1

~
√
EcEJ (Ec � EJ/N

2) (3.19)

for the oscillation frequency. In the limit of Ec � EJ/N
2 it is referred to as the plasma

frequency ωp.
In the case of large n or φ there are different dynamical regimes of the Josephson

Hamiltonian (Eq. (3.17)). They have been subject to detailed theoretical and experi-
mental studies. In the next section a brief overview of the results is given.

3.1.3 Dynamics of a Bosonic Josephson Junction

We give a brief overview of the expected dynamical behaviour of a Bosonic Josephson
Junction in the following. For a detailed theoretical and experimental description I refer
to the publications [16, 25] and the theses of Albiez and Fölling [28, 29, 13].

We distinguish two regimes which result from the equation of motion Eq. (3.14)3: the
Josephson Oscillation regime and the Macroscopic Quantum Self-Trapping regime. They
can be accessed by adjusting the initial conditions, i.e. the initial population imbalance
n0 = n(t = 0) and the initial relative phase φ0 = φ(t = 0).

Josephson Oscillations

In Fig. 3.4 the phase plane portrait of the equation of motion for the mentioned regimes
is shown. In the plot the population imbalance is given in terms of z = 2/N ·n. Choosing
small relative phases and small population imbalances we end up in the Josephson oscil-
lation regime (closed trajectories in the phase plane portrait). The points correspond to
measurements (see [28, 29]). The atoms oscillate between the wells coming along with a
phase oscillation. The advantage of a bosonic Josephson junction is that one can directly
observe at the relative phase in contrast to the superconducting junction (see section 3.3
on the deduction of the relative phase between the modes).

3The experimental results turned out to be better explained within the scope of the Improved Two-
Mode Model than the Standard Two-Mode Model. Especially the tunneling times for the Josephson
junction had been in better agreement with the experiment (see [28, 29]).
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Macroscopic Quantum Self-Trapping

The second regime as can be seen from Fig. 3.4 is accessed by increasing n0 above a critical
value. This regime is charaterized by a nearly stationary behaviour of n accompanied
by an unbound phase φ. Thus, the population imbalance is just doing small oscillations
around a non-zero value and the atoms are ’trapped’ in one well. For this reason this
regime is called self-trapping.
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Figure 3.4: Phase Plane Portrait of the Bosonic Josephson Junction. The solid black lines correspond
to the theoretical prediction of the Improved Two-Mode Model and are calculated without a free pa-
rameter. The closed black line shows the expected sinusoidal oscillations of the relative phase φ and
the population imbalance z = 2/N · n around zero (Josephson Oscillation regime). The other curve
corresponds to a nearly stationary state of the population imbalance coming along with an unbound
evolution and monotonically increase of the relative phase. (Macroscopic Self-Trapping regime). The
transition between the two regimes is exhibited by the separatrix (dashed line). The points correspond
to measurements which have been recently done in our group (see [28, 29]).

3.2 Fluctuations within the Two-Mode Model

So far, we have discussed the Bosonic Josephson Junction within the two-mode model. In
this context the dynamical variables n and φ do not include any kind of fluctuations. We
distinguish between two kinds: quantum fluctuations and thermally induced fluctuations.
For investigating quantum fluctuations [30] we replace the dynamical variables by the
corresponding quantum mechanical operators. Quantum fluctuations then correspond
to the Heisenberg uncertainty that comes along with the operators. In contrast to that
thermal fluctuations arise from the finite temperature that is given by the inevitable
thermal fraction of the atom cloud. It turns out that by choosing the right charging
energy Ec and tunneling energy EJ we can isolate the thermal fluctuations from the
quantum ones.

In the following section these two kind of fluctuations are discussed with respect to
our dynamical variables n and φ.

3.2.1 Quantum Fluctuations

We quantize the Hamiltonian

H(n, φ) =
1

2
Ecn

2 − EJ

√
1− 4

n2

N2
cosφ (3.20)
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by introducing the non-commutating operators4 n̂ and φ̂ with

[φ̂, n̂] = i (3.21)

The origin of this can be demonstrated with a simple analogy. Let us assume we have two
sources of N atoms each. We do interference measurements with these two sources by
coupling out atoms, letting them interfere and detect them on a screen. In the beginning
the system is in the state with N atoms in each source. We call this state |N,N〉. Let us
further assume that we can imprint a quantum mechanical phase on one of the sources.
Depending on this phase we will gain different interference pattern. However, if we look
at a short time scale we will see single atoms hitting the screen separately. We can’t tell
from which source the single atom originates without loosing the interference pattern (in
analogy to the double-slit experiment). So, keeping the interference and having started
in a state |N,N〉 we end up in a superposition |N,N−1〉 + |N−1, N〉 as the state for
the source. But having detected one atom tells us nothing about the relative phase of
the two sources. We need to do many measurements in order to achieve the interference
pattern from which we can deduce the phase. But then considering the two sources we
can’t tell anything about the distribution of the atoms anymore.

Associating the variable φ with this relative phase and n with the population differ-
ence in the reservoirs we can see that the more we know about the phase the less we
know about the atom numbers. In that sense the two variables do not commute.

Having quantized the Hamiltonian we estimate the quantum fluctuations by con-
sidering the case of small oscillations and refer to the harmonic approximation of the
Hamiltonian (Eq. (3.18)). We take the ground state for the resulting harmonic oscillator

ψ0 ∝ exp

(
−mωφ

2

2~

)
with ω =

1

~

√
EJ

(
Ec +

4EJ

N2

)
(3.22)

and calculate the fluctuations for the ground state for both operators as

(∆φ)2 = 〈φ2〉 − 〈φ〉2 = 〈ψ0|φ2|ψ0〉 − 〈ψ0|φ|ψ0〉2 (3.23)

We find that the quantum fluctuations of the number and phase operator are given by

(∆φ)2 =
1

2
·

√
Ec + 4EJ

N2

EJ

(3.24)

(∆n)2 =
1

2
·
√

EJ

Ec + 4EJ

N2

(3.25)

Thus, these fluctuations follow the uncertainty relation ∆φ ·∆n = 1/2.
We distinguish between three regimes as there is the Fock, the Josephson and the

Rabi regime. The Rabi regime is found in the limit of Ec � EJ/N
2. Here, the phase

is well defined and the atom number fluctuations are equal to the number of atoms
∆n =

√
N . The Fock regime is characterized by Ec � EJ . The atom number is well

4Of course, this is a quite ad hoc quantization but it is also possible to get these operators by defining
the Hamiltonian in the context of creation and annihilation operators. One finds that the operator n̂ is
then given by ∂φ in the phase representation (see [30] and references therein).
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defined whereas the phase is completely undefined. The Josephson regime yields a well-
defined phase and atom number. It is characterized by EJ/N

2 � Ec � EJ . The
corresponding fluctuations then read

(∆φ)2 =
1

2
·
√
Ec

EJ

� 1 ;
(∆n)2

N
=

1

2
·

√
EJ/N2

Ec

� 1 (3.26)

Thus, we can neglect quantum fluctuations for the relative phase and the relative pop-
ulation number in the Josephson regime.

3.2.2 Thermal Fluctuations

In order to investigate thermal effects we assume the system to be in the Josephson
regime, so that quantum fluctuations are negligible. We also consider our system to
be in the classical limit where the plasma frequency (Eq. (3.19)) is small compared to
the mean energy ~ωp � kBT . In this case we can regard the states as continuously
distributed.
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Figure 3.5: Thermal Fluctuations in a Bosonic Josephson Junction with 2500 atoms. (a) shows the
thermal average of φ2 in units of π depending on kBT/EJ . The dashed lines shows the limit for high
temperatures which reads π/

√
3. The curve was calculated for Ec/kB = 20pK. Varying Ec shows

that the phase fluctuations do not significantly depend on that. (b) depicts the thermal average of n2

relative to the total number of atoms. The curve was plotted for EJ/kB = 100nK. Varying EJ , only
small changes for the relative number fluctuations are seen.

The states are assumed to be weighted according to the Boltzmann factor exp(−E/kBT )
where E is the energy of each state and T the temperature [31]. To gain information
about the variables φ and n we consider their thermal averages5 [31]

(∆φ)2 = 〈φ2〉th − 〈φ〉2th︸︷︷︸
=0

=
1

γ

∫ π

−π

dφ

∫ N/2

−N/2

dn · φ2 · exp(−E/kBT ) (3.27)

(∆n)2 = 〈n2〉th − 〈n〉2th︸ ︷︷ ︸
=0

=
1

γ

∫ π

−π

dφ

∫ N/2

−N/2

dn · n2 · exp(−E/kBT ) (3.28)

with the normalization γ =
∫ N/2

−N/2
dn
∫ π

−π
dφ exp(−E/kBT ) and the energy E = H(n, φ).

In Fig. 3.5(a,b) the behaviour of the thermal fluctuations depending on the ratio of

5Sums over states are to be replaced by integrals since we assume the states to be continously
distributed.
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kBT/EJ and kBT/Ec is depicted. The fluctuations of the relative phase increase with
increasing temperature and approach asymptotically the value π/

√
3. This corresponds

to a completely random phase. As shown in the figure we expect the phase fluctuations
to get important as soon as the temperature is on the order of the tunnelling energy.
The number fluctuations are for the same parameters (EJ/kB = 100nK, T = 50nK) on
the order of one percent. Since this is not measurable with our current experimental
setup we focus on the phase fluctuations only. Their investigation is discussed in the
next section.

3.3 Interference Pattern of the Two Condensate Modes

in the Scope of Thermal Phase Fluctuations

The relative phase between the two modes of a Bose-Einstein in a double-well potential
governs its momentum distribution. The fluctuations of the relative phase manifests
themselves in different momentum distributions for each time the distribution is mea-
sured. This effect is discussed in the following. Furthermore, we consider how the relative
phase is distributed as a function of the temperature and the tunnelling energy EJ .

3.3.1 Momentum Distribution in a Bosonic Josephson Junction

Let the two modes of the Bose-Einstein condensate have a relative phase φ. The conden-
sates are separated in the double-well by a distance d along the x-direction. The shape
of the wave function of each mode is called η(x). If we switch off the confinement the two
modes are allowed to expand freely and thus will interfere. The density distribution after
a long expansion time corresponds to the momentum distribution. Interaction effects are
neglected in this consideration since the density is very low after the expansion when the
two condensates crucially overlap (see [32, 33] for a detailed consideration of interaction
effects in interference experiments). Since the momentum distribution is depending on
the relative phase between the condensates we can deduce this phase by investigating
the interference patterns.

We assume the wave function to be in a superposition

Ψ(x) = a · η
(
x− d

2

)
+ b · η

(
−
(
x+

d

2

))
· eıφ (3.29)

In order to find the momentum distribution we calculate the Fourier transformation of
the wave function. The absolute squared value of the momentum distribution reads

I(p, φ) = |F (Ψ(x))|2 = |F (η(x))|2 ·
[
a2 + b2 + 2ab · cos

(
φ− d · p

~

)]
(3.30)

In Fig. 3.6 the expected interference pattern are plotted for different values of the relative
phase. The initial density distribution η of each mode is assumed to be of gaussian shape
for these patterns. We see that different relative phases result in a shift of the pattern
with respect to the gaussian envelope. The visibility (or contrast) of such a pattern is
defined as

Vsingle := V (I) =
Imax − Imin

Imax + Imin

=
2ab

a2 + b2
(3.31)
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Figure 3.6: The plots (a)-(d) depict the interference pattern of the two modes of a BEC in a double-well
potential for different relative phases φ. The density distribution of each mode has been assumed to be
of gaussian shape. The red dashed curve depicts the gaussian envelope of the momentum distribution.
Different relative phases lead to a shift of the momentum distribution with respect to the envelope.

For the symmetric case, i.e. a=b, the visibility equals one. Doing single interference
measurements we always get the same maximal visibility independent of the relative
phase. However, if we assume that the relative phase fluctuates from shot-to-shot and
we average over every interference measurement, the visibility of this averaged pattern
will depend on the amount of fluctuations of the relative phase. This is discussed in the
next section.

3.3.2 Averaged Interference Pattern and the Coherence Factor

We assume the relative phase to be fluctuating between the values −φ0 and φ0 with
φ0 ∈ [0, π]. In order to characterize these shot-to-shot fluctuations we discuss averaged
interference pattern. The averaged momentum distribution reads

〈I(p)〉 =
1

2φ0

∫ φ0

−φ0

dφI(p, φ) = |F (η(x))|2 ·
[
a2 + b2 + 2ab · α · cos

(
d · p

~

)]
(3.32)

with the coherence factor

α = 〈cosφ〉 =
1

2φ0

∫ φ0

−φ0

dφ cosφ =
sinφ0

φ0

(3.33)

The visibility of the averaged pattern reads

V (〈I〉) =

(
2ab

a2 + b2

)
· α = Vsingle · α (3.34)

Thus, the coherence factor is a direct measure of the visibility of the averaged interference
pattern.
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Figure 3.7: (a) The coherence factor is plotted as a function of kBT/EJ for 20pK. (b) The averaged
interference pattern is plotted for different values of the coherence factor. With full coherence α = 1
the interference pattern is sutained since the relative phase is not fluctuating. Decreasing alpha, coming
along with increasing phase fluctuations, leads to a decrease of the visiblity of the averaged pattern.

If the coherence factor α→ 0, the averaged interference pattern is smeared out since
its visibility vanishes. On the other hand, if α→ 1, corresponding to small fluctuations of
the relative phase, the averaged interference pattern is sustained and similar to the single
shot pattern for a relative phase that equals the mean value of the phase distribution.
Since we assume the phase to be fluctuating with zero mean value, this pattern equals
the one for φ = 0. This behaviour is depicted in Fig. 3.7(b). Theoretically we expect α
to depend on kBT/EJ like

α = 〈cosφ〉th =
1

γ

∫ π

−π

dφ

∫ N/2

−N/2

dn · cosφ · exp(−E/kBT ) (3.35)

where E = H(n, φ) and γ the normalization constant (see above). In Fig. 3.7(a) the
coherence factor is plotted for Ec = 20pK.

For n � N we neglect the square root in the Hamiltonian. We find an analytical
result for the coherence factor

α = 〈cosφ〉th =

∫ π

−π

dφ cosφ exp(EJ cosφ/kBT )∫ π

−π

dφ exp(EJ cosφ/kBT )

=
I1(EJ/kBT )

I0(EJ/kBT )
(3.36)

where I0,1 are the modified Bessel function. See Appendix B for the definition and a
series expansion of this result.

3.3.3 Distribution of the Relative Phase

Since the relative phase fluctuates we study its distribution in the case of negligible rela-
tive atom number. For n ≈ 0 we neglect all terms depending on n and the Hamiltonian
reads

H(n, φ) =
1

2
Ecn

2 − EJ

√
1− 4n2

N2
cosφ ≈ −EJ cosφ (3.37)
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The normalized distribution of the phase depending on the parameter kBT/EJ is then
given by

ν(φ) = γ exp ((EJ/kBT ) · cosφ) (3.38)

The normalization constant γ is such that
∫
dφν(φ) = 1. In Fig. 3.8 the expected relative

phase distribution is shown for different EJ/kBT . For T � EJ the phase is uniformly
distributed. For very low temperatures the phase distribution results in a sharp peak
around zero. We see that a high tunneling rate stabilizes the phase whereas the lack of
coupling destroys the relative phase.
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Figure 3.8: The different curves depict the distribution of the relative phase depending on the ratio
EJ/kBT . Keeping the tunneling coupling EJ constant and changing the temperature yields a uniform
distribution for very high temperatures and a sharp peak for T → 0.
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Chapter 4

Experimental Setup and Calibration
of the Parameters

In this chapter we discuss the experimental realization of the Bose-Einstein condensate
in a double-well confinement. First of all, the necessary steps to cool a Rubidium vapor
below the critical temperature are explained. Since the apparatus has been explained in
detail in many other theses [28, 29, 34, 35, 36, 37] only a brief overview of the separate
steps is given. The second part of this chapter discusses the experimental calibration
of the relevant parameters of the experiment such as the magnification of the imaging
setup and the trapping frequencies of the corresponding potentials.

4.1 Experimental Procedure to Reach Bose-Einstein

Condensation

4.1.1 Gathering Atoms in a Magneto-Optical Trap

In order to reach Bose-Einstein condensation for a dilute atomic cloud we need to cool
bosons down to a temperature in the nano-Kelvin range. The atoms have to be isolated
from the environment, and thus all experiments are done in an ultra-high vacuum (UHV)
chamber1 with a pressure below 10−11mbar. The whole apparatus is shown in Fig. 4.1.
The actual experiments are done inside a glass cell (right part of the apparatus) to be
able to access the atoms from outside with laser beams.

The atoms are provided by dispensers containing Rubidium−87. They are heated
by an eletrical current of ca. 8A. Since the released Rubidium creates an additional
vapor pressure in the chamber we need to separate the dispenser from the region where
the experiments take place. This is done by dividing the chamber into two parts and
connecting them via a differential pumping stage. The pressure in the first chamber is
then 10−9mbar.

The atoms which are released from the dispensers are precooled by a two-dimensional
magneto-optical trap (funnel) [38] which results in a directed atom beam. This beam is
guided through the differential pumping stage into a three-dimensional magneto-optical
trap (MOT) [39] where the atoms are captured. The laser beam arrangement used for

1In order to sustain the vacuum the chamber is continously evacuated by two VARIAN ion-getter
pumps. One for each part of the chamber (see text).
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Figure 4.1: Overview of the experimental setup. The whole setup is situated on an optical table.
The laser light needed for the experiment is adjusted in the frequency and intensity before it is guided
by optical fibers to the vacuum chamber where the Bose-Einstein condensates are prepared (darkened
area).
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Figure 4.2: Schematic picture of the vaccum setup. In the left chamber the pressure is ≈ 10−9mbar.
A cold atom beam is created in there by means of a funnel [38]. It is directed through a differential
pumping stage to the second chamber which has a pressure of below 10−11mbar. The atoms are there
collected in a three-dimensional MOT [39] for further cooling (see text).

the setup is schematically depicted in Fig. 4.1 and Fig. 4.2. The light for the funnel and
the MOT is provided by a titanium sapphire (Ti:Sa I) laser (Coherent Monolitic-Block-
Resonator 110 ) which is pumped by a frequency-doubled diode Nd:YAG laser (Coherent
Verdi V10 ). The laser frequency is locked to the (F = 2 → F ′ = 3) crossover transition
of the D2-line of 87Rb (see Fig. 4.3) by using doppler-free saturation spetroscopy. The
beam is then divided into three parts. One for the funnel, one for the MOT laser beams
and one for imaging (we will refer to the imaging beam later again). Since we need
slightly different wave lengths for each of the beams they are guided through separate
acousto-optical modulators (AOM) [40] which are used in double-pass configuration.
After that, all laser beams are guided by optical fibres to the experiment.

The MOT beams pump the atoms from the 5S1/2(F = 2) state to the 5P3/2(F
′ = 3)

state. Due to the small splitting of the F ′ = 3 and F ′ = 2 state, some of the atoms are
also pumped to the F ′ = 2 state. Since this part can also decay into the 5S1/2(F = 1)
state we need to re-pump them back into the cooling cycle again. This is done by an
external cavity diode laser (ECDL 1). It is locked to the (F = 1 → F ′ = 2) transition
(see Fig. 4.3).

The number of trapped atoms is detected by measuring the amount of fluorescing
light coming from the atom cloud. By means of optical molasses [41] the cloud is cooled
further.
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Figure 4.3: Hyperfine structure of Rubidium-87. The right part shows the wavelengths of all lasers
that are used in the experiment.

4.1.2 Evaporative Cooling in a Magnetic Trap

By switching off the MOT beams, pumping the atoms to the |F = 2,mF = 2〉 state and
ramping up the magnetic field the atoms are loaded into a magnetic TOP trap.

The magnetic field is a three-dimensional quadrupole field and is created by two coils
in anti-Helmholtz configuration. Since this field has a field strength of zero in the center
of the coils the direction of the atomic spin is no longer defined and the atoms can
undergo Majorana spin flips [42] to sub-levels which are not trapped anymore. In order
to avoid this a time-orbiting potential (TOP) [43], i.e. a bias field which circulates with
a frequency of 9.8KHz2, is superimposed to the magnetic trap. The result is a time-
averaged harmonic potential which has a non-zero minimum in the center (see [34]).
The zero point, which is shifted due to the TOP trap, is moving on a circle around this
minimum.

In a magnetic trap the atoms experience a force due to their magnetic dipole moment
which interacts with the external magnetic field B(r). The potential energy of an atom
with dipole moment µ reads

V (r) = −µ ·B(r) = mFgFµB|B(r)| (4.1)

where mF is the magnetic quantum number, gF is the gyromagnetic factor of the hyper-
fine state and µB the Bohr magneton. Since the force acting on the atoms is given by
F(r) = −∇V (r) we can trap atoms with mFgF > 0 in a minimum of the external mag-
netic field. These are called low-field seekers. Trapping high-field seekers (mFgF < 0) in
the vacuum is not possible since the Maxwell equations do not allow a local maximum
in an area without currents [44]. We trap the atoms in the |F = 2,mF = 2〉 because

2The frequency has to be chosen satisfying two criteria: At first, it is faster than the center of mass
motion of the atoms, so that the atoms cannot follow. Secondly, it is slower than the Larmor frequency,
so that the magnetic moment can follow the changing magnetic field.
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it has the highest magnetic moment compared to the other sub-levels. The trapping
frequency3 for our magnetic trap is on the order of 100Hz [34].

Since the atoms with high energy are statistically found to be more often in the
outer regions of the trap we can get rid of hot atoms by applying the rotating bias
field since the atoms at the zero point of the field, which is rotating around the center
of the trap, can undergo spin flips and fall out of the trap. The slope on which the
zero point is rotating is therefore often referred to as circle of death. We continously
change the radius of the rotation circle starting with a diameter of 1.6mm down to 75µm.
Doing this slowly enough (this procedure takes about ∼ 30s) the atom cloud is always in
thermal equilibrium. Since the hot atoms take out energy of the cloud the temperature
is decreased. The cooling of the gas comes along with the loss of atoms. This procedure
is commonly referred to as evaporative cooling of the gas.

After this cooling stage the atoms are loaded into an optical dipole trap for further
cooling.

4.1.3 Evaporative Cooling in an Optical Dipole Trap

Atoms can be trapped by a laser beam since the induced atomic dipolar moment interacts
with the external electric field of the beam (ac Stark shift). For calculating the resulting
potential we assume the atom to be a two level system consisting of a ground and an
excited state. The laser frequency ωL is detuned with respect to the transition frequency
ω0. We define the detuning as ∆ = ωL − ω0.

The potential that a two-level atom experiences in the external field of the laser beam
is [45, 46]

V (r) =

(
~Γ2

8Isat

)
· I(r)

∆
(4.2)

where Isat = πhcΓ/(3λ3) is the saturation intensity, λ the laser wavelength and Γ the
natural line-width of the transition to the excited state. In the case of 87Rb we need
to include the D1 and the D2-transition in our considerations since the atom has more
than two levels (see Fig. 4.3). If the laser has a detuning of ∆1,2 for the corresponding
transition the potential approximately reads

V (r) =

(
~Γ2

8Isat

)
2

3

(
1

2∆1

+
1

∆2

)
· I(r) (4.3)

Here, the Clebsch-Gordon coefficient and the different strength of the transitions are
included [45].

The intensity of a focused laser beam of wavelength λ propagating in x-direction with
maximal power P is given by

I(r) =

(
2P

πsysz

)
·
(

1

1 + x2/RyRz

)
· exp

(
−2

(
y2

σ2
y(x)

+
z2

σ2
z(x)

))
(4.4)

where sy,z is the 1/e2-waist, σy,z = sy,z

√
(1 + (x/Ry,z)2) the width and Ry,z = πw2

y,z/λ
the Rayleigh length4 of the beam in y, z-direction. Inserting this result into Eq. (4.3)

3Trapping frequency is always meant in comparison with a particle of mass m in a harmonic oscillator
with frequency ω.

4The Rayleigh length is defined as the distance from the beam waist to the point where the width
of the beam broadens by a factor of

√
2.
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leads to the corresponding potential. We expand the resulting potential to second order
and find for the trapping frequencies

ωy,z =

√
4|Vmax|
ms2

y,z

; ωx =

√
2|Vmax|
mRyRz

(4.5)

with Vmax =

(
~Γ2P

6Isatπsysz

)
·
(

1

2∆1

+
1

∆2

)
(4.6)

Thus, if the Rayleigh length is large enough the confinement in the direction of the beam
propagation is negligible.

However, our three dimensional dipole trap in which the atoms are loaded after the
magnetic trap is given by two focused laser beams (Spectra Physics (T 40-X30-106QW,
Nd:YAG III), Output power 3W) which cross under an angle of 90◦ as depicted in
Fig. 4.4. Since it has a wavelength of 1064nm (corresponding to a positive detuning) the
resulting potential is attractive for 87Rb.

WG XDTx

y

z

2x60
m�

2x140
m�

2x70
m�

Figure 4.4: The three-dimensional dipole trap for the Bose-Einstein condensate is shown schematically.
The surfaces correspond to the 1/e2-intensity width of the separate laser beams. The red curves depict
the diameter of the beams at the center of the crossing (they have been moved from the center for
clarity). The waveguide (WG) which provides the confinement in y and z-direction is of spherical
shape. The crossed dipole trap (XDT) provides the confinement in x-direction. It is made asymmetric
with a cylindrical lens to minimize its influence in y-direction. The condensate is trapped at the crossing
of the two beams.

The Rayleigh length of the beams is on the order of 1cm and thus only a confine-
ment perpendicular to the propagation direction is provided by each beam. The first
beam (waveguide (WG)) is responsible for the confinement in y and z-direction. It is
transversally of spherical shape and has a power of 500mW at maximum. The second
beam (crossed dipole trap (XDT)) povides the confinement in x-direction. With the use
of a cylindrical lense it is made asymmetric in order to guarantee that changing the
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confinement in x-direction does not influence the confinement in y-direction too much5.
In Fig. 4.4 the resulting shape of the beam is shown. The power of the XDT beam is
∼ 800mW.

Since each dipole trap beam passes an acousto-optical modulator we can adjust the
intensity and thus the trapping frequency of each beam to our needs. In order to stabilize
a specified intensity we collect light which is backscattered from the glass cell by a
photodiode. The photodiode voltage is compared to the desired value and by means of
a proportional-integrator loop [47] the AOM is adjusted such that the set voltage and
the desired voltage equal. As well as the MOT beams the XDT and the WG beam are
guided by optical fibres to the glass cell.

In the experiment gravity which is pointing in y-direction has to be taken into account.
It shifts the minimum of the potential by ∆y ≈ g/ω2

y and effectivley reduces the trapping
frequencies. We reach the maximal trapping frequencies of ωx = 2π × 120 Hz, ωy =
2π × 170 Hz and ωz = 2π × 180 Hz.

In order to reduce vibrational fluctuations of the dipole traps the XDT fibre has
been mounted on an additional table as well as the WG has been mounted on a separate
block of aluminium (see Fig. 4.5(a)). The position of the harmonic confinement is then
fluctuating due to remaining mechanical instabilities with a standard deviation of 80nm
from shot-to-shot (see [28, 29] for measurements on this). In order to adjust long time
drift deviations the fibre collimator can be moved with the help of piezo elements.

Having the atoms in the dipole trap we evaporatively cool them further by lowering
the laser intensity, thus making the trap shallower, and letting the ’hottest’ atoms escape.
This is done on a timescale of several seconds. When we pass the critical temperature
during this cooling procedure the condensation starts to take place. We cool further
down until we reach a temperature of ∼ 20nK. The number of atoms in the BEC can be
adjusted by changing how far we lower the laser intensity. With our setup it is possible
to condense between 1000 and 150.000 atoms in total.

4.1.4 Preparing a BEC in a Double-Well Potential

In order to generate a double-well potential we superimpose a one-dimensional periodic
potential with the harmonic trap. The standing light wave creating the periodic potential
is realized by two laser beams which intersect at an angle of γ ≈ 10◦ (see Fig. 4.5(a,b)
for a schematic plot). The two beams are provided by a titanium sapphire laser (Ti:Sa
II) (Coherent, 899 ) at a wavelength of λSW = 830nm. The corresponding double-well
potential in x-direction then reads

Vext(x) =
1

2
mω2

xx
2 +

V0

2

(
1 + cos

(
2π

qL
x

))
with qL =

λSW

2 sin (γ/2)
(4.7)

The constant offset of V0/2 can be neglected since it is not effecting any dynamics. The
lattice spacing qL is about 4.78µm in our case.

We have to ensure that the periodic potential and the harmonic confinement are
not moving relatively to each other. Therefore, the position of the periodic potential is
actively stabilized. This is depicted in Fig. 4.5(b). The light coming out of the fibre is

5For the full frequency one has to quadratically add the frequencies resulting from the WG and the
XDT.
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Figure 4.5: (a) The setup close to the glass cell with all optical dipole traps is shown. WG and
XDT have been mounted at a separate table and block for better stability. The setup for the periodic
potential is situated below the table. It is depicted in Figure (b). A photo of it can be seen in (c).

split up into two beams. One of them is passing an electro optical modulator (EOM)
with which we can shift the phase of the beam. The two beams are then overlapped
in the region of the BEC in the vacuum for creating the periodic potential. For the
stabilization a small fraction of the beams is reflected by a glass plate before reaching
the glass cell. The reflected beams intersect and are pictured on a precision slit (Melles
Griot) of 2µm width. After the slit a photodiode is monitoring the transmitted intensity
which depends on the relative phase of the two beams. The resulting photodiode voltage
is differentiated by a lock-in amplifier. This control signal is compared to a reference
voltage with a proportional integrator loop. The PI loop then adjusts the EOM until
the control signal is equal to the reference.

Since we are looking at the derivative of the signal it is not intensity dependent,
and thus we can change the intensity without loosing the phase stabilization. With the
current electronics it is possible to lock intensity changes on a time scale of milliseconds.
Furthermore, the whole setup for the phase stabilization has been built on a separate
massive block in order to reduce vibrations (see Fig. 4.5(b,c)). With this method we
can stabilize the relative position to 100nm which corresponds to a phase of the periodic
potential of ∼ π/50.
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4.1.5 Imaging the BEC

In order to get information about the trapped atoms we image them with resonant light
and measure the transmitted intensity with a CCD camera. Doing this we destroy the
Bose-Einstein condensate since it is heated up (for non-destructive methods see [41]).
Since the imaging system has been explained in detail in other theses, see e.g. [29], we
give a brief overview.

In our setup the imaging light is a σ+ polarized gaussian beam (with a waist of
1.9mm) which is resonant to the (F = 2 → F ′ = 3) D2-transition of 87Rb. This light
is absorbed by the atoms6 and a shadow image of the cloud is pictured onto the CCD
camera. The image itself is magnified before by an aspheric lens system (Zeiss Plan-
Apochromat S, focal length f = 10cm) and projected onto a CCD camera (Theta System
SiS s285M ). Since the absorption of light depends on the scattering cross section and
the density of the atomic cloud we can extract the atomic density distribution from the
measured intensity distribution on the camera.

For the complete imaging procedure three pictures are used to deduce the informa-
tion. The first picture images the atom cloud (main picture). We denote its intensity
distribution I(x, y). The second picture (reference picture) is taken with the same light
intensity but without atoms in order to get the intensity distribution of the imaging beam
which we call IRef(x, y). The last picture is a background picture without any imaging
light which accounts for the background noise. After subtracting the background picture,
the main picture and the reference picture are divided in order to get rid of structures
resulting from light diffraction. The relative intensity distribution reads

T (x, y) =
I(x, y)− IBack(x, y)

IRef(x, y)− IBack(x, y)
(4.8)

(4.9)

This quantity is correlated to the atom columm density distribution as

n(x, y) =
1

σ
· (− log T (x, y)) (4.10)

where σ = Γhν
2Isat(1+I/Isat)

is the scattering cross section and ν the frequency of the imaging

beam [34]. The number of atoms which is found for one pixel on the camera is then
given by N(x, y) = (A/M2)n(x, y) where A = 6.45 × 6.45µm2 is the pixelsize of the
CCD camera and M is the magnification of the lens system which is ∼ 10.

Since illuminating a cold gas with resonant light heats it up and results in broadening
the cloud we apply very short pulses of 4µs. It leads to a broadening of below 1µm. This
is below the optical resolution of 2.7(2)µm. We refer to the thesis of Fölling [29] for a
detailed investigation on the optical resolution and diffraction effects coming from our
optical setup. We further note that the imaging plane is tilted at an angle of 12.3◦ with
respect to the periodic trap direction. This has to be taken into account when analysing
the pictures.

6For getting best absorption efficiency a magnetic field is applied in direction of the imaging beam
propagation to keep the atoms spin-polarized.
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4.2 Calibration of the Parameters

In the following sections a detailed analysis of the calibration of the relevant experimental
parameters is discussed. First of all, we determine the magnification of our imaging setup
by measuring the free fall of condensates for different times in the gravitational field.
The next step is to determine the trapping frequency of the harmonic trap. This is done
by measuring dipolar oscillations of condensates in the trap. Furthermore, the atom
number determination as described in section 4.1.5 will be cross-checked by considering
a different method. The periodic dipole trap is characterized by determining the lattice
spacing and investigating induced dipolar oscillations in the wells. For calibrating the
lattice spacing we load a large condensate in a trap with a shallow harmonic trap in
x-direction and a high periodic potential. The condensate then is populating several
wells which directly yields the lattice spacing.

In principle one could determine the trapping potentials for instance by measuring
the power and the waist of the beams. We refer to indirect measurements as mentioned
above since this method leads to a better accuracy.

4.2.1 Magnification

In order to determine the magnification of the imaging system we use the fact resulting
fom classical theory that every mass falls equally in the gravitational field7. Thus, we let
the condensate fall for different times ∆t and measure the falling distance ∆d with the
help of the images. Since we know the size of one pixel of the CCD chip (spixel = 6.45µm)
we can determine the magnification M by the law of falling bodies as

spixel

M
(∆d− d0) =

1

2
g(∆t− t0)

2 (4.11)

where g is the gravitational acceleration and d0 and t0 are constant shifts.
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Figure 4.6: Calibration measurement of the magnification of the imaging system. The red triangles
correspond to the vertical position of the condensate after switching off the trap and letting the con-
densate fall for different time-of-flight. Each point represents the average of at least 20 measurements.
The error bars are not shown since they are on the order of a few pixel. The black curve corresponds
to a least-square fit for Eq. (4.11). The resulting magnification for this measurement is 9.97± 0.12.

7Since in our experiment we are talking about a quantum mechanical object this is not clear from
the beginning.
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In Fig. 4.6 a typical calibration measurement of the magnification is shown. The
measured falling distances of the condensate are plotted against the time-of-flight. The
least-square fit with Eq. (4.11) gives a magnification of 9.97±0.12 for this measurement.

4.2.2 Harmonic Trap

For calibrating the trapping frequencies of the harmonic trap we consider collective
dipolar excitations of the condensate [23] initiated by a displacement of the trap center.
The principle of the measurement relies on measuring the position of the center of mass
of the condensate for different times.

For the excitation in x-direction the XDT beam is shifted by using the piezo-actuated
fibre outcoupler. This leads to a shifted harmonic confinement with respect to the
condensate. The condensate then starts oscillating in x-direction. The excitation in
the y-direction (direction of gravity) is initiated by opening the WG trap for a few
milliseconds - corresponding to a shift of the trap minimum - and closing it again. The
condensate experiences a reset force and starts to oscillate.
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Figure 4.7: The calibration of the harmonic trap for different trap frequencies is shown. The blue
points correspond to the measured center of mass position of the condensate after different times in the
trap. The green curves show a least-square fit of a sinusoidal oscillation including a possible beating.
The upper part of the two figures (a,b) shows the excitation in x-direction whereas the lower the one
in y-direction. The resulting frequencies are: (a) ωx = 2π × 35.0± 0.5Hz, ωx,beat = 2π × 98.7± 0.8Hz ;
ωy = 2π×98.1±0.5Hz (b) ωx = 2π×103.1±0.5Hz, ωx,beat = 2π×160.6±1.5Hz ; ωy = 2π×153.2±1.2Hz,
ωx,beat = 2π × 165.0± 0.9Hz.
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Doing these two excitations separately we see sinusoidal oscillations of the center of
mass in x and y-direction. Since we cannot observe dynamics in z-direction (direction
of imaging beam) we have to rely on an indirect method to determine this oscillation
frequency.

If we excite the condensate in both directions x and y at the same time we observe
a beating in the frequency. The beating corresponds to a simultaneous excitation in
z-direction. Thus, measuring the beating yields all needed frequencies. Fig. 4.7(a,b)
depicts a typical measurement of such kind. The center of mass position of the condensate
is plotted against the time. Also shown is the least-square fit of a sinusoidal oscillation
where a possible beating is included.

4.2.3 Atom Numbers

As mentioned in section 4.1.5 we determine the number of atoms by using the absorp-
tion imaging method and comparing the light intensities on the main and the reference
picture. We cross-check this method by an independent measurement. The shape of
the atomic cloud is strongly dependent on the number of atoms. More atoms result in a
broader cloud due to the repulsive atomic interaction. Thus, we measure the width of the
atomic density distribution in the harmonic trap for different atom numbers. The atom
numbers Nabs are determined by the absorption imaging method. We compare the result
to a numerical calculation using the non-polynomial Schrödinger equation for different
atom numbers NNPSE (see section 2.3.2). The resulting widths of the cloud have been
convolved with a gaussian with 2.7µm 1/e2-width to account for the finite resolution.
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Figure 4.8: The solid line corresponds to a numerical simulation of the widths of the condensate in a
harmonic trap ((ωx|ωy|ωz) = 2π×(35(2)|98(2)|99(2))Hz) as a function of the atom number NNPSE using
the NPSE (see section 2.3.2). The resulting widths have been convolved with a gaussian of 2.7(2)µm
1/e2-width to account for the finite resolution. The points correspond to the measured widths where
the corresponding atom numbers Nabs have been determined with the absorption method and corrected
by a factor of 5% (see text). The factor has been deduced by minimizing the standard deviation to the
numerical curve. The dotted lines depict the convolved widths of the maximum and minimum resolution
due to the error of 0.2µm. We note that the transverse widths are near the limit of our optical resolution,
and thus the errors are larger than for the x-widths.



4.2 Calibration of the Parameters 44

We find a correction factor for the determined atom numbers of Nabs = 0.95 ·NNPSE. The
measurements with the corrected atom numbers is compared to the numerical calculation
in Fig. 4.8. In our experiments the atom number is on the order of 2500, thus the
correction is 125 atoms.

4.2.4 Periodic Trap Spacing

For determining the distance between two wells in the periodic trap the confinement
in x-direction is decreased while the confinement of the periodic trap is increased to a
very high value. By loading a large condensate into this trap we populate many wells
as depicted in Fig. 4.9. This picture has been taken with a harmonic confinement of
(ωx|ωy|ωz) = 2π × (10(2)|160(2)|165(2))Hz. Since the confinement in x-direction is very
small we can neglect its influence on the scale of the populated wells. The trap spacing
is then determined by fitting a sine modulated gaussian of width σ to the integrated
atomic density

nfit(x) ∝
(

1 + sin

(
2π

qL
x+ φ0

))
exp(−2x2/σ2) (4.12)

where qL is the lattice spacing and φ0 a phase shift.
Repeating this measurement 20 times and averaging over the determined lattice spac-

ing we find qL = 4.78± 0.02µm in our case.
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Figure 4.9: The calibration of the periodic trap spacing is shown. Red corresponds to a high atomic
density whereas blue corresponds to a low density. For this calibration a large atomic cloud is loaded
into a elongated harmonic trap with (ωx|ωy|ωz) = 2π × (10(2)|160(2)|165(2))Hz superimposed with a
high periodic confinement such that the harmonic confinement in x-direction can be neglected. (a)
shows the atomic cloud which is populating many wells of the periodic trap. (b) shows the integrated
atomic density which we fit a sine modulated gaussian to in order to determine the lattice spacing.

4.2.5 Periodic Trap Depth

In order to determine the depth of the periodic potential we load a Bose-Einstein con-
densate into a double-well potential with the unknown barrier height V0. Increasing the
periodic potential non-adiabatically in 2ms to VF and simultaneously switching off the
harmonic confinement in x-direction (which is provided by the XDT) leads to dipolar os-
cillations of the two separated condensates. However, the oscillations are non-harmonic



4.2 Calibration of the Parameters 45

since the chemical potential is too high to approximate the potential with a parabola.
Thus, it is not enough to measure the frequency of the oscillation in order to determine
the trap frequency. Instead, we simulate the described procedure with the NPSE (see
section 2.3.2).

For the calibration we measure the relative distance between the two condensates as
a function of time. Since we only know the ratio V0/VF but not the absolute values8 of V0

and VF , we compare the experimental results to the numerical simulation with the free
parameter V0. This is done by minimizing the least square deviation of the numerical
result dnum to the measured data dmeas

σ2 =
1

k − 1

k∑
j=1

(dnum − dmeas)
2 (4.13)

where k is the number of measurements.
A typical measurement of this kind is shown in Fig. 4.10. Here we find for the initial

periodic trap depth V0 = 159± 15Hz and VF = 1370± 15Hz.
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Figure 4.10: The calibration of the periodic potential is shown. The Bose-Einstein condensate is first
generated in the double-well. Then, the harmonic confinement in x-direction is switched off, while the
periodic confinement is ramped up in 2ms. This excites dipolar oscillations of two separated condensates
(one in each well). The points in the lower graph show their measured relative distances. The theoretical
curve is calculated by using the NPSE (see section 2.3.2). The simulation has only one free parameter,
namely the periodic potential depth at the beginning. We vary this parameter and compare the measured
data to the numerical results by minimizing their least square deviation (see Eq. (4.13)). This is shown
in the upper graph. The minimum yields the desired value for the initial periodic potential. In this case
we find V0 = 159± 15Hz.

8The potentials V0,F are assumed to be proportional to the voltage U0,F which is applied to the
AOMs used for changing the light intensity. Thus, the ratio of the initial and the final barrier height is
given by V0/VF = U0/UF .
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Chapter 5

Experimental Results on the Phase
Fluctuations in a BJJ

In this chapter we discuss the results on the thermally induced phase fluctuations mea-
surement of a Bose-Einstein condensate in a double-well potential. In the first part
the used experimental techniques, such as the deduction of the relative phase, are ex-
plained. Since the relevant measurement parameters are the tunnelling coupling between
the two modes of the condensate and the temperature, the experimental access to these
parameters is discussed in more detail.

In the second part the experimental results on the coherence factor are presented.
Since the coherence factor depends on the absolute temperature we study a new method
for using it for thermometry. Commonly the temperature of a degenerate Bose gas is
determined by observing the expansion characteristics of the thermal cloud. This is only
feasible in a regime where the thermal cloud is clearly visible, meaning the signal-to-noise
ratio is good enough for distinguishing the thermal cloud from the background noise. For
temperatures far below the critical temperature this is not the case anymore, since the
number of thermal atoms for instance in a three dimensional harmonic trap scales with
(T/Tc)

3. In this regime we are able to apply the new thermometer, i.e. the temperature
is deduced from the phase fluctuations. This is discussed in the last part of this chapter.

All experiments considered in the following have been done with a harmonic confine-
ment of (ωx|ωy|ωz) = 2π × (90(2)|100(2)|100(2))Hz.

5.1 Considerations on the Experimental Method

5.1.1 Phase Measurement

The relative phase between the two modes of the Bose-Einstein condensate in the double-
well is deduced by observing the momentum distribution of the condensate. In order to
do this we instantly1 switch off all traps - the harmonic and the periodic trap. The two
condensate modes expand freely and interfere. Since the density decreases very rapidly
we neglect effects of interaction for the analysis of the interference experiments.

1Instantly, here, means as fast as possible with the given electronics, i.e. on the order of microseonds
with our setup. This is done in order to project the condensate into free space without influencing the
density distribution.
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Due to gravity the atoms fall down in the meantime. After a certain time-of-flight we
take an absorption image. This time-of-flight has to be chosen such that the measurement
is done in the far field. The imaged interference pattern then depicts the momentum
distribution. On the other hand the signal-to-noise ratio - which decreases with longer
a time-of-flight - needs to be such that the interference pattern is still observable. Some
example phase measurements are shown in Fig. 5.1(a). These pictures have been taken
for a time-of-flight of 6ms with 3000 atoms in the condensate. It should be noted that
this whole procedure is similar to an interference measurement with a double-slit setup
for light.
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Figure 5.1: (a) Single absorption pictures of the atoms are shown for different values of the relative
phase after 6ms time-of-flight. Red corresponds to a high atomic density whereas blue corresponds to a
low density. (b) The blue line shows the measured density distribution integrated along the y-direction.
The red line corresponds to a cosine modulated gaussian fit from which the phase is deduced.

Phase Deduction with a Negligible Thermal Cloud

In order to deduce the phase from the pictures we integrate the atomic density in the
single pictures along the y-direction, i.e. transversally to the double-well. If there is no
observable thermal fraction2 we fit a cosine modulated gaussian with a variable visibility
to the integrated density3(see section 3.3 and Eq. (3.30)). This procedure is shown in
Fig. 5.1(b). The blue line depicts the measured data integrated along the y-direction of
the corresponding absorption picture on the left. The red line is the cosine modulated
gaussian fit for deducing the relative phase of the two modes. The fitting error for the

2The distinction between the thermal and the condensate fraction manifests itself in a bimodal
distribution of the atom density.

3The fitting procedure used is a least square algorithm of MATLAB. Since there are too many degrees
of freedom for the phase fit, resulting in a high dimensional parameter space, it is necessary to get the
best initial conditions. This is done by fitting a distribution with full visibility first and using the result
as initial condition for the fit with a variable visibility.
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phase deduction has been estimated by averaging the error resulting from the least-square
fit for all measurements and is about 0.13π.

Phase Deduction with an Observable Thermal Cloud

This procedure is extended if there is an observable thermal cloud in the interference
picture. We assume that the thermal cloud does not contribute to the interference and
we subtract it from the whole distribution. To deduce the thermal fraction we integrate
the picture in x-direction, i.e. along the double-well, and fit a bimodal gaussian to the
resulting distribution. Having the thermal distribution we go on with the procedure ex-
plained above, but subtract the thermal fraction from the integrated interference pattern
first.

Deducing the Coherence Factor

Doing many phase measurements we see that the relative phase is fluctuating from
shot-to-shot. With respect to the theoretical prediction (see section 3.3.2 and 3.2.2) we
calculate the coherence factor α and the standard deviation ∆φ for k measurements

α =
1

k

k∑
i=1

cosφi

(∆φ)2 =
1

k − 1

k∑
i=1

(φi − 〈φ〉)2 ; 〈φ〉 =
1

k

k∑
i=1

φi

(5.1)

where φi is the phase of the ith measurement.

5.1.2 Temperature Deduction of the Atomic Cloud

In order to change the temperature of the atomic cloud we hold the atoms for a certain
time in the dipole trap. Due to mechanical and electronical noise the intensity of the
beams, and thus the trapping frequency, fluctuates and the temperature increases. It
turned out that holding the atoms for certain times in the trap is a very reproducible
method for adjusting the temperature.

To determine the temperature we fit a bimodal gaussian to the atom cloud after
time-of-flight. In order get to better accuracy we average over many pictures for reducing
the background noise. Some example pictures for different holding times are shown in
Fig. 5.2(a-c). The right part of each picture shows the integrated density distribution
and the corresponding bimodal gaussian fits of the absorption images on the left. We see
that the width of the thermal cloud is increasing when we hold the atoms longer in the
trap. However, the temperature deduction relies on the ratio of thermal atoms Nth to
condensate atoms N0 which is given by the bimodal gaussian fit. According to Eq. (2.8)
the temperature follows directly from this ratio as

T = Tc ·
(

1− N0

N0 +Nth

)1/3

(5.2)
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The critical temperature Tc is deduced from the trap parameters and the total number
of atoms (see Eq. (2.7)).

In Fig. 5.2(d) the resulting temperature for different holding times is shown. For this
measurement the condensate fraction is kept constant, i.e. 2500 condensate atoms, so
that we can compare the interference measurements for different temperatures.
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Figure 5.2: (a-c) Shown are averaged absorption pictures (3ms time-of-flight) of the Bose-Einstein
condensate after holding the atoms for different times in the harmonic trap. The right part of each
picture shows the density distribution integrated along the y-direction (blue line). One can clearly see
the expected bimodal gaussian distribution. The fit corresponds to a single gaussian accounting for the
thermal fraction (green line) and a gaussian for the condensate fraction (red line). Plot (d) shows the
resulting dependency of the cloud temperature on the time for which we hold the atoms in the trap.

5.1.3 Adjusting the Tunnelling Coupling

The second relevant parameter for the experiments is the tunnelling coupling EJ . It is
changed by varying the barrier height V0 of the double-well potential. In order to avoid
excitations due to the ramping of the barrier height, the ramp has to be adiabatic with
respect to the trapping frequency in the wells which is on the order of 300Hz for the
used barrier heights. This gives a lower bound for the ramping timescale.

The tunnelling coupling EJ is calculated within the scope of the two-mode model (see
section 3.1 and Appendix A) as a function of the barrier height. These calculations have
been done by T. Bergeman [25]. The numerical results are depicted in Fig. 5.3(a) for
different number of atoms for a harmonic confinement of (ωx|ωy|ωz) = 2π×(87|98|98)Hz.
The slope is in very good approximation of exponential shape. For 2500 atoms a fit yields

EJ(V0, N = 2500) ≈ 2500 · 4.97Hz · exp(−(V0[Hz]− 500)/158.3) (5.3)

Also depicted in the figure is the charging energy Ec as a function of the barrier height. It
is nearly independent of V0 and for our parameters we have approximately Ec ≈ 0.42Hz
or 20pK, respectively.

In Fig. 5.3(b) the corresponding plasma frequency ~ωp =
√
EJEc is given. Since its

inverse is the timescale of the dynamics of the relative phase, it yields the time after
which the system is in equilibrium. This is considered in the next paragraph in more
detail.
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Figure 5.3: (a) The tunnelling energy and the charging energy in the double-well Eq. (3.1) is plotted
as a function of the barrier height V0 for different number of atoms. The harmonic confinement for this
calculation has been (ωx|ωy|ωz) = 2π × (87|98|98)Hz. This curve is the result of numerical calculations
made by T. Bergeman [25] (b) The corresponding plasma frequency is plotted as a function of the barrier
height V0. It is considered for guaranteeing that the system is in thermal equilibrium (see next section).

5.1.4 Thermal Equilibrium

In this section we discuss preliminary experiments on thermalization.
Besides of avoiding excitations while ramping up the barrier for loading the BEC in

the double-well potential (see last section) we need to guarantee that the system is in
thermal equilibrium all the time. In order to check this we consider different ramping
schemes and measure the resulting phase fluctuations. The results on that are depicted
in Fig. 5.4(a) for two different ramps. The first was ramping up in 1300ms and measuring
the phase fluctuations for different final barrier heights. For the second measurement
we ramp up in 300ms after holding the BEC in the harmonic trap for one second and
measure the phase fluctuations. The atoms are kept for both schemes for the same time
in the trap, so that both measurements correspond to the same temperature.

In order to get an estimation on the response time of the system we consider the
plasma frequency since it is the timescale on which the tunnelling process of the atoms
take place. For the actual experiments the barrier heights have been varied from ∼ 500Hz
to 2500Hz. We assume a ramping of 1300ms to be adiabatic with respect to the plasma
frequency which is on the order of 1Hz for the highest barriers. Since both ramping
schemes lead to the same phase fluctuations we deduce the ramp of 300ms to be adiabatic
as well.

Another preliminary check has been performed on the increase of the phase fluctu-
ations. Fig. 5.4(b) shows the measured phase fluctuations depending on the holding
time in the double-well for two different final barrier heights. The errors result from the
fitting error and statistical errors. Since the condensates are less coupled for a higher
barrier, the fluctuations are bigger than for the ones with a lower barrier. The increase
of the fluctuations corresponds to a heating rate of the system. The dashed line shows
the theoretical prediction with a heating rate of 2.3nK/s which has been deduced from
measurements in the pure harmonic trap (see section 5.3). The deviation to the data for
longer holding times may come from the fact that this heating rate is different for the
double-well potential due to the intensity and phase jittering of the additional periodic
potential. After these first studies the full measurements on the phase fluctuations are
discussed in the next section.
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Figure 5.4: (a) The phase fluctuations ∆φ are shown as a function of the tunnelling energy and
respectively the effective barrier height for different ramping schemes (the second axis depicts the cor-
responding inverse tunnelling energy 1/EJ). The red points correspond to a ramping of the periodic
potential of 1.3s, whereas for the blue points the condensate has been hold in the trap for 1s and then the
periodic confinement has been ramped up in 300ms to the desired value (see also inset). We note that
there is no significant difference in the phase fluctuations for both ramps. Since we expect the slow ramp
to be adiabatic we also expect the 300ms ramp to be adiabatic as well. (b) The increase of the phase
fluctuations within the first 5s of holding the atoms in the double-well potential is plotted for different
final barrier heights. As expected for the higher barrier the fluctuations are larger since the condensate
modes are more separated, i.e. less coupled. The dashed line shows the theoretical expectation for a
heating rate which is valid for the Bose gas in the pure harmonic trap. The deviation may result from
a different heating rate due to the additional periodic potential.

5.2 Results on the Thermal Phase Fluctuations

With the previous considerations we summarize the procedure for the measurement on
the thermal phase fluctuations. After the condensate is prepared in the harmonic trap
the atoms are hold for a certain time in the trap to adjust the temperature T . After the
holding time the periodic confinement is ramped up within 300ms to the desired value.
We assume that the adiabatic ramping does not change the temperature which has been
deduced by independent measurements in the harmonic trap (see section 5.1.2). In order
to guarantee that we start with a symmetric distribution in the double-well, the atom
distribution in the double-well is checked every 10− 15 shots and, if necessary, adjusted
by moving the harmonic potential with the piezo-actuated fibre outcoupler of the XDT.
An asymmetric initial position would lead to a change of the tunnelling coupling and
the ground state. However, having the Bose-Einstein condensate in the double-well, the
traps are switched off suddenly and after a certain time-of-flight an absorption image
is taken. For each realisation the relative phase of the two modes is then deduced as
described in section 5.1.1.

For all measurements we have chosen a harmonic confinement of (ωx|ωy|ωz) = 2π ×
(90(2)|100(2)|100(2))Hz. With our setup we could vary the barrier height between 500
and 2500Hz. This corresponds to a tunnelling coupling between 30pK (∼ 625mHz) and
400nK (∼ 8300Hz). The charging energy has been 20pK (∼ 420mHz). The temperature
has been changed between 50nK and 80nK by holding the atoms between 7.5s and 17s
in the trap. Furthermore, a measurement run for not holding the atoms for some extra
time in the trap has been done. Since we do not observe a thermal cloud for this case, the
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temperature can only be extrapolated from the data of the other measurements, leading
to a temperature on the order of 20nK. The atom numbers for the measurements have
been varied between 1500 and 3500. Since the tunnelling coupling depends on the atom
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Figure 5.5: (a) shows the measured phase distributions for a constant tunnelling coupling of EJ/kB =
69(25)nK but different temperatures, whereas in (b) the phase distributions for different tunnelling
couplings and constant temperature is shown. The open red circle show twice the variance of the phase
distribution 2∆φ. T < 20nK corresponds to a measurement without holding the atoms in the trap for
some extra time. Since we don’t observe a thermal cloud there we need to extrapolate the heating rate
(Fig. 5.2(d)), which leads to a temperature below 20nK. This temperature will be discussed later in
more detail. (c) shows the phase histogramms for different values of kBT/EJ . The red line corresponds
to a fit according to Eq. (3.38).

number, this has to be taken into account in the analysis of the data.
Repeating the phase measurements we get a distribution of the relative phase which

depends on the mentioned parameters. This is depicted in Fig. 5.5. Here, two aspects
of the same process are shown in part (a) and (b). For the measurements in graph (a)
we keep the tunnelling coupling constant and vary the temperature. We see that the
phase fluctuations, which are characterized by the widths of the distributions, increase
with increasing temperature. Thus, the relative phase of the two condensate modes
is scrambled by the interaction with the thermal fraction of the atom cloud. In part
(b) we see the opposite effect. Here, we vary the tunnelling coupling and keep the
temperature constant. Increasing the tunnelling coupling, i.e. decreasing the barrier, the
phase is stabilized and the fluctuations decrease. Fig. 5.5(c) shows the corresponding
histogramms for a temperature of 66(3)nK with the theoretical predicted fit (see 3.3.3).
Fig. 5.6 depicts all measurements on the thermal phase fluctuations. In graph (a) we
see the phase fluctuations for all different temperatures which we considered. They
are plotted as a function of the effective barrier height. In Fig. 5.6(b) the dependence
on the temperature and the tunnelling coupling is shown by plotting the coherence
factor against the ratio of the two parameters. Every point represents the average of
40 phase measurements. The errors correspond to the statistical error and the error in
the experimental parameters, such as the trapping frequencies. Since we do not know
the lowest temperature very accurately we do not consider the corresponding points in
the plot. The theoretically expected behaviour is given by the dashed black line in the
figure (see Eq. (3.35)). However, the finite fitting error of φ0 = 0.13π will broaden the
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Figure 5.6: (a) All phase fluctuations measurements are shown as a function of the effective barrier
height for different temperatures. The lowest temperature corresponds to not holding the atoms for some
extra time in the trap (see Fig. 5.5). We see that the fluctuations increase with increasing temperature.
(b) The measured coherence factor of all measurements is plotted as a function of the ratio kBT/EJ .
The error bars represent statistical errors and errors in the knowledge of the experimental parameters.
For clarity only a few representative bars are plotted. The dashed line corresponds to the theoretical
prediction of Eq. (3.35), whereas the solid line takes a systematic error that results from the fitting error
into account (see text).

measured phase distribution and thus decrease the coherence factor. This is taken into
account by convolving the coherence factor with a phase distribution that corresponds
to the fitting error

α̃ =
1

2φ0

∫ φ0

−φ0

dφ0〈cos(φ− φ0)〉 =
sin(φ0)

φ0

α (5.4)

The corrected coherence factor is plotted as a solid line in the figure.
The measured points agree very well with the theoretical prediction within the ex-

perimental errors for small values of kBT/EJ , while going to higher values the deviation
gets bigger. We note that we measure a visbility α higher than expected for most of
the points. This fact is not completely understood yet. One reason might be that the
used two-mode model approach is a too simple approximation for considering the whole
dynamics but taking the whole excitation spectrum for the thermal cloud into account
is theoretically hard to tackle. Even though, the main behaviour is described well within
the scope of the two-mode model.

In section 3.3.2 we showed that the coherence factor is proportional to the visibility
of the averaged interference pattern. This process is depicted in Fig. 5.7. Part (a)
shows the averaged measured interference pattern for decreasing (from left to right)
tunnelling couplings for a temperature of 58(2)nK. As expected while increasing the
barrier, i.e. decreasing the tunnelling coupling, the bigger fluctuations lead to an averaged
interference pattern that gets more and more gaussian like. This is corresponding to a
decreasing coherence factor, i.e. the visibility is vanishing. Fig. 5.7(b) shows the fitted
visibility αfit of the averaged interference pattern as a function of the coherence factor
resulting from the average over the cosine of the measured phases. Effects like the finite
resolution and the tilted imaging plane reduce the fitted visibility. In order to take these
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Figure 5.7: In figure (a) the average of 60 phase measurements at a temperature of 58(2)nK, i.e. 10s
holding time, is shown. Going from left to right we see the result for different tunnelling couplings,
namely EJ/kB ∼ 243nK; 15nK; 0.8nK. For lower tunnelling couplings a clear decrease of the visibility
is seen. This results from the different amount of fluctuations of the relative phase that depend on
the tunnelling coupling. The lower part shows the integrated atom density (blue line). The red line
corresponds to a cosine modulated gaussian fit that takes a variable visibility into account. Figure (b)
shows the fitted visibility of the averaged interference pattern as a function of the coherence factor. The
fit (solid line) yields a reduced resolution of 3.45µm (see text).

effects into account we convolve the averaged interference pattern (see Eq. (3.32)) with
a gaussian with a reduced resolution. The corresponding αfit then reads

αfit = exp
(
−d2(2π)2r2/8k2(d2 + r2)

)
α (5.5)

where d is the size of the cloud in each well, k is the lattice spacing and r is the reduced
resolution. The fit to the data (solid line in the picture) yields a reduced resolution of
3.45µm (see [29] for a detailed analysis on effects reducing the imaging resolution).

5.3 Thermometry with Thermal Phase Fluctuations

Since the thermal phase fluctuations depend on temperature we can, as long as we know
the tunnelling coupling, use them for doing thermometry. This is done by measuring
the barrier height and determining the tunnelling coupling EJ numerically. By measur-
ing the phase fluctuations we can deduce the temperature by comparing the resulting
coherence factor with its theoretical prediction. This new thermometer is demonstrated
by measuring the heating up of the Bose gas in the harmonic trap. The difference to the
measured heating of the cloud in the previous sections is, that we need to keep the total
number of atoms constant. We compare the resulting temperatures with the theoretical
prediction that is deduced from the heat capacity of a Bose gas in a harmonic trap.
Thus, these measurements are an indirect confirmation of the heat capacity.

5.3.1 Optimal Point and Calibration of the Thermometer

For using the coherence factor for thermometry one should choose the barrier height
such that the temperature is strongly depending on it. This is depicted in Fig. 5.8(a).
The inset shows the coherence factor as a function of the barrier height for different
temperatures. The point of interest is the barrier height where the coherence factor
equals 0.5 since we find the biggest gradient there. This can be numerically calculated.
The result, i.e. the optimal barrier height V0 as a function of temperature, is shown in the
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plot. Thus, one needs to estimate the regime where the temperature is to be measured
and take the corresponding optimal barrier height. In our case a rough estimation of
the temperature is T ≈ 20nK, so that we would choose a barrier height of ∼ 1000Hz,
corresponding to a tunnelling coupling of ∼ 50nK.

We need to calibrate this tool for thermometry, in order to compensate the deviation
from the theoretical prediction (see section 5.2). This is done by comparing the tem-
perature we deduce from the coherence factor with the one from the standard method
(section 5.1.2) - which we believe to give an accurate temperature - in a regime where
both methods are possible. The result is a correction factor for the temperature de-
termined with our new thermometer. This has been done for the phase fluctuations
measurements - which we have discussed in section 5.2 - for the data set where we also
deduced the temperature. The analysis of that is shown in Fig. 5.8(b).

The different tunnelling couplings have been grouped in three ranges for clarity.
From this plot we can read needed the correction factor. In our case this means that the
temperature T∆φ deduced from the coherence factor needs to be corrected like

Treal =
1

0.73
· T∆φ (5.6)

where Treal is the accurate temperature.
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Figure 5.8: (a) The optimal barrier height for the use of the phase fluctuations for thermometry is
plotted as a function of the temperature. The optimum is given at the point where the coherence factor
equals 0.5, i.e. where the biggest gradient is given (see also inset, where the coherence factor is plotted
as a function of the barrier height). (b) The calibration of the phase fluctuations thermometer is shown.
In order to compensate the deviation of the experimental data to the theoretical predicition for the
phase fluctuation measurements, we need to correct the temperature that is deduced from the measured
coherence factor. The correction factor is determined by comparing the temperatures resulting from the
well-known standard method (see 5.1.2) with the new phase fluctuations measurement. Since it depends
on the tunnelling coupling the factor has been grouped for three regions of EJ .

5.3.2 Results on the Heat Capacity of a Bose-Einstein Conden-
sate

The heat capacity of the degenerate Bose gas in the pure harmonic trap is accessed
indirectly by measuring the temperature of the atom cloud as a function of the holding
time. In order to be able to compare the results for different temperatures we keep the
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total number of atoms constant for all temperatures. For this measurement the total
number of atoms has been 2500(500).

The temperature in the pictures can not be deduced from the thermal cloud for
holding shorter than 2s, since in this regime the thermal fraction is too small to be
observed. But, we can apply the phase fluctuations to determine the temperature. With
the new calibrated thermometer we deduce a temperature of 15(4)nK on average for
not holding the atoms for some extra time in the trap. The results on the temperature
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Figure 5.9: The temperature of a Bose-Gas in the three dimensional harmonic trap as a function of
the holding time is plotted. The open points depict the measurements done with the standard method
(see 5.1.2). Clearly visible is a change in the slope of the temperature dependence after 25s. This
corresponds to the expected phase transition which occurs when passing the critical temperature. This
is also shown by the different colors for the open circle data points. The red ones correspond to a pure
thermal cloud, whereas the black ones, occuring below the critical temperature, represent pictures where
a clear condensate fraction and a thermal could be seen. The critical temperature has been determined
with the trapping frequencies and the number of atoms (see Eq. (2.7)) and equals 59(4)nK. The filled
points correspond to measurements done with the calibrated phase fluctuations thermometer. This
measurement revealed that the lowest achievable temperature with our setup is 15(4)nK. The closed
line is the theoretically expected behaviour (see Eq. (5.7)).

measurement are summarized in Fig. 5.9. The open circles correspond to the standard
method (see 5.1.2), whereas the closed points to deducing the temperature with the
coherence factor. In order to compare the results to the theoretical prediction we assume
a constant transfer rate of energy κ. The expected heat capacity (see section 2.2) then
yields for the temperature depending on the holding time t

c =
dE

dt
· dt
dT

= κ · dt
dT

⇒ T (t) =


d+1

√
ζ(3)

ζ(4)
· κ

3kB

· T d
c · t (T < Tc)

κ

3kB

· t (T > Tc)

(5.7)

where d and κ are taken as parameters that are determined by fitting the measurements4.
The critical temperature for this measurement has been Tc = 59(4)nK. It has been
deduced with the measured trapping frequencies and the number of atoms (see Eq. (2.7)).

4The exact numerical dependency for temperatures right above the critical temperature has been
approximated linearly here, since we could not resolve this effect within this measurement.
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Fitting the data yields a heating rate of κ/3kB = 2.3(2)nK/s and d = 2.7(6). This is
consistent with the expected value of d = 3 (see section 2.2). It should be noted that the
behaviour of the heating up is clearly changing, when the temperature is becoming larger
than the critical temperature. This is corresponding to the expected phase transition
which occurs in our case after ∼ 25s holding time. For longer times we do not have any
condensate fraction anymore and we are considering a thermal Bose gas. We note that
with our assumption of a constant heating rate the data is in excellent agreement with
the theoretical prediction.
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Chapter 6

Conclusion and Outlook

In the scope of this diploma thesis the influence of thermal effects on a Bose-Einstein
condensate in a symmetric double-well potential is studied. The condensate is described
within a two-mode approximation. The two modes correspond to superpositions of
the ground state and the first excited state wave function that result in a mode for
the left and the right well, respectively. Even though the corresponding Schrödinger
equation (Gross-Pitaesvkii equation) for this system is non-linear this approximation is
reasonable since these two energy states are nearly degenerate and the gap to higher
energies is much larger. The dynamics of the condensate in this approximation is then
described by the temporal evolution of two variables, namely the relative phase and
the population imbalance between the two modes. The different regimes depending
on the initial conditions have been subject to experimental studies [13, 28, 29]. The
relative phase is experimentally deduced by doing interference measurements with the
two modes, whereas the population imbalance can be directly accessed with the help of
the absorption images of the atomic density distribution.

However, in this work fluctuations of these variables are studied. They are expected
to arise from two aspects, namely the quantum mechanical uncertainty and the influ-
ence of the thermal cloud that always accompanies the condensate. In the experiment
the accessible parameters, i.e. the tunnelling energy EJ which is corresponding to the
coupling strength of the two modes and the charging energy Ec which is representing
the on-site interaction energy, have been chosen such that the quantum fluctuations
are negligible. This is the so-called Josephson regime where these parameters fulfil the
constraint EJ/N

2 � Ec � EJ . Furthermore, the thermal fluctuations in the atom
numbers are negligible since they are below one percent for the considered temperatures
and parameters, so that the focus of the experiment is on the thermally induced phase
fluctuations. The measurements are analysed by considering the coherence factor, which
is representing the visibility of the averaged interference pattern, as a function of the
ratio of the temperature and the tunnelling energy. The experimental results are then
compared to the theoretical prediction resulting from the two-mode model.

Since the phase fluctuations depend on the temperature it is possible to use these
measurements for determining the temperature of the degenerate Bose gas. What makes
it so interesting is the fact that the used standard methods for deducing temperatures
rely on observing the thermal fraction of the atomic density distribution. This is not pos-
sible as soon as the temperature is far below the critical temperature since the thermal
fraction scales for instance with (T/Tc)

3 in the harmonic trap. In this regime measuring
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the thermal phase fluctuations is a good tool for deducing the temperature since only
the condensate distribution is relevant for the interference experiments. However, even
though the tool is depending on the absolute temperature, it is necessary to calibrate
this new thermometer due to a - so far not theoretically understood - deviation of the
measured data to the applied theory. This is done by comparing the deduced temper-
atures with standard methods for temperature deduction in a regime where both are
applicable.

Using this tool the temperature of a degenerate Bose gas in a harmonic trap has been
measured far below the critical temperature. This measurement yields a temperature of
T = 15(4)nK ≈ Tc/4 which corresponds to ∼ 40 atoms in the thermal fraction of an atom
cloud with totally 2500 atoms. Furthermore, an indirect confirmation of the theoretical
expected heat capacity of the Bose gas in the harmonic trap is given by measuring
the temperature as a function of the holding time in the trap. Assuming a constant
heating rate the data is in very good agreement with the theoretical expectation. This
measurement confirms that the heat capacity vanishes while approaching the absolute
zero as expected from the third law of thermodynamics.

The results on the thermal phase fluctuations and the new thermometer have been
summarized and are accepted for publication in Physical Review Letters [48]. Fur-
thermore, a summary on the used experimental techniques and the calibration of the
parameters has been published in Applied Physics B [49].

Outlook

The investigation of finite temperature effects with a Bose-Einstein condensate is one
necessary step to study the interaction between the thermal cloud and the condensate.
Theoretically this issue is hard to tackle due to the many degrees of freedom that are
needed for describing the excitation spectrum. One of the next investigative steps on
this topic will be experiments on the damping of the observed Josephson oscillations and
the decay of the self-trapped state [28] (see also [50, 51] for an investigation of damping
within the two-mode model). The time scales on which the energy dissipation takes
place are not clear so far, so that the experimental results will give input to theoretical
approaches.

One issue that will be tackled in the near future is the investigation of the phase
diffusion process [52, 53, 54]. This process manifests itself in collapses and revivals of
the relative phase. It has already been subject to investigations by Bloch [55] in an
optical lattice potential with two to three atoms per site. In order to do this with our
double-well a non-adiabatic ramping scheme for preparing the condensate in the double-
well potential should be applied.

Furthermore, the - not so far observed and outstanding - thermal fluctuations of the
population imbalance will be studied. In the described measurements they could be
neglected. For better accessibility also the atom number detection will be increased in
accuracy.

One of the next experimental and technical steps will be installing a new lens system
[29] allowing for a better imaging resolution and generating arbitrary potentials that
are superimposed to the current potential. This setup can be used to address each well
separately via a laser beam. This will make it possible to imprint arbitrary phases on
one mode of the condensate, leading to many interesting phenomena. Among them, the
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π-oscillations [16], i.e. oscillations of the relative phase around its mean value of π, shall
be mentioned since they have not been observed so far.

Another interesting and important application of the Bose-Einstein condensate in the
double-well is the creation of dark solitons fans [56, 57, 58]. Dark solitons are expected
to be created when doing non-linear interference experiments with the two condensate
modes in the double-well. This is done by switching off the barrier of the double-well
after a condensate is prepared in it and letting the two modes evolve in the remaining
harmonic trap. Preliminary experiments considering the oscillation of the dark solitons
in the harmonic trap have already been performed in our group and first results look
very promising.

Bose-Einstein condensates have turned out be a probe for many fundamental aspects
of quantum mechanics and have given a profound insight into the microscopical world
one hardly ever thought is possible. The recent results have made many new predicted
effects accessible with current experimental setups, so that this field of ongoing research
will be revealing many interesting aspects of physics in the future.





Appendix

Appendix A

The main derivative steps for the dynamical equations of the Standard and the Improved
Two-Mode Model are discussed. Furthermore, the numerical results on the parameters
of the Two-Mode Model are given as a function of the barrier height in the double-well.

Appendix B

The functional behaviour of the Josephson Hamiltonian and its approximation for n� N
is studied. Furthermore, an analytical expression for the coherence factor is given in
terms of the modified Bessel functions.

Appendix C

The numerical split-step fourier method is presented for solving the non-linear Schrödinger
equation and the calculation of the excited states in the double-well is discussed.

Appendix D

A comparison between the exact Hamiltonian - written in terms of creation and an-
nihilation operators - and the classical approximation is discussed in the scope of the
coherence factor.
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Appendix A

Two-Mode Model Calculations

We discuss the main steps of the derivation of the dynamical equations for both, the
Standard and the Improved Two-Mode Model.

Standard Two-Mode Model

We insert the ansatz

Ψ(r, t) = ψ1(t)ϕ1(r) + ψ2(t)ϕ2(r) (A.1)

into the time-dependent GPE and find the following equation for ψ1(t) by multiplying
with φ∗1(r) and integrating over the spatial dimensions

ı~
∂

∂t
ψ1 =

∫
dr

(
− ~2

2m
ϕ1∇2ϕ1 + ϕ2

1Vext + gN1ϕ
4
1

)
︸ ︷︷ ︸

=E1+U1N1

ψ1

+

∫
dr

(
− ~2

2m
ϕ1∇2ϕ2 + ϕ1Vextϕ2

)
︸ ︷︷ ︸

=K

ψ2

+

∫
dr
(
gN2ϕ1ϕ

3
2 + gϕ2

1ϕ
2
2ψ

∗
1ψ2 + 2gN1|ϕ1|3ϕ2

)
ψ2

+

∫
dr
(
gϕ3

1ϕ2ψ
∗
2ψ1 + 2gN2ϕ

2
1ϕ

2
2

)
ψ1 (A.2)

With the same method we derive the corresponding equation for ψ2(t). All terms where
products of φ1 and φ2 appear in higher order than two are neglected. With the definitions
of K,E1,2 and U1 we then get the two coupled equations for ψ1,2 as shown in Eq. (3.8).

We consider the symmetric double-well for which E1 = E2 and U1 = U2. By sep-
arating imaginary and real part in the equations for ψ1,2 we find with the help of the
following relations

N1 =
N

2
+ n ; N2 =

N

2
− n (A.3)

the dynamical eqautions for n and φ (Eq. (3.10)).
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Improved Two-Mode Model

Doing the same steps as in the Standard Two-Mode Model but factorizing with respect
to the ϕ± we find (for simplicity ~ = m = 1)

ı
∂ψ1(t)

∂t
(ϕ+ + ϕ−) + ı

∂ψ2(t)

∂t
(ϕ+ − ϕ−)

=
∑
±

(ψ1(t)± ψ2(t))
(
β± − g|ϕ±|2

)
ϕ± +

g

2

∑
±

(
ϕ3
±P± + ϕ2

±ϕ∓Q±
) (A.4)

The P± and the Q± are defined as follows

P± = 2(ψ1 ± ψ2)− |ψ1|2ψ1 ∓ |ψ2|2ψ2 ± ψ2
1ψ

∗
2 + ψ2

2ψ
∗
1

Q± = ±2(ψ2 − ψ1) + 5ψ1|ψ1|2 ∓ 5ψ2|ψ2|2 ± ψ2
1ψ

∗
2 − ψ2

2ψ
∗
1

We introduce new quantities to simplify this equation

γij = g

∫
dxϕ2

i (x)ϕ
2
j(x) for i, j ∈ {+,−}

∆γ = γ−− − γ++

∆β = β− − β+

A = (10γ+− − γ++ − γ−−) /4

B = ∆β − ∆γ

2
C = (γ++ + γ−− − 2γ+−) /4

F = (β+ + β−) /2− γ+−

M1,2 = F + A|ψ1,2|2 −
∆γ

4
ψ1,2ψ

∗
2,1

K1,2 =
∆β

2
− ∆γ

4
|ψ2,1|2 − Cψ∗1,2ψ2,1

(A.5)

If we multiply Eq. (A.4) separately with ϕ± and integrate over space we find two coupled
differential equations for ψ1,2 (see [25])

ı
∂ψ1

∂t
= M1ψ1 −K1ψ2

ı
∂ψ2

∂t
= M2ψ2 −K2ψ1

(A.6)

In contrast to the Standard Two-Mode Model the coupling term K1,2 depends on time
and the interaction. Again using Eq. (A.3) we find the dynamical equations for n and φ.

Relation of the defined quantities

The introduced quantities of the Improved Two-Mode Model are related to the corre-
sponding quantities of the Standard Two-Mode Model by (see [25] for a detailed deriva-
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tion)

E1,2 =
1

2
[(β+ − γ++) + (β− − γ−−)]

U1,2 = A+ 2C

K =
B

2
− ∆γ

4

(A.7)

Parameters of the Improved Two Mode Model

The relevant parameters A,B and C depend only on the trap geometry and the atom
numbers. They have been calculated by T. Bergeman (see also [25]) for our double-well
potential of the form

Vext(x) =
1

2
m(w2

xx
2 + w2

yy
2 + w2

zz
2) +

V0

2

(
cos

(
2π

q0
x

)
+ 1

)
(A.8)

with q0 = 4.78µm, (ωx|ωy|ωz) = 2π × (87|98|98)Hz. The results are shown in Fig. A.1.
These parameters are connected to the tunnelling energy and the charging energy (see
section 3.1.2) as

EJ =
N

2
B ; Ec =

2

N
A (A.9)
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Figure A.1: The relevant parameters A,B and C of the Improved Two-Mode model for the double-well
(Eq. (A.8)) are plotted as a function of the barrier height V0 for different number of atoms.
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Appendix B

On the Josephson Hamiltonian and
Analytical Results on the Coherence
Factor

We consider the Hamiltonian

H(n, φ) =
1

2
Ecn

2 − EJ

√
1− 4n2

N2
cosφ (B.1)

In order to get an idea about the functional behaviour the Hamiltonian is plotted
Fig. B.1(a) for EJ = 100nK, Ec = 20pK and 2500 atoms as a function of the rela-
tive phase φ and the population imbalance n. Fig. B.1(b) depicts the logarithmic plot
of the Boltzman factor exp(−H(n, φ)/kBT ) which is needed to calculate the thermal
fluctuations and the coherence factor. The temperature is chosen to be 20nK.

We estimate the error that is done when calculating the coherence factor when the
square root term in the Hamiltonian is neglected

H̃(n, φ) =
1

2
Ecn

2 − EJ cosφ (B.2)

In the upper graph of Fig. B.2 a numerical comparison of the coherence factor for the full
Hamiltonian (solid line) and the one calculated with the Hamiltonian in Eq. (B.2) (blue
points) is plotted for Ec = 20pK and 2500 atoms. The lower graph shows the deviation
of the two coherence factors

ferr = 1− α̃

α
(B.3)

We see that for the error made when neglecting the square root term in the Hamiltonian
is for our parameters negligible.
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Figure B.2: The solid line in the upper graph shows the coherence factor calculated with the full
Hamiltonian Eq. (B.1) as a function of kBT/EJ for Ec = 20pK and 2500 atoms. The points correspond
to calculation of the coherence factor with the approximated Hamiltonian Eq. (B.2). The lower graph
shows the deviation of the two Eq. (B.3). We see that the error is negligible for our parameter regime.
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Evaluation of the Thermal Average Integral

We give an analytic expression for the coherence factor. In the limit of n� N it is given
by

α = 〈cosφ〉 =

∫ π

−π

dφ cosφ exp(EJ cosφ/kBT )∫ π

−π

dφ exp(EJ cosφ/kBT )

(B.4)

The integral is given in terms of the well-known modified Bessel functions of the first
kind

α =
I1(x)

I0(x)
with x =

EJ

kBT
(B.5)

The modified pth order Bessel functions of the first kind read [59]

Ip(x) =
1

π

∫ π

0

dφ exp(x cosφ) cos(pφ) =
2

π

∫ π

−π

dφ exp(x cosφ) cos(pφ) (B.6)

They can be expanded in a series

Ip(x) =
∞∑

k=0

(
x
2

)p+2k

k!Γ(p+ k + 1)
(B.7)

=
1

Γ(p+ 1)

(x
2

)p

+
1

1!Γ(p+ 2)

(x
2

)p+2

+
1

2!Γ(p+ 3)

(x
2

)p+4

+ · · · (B.8)

With this we can give an analytic expression for the coherence factor

α =

∞∑
k=0

1

(k + 1) · (k!)2

(x
2

)2k+1

∞∑
k=0

1

(k!)2

(x
2

)2k
(B.9)
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Appendix C

Numerical Method for Solving the
Non-Linear Schrödinger Equation

The Fourier Split-Step Algorithm

The non-linear Schrödinger equation can be solved numerically using a split-step fourier
method [60]. This method is suitable for the GPE as for the NPSE. The algorithm is
explained in the following.

The time evolution of the wave function obeying the corresponding wave equation
can be written with the time evolution operator as

ψ(x, t+ dt) = exp
(
− ı

~
Ĥdt

)
ψ(x, t) = exp

(
− ı

~
(
p̂2/2m+D(x)

)
dt
)
ψ(x, t) (C.1)

where the p̂ represents for the momentum operator and D(x) accounts for all terms
depending on x. In the Gross-Pitaesvkii equation this term reads DGPE(x) = Vext(x) +
g|ψ(x)|2, whereas for the NPSE this term

DNPSE(x) = Vext(x) + g1d
|Ψ(x, t)|2√

1 + 2a|Ψ(x, t)|2

+
~ω⊥
2

(
1√

1 + 2a|Ψ(x, t)|2
+
√

1 + 2a|Ψ(x, t)|2
)

(C.2)

We expand the time evolution operator in three terms

exp
(
− ı

~
Ĥdt

)
≈ exp

(
− ı

~
p̂2

2m
dt/2

)
exp

(
− ı

~
D(x)dt

)
exp

(
− ı

~
p̂2

2m
dt/2

)
(C.3)

Since p̂ and D(x) do no commute in general we make an error1 which is on the order of
O(dt3) according to [60]. With this expansion we can propagate the wave function in a
very easy way. Since the momentum operator is diagonal in Fourier space (p̂ = p) we
do the time propagation by doing a half time step in Fourier space, then one full step in

1This expansion only equals the initial expression when the two operators commute. This comes
from the fact the exp(A) exp(B) = exp(A+B + [A,B] + · · · ). See Baker-Cambell-Hausdorf theorem in
standard text books [61].
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real space and the last half time step in Fourier space again. The corresponding steps
read

ψ̂(k, t+ dt) = exp
(
− ı

~
(
p2/2m

)
dt/2

)
ψ̂(k, t+ dt) (C.4)

ψ(x, t+ dt) = exp
(
− ı

~
D(x)

)
ψ(x, t+ dt) (C.5)

where ψ̂(k, t) = FT[ψ(x, t)].

Ground State and Excited State Calculation

The above mentioned algorithm propagates a given initial state in time. If we want to
take the ground state of the system as initial state, it has to be calculated in advance.
This is done changing the Fourier-Split step algorithm by introducing a Wick rotation,
i.e. τ = −ıt. It means that we can use the same algorithm, but do the propagation in
imaginary time. Since this leads to a loss of particles in each step, we have to normalize
the wave function in every time step again. Taking an initially good guess on the wave
function this progagation will then converge to the ground state wave function of the
system [62].

In order to calculate the excited states, we subtract the corresponding part of the
(already calculated) lower states in the wave function in each time step. This is done by
projecting each lower state upon the wave function and subtracting it. For calculating
the Mth excited state this step reads

ψM(x) = ψM(x)−
M−1∑
i=0

〈ψM |ψi〉ψM(x) (C.6)

where ψ0(x) is the ground state wave function. An example on this method is described
in the following section.

The Ground and Excited States in The Double-Well Potential

We applied the above algorithm for solving the NPSE (see section 2.3.2) for a double-well
potential. The resulting ground state depending on the barrier height V0 is shown in
Fig. C.1. The calculation has been done with 2500 atoms and a harmonic confinement
of (ωx|ωy|ωz) = 2π × (90|100|100)Hz.

With the above mentioned method we calculate the eigenstates and thus the eigenen-
ergies of this system. Fig. C.2(a) shows the resulting eigenenergies for the collective
excitation of the condensate as a function of the barrier height2. With no barrier we
have equidistant energies as expected for a harmonic trap. Ramping the barrier up the
energies are shifted and move closer together. We note that the ground and the excited
state are nearly degenerate. Furthermore, the gap to the second excited state is large
compared to the energy difference of the ground and the excited state. This is why the
two-mode model only takes the first two states for describing the condensate dynamics
into account.

2The complete energy here is composed of the energy in the double-well and the energy of the
transversal ground state (see section 2.3.2)



72

Fig. C.2(b) depicts the energy spectrum with the condensate in the ground state and
a single particle excited in a higher state as a function of the barrier height. In order to
calculate this the interaction energy has been replaced by a term only taking the ground
state wave function as interaction potential

ψ(x) =
p2

2m
+ V (x) + g|ψ0(x)|2 (C.7)

For both graph we see that as soon as the energy is comparable with the barrier height,
the corresponding states degenerate.
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Figure C.1: Shown is the ground state density distribution in a double-well for different barrier heights
calculated with the NPSE. The left part shows a two-dimensional plot of the ground state density distri-
bution |ψ0(x)|2, whereas the right part shows a cut through the center axis. The numerical parameters
are N = 2500 atoms and the harmonic trapping frequencies of (ωx|ωy|ωz) = 2π × (90|100|100)Hz.
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Figure C.2: (a) The collective excitation spectrum for a condensate in a the double-well potential
as a function of the barrier height is shown. The calculation have been done using a Fourier split-step
algorithm for solving the one-dimensional NPSE. (b) shows the excitation spectrum with a single particle
in the higher states while the condensate remains in the groundstate. The numerical parameters for this
graph are the same as in Fig. C.1. The dashed line shows the bisecting line for comparing the barrier
height with the energy.
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Appendix D

Comparison between the Exact
Hamiltonian and its Classical
Approximation

We consider N atoms in the double-well potential. Let the operator a(†) annihilate
(create) a particle in the left well. The operator b(†) applies for the right well. We define
the state where NL particles are in the left well and NR in the right one as |NL, NR〉.
Introducing the population imbalance n = (NL −NR)/2 we can rewrite the state as

|n〉 :=

∣∣∣∣N2 + n,
N

2
− n

〉
(D.1)

The creation/annihilation operators of the corresponding symmetric and antisymmetric
state in this model are written as

c(†)s,a =
1√
2
(a(†) ± b(†)) (D.2)

The Hamiltonian in this case reads [30]

H =
Ec

4

((
a†a
)2

+
(
b†b
)2)− EJ

N

(
a†b+ b†a

)
(D.3)

Let Ns,a := 〈c†s,acs,a〉 be the number of particles in the symmetric and antisymmetric
state, respectively. Doing interference experiments the symmetric state corresponds to
a relative phase of 0 and the antisymmetric to a phase of π. The averaged momentum
distribution for this case reads

〈I(p)〉 ∝ 〈Na

(
1 + cos

(
π − d · p

~

))
+Ns

(
1 + cos

(
0− d · p

~

))
〉 (D.4)

∝
(

1 +

(
1− 2〈Na〉

N

)
cos
(
d · p

~

))
(D.5)

Thus, the coherence factor is obtained by considering

α = 1− 2〈V̂ 〉
N

with V̂ := Na =
1

2
(a† − b†)(a− b) (D.6)
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In order to calculate the corresponding average we consider the density matrix % of the
canonical ensemble which can be found in standard text books [61]

ρ = e−H/kBT (D.7)

The expectation value of the operator V̂ follows then as

〈V̂ 〉 =
Tr(V̂ · %)

Tr%
=

Tr
(
V̂ · e−H/kBT

)
Tr (e−H/kBT )

(D.8)

where Tr M =
∑

k Mkk is the trace of a matrix M .
With this prelimenary definitions we calculate the matrix elements of the Hamiltonian

and the operator V̂

〈k|H|n〉 = δk,n ·
Ec

4

(
N

2

2

+ 2n2

)
−δk,n+1 ·

EJ

N

√(
N

2
+ k

)(
N

2
− n

)

−δk,n−1 ·
EJ

N

√(
N

2
− k

)(
N

2
+ n

)
(D.9)

〈k|V̂ |n〉 = δk,n ·
(
N

2

)
−δk,n+1 ·

1

2

√(
N

2
+ k

)(
N

2
− n

)

−δk,n−1 ·
1

2

√(
N

2
− k

)(
N

2
+ n

)
(D.10)

In order to simplify equation D.8 we diagonalize the Hamiltonian as

HD = T t ·H · T (D.11)

and the expectation value of V̂ reads

〈V̂ 〉 =
Tr
(
T tV̂ T · e−HD/kBT

)
Tr
(
e−HD/kBT

) (D.12)

These can be easily implemented in a computer algebra program and numerically calcu-
lated. Fig. D.1 shows the numerical comparison between the coherence factor resulting
from these step and the one resulting from the classical approximation

α = 〈cosφ〉th =
I1(EJ/kBT )

I0(EJ/kBT )
(D.13)

with the modified Bessel function I0,1. We see that both approaches are in excellent
agreement.
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Figure D.1: The comparison between the exact Hamiltonian (Eq. (D.3)) and the classical approxi-
mation with respect to the coherence factor α is shown. The red line corresponds to the theoretical
prediction for α according to the classical approximation (Eq. (D.13)) as a function of kBT/EJ . The
points show the result of a numerical calculation for Eq. (D.6).
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[13] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler.
Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic
Josephson Junction. Physical Review Letters, 95:010402, 2005.



Bibliography 77

[14] I. Zapata, F. Sols, and A.J. Leggett. Josephson Effect Between Trapped Bose-
Einstein Condensates. Physical Review A, 57:R28, 1997.

[15] A. Smerzi, S. Fantoni, S. Giovanazzi, and S.R. Shenoy. Quantum Coherent Atomic
Tunnelling Between Two Trapped Bose-Einstein Condensates. Physical Review Let-
ters, 79:25, 1997.

[16] S. Raghavan, A. Smerzi, S. Fantoni, and S.R. Shenoy. Coherent Oscillations Between
Two Weakly Coupled Bose-Einstein Condensates: Josephson Effects, π Oscillations
and Macroscopic Quantum Self-Trapping. Physical Review A, 59:620–633, 1999.

[17] L. D. Landau and E. M. Lifschitz. Statistische Physik. Akademie Verlag, Berlin,
1975.

[18] C.J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Cambridge,
University Press, 2002.

[19] S.R. de Groot, G.J. Hooyman, and C.A. ten Seldam. On the Bose-Einstein Con-
densation. Proc. R. Soc. London A, 203:266, 1950.

[20] E.P. Gross. Structure of a Quantized Vortex in Boson Systems. Nuovo Cimento,
20:454, 1961.

[21] E.P. Gross. Hydrodynamics of a Superfluid Condensate. Jounal of Mathematical
Physics, 4:195, 1963.

[22] L.P. Pitaevskii. Vortex Lines in an Imperfect Bose Gas. Sov. Phys. JETP, 13:451,
1961.

[23] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein
condensations in trapped gases. Rev. Mod. Phys., 71:463, April 1999.

[24] L. Salasnich, A. Parola, and L. Reatto. Effective Wave-Equations for the Dynamics
of Cigar-Shaped and Disc-Shaped Bose Condensates. Physical Review A, 65:043614,
2002.

[25] D. Ananikian and T. Bergeman. The Gross-Pitaevskii Equation for Bose Particles in
a Double Well Potential: Two Mode Models and Beyond. Phys. Rev. A, 73:013604,
January 2006.

[26] S. Giovanazzi, A. Smerzi, and S. Fantoni. Josephson Effects in Dilute Bose-Einstein
Condensates. Physical Review Letters, 84:4521, 2000.

[27] L. D. Landau and E. M. Lifschitz. Mechanik. Akademie Verlag, Berlin, 1964.

[28] M. Albiez. Observation of Nonlinear Tunneling of a Bose-Einstein Condensate in a
Single Josephson Junction. PHD thesis, University of Heidelberg, 2005.
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Ich möchte mich an dieser Stelle bei allen bedanken, die mich während meines Studiums
und meiner Diplomarbeit unterstützt haben:

• Ich danke Prof. Markus K. Oberthaler für die Aufnahme in seine Arbeitsgruppe
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