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Abstract
This thesis describes two methods of overcoming the standard quantum limit of signal-
to-noise ratio in atomic precision measurements. In both methods, the interaction
between an ultracold atomic ensemble and an optical resonator serves to entangle the
atoms and deform the uncertainty distribution of the collective hyperfine spin so that
it is narrower in some coordinate than would be possible if the atoms were uncorre-
lated. The first method uses the dispersive shift of the optical resonator’s frequency
by the atomic index of refraction to perform a quantum non-demolition measurement
of the collective spin, projecting it into a squeezed state conditioned on the measure-
ment outcome. The second method exploits the collective coupling of the atoms to
the light field in the resonator to generate an effective interaction that entangles the
atoms deterministically. Both methods are demonstrated experimentally, achieving
metrologically relevant squeezing of 1.5(5) dB and 4.6(6) dB respectively, and simple
analytical models, including the effects of scattering into free space, show that much
greater squeezing is realistically achievable. To demonstrate the potential usefulness
of such squeezing, a proof-of-principle atomic clock whose Allan variance decreases
2.8(3) three times faster than the standard quantum limit is also presented, together
with a discussion of the conditions under which squeezing improves its performance.

Thesis Supervisor: Vladan Vuletić
Title: Lester Wolfe Associate Professor of Physics
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Chapter 1

Introduction

The tale of atomic physics is one of a quest for ever more detailed control of simple

quantum systems. Starting with the ability to sort atoms by their magnetic quantum

number in a Stern-Gerlach experiment [1], atomic physicists have learned to modify

atoms’ internal state with resonant electromagnetic pulses [2] and purify it with opti-

cal pumping [3], and then to control the external or motional state of the atom with

laser cooling [4] techniques, so that the mean values of all atomic degrees of freedom

are now under experimental control. A logical next step in this quest for control is to

learn to manipulate higher moments of the atomic variables than the mean, starting

with the variance.

Among the first to seriously consider manipulating the variances of internal atomic

degrees of freedom at the quantum level were Kitagawa and Ueda who, in a semi-

nal paper [5], laid out the essential properties of squeezed spin states. These are

states of an ensemble of atoms for which the variance of some internal observable is

smaller than the natural scale set by the independent quantum fluctuations of the

atoms comprising the ensemble. Around the same time, Wineland et al. pointed

out that such states had important practical applications for precision measurement,

since such independent quantum fluctuations limit the performance of even techni-

cally perfect atomic precision measurements [6, 7]. Indeed, since 1999 there have been

atomic clocks good enough that their short-term statistical uncertainty is bounded by

this so-called standard quantum limit (SQL) [8]. To overcome this limit, the variance
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of the atomic observable detected in the measurement must be reduced further than

is possible if the atoms are statistically independent; in other words it is necessary

to introduce correlations between the outcomes of measurements on different atoms

or, in quantum terms, to entangle the atoms. Research into spin squeezing has thus

been driven by dual motivations: from a fundamental perspective squeezing offers

a doorway into the still nebulous world of many-particle entanglement that can be

opened using only the experimentally-accessible concept of measurement variance;

while from a practical standpoint squeezing holds out the hope of improved perfor-

mance for atomic precision measurements, which are of such fundamental importance

that they underlie the definitions of all SI units but the kilogram.

Unfortunately it was not immediately obvious how squeezed states might be pro-

duced in practice, and early experimental progress was slow. Kitagawa and Ueda

postulated a “twisting” Hamiltonian which would deform a fiducial initial state’s

uncertainty region, reducing its variance [5], but at the time no method for imple-

menting this Hamiltonian in an experimentally convenient system was known [7].

The first demonstration of spin squeezing used absorption of squeezed light in an

atomic vapor to transfer some of the light’s squeezing to the atomic ensemble [9],

but this method was soon abandoned because delivering highly squeezed light to the

atoms is difficult: massless photons are easily lost in transmission, and losses are

detrimental to squeezing. The exquisite control of few-particle systems achieved in

ion traps has allowed the direct synthesis of near-perfect squeezed states of a few ions

by the use of entangling gates [10], though it is not clear how such manipulations

might be extended to squeeze large ensembles where the potential benefits of corre-

lating atoms are the greatest. More recently, the control of dense atomic ensembles

has improved to the point that the twisting Hamiltonian can be implemented using

the internal-state-dependent collisional interactions among atoms in a Bose-Einstein

Condensate [11].

The work presented in this thesis1 attacks the problem of spin squeezing using

the tools of cavity quantum electrodynamics, by placing the atoms within an opti-

1Significant portions of this work were reported in four previous publications, references [12–15].

12



cal resonator which isolates particular modes of the electromagnetic spectrum and

strengthens their interaction with the atoms. These tools allow spin squeezing to be

carried out in an ideal context for precision measurements. The atomic ensembles to

be squeezed are dilute, with no direct collisional interactions or associated density-

dependent energy shifts. In fact the only interactions between atoms in the ensemble

are those introduced by the resonator light field itself, which can be switched on and off

at the experimenter’s discretion. The techniques require only that the atomic states

to be manipulated have different optical resonance frequencies, so that they may be

applied to well-protected internal degrees of freedom that couple only very weakly

to external perturbing fields. This work, for instance, uses the standard hyperfine

“clock” transition for its atomic degree of freedom, the same one used in state-of-the-

art fountain clocks [16]. Finally, the number of atoms in the ensemble can be large:

the proof-of-principle demonstrations in this thesis involve around 104 . . . 105 atoms,

and more could be added subject only to the finite volume of the optical resonator.

Two methods of optical-resonator-assisted spin squeezing are demonstrated here.

The first, termed measurement-based squeezing, is a new implementation of a pro-

posal first put forward by Kuzmich et al. which produces squeezed states conditionally

by precisely measuring the variable of interest and making a note of the measurement

result [17]. The mean and variance of the observed quantity are then given by the

result and the uncertainty of the measurement. Though the measurement result can-

not be predicted and will in general fluctuate from realization to realization of the

experiment, the measurement uncertainty can in principle be made small. In prac-

tice, scattering of photons into free space introduces noise processes that limit the

achievable measurement uncertainty; the optical resonator introduced in this work

mitigates these effects by strengthening the controlled atom-light interaction rela-

tive to these undesirable scattering processes. The second squeezing technique to

be described, christened cavity feedback squeezing, is a novel implementation of the

twisting Hamiltonian of Kitagawa and Ueda using an effective interaction between

the atoms mediated by the light field circulating in the resonator. The method is

deterministic, in that it reliably produces a specific squeezed state given a certain ex-

13



perimental procedure, without the need for monitoring by a measurement apparatus.

As of this writing, the 4.6(6) dB of directly observable spin squeezing produced by

this method is, to the best of the author’s knowledge, the strongest such squeezing

yet achieved.

Finally, as a first study of the practical applicability of squeezed states to precision

measurement, atomic ensembles squeezed by cavity feedback squeezing are used to

operate an atomic clock. The clock is used to study the vulnerability of the squeezed

state to various noise processes in the lab, demonstrating certain parameter regimes

where they are capable of improving metrological performance. Measurements of the

clock’s Allan deviation show that it is, along with the one reported in reference [18],

the first atomic clock to operate beyond the SQL, by a factor of 2.8(3).

The remainder of the thesis is structured as follows. Chapter 2 gives an abstract

presentation of the pseudospin variables used here in discussing the atoms’ internal

degrees of freedom and defines precisely what is meant by spin squeezing. Chapter 3

presents a theoretical analysis for an idealized atom of both the measurement-based

and cavity-feedback-based squeezing schemes, including the fundamental limits to

their performance due to scattering of light into free space. Chapter 4 describes the

experimental apparatus used in this work, and in particular the optical resonator

which is its essential tool, and chapter 5 narrates the basic experimental techniques

for preparing and characterizing atomic ensembles and manipulating their internal

degrees of freedom. Chapters 6, 7 and 8 present, analyze and discuss the experimental

data obtained in tests of the two squeezing methods and the atomic clock studies,

respectively. Finally, chapter 9 concludes with some suggested directions for further

studies building on the work described here.
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Chapter 2

Spins and Squeezing

This chapter briefly reviews the quantum mechanics of two-level atoms, first with a

single atom, then with an ensemble of such atoms. The first two sections establish

useful notation, introduce the class of highly-symmetric states most commonly used in

the theoretical description of precision metrology experiments, and identify the funda-

mental quantum fluctuations that afflict these states. The final section considers the

squeezed states where such fluctuations are suppressed, and in particular the problem

of correctly defining a figure of merit or criterion for squeezing. The ideas presented

here are mostly to be found in Kitagawa and Ueda’s seminal paper on squeezed spin

states [5] and the analysis by Wineland et al. of their use in metrology [6, 7].

2.1 A Single Atom: Spin-1/2

The simplest non-trivial quantum system is a two-level atom or qubit. The atom

has two states, which we shall label |↑〉 and |↓〉. A completely general pure quantum

state of this system can be written as |θ, φ〉 = cos(θ/2)e−iφ
2 |↑〉+ e iφ

2 sin(θ/2)|↓〉. If we

15



φ
x̂

ŷ

ẑ

|↑〉+ |↓〉√
2

|↑〉+ i|↓〉√
2

|↑〉

|↓〉

|〈ψ| ↑〉|2 − |〈ψ| ↓〉|2

2

Figure 2-1: Bloch sphere for a single pseudospin-1/2. The ẑ component of the Bloch
vector is one-half the population difference between the states |↑〉 and |↓〉, while its
phase angle is the quantum phase between them.

introduce the pseudospin component operators

sx = (|↑〉〈↓|+ 〈↓||↑〉)/2

sy = (|↑〉〈↓| − |↓〉〈↑|)/2i (2.1)

sz = (|↑〉〈↑| − |↓〉〈↓|)/2,

which obey the usual angular momentum commutation relations, then we find

〈sx〉 = 1
2 cosφ sin θ (2.2)

〈sy〉 = 1
2 sinφ sin θ (2.3)

〈sz〉 = 1
2 cos θ, (2.4)

as expected for a vector of length 1/2 whose orientation is given by the polar angle

θ and azimuthal angle φ. This equivalence between two-level systems in quantum

mechanics and coordinates on a sphere runs very deep [19], and enables the use of

geometrical reasoning to understand their evolution.

Note that once the orientation of the spin vector is given, the quantum state is

fully specified. This has two important consequences, the first being that the state

16



of a single two-level atom can only evolve through rotations of its pseudospin vector.

It follows that the signal in any measurement performed on a single two-level atom

can be interpreted as a deflection of the pseudospin. The second consequence of the

completeness of the mean spin as a specification of the two-level atom’s state is that

all variances of spin operators are determined as soon as the expectation value of

the spin vector 〈s〉 is given. This leads to a straightforward fundamental limit on the

precision of any measurement performed on a single two-level system: any attempt to

measure small deflections of the spin vector are limited by the unmodifiable variance

〈∆s2
⊥〉 = 1/4 of all spin components perpendicular to the mean spin 〈s〉. This is the

origin of the saying that “one cannot squeeze spin-1/2”.

2.2 Atomic Ensembles: Spin-N/2

If, instead of a single two-level atom, our system contains an ensemble of N such

atoms, we can define collective pseudospin operators by adding up the individual

spin-1/2 vectors of each atom in the ensemble: Sx = ∑N
i=1 sx,i and similarly for Sy

and Sz. The resulting collective Bloch vector S is no longer a complete description

of the state of the ensemble: the Hilbert space for N qubits has 2N dimensions,

whereas specifying the expected Bloch vector 〈S〉 only fixes three real parameters.

However, the vast majority of the states in this huge 2N -dimensional Hilbert space

have very short Bloch vectors |〈S〉| � S0 = N/2 [20], giving them poor sensitivity to

rotations. The states of interest are those where the individual 〈si〉 point in nearly

the same direction, states where |〈S〉| approaches its maximum value of S0 and which

are symmetric under permutations of the atoms in the ensemble [20].

Consider, in particular, the coherent spin state [21] along x̂

|CSSx̂〉 =
(
|↑〉+ |↓〉√

2

)⊗N
, (2.5)

which plays the role of a canonical initial state in this thesis. It can be prepared by

initializing all atoms in the ensemble to the |↓〉 level and then rotating them into an

17



︸ ︷︷ ︸
S

S⊥

∆φ
}

∆S⊥

Figure 2-2: Projection noise: small deflections of a macroscopic spin S (top row) are
detected by measuring a transverse component S⊥. The measurement of the trans-
verse component projects each constituent spin-1/2 to ±1/2 with equal probability
(middle row), so that their sum yields a fluctuating total transverse component ∆S⊥
(bottom row) and a corresponding uncertainty ∆φ on the deflection of the spin.

equal superposition of |↑〉 and |↓〉 with a π/2 pulse. It is manifestly a product state,

and has the maximum spin length |〈S〉| = 〈Sx〉 = S0. Its transverse spin variances

can be derived formally from the commutation relations for angular momentum and

the Heisenberg uncertainty relation, or by noting that when the transverse spin com-

ponent is measured, each individual atom is projected with equal probability onto a

transverse component of either +1/2 or −1/2 because of the quantization of spin. The

total transverse component, the difference between the number of spins which are pro-

jected each way, is then binomially distributed with variance 〈∆S2
y〉 = 〈∆S2

z 〉 = S0/2.

This fixes the radius of the uncertainty region at the tip of the Bloch vector, which

is circular since the same argument can be made for any transverse spin component.

If the spins all rotate through some small angle δφ, so will the collective Bloch

vector, and the mean squared error in measuring such small rotations is 〈∆φ2〉 =

〈∆S2
y〉/〈Sx〉2 = (2S0)−1 = N−1. This is the best rotation sensitivity achievable with

independent atoms, as can be seen by noting that it is simply the best possible single-

atom rotation sensitivity (from the previous section) improved by the usualN−1 factor

18



for averaging N independent measurements, one on each atom. This sensitivity limit

is referred to as the standard quantum limit (SQL), and can only be overcome by

entangling the atoms so that the outcomes of measurements on the individual atoms

are no longer independent.

Note, in passing, that for large ensembles with N � 1, the standard deviation√
S0/2 in the transverse components of the coherent state is much larger than the

discrete step size (of 1 unit of angular momentum) imposed by the quantization

of spin. Thus, for states not too far from coherent states of large ensembles, the

transverse spin components can be treated as effectively continuous variables and

can, indeed, be rescaled to form a canonically conjugate pair:

[Sy, Sz] = iSx, where 〈Sx〉 ≈ S0 � 1 (2.6)

[ Sy√
S0
,
Sz√
S0

] = [X,P ] = i. (2.7)

This so-called Holstein-Primakoff approximation [22] is frequently used in the spin

squeezing literature to connect results for the Bloch sphere of a collective spin vector

to those for the usual phase plane [23], and thus to draw on the accumulated wisdom

of the light squeezing community.

2.3 Spin Squeezing and Figures of Merit

While the fluctuations in any single atom’s transverse spin components cannot be

reduced, they can be correlated with those of other atoms so as to partially cancel

each other. Thus, while 〈∆φ2〉 = (2S0)−1 is the best rotation sensitivity achievable for

N independent atoms, it can be improved upon by entangling the atoms. Wineland

et al. [6] introduced a squeezing criterion

ζ = 〈∆S
2
⊥〉

|〈S〉|2
· 2S0 (2.8)

= 2〈∆S2
z 〉

S0
· 1
C2 (2.9)
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which compares the sensitivity with which the given state may be used to detect

rotations in the direction of S⊥ to the best possible rotation sensitivity for unentan-

gled atoms, as achieved by the coherent spin state. The second line expresses this

criterion directly in terms of experimentally accessible quantities for a state whose

mean spin is oriented along the x̂ axis: the fluctuations of the population difference

2Sz between |↑〉 and |↓〉, and the contrast or fringe visibility C = 〈Sx〉/S0 of a Rabi

or Ramsey oscillation starting from this state. This gives a clear interpretation of the

squeezing criterion as an improvement in signal to noise ratio: the first factor mea-

sures the suppression of measurement noise relative to the unentangled |CSSx̂〉, the

second factor quantifies the loss of signal relative to that same state. ζ < 1 implies

that the signal to noise ratio of a rotation measurement is better than it could pos-

sibly be in the absence of quantum correlations, and therefore implies entanglement.

References [12, 14, 15] use a slight modification of the Wineland squeezing criterion,

multiplying it by an additional factor of the initial contrast C0. Ideally, C0 = 1 and

this makes no difference, but in practice background decoherence processes can re-

duce the signal contrast even before the squeezing procedure is applied, in which case

equation 2.9 overestimates the loss of signal due to the squeezing. While this modi-

fied criterion preserves the practical meaning of ζ−1 as an increase in signal-to-noise

ratio relative to the unsqueezed state with projection noise and the initially available

signal contrast C0, there exist in principle pathological scenarios where C0ζ < 1 but

the final state is not entangled [24]. This thesis therefore adopts the strict Wineland

criterion of equation 2.9 where ζ < 1 guarantees both entanglement and improved

rotation sensitivity.

There are two other inequivalent definitions of squeezing common in the literature.

One definition compares the fluctuations of the transverse spin components to the

minimum for unentangled atoms given the same mean spin vector length

ζe = 2〈∆S2
⊥〉

|〈S〉|
(2.10)

and calls a state squeezed if ζe < 1. This definition is interesting from a fundamental
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perspective, since ζe < 1 is sufficient to prove that some pair of atoms in the ensemble

must be entangled [25]. It is not, however, the relevant figure of merit for metrology,

because a state can be squeezed by this definition and still yield worse sensitivity than

the unentangled |CSSx̂〉. The essential point is that a state with |〈S〉| < S0 yields a

smaller signal (i.e. contrast C < 1) than |CSSx̂〉, and the noise must be suppressed

sufficiently to overcome this handicap before one can see a real improvement in signal-

to-noise ratio.

The other alternative figure of merit is the quotient obtained by dividing the

observed transverse spin noise to the expected projection noise for the ensemble

q = 2〈∆S2
⊥〉

S0
. (2.11)

This is a convenient parametrization of the spin noise suppression, but the condition

q < 1, sometimes referred to as “number squeezing” when the transverse spin compo-

nent is Sz (i.e. number difference between |↑〉 and |↓〉), does not imply entanglement.

It is easily satisfied by a product state, for instance one with one atom each in |↑〉

and |↓〉—with no uncertainty along ẑ—and with the remaining atoms aligned along

x̂ so that ẑ is transverse to the mean spin. Nor does it imply an improvement in

measurement performance: q quantifies the suppression of noise, but does not account

for the concomitant loss of signal contrast. That some loss of signal is inevitable is

easily seen by noting that |CSSx̂〉 is the unique state for which 〈Sx〉 = S0 or, more

generally, that the coherent spin states are the only states for which |〈S〉| = S0.

Any other state, including the “number squeezed” states, must have a shorter mean

spin. In the absence of information about the mean spin length, properly quantified

by the parameters ζ and ζe introduced above, q < 1 does not imply any interesting

non-classical properties of the state for which it holds, and it is unfortunate that this

misleading definition of squeezing persists in the literature.

Finally, it is worth emphasizing that the squeezed states are but a tiny subset of all

the possible entangled states of N two-level atoms. Squeezing is not even a necessary

condition for metrologically useful entanglement. The GHZ states |↑〉⊗N + eiNφ|↓〉⊗N ,
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used in some of the first demonstrations of entanglement-enhanced atomic phase

estimation with trapped ions [10], have a mean spin length of zero and none of their

three spin components has fluctuations below the projection noise for independent

atoms. They yield enhanced measurement sensitivity not by reducing noise, but

rather by an amplified signal: the phase between the all-up and all-down states

evolves at N times the single-atom precession rate, and a suitable measurement, of

parity rather than of a Cartesian spin component, can exploit this N -fold increase.

GHZ states, however, suffer from several practical disadvantages for metrological

applications. Though GHZ states of a few ions can be prepared by the application of

pairwise entangling gates, it is not clear how to prepare them in large ensembles of

atoms where there is the most to gain from overcoming the SQL. They are also very

sensitive to decoherence: a single photon scattered into free space can completely

destroy a GHZ state, whereas we shall see in chapter 8 that squeezed states are

remarkably robust. Finally, the use of GHZ states requires a readout of the parity

of the ensemble, which is much more difficult to measure for large ensembles than

the simple population difference between |↑〉 and |↓〉 used as the readout signal in

standard or squeezed quantum measurements.
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Chapter 3

Spin Squeezing in an Optical

Resonator: Theory

This chapter presents the theory of atom-cavity interactions useful for spin squeezing

in an idealized setting. While later chapters will introduce corrections and com-

plications necessary to describe specific experimental implementations, the goal for

now is to understand the basic principles, scaling laws, and fundamental limitations

that govern the use of the collective atom-cavity coupling for squeezing. Section 3.1

presents the simplified model of three-level atoms and optical resonators used in this

analysis. Section 3.2 discusses the use of the optical cavity to measure a collective

pseudospin component and thereby project the atoms into a squeezed state, with the

squeezing conditioned on the measurement outcome. Section 3.3 analyzes the effec-

tive interaction between atoms introduced by the cavity, which serves to produce a

squeezed state deterministically.

3.1 Basic Model

The model considered here consists of an ensemble of N three-level atoms, each

comprising a pair of long-lived levels |↑〉 and |↓〉 with energies ±~ωa/2 respectively

and an excited state |e〉 with energy ~ωc. The two optical transitions |↑〉 ↔ |e〉 and

|↓〉 ↔ |e〉 are taken to have equal oscillator strength; that is, |e〉 decays to each of the
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|↓〉

|↑〉 ωa

|e〉 }Γ

ωc

Figure 3-1: Basic model: ideal three-level atoms (left) uniformly coupled to an optical
resonator (right)

two long-lived states with equal rates Γ/2, so that its linewidth is Γ.

The atoms are uniformly coupled, with the same Rabi frequency 2g for each

optical transition, to an optical cavity of linewidth κ and resonant frequency ωc. It

is convenient, though not essential, to choose the cavity resonance frequency halfway

between the two atomic transition frequencies, so that the detuning has the same

magnitude ∆ = ωa/2 for both transitions. The detuning is taken to be large enough

to keep the atom-cavity interactions in the linear, dispersive regime: ∆� κ,Γ,
√
Ng.

The intracavity photon number 〈c†c〉 is assumed to be low enough to avoid saturating

the atomic transitions: 〈c†c〉(g/∆)2 � 1.

Under these conditions the far off-resonant coupling between photons and atoms

in the cavity produces three effects, all of which can be calculated by textbook meth-

ods [26]. First, there is a dispersive shift of the cavity resonance frequency due to the

index of refraction of the atomic gas

δωc = 2Sz
g2

∆ , (3.1)

which is just the usual off-resonant level shift g2/∆ multiplied by the difference 2Sz
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between the population of atoms in |↑〉 which shift the cavity to the blue and the

population of atoms in |↓〉 which shift the cavity to the red. Generally there is an

additional uninteresting cavity shift proportional to the total atom number N , but

it vanishes for the symmetric choice of cavity detuning used here. This simplifies the

theory and is also valuable in experiments since it minimizes the effect of fluctuations

in the number of atoms loaded into the cavity. Corresponding to this atomic shift of

the cavity resonance frequency there is an AC Stark shift of the atomic levels by the

light in the resonator

δωa = 2〈c†c〉g
2

∆ , (3.2)

where the factor of 2 arises because δωa is the energy difference between two levels

that shift in opposite directions. Finally, the atoms scatter photons into free space

at an average rate per atom

Γsc = 〈c†c〉 g
2

∆2 Γ. (3.3)

It will be convenient to rewrite these quantities in terms of the cavity cooperativity

η = 4g2/κΓ, which compares the rate Γ for an excited atom to decay by spontaneous

emission into free space to the rate 4g2/κ for decay via the cavity mode when the

latter is resonant with one of the atomic transitions.

δωc
κSz

= η

(
Γ

2∆

)
(3.4)

δωa
〈c†c〉κ

= η

(
Γ

2∆

)
(3.5)

Γsc

〈c†c〉κ
= η

(
Γ

2∆

)2

(3.6)

The first equation gives the cavity shift (expressed as a fraction of a linewidth) per

atom transferred from |↓〉 to |↑〉, while the latter two give the atomic energy shift and

scattering rate relative to the rate at which the photons would leave the cavity in the

absence of an external drive.
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3.2 Conditional Squeezing by Cavity Assisted Mea-

surement

Since the defining quality of a squeezed spin state is its well-known transverse spin

component, a straightforward approach to squeezing is to measure such a transverse

component. Ideally, the transverse spin component after the measurement agrees

with the measurement result; if the measurement uncertainty is less than the projec-

tion noise of the spins, and if the coherence of the system remains high enough that

the metrological squeezing criterion ζ decreases, then this final state is squeezed. Un-

fortunately, the ideal quantum measurement that leaves the system in a state which

agrees with the measurement result is difficult enough to realize in practice that it

merits its own adjective: Quantum Non-Demolition (QND). Kuzmich, Bigelow and

Mandel were the first to point out that the dispersive interaction between an atomic

ensemble and a propagating light field could be used to perform a QND measurement

of a spin component [17]. Efforts to implement squeezing by such optical measure-

ment have been one of the most active areas in spin squeezing research for the past

decade [12, 27–31]. In all such schemes there is a competition between the coherent,

dispersive interaction of the atoms with the light field which is used for measurement

and the incoherent scattering into free space which disrupts the squeezing. The mea-

surement schemes discussed in this section can be seen as variations on the theme

of reference [17] where an optical resonator enhances the atomic sample’s interaction

with the probing light field mode relative to the free space modes.

Since the experimentally-accessible spin component is Sz (i.e. the population

difference between |↑〉 and |↓〉), the mean spin of the ensemble should be oriented in

the equatorial plane such that Sz is a transverse component. For definiteness, the

mean spin will be taken to be along x̂, and the initial state of the system will be the

coherent spin state |CSSx̂〉 which saturates the SQL. This state is readily obtainable

in experiments by optically pumping all atoms into the ground state |↓〉 and applying

a microwave π/2 pulse to all atoms at once. Two schemes to produce a squeezed

state from this starting point are considered here. One, used in the experiments
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← δωc →

〈pt〉

δ

Figure 3-2: Transmission-based measurement: for a two-sided cavity driven at one
half-linewidth detuning, the average transmitted number 〈pt〉 depends on the shift of
the resonant frequency δωc due to the atomic index of refraction.

described in subsequent chapters, is based on a simple transmission measurement

through the cavity. The other, which has yet to be implemented, uses an optical phase

measurement on a probe laser at the cavity resonance frequency and offers better

performance. In each case, the objective is to measure the transverse spin component

Sz with an uncertainty much less than the projection noise of the coherent state

|CSSx̂〉 while preserving the coherence, as quantified by the Ramsey fringe contrast

or mean spin length.

3.2.1 Transmission-based spin measurement

Consider a symmetric optical resonator with separate input and output modes, driven

on the input side by a laser pulse containing on average 〈pi〉 photons and whose

duration is long compared to the cavity lifetime κ−1 so that transient effects from

the cavity dynamics may be neglected. The photon number transmitted through the

cavity pt is a Lorentzian function of the detuning δ of the drive laser relative to the

cavity resonance freqency:

〈pt〉
〈pi〉

= L = 1
1 + (2δ/κ)2 . (3.7)
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A measurement of this transmitted photon number limited by photon shot noise

(Poisson fluctuations) will have a variance 〈∆p2
t 〉 = 〈pt〉, allowing the detection of

small shifts δωc of the cavity resonance frequency with a mean square fractional error

〈∆δω2
c 〉

κ2 = 〈∆p2
t 〉
(
κ
∂〈pt〉
∂δ

)−2

= 〈pt〉
(
κ
〈pt〉
L

dL
dδ

)−2

(3.8)

= 1
〈pt〉

1
(2ξ)2 (3.9)

where

ξ = κ

2L|
dL
dδ | =

2(2δ/κ)
1 + (2δ/κ)2 (3.10)

is the logarithmic derivative of the Lorentzian transmission profile. The maximum

value of ξ is 1, attained for a detuning of one half linewidth δ = κ/2. As this chapter

is concerned with fundamental limits for an idealized model, ξ = 1 will be assumed

henceforth.

Since the cavity shift δωc depends on the population difference between the spin

states |↑〉 and |↓〉, measuring the cavity shift yields a measurement of the transverse

spin component Sz whose variance is

〈∆S2
z 〉 = 〈∆δω

2
c 〉

κ2

(
κSz
δωc

)2
= 1

4〈pt〉
1
η2

(
2∆
Γ

)2

. (3.11)

Given a sufficiently large collected photon number 〈pt〉 this measurement variance

will be less than the projection noise S0/2, potentially enabling spin squeezing.

The price paid for this knowledge of Sz is that while photons are being collected

at the cavity output at a rate κ〈c†c〉/2, they are being scattered into free space at a

rate NΓsc. Defining r as the average number per atom of Rayleigh (spin-preserving)

or Raman (spin-changing) scattering events over the duration of the probe pulse, the

total probability for each atom to scatter a photon into free space is

2r = 〈pt〉
Γsc

κ〈c†c〉/2 = 2〈pt〉η
(

Γ
2∆

)2

. (3.12)
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The spin measurement uncertainty can then be expressed as

〈∆S2
z 〉 = 1

4ηr = S0

2
1

2S0ηr
. (3.13)

which depends only on the photon scattering probability and the cavity cooperativity.

In particular, it is independent of the detuning ∆ from atomic resonance.

It may seem surprising that increasing ∆ does not reduce the photon scattering

probability 2r for a given measurement performance: the signal δωc scales with ∆−1,

so that to maintain constant signal size one should scale the photon number as ∆,

while the scattering rate scales with ∆−2. However, what matters to measurement

performance is not the signal itself but the signal-to-noise ratio, and the photon shot

noise is not a fixed noise floor but grows with photon number. Thus, to maintain

a constant signal-to-noise ratio the transmitted photon number must grow as ∆2,

exactly canceling the reduction in scattering rate.

The scattering of photons has two undesirable effects, loss of coherence which

shortens the Bloch vector and added noise which counteracts the variance reduction

from the measurement. First, consider the coherence loss. Photons scattered into free

space could, in principle, be imaged using a microscope to identify which atoms in

the ensemble they came from. If they reveal the spin state of the atom that scattered

them, these photons spoil the symmetry of the state; an atom projected into |↑〉 or

|↓〉 by the observation of a scattered photon contributes nothing to the collective spin

vector along x̂, which therefore gets shorter. All Raman-scattered photons reveal the

state of the atom that scattered them (it is encoded in the photon frequency), while

Rayleigh-scattered photons reveal the atomic state to the extent that the scattering

amplitudes are different for the two spin states [32]. Even if the scattering rates are

the same for each spin state, as they are in the model we are considering, they can

differ by a sign, so that in the worst case every single scattered photon effectively

removes an atom from the symmetric ensemble and shortens the Bloch vector by 1/2.

On its own this effect limits length of the Bloch vector to S/S0 = e−2r.

Raman scattering events, by flipping the spin of atoms in the ensemble, change
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the state populations during the measurement. These changes lead to a decay of the

autocorrelation of Sz for different times

〈Sz(t1)Sz(t2)〉 = S0

2 e−2ρt1,t2 (3.14)

where ρt1,t2 is the fraction of atoms which Raman-scatter a photon between t1 and

t2. This autocorrelation can be used to compute the correlation

〈SzS̄z〉 = S0

2
1− e−2r

2r
r�1−−→ S0

2 (1− r) (3.15)

between the time average S̄z recorded by the measurement and the actual value of

Sz once the measurement is complete, as well as the variance of the time-averaged

measurement result

〈S̄z
2〉 = S0

2
e−2r − 1 + 2r

2r2
r�1−−→ S0

2

(
1− 2

3r
)
. (3.16)

The resulting additional measurement error is

〈(Sz − S̄z)2〉 = 〈S2
z 〉 − 2〈SzS̄z〉+ 〈S̄z

2〉 r�1−−→ S0

2
4r
3 . (3.17)

Optimizing the measurement uncertainty therefore involves a tradeoff between re-

ducing fractional photon shot noise by increasing the scattered photon number and

reducing the spin noise due to Raman scattering.

There is one additional fundamental effect which can limit squeezing performance:

the curvature of the Bloch sphere. As the measurement narrows the range of possible

Sz values, its backaction inevitably perturbs the azimuthal angle φ, decreasing the

length of the mean spin which is proportional to 〈cosφ〉. In the extreme case where

φ is completely uncertain the mean spin vanishes even if the coherence between the

atoms is preserved: the individual atomic Bloch vectors all point in the same direction,

but that direction is completely random. The tools to calculate this phase broadening

properly will be developed in section 3.3, but for now the following heuristic argument
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may suffice: for a cavity driven at half-slope, the photon shot noise on the intracavity

intensity has the same fractional variance as the shot noise on the transmitted light,

hence the phase variance can be computed as the product of the shot noise on pt with

the average phase shift per transmitted photon:

〈∆φ2〉 = 〈∆p2
t 〉
(

δωa
κ〈c†c〉/2

)2

= 4〈pt〉η2
(

Γ
2∆

)2

= 4rη. (3.18)

Approximating the phase distribution by a Gaussian of this variance, the shortening

of the mean spin vector is 〈cos(φ)〉 = e−2rη.

Given these constraints, the squeezing is determined by comparing the uncertainty

on Sz to the contrast remaining after the free space scattering and Bloch sphere

curvature have taken their toll:

ζ = 2〈∆S2
z 〉

S0

1
C2 = 1

1 +
(

1
2S0ηr

+ 4r
3

)−1
1

(e−2r(1+η))2 (3.19)

The leading 1 in the denominator accounts for the a priori knowledge that the system

started in the state |CSSx̂〉 with 〈∆S2
z 〉 = S0/2, the next two terms describe the

measurement variance due to photon shot noise and the additional uncertainty due to

Raman scattering, and the second fraction includes the contrast loss due to scattering

into free space and curvature.

If the collective cooperativity Nη = 2S0η is small, then no squeezing is possible:

the loss of contrast from scattering into free space shortens the Bloch vector faster

than the measurement can reduce 〈∆S2
z 〉. However, in the regime of strong collective

cooperativity Nη � 1, the squeezing parameter is approximately given by

ζ ≈ 1
2S0ηr

+ 4r
3 ≥ 2

√
2

3S0η
(3.20)

where the best squeezing, saturating the inequality on the right, occurs for a scattered

photon number 2r =
√

3/2S0η � 1 for which the contrast loss can be neglected, and

where the knowledge of the initial state can be ignored since the measurement provides

much better resolution. Note that the resonant optical depth can be written as
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Figure 3-3: Theoretical predictions of squeezing by transmission-based measurement.
The curves show the metrological squeezing parameter ζ as a function of the mea-
surement strength ηr for S0 = 104 (2 · 104 atoms) and cavity cooperativities η = 0.01
(dashed curve), η = 0.1 (chain-dotted curve) and η = 1 (solid curve). In all cases the
squeezing initially improves as (2S0ηr)−1 as the measurement improves knowledge of
the transverse Sz component, before reaching an η-dependent limit set by random
spin flips due to Raman scattering during the measurement. η = 0.1 is representative
of the experiments discussed later in this thesis.

2Nη = 4S0η. Thus, when Raman scattering is the dominant decoherence mechanism,

the achievable improvement in measurement variance from this scheme scales as the

square root of the optical depth. This scaling is the prime motivation for using an

optical resonator for spin squeezing: while a free-space laser beam making a single

pass through an atomic cloud might see an optical depth of tens or hundreds, optical

depths of 104 or more are easily achievable in an optical resonator where the beam

has to make thousands of round trips through the atomic cloud before escaping. In

the limit of extremely strong coupling η � S0 the measurement backaction wraps the

state around the curved Bloch sphere before the decoherence from Raman scattering

becomes important, and the achievable squeezing comes within a constant factor of

the Heisenberg bound: ζ ≥ 2e/S.
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δ

Figure 3-4: The ideal measurement of the atom-induced cavity shift uses a one-sided
(strongly overcoupled) resonator and measures the phase of the reflected light. Here
the phase measurement is schematically illustrated as a Michelson interferometer,
though a practical implementation would probably use a Pound-Drever Hall scheme.
The dispersive output signal of such an interferometer allows the cavity shift to be
measured by a probe laser on resonance (red line on the plot), maximizing the coupling
of the atoms to the cavity.

3.2.2 Spin readout by optical phase shift

The side-of-slope measurement described in the preceding subsection, while straight-

forward to implement, sacrifices performance in two respects: it neglects the infor-

mation available in the beam reflected from the cavity, and by driving the atoms at

a frequency different from the cavity resonance frequency it decreases the coupling

of the atoms to the resonator relative to their coupling to free space. Both effects

increase the number of photons that must be scattered into free space before attain-

ing a given measurement resolution. A better scheme is to use a one-sided cavity,

driven at its resonance frequency, and detect the cavity shift by a Pound-Drever Hall

measurement of the reflected field.

The analysis of this case is very similar to that of the side-of-slope case, so only the

differences will be summarized here. The phase of the reflected field 2 arctan(2δ/κ)

can be detected with a variance 1/4〈pi〉 by an ideal homodyne measurement which

saturates the number-phase uncertainty relation for the 〈pi〉-photon pulse reflected
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from the cavity. For a measurement on cavity resonance this gives a resolution of the

cavity shift
〈∆δω2

c 〉
κ2 = 1

64〈pi〉
(3.21)

and thus a measurement of the spin Sz with variance

〈∆S2
z 〉 = 1

64〈pi〉η2

(
2∆
Γ

)2

. (3.22)

For a single-sided cavity driven on resonance, the incident or reflected photon rate is

κ〈c†c〉/4, so that the total scattered photon number is

2r = 〈pi〉
Γsc

〈c†c〉κ/4 = 4〈pi〉η
(

Γ
2∆

)2

(3.23)

and the measurement variance, expressed in terms of scattered photons, becomes

〈∆S2
z 〉 = 1

32ηr = S0

2
1

16S0ηr
(3.24)

The effects of scattering into free space, calculated in terms of r, are the same as in

the previous section, while the phase broadening due to photon shot noise is now

〈∆φ2〉 = 〈∆p2
i 〉
(

δωa
κ〈c†c〉/4

)2

= 16〈pi〉η2
(

Γ
2∆

)2

= 8ηr (3.25)

leading to a contrast reduction 〈cos(φ)〉 = e−4ηr. Note that the product

〈∆S2
z 〉〈∆φ2〉 = 1

4 (3.26)

saturates an uncertainty relation:

〈∆S2
z 〉〈∆φ2〉 ≈ 〈∆S2

z 〉
〈∆S2

y〉
〈Sx〉2

≥ |〈[Sz, Sy]〉|
2

4〈Sx〉2
= 1

4 (3.27)

where the mean spin is aligned with the x̂ axis. In this sense the phase measurement

on cavity resonance is ideal: it extracts as much information about the spin as its
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Figure 3-5: Relative squeezing performance of ideal transmission-based and reflected-
phase measurements. The chain-dotted line is for transmission-based measurement
squeezing with S0 = 104 and η = 0.1, as in figure 3-3, while the solid curve shows the
squeezing performance of a phase measurement on a one-sided cavity with the same
parameters. The latter scheme’s improved measurement resolution allows greater
squeezing before encountering the limit due to Raman scattering.

backaction will allow.

The achievable squeezing is now

ζ = 2〈∆S2
z 〉

S0
· 1
C2 = 1

1 +
(

1
16S0ηr

+ 4r
3

)−1
1

(e−2(1+2η)r)2 . (3.28)

In the regime of strong collective cooperativity 2S0η � 1 this improves over the

performance of the transmission-based scheme of subsection 3.2.1 by a factor of 2
√

2

in the variance

ζ ≈ 1
16S0ηr

+ 4r
3 ≥

1√
3S0η

(3.29)

and is achieved at a lower scattered photon number 2r =
√

3/16S0η. The improve-

ment in squeezing performance is illustrated in figure 3-5.

To achieve even better performance in measurement-based squeezing, it is possi-
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ble to make use of richer atomic level schemes than the simple three-level structure

assumed here. The Polzik group have demonstrated a measurement squeezing scheme

using separate lasers to probe the |↑〉 and |↓〉 states on closed transitions [33], thus

eliminating the Raman scattering that is the dominant limitation to the squeezing

schemes discussed here. Instead of being set by a tradeoff between the measurement

and spin noise from Raman scattering, the maximum squeezing is then determined

by the competition between the ever-decreasing measured 〈∆S2
z 〉 and the shrinking

contrast, and scales with the collective cooperativity 2S0η instead of its square root.

This scheme has so far only been demonstrated in free-space squeezing where the

collective cooperativity is limited [31]; implementing it in a system with a resonator

to enhance the optical depth might allow squeezing to within a small constant factor

of the Heisenberg limit.

3.3 Deterministic Squeezing by Cavity Feedback

In the schemes discussed in the preceding section the squeezing is conditioned on the

result of the measurement, in the sense that in a given realization of the experiment

the state produced can have any transverse spin component within the projection

noise 〈∆S2
z 〉 = S0

2 ; only given the measurement outcome that was recorded for that

realization is the state well-known. This has a practical drawback: any imperfections

of the measurement apparatus, such as finite quantum efficiency or inhomogeneous

backaction, directly limit the achievable squeezing. A procedure that determinis-

tically generates a specific quantum state can be used to generate squeezed states

reliably even without a measurement apparatus. Of course, precise state readout is

still needed to verify the production of such squeezed states or make use of them in a

measurement, but relaxing the requirement that the readout be non-destructive sub-

stantially eases the measurement problem. For instance, a measurement of Sz used

for squeezing must preserve the phase of the spins to avoid shortening the Bloch vec-

tor, while a measurement of Sz used only for readout can inflict arbitrary dephasing

on the spins provided only that it correctly counts the number of up and down spins.
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Deterministic spin squeezing entails constructing a system whose Hamiltonian

evolution converts some easily-prepared initial state to a squeezed state. Since the

squeezed state is entangled, the Hamiltonian in question must necessarily include

interactions between the spins so that some information ends up shared between

them. These interactions must be well-controlled in order to preserve the system

coherence. While suitable Hamiltonians—referred to as one- and two-axis twisting—

were known from the origins of the spin squeezing literature [5], physical realizations of

these Hamiltonians have been elusive, which partly explains the interest in squeezing

by QND measurement. The complete control of the Hilbert space of a few qubits in

trapped-ion systems has allowed the desired squeezing operations to be synthesized

by suitable sequences of entangling gates [10], though applying this approach to large

ionic ensembles remains an open experimental challenge. There have also been efforts

to obtain squeezing using the direct collisional interactions between atoms in a Bose-

Einstein condensate [11, 34–38]. Such techniques may well have a valuable role to

play in the future of atom interferometry [36, 38], and are important test cases for

precise control of quantum-degenerate gases. On the other hand, they intrinsically

require the use of dense, collisionally-interacting atomic clouds; precisely the opposite

of the dilute, non-interacting conditions currently preferred for minimizing systematic

errors in precision measurements [39]. Techniques for precisely controlling density-

dependent shifts, perhaps exploiting the suppression of s-wave collisions due to Pauli

blocking in ultracold fermions [40], must be developed before squeezing by collisional

interaction can become a tool for precision measurement.

This section presents an approach to deterministic spin squeezing in which the

necessary interactions for squeezing are generated in a dilute sample of atoms by the

light field of an optical resonator, which acts as a shared bus over which the atoms

exchange state information. The use of a light-mediated interaction allows the atoms

to be placed far apart and the interactions switched off at will (by switching off a drive

laser), thus avoiding interaction shifts that might perturb a subsequent measurement.

Qualitatively, the principle of such cavity feedback squeezing is as follows. The

population difference between spin states shifts the cavity resonance frequency. If
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Sz

Sy

Figure 3-6: Geometrical interpretation of cavity feedback squeezing: an Sz-dependent
phase shift (dashed arrows) shears the uncertainty region of the |CSSx̂〉 into an ellipse
with a narrower minor axis. The effect is rather as though a circle were drawn on the
side of a stack of paper and the top of the stack were pushed to the side, sliding the
sheets relative to each other and shearing the circular image.

the resonator is driven by a laser detuned from cavity resonance by half a linewidth,

then the intracavity intensity, being detuning-dependent, is sensitive to the resonator

frequency shift and thus to the spin component Sz. The intracavity intensity, in turn,

imparts an intensity-dependent AC Stark shift to the atomic levels, so that the in-

dividual atomic pseudospins precess at a rate which depends on the collective spin

component Sz. Microscopically, the net result is an effective interaction where each

pseudospin’s evolution depends, through the cavity-shift-dependent AC Stark shift,

on the spin state of all other pseudospins in the ensemble. That this interaction can

lead to squeezing can be understood geometrically by noting that the Sz-dependent

precession rate of the Bloch sphere causes a shearing of the initially circular uncer-

tainty region of the state |CSSx̂〉, stretching it out into an ellipse whose minor axis

is shorter than the radius of the initial circle (figure 3-6).

The remainder of this section serves to formalize this intuitive picture of cavity

feedback and give it a quantitative footing. Subsection 3.3.1 analyzes the light-driven

interaction for a lossless resonator coupled to a single external continuum (figure 3-

7) and driven by a photon Fock state, showing that it can reproduce the one-axis

twisting Hamiltonian of Kitagawa and Ueda [5]. Subsection 3.3.2 considers the use of

such one-axis twisting for squeezing, including the effects of scattering into free space

and noise on the intracavity photon number.
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c†

b†ω

S

Figure 3-7: The ideal quantum model of cavity feedback squeezing considered in
this section includes a single quantized cavity mode (creation operator c†) interacting
with a single continuum of modes outside the cavity (spectrum of creation operators
b†ω) and with an ensemble of symmetrically-coupled atoms (total pseudospin vector
operator S).

3.3.1 Ideal Unitary Cavity Feedback

The model analyzed in this section is the one presented in section 3.1, but now ex-

plicitly including the continuum of modes outside the cavity’s input mirror, described

using the input-output formalism of Collett and Gardiner [41, 42]. For now, only a

single such continuum is included (i.e. the resonator cavity is taken to be one-sided, as

in figure 3-7), and scattering into free space is neglected in order to keep the dynamics

unitary.

Under these assumptions the system Hamiltonian becomes

H

~
= ωSz + ωcc

†c+
∫

dωωb†ωbω + Ωc†cSz + i
√
κ

2π

∫
dω(b†ωc− c†bω). (3.30)

The first three terms of the Hamiltonian describe the energy of the bare atoms, the

intracavity field, and the continuum of modes outside the cavity. The fourth term

provides the coupling between the atoms and the cavity field, where Ω = 2g2/∆ =

ηΓκ/2∆ can be interpreted either as the differential AC Stark shift on the atomic

levels due to a single intracavity photon or as the cavity frequency shift due to a

single spin flip, as can be seen by grouping it with either of the first two terms. The

final term describes the coupling between the cavity field and the external modes

through the input mirror.

Both the population difference operator Sz and the total photon number operator

c†c+
∫

dωωb†ωbω commute with this Hamiltonian, so their eigenvalues can be taken as

good quantum numbers. This immediately leads to a first set of energy eigenstates

of the form |m〉 ⊗ |0〉, product states of the atoms in a state of definite population
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difference (Dicke state) with a vacuum of all field modes. For any given atomic state

|m〉, the space of states with a single photon in the system, consisting of a discrete

level (the photon in the cavity) coupled to a continuum (the photon in one of the

external field modes), can be diagonalized by a procedure due to Fano [26, 43]. The

result is conveniently expressed by defining an eigenphoton creation operator

a†ω = 1√
(ω − ωc − ΩSz)2 + κ2/4

×

×
[
−i
√
κ

2πc
† + κ

2πP
∫

dω′ b†ω′

ω − ω′
+ (ω − ωc − ΩSz)b†ω

]
(3.31)

with P designating the Cauchy principal value. a†ω satisfies the usual commutation

relations [aω, a†ω′ ] = δ(ω − ω′) for a creation operator. It creates a photon in a

superposition of intracavity and external field modes with a definite energy. The

Hamiltonian can now be rewritten as

H

~
= ωaSz +

∫
dωωa†ωaω (3.32)

which is just the free energy of the ensemble of two-level atoms and a single continuum

of field eigenstates. It is important to note that, while c† and b†ω act only on the light

field and commute with all spin operators, the eigenstates of the field created by a†ω
must depend on the atomic state, since the field and atoms interact, so that a†ω does

not commute with Sx and Sy. It does, however, commute, with Sz, which will prove

useful.

This form of the Hamiltonian can be used to find the evolution of the atoms

under the action of an incident light pulse. Consider the product state of an arbitrary

atomic state |ψa〉 with a Fock state of n photons whose field spectrum B(ω) describes

an incident pulse outside the cavity:

|ψ(−t0)〉 = |ψa〉 ⊗
1√
n!

(∫
dωeiωt0B(ω)b†ω

)n
|0〉. (3.33)
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Introducing a new atom-dependent operator

Θω = arctan
(

κ/2
ω − ωc − ΩSz

)
− π

4 (3.34)

the system state can be rewritten in terms of the field eigenstates as

|ψ(−t0)〉 = 1√
n!

(√
−i
∫

dωeiωt0−iΘωB(ω)a†ω
)n
|ψa〉 ⊗ |0〉 (3.35)

where the field operators a†ω must be allowed to act on both the atomic and the

photonic parts of the state. The initial time −t0 is taken to be far in the past,

t0 � max|dB/dω|2/3, before the photons arrive at the cavity. This form of the initial

state, taken together with equation 3.32, makes it easy to compute the time evolution

of the system until a time +t0 far after the photons have left the cavity. The usual

spin precession gives a factor e−iωaSz2t0 and each photon operator evolves by a phase

e−iω2t0 :

|ψ(+t0)〉 = e−iωaSz2t0
√
n!

(√
−i
∫

dωe−iωt0−iΘωB(ω)a†ω
)n
|ψa〉 ⊗ |0〉. (3.36)

Reverting to separate field and atomic operators

|ψ(+t0)〉 = e−iωaSz2t0
√
n!

(
−i
∫

dωe−iωt0−2iΘωB(ω)b†ω
)n
|ψa〉 ⊗ |0〉, (3.37)

shows that this final state, in general, is an entangled state of the (exiting) light field

and the atoms since the integral over the various frequency modes b†ω depends on the

atomic operator Θω. However, provided the spectrum B(ω) has a bandwidth much

less than the cavity linewidth κ, the operator Θω is effectively constant over the range

of frequencies that contributes to the integral, and the final state factors into

|ψ(+t0)〉 = e−2iωaSzt0−2niΘωp |ψa〉 ⊗
1√
n!

(
−i
∫

dωe−iωt0B(ω)b†ω
)n
|0〉, (3.38)

where ωp is the center frequency of the incident pulse spectrum B(ω). Thus, as

far as the atoms are concerned, the net effect of the incident light pulse has been

41



a unitary transformation Un = e−2niΘωp . Choosing the incident pulse frequency one

half-linewidth detuned from the bare cavity resonance ωp = ωc + κ/2 and provided

that the atom number fluctuations never shift the cavity by a large fraction of a

linewidth 〈∆S2
z 〉 � κ2/Ω2, the transformation effected by the light pulse becomes

approximately

Un = e−ni(φ0Sz+ 1
2φ

2
0S

2
z+O(φ3

0)), (3.39)

an overall rotation of the Bloch sphere combined with a shearing or one-axis twist-

ing [5]. The rotation angle per incident photon φ0 = 2Ω/κ is closely related to the

cavity frequency shift per atom, as seen in section 3.2, which is why it appears twice

in the prefactor of the shearing term: once for the atomic shift of the cavity resonance

and once for the ensuing backaction of the light field on the atoms.

It is both theoretically and experimentally convenient to consider the action of

a pair of incident light pulses with photon numbers n1 and n2, between which the

atomic spin is inverted by a π pulse which sends Sz → −Sz. Neglecting terms of third

and higher order in φ0, the overall transformation produced by this pulse sequence is

Un1,n2 = e−i(αSz+ 1
2µS

2
z ) (3.40)

where the rotation angle α = (n2−n1)φ0 and the shearing factor µ = (n2 +n1)φ2
0 can

now be independently specified. Note that the coordinate rotation e−iπSx associated

with the π pulse itself has been absorbed into the definition of the initial atomic

state. The coherent input state |CSSx̂〉 of interest for this thesis is an eigenstate of

the π pulse, so that this only changes a physically meaningless global phase. For

equal photon numbers in the two pulses, the transformation is then Un,n = e−iµS2
z ,

precisely the one-axis twisting operation considered in Kitagawa and Ueda’s original

spin squeezing proposal [5].

The transformation Un1,n2 does not modify the Sz operator, with which it com-

42



mutes, but it does change the spin-raising operator

S+(+t0) = Sx + iSy = S+(−t0)ei(α+µ(Sz+ 1
2 )) (3.41)

S2
+(+t0) = S2

x − S2
y + i(SxSy + SySx) = S2

+(−t0)e
i(2α+µ(2Sz+2)). (3.42)

From these expressions one obtains the expectation values for the first and second

moments of the spin operators in the transformed |CSSx̂〉:

〈Sx〉 = S0 cos(α) cos2S0−1
(
µ

2

)
(3.43)

〈Sy〉 = S0 sin(α) cos2S0−1
(
µ

2

)
(3.44)

〈Sz〉 = 0 (3.45)

〈S2
x〉 = S0

2

[
1 +

(
S0 −

1
2

) (
1 + cos(2α) cos2S0−2(µ)

)]
(3.46)

〈S2
y〉 = S0

2

[
1 +

(
S0 −

1
2

) (
1− cos(2α) cos2S0−2(µ)

)]
(3.47)

〈S2
z 〉 = S0

2 (3.48)

〈SxSy + SySx〉 = S0

2 (2S0 − 1) sin(2α) cos2S0−2(µ) (3.49)

〈SySz + SzSy〉 = S0(2S0 − 1) cos(α) cos2S0−2
(
µ

2

)
sin

(
µ

2

)
(3.50)

〈SzSx + SxSz〉 = S0(2S0 − 1) sin(α) cos2S0−2
(
µ

2

)
sin

(
µ

2

)
. (3.51)

These are quantum expectation values for the pure state that results from shearing

the initial state |CSSx̂〉 with known photon numbers n1 and n2 and without scattering

into free space. Note that the variance of the spin component Sz has not changed,

while that of the perpendicular component Sy has increased; there is, however, an

oblique angle between the two where the variance is reduced, as suggested in figure 3-

6 and encoded mathematically in the correlation term 〈SySz + SzSy〉. The squeezing

obtained in this idealized scenario is analyzed in some detail in reference [5]. Here,
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consideration of the squeezing will be deferred until certain realistic corrections have

been brought to this model.

3.3.2 Realistic Cavity Feedback Squeezing

Adapting the preceding results to describe the outcome of a real experiment will

require accounting for three effects: the coupling of the symmetric Fabry-Pérot res-

onator used in experiments to two continua (one behind each mirror) instead of the

single external continuum considered so far; uncertainty in the photon numbers n1

and n2 used to drive the resonator for squeezing; and the effect of scattering into free

space. Each of these will be considered in turn. Three additional assumptions will

help lighten the notation in this section: the mean spin will be taken along x̂ after

the shearing (〈sin(α)〉 = 0), the total spin S0 � 1 will be taken to be large so that

cos2S0−2(x) ≈ cos2S0−1(x) ≈ cos2S0(x) ≈ e−S0x2 , and the shearing will be confined

to the moderate regime where µ � S
−1/2
0 . The first condition is naturally satisfied

in the experiments to be described, where 〈n1〉 = 〈n2〉, and can always be satisfied

after a suitable coordinate rotation. The second condition is also comfortably fulfilled

in experiments with S0 ∼ 104. The third condition is required for any appreciable

squeezing, since for S0µ
2 > 1 the mean spin length is exponentially suppressed as the

sheared uncertainty distribution is appreciably affected by the curvature of the Bloch

sphere. In the limit of large µ the direction of the collective Bloch vector becomes

completely uncertain and the mean spin length vanishes.

If the one-sided cavity of figure 3-7 is replaced by the symmetric resonator of

figure 3-2, then there are two degenerate external field modes at each frequency,

one to the left of the cavity (input) and one to the right (output). However, the

cavity field only couples to a single linear combination of these modes; the orthogonal

combination does not couple to the cavity at all. This can be understood classically

by noting that if the cavity is driven from both sides with appropriately chosen

phases, the two drives can interfere destructively within the cavity and the field

intensity vanishes there. This corresponds to sending photons into the uncoupled

mode. With the opposite choice of phase, the drives interfere constructively within
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Figure 3-8: In a symmetric Fabry-Pérot resonator, one superposition of external
fields to the left and right (with creation operator b†ω) interferes constructively in the
cavity, while the orthogonal superposition (d†ω) interferes destructively in the cavity
and therefore does not couple to the cavity field (c†). The symmetric resonator is
therefore equivalent to a one-sided cavity cavity whose single outside continuum (b†ω)
is mixed on a beam splitter with a separate continuum unconnected to the cavity
(d†ω).

the cavity, corresponding to photons sent into the coupled mode. Since the coupled

and uncoupled modes for a symmetric cavity have equal field amplitudes to the left

and to the right of the cavity, photons sent in only from the left (input) side of the

cavity are in an equal superposition of coupled and uncoupled modes. In this sense

the real symmetric resonator used in experiments is equivalent to the ideal one-sided

resonator considered heretofore placed behind a 50/50 beam splitter (figure 3-8).

On average, half the photons incident from one side on a symmetric resonator do

not couple to the cavity at all, while the other half impart a phase shift as calculated

above. This is why the heuristic argument of section 3.2.1 for estimating the atomic

phase broadening during a transmission measurement worked: the transmitted pho-

ton number at half-slope is also half the incident photon number, so the average

number of transmitted photons 〈pt〉 and the average phase per transmitted photon

are the same as the average photon number interacting with the atoms 〈n1 + n2〉

and the phase shift per interacting photon φ0. By the same token, the shearing pa-

rameter Q = S0ptφ
2
0 used in Refs. [13, 14] is equal to S0µ. This equivalence only

holds at one-half-linewidth detuning. A photon in the coupled mode always imparts
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a deterministic detuning-dependent phase shift 2Lφ0 to the atoms; φ0 at half-slope,

2φ0 on resonance since the intracavity amplitude of the coupled mode is higher there.

Meanwhile, a transmitted photon may or may not have been in the uncoupled mode

so that the associated phase shift on the atoms is unknown, with an expectation

value φ0 that is independent of detuning because the average intracavity intensity

associated with a given transmitted photon rate is fixed. The Lorentzian detuning

dependence instead appears in the number of transmitted photons 〈pt〉 ∝ L. Since

the experiments are conducted at the half-slope point, it will often be convenient

to work in terms of the transmitted photon number, which is directly measurable,

instead of the cavity-coupled photon number, which is not, but bear in mind the

distinction between the two.

This leads to the next complication to be added to the model: fluctuations of the

photon number incident on the cavity mode. The experiments to be described are

performed at a large detuning, with a correspondingly small single-photon phase shift

φ0 ∼ 10−4, and for large photon numbers n1,2 ∼ 104 . . . 106 whose fluctuations are

independent and close to photon shot noise. The distribution of the rotation angle

α is therefore approximately Gaussian with a variance 〈∆α2〉 = γ〈n1 + n2〉φ2
0 = γµ

where γ is the ratio of the actual photon number variance to photon shot noise. The

variance of the shearing µ is suppressed by two additional powers of φ0, and its effect

is negligible compared to that of the uncertainty on rotation angle. The average

over uncertain photon numbers thus yields the following spin moments relevant to

squeezing, within the approximations outlined above:

〈Sx〉 = S0e− 1
2v (3.52)

〈Sy〉 = 〈Sz〉 = 0 (3.53)

〈S2
y〉 = S0

2 + S2
0

2
(
1− e−2v

)
(3.54)

〈S2
z 〉 = S0

2 (3.55)

〈SySz + SzSy〉 = 2S0

2 µS0e− 1
2v (3.56)
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where the exponent v = γµ + 〈S2
z 〉µ2 is the characteristic phase variance due to

both the uncertainty on rotation angle from the photon number fluctuations and the

shearing of the atomic Sz distribution. The shortening of the mean spin length 〈Sx〉

has the same form as in section 3.2. The variance of Sy is initially just the projection

noise S0
2 , grows at first as the angular variance scaled by the length of the Bloch vector

S2
0v, and eventually saturates at S2

0/2 when the uncertainty distribution is completely

wrapped around the Bloch sphere. The correlation term is just the product of the

variance of Sz with the factor which converts fluctuations in Sz to fluctuations in Sy:

µ radians of phase shift per unit change in Sz, converted into Sy fluctuations by a

factor of the spin length.

Finally comes the effect of scattering into free space. As in section 3.2, the length of

the Bloch vector is reduced by a factor of S/S0 = e−2r. The spin-flips due to Raman

scattering average out some of the atom-induced cavity frequency fluctuations, so

that the phase variance is reduced to v′ = γµ + 〈S̄z
2〉µ2 ≈ γµ + S0

2 (1 − 2r/3)µ2.

Raman scattering also reduces the correlation term between Sy and Sz, since the

shift imparted to Sy depends on the time-average S̄z, not the final value Sz at the end

of the squeezing operation. Combining these effects yields a final set of spin moments

〈Sx〉 = Se− 1
2v
′ (3.57)

〈Sy〉 = 〈Sz〉 = 0 (3.58)

〈S2
y〉 = S0

2 + S2

2
(
1− e−2v′

)
(3.59)

〈S2
z 〉 = S0

2 (3.60)

〈SySz + SzSy〉 = 2〈SzS̄z〉µSe− 1
2v
′
. (3.61)

To find the squeezing, we first compute the variance of an arbitrary transverse

spin component S⊥ = Sz cos β − Sy sin β, which would be observed in an experiment

by rotating the spins through an angle β about the x̂ axis using a microwave pulse
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and measuring the population difference between |↑〉 and |↓〉:

〈S2
⊥〉 = 1

2
(
〈S2

y〉+ 〈S2
z 〉 − cos (2(β − β0))

√
(〈S2

y〉 − 〈S2
z 〉)2 + 〈SySz + SzSy〉2

)
(3.62)

where the angle that minimizes the variance is given by

β0 = 1
2 arctan

(
〈SySz + SzSy〉
〈S2

y〉 − 〈S2
z 〉

)
. (3.63)

For the parameter regime S−1
0 � µ� S

−1/2
0 where the shearing is subtantial but does

not yet wrap around the Bloch sphere, and for small scattering probability 2r � 1,

the variance of the best-defined transverse component (for β = β0) can be closely

approximated by

〈S2
⊥〉|β=β0 ≈

〈S2
y〉〈S2

z 〉 − 1
4〈SySz + SzSy〉2

〈S2
y〉+ 〈S2

z 〉
(3.64)

≈ S0

2

(
1

(S0µ)2 + 2γ
S0µ

+ (S0µ
2)2

24 + 4r
3

)
(3.65)

The first term shows the suppression of the fixed initial projection noise by the shear-

ing. The second term shows the suppression of the phase fluctuations due to intra-

cavity light noise (ideally photon shot noise); since the cumulative phase uncertainty

due to the light noise is growing even as the shearing proceeds, the second term

decreases more slowly than the first. Usually the second term dominates and the

variance initially decreases as µ−1; however, if the photon shot noise could be sup-

pressed (γ = 0), for instance by sending photon Fock states into a one-sided cavity

as assumed in section 3.3.1, then the variance would initially decrease as µ−2. This

initial variance decrease is stopped by one of two limits, either the deformation of

the uncertainty region due to the curvature of the Bloch sphere captured by the

third term (the “swirliness” of reference [5]), or by the random spin flips due to Ra-

man scattering in the fourth term. Which of these terms dominates depends on the

single-atom cooperativity since the shearing is related to the scattering probability

by µ = 4ηr. For a weakly coupled resonator (η � 1) the scattering term dominates
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Figure 3-9: Curves of metrological squeezing ζ as a function of shearing parameter µ
for S = 104. The solid line is for an ideal system with no scattering into free space
(η →∞) and no intensity noise of the incident pulse (γ = 0). The dotted curve adds
scattering into free space (η = 0.1) to the model, the dashed curve adds photon shot
noise on the incident pulse (γ = 1), and the chain-dotted curve adds both.

while for a strongly coupled resonator (η � 1) the curvature of the Bloch sphere

limits the variance reduction before the scattering can become significant.

For the experiments to be described here, with no suppression of the photon shot

noise γ & 1 and with a weak single-atom cooperativity η ∼ 10−1, the second term

due to photon shot noise and the fourth term due to Raman scattering dominate the

transverse uncertainty and the achievable squeezing takes on a familiar form

ζ ≈ γ

2S0ηr
+ 4r

3 ≥ 2
√

2γ
3S0η

. (3.66)

This is the same bound as for the transmission-based measurement of section 3.2,

but limited by the intracavity light noise (parametrized by γ) rather than the mea-

surement performance. Since generating photon-shot-noise-limited light is a much

simpler task than performing photon-shot-noise-limited detection, this is a significant

advantage in practice.
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Chapter 4

Apparatus

This chapter describes the experimental setup used to test the theory of squeezing

in cavities developed in chapter 3. All this work is carried out using 87Rb, whose

pertinent properties are summarized first. The vacuum chamber, magnetic field coils

and overall layout of the experiment are unchanged from the work reported in two

previous theses [44, 45] (figure 4-1). The bulk of this chapter is devoted to those

parts of the apparatus that were upgraded for the experiments to be described here:

the microwave and laser systems used to manipulate the atoms, improved character-

ization of the optical resonator, photodetectors capable of reading out the hyperfine

pseudospin of the atoms with a precision well beyond the SQL, and confining po-

tentials used to trap the atoms in the resonator mode during the squeezing while

maintaining the coherence of the atomic ensemble.

4.1 Pertinent properties of 87Rb

In the experiments to be described here the ideal three-level atoms of chapter 3 are

replaced by 87Rb atoms, with the |F = 2,mF = 0〉 and |F = 1,mF = 0〉 hyperfine

levels of the 52S1/2 electronic ground state serving as the pseudospin states |↑〉 and |↓〉

respectively, and the 52P3/2 excited-state manifold of the D2 line serving as |e〉. The

relevant atomic levels are summarized schematically in figure 4-2. For a compendious

reference on the physical and optical properties of this atomic system, see Steck [46].
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Figure 4-1: Experiment chamber

The |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 transition is one of two so-called clock

transitions in the 52S1/2 ground state whose frequency is insensitive to magnetic field

up to linear order. It has a minimum frequency of 6 834 682 610.904 32(2)Hz for an

unperturbed atom [16], with a quadratic Zeeman shift coefficient of 575.14 Hz/G2 [47].

This is the same transition as is used in 87Rb fountain clocks [16] and is available be-

cause the atoms are held in an optical dipole trap which confines all the Zeeman

sublevels. For operation in a magnetic trap, where the |F = 1,mF = 0〉 state is un-

confined, the other clock transition between |F = 1,mF = −1〉 and |F = 2,mF = 1〉

would be used instead, with a minimum frequency of 6 834 678 113.59(2)Hz [48] at

the “magic” field B0 = 3.228917(3) G [49] and a quadratic Zeeman shift coefficient

of 431.35957(9) Hz/G2. As will be discussed in section 4.6, this choice would reduce

sensitivity to external fields and correspondingly increase coherence times. However,

driving the two-photon transition |F = 1,mF = −1〉 ↔ |F = 2,mF = 1〉 is more dif-

ficult than driving the single-photon |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 transition

used in the proof-of-principle experiments reported here.

The D2 optical transition, with a linewidth Γ = 2π · 6.065 MHz [46], is used for all
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Figure 4-2: Pertinent levels and transitions of the 87Rb D2 line. The 52S1/2 ground
state has hyperfine levels |F = 1, 2〉, while the 52P3/2 excited state has hyperfine levels
|F ′ = 0, 1, 2, 3〉. The hyperfine splitting in the excited state has been exaggerated by a
factor of five for visibility. The dotted arrow shows the 780.245 nm |F = 2,mF = 2〉 ↔
|F ′ = 3,m′F = 3〉 cycling transition used for initial trapping and cooling of the atomic
sample. The chaindotted arrows show the 780.232 nm |F = 1,mF = ±1〉 ↔ |F ′ =
0,m′F = 0〉 transitions used for optical pumping into the state |↓〉 = |F = 1,mF = 0〉,
and the solid arrows show the far-off-resonant probe light used to squeeze and probe
the {|↑〉, |↓〉} superposition.
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optical measurements and manipulation of the atomic internal state. For squeezing

and probing, the atoms are driven with light far-detuned compared to the hyperfine

splitting in the excited state 52P3/2. The squared matrix element g2 with which

this light couples to the m = 0 pseudospin states |↑〉 and |↓〉, summed over excited

hyperfine levels, is then 2/3 of what it would be for a cycling dipole-allowed transition

such as |F = 2,mF = 2〉 ↔ |F ′ = 3,m′F = 3〉 [46]; this 2/3 factor reduces the coupling

η of the atoms to the cavity.

4.2 Microwave and RF Drive

Hyperfine transitions between |↑〉 and |↓〉 are driven with resonant microwave radi-

ation. These transitions correspond to rotations of the collective pseudospin, and

since the characteristic angular scale of the spin states to be manipulated is around

a milliradian (sub-projection-noise angular resolution for several tens of thousands of

spins), these rotations must be well-controlled and reproducible to avoid introducing

technical noise on the orientation of the rotated states. The two microwave synthesis

chains used for this purpose each consist of a stable local oscillator (LO) running near

the 87Rb hyperfine transition frequency and a frequency-tunable and phase-agile RF

source generating an intermediate frequency (IF). These two signals are then com-

bined in a single-sideband mixer to produce a tunable phase-agile microwave signal at

the hyperfine transition frequency, which is amplified and broadcast into the vacuum

chamber.

For the measurement squeezing experiments of chapter 6, the LO was a Giga-Tron

600 microwave synthesizer running at 6.82GHz. The long-term frequency stability of

the LO was assured by referencing the synthesizer to a rubidium frequency standard

(SRS FS725) with a specified accuracy of ±5 · 10−11 and Allan variance of 1 · 10−11

at 10 s (the approximate experimental cycle time). The 14MHz IF was supplied by a

standard laboratory function generator (SRS DS345) without any special stabilization

measures, since the fractional stability requirements for the IF are much less strin-

gent. The experiment-control software can automatically set the function generator
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Figure 4-3: Microwave generation chain schematic for the measurement squeezing
(upper) and cavity-feedback squeezing (lower) experiments

frequency via GPIB between experimental runs, but to allow synchronized phase hops

and pulses in the midst of an experimental sequence the IF passed through an analog

phase shifter and RF switch (Minicircuits SPH-16+ and ZYSWA-2-50DR) before be-

ing combined with the LO in a single-sideband mixer (MITEQ SSM 0408LC2CDA).

The combined signal was amplified up to ∼ 1 W (by a Narda DB02-0097 and HD

Communications HD23686 in series) and broadcast into the vacuum chamber by a

10 dBi horn antenna (HD Communications HD18502, figure 4-4). Since the vacuum

chamber contains large metallic surfaces which might act as reflectors, a circulator

(JQL JIC6500T7200S1) was added between the last amplifier and the horn to protect

the amplifier output stage from reflected power.

For the cavity feedback squeezing experiments of chapters 7 and 8, the microwave

synthesizer serving as the LO was replaced by a dedicated 6.8GHz low-noise phase-

locked quartz oscillator (Wenzel Associates 500-20132), still referenced to the rubid-

ium frequency standard for long term stability. This change required an increase

of the IF frequency (to 34MHz) beyond the range of the DS345 function generator,

which was therefore replaced by a direct digital synthesis chip (DDS, Analog Devices
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AD9959) referenced to a 100MHz crystal oscillator (Wenzel Associates 501-08579).

The DDS can perform synchronized phase and frequency hops under real-time con-

trol from the experiment software. The analog phase shifter thus became superfluous

and was removed. This proved to be a significant improvement, as the analog phase

shifter’s insertion loss varies by nearly a dB depending on the phase setting, making

independent control of the rotation axis and rotation angle unnecessarily difficult.

The AD9959 evaluation boards used as DDS signal synthesizers for generating

the microwave IF and certain laser sidebands (section 4.3 below) are computer-

controlled via USB using an undocumented protocol, which is not a problem as

long as the vendor-supplied evaluation software is used to drive the board. To al-

low the experiment-control software to control the board directly, integrating it with

the rest of the apparatus, it was necessary to reverse-engineer the control protocol (us-

ing the SniffUSB packet sniffer). The resulting protocol description and LabVIEW

drivers are freely available from http://cua.mit.edu/AD9959-USB-drivers/ under

the terms of the MIT/X11 open-source license.

Though not necessary for any of the experiments described here, it was occa-

sionally convenient for diagnostic purposes to drive RF transitions between adjacent

Zeeman levels. When necessary, this was accomplished by connecting an RF function

generator (SRS DS345) to the on-chip wire Q4 (figure 4-15), coupling the RF signal

in through a pair of capacitors so that the normal Q4 current controller could still

set the DC current.

4.3 Lasers

The light used to manipulate and probe the atomic state is produced by a bank of

seven lasers, whose output is switched using shutters and acousto-optic modulators,

split and combined to provide the various mixtures of wavelengths needed in different

regions of the experimental apparatus, then coupled into polarization-maintaining

single-mode fibers that transmit the light to one of eight beams that enter the exper-

imental chamber:
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Figure 4-4: Horn-side optical pumping beam

1 horizontal MOT beam along the x̂ axis.

2 diagonal MOT beams in the ŷẑ plane.

1 circularly-polarized optical pumping beam launched from below the cham-

ber along the ẑ axis, capable of addressing both the MOT in the center of the

chamber and the final trapped cloud on the chip.

1 horizontally-polarized optical pumping beam from the East or horn side

in the x̂ŷ plane, at a 70 ° angle from the cavity axis, addressing atoms in the

cavity (figure 4-4).

1 vertically-polarized optical pumping beam from the West or camera side

counter-propagating with the preceding one (figure 4-5).

1 imaging beam along the x̂ axis, intersecting the cavity mode at right angles and

collected by an asphere inside the chamber for lateral absorption imaging of the

atomic cloud. This beam is usually blocked by the microwave horn used for

driving hyperfine transitions, but is occasionally valuable for establishing the

location of the atomic cloud.

The optical resonator mode along the ŷ axis.
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Figure 4-5: Camera-side optical pumping beam

4.3.1 Reference Laser

The absolute optical frequency reference used to establish all laser frequencies in this

work is an external cavity diode laser (ECDL) with a diffraction grating in Littrow

configuration locked to the |F = 3〉 → |F ′ = 4〉 transition of the D2 line in 85Rb

using Doppler-free polarization spectroscopy according to the scheme of Wieman and

Hänsch [50] (figure 4-6). The laser lock point is 1130MHz to the blue of the |F =

2〉 → |F ′ = 3〉 transition in 87Rb. Reference laser light is used only for frequency

locking of other lasers and is not transmitted to the vacuum chamber.

The Wieman-Hänsch polarization spectroscopy scheme relies on Faraday rotation

of a probe laser in the atomic vapor to find the atomic transition frequency. Through

the end of the experiments described in chapter 6, this Faraday rotation was measured

by observing the fraction of light transmitted by a polarizing filter onto a single silicon

photodiode. As part of an overhaul of the reference laser setup to allow some of the

reference light to be shared with another lab, the readout photodiode was changed to

a New Focus 2307 balanced photodetector, using both output ports of a polarizing

beam splitter to act as a polarization analyzer. By suppressing the error signal’s

sensitivity to total laser power (which causes common-mode fluctuations between the

two output ports of the analyzer), this setup eliminated the problem of slow drifts of
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Figure 4-6: Reference laser and vapor-cell locking setup

the reference laser set point.

4.3.2 Repumper Laser

The repumper laser, a distributed feedback diode laser (DFB, Eagleyard EYP-DFB-

0780-00080-1500-SOT02-0000), is used for all operations addressing atoms in |F = 1〉

(figure 4-7). Its ∼ 5.3 GHz beat note with the reference laser is detected by a fast

MSM photodiode (Hamamatsu G4176) and combined with a 6.8GHz local oscillator

in a mixer whose output is divided by 4096 to obtain a signal at ∼ 350 kHz that serves

as input to a conventional PI feedback lock (using a PLL to detect the frequency). The

frequency set point can be dynamically adjusted during the experimental sequence

to reach any of the |F ′ = 0 . . . 2〉 excited states accessible from |F = 1〉. The repump

laser light can be sent to the experiment through both the diagonal MOT beams in

the ŷẑ plane, and through all three of the optical pumping beams: from below, from

the East (horn) side and from the West (camera) side.
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Figure 4-7: Repumper laser

Figure 4-8: MOT laser battery
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4.3.3 MOT Lasers

The MOT master laser is used for cooling, optical pumping and imaging of atoms in

|F = 2〉. It is very similar to the repumper laser, being a DFB diode of the same type,

with its ∼ 1.2 GHz beat note against the reference laser detected on a fast photodiode

(another G4176) and divided by 4096 to obtain a signal at ∼ 300 kHz that serves as

input to a PI feedback lock. The frequency set point can again be adjusted during

the experimental sequence to reach any of the |F ′ = 1 . . . 3〉 excited states accessible

from |F = 2〉. The MOT master can be sent into the experiment chamber through

all three optical pumping beams and from the imaging beam when the latter is in

operation.

For initial cooling and trapping of the atomic sample, more power is needed than

can be provided by a single 80mW diode. This is supplied by a pair of 120mW MOT

slave lasers, injection-locked to the MOT master, devoted solely to the MOT beams

(figure 4-8). The so-called YZ slave is used to drive both diagonal MOT beams while

the X slave drives the horizontal one. For the measurement squeezing experiment

(chapter 6) the YZ slave used an inexpensive CD-player diode (Sharp GH0781JA2C),

which was replaced for subsequent experiments (chapters 7, 8) by an uncoated SLI-

CW-9mm-780-0.15S-R diode; both operated reliably. The X slave used an AR-coated

diode (Sacher SAL-780-100) whose free-running wavelength at room temperature was

790 nm. Contracting the diode sufficiently to allow reliable injection locking at the

MOT wavelength of 780.245 nm required cooling the diode to below 10℃, well below

the typical dew point in the lab. The laser casing was therefore half-filled with silica

dessicant and completely sealed with Torr-Seal adhesive, to prevent ambient humidity

from condensing on the laser diode. This gave satisfactory performance for a period

of four years, encompassing all the experiments to be described here. However, the

temperature differential between the dessicant—most of which was in thermal contact

with the laser case, i.e. at room temperature—and the cold laser diode mount meant

that any residual humidity tended to condense on the mount and surrounding wires,

which eventually corroded. The X slave has now been replaced by an inexpensive
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Figure 4-9: Trap laser

CD-player diode (Sharp GH0781JA2C).

4.3.4 Trap Laser

The optical dipole trap in the resonator is generated by a third DFB diode (Eagleyard

EYP-DFB-0852-00150-1500-TOC03-0000) operating at 852 nm. As the resonator cav-

ity has a finesse at this wavelength of 4.3×104, a few milliwatts is enough to generate

tens of watts of intracavity circulating power for trapping; a high-power trapping

laser is therefore not needed. However, as frequency fluctuations of the laser relative

to cavity resonance are converted to intensity fluctuations that heat the atomic en-

semble [51], it is essential that the laser frequency be stabilized to a small fraction

of the cavity linewidth. Two techniques are employed for this purpose. The first is

optical feedback from a glass plate mounted 18 cm in front of the laser diode to form

an extended low-finesse cavity. AR-coated on one face to reduce loss from secondary

reflections, the glass plate is mounted on a cylindrical piezo to allow the external

cavity length to be tuned together with the Bragg cavity built into the laser diode

chip (figure 4-9).

The second technique used is a Pound-Drever-Hall lock [52] with very large band-

width. Before being coupled into the cavity, 30MHz sidebands are applied to the trap

laser beam using a fiber-coupled electro-optic modulator (EOM, EOSPACE PM-0K5-

20-PFA-PFA-780). The amplitude modulation obtained when these sidebands reflect

from the cavity is detected by a fast MSM photodiode (Hamamatsu G4176), amplified
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Figure 4-10: Probe Laser

and mixed with the 30MHz modulation frequency, thus producing the Pound-Drever-

Hall error signal which is used to lock the laser carrier to a TEM00 cavity resonance.

In addition to the usual PI controller, implemented with operational amplifiers and

feeding back to the laser diode current and the external cavity’s piezo, a special fast

path connects the error signal directly to the laser diode current input. This fast

path, which increases the lock’s unity gain bandwidth from a few tens of kHz to over

1MHz, is described in more detail in the thesis of Monika Schleier-Smith [53].

4.3.5 Probe Laser

The probe laser (figure 4-10), usually referred to as the cavity lock laser (CLL) in

the notes documenting these experiments, is an ECDL in Littrow configuration like

the reference laser, but with an additional mirror mounted to the diffraction grating

in order to keep the output beam alignment independent of grating angle adjust-

ments [54]. Its frequency is locked to a cavity resonance using a Pound-Drever-Hall

lock with a similar fast feedback path to the one used for the trap laser, ensuring a

similarly high lock bandwidth of 2MHz [53]. The need to minimize undesired pertur-

bations from the near-resonant probe light led, however, to the use of a more complex
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Figure 4-11: Probe laser sideband schemes (not to scale). The two grey bars indicate
the optical transitions from the two hyperfine ground states. Dashed lines indicate
light used for locking the laser to the resonator. Pale resonances are not addressed by
any light. In both schemes the TEM00 resonance between the two atomic transitions
is used for probing. In scheme (a) the same carrier is used for probing and locking,
with a 113MHz sideband to lock to the TEM10 odd mode and symmetric 14.08GHz
sidebands addressing the opposite slopes of two TEM00 Lorentzian resonances, so
that frequency shaking of the laser has no effect on transmission to first order. In
scheme (b) separate carriers are used for probing and locking, with only the upper
36.6GHz sideband resonant with a TEM00 mode for probing.

locking scheme than the straightforward carrier-on-TEM00-resonance setup used for

the trap. Two different schemes were used, one for the measurement-based squeezing

of chapter 6 and one for the cavity feedback squeezing of chapters 7 and 8. For both

schemes, the goal is the same: except for short periods when probe light is delib-

erately introduced into the cavity’s TEM00 mode for measurement or manipulation

purposes, there should be as little probe light as possible in the resonator, it should

be detuned as far as possible from atomic resonance, and it should be in a TEM10

mode with a node at the cavity axis to minimize its interaction with the atoms.

The first scheme, illustrated in figure 4-11a, places the probe laser carrier exactly

halfway between two TEM00 resonances, 2.5 free spectral ranges or 14.08GHz to

the red of the resonance used for probing the atoms. Because the cavity is not

exactly confocal, the carrier is 113MHz away from the nearest atomic resonance. The

beam from the probe laser passes through a fiber-coupled EOM (EOSPACE PM-0K5-

20-PFA-PFA-780), which generates the requisite 113MHz sidebands for the Pound-
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Figure 4-12: Cavity input optics, showing the three incident beams used for trapping
the atoms, locking the probe laser to the cavity, and probing the atoms

Drever-Hall lock, before being coupled into the cavity. The incident beam is displaced

from the cavity’s optical axis so that it couples both to the TEM00 mode used for

probing and to the TEM10 mode used for locking. Light reflected in the TEM10 mode

is collected on an avalanche photodiode and demodulated to provide the lock error

signal. Adjustments of the laser frequency relative to the resonator are performed

by changing the lock sideband frequency. The fiber-coupled EOM also generates the

14.08GHz sidebands used for probing. Since the carrier is exactly halfway between

two TEM00 modes, both these sidebands are simultaneously resonant with resonator

modes. The upper or probing sideband is much closer to atomic resonance than the

lower or compensation sideband, so it is the one principally affected by the atom-

cavity interaction. The compensation sideband is useful, however, to reduce the

effect of technical noise: when the probe sideband is tuned slightly to the blue of

one cavity resonance, the compensation sideband is slightly to the red of another

so that fluctuations of the laser frequency which decrease the probe transmission

increase the compensation sideband transmission, yielding a first-order cancellation

of the technical transmission noise.

The second scheme, shown in figure 4-11b, moves the probe laser carrier 6.5 free

spectral ranges or 36.6GHz to the red of the resonance used for probing. Since SMA
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connector losses are substantial at this frequency, the probe sideband is actually gen-

erated as a second-order sideband by driving the EOM with an 18.3GHz source. The

probing and locking light now arrive at the cavity in separate fibers (figure 4-12), with

separate fiber-coupled EOMs, so that the probing light can be correctly aligned to the

optical axis for maximum mechanically stable coupling to the TEM00 mode while the

locking light is offset for maximum coupling to the TEM10 odd mode. To avoid inter-

ference effects between the lock light and any residual stray probe light which reaches

the lock photodiode, the two beams are offset in frequency by 80MHz by having the

probe beam bypass the AOM whose first-order output is used for locking. The probe

carrier is no longer centered between TEM00 modes; the typical Pound-Drever-Hall

sideband frequency is now around 50MHz which, together with the 80MHz AOM

frequency offset, puts the carrier 130MHz away from the TEM10 mode used for lock-

ing or 17MHz away from the symmetry point. The lock performance is sufficiently

good that the compensation sideband suppresses less technical noise than the excess

photon shot noise that it adds, so that it is better to remove the compensation side-

band from the scheme by detuning it from cavity resonance so that it interacts with

neither the atoms nor the transmission photodetector.

4.3.6 Beam Switching

Laser beams destined for the experiment pass through acousto-optic modulators

(AOMs, Isomet 1201-C). The zeroth-order, unshifted output is discarded or used

for monitoring purposes, and the diffracted output, deflected by a few degrees and

typically containing 80% of the output when the AOM is driven at full power, is

mode-matched into a polarization-maintaining single-mode fiber and sent to the ex-

periment. The same AOM drive frequency (80MHz) and diffraction order (first-order

on the blue side) are used for all AOMs to reduce the risk of confusion and to simplify

frequency accounting: the frequency difference between two lasers is the same before

and after their respective AOMs. Switching the RF drive power to the AOM allows

rapid modulation of the laser power in any beam.

While AOMs are useful for rapid (∼ 1 µs) switching of beam power, they do not
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Figure 4-13: Laser switchyard. Labels on the left designate the beams from individual
lasers. Labels on the right identify optical fibers destined for the experiment. Shutters
are circled.

allow a beam to be entirely switched off; for that purpose we use solenoid-operated

shutters (manufactured by TK-CMD, see figure 4-13). These shutters are held open by

a coil spring by default, but can be closed by applying a short current pulse (nominally

210mA for 10ms) to overcome the inductance of the solenoid and the inertia of the

shutter blade and held closed against the restoring force of the spring by a much

smaller current (nominally 50mA). Every laser beam, except for the reference and

probe lasers which are never switched off, passes through one such shutter so that it

may be blocked when stray light would be unacceptable.

Until the summer of 2007, these shutters were driven by a simple RC circuit which

used a capacitor in series with the solenoid to supply the additional current for the

initial pulse (figure 4-14, upper left). This design suffered from certain drawbacks:

• In order to allow the use of a single transistor with TTL input voltages to control

the shutter current, the shutter coil was connected on the power supply side of

the driver circuit. Both wires going to the shutter coil were thus at 5V even

when the shutter was unpowered, and an accidental connection between one of

those wires and ground (e.g. the optical table) could send several hundred mA

67



Figure 4-14: Old (upper left) and new (lower right) shutter driver circuits

through the coil for an extended period, overheating and potentially destroying

it.

• After switching off power to the coil, the capacitor had to be allowed to discharge

before it could sink current for the next shutter-closing pulse. This made it

impossible to cycle shutters quickly: if the shutter were not left open for at

least 20ms it would usually fail to close again.

• The DC hold current supplied by the circuit was 150mA, much more than

necessary, which led to the shutters running hot enough to burn stray fingers

and limited their lifespan.

• The initial current pulse, though it satisfied the nominal requirements for closing

the shutter (300mA initial current with a time constant of 20ms) was not large

enough reliably to close the shutter in practice, given that the shutters are

typically cycled several times every few seconds all day long and must close

every time. Slight changes in the friction on the shutter blade would sporadically

cause a shutter to stick open, which could lead to intermittent failures anywhere

in the experimental cycle. Options to increase the initial pulse energy were
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limited: the capacitor, at 2.2mF, was already unreasonably large and making

it larger would have lengthened the recovery time between cycles. Increasing

the supply voltage would also have increased the hold current and aggravated

the overheating problem.

An improved driver (figure 4-14, lower right), tested in July 2007 and installed for all

shutters by December of that year, corrects these deficiences:

• The transistor receiving the TTL input is now separate from the power tran-

sistor controlling current to the coil, which is now on the ground side of the

controller. Shorts of the coil wire to the optical table are now harmless.

• An additional transistor discharges the timing capacitor as soon as the solenoid

current is switched off so that it is immediately ready for the next shutter-

closing pulse. The only limit on the cycling speed is the mechanical delay while

the return spring opens the shutter blade.

• The DC hold current is reduced to 90mA, still more than necessary for hold-

ing the shutter closed but not enough to cause noticeable overheating of the

solenoid.

• Using the power transistor to amplify the current through the timing capacitor

and having a separate reset circuit allows a free choice of the initial pulse energy.

This is now sharp enough (600mA for 10ms) that the shutters all reliably close

within 5ms.

Since the installation of the new driver circuits, shutters have not failed to close.

There have been a few instances of shutters jamming in the closed position, their

return springs unable to reopen them, usually because the shutter was deformed by

overtightening its mounting screws. Such failures are rare, generally not intermittent

(since the spring, unlike the solenoid, does not get a new pulse every experimental

cycle) and fairly easy to debug.
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Figure 4-15: Optical resonator mounted on atom chip

4.4 Optical Resonator

The optical resonator which plays a central role in this work is a symmetric Fabry-

Pérot cavity consisting of two dielectric mirrors of 2.5 cm radius of curvature, mounted

below and to either side of the atom-chip support structure (figure 4-15), which is itself

suspended from the top of the vacuum chamber. The input (South-side) mirror is

glued to a fixed mount, while the output (North-side) mirror is glued to a cylindrical

piezo-electrical transducer (from Channel Industries) that allows the length of the

cavity to be adjusted through approximately three free spectral ranges (figure 4-15).

As long as the probe laser is locked to the resonator, the probe laser frequency is a

measure of the resonator length. Therefore, in order to stabilize the resonator length,

the beat-note frequency between probe and reference lasers is used as an error signal

for a slow feedback loop that controls the output mirror piezo. Put differently, the

high-bandwidth probe lock maintains the relative frequency of the laser and cavity,

and the low-bandwidth cavity length lock ensures that the absolute frequencies of

both resonator mode and laser give the desired detuning from atomic resonance. In

the first probe laser scheme, used for the work of chapter 6, the 12.1GHz beat note

between probe laser carrier and reference laser is directly observed on a fast MSM

photodiode and converted to a voltage by a delay-line interferometer, using a 40 dB
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pre-amplifier (JCA812-600) to overcome the roll-off in the photodiode response at this

frequency. In the second scheme, used for chapters 7 and 8, the 34.5GHz beat-note

frequency between probe laser carrier and reference laser is too high to be directly

observable with a photodiode. Instead, light from both the probe and reference lasers

is sent through a fiber-coupled amplitude modulator (EOSPACE AZ-0K5-20-PFA-

PFA-780) driven by the same 18.3GHz synthesizer as is used to generate the probe

sidebands. The interference between the AM sidebands imparted to the two laser

carriers introduces a modulation at the difference frequency between the separation

of the probe and laser carriers and the 36.6GHz probe sideband frequency, which

is exactly the frequency difference between the probe sideband that interacts with

the atoms and the reference laser. This difference frequency is detected by a fast

photodiode and delay-line interferometer, as before. Note that while the probe laser

frequency is subject to high-frequency noise and must be locked to a small fraction

of the ∼ MHz cavity linewidth, thus requiring a high-performance feedback loop, the

cavity length is subject only to acoustic noise and need only be stable compared to the

∼ GHz detuning from atomic resonance, so that a simple PI loop with a bandwidth

of ∼ 200 Hz suffices for the cavity length lock.

The mirror coatings were applied by REO Inc. for a design wavelength of 852 nm

and target transmission of 30 ppm with losses below 5 ppm [55]. At 852 nm the mea-

sured transmission of a sample mirror from the same coating run was 27 ppm. To mea-

sure the mirror transmission, a weakly focused 852 nm laser beam was sent through

two apertures and on to a silicon photodiode. The mirror was mounted between the

two apertures and aligned by overlapping the incident and retroreflected light beams.

The mirror alignment is important both to maximize the efficiency of the dielectric

coating on the mirror and to minimize the amount of light reflected into the back

of the first aperture and re-scattered onto the photodiode. The radius of the first

aperture was adjusted to minimize the light transmitted to the photodiode: too large

and stray light off the mirror axis would be allowed to reach the photodiode, too

small and the incident laser beam would diffract outwards, allowing stray light to

go around the mirror and again causing an excess reading on the photodiode. The
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measurement was carried out in darkness since it was found that draping the setup

in black cloth only served to reflect off-axis stray light back towards the photodiode.

Once this mirror transmission reading was collected, the mirror was removed and the

power transmitted through the same aperture openings was recorded to normalize

the result to a fractional transmission.

The cavity linewidth was measured either by direct transmission measurements

or by ringdown. For the direct transmission measurements, a large-amplitude EOM

sideband of a laser locked to the cavity was scanned over the cavity resonance by

adjusting the modulation frequency. Since the transmission profile obtained is the

convolution of the cavity and laser lineshapes, a Lorentzian fit will tend to overesti-

mate the linewidth of the cavity unless the laser is locked to within a small fraction of

a cavity linewidth. For the ringdown measurements, the laser amplitude incident on a

cavity resonance was given a sharp-edged square-wave modulation, either by locking

the trap laser carrier to cavity resonance and intermittently modulating sidebands

to steal power from the carrier, or by locking the probe carrier away from cavity

resonance and intermittently adding sidebands on cavity resonance. Either way, the

response of the cavity transmission to the step changes in the input power is the

inverse Fourier transform of the Lorentzian cavity lineshape, an exponential decay

with the resonator lifetime as its time constant. This method will underestimate

the linewidth (overestimate the lifetime) unless both the optical power switching and

the photodetector response are much faster than the cavity lifetime. For the 852 nm

trapping wavelength, the linewidths obtained were κt = 2π · 131(3) kHz for the trans-

mission spectrum by scanning a sideband and κt = 2π ·135(2) kHz from the ringdown

measurement. For the 780 nm probing wavelength, the transmission spectrum gave

κ = 2π · 1.012(3) MHz and the ringdown measurement gave κ = 2π · 1.01(3) MHz.

The parenthesized values are statistical fit uncertainties. The good agreement be-

tween two measurement techniques with opposite biases is evidence that the cavity

linewidth/lifetime has been correctly identified, and incidentally that the feedback

loops are locking the laser to within much less than a cavity linewidth.

The resonator free spectral range of 5632.0(2)MHz was measured by recording
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the sideband modulation frequency required to tune a pair of symmetric laser side-

bands to simultaneous resonance with two longitudinal modes of the resonator, 5

free spectral ranges apart. From the free spectral range we obtain a cavity length

L = 26.615(9) mm. The uncertainty comes primarily from thermal drift: in normal

operation the cavity length is locked, but only up to a half-integer multiple of the

optical wavelength; as the experiment warms up and the mirror mounting structure

expands, the length to which the cavity is locked is stepped from one mode to the

next to stay within the range of the longitudinal adjustment piezo.

With the symmetric sidebands each on a TEM00 resonance (and thus with the

laser carrier exactly halfway betwen such resonances), the Pound-Drever-Hall side-

band frequency for the probe laser (i.e. the detuning of the carrier from the nearby

TEM10 mode) is 113(1)MHz, with the error coming principally from the freedom of

adjustment of the Pound-Drever-Hall error offset and from possible deformations of

the error signal. This yields a resonator g-parameter [56] of -0.0629(6), assuming

that the two cavity mirrors have the same curvature. The radius of curvature is then

25.040(16)mm, in good agreement with the nominal value of 25mm.

From the curvature, cavity length and wavelength we can compute the TEM00

mode waist at cavity center according to [56]

w2
0 = Lλ

π

√
1 + g

4(1− g) (4.1)

For the 780.245 nm probe wavelength, we obtain a waist w0 = 55.71(2) µm at cavity

center. For the 852 nm trap laser, which sees the same mirror geometry but has

a longer wavelength and somewhat more diffraction, the waist at cavity center is

58.2(1) µm, with a larger uncertainty due to the uncertainty of the absolute frequency

of the trap laser. From measurements described in section 5.2 the atom cloud is known

to be displaced by some 2.6(5)mm from the cavity center. Using the usual Gaussian
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beam diffraction formula

w(z) = w0

√
1 +

(
z

zR

)2
, (4.2)

zR = πw2
0

λ
(4.3)

the mode waists at the location of the atoms are wp = 56.9(4) µm and wt = 59.4(5) µm

for the probe and trap laser respectively.

The cooperativity for a closed dipole transition of a (two-level) atom on the cavity

axis at an antinode of the standing-wave intracavity probe field is then given by

η0 = 24F/π
(kw)2 ≈ 0.203 (4.4)

where F is the resonator finesse and k = 2π/780.24 nm is the probe wavenumber.

The use of an open transition with a smaller matrix element reduces this by a factor

of 2/3 (see section 4.1). Moreover, for atoms displaced from the cavity axis or from

the antinode of the standing wave, the cooperativity is further reduced by a position-

dependent factor proportional to the local intensity of the probe light mode.

Since the cooperativity is no longer the same for atoms at different locations, the

ideal model of chapter 3, which assumes identical atoms, must break down in the

limit where individual atomic pseudospins are resolvable. However, provided that

the number of atoms and the variance in any given collective pseudospin component

remain large, the collective pseudospin can be treated as an effectively continuous

variable [23], obtained from a suitably weighted sum over the atoms. In this limit the

composition of the collective pseudospin in terms of microscopic atomic pseudospins

no longer matters and the behaviour of chapter 3 is recovered. The leading-order

departure from this idealization is due to dephasing from the position-dependent AC

Stark shift of the probe light, which can be addressed as discussed in section 5.5 and

reference [33].

What effective cooperativity η is associated with this weighted collective pseu-

dospin? First of all, η should reproduce the observed shift of the cavity resonance
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when all atoms are optically pumped into |↑〉 or |↓〉, since that is the experimentally

observable manifestation of collective pseudospin length (effective atom number). Re-

calling from equation 3.5 that the cavity shift is proportional to ηSz, this requires

that

S0η =
∫

drρr
1
2ηr = Nt

2 〈ηr〉 (4.5)

where ρr is the number density of the cloud, 1
2 is the Sz component of each optically

pumped atom, ηr is the position-dependent cooperativity, Nt is the total number of

atoms in the cloud and 〈ηr〉 is their average cooperativity. Additionally, the fluctua-

tions of the cavity shift due to the projection noise of uncorrelated atoms should also

be preserved, requiring

S0

2 η
2 =

∫
drρr

1
4η

2
r = Nt

4 〈η
2
r〉 (4.6)

where 1/4 is the spin variance contributed by each atom in the cloud. These two

requirements preserve the meaning of ζ as a change in the noise-to-signal ratio relative

to the best possible ratio achievable without entanglement and with a fully polarized

ensemble of independent atoms. They impose the definition

η = 〈η
2
r〉
〈ηr〉

(4.7)

for the effective cooperativity.

As will be discussed in sections 4.6 and 5.2, the atomic distribution is effectively

uniform along the cavity axis and Gaussian in the two transverse directions, so that

〈ηr〉 = 2η0

3

∫ 2π

0

d(ky)
2π cos2(ky)

∫ ∞
0

drre−
r2

2σ2

σ2 e−
2r2
w2 = 2η0

3
1/2

1 + 4 σ2

w2

(4.8)

〈η2
r〉 =

(2η0

3

)2 ∫ 2π

0

d(ky)
2π cos4(ky)

∫ ∞
0

drre−
r2

2σ2

σ2 e−
4r2
w2 =

(2η0

3

)2 3/8
1 + 8 σ2

w2

(4.9)

η = 2η0

3

(3
4

) 1 + 4 σ2

w2

1 + 8 σ2

w2

(4.10)
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Figure 4-16: Cavity output filtering optics

where the 2/3 comes from the matrix element of the open transition used in these

experiments (section 4.1), y is the axial coordinate, r is the distance from the cavity

axis and σ is the RMS cloud radius. For a cloud radius of 7 µm (section 5.2) this

yields an effective cooperativity η = 0.096(3).

4.5 Photodetector

Nearly all measurements performed on the atoms in these experiments rely on mea-

surements of the transmission fraction of the cavity, as in section 3.2.1, and so the

performance of the photodetector used to collect the transmitted light is critical.

Performance here has three aspects: collection of the transmitted light with high

quantum efficiency, rejection of stray light, and bandwidth sufficient to allow rapid

measurements (compared to the coherence time). The photodetector itself, a silicon

avalanche photodiode (Hamamatsu S3884) followed by a specially tuned amplifier

with a bandwidth of ∼ 100 kHz, is described in reference [53]. The focus here will be

on the stray light rejection optics (figure 4-16).

The beam transmitted by the cavity contains three frequency components: trap
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light, light from the Pound-Drever-Hall sideband used to lock the probe laser to the

resonator, and the transmitted probe sideband itself. Of these, only the weakest, the

probe sideband, is of immediate interest. The ∼ mW trap light is much the brightest

of the three components, but as it is at 852 nm it can be easily filtered out: an

interference filter (CVI HRF-780 laser line filter) suppresses it to undetectable levels

while transmitting the 780 nm probe laser with over 95% efficiency. The locking

sideband, with a power 1 . . . 100 times greater than the probe sideband depending on

the experiment, also fits into the several-nm-wide passband of the filter and must be

disposed of separately. It can be distinguished from the probe sideband of interest

on two grounds: it is transmitted on the TEM10 odd mode of the resonator while the

probe sideband leaves in a fundamental TEM00 mode, and it is generally chosen to

have the orthogonal polarization. The light exiting the cavity is therefore transformed

by a quarter-waveplate and half-waveplate so that the probe light is horizontally

polarized, passes through a polarizing beam splitter which deflects most of the locking

sideband (as well as a portion of the trap laser light used for power monitoring),

then passes through the laser line filter used to block the trap light, before finally

being coupled into a polarization-maintaining single-mode fiber for delivery to the

photodetector. Since the TEM00 mode transmitted by the cavity is a clean Gaussian

mode, it can be coupled into the fiber with over 80% efficiency while the orthogonal

TEM10 mode (as well as ambient stray photons from overhead lighting or other lasers)

are rejected by the fiber which acts as a spatial filter. Depending on beam alignment,

which is unfortunately subject to thermo-mechanical drifts, polarization and spatial

mode-matching each give two to three orders of magnitude of suppression of the

locking sideband, reducing it to negligible levels.

The overall gain of the photodetection path was periodically verified by comparing

the difference in signal voltage at the detector output when the probe sidebands

were tuned on and off resonance to the change in photocurrent measured with an

unamplified large-area photodiode at the cavity output port of the vacuum chamber.

The observed gain of 10(2) nW/V is consistent with an estimated optical efficiency

of 60%, photodiode quantum efficiency of 80%, avalanche gain of 13, and amplifier
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transimpedance gain of 25MW.

4.6 Dipole Trap

The atoms progress through four different trapping potentials in an experimental

cycle (c.f. section 5.1). The first three are used only for sample preparation: a six-

beam magneto-optical trap in the centre of the chamber used to collect the atomic

ensemble, a macroscopic magnetic quadrupole trap used to transfer it to the vicinity of

the resonator and a microscopic quadrupole trap based on the Q4 chip wire (figure 4-

15) used to compress it radially into an elongated cloud similar in diameter to the

cavity mode. These are described in references [44, 45]. For the actual experiments

the atoms are confined in the optical dipole trap produced by the standing wave built

up by the 852 nm trap laser inside the resonator mode.

The use of an intracavity dipole trap of this type has several advantages. The first

is automatic alignment: coupling the trap laser to the same TEM00 transverse mode

as the probe laser guarantees that the minimum of the trapping potential is on the

resonator axis. The second is state-independent confinement: since all magnetic sub-

levels are trapped in a dipole potential, the atoms can be optically pumped between

states without fear of losing them to magnetically untrapped states. Furthermore, the

easiest “clock” (linear-Zeeman-free) transition to drive in the 87Rb hyperfine system is

|F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉, which connects magnetically-untrapped states.

Finally, since the distance from the resonator mode to the chip (250 µm) is signifi-

cantly greater than the mode waist, it is easier to provide tight radial confinement

with an optical potential whose transverse scale is set by the resonator mode than

with a magnetic potential whose gradient scales inversely with the distance to the

wires which generate it. Figure 5-1 shows the substantial radial compression when

loading into the dipole trap, which brings the atoms close to the resonator axis where

they see the most coupling to the probe light.

Because the trap laser forms a standing wave inside the resonator, the trapping

potential actually consists of a large number of “pancakes”, one for each antinode
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of the standing wave. The trapping potential in each pancake, calculated from the

transmitted trap laser power and the measured transmission of the cavity mirror

(section 4.4), has a depth of U0 = h · 20 MHz, an axial trapping frequency ωt =

2π ·500 kHz and a radial trapping frequency ωr = 2π ·1.5 kHz. The trap standing wave

is incommensurate with the probe standing wave, the spatial beat period between

them (i.e. the distance between points where the probe antinode overlaps with the

minimum of a trapping potential) being 4.6 µm. Since this is much less than the

∼ 1 mm length of the atom cloud in the trap (section 5.2), the atoms occupy trapping

sites with all possible relative phases between trap and probe, and the distribution

of atoms over the axial standing wave of the probe is effectively uniform. Also, since

the axial trapping frequency is large compared to all experimental timescales, the

axial distribution of atoms is frozen: there are atoms trapped at both nodes and

antinodes of the probe standing wave, but an atom at an antinode remains there for

the duration of the experiment.

The intensity of the trap laser light in the cavity mode is sensitive to frequency

fluctuations of the laser relative to the cavity resonance frequency. The resulting

intensity fluctuations cause exponential heating of the atoms with a characteristic

e-folding time 4(ω2
tS(2ωt))−1, where S(2ωt) is the one-sided spectral power density

of the fractional intensity fluctuations at twice the trap frequency [51]. Because of

the high axial trap frequency ωt, this corresponds to a very short time unless the

laser is locked to a very small fraction of the cavity linewidth; fortunately, the combi-

nation of optical feedback and high-bandwidth Pound-Drever-Hall locking described

above is enough to suppress the intensity noise density at twice the trap frequency to

S(1 MHz) . 10−12 Hz−1 so that the observed lifetime of atoms in the dipole trap is

around 7 s, longer than any experimentally relevant time scale.

The trapping potentials experienced by the two hyperfine levels differ fractionally

by 2.2 · 10−4 due to the 6.8 GHz difference in detunings from their respective optical

transitions. Given the thermal distribution of the atoms (with kBT ∼ h · 1 MHz)

in the trapping potential, this leads to an inhomogeneous broadening of the hyper-

fine transition frequency by tens of hertz, significantly limiting the coherence time of
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the pseudospin. To overcome this limitation, the trap laser is circularly polarized,

thus introducing a vector Stark shift which acts as an effective magnetic field along

the trap beam. In combination with a (real) magnetic offset field along the cavity

axis, this laser-induced effective field produces an intensity-dependent quadratic Zee-

man shift which can be used to cancel out the inhomogeneous scalar Stark shift.

This trick, along with its experimental implementation in our apparatus, trade-

offs and optimization of parameters, is discussed in reference [53]. Unfortunately,

this technique for canceling the effect of the trap Stark shift requires a bias field

By of several gauss. Since the minimum of the quadratic Zeeman shift for the

|F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 transition is at zero field, this introduces a

linear sensitivity of the clock transition frequency to magnetic field fluctuations at

the level of several kHz/G as the price paid for insensitivity to trap intensity varia-

tions. While this compromise is adequate for the proof-of-principle demonstrations

of this work, where the atomic phase is never interrogated for longer than a few ms,

true precision experiments with long interrogation times will probably have to give

up the convenience of the dipole trap and use magnetically trapped atoms and the

|F = 1,mF = −1〉 ↔ |F = 2,mF = 1〉 two-photon clock transition at its magic field

of 3.23G. With no AC Stark shifts from the trap and no linear sensitivity to mag-

netic fields, such a system has been shown to allow phase coherence times of several

seconds [49].

Polarization-gradient cooling requires degenerate Zeeman sublevels and thus can-

not be performed in a circularly polarized dipole trap. To retain the ability to perform

such cooling in the dipole trap at the beginning of the experimental sequence while

using the vector-scalar Stark shift cancellation described above for squeezing exper-

iments later in the sequence, the trap laser polarization is dynamically adjustable

using a liquid crystal variable retarder (Meadowlark Optics). Unfortunately, the re-

tarder is very slow, requiring around 75ms to switch and several hundred ms before

the polarization drift settles to an undetectable level.
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Chapter 5

Experimental Procedures and

Apparatus Characterization

Building on the description of the experimental apparatus in the previous chapter, this

chapter describes a number of basic experimental procedures used either to character-

ize the operation of the apparatus or as basic steps in the more complex experiments

described in subsequent chapters. Since all subsequent experiments depend on the

presence of a cloud of cold 87Rb atoms in the resonator, the first two sections explain

how this cloud is prepared and characterized. The next section describes the basic

tools for manipulation of the hyperfine pseudospin: optical pumping to initialize the

Bloch vector in a known direction and resonant microwave pulses to rotate it. The

last three sections describe standard measurement protocols: readout of Sz and S0

based on the cavity shift, measurement of the length of the Bloch vector and char-

acterization of the decoherence processes that shorten it, and in situ magnetic field

calibration.

5.1 Standard Experimental Sequence

87Rb vapor emitted by an electrically heated getter is first collected in a standard

six-beam magneto-optical trap (MOT). The MOT loading time ranges from 3 s for

diagnostic experiments, where small atom number and rapid cycle time are desirable,
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to 6 s for squeezing experiments requiring maximum optical depth. In the last 30ms

of the loading time the magnetic field minimum is adjusted from the center of the

intersection region of the MOT beams to the upper edge, nearest the chip. The

repumper intensity is turned down, allowing the atoms to spend some time in the |F =

1〉 dark states, and the MOT laser detuning is increased, reducing outwards radiation

pressure from scattered photons and compressing the atomic cloud (“dark MOT”

[57]). To transfer the atoms from this compressed MOT to the macroscopic magnetic

quadrupole trap for transport to the chip, the MOT beams are switched off and a

∼ 10 µs current pulse to a solenoid in the vacuum chamber displaces the magnetic

field minimum faster than the atoms can follow, placing them in a uniform vertical

bias field. The vertical circularly polarized optical pumping beam, aligned with the

quantization axis thus defined, drives the atoms into the magnetically trappable |F =

2,mF = 2〉 state. The magnetic field minimum is then returned to the position of the

atoms, which are now confined in a magnetic quadrupole trap.

Over the next 650ms the position of the quadrupole trap is ramped up through

the remaining centimeter which separates it from the chip. As the cloud approaches

the chip, a U-shaped on-chip wire (Q4) adds strong magnetic field gradients in the

transverse (x̂ and ẑ) directions, compressing the cloud into a cigar shape (c.f. sec-

tion 5.2) parallel to the cavity axis. The dipole trap laser intensity is then turned

down to minimize the energy gained by the atoms as they fall into the AC Stark

potential, the magnetic trap is aligned with the cavity axis, the trap laser is ramped

back up in 20ms to confine the atoms on the cavity axis and the magnetic trapping

fields are ramped off over the next 300ms.

The atomic cloud heats as it is compressed into the dipole trap, which is much

tighter and deeper than the magnetic trap. The atoms are recoiled to below 50 µK

by the “grey molasses” variant of polarization-gradient cooling [58], using 5ms of

illumination by the counterpropagating horizontal beams at an angle of 70 ° to the

cavity axis with orthogonal linear polarizations and the circularly polarized beam

from below, orthogonal to the cavity axis. Each beam contains cooling light tuned to

the blue of the |F = 2〉 ↔ |F ′ = 2〉 transition and repumper light tuned to the blue
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of the |F = 1〉 ↔ |F ′ = 1〉 transition. This cooling stage requires that the different

Zeeman levels in each hyperfine state be degenerate, except for the light shifts from

the cooling light, and thus it must take place in zero magnetic field (see section 5.7

for magnetic field calibration procedures) and with linear trap polarization to avoid

vector Stark shifts.

For maximum coherence lifetime it is desirable to carry out experiments on the

atoms in the polarization-compensated trap mentioned in section 4.6, so the trap

laser polarization is switched to circular with the variable retarder and a magnetic

bias field along the cavity axis (ŷ) is ramped on. The sample is now ready for one

of the experiments described in the following sections. Once that is completed, all

settings are ramped back to their initial values to begin the loading of the next MOT.

The whole experimental cycle repeats with a period of between 5 s and 9 s, depending

principally on the MOT loading time.

5.2 Atom Cloud Characterization: Position and

Temperature

Detailed spatial information on the 87Rb cloud can be obtained from absorption

imaging on the |F = 2〉 ↔ |F ′ = 3〉 transition, collecting the light from the imaging

beam using an aspheric lens mounted to the chip support structure inside the chamber.

Typical images collected in this fashion are shown in figure 5-1, showing the atom

cloud in the magnetic trap just before and in the dipole trap just after the trap laser

is ramped on. Two bridge wires, visible as trapezoids projecting downwards from

the chip surface, provide useful position references in these images: their height and

separation are both 500 µm. Note that the atom cloud is only 250 µm from the chip

surface: the resonator mode actually passes between the bridge wire and the chip

surface [44, 45].

Figure 5-2 shows the atomic cloud in the final position used for the squeezing

experiments. Unfortunately, the cloud goes past the edge of the field of view of
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Figure 5-1: Absorption images of the atomic cloud in the magnetic (upper) and
optical dipole (lower) traps, showing the strong radial compression provided by the
latter. The upper edge of the images corresponds to the chip surface, the circular
arcs in the lower corners to the edge of the field of view of the imaging lens, and the
two vertical structures are bridge wires on the chip 500 µm high and spaced 500 µm
apart. The cloud image in the dipole trap appears dimmed due to inhomogeneous
broadening of the optical transition by the steep dipole potential.

Figure 5-2: Absorption image of the atom cloud in the position used for squeezing
experiments

84



0 1 2 3

−0.3

−0.25

−0.2

−0.15

−0.1

Expansion Time / ms

Tr
an

sm
iss

io
n
Si
gn

al
/
A
.U

.

Figure 5-3: Cloud temperature measurement by radial expansion. The solid black
line shows the fit for kBT = h · 0.83(1) MHz, or an absolute radial temperature of
T = 43(1) µK.

the imaging lens. However, by assuming it to be of similar length to the clouds in

figure 5-1, and using the bridge wires as position markers, it is possible to infer that

the cloud center is displaced by 2.6(5)mm from the center of the cavity towards the

cavity input mirror, which information is useful in calculating the optical mode waist

size at the location of the atoms (section 4.4).

The radial size of the cloud is determined from the temperature of the atoms’

radial motion, which can be evaluated in a single experimental cycle by abruptly

switching off the dipole potential and observing the decrease of the cavity shift as

the atoms freely expand away from the cavity axis (figure 5-3). Assuming a thermal

kinetic energy distribution, the RMS radius of the cloud during this expansion is

given by σ(t)2 = (1 + ω2
r t

2)kBT/mω
2
r where the radial trap frequency is given by

ωr = 4U0/mw
2
t . It follows that the average atom-cavity coupling, and hence the

atom-induced cavity shift, fall as

δωc(t) = δωc(σ = 0)
1 + 4 σ2

w2
p

= δωc(t = 0)
1 + kBT

4t2
mw2

p

(5.1)
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where the reduced temperature T is related to the thermodynamic temperature T by

T

T
= 1

1 + w2
t

w2
p

kBT
U0

kBT�U0−−−−−→ 1. (5.2)

From the observed temperature, which is typically below 50 µK for properly opti-

mized polarization gradient cooling parameters, the cloud radius can be inferred to

be 7(1) µK, as used in calculating the effective cavity cooperativity in section 4.4.

Note that this technique only measures the temperature of the radial degrees of

freedom. Since the polarization-gradient cooling beams are all nearly perpendicular to

the cavity axis, they do not efficiently cool the atoms’ axial degrees of freedom, which

are therefore probably somewhat hotter. Fortunately, determining this temperature

precisely is not so important as the incommensurate probe and trap lattices ensure

that the axial position of the atoms relative to the probe standing wave is uniformly

distributed regardless of the atomic temperature (section 4.6).

5.3 Optical Pumping

Optical pumping between |F = 1〉 and |F = 2〉 can be performed with very high

efficiency since the excited-state linewidth Γ is much smaller than the ground-state

hyperfine splitting. Within the |F = 1〉 manifold, optical pumping into the initial

state |↓〉 = |F = 1,mF = 0〉 can be performed by driving the |F = 1〉 → |F ′ = 0〉

transition with the camera-side optical pumping beam, which contains only σ+- and

σ−-polarized light when the magnetic bias field and quantization axis are chosen along

the cavity axis. The state |F = 1,mF = 0〉 is dark to such illumination since there

are no |F ′ = 0,m′F = ±1〉 states to which to couple, but off-resonant scattering from

the |F ′ = 1,m′F = ±1〉 states limits the efficiency of this optical pumping to around

90%.

Microwave pulses can spectroscopically address individual Zeeman sublevels and

further purify the state. For the measurement squeezing experiments of chapter 6

the unpumped atoms were disposed of by first transferring the pumped atoms from
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|F = 1,mF = 0〉 to |F = 2,mF = 0〉 by a microwave pulse, optically pumping all

remaining atoms into |F = 2〉, returning the pumped atoms from |F = 2,mF = 0〉 to

|F = 1,mF = 0〉 by a second microwave pulse and finally blowing away the residual

atoms left behind in |F = 2〉 with resonant light on the |F = 2〉 ↔ |F ′ = 3〉 cycling

transition. While this method successfully produces atomic samples with 99% of the

remaining atoms in the desired |F = 1,mF = 0〉 initial state, it leads to the loss of

around 12% of the atomic sample.

If the same atomic sample is to be reused multiple times this loss is undesirable,

as it changes the atom number in the cloud after each initialization, so that the

results obtained after different initializations are not readily comparable. This became

particularly important in the cavity feedback squeezing experiments of chapters 7

and 8, where each atomic sample was initialized as many as 10 times before being

discarded, in order to accelerate data taking. For these experiments, the 10% of

atoms in |F = 1,mF = ±1〉 after the initial optical pumping were allowed to remain

there and their number was simply subtracted from the measured total atom number

in order to obtain the number of “participating” atoms initially in |F = 1,mF =

0〉. Ignoring the additional unpumped atoms in this way is legitimate to the extent

that they contribute neither signal nor noise to the measurement of the collective

pseudospin Sz, as described in section 5.5, so that they are truly invisible spectators

to the squeezing experiments. The spectator atom number (typically 10% of the

total) was determined by comparing the population transfer obtained using optical

pumping, addressing all atoms, to that obtained by driving the |F = 1,mF = 0〉 ↔

|F = 2,mF = 0〉 clock transition with microwaves, addressing only the participating

atoms. By allowing the spectator atoms to remain in the trap while awaiting the next

initialization, the atom number can be kept stable to within 10% as the atomic state

is reinitialized 10 times in a row.
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Figure 5-4: Typical Rabi spectrum, scanning the frequency of a 60 µs microwave pulse
across the |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 clock transition. The 85% contrast on
resonance is limited by a combination of imperfect pumping into the |F = 1,mF = 0〉
initial state and inhomogeneity of the Rabi frequency.

5.4 Microwave Rotations

While optical pumping is used for destructive initialization of the atomic state, coher-

ent rotations of the collective Bloch vector are performed using the microwave system

described in section 4.2, which can drive the |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉

clock transition with a Rabi frequency up to 12 kHz. For experimental convenience

the microwave power is typically adjusted to give a π/2 pulse time of 30 µs (8.3 kHz

Rabi frequency). The microwave frequency is tuned to the hyperfine resonance fre-

quency so that the axis of microwave-driven rotations lies in the equatorial plane of

the Bloch sphere. Since the hyperfine transition frequency is affected by the trap po-

tential, which may drift over time, this frequency adjustment is regularly checked by

taking a Rabi spectrum. The spectrum is obtained by optically pumping the atoms

into |F = 1,mF = 0〉, driving the atoms with 60 µs of microwave radiation and mea-

suring the number of atoms transferred to |F = 2〉 (see section 5.5). This number is

normalized to the total atomic population, measured by optically pumping the atoms

between |F = 1〉 and |F = 2〉, to obtain a fractional signal that is insensitive to
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Figure 5-5: The lifetime of the Rabi nutations is primarily limited by the inhomoge-
neous strength of the microwave drive: when the microwave power is decreased by a
factor of 10 (dashed fit, open circles), the nutation rate and the decay rate decrease
by the same factor.

fluctuations in the number of atoms loaded on each cycle (figure 5-4).

As the atoms are located within a microwave wavelength of several metal struc-

tures (chip wires, the copper chip mount, steel mirror mounts, etc.) it is to be

expected that boundary conditions will alter the magnetic field produced by the mi-

crowave horn, introducing some inhomogeneity in the microwave Rabi frequency of

different atoms. This effect is clearly visible in the decay of the Rabi oscillations

shown in figure 5-5: when the microwave power is decreased, the Rabi frequency

and the decay rate are reduced in equal measure, so that the oscillations decay in a

fixed number of cycles, not a fixed absolute time. This indicates that the dominant

decoherence mechanism limiting the fidelity of the microwave-driven rotations is the

inhomogeneity of the rotation rate of the various atomic spins in the ensemble.

To overcome this limitation, π rotations of the collective spin are driven using

a composite sequence of three microwave π pulses with phases chosen to suppress

errors from differing rotation rates (SCROFULOUS sequence [59]). The price paid

for this suppression is an increased vulnerability to errors in the microwave frequency,
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which is most noticeable when the effective axis of the composite rotation is parallel

to the state’s Bloch vector. It was therefore found necessary in practice to choose the

effective rotation axis to be along ŷ, rather than along the initial Bloch vector along

x̂, so that drifts in the microwave transition frequency would not lead to broadening

of the state beyond the projection noise limit as it was flipped by the microwaves.

With the phase chosen correctly, the π pulse contrast, checked by driving multiple

composite π pulses in a row and comparing the population transfer by successive

pulses, is better than 98%.

Note that to avoid inhomogeneous broadening of the microwave transition fre-

quency by the probe laser AC Stark shift, all probe laser sidebands resonant with

the cavity are switched off and the laser frequency locking loop is disabled during

the microwave pulses. The probe laser lock bandwidth is sufficient that re-enabling

the locking sideband and feedback loop 20 µs before a subsequent measurement gives

adequate time for the laser to stabilize its frequency relative to the cavity resonance.

5.5 Atomic-State Readout

Aside from the cloud position measurements described in section 5.2, all experiments

described in this thesis rely on detection of the atom-induced frequency shift of the

optical cavity resonance, following the side-of-slope transmission measurement squeez-

ing analyzed in section 3.2.1. This section discusses some of the practical aspects of

this measurement.

By way of introduction, figure 5-6 shows a typical experimental trace, which can

be interpreted as follows. The probe sideband is tuned to the blue slope of the

cavity resonance, so that its transmission increases when the resonance frequency

increases and vice versa (see also figure 3-2). The sideband is switched on as the

trace begins, with the atoms optically pumped into |F = 2〉. After 500 µs the atoms

are pumped into |F = 1〉, shifting the cavity resonance to the red and reducing

the probe transmission. The size of this reduction indicates the total atom number

2S0. The probe light is then switched off briefly while a 60 µs microwave π pulse
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Figure 5-6: A typical trace of the cavity transmission, showing the raw voltage output
of the avalanche photodetector recorded as a function of time

transfers atoms back to |F = 2〉, so that a subsequent 50 µs probe light pulse shows

an increased transmission once again. The difference between this level and the

fully pumped level seen in the first 500 µs indicates the finite contrast of the simple

microwave π pulse. After these preliminaries, the state |CSSx̂〉 is prepared by optical

pumping into |↓〉 = |F = 1,mF = 0〉 (section 5.3) and a pair of 50 µs probe pulses,

330 µs apart, is used to measure its Sz component. This measurement is repeated

for verification. In the example trace shown, a fresh |CSSx̂〉 state is then prepared

and measured twice in the same way. There follows a second pair of 500 µs readings

with the atoms optically pumped into |F = 2〉 and |F = 1〉, to measure the change

in total atom number during the squeezing experiments, then the trapping potential

is dropped to release the atoms and a radial expansion measurement is performed to

check the temperature (section 5.2). Finally, a trio of pulses on the blue slope, the

peak and the red slope of the transmission resonance serve to check that the probe

sideband is correctly tuned relative to the empty transmission resonance and to check

the laser power.

Whenever the probe sideband is on, the detuning of the probe sideband from

cavity resonance can be determined from the transmitted fraction of the light simply
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by inverting the Lorentzian transmission function:

δ

κ
= 1

2

√√√√〈pi〉
〈pt〉
− 1. (5.3)

The transmitted fraction 〈pt〉/〈pi〉 can be determined straightforwardly given the

transmission signal, the known photodiode output voltage when the sideband is off

(measured around the 9ms mark in figure 5-6) and the output voltage when the probe

sideband is known to be on cavity resonance. This last quantity is obtained from the

final triplet of pulses. Ideally the middle pulse is on resonance and gives the peak

transmission directly. Even if it is not, the peak transmission can be derived know-

ing that the three pulses are spaced in frequency by 0.5κ: labeling the transmitted

power of the red-slope, peak and blue-slope pulses as jr, jp and jb respectively, the

approximation for the peak transmission

jr + jp + jb

2 + (jb − jr)2

2(jr + jp + jb) (5.4)

is insensitive to detuning errors up to sixth order. The pulse triplet also serves to

monitor the frequency of the probe sideband: when the probe is correctly tuned to the

half-slope of the unperturbed cavity, the transmission pulses are symmetric. Errors

in laser detuning relative to the cavity will imbalance jr and jb by moving one of the

pulses up the slope of the cavity resonance and the other down.

In the simplified model of chapter 3, the cavity resonance frequency was chosen

halfway between the frequencies of the optical transitions from |↑〉 and from |↓〉. While

not necessary in principle, this choice has the practical benefit that the resonance

frequency shift depends only on the population difference 2Sz between the states

|↑〉 and |↓〉, and has no explicit dependence on the total atomic population 2S0, so

that fluctuations in the number of atoms loaded do not add noise to the cavity shift

signal so long as the Bloch vector lies near the equator. To reproduce this feature in

the experiment, the effective detuning of the probed resonance from the transitions

|F = 1〉 ↔ |F ′ = 0, 1, 2〉 and |F = 2〉 ↔ |F ′ = 1, 2, 3〉, averaged over the different
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hyperfine levels in the excited state and weighted by the coupling matrix elements for

the various transitions, must be chosen equal and opposite. For the linearly polarized

probe light used in these experiments this symmetric frequency is 3182MHz to the

blue of the |F = 2〉 ↔ |F ′ = 3〉 cycling transition, yielding a weighted detuning of

±3286 MHz for the optical transitions from the two states |F = 1〉 and |F = 2〉 and

a resonance frequency shift of κ · 4.4(2) · 10−5 for every atom of population difference

between the two hyperfine states. This is the cavity detuning used in chapters 7

and 8.

Note that, due to the opposite detuning for the two hyperfine states the Rayleigh

scattering amplitudes are opposite for atoms in |↑〉 and |↓〉, so that the worst-case

situation considered in section 3.2.1 applies: every Rayleigh-scattered photon projects

the scattering atom into either |↑〉 or |↓〉, removing it from the coherent subensemble

that contributes to the clock signal. However, this effect is not noticeable in practice

because technical sources of decoherence shorten the Bloch vector much more than

does scattering into free space.

The use of a compensation sideband to suppress technical noise (section 4.3) in-

troduces two additional complications that apply only to the measurement squeezing

experiments of chapter 6. First, the transmitted fraction 〈pt〉/〈pi〉 must be calculated

after subtracting the power of the compensation sideband which also reaches the

transmission photodiode. Second, since the frequency of the cavity resonance near

the compensation sideband is somewhat modified by the presence of atoms in the

resonator, it is necessary to adjust the detuning of the probe from atomic resonance

to 3570MHz blue of the |F = 2〉 ↔ |F ′ = 3〉 transition, so that the S0-dependent

shifts of the two resonances will balance to give an S0-independent total transmission

signal. Neither of these complications arise in the work of chapters 7 and 8, where

the probe sideband is the only light to reach the transmission photodiode. The small

spatial overlap between the atomic cloud on the cavity axis and the TEM10 resonance

to which the laser is locked suppresses the atomic shift of the locking resonance by 4

orders of magnitude to an entirely negligible level. No additional correction for the

shift of the lock resonance is necessary.
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At the detunings employed here the optical transition matrix elements are the

same to within less than < 3% for all Zeeman sublevels, so that the resonator shift is

essentially only sensitive to the relative population of the two hyperfine levels, without

regard to whether the atoms are actually in the m = 0 clock state pair or not. This

allows the total atom number to be measured using only efficient hyperfine optical

pumping to transfer the atoms between |F = 2〉 and |F = 1〉, as seen in the first 1ms

of the trace in figure 5-6.

For the measurements of Sz used in the squeezing experiments, a more sophis-

ticated procedure is called for in order to detect only those atoms in the mF =

0 clock manifold while minimizing sensitivity to technical noise and unnecessary

measurement-induced decoherence. The Sz measurement consists of two 50 µs pulses

of probe light separated by a composite π pulse which inverts Sz. The change in

transmission between the two pulses reveals the cavity frequency shift associated

with this inversion, which changes the population difference between the hyperfine

levels by 4Sz. Note that while the cavity shift depends only on the population of the

hyperfine states without regard to the magnetic sublevels, this differential signal is

only sensitive to the atoms in mF = 0. Spectator atoms in mF 6= 0 are not addressed

by the π pulse, and so do not lead to a change in cavity resonance frequency between

the two probe pulses. They merely produce a common-mode shift that is ignored

by the differential-mode measurement. Other sources of technical noise, such as slow

laser power fluctuations, are similarly suppressed to the extent that the errors they

produce are common to both pulses in the measurement.

More important than its ability to suppress technical noise is, however, the two-

pulse measurement scheme’s role in suppressing atomic decoherence. Since atoms

at different locations along the cavity axis see different probe light intensities, they

suffer different phase shifts due to the probe laser AC Stark shift. This inhomogeneous

dephasing dramatically shortens the collective Bloch vector, prohibiting squeezing if

left uncorrected. The two-pulse measurement with an intervening π rotation forms

a spin-echo sequence: provided the atoms suffer approximately the same phase shift

in each probe pulse, these phase shifts cancel, largely undoing the inhomogeneous
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dephasing. The remaining dephasing is due to the difference in intensities between

the two probe pulses, which difference is proportional to Sz and is small for the states

near the equator of the Bloch sphere to be considered here.

The echo effect only occurs if the coupling of the atoms to the cavity is the same for

the two pulses. Axially this condition is well satisfied: the atoms are tightly confined

by the standing wave lattice of the dipole trap, with a trap oscillation frequency that

is large compared to the probe pulse duration so that any thermal motion will be

averaged over within each probe pulse. Radially, however, the atoms are free to move

on timescales comparable to the measurement time. The 330 µs spacing of the probe

pulses is therefore chosen to match one-half of the radial oscillation period, so that

when the second probe pulse arrives the atoms will be the same distance away from

the cavity axis as for the first probe pulse, with the same coupling to the probe field.

The use of an echo measurement which distinguishes between participating atoms

in mF = 0 and spectator atoms in mF 6= 0 complicates the analysis of the readout

noise due to Raman scattering in section 3.2.1 by introducing several qualitatively

different scattering processes beyond the simple spin-preserving and spin-flipping pro-

cesses considered in the idealized model. Aside from Rayleigh scattering, whose effect

is the same as in the idealized model, there are now three different classes of Raman

scattering events: those that take an atom out of the mF = 0 clock manifold without

changing its hyperfine state, occurring with probability ro per atom; those which leave

the atom in mF = 0 so that it continues to count as a participating atom but flip its

hyperfine state, occurring with probability rf per atom; and those which change both

mF and F , occurring with probability rof per atom in the ensemble. To understand

their effect it is important to distinguish between 2Szi, the population difference be-

tween |F = 2,mF = 0〉 and |F = 1,mF = 0〉 at the start of the measurement; 2Szf ,

the same population difference at the end of the measurement and neglecting those

atoms which have left the mF = 0 clock manifold due to scattering; and 2S̄z, the

average population difference between |F = 2〉 and |F = 1〉 measured via the cav-

ity shift. Working to first order in these scattering probabilities one finds that the
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variances of the initial and final Sz are given by

〈Sz2
i 〉 = S0

2 (5.5)

〈Sz2
f〉 = S0

2 (1− ro − rof) , (5.6)

which is just the projection noise of the atoms in mF = 0 at the beginning and end of

the measurement respectively. The variance of the measurement and its correlations

with the initial and final Sz values are given by

〈S̄z
2〉 = S0

2

(
1− 2rf

3 −
ro

2 −
2rof

3

)
(5.7)

〈SziS̄z〉 = S0

2

(
1− rf −

ro

2 −
rof

2

)
(5.8)

〈Szf S̄z〉 = S0

2 (1− rf − ro − rof) , (5.9)

leading to identical scattering-induced measurement errors on Szi and Szf :

〈(Szi − S̄z)2〉 = 〈(Szf − S̄z)2〉 = S0

2

(4rf

3 + ro

2 + rof

3

)
. (5.10)

At the detuning used here and given the overlap of the atomic cloud with the TEM00

cavity mode used for probing, the scattering probabilities are related to the transmit-

ted photon number 〈pt〉 by

rf = 2.5 · 10−8〈pt〉 (5.11)

ro = 1.5 · 10−8〈pt〉 (5.12)

rof = 1.3 · 10−8〈pt〉 (5.13)

so that the scattering-induced measurement error is expected to be

〈(Szi − S̄z)2〉 = 〈(Szf − S̄z)2〉 = S0

2
〈pt〉

2.2 · 107 . (5.14)

To evaluate the performance of the readout, two successive identical measurements
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Figure 5-7: Readout noise as a function of the photon number 〈pt〉 used in the mea-
surement. The open circles and dotted line correspond to the case of no atoms in
the cavity and show the intrinsic detector noise. The filled circles and dashed line
correspond to the case of 2S0 = 3.1·104 atoms in the cavity, so that noise from Raman
scattering also contributes. The solid line indicates the photon shot noise limit.

of the same atomic state are performed. The sequence of state preparation and double

measurement is repeated 50 . . . 100 times. Ideally, Sz should be the same for both

measurements and their results should agree. The variance of the difference between

the successive measurements corresponds to the sum of the noise variance of the two

measurements; provided the measurements are similar and their noise is uncorrelated,

the observed variance can simply be divided by two to obtain the single-measurement

precision. Typical data for the readout noise as a function of the photon number 〈pt〉

employed in the measurement are presented in figure 5-7.

Consider first the noise measured without atoms in the cavity, so that the true Sz
is identically zero (open circles). The fit (dotted line) shows that the three dominant

noise contributions are a background electronic noise with a fixed variance of 3.2(6) ·

105 photons2, which degrades the measurement for small readout photon numbers,

photon shot noise at five times the ideal level (solid line) due to finite quantum

efficiency and avalanche noise in the photodetector and fractional light noise—due to
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Figure 5-8: Ramsey decay

the laser frequency shaking relative to the cavity resonance or to power fluctuations—

that limits the measurement resolution to 〈∆S2
z 〉 = 100(10) at high readout power.

Fixing these parameters and adding the expected noise from Raman scattering for

2S0 = 3.1 ·104 atoms (dashed line) gives good agreement with the measurement noise

observed with that many atoms in the resonator (filled circles). For a more detailed

analysis of the measurement performance and of the technical factors that limit it, see

reference [53]. For the squeezing experiments with 2S0 ≈ 3 ·104, the optimum readout

photon number is around 〈pt〉 ≈ 106 and yields a measurement variance 〈∆S2
z 〉 ≈ 103.

Note, however, that for smaller atom numbers the noise from Raman scattering does

not intrude so quickly and resolutions down to 〈∆S2
z 〉 ≈ 102 (20-atom resolution) are

achievable.

5.6 Measurements of Atomic Coherence

As discussed in chapter 2, spin squeezing depends not only on the suppression of

atomic projection noise but also on the preservation of atomic coherence, so that the

signal-to-noise ratio is improved. It is therefore crucial to measure the length of the
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Figure 5-9: Ramsey signal at fixed time, obtained by sweeping the phase of the
second Ramsey π/2 pulse through 2π. In this case the curve shows an available
signal contrast of 90%.

mean collective Bloch vector, which corresponds to the signal amplitude obtainable

in a Ramsey-type atomic clock. Figure 5-8 shows the decaying sinusoidal signal from

such a clock as a function of the Ramsey precession time TR, showing a coherence

lifetime of 10(1)ms, limited by inhomogeneous shifts of the transition frequency by the

trap potential. Most of the squeezing experiments to be described take place in under

1ms, so that this background decoherence rate is slow enough to be unimportant. The

contrast is instead limited by decoherence mechanisms introduced by the squeezing

procedure itself, primarily inhomogeneous dephasing of the atomic spins by the AC

Stark potential of the probe light and of the light used to lock the probe laser to the

resonator.

To measure the contrast at a given moment in time—such as immediately after

the preparation of a putative squeezed state—it is convenient to record the Ramsey

signal not as a function of time but rather as a function of the variable phase of the

second Ramsey pulse. Sweeping this phase through 2π without altering the timing

of the sequence provides a single-cycle sinusoidal fringe (figure 5-9) whose amplitude

indicates the available signal contrast, provided only that the Bloch vector of the
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Figure 5-10: Measuring the contrast of a state with large collective phase fluctuations
by Rabi nutation. In a Rabi experiment the phase fluctuations appear as fluctuations
in the amplitude of the sinusoidal nutation signal. Each open circle is the result of
a single Rabi experiment. The dashed line indicates the envelope of the data (with
amplitude 〈|S|〉/S0 = 0.48 in this case), the filled circles and solid lines the average
signal and corresponding sinusoidal fit respectively (yielding a metrologically relevant
contrast |〈S〉|/S0 = 0.28 in this example). Note that some of the data appear to have
an inverted amplitude, indicating phase fluctuations greater than π/2.

state to be characterized lies somewhere in the equatorial plane (Sz ≈ 0) before the

final Ramsey pulse. This condition is generically satisfied at the end of the squeezing

procedures to be discussed here, which work with states in the vicinity of the x̂ pole

of the Bloch sphere. This fixed-time Ramsey technique was used to verify the signal

contrast for the measurement squeezing experiments of chapter 6.

Rather than sweeping the phase of the final Ramsey pulse, it is also possible

to measure the signal contrast by sweeping its length and recording the resulting

sinusoidal Rabi nutation signal. Because the microwave Rabi frequency is much

higher than typical decoherence times in the experiment, this measurement is still an

effectively instantaneous measurement of the available signal contrast at the moment

of the final microwave pulse.

To see the full contrast, this method requires that the phase of the microwaves used
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to drive the rotations be perpendicular to the mean Bloch vector; for any other phase

choice the amplitude of the resulting oscillations in Sz will be reduced. This allows

a straightforward illustration of the distinction between the length of the mean spin

|〈S〉|, which dictates the signal amplitude relevant to metrology and to calculating

the squeezing parameter ζ, and the radius of the Bloch sphere itself 〈|S|〉, which is

important for modeling the behavior of the system (see chapter 7). The contrast

measurement shown in figure 5-10 was taken under conditions with large fluctuations

of the phase of the collective Bloch vector, so that the amplitude of the sinusoidal

Rabi oscillations varied dramatically from shot to shot. The envelope of the curve,

indicated by the dashed line, corresponds to the maximum amplitude and thus to the

radius of the Bloch sphere 〈|S|〉/S0, used in chapter 7 when verifying the model of

chapter 3, while the metrologically relevant signal contrast is only the mean amplitude

|〈S〉|/S0 indicated by the solid line. This was the contrast-verification technique used

in the cavity feedack squeezing experiments of chapters 7 and 8.

5.7 Magnetic-Field Calibration

Control of magnetic fields is an important, though often implicit, requirement through-

out this work. The same coils and current controllers used in references [44, 45] were

used for all the experiments described in this thesis, but the sensitive atomic-state

detection techniques described in section 5.5 allow much improved calibrations of the

effect of those coils by using the atomic cloud as an in situ magnetometer.

With atoms optically pumped into |F = 1〉, a microwave drive tuned to one of

the magnetic-field sensitive transitions (such as |F = 1,mF = 1〉 ↔ |F = 2,mF = 2〉)

produces a population transfer to |F = 2〉 observable as a shift of the cavity resonance

frequency. Repeating this experiment and measuring the frequency of maximum

population transfer as a function of the current in one of the magnetic bias coils gives
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Figure 5-11: Typical plot of hyperfine transition frequency as a function of bias field
used for magnetic field calibration. The upper curve is the 2.10MHz / G |F =
1,mF = 1〉 ↔ |F = 2,mF = 2〉 transition and the lower curve shows part of the
trace for the 0.70MHz / G transitions |F = 1,mF = 1〉 ↔ |F = 2,mF = 0〉 or
|F = 1,mF = 0〉 ↔ |F = 2,mF = 1〉.

a hyperbolic curve of the form

ν = ν0 ± gfµB(mF=2 +mF=1)

√√√√B2
0 +

(
dB
dI (I − I0)

)2

(5.15)

where ν0 is the transition frequency at zero field (the hyperfine transition frequency

modified by the scalar Stark shift from the trap), gfµB ≈ 0.70 MHz/G is the linear

Zeeman shift between adjacent substates, B0 is the field orthogonal to the axis of the

coil under study, dB/dI is the conversion from coil current to magnetic field at the

atoms’ location and I0 is the current for which the field along the coil axis vanishes.

One such sweep for each of three perpendicular coils yields sufficient information to

null the magnetic field at the location of the atomic cloud—by setting I = I0 for each

axis—or to give it any convenient value, since the conversion from current to local

field dB/dI is known.
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Chapter 6

Squeezing by Quantum

Non-Demolition Measurement

This chapter presents an experimental demonstration of the measurement-based squeez-

ing scheme discussed in section 3.2. To recapitulate: provided that Sz is a conserved

quantity, or in other words that the populations of the two clock states are stable, two

successive measurements of Sz on a given atomic ensemble must give the same result

to within their measurement uncertainty. After the first (squeezing) measurement,

the result of an ideal second (readout) measurement of Sz can be predicted with an

uncertainty no greater than that of the squeezing measurement. The quantum state of

the system after the squeezing measurement, conditioned on its result, can therefore

have a spin variance 〈∆S2
z 〉 no greater than the squeezing measurement’s uncertainty.

If this uncertainty is smaller than the projection noise for an unentangled ensemble,

and if the coherence (signal contrast) of the system after the squeezing measurement

remains sufficiently large, the state produced by this measurement and conditioned

on its outcome can be squeezed [17].

The experimental sequence used to demonstrate this squeezing mechanism is es-

sentially the same as that described in section 5.5 for characterizing the effectiveness

of the atomic state readout. An atomic sample is loaded into the dipole trap as

described in section 5.1, then optically pumped into the |F = 1,mF = 0〉 state and

purified as discussed in section 5.3, producing the trivial coherent spin state with all
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Figure 6-1: Projection noise as a function of atom number. The empty triangles
show the variance in Sz for a single measurement of a state prepared near |CSSx̂〉,
while the open circles show the measurement variance obtained by comparing pairs
of measurements on independently prepared atomic states. Both lie somewhat above
the projection noise limit for unentangled atoms indicated by the dashed line, due to
technical noise and imperfect state preparation. The filled circles show the measure-
ment variance for two successive measurements of the same atomic state, as discussed
in section 5.5. The readout photon number for all these data was 〈pt〉 ≈ 5 · 105.

atoms spin-down. A microwave π/2 pulse rotates the Bloch vector into the equa-

torial plane to produce a state near to |CSSx̂〉. A two-pulse measurement, as in

section 5.5, serves to suppress conditionally the transverse spin variance 〈∆S2
z 〉 of the

state, and a second two-pulse measurement verifies this suppression. Optical pump-

ing into |F = 1,mF = 0〉 and a π/2 pulse then reinitialize the atomic ensemble for an

Sz measurement on an independently prepared state. Finally, the atoms are optically

pumped back and forth from |F = 2〉 to |F = 1〉 to check the total atom number

and then discarded. In order to be able to calculate variances of the various measure-

ments, the whole cycle is repeated 100 times for each set of experimental parameters,

i.e. for each point in the plots.

To begin, consider the unconditional spin variance 〈∆S2
z 〉 of the initial state.

The open triangles in figure 6-1 show the variance of the first measurement of Sz,
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immediately after the microwave pulse brings the Bloch vector into the equatorial

plane. As expected, this variance grows approximately linearly with the length of the

Bloch vector S0, and lies slightly above the projection noise limit S0/2 indicated by

the dashed line. The excess variance is due in part to the noise of the measurement

itself (note the non-zero variance even for S0 = 0, with no atoms in the resonator),

and partly to slow drifts in the microwave power of 0.4% over the course of the

data-taking.

Another way of quantifying the unconditional spin variance, one that is closer

to the method used later in establishing the conditional spin noise suppression, is to

compare the outcomes of Sz measurements made on independently prepared coherent

states. Since the projection noise seen in the two measurements is then uncorrelated,

it appears as a fluctuation in the difference between them. Taking the variance

of the difference between the measured Sz for the first and second coherent state

preparations in the sequence described above and dividing it by two to obtain the

variance of each preparation individually yields the open circles in figure 6-1, again

slightly above the ideal projection noise.

The ability to prepare states with the same Sz fluctuations as the coherent spin

state |CSSx̂〉 is not essential. The spin squeezing mechanisms to be demonstrated

suppress spin fluctuations regardless of their origin and can be used to overcome

technical noise in the state preparation just as well as quantum noise. Moreover, when

calculating the squeezing achieved in the experiments, it is the ideal projection noise

limit, calculated from the independently measured atom number 2S0, that must be

used as a benchmark, and not merely the observed noise of the best initial states that

can be prepared experimentally. Nonetheless, it is reassuring to see that preparation

procedures supposed to produce states near |CSSx̂〉 do nearly reproduce that state’s

expected 〈∆S2
z 〉, as this corroborates the correct calibration of the atom number and

projection noise limit and indicates that the experiment is operating in a regime where

the fundamental quantum projection noise is large compared to technical effects.

The first requirement for conditional squeezing by measurement is that the mea-

surement uncertainty be substantially less than the fundamental projection noise of

105



the coherent state. The filled circles in figure 6-1 demonstrate this feature. They show

the variance in the discrepancy between the squeezing and readout measurements of

Sz performed on the same state, divided by two to obtain the variance of a single

measurement. Because the quantum projection noise of the initial state is common

to both measurements, it does not appear in the difference between them. As a re-

sult, the variance is only weakly dependent on S0, and for a large atomic ensemble it

lies well below the projection noise limit. In this regime the squeezing measurement

provides a prediction of the outcome of the readout with much less uncertainty than

would be possible if the readout were seeing the quantum fluctuations in Sz of a

coherent state of unentangled atoms.

In order to show that the quantum state produced by the squeezing measurement

has suppressed fluctuations, one must be careful to account for possible discrepancies

between the actual Sz value of the atomic state and the well-correlated results of

the squeezing and readout measurements. Scattering into free space and microwave

pulse errors, for example, can introduce correlated errors that would not appear in the

difference between the two measurements but would nonetheless reduce the squeezing

measurement’s value as a predictor of the atomic state. References [12] and [53]

contain a detailed analysis of the normalized variance q = 2〈∆S2
z 〉/S0 of the state

produced by the measurement, bounding the effects of the technical imperfections

alluded to above, the possibility that the two measurements might not be identical so

that the uncertainty ascribed to the squeezing measurement might not be just half the

uncertainty on the difference between them, and including the additional information

available from the known initial state before the squeezing (recall the leading 1 in the

denominator of equation 3.19).

Figure 6-2 shows the resulting normalized transverse spin variance q of the state

after the squeezing measurement, plotted as a function of the transmitted photon

number 〈pt〉 used in the measurements (open squares). Aside from this normalization,

the data and model (dotted line) are similar to those in the measurement noise plot of

figure 5-7, but with a finite variance even in the limit of weak measurement (small 〈pt〉)

thanks to the known initial state. As in the measurement noise analysis of section 5.5,
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Figure 6-2: Spin noise suppression q (open squares, dotted line), signal contrast C
(filled circles, solid line) and metrological squeezing parameter ζ (filled triangles,
chaindotted line) as a function of readout photon number 〈pt〉 for an atom number
2S0 = 3.3(2) · 104. The dashed line at 1 indicates the level that all these parameters
would have for the ideal unentangled state |CSSx̂〉.

the minimum measurement variance occurs for a photon number of 〈pt〉 ≈ 106. For

this measurement strength the noise is suppressed by a factor of q = 0.12(2). This

9(1) dB of noise suppression does not, however, imply any squeezing, because the

poor contrast at this photon number costs as much in signal as the measurement has

earned in noise.

The solid line and open circles show the contrast C of a Ramsey measurement

(section 5.6) made immediately after the first (squeezing) measurement of Sz, indicat-

ing the fraction of the ideal signal amplitude that would be available to a clock that

used the squeezed state as its input. The tradeoff between reduced noise and shrink-

ing signal gives the Wineland metrological squeezing parameter ζ (filled triangles and

chaindotted line), which is optimized for a transmitted photon number 〈pt〉 = 3 · 105.

There the remaining signal contrast is 54% and the measurement suppresses the pro-

jection noise by a factor q = 0.20(3), yielding a metrological squeezing parameter of

ζ = 0.7(1) or a signal-to-noise ratio improvement of 1.5(5) dB. This is substantially
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worse than the 14 dB of squeezing that might have been expected based on the model

of section 3.2 and the collective cooperativity S0η = 1.6 · 103. This is partly because

of the imperfect performance of the transmission measurement, with a variance 5

times larger than the photon shot noise limit (section 5.5), and partly due to poor

signal contrast: of the 7.0 dB of noise suppression afforded by the measurement at

this photon number, 5.4 dB are needed simply to compensate for the reduction in

signal strength relative to the ideal coherent state. Some of this contrast loss is due

to inhomogeneous phase shifts from the probe light; a side effect of the squeezing

measurement that could be avoided in principle if the atoms were uniformly coupled

to the probe field.

Much of the contrast loss, however, has nothing to do with the squeezing pro-

cess itself: even without any probe light, the contrast of the state produced is 68%

because of inhomogeneous dephasing by the locking light. This is a significant tech-

nical handicap for squeezing: with such a reduced signal the projection noise variance

must be suppressed by more than a factor of two just to reach the same sensitivity

as the unentangled coherent state |CSSx̂〉. Reducing this handicap was the prime

motivation for increasing the lock sideband’s detuning for the cavity feedback squeez-

ing experiments (section 4.3): reducing the purely technical decoherence due to the

locking light brings the signal-to-noise ratio of the initial state closer to the SQL and

makes it easier for the squeezing to produce beyond-SQL sensitivity. Increasing the

initial contrast from 68% to the 80% obtained in later experiments would, without any

other technical improvements, have allowed for an additional 1.4 dB of metrological

squeezing in this experiment.
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Chapter 7

Squeezing by Cavity Feedback

While conditional squeezing by measurement can overcome the SQL, as demonstrated

in the previous chapter, it still leaves room for improvement. In particular, it is

desirable to have a deterministic squeezing scheme, relying on predictable dynamics to

generate a specific squeezed state rather than on measurement projection to collapse

the system randomly onto one of a family of squeezed states. Such a deterministic

squeezing procedure is conceptually tidier than a conditional scheme, since it can be

understood solely in terms of the state and evolution of the system itself, without

having to keep track of the information recorded by the measurement apparatus. It

is also practically advantageous since the squeezing performance in a deterministic

scheme is independent of the quantum efficiency of the detection apparatus, which

limits the performance of measurement-based schemes where only detected photons

contribute to the squeezing.

This chapter discusses the experimental demonstration of cavity feedback squeez-

ing, the deterministic scheme analyzed in section 3.3. There, the squeezing mechanism

was presented as an effective S2
z interaction mediated by the cavity light field which

deforms the uncertainty region on the Bloch sphere of an initial coherent state, ac-

companied by decoherence due to classical uncertainty on the evolution rate when

the number of photons interacting with the resonator is unkown. An alternative pic-

ture for the squeezing dynamics is to consider a squeezing measurement of the kind

considered in chapter 6 but, instead of using the information in the exiting light field

109



to project the atomic ensemble into a squeezed state, to use the information directly

stored into each atom’s state by the light field in the form of an Sz-dependent phase

shift. In this picture the cavity light field acts as an information bus between the

atoms, allowing each to adjust its state as a function of that of its peers. The deco-

herence that increases the area of the uncertainty region arises, in this picture, from

the information leaked to the observer—and thereby lost to the atoms—by the exiting

light field.

Consequently, it should not come as a suprise that the experimental sequence used

to demonstrate cavity feedback squeezing is, aside from a few technical improvements,

close to that used for measurement-based squeezing. After loading an atomic sample

into the dipole trap and cooling it as described in section 5.1, the atomic ensemble’s

initial size is checked by optically pumping it from |F = 2〉 to |F = 1〉. The ensemble

is then prepared in a state near |CSSx̂〉 by optical pumping into |↓〉 = |F = 1,mF = 0〉

followed by a π/2 microwave pulse (sections 5.3 and 5.4). The same pair of probe

pulses separated by a composite π pulse is used for the cavity feedback squeezing as

for measurement, and for the same reasons: to reduce inhomogeneous dephasing of

the atoms and because the net phase shift imparted to the atoms, being proportional

to the intensity difference between the two pulses caused by the intervening inversion

of Sz, is first-order insensitive to the effects of the spectator atoms in mF 6= 0 and to

fluctuations in overall laser power. The Bloch vector is then rotated by an angle β

about its mean direction along x̂ by a short microwave pulse so that a subsequent mea-

surement of Sz can be used to measure any of its transverse spin components. Since

there is no need for this final readout measurement to preserve the atomic coherence,

it is performed with around 106 transmitted photons to obtain optimum resolution

(section 5.5). The whole procedure of state initialization, squeezing and readout is

repeated 10 times in a row before the total atom number is checked once more and

the ensemble is discarded. Repeating this experimental cycle 10 times therefore gives

100 measurements of the transverse spin component for a given squeezed state prepa-

ration procedure, from which the variance of the transverse spin fluctuations can be

extracted.
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Figure 7-1: Normalized transverse spin variance as a function of the angle by which
the state is rotated between the cavity feedback squeezing and the Sz measurement.
Data shown are for shearing parameters µ = 0 (circles), µ = 7.1 · 10−5 (squares),
µ = 5.2 · 10−4 (triangles), µ = 1.8 · 10−3 (bowties). The curves are sinusoidal fits,
distorted by the log-log scale used to emphasize the small-angle behavior.

Representative variance data is plotted in figure 7-1 as a function of β for S0 =

1.6 · 104 and transmitted photon numbers of 〈pt〉 = 0, 2.4 · 103, 1.8 · 104, 6.2 · 104,

corresponding to shearing parameters µ = 0, 7.1 · 10−5, 5.2 · 10−4, 1.8 · 10−3. The

dependence of variance on rotation angle is generically sinusoidal for any distribution

of transverse spin components, and from a sinusoidal fit to the observed variance the

minimum and maximum (normalized) variances qmin and qmax and the angle β0 that

minimizes the observed variance can all be extracted. It is convenient, and consistent

with the model presented in section 3.3, to think of the uncertainty region as an ellipse

whose orientation, semimajor and semiminor axis lengths are given respectively by β,
√
qmax and

√
qmin in units of the RMS width of the coherent spin state. As the shearing

parameter is increased, the minimum variance dips lower and appears at a smaller

β, while the maximum variance increases; geometrically the uncertainty ellipse gets

narrower and longer, and its long axis approaches the horizontal as it is sheared out,

in qualitative agrement with the intuitive geometrical picture of figure 3-6.
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Section 3.3 derives quantitative predictions for these parameters in an idealized

setting. Testing them against the actual experiment requires the following adjust-

ments. The effects of scattering into free space are again complicated by the presence

of additional spectator Zeeman levels into which the atoms can scatter; in calculating

the variance and covariance of equations 3.59 to 3.61, one must therefore use the

variances and correlations of S̄z and Szf given in section 5.5 to account properly for

the connection between the average cavity shift during the squeezing and the actual

collective Sz value of the atoms in the mF = 0 clock states at the end of the squeez-

ing. The length of the Bloch vector being limited by inhomogeneous dephasing rather

than by scattering into free space, the ratio S/S0 is measured experimentally from

the envelope of a Rabi oscillation measurement (figure 5-10) and inserted into the

theory by hand. The observed variances include a contribution from the finite reso-

lution of the readout measurement (section 5.5), which must be added to the model

predictions for qmin and qmax. Finally, the fluctuations in intracavity light power con-

tain a technical contribution from fractional light noise, which must be determined

experimentally by measuring the fluctuations in transmitted photon number with no

atoms present in the cavity. This is just the fractional noise contribution obtained

when characterizing the atomic readout in section 5.5. There it was expressed as an

effective Sz variance 〈∆S2
z 〉 = 100(10). Converting this into a fractional intensity

noise by multiplying by φ2
0 and normalizing to photon shot noise by multiplying by

the number of photons interacting with the resonator mode yields γ = 1 + 100µ, with

the leading 1 representing the photon shot noise itself.

The resulting parameter-free predictions of maximum variance qmax, minimum

variance qmin and angle for minimum variance β0 are plotted as a function of shearing

parameter µ as dotted curves in figure 7-2, displaying fairly good agreement with the

values extracted from the sinusoidal fits over a range of two orders of magnitude in the

strength of the shearing interaction. Note, in particular, the effects of the curvature

of the Bloch sphere visible as an increase in qmin for large shearing parameter. For

comparison, the solid curves show the predictions of the model when all technical

effects are removed by setting S = S0 and γ = 1 and assuming a perfect readout
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Figure 7-2: Modeling the observed behavior of maximum and minimum normalized
transverse spin variances qmax and qmin and the rotation angle for minimum variance
β0 as a function of shearing parameter µ. The dotted lines show parameter-free pre-
dictions including known technical effects, while the solid lines are model predictions
for a technically perfect system. Data points show the observed variances and angles
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Figure 7-3: Noise suppression (open squares and dotted curve), contrast (open circles
and solid curve) andWineland metrological squeezing (filled triangles and chaindotted
curve) obtained by cavity feedback squeezing as a function of photon number. Dashed
line indicates the SQL.

which adds no variance to q. These show that the minimum variance qmin is strongly

affected by the readout noise, which accounts for more than half of the observed

variance in the range µ = 10−3 . . . 10−2, while the antisqueezing qmax and ellipse

orientation β0 are relatively insensitive to technical effects.

How effective is cavity feedback squeezing as a tool to improve signal-to-noise

ratio? Taking the minimum transverse variance qmin achieved by rotating the state

through an angle β0 before the final readout of Sz and comparing it to the average sig-

nal contrast obtained in a Rabi nutation experiment immediately after the squeezing

light is applied yields a Wineland metrological squeezing parameter of ζ = 0.34(5),

or a signal-to-noise ratio improvement of 4.6(6) dB, for the best shearing parameter

µ = 1.2 · 10−3 where qmin = 0.21(3) and the signal contrast is 78%. Though the

performance of this scheme is theoretically equivalent to that of the measurement-

based technique described in the previous chapter, in practice it fares substantially

better, providing an extra 3 dB of demonstrated signal-to-noise ratio improvement.

Partly this is due to intervening technical improvements; for instance, the contrast
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is 80% before squeezing light is applied in this work as against less than 68% in the

measurement squeezing experiments, thanks to the modified laser locking scheme.

Much of the improvement is, however, attributable to the deterministic nature of the

squeezing process: not needing to compensate for the photons lost in the detection

path, it is possible to suppress the transverse spin noise with weaker probe pulses

(compare the photon number axes in figures 7-3 and 6-2), thus avoiding dephasing-

induced contrast loss. Another way of understanding this improvement is to note

that the detection operates at a noise level 5 times higher than the photon shot noise

(section 5.5), while γ = 1.12 at the optimum squeezing point so that the atoms see

only 12% more intensity fluctuations than photon shot noise.

While there are still 2 dB of squeezing to be gained by avoiding the dephasing from

the locking light that reduces the signal contrast to 80% before any squeezing light is

applied, the main technical obstacle to further squeezing by this method is currently

readout performance, as indicated above. That is, based on the agreement with the

model shown in figure 7-2, it is probably the case that the squeezing procedure is

preparing states that are more strongly squeezed than the apparatus is capable of de-

tecting. As technical improvements to the readout performance are certainly possible

(some are suggested in chapter 9), this bodes well for the progress of cavity feedback

squeezing as a method of producing states with reduced quantum fluctuations.
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Chapter 8

Squeezing in an Atomic Clock

Having demonstrated the possibility of producing squeezed spin states on a clock

transition, it is now time to consider their applicability. Can squeezed states actually

improve the performance of a real metrological experiment and, if so, under what

conditions? For concreteness, this question will be addressed in the context of a

Ramsey-type atomic clock, using a squeezed input state to reduce the quantum un-

certainty on the clock’s initial phase. Such reduced phase uncertainty can be helpful

whenever the initial phase uncertainty is the dominant source of fluctuations on the

clock output signal. However, Huelga et al. pointed out, in reference [60], that initial

phase uncertainty should never be the fundamental performance limit for an atomic

clock. For any given initial phase uncertainty, the clock’s stability is optimized by

extending the Ramsey interrogation time—dividing the phase uncertainty by a larger

and larger accumulated phase—until environmental decoherence contributes as much

to the noise of the clock output signal as the initial phase fluctuations, at which point

the initial state’s phase uncertainty is no longer the dominant uncertainty. They fur-

ther showed that entangled states and squeezed states, because they are generically

more sensitive to environmental decoherence than the unentangled |CSSx̂〉, require

shorter Ramsey precession times to reach this limit, and that this reduced interroga-

tion time cancels the benefit from the reduced phase fluctuations of the initial state.

The result is that entanglement in general, and squeezing in particular, even if it im-

proves the phase sensitivity of the clock’s initial state, yields little or no improvement
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in actual clock performance.

This assumes, however, that the Ramsey precession time can be extended freely

until the initial phase uncertainty ceases to be the dominant limit to clock stability.

In practice, other limits to the precession time are common. For example:

• The interrogation time of a fountain clock is limited by the ballistic flight time

of the atoms in a reasonably sized apparatus. Without the option to extend in-

terrogation time and with systematic efforts to suppress technical noise sources,

fountain clocks have been operating at or near the SQL, limited by the quantum

phase uncertainty of the initial state, for more than a decade1 [8, 16].

• In optical clocks using trapped atoms, the interrogation time is limited by the

phase coherence time of the laser which acts as the local oscillator: the laser

phase uncertainty must not reach π, to avoid losing track of the number of

optical cycles elapsed during the Ramsey precession. The case of clocks limited

by local oscillator dephasing was analyzed in references [61, 62], where it was

shown that squeezing could produce substantial improvements in clock stability

depending on the spectral properties of the local oscillator noise.

• More generally, there may be external requirements on the clock readout rate:

if, for technological reasons, an atomic clock signal is required every second—

perhaps as part of a servo loop to stabilize a flywheel oscillator—then a squeezed

input state may be useful to improve the phase stability at one second. The

fact that a clock operating without squeezing could in principle have reached

the same stability with a longer interrogation time is then irrelevant.

The next two sections address the question of squeezed state usefulness experi-

mentally. Section 8.1 studies the fragility of a squeezed state, observing its gradual

degradation under the action of environmental perturbations to the atomic phase
1Sadly, fountain clocks are in other respects a poor candidate system for the use of spin squeezing

because most of the atoms launched at the start of the Ramsey sequence are lost due to the lateral
expansion of the cloud. Even if the whole cloud were squeezed before being launched into the
fountain, once the lost atoms were traced over, the remaining subensemble used for the final readout
would still display projection noise.
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and demonstrating that the observed behavior can be understood in terms of simple

uncertainty addition. Section 8.2 examines the performance of a fully operational

atomic clock using a squeezed input state, demonstrating by a measurement of its

Allan deviation spectrum that it can provide a stability well beyond the SQL. Both

sections discuss work that was previously published in reference [15].

8.1 Lifetime of Squeezed States

To measure the lifetime of squeezed states, squeezed ensembles of 2S0 = 3 ·104 atoms

were repeatedly prepared by cavity feedback squeezing, yielding initial states with

ζ−1 ≈ 4 dB. The squeezed states were then rotated with a microwave pulse so that

the direction of maximum angular sensitivity was oriented either in the equatorial

plane (phase squeezing) or along Sz (number squeezing). After a variable hold time

TR, the surviving squeezing was measured by verifying both the fluctuations of the

initially squeezed quadrature and the surviving signal contrast.

For the phase-squeezed initial state, this corresponds to evaluating the noise in a

Ramsey-type atomic clock: an ensemble of atoms is prepared with a known (in fact

squeezed) initial phase, the phase is allowed to precess for a time TR, and the final

phase is read out by rotating the final state with a microwave π/2 pulse and measuring

the resulting population difference. Consequently, any technical noise which affects

the stability of an atomic clock also degrades the observed squeezing by increasing the

fluctuations seen in the squeezed quadrature after the hold time TR. In the present

case, the dominant noise term is the fluctuating magnetic field, which perturbs the

atomic transition frequency. These fluctuations are slow compared to TR ∼ ms,

but fast compared to the experimental cycle time of 9 s, so that they lead to shot-

to-shot frequency fluctuations and a phase variance which scales quadratically with

interrogation time: 〈∆φ2〉 = 〈∆ω2
a〉T 2

R. The result is shown in the left panel of

figure 8-1. The initial 4 dB of squeezing persists for around 200 µs, then the phase

uncertainty increases due to the magnetic field fluctuations until it is no longer below

the SQL after 500 µs. A fit to the model ζ(TR) = ζ(0) + 2S0〈∆ω2
a〉T 2

R (figure 8-1,
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Figure 8-1: Lifetime of squeezed spin states under different conditions. When the
phase quadrature is squeezed (left panel, filled triangles) the state is vulnerable to
phase noise in the form of shot-to-shot fluctuations in the atomic precession frequency
that set a noise floor (solid line). The same noise affects the phase of an initially
unsqueezed state (open triangles), though the effect is only noticeable at later times
due to the poorer initial phase sensitivity in the absence of squeezing. The dotted
and chain-dotted lines are fits to the noise model described in the text. For states
insensitive to frequency fluctuations, either because the population difference was
squeezed rather than the phase (lower right panel, filled triangles), or because a spin
echo was used to cancel the effect of fluctuating frequency shifts (filled bowties), the
squeezed state can be much longer-lived, lasting until the shortening of the Bloch
vector (loss of contrast, upper right panel) degrades the angular sensitivity of the
state back to the SQL (dashed line).
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chaindotted line) yields a frequency variance 〈∆ω2
a〉 = (2π · 1.3 Hz)2 (figure 8-1, solid

line). Of course, the same frequency fluctuations afflict initially unsqueezed states as

well (figure 8-1, open triangles and dotted line in the left panel). The effect takes a

little longer to appear (500 µs instead of 200 µs) simply because the unsqueezed state

has poorer phase sensitivity to begin with.

The squeezed state’s lifetime can be extended by making it insensitive to the

magnetic field fluctuations discussed in the previous paragraph. One way of doing this

is to insert a microwave π pulse halfway through the precession time TR. The result

is a spin echo sequence in which the effect of frequency fluctuations slow compared to

TR cancels out. As shown in the solid bowties in the lower right panel of figure 8-1,

the phase can then remain squeezed for several milliseconds. Even longer squeezed

lifetimes, up to 5ms, can be obtained by orienting the squeezed quadrature along Sz,

so that phase uncertainty does not affect it at all (filled triangles). Since Sz-changing

events (atom loss and Raman scattering) are rare as long as the probe light is off

(which it is during the hold time TR), the uncertainty on the squeezed Sz quadrature

essentially does not increase with time; instead it is loss of signal contrast (figure 8-1,

upper right panel) due to dephasing between the atoms which eventually degrades

the angular sensitivity of the state back to the SQL.

8.2 Allan Deviation Measurement

The standard figure of merit for quantifying the stability of clocks is the Allan devi-

ation [8]

σ(τ) =
√∑N

k=1(yk − yk−1)2

2N (8.1)

where yk−yk−1 is the change in clock frequency between two successive averaging bins

of duration τ . This frequency change is normalized to the clock transition frequency to

obtain a dimensionless fractional fluctuation. Conceptually, σ(τ) measures the jitter

in the clock’s output frequency at the time scale τ . For an atomic clock operating
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at the SQL, on a transition of frequency ωa with a Ramsey interrogation time TR

and an experiment cycle time Tc (i.e. with a duty factor TR/Tc), the clock output

fluctuations due solely to quantum projection noise are uncorrelated from shot to shot

and the fractional Allan deviation is simply [47]

σ(τ) = 1
ωaTR

√
Tc

2S0τ
. (8.2)

This is just the phase uncertainty of (2S0)−1/2 normalized to the total accumulated

phase ωaTR in the Ramsey precession time to give the single-shot fractional stability,

then divided by the square root of the number of cycles in a time bin
√
τ/Tc. A

measurement of the Allan deviation of a clock using squeezed input states to overcome

this limit is a concrete demonstration of the potential benefits of spin squeezing to

metrological performance.

To measure the Allan deviation, the clock’s output must be compared to another

equally stable clock over a period Nτ , with N � 1 to ensure good statistics. Of

course, measuring fluctuations in the clock frequency can only be done by comparison

to another clock of equal or better stability; as will be seen, the absolute stability of

the clocks to be demonstrated is fairly poor, so that the rubidium frequency standard

used as a reference for the microwave synthesizers (section 4.2) is for present intents

and purposes an exact clock. The phase angle measured at the end of a Ramsey

sequence is essentially a comparison of the atomic clock frequency with this microwave

frequency standard. To obtain the Allan deviation, one can therefore run a Ramsey

sequence repeatedly over many hours, convert the observed Sz output values into

fractional frequency offsets between atomic clock and microwave frequency according

to

y = Sz
CS0

1
ωaTR

(8.3)

and then average those readings over time bins of duration τ , computing the fluctu-

ations between successive bins as in equation 8.1.
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Figure 8-2: Allan deviation with (solid triangles) and without (open triangles)
squeezing. Error bars are statistical. The dashed line indicates the SQL at
1.85 · 10−9 s1/2/

√
τ , while the chaindotted line is at 1.1 · 10−9 s1/2/

√
τ .

The open triangles of figure 8-2 show the resulting measurement of Allan deviation

for a conventional Ramsey sequence using an unsqueezed input state (approximately

|CSSx̂〉) of 2S0 = 3.54 · 104 atoms, a 9 s experiment cycle time, 200 µs Ramsey in-

terrogation time and with a signal contrast that was not measurably less than 1. As

expected, the fluctuations average down as τ−1/2, though they are somewhat larger

than the 1.85 · 10−9 s1/2/
√
τ expected for a clock operating at the SQL with these pa-

rameters (figure 8-2, dashed line), due to technical imperfections in the preparation

of the initial state.

For a clock operating with a cavity-feedback-squeezed input state as described in

the previous chapter, with a contrast reduced to 81% and otherwise identical param-

eters to the unsqueezed clock above, the Allan deviation starts at 1.1 · 10−9 s1/2/
√
τ

(figure 8-2, filled triangles and chaindotted line). In variance or integration time, this

is an improvement by a factor of 2.8(3) relative to the SQL, which persists for averag-

ing times up to a minute. Thereafter, having reached a fractional stability of 10−10 or

an absolute frequency sensitivity of 0.7Hz, the clock becomes sensitive to slow drifts

of the magnetic field at the level of a few hundred microgauss. Whether or not the

input state is squeezed, improving the fractional stability beyond this level requires
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reducing the drifts in the frequency of the transition used for the Ramsey sequence,

either by stabilizing the magnetic field with shielding or feedback or by reducing the

clock transition’s sensitivity to magnetic fields as discussed in section 4.6.

While the squeezed clock’s short-term stability improvement relative to the SQL—

by nearly a factor of 3—is striking, its absolute performance is not. This is not due to

poor phase sensitivity: the few-milliradian phase stability of the clocks demonstrated

here is comparable to that of current fountain clocks [16]. Rather, it is a result

of the 200 µs Ramsey interrogation time used in these experiments, which is much

shorter than the ∼ 1 s interrogation time used in typical primary frequency standards.

If environmental perturbations on the transition frequency could be controlled at

the level of 100 µHz, then the squeezed phase precision could be preserved for an

interrogation time of a second, enough to allow a short term stability σ(τ) ≈ 2 ·

10−13 s1/2/
√
τ comparable to that of current realizations of the SI second [63].
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Chapter 9

Conclusion

This thesis presents two methods of exploiting the collective interaction of a dilute

atomic ensemble with an optical resonator to produce squeezed states with suppressed

quantum fluctuations of an atomic pseudospin variable. The first method is a practical

implementation of conditional squeezing by quantum non-demolition measurement,

as proposed in reference [17]. Using the optical resonator to reduce the harmful

effects of scattering into free space, dispersive measurement is shown to be capable of

projecting the atomic ensemble onto a state with 1.5(5) dB of metrological squeezing,

according to Wineland’s strict criterion of signal-to-noise ratio improvement. The

second method employs a new scheme using the light field in the resonator to mediate

an interaction between the atoms, producing a deterministic shearing deformation of

the Bloch sphere that stretches the circular uncertainty region of a coherent spin state

into an ellipse with a shrinking minor axis. 4.6(6) dB of metrological spin squeezing

have so far been demonstrated by this approach.

The potential of these methods to improve practical precision measurements has

been studied by operating an atomic clock with a squeezed input state. The lifetime of

the squeezed state has been examined in the presence of real laboratory noise sources,

illustrating how simple uncertainty analysis can indicate parameter regimes where

the initial states’ fluctuations dominate the clock output noise and where squeezing

is potentially helpful. Under certain conditions the clock with the squeezed input

state has an Allan deviation which averages down 2.8(3) times faster than an ideal
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clock operating at the standard quantum limit for an unentangled input state.

Tripling the measurement rate is already a practically significant potential perfor-

mance improvement, but substantial further gains in squeezing are possible with the

methods presented here. As argued in chapter 7, the demonstrated squeezing is cur-

rently limited by the precision of state readout, not state preparation. Improved state

detection, either by the on-resonance phase measurement proposed in section 3.2.2 or

by the use of cycling transitions to avoid scattering-induced noise as in reference [33],

could provide at least an additional 3 dB of squeezing by removing this limitation.

Avoiding loss of contrast by reducing the inhomogeneous dephasing between atomic

pseudospins would also help improve the achievable signal-to-noise ratio. This could

be achieved by using matched lattices for the trapping and probing light fields so

that the trapped atoms are uniformly coupled to the relevant resonator mode [64],

or by using a two-color probing scheme as in reference [33] to cancel out the average

inhomogeneous phase shift. Finally, even the current 14 dB Raman-scattering limit

can be improved, either by increasing the collective cooperativity with additional

atoms or a higher-finesse resonator, by employing probe pulses with known photon

number to reduce the phase broadening from photon shot noise in cavity feedback

squeezing (section 3.3), or by using cycling transitions to reduce scattering noise in

measurement-induced squeezing [33].

The work presented here can be developed in other directions than quantitative

improvements to the metrological squeezing parameter. The effective S2
z interaction

used in cavity feedback squeezing is sufficient in principle, when combined with rota-

tions of the Bloch sphere by microwave pulses, to generate arbitrary transformations

of the Bloch vector’s 2S0-dimensional Hilbert space [28]. While decoherence currently

limits this control to very simple operations such as the shearing demonstrated here,

the theoretical analysis of section 3.3 shows that the information leakage out of the

resonator via the exiting probe light can in principle be stopped using squeezing light

pulses of known photon number, to allow interactions very close to the ideal S2
z and

correspondingly more precise and complex operations. Even with current decoher-

ence rates, the non-linearities built into the Lorentzian resonance of the optical cavity
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and the spherical geometry of the space of states for the Bloch vector may allow the

production of states with a more interesting shape than the elliptical Gaussians con-

sidered here. Detecting such shapes, by measuring higher moments of the transverse

spin distribution, would be a significant first step on the path from simple manipu-

lation of the uncertainties of semi-classical Bloch vectors to the exercise of complete

control over a Hilbert space of mesoscopic size.
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