
QUANTUM SIMULATION IN STRONGLY CORRELATED OPTICAL LATTICES

BY

DAVID C. MCKAY

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Physics

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Paul Kwiat, Chair

Associate Professor Brian DeMarco, Co-Director of Research

Associate Professor Joseph Thywissen,

University of Toronto, Co-Director of Research

Professor David Ceperley

Professor Paul Selvin



Abstract

An outstanding problem in physics is how to understand strongly interacting quantum many-body systems

such as the quark-gluon plasma, neutron stars, superfluid 4He, and the high-temperature superconducting

cuprates. The physics approach to this problem is to reduce these complex systems to minimal models

that are believed to retain relevant phenomenology. For example, the Hubbard model — the focus of this

thesis — describes quantum particles tunneling between sites of a lattice with on-site interactions. The

Hubbard model is conjectured to describe the low-energy charge and spin properties of high-temperature

superconducting cuprates. Thus far, there are no analytic solutions to the Hubbard model, and numerical

calculations are difficult and even impossible in some regimes (e.g., the Fermi-Hubbard model away from

half-filling). Therefore, whether the Hubbard model is a minimal model for the cuprates remains unresolved.

In the face of these difficulties, a new approach has emerged — quantum simulation. The premise of quan-

tum simulation is to perform experiments on a quantum system that is well-described by the model we are

trying to study, has tunable parameters, and is easily probed. Ultracold atoms trapped in optical lattices

are an ideal candidate for quantum simulation of the Hubbard models. This thesis describes work on two

such systems: a 87Rb (boson) optical lattice experiment in the group of Brian DeMarco at the University

of Illinois to simulate Bose-Hubbard physics, and a 40K (fermion) optical lattice experiment in the group

of Joseph Thywissen at the University of Toronto to simulate Fermi-Hubbard physics.

My work on the 87Rb apparatus focuses on three main topics: simulating the Bose-Hubbard (BH)

model out of equilibrium, developing thermometry probes, and developing impurity probes using a 3D spin-

dependent lattice. Theoretical techniques (e.g., QMC) are adept at describing the equilibrium properties of

the BH model, but the dynamics are unknown — simulation is able to bridge this gap. We perform two

experiments to simulate the BH model out of equilibrium. In the first experiment, published in Ref. [1],

we measure the decay rate of the center-of-mass velocity for a Bose-Einstein condensate trapped in a cubic

lattice. We explore this dissipation for different Bose-Hubbard parameters (corresponding to different lattice

depths) and temperatures. We observe a decay rate that asymptotes to a finite value at zero temperature,

which we interpret as evidence of intrinsic decay due to quantum tunneling of phase slips. The decay rate

exponentially increases with temperature, which is consistent with a cross-over from quantum tunneling to

thermal activation. While phase slips are a well-known dissipation mechanism in superconductors, numerous

effects prevent unambiguous detection of quantum phase slips. Therefore, our measurement is among the

strongest evidence for quantum tunneling of phase slips. In a second experiment, published in Ref. [2] with

theory collaborators at Cornell University, we investigate condensate fraction evolution during fast (i.e.,

millisecond) ramps of the lattice potential depth. These ramps simulate the BH model with time-dependent

parameters. We determine that interactions lead to significant condensate fraction redistribution during

these ramps, in agreement with mean-field calculations. This result clarifies adiabatic timescales for the

lattice gas and strongly constrains bandmapping as an equilibrium probe.

Another part of this thesis work involves developing thermometry techniques for the lattice gas. These

techniques are important because the ability to measure temperature is required for quantum simulation

and to evaluate in-lattice cooling schemes. In work published in Ref. [3], we explore measuring temperature

by directly fitting the quasimomentum distribution of a thermal lattice gas. We attempt to obtain quasi-

momentum distributions by bandmapping, a process in which the lattice depth is reduced slowly compared
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to the bandgap but fast with respect to all other timescales. We find that these temperature measurements

fail when the thermal energy is comparable to the bandwidth of the lattice. This failure results from two

main causes. First, the quasimomentum distribution is an insensitive probe at high temperatures because

the band is occupied (i.e., additional thermal energy cannot be accommodated in the kinetic energy degrees

of freedom). Second, the bandmapping process does not produce accurate quasimomentum distributions

because of smoothing at the Brillouin zone edge. We determine that measuring temperature using the in-

situ width overcomes these issues. The in-situ width does not asymptote to a finite value as temperature

increases, and the in-situ width can be measured directly without using a mapping procedure. In a second

experiment, we investigate using condensate fraction (obtained from the time-of-flight momentum distri-

bution) as an indirect means to measure temperature in the superfluid regime of the BH model. Since no

standard fitting procedure exists for the lattice time-of-flight distributions, we define and test a procedure

as part of this work. We measure condensate fraction for a range of lattice depths varying from deep in the

superfluid regime to lattice depths proximate to the Mott-insulator transition. We also vary the entropy per

particle, which is measured in the harmonic trap before adiabatically loading into the lattice. As expected,

the condensate fraction increases as entropy decreases, and the condensate fraction decreases at high lattice

depths (due to quantum depletion). We compare our experimental results to condensate fraction predicted

by the non-interacting, Hartree-Fock-Bogoliubov-Popov, and site-decoupled-mean-field theories. Theory and

experiment disagree, which motivates several future extensions to this work, including calculating conden-

sate fraction (and testing our fit procedure) using quantum Monte Carlo numerics, and experimentally and

theoretically investigating the dynamics of the lattice load process (for the finite-temperature strongly cor-

related regime).

Finally, we develop impurity probes for the Bose-Hubbard model by employing a spin-dependent lat-

tice. A primary accomplishment of this thesis work was to develop the first 3D spin-dependent lattice in

the strongly correlated regime (published in Ref. [4]). The spin-dependent lattice depth is proportional

to |gFmF |, enabling the creation of mixtures of atoms trapped in the lattice (mF 6= 0) co-trapped with

atoms that do not experience the lattice (mF = 0). We use the non-lattice atoms as an impurity probe.

We investigate using the impurity to probe the lattice temperature, and we determine that thermalization

between the impurity and lattice gas is suppressed for larger lattice depths. Using a comparison to a Fermi’s

golden rule calculation of the collisional energy exchange rate, we determine that this effect is consistent with

suppression of energy-exchanging collisions by a mismatch between the impurity and lattice gas dispersion.

While this result invalidates the concept of an impurity thermometer, it paves the way for a unique cooling

scheme that relies on inter-species thermal isolation. We also explore impurity transport through the lattice

gas. In other preliminary measurements, we also identify the decay rate of the center-of-mass motion as a

prospective impurity probe.

A separate aspect of this thesis work is the design and construction of a new 40K apparatus for single-site

imaging of atoms to simulate the 2D Fermi-Hubbard model. The main component of this apparatus is high-

resolution fluorescence imaging on the 4S → 5P transition of K at 404.5nm. Fluorescence imaging using this

transition has two advantages over imaging on the standard D2 transition at 767nm: a smaller wavelength

and therefore higher resolution, and a lower Doppler temperature limit which enables longer imaging times.

To validate this approach, we demonstrate the first 40K magneto-optical trap (MOT) using the 404.5nm

transition.
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Chapter 1

Introduction

Physics endeavors to provide a mathematical, and therefore predictive framework for the fundamental phe-

nomena of the universe. One aspect of this goal is to determine the equations that describe the behavior of a

system’s constituent particles. In this regard, physics has been very successful. Except at extreme scales, the

ordinary matter in the universe is completely described by the quantum field theories of the standard model

and general relativity. Almost all low-energy earth-bound matter (nuclei and electrons), materials which are

the basis of our modern technology, can be described using the non-relativistic Schrödinger equation for the

quantum wavefunction |Ψ〉,
i~
∂|Ψ〉
∂t

= H|Ψ〉. (1.1)

Here H is the Breit-Pauli Hamiltonian for Ne electrons and NZ nuclei of charge Z [6] 1,

H =

Ne
∑
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~p2
i
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+

NZ
∑
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me
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∑
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~si ·~sj

|~rij |3
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(~si ·~rij)(~sj ·~rij)

|~rij |5
]







(1.2)

where ~pi,~ri and ~si are the momentum, position and spin operators for electron i, ~Pi and ~Ri are the mo-

mentum and position operators for nuclei i, and α ≈ 1/137 is the fine structure constant. The wavefunction

must be antisymmetric under electron exchange to satisfy Fermi statistics and (anti)symmetric under nuclei

exchange to obey (Fermi)Bose statistics if the number of nucleons (neutrons plus protons) is (odd)even.

To a very good approximation, Eqn. 1.2 describes all aspects of Earth-bound matter, including the forma-

tion of atoms and the assembly of these atoms into molecules, gases, liquids and solids. Of course, knowing

Eqn. 1.2 is only the first aspect of physics; the second is solving these equations, which is often the more

difficult task. As elucidated by Philip Anderson, “The ability to reduce everything to simple fundamental

laws does not imply the ability to start from those laws and reconstruct the universe . . . [since] the construc-

tionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity” [7]. The

1For clarity, this equation is presented in atomic units (~ = me = e = 4πε0 = 1). Relativistic corrections that shift, but do
not split energy levels (non-fine structure terms) have been omitted. Also, hyperfine terms associated with the nuclear magnetic
momentum and finite charge radius have been omitted. In general, a fully relativistic theory (Dirac equation) is required for
the electrons, but in almost all materials these relativistic effects can be expressed in terms of the included order α2 corrections
to the non-relativistic Hamiltonian. Field theoretical effects, such as the Lamb shift, are also not included.

1



(a) (b)
D

e
c
re

a
s
in

g
 E

n
e

rg
y

In
c
re

a
s
in

g
 C

o
m

p
le

x
it
y

Figure 1.1: (a) The full set of equations, Eqn. 1.2, describes the properties of electrons (black) and nuclei (blue
protons, red neutrons) at all energy scales. This set of diagrams gives a schematic overview of the typical
properties of a metallic nuclei, e.g., 87Rb (37 protons, 50 neutrons), at different energies. For simplicity only
a handful of the particles are shown and the diagrams are not to scale. At the highest energy scales (top)
we have a free gas of electrons and nuclei. Lowering the energy, they form atoms (middle) and finally these
atoms form a crystalline solid where the outer valence electrons become delocalized throughout the solid.
(b) If we are interested in only the delocalized electron properties at the lowest energy scales described by
Eqn. 1.2, then we can alternatively build up a minimal model. We start with a free gas of non-interacting
electrons in a fixed volume, then add a static lattice, then add phonons (lattice vibrations) and electron
interactions.

complexity of Eqn. 1.2 is evident since it contains all the necessary ingredients for tightly bound shells of

electrons to form around the nuclei into atoms, for these atoms to arrange into a crystalline structure, and

for the outer-shell electrons to delocalize throughout the crystal (Fig. 1.1). However, if we are only interested

in the motion of these delocalized electrons, which is enough to describe a plurality of material properties,

then Eqn. 1.2 is overly complicated. At these energy scales many degrees of freedom are frozen out and can

be represented in the equations as static terms that can be parameterized. For example, the atomic ions

(nuclei plus bound core electrons) are essentially fixed in a discrete crystalline structure, so a large number

of operators in Eqn. 1.2 can be replaced by a small set of parameters specifying this arrangement. These

parameters can be measured experimentally using crystallographic techniques.

Therefore, the alternative approach, shown schematically in Fig. 1.1, is to build a model that increases

in complexity, as necessary, to describe a relevant aspect of the system. To add in layers of complexity

we parameterize the solutions of Eqn. 1.2 and determine these parameters empirically. Applying this ap-

proach to the delocalized electrons, we start with a free electron gas (Drude-Sommerfield model), then add

a lattice, then add in additional terms such as phonons, electron-phonon interactions, electron-electron in-

teractions (e.g., see [8]). To understand what level of complexity is required so that the model is a good

representation, we have to solve this model and compare to experiments on physical systems. Once a certain

2



model reproduces experimental results we can use it to predict new phenomena and motivate new materi-

als. This is illustrated by the left side of the cycle in Fig. 1.2. Examples of attainable experimental data

for comparison include the excitation spectra, order parameters (broken symmetries), transport properties

and mass/momentum/spin densities, and correlation functions. A full comparison to experiment involves

describing these properties as a function of the microscopic model parameters and macroscopic thermody-

namic state variables, temperature (T) and chemical potential (µ). A common experimental construction is

the phase diagram, which identifies regions of uniform properties in the parameter space bounded by abrupt

changes (phase boundaries). Example phase diagrams are illustrated in Fig. 1.2.

Although reducing Eqn. 1.2 to a model minimizes the complexity of the equations we need to solve, there

is still the issue of scale. Each quantum particle may be in a number of states; the simplest example is a

stationary electron which has two states, spin up (↑) or spin down (↓). The scaling issue arises since the

spin can be in a superposition of up and down, p↑| ↑〉 + p↓| ↓〉, where |p↑|2 (|p↓|2) is the probability of the

spin to be up (down). However, in general p↑ and p↓ are complex numbers and cannot be represented as

probabilities. Therefore, when the system increases to N electrons, the system can be in a superposition of

all possible N-spin configurations, which requires keeping track of 2N complex numbers. This exponential

scaling makes solving general quantum models intractable on classical computers. However, there are still

many models which are efficiently solvable using classical resources, although identifying these models is

a non-trivial task as this depends on the level of entanglement in the system [9]. Additionally, since we

are solving in order to compare to experimental measurements, we do not necessarily have to compute the

complex coefficients of each state. Therefore, certain sets of properties may be well-approximated through

classical numerics. For example, the equilibrium ground state density distribution of an interacting many-

body Bose gas is efficiently calculated using Quantum Monte Carlo (QMC) [10], which is a probabilistic

path integral sampling done on a classical computer.

Nonetheless, it would be ideal to avoid these scaling issues by calculating the model properties on a

system which is itself quantum, an idea first pointed out by Feynman [13]. A certain class of quantum

systems, defined by the Divincenzo criteria [14], are known as quantum computers (see [15] for a review) and

are able to simulate any quantum model with local interactions [16]. For this reason, quantum computers are

referred to as universal [16] or digital quantum simulators [17]. However, although quantum computers avoid

fundamental quantum scaling issues, they suffer from technical scaling problems and the implementation

of a quantum computer with a large number of quantum particles is an enormous technical challenge;

state-of-the-art is six qubits (i.e., 2-level quantum particles) [18]. Fortunately, there exists another class of

quantum systems whose intrinsic Hamiltonians are known to be well-described by our model Hamiltonian.

Therefore, the properties of this system are, in effect, solutions to the model. Because this system performs

the simulation continuously and is not universal, this is referred to as an analog quantum simulator2 [17].

Whether a system qualifies as a quantum simulators is rather ill-defined since all systems are in some sense

simulating a certain model all the time. To clarify, I propose the following ingredients for a quantum

simulator:

1. A system which is well-described by a quantum model with tunable parameters,

2From this point I will refer to analog quantum simulators as quantum simulations and digital quantum simulators as
quantum computers.
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Figure 1.2: (Top) The quantum simulator cycle. The starting point is a physical system, e.g., a crystalline
solid. Although we know the full equations of motion for the system, i.e., Eqn. 1.2, these are too complex,
so a model is developed. To validate the model we compare the model properties to the experimental
properties. However, issues of quantum scaling mean that many models are not solvable using classical
numerics. Therefore, we design a quantum simulator; a physical system a priori known to be well-described by
the model. If the model is validated by comparing the experimental measurements to the quantum simulator,
the simulator can be tuned to discover novel properties, e.g., “room-temperature” superconductivity, and
motivate the synthesis of new materials. If the current model is not validated, then we need to iterate
and add complexity to generate a new model starting the cycle over. (Bottom) Phase diagrams are useful
tools for comparing experimental data to data generated via quantum simulation. On the left we show the
schematic phase diagram for a common physical system, the cuprate compounds, which notably display high-
temperature superconductivity when hole-doped (motivated by [11, 12]). On the right we show schematic
phase diagrams for the two-component Fermi-Hubbard (FH) model, discussed in §2.4.2, which is conjectured
to describe the cuprates. However, the FH model is unsolved since the hole doped phases are unknown, as
shown in the first phase diagram for T versus doping at large U/t. Since the quantum simulation parameters
are adjustable, we can easily explore the parameter space, a difficult task with the physical system. The
phase diagram versus t/U and µ = µ↑ = µ↓ at T = 0 is shown at the far right.
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2. Control over the initial quantum state,

3. Probes to measure the state/properties of the system,

4. Techniques to explore non-equilibrium states.

A similar list, emphasizing issues of reliability and efficiency, has been described in [19]. Often, quantum sim-

ulators are identified by ingredient (1) with no consideration for ingredients (2)-(4), but a reliable comparison

to the physical systems being simulated, see Fig. 1.2, is not possible without these additional components.

In the same way, simulation on a classical computer does not just consist of the computer processor, but

the software (code) and various initial conditions and methodologies for running the simulation to get useful

results. Together, ingredients (1)-(4) are what we term the toolkit for quantum simulation. This toolkit is

roughly divided into three main groups; tools are the elements of ingredient (1) and probes/techniques are

the elements of ingredients (2)-(4). Tools are generally the physical elements of the quantum simulation (the

processor) and probes/techniques are the methodologies and procedures for using these physical elements

(the software).

A quantum simulator allows us to compare the properties of quantum models to experimental measure-

ments on physical systems to discover the minimal models associated with these systems. Eventually this

allows us to understand how certain parameters are linked to interesting and technically useful properties

leading to the synthesis of new materials. For example, there is no proven model for the high-temperature

superconducting cuprates [12], because proposed models, e.g., the Fermi-Hubbard model (§2.4.2), have not

been solved. The intent is to use a quantum simulator to validate one of these models, and then perform

further simulations to optimize the model parameters to maximize the superconducting transition tempera-

ture. This will in turn motivate synthesizing new materials with these parameters. The quantum simulation

feedback process is illustrated in Fig. 1.2, but it leaves open two questions; how do we implement a quantum

simulator and what quantum models should we simulate? The general process is to look for a well-defined

and easily controlled quantum system and investigate whether its intrinsic Hamiltonian corresponds to a

physically relevant, unsolvable quantum model. There are a number of candidate systems [17], such as ions,

photons in cavities, superconducting circuits and quantum dots. However, in this thesis I focus on one of

the most promising implementations for simulations of models related to materials: neutral ultracold atoms

in optical lattices.

To prepare ultracold atoms, illustrated in Fig. 1.3, we laser cool [20] a room temperature atomic gas to

T ≈ 100µK and then perform further evaporative cooling [21] so that the de Broglie wavelength is com-

parable to the interparticle spacing, which is the condition for quantum degeneracy. Both bosonic [22, 23]

and fermionic [24] atoms have been cooled to degeneracy, so ultracold atoms can simulate both types of

quantum statistics. The interactions between ultracold atoms (§2.1.2) are well-characterized, short-range,

spherically symmetric, and tunable, which are important characteristics for simulation. Furthermore, DC

magnetic fields and AC electric fields near resonance with optical atomic transitions can be used to shift

the atomic energy levels. Shaping these external fields provides a range of trapping potentials (§2.1.1). One

particular potential, the optical lattice (§C), is formed by interfering two or more laser beams to produce

a periodic intensity and therefore a periodic potential3 with depth sER where ER = (~π/d)2

2m is the recoil

3Fields with periodic polarization can also create periodic potentials, which will comprise an important part of this work.
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(a) (b) (c)

sER

d

Figure 1.3: Schematic of preparing ultracold atoms in an optical lattice for quantum simulation. (a) Col-
lecting atoms using laser cooling and trapping (§2.1). (b) Evaporative cooling in a trapping potential (§2.1,
§2.1.1). (c) Ultracold atoms loaded into an optical lattice (§C) with spacing d and height sER. Atoms can
tunnel between adjacent sites and atoms on the same site interact.

energy (d is the lattice spacing). Near quantum degeneracy, the wavefunctions of atoms in optical lattices

are localized to the potential wells in the lowest vibrational state with order unit occupancy per well. Atoms

can then tunnel between lattice sites and interact strongly when two or more occupy the same site.

The intrinsic Hamiltonian for ultracold atoms in optical lattices is, in certain limits, the single-band

Hubbard model ( [25,26], §2.3.4), generically written as,

H = −
∑

〈i,j〉,σ
tij,σa†

i,σaj,σ +
∑

i,σ,σ′

1

2
Ui,σ,σ′a†

i,σa†
i,σ′ai,σai,σ′ +

∑

i,σ

(εi,σ − µσ)ni,σ (1.3)

where 〈i, j〉 is a sum over nearest-neighbor lattice sites, σ is the spin index, tij,σ is the tunneling energy,

Ui,σ,σ′ is the interaction energy, εi,σ is the kinetic plus potential energy offset of site i, and µi,σ is the chemical

potential which adjusts the average number of σ atoms per site. The operator ai,σ (a†
i,σ) annihilates (creates)

a particle in state σ at site i and ni,σ = a†
i,σai,σ is the number operator. In this notation, the operators are

anti-commuting for the Fermi-Hubbard model and commuting for the Bose-Hubbard model. In this thesis I

focus on two variants, the single-component Bose-Hubbard model, Eqn. 2.93, and the two-component Fermi-

Hubbard model, Eqn. 2.94. In experimental realizations of the Hubbard model with ultracold atoms there is

typically an external harmonic potential, so εi = 1
2mω

2r2i . This system satisfies the tunability requirement

as the model parameters t and U are easily tuned by varying the lattice depth (§2.3).

Hubbard models are believed to be relevant to physical systems and are the paradigm for describing

strongly correlated quantum materials. For example, The Fermi-Hubbard (FH) model was first proposed

to describe strongly correlated electrons in transition metals [27], and later the Bose-Hubbard (BH) model

was proposed [28] for bosonic particles in localized potentials, such as 4He in porous media (i.e., Vycor).

In particular, the FH model in the limit U � t, also called the t − J model (J is the exchange term

4t2/U), is thought by some to describe the physics of the cuprate high-temperature superconductors [12].

The BH model is also conjectured to describe granular superconductors [29], Josephson-junction arrays [30]

and flux lattices in type-II superconductors [31]. A shared feature between these physical systems and the

Hubbard model is an interaction-driven insulator transition (Mott-insulator (MI) transition [32]). As shown

schematically by the process in Fig. 1.2, this model/experiment comparison lends evidence to the belief that

these physical systems are well-described by the Hubbard model. Similar experimental demonstrations of

6



the superfluid (SF) to MI transition for bosons in optical lattices [33] and the metal to MI transition for

fermions [34, 35] confirmed the theoretical predictions of [25, 26] that ultracold atoms in optical lattices are

well-described by the Hubbard model. In addition to being physically relevant, the Hubbard model has no

analytic solutions and the quantum scaling issues previously discussed make numerical solutions intractable

for certain parameter regimes. In particular, in the regime in which superconductivity is observed in the

cuprates (hole doped away from the Mott-insulator), the FH model has not been solved [26].

The concept of using ultracold atoms in optical lattices as a quantum simulator of the Hubbard model

to compare to experimental observables from physical systems almost exactly achieves the goals of quantum

simulation laid out in Fig. 1.2. However, in practice, ultracold atoms in optical lattices have not yet simulated

the Hubbard model over parameter ranges lacking classical solutions. This is because current systems do not

satisfy the full range of proposed ingredients — the toolkit is incomplete. For example, current experiments

do not have arbitrary control over the initial temperature and so do not contain ingredient (2). The main

impediment to this control is the inability to reach the low temperatures associated with non-trivial regimes

of the Hubbard models [36]. Since the common practice is to load the atoms into the lattice after cooling

in a harmonic trap, experiments are limited to the lowest achievable harmonic trap entropies. Furthermore,

light scattering from the optical lattice (§C.4) adds heat to the system throughout the loading process,

which must be slow to prevent exciting the gas. Light scattering is more than a temperature issue since

it also excites the system out of equilibrium [37], further reducing our ability to control the initial state.

The ramping process itself is problematic for state control. In principle the ramp is sufficiently slow to be

adiabatic, but assessing adiabaticity is complicated since the many-body timescales are difficult to ascertain

a priori. Compounding these issues is the lack of thermometry methods in strongly correlated regimes, which

violates ingredient (3). The ability to measure temperature is required to evaluate cooling proposals geared

towards overcoming the temperature issues. Also, thermometry is critical for comparison with both theory

and with the experimental results of physical systems. The scaling of system properties with temperature is

an important method for distinguishing between competing theories and for identifying novel physics, such

as the linear temperature dependence of the resistivity in the pseudogap regime of the cuprates [11].

An often overlooked aspect of quantum simulation is ingredient (4); techniques to explore non-equilibrium

states. Yet, equilibrium only represents a small fraction of all possible solutions to the model and so simulat-

ing non-equilibrium physics greatly increases our understanding. In fact, the physical systems we compare

to are usually considered useful for their non-equilibrium properties and are labeled as such. For example, a

solid is labeled as either metal, insulator, semiconductor or superconductor, depending on charge transport

properties. Finally, non-equilibrium measurements have no generalized framework [38] and are among the

most intractable numerical calculations. For example, while the equilibrium properties of the BH model are

well-described by QMC in three-dimensions [39], QMC cannot efficiently calculate dynamical properties [40].

In contrast, for a quantum simulator, non-equilibrium and equilibrium problems are on a similar footing.

Therefore, the work in this thesis is centered around the twin themes of developing the toolkit for

quantum simulation and looking at the Hubbard model out of equilibrium. Our main tool for this is a
87Rb 3D optical lattice apparatus4 built prior to this thesis (for details see [41]) and summarized in §3.1.

This apparatus creates Bose-Einstein condensates (BEC) using standard methods (see i.e., [42,43]) and then

4In the group of Brian DeMarco at the University of Illinois.

7



applies a 3D optical lattice using laser beams generated from a Ti-Sapphire laser, which is tunable from

λ ≈ 760 − 820nm. The thesis work on this apparatus can be divided into three sections: simulating the

BH model out-of-equilibrium (§6), developing direct thermometry probes (§7) and implementing a spin-

dependent lattice (§3.1.2) to develop impurity probes (§8). The specific experiments are summarized as

follows:

Phase Slip Dissipation (§6.1, [1]): We measure the decay rate of center of mass oscillations of the

condensate in the lattice as a function of temperature and lattice depth (t/U) for velocities less than known

Landau and dynamic instabilities [44,45]. The scaling of decay rate with
√

t/U is consistent with dissipation

due to phase slips [46]. Phase slips occur when a phase coherent system (i.e., a condensate) with a phase

gradient, and therefore a macroscopic velocity, relaxes to a lower velocity via a phase discontinuity. For

example, these are a known cause of dissipation in SF 4He and in thin superconducting wires [47]. Phase

slip dynamics are set by the phase slip activation barrier which can be overcome by either thermal activation

or quantum tunneling. At high temperatures, thermal activation of phase slips in superconductors is well-

understood [48], but the role of quantum phase slips is more speculative [49]. We analyze the decay rate of

the condensate velocity as a function of temperature and we observe the expected exponential suppression

of thermal phase slip activation at low temperatures. Additionally, the decay rate saturates to a finite value

as T → 0, which is evidence for quantum tunneling of phase slips. Phase slips decay into topological excita-

tions (i.e., vortices), so another test is to image vortices in the system. Although our imaging system is not

optimized, approximately 20% of our images show evidence of vortex-like features, which are not observed in

the absence of motion. These results clarify our understanding of the dynamic Bose-Hubbard model. Also,

they are a useful basis of comparison against the transport properties of systems thought to be described by

the BH model, i.e., thin 2D superconducting films [50]. Combined with other experiments [51,52] this helps

establish center of mass velocity decay in the lattice as part of quantum simulation ingredient (4).

Condensate Fraction during Fast Lattice Ramps (§6.2, [2]): In the Bose-Hubbard (BH) model,

as we increase t/U (i.e., decrease the lattice depth), the condensate fraction (i.e., the fraction of atoms in

the macroscopically occupied single particle state [53]) transitions from zero in the Mott-insulator regime

monotonically to unity in the weakly interacting superfluid regime. To probe the dynamics of this con-

densate fraction growth, we adiabatically load (§4.2.1) a condensate into the lattice to depth si, and then

linearly ramp down the lattice from si to sf = 4 (si > sf ) in time τ and measuring the condensate frac-

tion. In the two extreme limits, τ → 0 and τ → ∞, we measure the equilibrium condensate fraction at

si and sf , respectively. The timescales between these limits provide an important probe of excitations in

this system. Additionally, this experiment is a careful investigation of the validity of a technique known

as bandmapping for the interacting gas. Bandmapping is a probe where the lattice depth is also linearly

ramped down in time τ such that τ is adiabatic with respect to the bandgap and fast compared to quasi-

momentum changing processes (see §4.1.3). If these conditions are met, then quasimomentum is mapped to

momentum. Bandmapping times on the order of 1ms are commonly used and here we test the legitimacy of

bandmapping as a condensate fraction probe. We measure condensate fraction after the ramp as a function

of τ and find that the condensate fraction grows exponentially with a time constant (τ0) of approximately

1ms. We compare τ0 measured experimentally for 10 ≤ si ≤ 14 to a Gutzwiller time-dependent mean-field

theory [54]5. This theory agrees well with experiment and provides insight into the origin and scaling of

5Theory by collaborators Stefan Natu and Erich Mueller at Cornell University
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these timescales for condensate fraction growth. These timescales are too fast for transport and are therefore

entirely local and are driven by particle-hole modes which scale as U . Importantly, for bandmapping this

result means that the ramp has to be slow compared to the bandgap, but fast compared to 1/U , which is

difficult because there is no separation of these timescales. Therefore, measuring condensate fraction with

bandmapping may introduce significant systematic errors, and so rule it out as a quantum simulation probe

satisfying ingredient (3). However, this demonstrates the utility of lattice ramps for both a probe of the

excitation spectra and as a technique to explore non-equilibrium phases. Additionally, this experiment helps

validate Gutzwiller time-dependent mean field theory for simulating the dynamics of the BH model.

Bandmapping and In-Situ Thermometry (§7.1, §7.2, [3]): For weakly interacting bosonic and

fermionic atoms in a smooth trap, the temperature is measured by fitting the momentum distribution, which

is obtained after rapidly turning off the trapping potential and letting the gas ballistically expand (§4.1.2).

Typically, the momentum distribution is fitted to a semiclassical distribution (§2.2.1). The momentum

distribution in the lattice cannot be described semiclassically because the rapid spatial variation of the po-

tential means that the de Broglie wavelength is not smaller than the typical length scale of the potential [55].

However, if we write the Hamiltonian in terms of the quasimomentum and position, then there are no fast

spatial terms, so the quasimomentum distribution in the lattice can be described semiclassically. The 3D

momentum distribution is a periodic function of the quasimomentum distribution with a Wannier function

envelope. However, once the 3D momentum distribution is integrated along the probe beam to create a 2D

image, the functional dependence on quasimomentum is complicated.

We investigate using bandmapping to directly image the quasimomentum distribution. This maps quasi-

momentum to momentum, which we then image after expansion. We only consider weakly interacting

thermal gases (T > TC), so that complications associated with the separation of timescales introduced by

interactions for the degenerate gas are not relevant. We fit images obtained from bandmapping to semiclas-

sical quasimomentum distributions with temperature as a free parameter for a range of known entropies.

Here entropy is determined by the temperature in the harmonic trap before adiabatically loading into the

lattice. Since the gas is non-interacting, we use non-interacting thermodynamics to predict the in-lattice

temperature.

We find that when the predicted temperature T1 in the lattice is comparable (and larger) to the band-

width 12t, the temperature T2 obtained from the quasimomentum fit is larger than T1. Through comparison

to 1D numerical simulations of bandmapping using a Crank-Nicolson solver, we conclude that this failure

is a result of adiabaticity breaking down at the band edge. This is exacerbated by the added complication

that the quasimomentum distribution becomes increasingly insensitive to temperature as the band becomes

full (i.e., kBT ≥ 12t). Since the band is full, any additional thermal energy must go into the spatial degrees

of freedom. This motivates using the spatial distribution for thermometry. Therefore, we fit the in-trap

RMS width and demonstrate, via comparison to T1, that it is a reliable method for thermometry when

kBT > 12t. Although our measurements utilize non-interacting gases, the qualitative effect of interactions is

to also populate higher quasimomentum states, and equivalently position is the only sensitive temperature

variable. This has been exploited in subsequent high-resolution imaging experiments [56–58] in the strongly

correlated regime of the BH model. This is an important result for further developing thermometry methods

for quantum simulation to satisfy ingredient (3) and for validating other thermometry methods, such as in
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Ref. [59].

Condensate Fraction Thermometry (§7.3): Since the gases trapped in a lattice are a closed system,

direct thermometry probes for quantum simulation using atoms in optical lattices must measure temper-

ature via its relation to a system observable. However, these relations require theoretical input, which

may not be available or is unreliable given that we are running a quantum simulation which aims to probe

unknown physics. Therefore, we need to identify aspects of the system which are both sensitive to temper-

ature and related to temperature from validated theories. In the harmonic trap, the approach is to fit the

tails of the momentum distribution, where the interactions are minimal, to a non-interacting distribution.

However, we previously demonstrated that the equivalent approach in the lattice, measuring the quasimo-

mentum distribution [3], does not work. Also, in the interesting regions of the BH phase diagram, the

quasimomentum distribution is strongly altered by interactions [60]. For experiments with high resolution

in-situ imaging [56–58], temperature can be measured at the trap edge where the density is low enough to

ignore interactions [61–63], but for strong interactions and low temperatures this region becomes quite small.

We investigate the possibility of measuring temperature in the superfluid (SF) regime using the peak

fraction, an experimentally measurable proxy for condensate fraction. When the system is condensed, the

distribution after expansion is bimodal [64]; condensed atoms are in narrow peaks. We define peak fraction

as the fraction of atoms in these peaks after subtracting off the non-condensate atoms; we assume the non-

condensate distribution under the peaks is flat. The peak fraction can thus be evaluated without requiring

the exact functional form. Also, the bimodal nature is robust [64], so the peak fraction is only weakly

dependent on experimental issues such as imaging resolution, imaging direction with respect to the lattice

axes, and expansion time. Similar peak fractions have been used in a number of experiments to identify the

SF-normal transition [65–67].

In this experiment, we establish our heuristic method for fitting lattice expansion images to extract peak

fraction, and then we do a quantitative comparison of the measured peak fraction to the condensate fraction

predicted assuming adiabatic loading using several theoretical approaches: non-interacting thermodynamics,

Hartree-Fock-Bogoliubov-Popov theory [64], and site-decoupled-mean-field theory [68]. In developing our

peak fraction fit, we compare to simulated lattice data (§G.4) and do a full numerical calculation for the

harmonic gas expansion to better understand how the non-condensate distribution under the condensate

peak is affected after time-of-flight (§G.3). We find that the comparison of peak fraction to predicted con-

densate fraction is poor over the entire parameter range. Although some heating is expected during the

ramp, counterintuitively we find states which appear to have lower entropy in the lattice. For entropies

where a condensate exists in the harmonic trap, but is predicted to disappear in the lattice, we find the con-

densate persists in the lattice. This is possible evidence for condensate metastability after loading into the

lattice. This has an important impact for ingredient (2) of quantum simulation, since the initial state is not

in equilibrium as expected. Fundamentally, lattice loading is a dynamic process and further understanding

requires developing new theoretical tools.

3D Spin-Dependent Lattice in the Hubbard Regime (§3.1.2, [4]): The most general approach to

thermometry is to have a well-understood system, in our case a harmonically trapped impurity, in thermal

contact with the quantum simulator: an impurity thermometer. This technique is also central to several
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cooling proposals [69, 70] that rely on shifting entropy from the simulator to a harmonically trapped reser-

voir of atoms. Such a system can be created by using two different atomic species and tuning the lattice

wavelength [71,72] or by using two states (“spins”) of the same species and tuning polarization. Part of this

thesis work was to develop a spin-dependent lattice to realize the latter implementation.

Spin-dependent lattices are created by rotating the polarization of the retro-reflected lattice beam 90◦ to

obtain a lin-⊥-lin lattice (§C.2.3), resulting in a lattice depth which is proportional to the atomic magnetic

moment, gFmF . For 87Rb, a mixture of the states |F = 1,mF = 0〉 (or |2, 0〉) and |1,−1〉 in a lin-⊥-lin

lattice realizes a system where a harmonically trapped gas (|1, 0〉) is in contact with a lattice gas (|1,−1〉).
Our work represents the first time a fully spin-dependent lattice was realized in all three-dimensions for a

lattice gas in the Hubbard regime6; previous work was in 1D [73–76]. Using a mixture, we demonstrated

the SF to MI transition with the lattice state while the other state was virtually unchanged. After realizing

the 3D spin-dependent lattice, we investigated probing the lattice gas with the impurity as described in the

next two paragraphs.

Impurity Thermalization (§8.1): Thermal contact is a necessary requirement to realize an impurity

thermometer using a spin-dependent lattice. Therefore, we investigated thermalization between the impurity

and the lattice gas. Based on several consistent results, we conclude that thermalization is poor between

these two systems. An obvious mechanism for poor thermalization is if the two gases are not physically in

contact with each other. We rule out separation on trap length scales by direct in-situ imaging. This still

leaves the possibility that the gases are separated on lattice length scales, which are difficult to spatially

resolve by imaging. Therefore, we developed a microwave spectroscopy technique (§4.1.6) that measures the

density distribution of the impurity by driving atoms from free states into lattice bound states (see also [76]

for microwave driving in spin-dependent lattices). Using this technique, we do not observe any concrete

evidence for phase separation.

In our first thermalization test (the ‘direct’ test), we create a mixture of spin states and measure the

impurity temperature as we turn on the lattice. We observe no change in the impurity temperature (Tim)

as a function of the lattice depth. Loading into the lattice adiabatically cools the lattice gas, so there is

a limited temperature gradient between the systems (∆T ≤ Tim). Therefore, we focused on methods for

heating the lattice gas. In the second test, we put energy into the lattice gas by parametrically oscillating

the lattice depth [77,78] and measuring the impurity condensate fraction as a function of the drive strength.

At higher lattice depths, the drive strength required to change the impurity condensate fraction by the same

amount also increases, indicative of reduced thermalization. To quantify this result, we need to know the

lattice temperature. However, we do not fully understand energy relaxation during parametric oscillation,

which is an area of current study [79–81].

In our final test of thermalization, we first dephase the lattice gas, which fills the band, and then mea-

sure the impurity condensate fraction versus time after the dephasing. We convert condensate fraction to

temperature and fit to a line to get the heating rate, which decreases monotonically with lattice depth. This

test can be directly compared to theory since the initial conditions are characterized; a filled band effectively

63D state-dependent lattices are created in the MOT and give rise to sub-Doppler cooling processes. However, the MOT
lattice is not providing the trapping force and the atoms in the MOT are not described by a Hubbard model.
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corresponds to Tlatt = ∞ for a single-band uniform lattice. Therefore, we perform a Fermi’s golden rule

calculation of the energy-exchange rate for Tlatt = ∞ and Tim = 0. The calculated energy-exchange rate

follows the same trend as the experimental data, and implies that poor thermalization is caused by the mis-

match between the lattice and harmonic dispersion relations. This experiment has important implications

for impurity thermometry and for constraining cooling proposals that rely on thermal contact between the

lattice gas and a reservoir.

Impurity Transport (§8.2): A direct method to probe interactions between two systems is to initialize

relative center-of-mass (COM) motion and measure the resulting decay of the motion caused by collisions.

Here we explore collisions between the impurity and the lattice gas by starting in-trap COM oscillations of

the impurity with the lattice gas at rest. Similar schemes in 1D tubes [82,83] have been shown to probe the

static and dynamic structure factors. In this experiment, we let the impurity oscillate over several periods

through the 3D lattice gas and measure the decay rate of the oscillation. In thermal gases this decay rate is

a direct measure of the thermalization time [84], and in harmonically trapped condensates damping is the

result of both non-linear mean-field dynamics and binary collisions [85]. We measure that the decay rate

decreases to nearly zero (normalized to the single component decay rate) as we approach the MI transition.

One possibility is that this rate is probing the excitation spectrum which is becoming gapped. It has also

been suggested that number fluctuations in the lattice gas, which are Poissonian at low lattice depths, but

zero in the MI regime, may appear as a disordered potential for the impurity [86, 87] and dephase the os-

cillations. This result may reveal important information regarding thermalization of the impurity and may

also be an important probe for the excitation spectrum for quantum simulation to satisfy ingredients (3)

and (4).

2D Fermi-Hubbard Apparatus with Single-Site Imaging Resolution (§3.2): A separate com-

ponent of this thesis was developing (including design, construction, and testing) a 40K 2D optical lattice

apparatus7 (§3.2). This apparatus is specifically designed to achieve single-site imaging [57, 58] and manip-

ulation of a 2D degenerate Fermi gas in an optical lattice and will help satisfy ingredients (2) and (3) of

quantum simulation for the 2D Fermi-Hubbard model. Single-site imaging will allow us to measure impor-

tant particle-hole and spin statistics to identify the predicted antiferromagnetic correlations. Once achieved,

single site manipulation will allow doping to explore the parameter regime where d-wave superconductivity

is thought to occur. While this apparatus has not yet realized a degenerate lattice gas, progress during this

thesis includes: constructing the physical apparatus (including the lasers, control, magnetic trapping, and

vacuum system), realizing a 40K MOT, and demonstrating transport of 40K atoms from the MOT chamber

to the final science chamber where the degenerate gas will be prepared. A specific experiment performed as

part of this thesis work was realizing a 405nm MOT for 40K.

4S → 5P K MOT at 405nm (§E.3, [88]): A unique feature of the 40K apparatus is that we plan on

imaging using fluorescence from the 4S → 5P transition at 405nm (see Fig. A.1). Compared to standard

imaging on the 4S → 4P transition at 767nm, 405nm imaging can achieve a higher resolution since the

Rayleigh criterion scales as λ (Eqn. F.4). Also, for single site imaging, which requires fluorescence collection

times on the order of seconds for a sufficient signal-to-noise ratio, the excitation light needs to simultane-

ously perform laser cooling. Since the linewidth of the 405nm transition is approximately six times less than

7This work was completed in the group of Joseph Thywissen at the University of Toronto.
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767nm, we expect enhanced Doppler cooling.

To exploit this transition, we developed a 405nm laser system based on GaN diode lasers locked to the

4S → 5P transition of 39K and capable of delivering 30mW of single-mode light to the MOT chamber.

Using this light we demonstrated the first free-space laser cooling on this transition for K; similar work on

the nS → (n + 1)S transition has been performed for He∗ [89, 90] and 6Li [91]. We observe an almost ten

times increase in density and temperatures as low as 63(6)µK. The combined temperature and density im-

provement in the 405 nm MOT corresponds to a twenty-fold increase in phase space density over our 767 nm

MOT. This is an important first step towards developing our high-resolution imaging probe for simulating

the 2D FH model.

In addition to the sections detailing these specific experiments, §2 is an overview and background of

ultracold atoms in optical lattices, §3 and §4 give an overview of our quantum simulation toolkit (including

elements developed in this thesis), and §5 discusses theoretical tools used and developed to complement

our quantum simulator. Background information, technical details (i.e., calibrations, code and circuits),

derivations, and supporting calculations are covered in the Appendix.
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Chapter 2

Strongly Correlated Atoms in Optical
Lattices

In this thesis, I use ultracold atoms trapped in optical lattices as a quantum simulator for the Hubbard model.

This chapter is a background on ultracold atoms, optical lattices, and the Hubbard model as a foundation for

the experimental work discussed later. As briefly mentioned in the introduction, ultracold atoms are ideal

candidates for quantum simulation because they are quantum particles with configurable potentials (§2.1.1)

and simple, tunable interactions (§2.1.2). To trap atoms in an optical lattice, we first create a degenerate gas

in a harmonic trap. In section §2.2, we review the properties and theory of atoms in harmonic traps. Next,

the atoms are adiabatically loaded into an optical lattice formed from the interference of several laser beams

(§C). In the optical lattice, the atomic states form a band structure and the wavefunctions are localized to

lattice wells. Combined with the atomic interactions this system realizes the Hubbard model. These topics

are detailed in §2.3. Finally, we discuss the properties of this model in §2.4

2.1 Ultracold Atoms

Although there is no precise definition, ultracold atoms are approximately atoms with a center-of-mass tem-

perature, typically T < 1µK, sufficiently low that the de Broglie wavelength is comparable to the interparticle

spacing. In the regime satisfying this condition, the atoms must be described quantum mechanically and are

thus quantum particles1 . A limiting factor to attaining the ultracold regime is that nearly all atomic species

solidify at significantly higher temperatures. To avoid this issue, systems of ultracold atoms are very dilute,

and thus are metastable to forming a solid and/or deeply bound molecules. In some cases (e.g., the strongly

repulsive gas), these timescales limit current experimental progress [92]. The variety of atomic species that

have been cooled to the ultracold regime continues to increase. However, the majority of experiments utilize

alkali metal atoms for technical feasibility and optimal atomic properties. The work in this thesis involves

two such atoms, 87Rb and 40K, the properties of which are detailed in §A.

The standard protocol for preparing ultracold atoms is laser cooling and collection in a magneto-optical

trap (MOT), followed by evaporative cooling in a conservative trapping potential (see Fig. 1.3). In laser

cooling, atoms slow down by absorbing photons from a laser beam. The atoms preferentially absorb from

one of a pair of counter-propagating beams because they are Doppler shifted into resonance. The MOT

provides an additional mechanism to make the absorption spatially dependent and provide a restoring force

for trapping; for more theoretical details see §B.8.2 and §E. Experimental details for the MOTs in this

thesis are given in §3.1, §3.2.6 and §E. This process needs to be performed in an ultrahigh vacuum system

1Atoms are “cold” (T . 1mK) when 2-particle interactions must be described using quantum mechanics (i.e., quantum
scattering). A broader definition of ultracold atoms are atoms cooled into the regime where quantum collisions are restricted
to s-wave scattering (T . 100µK). See §2.1.2 for details.
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to thermally isolate the atoms and prevent collisions with residual gases. The original source of the atoms

is either a slow atomic beam [93] or room-temperature vapor [94]. In all our experiments, we load from a

vapor produced by heating a small metal dispenser which activates a chemical reaction, thereby releasing

the atomic gas into the vacuum system. Once ≈ 109 atoms are collected in a MOT they are transferred to a

conservative potential (see §2.1.1) in a vacuum region with minimal residual gas (P< 10−11 Torr), and the

temperature is further reduced by evaporative cooling. This involves selectively removing the highest energy

atoms, and then collisions re-thermalize the gas to a lower temperature (see [21], §3.2.8). The atoms enter

the ultracold regime after sufficient evaporative cooling.

As quantum particles for quantum simulation, ultracold atoms have a number of advantages. First, since

atoms are composite particles comprised of spin- 1
2 electrons, neutrons and protons, they can be either bosons

(total integer spin) or fermions (total half-integer spin). Therefore, they can be used to simulate models

with either type of quantum statistics. We exploit this fact in this thesis since 87Rb is a boson and 40K is

a fermion. Another advantage is that atoms have a number of internal states and can be initialized into an

arbitrary coherent or incoherent mixture of these states. Experiments with atoms in a mixture of states can

simulate multi-component models. Specifically, mapping states to pseudospins simulates spin-models. This

is important since at least two states are required to simulate non-trivial fermion models such as the Fermi-

Hubbard model2. Atoms interact with electromagnetic fields (§B), which allows us to probe the simulation

results (§4.1) and create electromagnetic potentials to confine the atoms and influence the simulation model.

The next section will explore this topic in more detail. Finally, ultracold atoms are interacting, which

is a feature of most classically unsolvable models. These interactions are well-approximated by a contact

potential characterized by a single parameter, the s-wave scattering length. Importantly, this parameter can

be tuned from −∞ to +∞ using a single experimental knob. These tunable interactions are discussed in

more detail in §2.1.2.

2.1.1 Tailored Potentials

Atoms interact with electromagnetic fields predominantly via the magnetic-dipole and electric-dipole in-

teraction (Eqn. B.1). When these fields are resonant with the energy difference between internal states,

this interaction drives atomic population coherently between these states (see §B.4). When the fields are

off-resonance, the interaction causes energy shifts in the states. If these shifts are spatially dependent, then

a conservative potential is formed for the atoms. Two types of fields create the strongest potentials — DC

magnetic fields, and AC electric fields oscillating at optical frequencies (light).

DC magnetic fields (§B.2) create strong shifts because the atomic ground state, labeled by the quantum

numbers |F,mF 〉 (see §A.1 for details), have a permanent magnetic dipole. For sufficiently slow moving

atoms, the potential is

V (~x) = µBmF gF | ~B(~x)|. (2.1)

AC magnetic fields can also form potentials directly [95] or by dressing [96], but these are more specialized

and not relevant to this work. The simplest type of magnetic field for trapping atoms is created by running

current in opposite directions through a pair of coils (see Fig. 2.1). Close to the center of the coils, the field

2Fermions in the same state do not interact at the temperatures of interest; see §2.1.2.
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Figure 2.1: (a) Quadrupole coil pair separated by a distance 2L and with coil radius R. Each coil has equal
and opposite current I and N turns of wire. (b) Contour plot of the quadrupole field magnitude in Gauss and
arrows illustrating the local field direction for typical experimental parameters: N = 100 turns, I = 20A,
L = 10cm, and R = 10cm. There is no field coming out of the page and the field is symmetric about the
y axis. (b) Field magnitude for a 1D slice along x for y = 0. The maximum field along this direction is
≈ 45G. For small |x|, the field is well-described as linear in |x| as given by Eqn. 2.3. The gradient along this
direction is 13.3G/cm and twice as strong in the other direction.

16



is (symbols defined in Fig. 2.1),

~B(~x) =
3

2
NIµ0

R2L

(R2 + L2)5/2
(xx̂+ yŷ − 2zẑ) (2.2)

| ~B(~x)| =
3

2
NIµ0

R2L

(R2 + L2)5/2

√

x2 + y2 + 4z2 (2.3)

which has a field zero at the center and increases linearly outwards. This is known as a magnetic quadrupole

field and confines atoms with states mF gF > 1 (weak-field seeking states)3. From Fig. 2.1, the depth of a

typical trap is 45G and the trap size has centimeter length scales. For gFmF = 1, this corresponds to a

trap depth of T = V/kB = 3mK. Therefore, magnetic traps are characterized by large depths and volumes

and so are optimal for initial trapping of atom clouds out of the MOT. As we cool atoms in a quadrupole

trap, they collect near the zero-field region where they have a high probability of diabatic spin transitions

and subsequent ejection from the trap (see §B.2). This loss process, called Majorana loss, implies that the

quadrupole trap is not suitable for ultracold atoms. Instead, we require a trap with a non-zero magnetic

field minima. This type of trap, known as a Ioffe-Pritchard (IP) trap, has a field magnitude (nearby the

minimum) of,

|B| = |B0| +Axx
2 +Ayy

2 +Azz
2 (2.4)

where Ai are the field-magnitude curvatures. IP traps are designed such that Ai > 0, and therefore form

a harmonic trap. The relation of B0, Ai to the physical parameters depends on the specific configuration

(see [43], for example). With the exception of the fields close to patterned magnetic surfaces [97], magnetic

traps for sufficiently small gases can be described as either quadrupole (Eqn. 2.3) or harmonic (Eqn. 2.4).

The other type of potential for ultracold atoms, a “dipole-potential” (§B.5), is due to light interacting

with the atom via the electric-dipole interaction. The light induces an electric dipole in the atom by coupling

the ground state to an electronic excited state, and this dipole interacts with the electric field of the light.

The potential is therefore proportional to the intensity of the field. Additionally, to determine the full

potential we must consider all possible excited states as shown in Eqn. B.58. For alkali atoms, the potential

from a linearly polarized light field with intensity I and frequency ω is

V (~x) =
πc2Γ

2ω3
0

(

2

∆D2
+

1

∆D1

)

I(~x), (2.5)

where ∆D1(D2) = ω − ωD1(D2) is the detuning of the light frequency from the atomic D1 (D2) transition

and Γ is the decay rate from the excited state. The values for ωD1(D2) and Γ are given by Fig. A.1 for
40K and Fig. A.2 for 87Rb. The above equation assumes the detuning is larger than the hyperfine splitting,

which is almost always the case, and ignores so-called counter-rotating terms. This potential is discussed

in more detail in §B.5, and the full potential for arbitrary polarizations is given by Eqn. B.60. However,

Eqn. 2.5 retains most of the essential features of the dipole potential. First, the dipole potential can be

either attractive (∆ < 0, “red-detuned”) or repulsive (∆ > 0, “blue-detuned”), depending on the sign of the

detuning. Furthermore, for linear polarizations and/or large detunings, the potential is state-independent.

This expands the number of trappable states and decouples the state degree-of-freedom from the potential

which allows, for example, the exploration of state-dependent interactions [98].

3There are no traps with magnetic field maxima by Earnshaw’s theorem.
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Importantly, since the potential is proportional to the intensity of an optical field, we can create features

in the intensity on the order of λ = c/ω ≈ 1µm as limited by diffraction theory. The most straightforward

potential is obtained by focusing a single-mode laser beam, which has an intensity near the focus of [99,100]

I(~x) =
2Pz2

0

πw2
0 (z2

0 + z2)
exp

[

−2
r2z2

0

w2
0(z

2 + z2
0)

]

, (2.6)

where z0 is the Rayleigh length (Eqn. C.44), w0 is the beam waist, P is the beam power, z is the coor-

dinate along the beam propagation axis, and r is the radial coordinate orthogonal to z. The potential is

harmonic close to the focus (see Eqn. C.48), with strong confinement perpendicular to the beam axis and

weak confinement along the beam. For typical experimental parameters — λ = 1064nm, 87Rb, P = 1W,

and w0 = 100µm — the trap depth is kB × 9.7µK (including counter-rotating terms), and the harmonic trap

frequencies are νr = 97Hz and νz = 0.2Hz. Therefore, the dipole potential is shallow compared to the mag-

netic potential. Another possibility is to combine these two types of traps. For example, a repulsive optical

dipole trap focused to the center of a magnetic quadrupole — a “plugged” quadrupole [101] — prevents

Majorana losses (see §3.2.9). Another hybrid potential, used in the 87Rb apparatus and detailed in §3.1, is

a single-beam dipole potential focused below the center of a magnetic quadrupole [102,103]. The off-center

quadrupole provides harmonic confinement along the weak axis of the dipole potential and offsets gravity

along the vertical axis. One disadvantage of optical traps is that they are not perfectly conservative. Photon

scattering via spontaneous emission causes heating; see §B.8.1 and §C.4 for details. The heating rates scales

as ∆−2, and so it can be made negligible by using large detunings.

s

d

(a)

(b)

y

x

s

Figure 2.2: (a) A standing wave intensity pattern is created by retro-reflecting a light beam. Here the
intensity is proportional to cos2(kx), where k = 2π/λ is the wavevector. The distance between intensity
maxima (minima) is d = λ/2, which is the lattice spacing. The depth of the optical lattice potential is
s × ER, where ER = (hk)2/2m is the recoil energy (ER = kB × 172nK for 87Rb and λ = 800nm). If the
lattice is red(blue)-detuned the atoms reside near the intensity maxima (minima). (b) Incoherently adding
two orthogonal standing waves creates a 2D lattice potential.
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Since the optical potential is proportional to the intensity (i.e., the squared modulus of the electric

field), an interesting class of potentials arise from the coherent addition of two or more optical fields. The

simplest of these is to retro-reflect a single beam, which creates a periodic standing wave in intensity and

a periodic potential as illustrated in Fig. 2.2. This is the basis of the optical lattice potential described in

detail in §C. For multiple fields at different frequencies, the coherent (interference) terms oscillate at the

frequency difference and, if large enough, these terms will time average to zero. Then the total potential

is the incoherent sum of the potentials from each individual field. For example, if we have retro-reflected

beams along three orthogonal directions with slightly different frequencies then the potential is,

V (~x) = ER

[

sx cos2(kx) + sy cos2(ky) + sz cos2(kz)
]

(2.7)

where k = 2π/λ is the wavevector of the light, and si are the lattice depths (in ER) along each direction.

Often in experiments, sx = sy = sz = s, and Eqn. 2.7 is a 3D cubic lattice potential. By adjusting the overall

and relative strengths of si, this potential can also be utilized to explore physics in lower dimensions. If

sx � sy, sz then the atoms are restricted to moving in a series of 2D planes and similarly if sx, sy � sz then

the atoms move in 1D tubes. Beyond the cubic lattice, more advanced interference geometries can realize

hexagonal [104], triangular [105], kagome [106], honeycomb [107] and superlattices [108, 109]. Additionally,

by adjusting the relative polarization of the interfering beams the lattice depth can be state-dependent.

A specific configuration is when forward and retro-reflected beams are linearly polarized, but rotated with

respect to one another by an angle θ (i.e., a lin-θ-lin lattice; see §C.2). In this thesis work, we implement

and utilize a lattice where θ = π/2 (lin-⊥-lin), which has a fully state-dependent lattice potential depth:

s ∝ gFmF (§3.1.2, §8). Finally, a special type of interference pattern, optical speckle, is generated by

interfering beams from many directions with random phases. This speckle field has a very short correlation

length and can be used to simulate disorder in physical materials. This is part of another research direction

in the Illinois group, but not a specific aspect of this thesis (see [41,110]).

2.1.2 Tunable Interactions

Alkali atoms interact via a van der Waals potential V = −C6/r
6 at long range and a highly repulsive ex-

change potential at short range. This interaction is spherically symmetric in the relative coordinate between

the atoms. Since the free-space eigenstates, |F,mF 〉, are mixed in the interaction region, a given pair of

atoms in states |F1,mF1〉, |F2,mF2〉 are coupled to a number of different Born-Oppenheimer potentials, re-

ferred to as channels. This situation is illustrated in Fig. 2.3.

At sufficiently low temperature4, the effect of the interaction potential must be treated using the formal-

ism of quantum scattering (see e.g., [112]). Since the potential is spherically symmetric, we can decompose

the scattering into spherical waves of total angular momentum l. The strength of the interaction is charac-

terized by the lth-wave phase shift δl where δl = 0 corresponds to no interaction. The collision cross-section

for particles of relative wavenumber k is

σ =
4π

k2

∑

l

(2l + 1) sin2(δl). (2.8)

4T < TvdW = kB × EvdW (EvdW is the van der Waals energy), where TvdW ≈ 300µK for 87Rb and 1mK for 40K [111].
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Figure 2.3: (a) The interaction potential between two alkali atoms. Typical length scales of the interaction
region are a few nanometers (grey shaded region). For atoms in free-particle eigenstates (spin “up” or
“down”), there is a particular interatomic potential (blue curve, open channel), but this is coupled to
the potential for other states (red curve, closed channel) since the states are mixed in the interaction
region. A schematic representation of the radial wavefunction in the open channel (rΨ) is shown, which is
asymptotically sinusoidal. The scattering length a is the distance from the origin to where the asymptotic
rΨ is 0. (b) For an attractive square well potential, which qualitatively displays the same features as the
atomic potential, the scattering length changes as the depth of the potential is adjusted. In particular, the
scattering length varies through ±∞ as a bound state appears. A similar resonance (Feshbach resonance)
occurs when a bound state in a (coupled) closed channel is equal to the free particle energy.
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For l 6= 0 scattering there is a centrifugal barrier with potential energy

~
2

2m

l(l + 1)

r2
. (2.9)

If the initial kinetic energy is not sufficient to overcome this barrier, then the atoms cannot reach the inter-

action region, and δl → 0, σ → 0. This is true at ultracold temperatures, which implies that only s-wave

(l = 0) interactions are relevant. Since the s-wave state is symmetric under particle exchange, fermions in

the same state do not have s-wave interactions.

The s-wave scattering phase is more conveniently represented as a length

− a = lim
k→0

tan(δ0)

k
. (2.10)

The scattering length is where the free-particle radial wavefunction (rΨ) asymptotically crosses through

zero, as illustrated in Fig. 2.3. The cross-section is

σ = (f + 1)
4πa2

1 + k2a2
, and (2.11)

σ|ka|�1 = (f + 1)4πa2, (2.12)

where f = ±1 for identical bosons (fermions), and f = 0 for distinguishable particles. The scattering

length is a sensitive function of the potential and typically must be determined by experimentally measured

parameters. For example, if we approximate the potential as an attractive spherical well of depth V0 (with

k0 =
√

2MV0/~2) and size r0 then [113]

a = r0

(

1 − tan (k0r0)

k0r0

)

, (2.13)

which is plotted in (b) of Fig. 2.3.

A resonance in a occurs when k0r0 = (1+2n)π/2, which corresponds to the formation of a bound state in

the potential on the a > 0 side of resonance with energy −1/a2. Therefore, we can tune the scattering length,

and therefore interactions, by changing the potential depth. While we cannot directly change the depth, we

can change the relative depth between different coupled channels since each may have a different magnetic

moment. In this way, a bound state in the closed channel (red curve in Fig. 2.3) crosses the energy of the

free-particle in the open channel, and the scattering length also goes through a resonance. This “Feshbach”

resonance can be characterized as a magnetic field dependent scattering length [111]

a(B) = a0

(

1 +
∆

B −B0

)

, (2.14)

where a0 is the background scattering length, ∆ is the resonance width and B0 is the resonant field. These

parameters are summarized for the atoms used in this thesis in Table A.3. The availability of a Feshbach

resonance for tuning the interactions is a main advantage for simulations with ultracold atoms.

It is inconvenient to use the full atomic interaction potential for calculating the resulting many-body

21



effects of the interaction. We can replace the true potential with a pseudo-potential [114]5,

V (r) =
2πa~2

m̃
δ(r)

∂

∂r
r,

= gδ(r)
∂

∂r
r, (2.15)

where m̃ is the reduced mass (m̃ = m/2 for particles of the same mass). If we consider changes in the

wavefunction to first-order in the interaction, then we can leave out the regularization term ( ∂
∂r r), and

V (r) ≈ gδ(r). (2.16)

For example, the first order energy shift due to the interaction from Eqn. 2.16 is linear in a, which cannot

be obtained perturbatively from the true potential. This highlights the importance of a in characterizing

interactions in the many-body system.

Despite the many advantages of alkali interactions, they are not suitable for simulating certain models

with anisotropic or long-range interactions, such as 1/r3 dipole-dipole-type interactions6. However, different

types of ultracold atoms with large magnetic dipole moments, such as Dy [115], Er [116] and Cr [117], and

ultracold molecules with large electric dipole moments, such as Rb-K, have promise for exploring these types

of interactions. A more fundamental limitation resulting from interactions are inelastic loss processes. Since

alkali potentials support deeply bound states, free particles are not the true ground state and are therefore

metastable to forming molecules and ultimately solids. For bosons, this rate scales as a4 [118] and limits

the ability to explore strongly interacting Bose gases. For free fermions on the repulsive branch (a > 0),

the rate scales as a6 [118]. Fortuitously, if fermions are paired in the bound state formed on the a > 0 side

of the Feshbach resonance, the loss rate scales as a−2.5 [119]. Additionally, these loss processes require a

three-particle collision and so can be suppressed by using low density samples.

2.2 Ultracold Atoms in Harmonic Traps

The starting point of quantum simulation with ultracold atoms is preparing the gas in a harmonic trap.

Additionally, this is where the thermodynamic state of the system is characterized before superimposing the

lattice. Therefore, it is important to understand the theory of the gas in a harmonic potential, both for

practical purposes and as a foundation for quantum simulation. Furthermore, the theory of the harmonic

gas elucidates concepts that will also be relevant to more complicated Hubbard model physics.

2.2.1 Non-Interacting Atoms: Bose-Einstein Condensation and Fermi

Degeneracy

As with any system, we start with a simplified case: no interactions. While this may seem overly trivial,

non-interacting theory includes quantum statistics, which gives rise to non-trivial properties. Also, while the

theory will fail for the strong interactions necessary for quantum simulation, there is usually some part of the

system (i.e., a low density region at the edge of the trap) for which the non-interacting description is valid

5The pseudo-potential is valid outside the interaction region.
6Dipole-dipole interaction effects can be observed for alkali atoms, but the energy scales are very low.
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and important for measuring global properties, such as temperature and chemical potential. In describing

the non-interacting gas in the harmonic trap I will focus on two aspects: the single-particle wavefunctions

and thermodynamics.

Solving for the eigenstates and eigenvalues of the harmonic oscillator is detailed in any standard quantum

textbook (i.e., [120]) with the well-known result,

En = ~ω

(

n+
1

2

)

(2.17)

a2
ho =

~

mω
(2.18)

ψn(x) =
(

π22na2
ho(n!)2

)−1/4
e−x2/2a2

hoHn

[

x

aho

]

, (2.19)

where Hn are the Hermite polynomials, and aho is the harmonic oscillator length. The most important

wavefunction ψn(x) is for the ground state n = 0,

ψ0(x) =
(

πa2
ho

)−1/4
e−x2/2a2

ho , (2.20)

which is Gaussian. From these states we can construct the mean value of a general operator O,

〈O〉 =
∑

n

(

e(En−µ)/kT ± 1
)−1

〈ψn|O|ψn〉 (2.21)

and any thermodynamic quantity starting from the grand canonical potential7

Ω = ∓kBT
∑

n

log
[

1 ± e(En−µ)/kT
]

, (2.22)

for either bosons (−) or fermions (+).

This method is completely general, but there is a simpler approach: the semiclassical approximation. In

this approximation, ~x and ~p are treated as classical variables, so that,

〈O〉 =
1

h3

∫

d3xd3p O(x, p)
[

e(p
2/2m+V (x)−µ)/kT ± 1

]−1

, (2.23)

Ω = ∓kBT
1

h3

∫

d3xd3p log
[

1 ± e(p
2/2m+V (x)−µ)/kT

]

. (2.24)

The prefactor, h−3, is the volume in phase space8 per minimum uncertainty quantum state. For example,

we can use the semiclassical approximation to determine the mean density,

n(x) =
1

h3

∫

d3p
(

e(p
2/2m+V (x)−µ)/kT ± 1

)−1

, (2.25)

= ∓λ−3
T Li3/2

[

∓e−(V (x)−µ)/kT
]

(2.26)

7The entropy is S = − ∂Ω

∂T
.

8Phase space refers to the combined x,p coordinate system.
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where Lin[x] =
∑∞

i=1
xi

in is the polylogarithm function and

λT =

√

h2

2πmkT
(2.27)

is the thermal de Broglie wavelength, which is an important defining characteristic of the system. First, the

de Broglie wavelength defines the peak phase-space density

ρ0 = n0λ
3
T , (2.28)

where n0 is the peak spatial density. This quantity, ρ0, roughly determines the number of particles in the

quantum ground state, which in turn determines the relative importance of quantum statistics. Also, the de

Broglie wavelength is a good indication of quantum motion, and subsequently when λT is smaller than the

characteristic length scale of the potential (i.e., aho for the harmonic trap), the semiclassical approximation

is valid.

Bosons and fermions display different behavior when ρ0 → 1 and quantum statistics become important.

For bosons, the ground state becomes macroscopically occupied via a phase transition known as Bose-Einstein

condensation (BEC), which occurs when T < TC . For the 3D harmonic potential

TC =
0.94~ωN1/3

kB
(2.29)

where N is the total number of particles. For fermions, the Pauli exclusion principle dictates that the

maximum state occupancy is 1. As T → 0, the N lowest energy states become occupied with exactly one

particle, and the energy of the system is finite. The energy of the highest occupied state EF is the Fermi

energy. For a 3D harmonic potential,

EF = ~ω(6N)1/3. (2.30)

Since state occupancies start to approach 1 when T < TF = EF /kB , below TF the system is referred to as

a degenerate Fermi gas (DFG). The low temperature thermodynamics can be written as functions of the

reduced temperature, T̃ = T/TC for bosons and T̃ = T/TF for fermions. Some of these thermodynamic

quantities for the 3D harmonic potential are to lowest order in T̃ (top bosons, bottom fermions9),

S

kBN
=

{

3.6T̃

π2T̃
, (2.31)

U

N
=

{

2.7kBTC T̃
4

3
4EF

(

1 + 2π2

3 T̃ 2
) , (2.32)

N0

N
= 1 − T̃ 3. (2.33)

where S is the entropy and U is the total energy. The last property is the condensate fraction, which is the

fraction of atoms in the macroscopically occupied state, which applies only to the bosonic systems. BEC

and DFG are not theoretical constructs — both have been observed with ultracold atoms: BEC in 1995 [22]

and DFG in 1999 [121].

9For fermions these are the Sommerfield expansions.
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2.2.2 Weak Interactions

Since all real systems have and need interactions to satisfy the ergodicity that validates thermodynamics,

the next level of theory is to consider weak interactions. The difficulty with interactions, and why they lead

to unsolvable models, is that unlike for non-interacting systems, the wavefunctions and state occupancies

are coupled. In general, we need to solve for the complete N-particle wavefunctions that must be properly

(anti-)symmetrized for (fermions) bosons. For this problem, it is more convenient to use operators that

act directly on the many-body state instead of on individual particles. These second-quantized operators

have the exchange symmetries explicitly built-in. For example, the operator ai, acting on the many-body

wavefunction, |n1, n2, · · · , ni · · · 〉 removes a single particle from the system in mode i,

ai |n1, n2, · · · , ni, · · · 〉 =
√
ni |n1, n2, · · · , ni − 1, · · · 〉 . (2.34)

The quantum statistics of the operators are based on the commutation relations for Bose operators [122]

[

ai,a
†
j

]

= δij , (2.35)
[

a†
i ,a

†
j

]

= 0, (2.36)

[ai,aj ] = 0, (2.37)

and anti-commutation relations for Fermi operators

{

ai,a
†
j

}

= δij , (2.38)
{

a†
i ,a

†
j

}

= 0, (2.39)

{ai,aj} = 0. (2.40)

In this second-quantized notation, the grand canonical Hamiltonian is [123],

H =
∑

σ

∫

d3x Ψ†
σ(~x)

(

− ~
2

2m
∇2 + V (~x) − µσ

)

Ψσ(~x) +

∑

σ,σ′

∫

d3xd3x′ Ψ†
σ(~x)Ψ†

σ′(~x
′)

[

gσ,σ′δ(~x− ~x′)
∂

∂|~x− ~x′| |~x− ~x′|
]

Ψσ(~x)Ψσ′(~x′) (2.41)

where σ indexes the spin, and Ψσ(~x) =
∑

i Ψi(~x)ai is the field operator which removes a particle at position

~x. The term inside the square brackets [· · · ] is the regularized interaction pseudo-potential Eqn. 2.15 and

V (~x) is the single-particle potential. If we drop the regularization term in the interaction,

H =
∑

σ

∫

d3x Ψ†
σ(~x)

(

− ~
2

2m
∇2 + V (~x) − µσ

)

Ψσ(~x) +

1

2

∑

σ,σ′

gσ,σ′

∫

d3x Ψ†
σ(~x)Ψ†

σ′(~x)Ψσ′(~x)Ψσ(~x) (2.42)
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Complete solutions to Eqns. 2.41 and 2.42 are generally unattainable, and therefore we utilize a number

of approximations. Before delving into specifics, we would like to highlight two important approximations.

The first approximation is self-consistent mean-field theory. Here we obtain an effective single particle

Hamiltonian for the σ particles

Hσ = − ~
2

2m
∇2 + V (~x) − µσ + (f + 1)gσnσ(~x) +

∑

σ′ 6=σ

gσ,σ′nσ′(~x) (2.43)

where f = 1 for bosons and f = −1 for fermions, representing the exchange term for the interaction and

resulting in no interactions for identical fermions. This Hamiltonian is inadequate for a condensed system,

as discussed next. The self-consistency condition is that we must solve Eqn. 2.43 to get the single particle

eigenstates and eigenvalues, and then use Eqn. 2.23 to determine the density terms appearing in Eqn. 2.43,

and iterate until the density converges. Another common approximation, useful for bosons and fermions, is

to treat the potential as a slowly varying chemical potential. We then solve Eqn. 2.42 for a uniform system

with chemical potential µ̃, for example to determine the density n[µ̃]. Then the spatial density variation is

n(~x) = n[µ0 − V (~x)], (2.44)

which is known as the local density approximation (LDA). In the following, we will look at some specific

cases for single component bosons and two-component fermions.

For a condensed system of single-component bosons there is macroscopic occupation of the single-particle

ground state Φ(~x). Because of the large number of particles in this low energy mode, the condensate density

is high and interactions become important. However, the presence of a dominant mode in the wavefunction

simplifies our approach to solving Eqn. 2.42. Once we solve for Φ(~x), we can expand Eqn. 2.42 around

low-order Φ(~x) terms. This standard method, and its various approximations, have been well-established

over the course of numerous theoretical treatments and are summarized in e.g., [123–125]. The starting point

for these solutions is to rewrite the field operator as

Ψ(~x) = Φ(~x) + Ψ̃(~x) (2.45)

where Ψ̃(~x) is the field operator for all atoms not in the condensate (〈Ψ̃(~x)〉 = 0). To solve for Φ(~x) we

substitute Eqn. 2.45 into Eqn. 2.42, and write out the Heisenberg equations of motion for the operator,

i~
∂Φ(~x, t)

∂t
= 〈[H,Ψ(~x, t)]〉 (2.46)

If we make the Hartree-Fock-Bogoliubov-Popov approximation10 [124], then the above reduces to the Gross-

Pitaevskii equation [123]

[

− ~
2

2m
∇2 + V (~x, t) − µ+ g

(

|Φ(~x, t)|2 + 2nT (x)
)

]

Φ(~x, t) = i~
∂Φ(~x, t)

∂t
(2.47)

[

− ~
2

2m
∇2 + V (~x) + g

(

|Φ(~x)|2 + 2nT (x)
)

]

Φ(~x) = µΦ(~x) (2.48)

10In this approximation 〈Ψ̃(~x)Ψ̃(~x)〉 = 0 and 〈Ψ̃
†
(~x)Ψ̃(~x)Ψ̃(~x)〉 = 0.
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where nT (~x) = 〈Ψ̃†
(~x)Ψ̃(~x)〉 is the density of atoms not in the condensate11; to zero-order nT is given by

the non-interacting semi-classical expression Eqn. 2.26. When nT ≈ 0 (T → 0 and na3 � 1) the condensate

density for a uniform system is |Φ|2 = µ/g. To solve for Φ in a 3D harmonic trap we use the Thomas-Fermi

approximation (ignore kinetic energy i.e., ∇2 → 0) and find

|Φ(x)|2 =







µ− 1
2 mω2x2

g , x ≤
√

2µ
mω2

0 , x >
√

2µ
mω2

. (2.49)

We can determine µ as a function of total number by integrating the density,

µ =
152/5

2

(

N0a

aho

)2/5

~ω, (2.50)

and the condensate size (the Thomas-Fermi radius) is,

r2TF = a2
ho152/5

(

Na

aho

)2/5

. (2.51)

The importance of taking interactions into consideration is highlighted by Eqn. 2.51. For typical experimen-

tal values (N = 1× 105, a = 100a0, ω = 2π × 50Hz, m = mRb), the ratio of the Thomas-Fermi (TF) radius

to the harmonic oscillator length aho (the ground state size in the non-interacting case) is approximately 14.

(a) (b)

Figure 2.4: The semi-ideal model for condensed bosons. (a) The effective single particle potential (grey
curve) for the non-condensate atoms for N = 105, N0/N = 0.47, ω = 2π × 50Hz, a = 100a0 and m = mRb.
The non-condensate density is also shown (red curve) corresponding to T/TC0 = 0.7 (TC0 = 104.75nK). (b)
The condensate fraction versus reduced temperature for the same parameters using the semi-ideal model
(blue circles) versus the non-interacting gas (black curve).

The next-order improvement for calculating nT (~x) at finite temperatures is to include the condensate

density calculated from the GP equation with nT set to zero (Eqn. 2.47), into the mean-field Hamiltonian

11nT 6= 0 when T = 0 for finite interactions because of quantum depletion. However, for weakly interacting alkali gases in
the harmonic trap this depletion is typically less than 1%.
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for the non-condensate atoms (Eqn. 2.43),

H = − ~
2

2m
∇2 + V (~x) − µ+ 2g|Φ(~x)|2. (2.52)

This is known as the semi-ideal model [123, 126, 127] and it takes into consideration the changes to the

effective potential experienced by the non-condensate atoms due to the mean-field repulsion from the con-

densate. It does not take into account interaction between non-condensate atoms or describe sound modes

(phonons) and therefore nT = 0 when T = 0. However, the semi-ideal model accurately describes the

interacting thermodynamics for the harmonically trapped gas. In the semi-ideal model, the thermal atoms

experience a potential that is a harmonic trap at the edges, but harmonically repulsive in the middle due

to interactions with the condensate (for g > 0). This potential and the thermal atom distribution is illus-

trated in Fig. 2.4. Solving this model using the semi-classical approximation and assuming a TF condensate

distribution (Eqn. 2.49), the thermodynamic quantities are (α =
√

µ/kT )

ξ[j] =
4
√
jα√
π

− e−jα2

erfi(
√

jα) + ejα2

erfc(
√

jα), (2.53)

Ω = kT

(

kT

~ω

)3 ∞
∑

j=1

ξ[j]

j4
, (2.54)

NT =

(

kT

~ω

)3 ∞
∑

j=1

ξ[j]

j3
, (2.55)

U =

(

kT

~ω

)3 ∞
∑

j=1

ξ[j]

j3

(

3kT

j
− µ

)

, (2.56)

S = −Ω

T
+
U

T
− µNT

T
, (2.57)

where µ is determined by the number of condensate atoms using Eqn. 2.50. These equations must be solved

self-consistently for fixed N and T . A primary effect of interactions between the condensate and the thermal

component is a shift in TC

TC ≈ TC,0

(

1 − 1.33
a

aho
N1/6

)

(2.58)

where TC,0 is the non-interacting TC (Eqn. 2.29). Using the same experimental parameters for calculating

the Thomas-Fermi radius, this corresponds to an approximately 3% negative shift. The semi-ideal model

also describes non-negligible interaction shifts in other thermodynamic quantities, for example the conden-

sate fraction (see Fig. 2.4) and entropy. The interacting thermodynamics is well-described by the semi-ideal

model; next-order effects such as Bogoliubov modes (phonons), interactions between thermal atoms and be-

yond mean field TC shifts [128] have a negligible role on harmonic trap thermodynamics for our experimental

parameter range.

There are a number of new complications when we consider solving Eqn. 2.41 for fermions instead of

bosons. For one, the essential nature of fermions is that the occupancy of any state is ≤ 1 (Pauli exclusion

principle), so the expansion around a single mode used for the bosonic solutions is generically not applicable.

Also, interacting fermions require at minimum two components, so the parameter space is greatly increased.

Solutions depend on the total and relative density of the two components. Furthermore, different compo-
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nents may form bound pairs, which can significantly alter the nature of the system since two fermions can

form a composite boson. An overview of the entire solution space is well beyond the scope of this work, so

we restrict ourselves to a weakly interacting two-component mixture with N↑ = N↓.

When the atoms are free and a > 0 (a = a↑,↓), this is a repulsive gas which is well-described by the mean-

field Hamiltonian Eqn. 2.43. As interactions increase beyond the weak limit considered here (kF |a| > 1),

it is conjectured that the repulsive gas is ferromagnetic due to the Stoner instability, however, the lifetime

of the gas is very short [92]. Tightly bound pairs can form for a > 0 due to the bound state in the inter-

atomic potential (see §2.1.2). These pairs act as effective bosons with a pair scattering length related to the

free-fermion scattering length, ã = 0.6a [119]. The gas of paired particles is well-described by the semi-ideal

model discussed for the Bose gas where a = ã and m = 2mF .

When the gas is free and weakly attractive (a < 0, kF |a| << 1), the bulk properties are described by the

mean-field Hamiltonian with the added possibility of forming weak pairs near the Fermi surface. Below the

temperature TBCS [129]

TBCS ≈ 0.28TF e
− π

2|kF a| (2.59)

the system transitions to a BCS-like superfluid [130].

One of the most active areas of study is fermions in the strongly interacting limit |kFa| > 1 and in

particular unitarity |kFa| → ∞. In these limits, more advanced techniques, e.g., Fermi-Liquid theory, are

required to solve Eqn. 2.41. In some areas of the parameter space, there are competing, unproven theoretical

solutions. Therefore, experiments in this limit are also quantum simulators, but not the subject of this thesis

(see i.e., [129,131]).

2.3 Ultracold Atoms in Optical Lattices

Once we create and characterize an ultracold gas in the harmonic trap, the next step towards quantum

simulation is to apply an optical lattice. Even in the case of the non-interacting gas, we will see that the

lattice has a large effect on the density of states. In particular, for a large enough lattice depth, the atoms

in the lattice are well-described by a basis with wavefunctions localized to each lattice well. Expanding out

the field operators in this basis and substituting into Eqn. 2.41 reveals the Hubbard model. However, this

description is not perfect, and I will note several limitations to this simulation. Furthermore, I will discuss

state-dependent lattices, which allow extensions to the simplest Hubbard model.

2.3.1 Non-Interacting Atoms in the Lattice: Band Structure

Single, non-interacting atoms in a uniform 3D cubic lattice are described by the Schrödinger equation

[

− 1

k2
∇2 + sx sin2(kx) + sy sin2(ky) + sz sin2(kz)

]

φ(~x) = Eφ(~x), (2.60)

where E is in units of ER and k = π/d (d is the lattice spacing). Since Eqn. 2.60 is separable along each

direction, we will limit ourselves to solving the 1D problem. We can apply Bloch’s theorem [8] because the
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n=0

n=1

n=2

(a) (b)

Figure 2.5: (a) As the lattice is applied (s = 1) the free particle dispersion (red curve) splits into bands
(black curves). (b) The bands are most commonly represented in the reduced zone scheme. At s = 10, the
bands have flattened considerably.

potential is periodic, giving

φq(x) = eiqx/~uq(x), (2.61)

where q is the quasimomentum (a good quantum number in the lattice), and uq(x) has the same periodicity

as the lattice. Substituting Eqn. 2.61 into Eqn. 2.60 we find

[

− 1

k2

(

1

i

d

dx
+
q

~

)2

+ sx sin2(kx)

]

uq(x) = Equq(x). (2.62)

We write out the potential and uq in a Fourier series as

sx sin2(kx) =
sx

2

(

1 + e−i(2k)x + ei(2k)x
)

(2.63)

uk(x) =
∑

j

bje
i(2kj)x, (2.64)

then the matrix form of Eqn. 2.62 is

Cb = Eqb, (2.65)

where

Cj,l = δj,l
1

k2

[

−(2jk)2 + q(2jk) + q2
]

+
sx

2
(δj,l + δj,l−1 + δj,l+1) . (2.66)

To solve these equations numerically, we truncate the Fourier series at some finite j, typically |j| ≤ 10.

For a given value of q, solving these equations gives a number of discrete energy levels the we call “bands”

(labeled by n); the solutions are also periodic in 2qB (qB = ~π/d). The single non-periodic region of q

(−qB < q < qB) is known as the Brillouin zone. The dispersion relations, E vs. q, for the lattice are shown

in Fig. 2.5. As the lattice depth increases, the bands flatten since the particles have little kinetic energy via

tunneling. At the very bottom of the band, the dispersion is still quadratic and the atoms have an effective
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mass

m∗ =

(

∂2E

∂q2

)−1

. (2.67)

When the system is predominantly at the bottom of the band i.e., at very low temperatures, the lattice

thermodynamics and dynamics can be obtained from the free-particle solutions by substituting m∗ for m.

Eventually, in the deep-lattice limit, the bands are separated by ~ωlatt where ω2
latt = 2sERk

2m−1 is the trap

frequency if we approximate the bottom of each lattice well as a harmonic oscillator. In this limit the lattice

is essentially an array of isolated harmonic traps.

The change from a free particle dispersion to a band structure is the main impetus for adding the lattice.

From the perspective of quantum simulation, the most important effect is that the maximum kinetic energy

for a specific band is bounded and can be adjusted downward from the free particle result. This has an

effect on thermalization and energy distribution among the degrees of freedom in the system. In particular,

this is a parameter that adjusts the ratio between kinetic energy and interaction energy, which is essential

for realizing the strongly correlated regime.

2.3.2 Tight Binding

(a) (b)

Φ
(A

.U
.)

w
 (

A
.U

.)

Figure 2.6: (a) Ground band (n = 0) q = 0 Bloch wave (φn=0,q=0(x)) for s = 6 (blue curve). The lattice
potential is shown for spatial reference (grey curve). As expected the wavefunction is peaked at each lattice
well. (b) The ground band Wannier state for the lattice site centered at x = 0 (wn=0,j=0(x)).

The eigenstates of Eqn. 2.60 are φq,n(x), where q is the quasimomentum (a continuous variable in the

infinite lattice) and n the discrete band index. Since these so-called Bloch waves can be decomposed into

plane waves (Eqn. 2.64), the normalization condition is12,

∫

dx φ∗q,n(x)φq′,n′(x) = δn,n′δ(q − q′). (2.68)

12Delta-function normalization is a standard technique employed to handle the infinitely large lattice limit, however, it
introduces issues with units (i.e., the units in Eqn. 2.61 and Eqn. 2.68 do not agree). An alternate, more well-defined procedure
is to assume the particles are confined to a 1D box of length L (L/d is an integer) in which case the quasimomentum is quantized

to qj = 2πj~/L where j is an integer and the Bloch waves are φqj (x) = eiqjx/~uqj (x)L−1/2. The normalization condition is

then
∫ L
0
dx φ∗qj

(x)φqj′
(x) = δj,j′ , so these states are properly normalized.
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A sample q = 0 Bloch wave is illustrated in Fig. 2.6. The Bloch waves form a complete basis set and so any

arbitrary wavefunction ψ(x) can be decomposed as

ψ(x) =
∑

n

∫ qB

−qB

dq ψ̃n(q)φq,n(x), (2.69)

ψ̃n(q) =

∫

dx φ∗q,n(x)ψ(x), (2.70)

where ψ̃n(x) is the wavefunction in the quasimomentum-space of band n.

If ψ(x) is spatially localized then the Bloch waves are not an optimal basis set; instead we can use a

complementary basis localized around individual lattice sites. This Wannier basis is defined in terms of the

Bloch waves as

wj,n(x) =

∫ qB

−qB

dq eiqRj/~φq,n(x) (2.71)

where j is the site index, n is the band index, Rj is the distance to site j, and wj,n(x) is normalized to unity.

The ground band Wannier function is illustrated in Fig. 2.6. The generic wavefunction ψ(x) expressed in

terms of the Wannier basis is

ψ(x) =
∑

j,n

αj,nwj,n(x), (2.72)

αj,n =

∫

dx w∗
j,n(x)ψ(x), (2.73)

where αj,n is the Wannier coefficient in band n at site j. Writing the quasimomentum wavefunction in terms

of αj,n,

ψ̃n(q) =
∑

j

αj,ne
iqRj/~, (2.74)

and is therefore given by the Fourier series of the Wannier coefficients. In the deep lattice limit the Wannier

functions are connected to the harmonic oscillator eigenstates at each site.

The advantage of the Wannier functions is that they are a convenient basis for expressing the lattice

Hamiltonian in second-quantized form. The field operator in the Wannier basis is

Ψ(x) =
∑

j,n

wj,n(x)aj,n (2.75)

where aj,n is the annihilation operator in band n and site j. Substituting Eqn. 2.75 into the non-interacting

part of Eqn. 2.41 (interactions will be added in §2.3.4),

H =
∑

i,j 6=i,n,n′

a†
i,naj,n′

∫

dx w∗
i,n

[

− ~
2

2m

d2

dx2
+ sxER sin2(kx)

]

wj,n′ +

∑

i,n

[(∫ qB

−qB

dq Eq,n

)

− µ

]

a†
i,nai,n (2.76)

where Eq,n are the band energies found by solving Eqn. 2.62. The above form of the Hamiltonian is not
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particularly useful until we make two important approximations. First, we restrict ourselves to the lowest

band (i.e., n = 0 only), since higher bands are typically frozen out in the ultracold regime13. Second, for

sufficiently deep lattices, the Wannier states are strongly localized to a particular site, and so we only retain

the most dominant term with i and j as neighboring sites — the “tight-binding” approximation, which is

essentially valid for s & 4. The validity of these approximations is further discussed in §2.3.5.

Making these approximations, the Hamiltonian simplifies to

Ĥ = −t
∑

〈i,j〉
a†

iaj − µ
∑

i

â†i âi, where (2.77)

t =

∫

dx w∗
j (x)

[

− ~
2

2m

d2

dx2
+ sxER sin2(kx)

]

wj+1(x), (2.78)

where 〈i, j〉 is a sum over neighboring sites, and the band energy offset
∫

dq Eq is absorbed into µ. This

form easily lends itself to generalization, since we can model any number of lattice geometries by controlling

the sum. For example, for a nD lattice we sum over z = 2n neighboring sites, where z is known as the

coordination number. We can also generalize the form of t, which can differ along various directions or

be dependent on ij for an inhomogeneous lattice. Physically, t is the tunneling energy, and if we start a

particle in a single site with z neighbors, it will completely transfer to the other sites in time h(t
√
z)−1. An

approximate analytic form for t (Eqn. 2.78) as a function of s, exact in the s→ ∞ limit, is [132],

t

ER
=

4√
π
s3/4e−2

√
s (2.79)

It is easy to see that the state,

|q〉 =
∑

j

eiqRj/~â†j |0〉 (2.80)

is an eigenstate of Eqn. 2.77 by direct substitution. The eigenvalues give the tight-binding dispersion,

E = 2t

[

1 − cos

(

q

qB
π

)]

, (2.81)

where 4t is the bandwidth. In this limit the effective mass is

m∗ =
q2B
π22t

. (2.82)

The tight-binding form of the Hamiltonian, Eqn. 2.77, emphasizes physics local to each site, a feature which

will be explored in the next two sections.

2.3.3 Combined Lattice-Harmonic Potential

While the infinitely large and perfect lattice potential is important conceptually, it is not physical. The

potential will always have additional terms that shift the energy of different lattice sites. In any practical

cold atoms experiment the lattice must have an overall confining potential to restrict the atoms to a finite

region of the lattice. Fortunately, adding in additional potential terms to Eqn. 2.77 is straightforward using

13In subsequent references to the Wannier function wj(x) = wj,n=0(x).
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the Wannier basis. For an additional potential V (x), the resulting single-band Hamiltonian is,

H = −t
∑

<i,j>

a†
iaj − µ

∑

i

a†
iai +

∑

i,j

[∫

dx w∗
i (x)V (x)wj(x)

]

a†
iaj . (2.83)

If V (x) is sufficiently smooth compared to the lattice then we only keep terms for i = j. Furthermore the

integral simplifies,

[∫

dx w∗
i (x)V (x)wi(x)

]

≈ V (xi) (2.84)

to the potential evaluated at the center of site i. The tight-binding lattice Hamiltonian with a smooth

potential is,

H = −t
∑

<i,j>

a†
iaj +

∑

i

[V (xi) − µ]a†
iai. (2.85)

Typically the required overall confinement is provided by a harmonic potential, and at minimum there

is always some harmonic confinement from the lattice beams themselves (see §C.3.2), and so

V (xi) =
1

2
mω2x2

i . (2.86)

In [133], analytic expressions are given for the eigenstates and eigenvalues for the combined lattice-harmonic

potential in terms of the dimensionless parameter, α = 8t/mω2d2,

En =

{

mω2d2

8 an(α), n even
mω2d2

8 bn+1(α), n odd
(2.87)

where an(α) and bn+1(α) are the Mathieu characteristic values. The spectrum of energies for α = 2500

is shown in Fig. 2.7. At low energies (E � 4t), the spectrum is characteristic of a harmonic oscillator

with frequency ω∗ = ω
√

M/M∗ because of the effective mass from by the lattice potential (see Eqn. 2.82).

When the energy is greater than the bandwidth, the kinetic energy scale is frozen out. In the pure lattice

potential there are no states with these energies because of the bandgap. In this regime, the energy is

given by 1
2mω

2x2
n, and there are two degenerate energies for particles at ±xn. In §5.1, we will discuss the

thermodynamics of the combined lattice-harmonic potential.

2.3.4 Adding Interactions: The Hubbard Model

Up to this point we have left out inter-particle interactions, but adding them to Eqn. 2.85 is also straight-

forward using the Wannier basis. Using the field operators written in the terms of the Wannier basis14

14The interaction term is not separable, so we need to use the full 3D field operator.
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(a)

(b)

Figure 2.7: Eigenvalues for the combined lattice-harmonic potential for α = 2500 (s ≈ 6, ω = 2π × 20Hz,
mRb) in units of ~ω using the formulas from [133]. The grey dashed line indicates where E = 4t. For
E . 4t, the system behaves as a harmonic oscillator. The energies in this region are highlighted in inset
(a), and fit to E ≈ 0.68n~ω (without the lattice E = n~ω). The harmonic oscillator frequency in the lattice
is reduced because the effective mass in the lattice is approximately twice the bare mass. For E & 4t, the
system behaves as particles isolated to individual wells sequentially further from the center of the trap. The
energies in this region are highlighted in inset (b) and fit to E = 1

2mω
2d2(n/2)2 +E0 where E0 is an offset.

At each value of n there are two degenerate values corresponding to particles at distances ±dn/2 away from
the center of the trap.
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(Eqn. 2.75), we substitute into the interaction term of the second-quantized Hamiltonian (Eqn. 2.42),

1

2

∑

σ,σ′

gσ,σ′

∑

~i,~j,~k,~l

a†
~i,σ

a†
~j,σ′

a~k,σ′a~l,σ

[∫

d3x w∗
~i,σ

(~x)w∗
~j,σ′(~x)w~k,σ′(~x)w~l,σ(~x)

]

(2.88)

w~i,σ(~x) = wi1,σ(x)wi2,σ(y)wi3,σ(z) (2.89)

where we have kept the spin index σ and the site indices are vectors because the interaction integral is 3D.

Since the Wannier function, wi(x), is localized to site i, the tight-binding approximation for interactions is

to only consider interactions on the same lattice site i.e., i = j = k = l. Therefore the interaction term

simplifies to
1

2

∑

σ,σ′,i

Uσ,σ′a†
i,σa†

i,σ′ai,σ′ai,σ, (2.90)

where the interaction energy is

Uσ,σ′,i = gσ,σ′

[∫

dx |wi,σ(x)|2|wi,σ′(x)|2
]3

. (2.91)

In the deep lattice limit, U =
√

8π(a/d)s3/4 [132]. Adding the interaction term to Eqn. 2.85 (and generalizing

for several possible spin-components),

Ĥ = −
∑

<i,j>,σ

tσâ
†
i,σâj,σ +

∑

i,σ

[Vσ(xi) − µσ] â†i,σâi,σ +
1

2

∑

i,σ,σ′

Uσ,σ′ â†i,σâ
†
i,σ′ âi,σ′ âi,σ (2.92)

This is the Hubbard model that we introduced in Eqn. 1.3. In deriving this model, we assume particles

are ultracold atoms. Therefore, as first discussed in [25], this demonstrates the possibility that ultracold

atoms in an optical lattice are well-described by, and thus should simulate, the Hubbard model. In Fig. 2.8

we plot the Hubbard parameters t and U and the ratio U/t versus the lattice depth. As the lattice depth

increases, the Wannier functions become more strongly localized to individual lattice sites. The tunneling

energy t, which requires overlap between Wannier functions on adjacent sites, decreases exponentially and

the interaction energy U increases. This plot illustrates the second key element to quantum simulation —

the tunability of the model parameters.

In the rest of the thesis I focus on two specific instances of the Hubbard model. The first is the single-

component Bose-Hubbard model,

H = −t
∑

<i,j>

a†
iaj +

∑

i

[V (xi) − µ]ni +
U

2

∑

i

ni (ni − 1) (2.93)

and the two-component Fermi-Hubbard model (labeled ↑ and ↓),

H = −
∑

<i,j>,σ

tσa†
i,σaj,σ +

∑

i,σ

[Vσ(xi) − µσ]ni,σ + U↑,↓
∑

i

n̂i,↑ni,↓ (2.94)
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(a) (b)

Figure 2.8: (a) Hubbard parameters, t and U in units of ER for d = 400nm, a = 100.4a0, and m = mRb

versus lattice depth. These were calculated numerically using Wannier functions created by solving Eqn. 2.65
and truncating at the 7th Fourier term. (b) Ratio of U/t versus lattice depth. The large increase in U/t is
mainly due to the exponential decrease in t as the lattice depth increases.

(a) (b)

Figure 2.9: Analyzing the limits of the tight-binding approximation. (a) Ratio of next-nearest neighbor
tunneling, t′, to nearest-neighbor tunneling, t, versus lattice depth. Typically, the tight-binding limit is
given as s > 4, at which point t′ is -7% of t. (b) Ratio of nearest-neighbor U ′ to on-site interactions U versus
lattice depth. Ignoring the U ′ term is a good approximation once interactions are non-negligible, s & 8.
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2.3.5 Limitations

Before discussing the Hubbard model in more detail, it is important to understand the limits of the approx-

imations made during the derivation. These approximations mainly involved neglecting terms in the full

Hamiltonian. If these terms are large, they can lead to new phases not described by Eqn. 2.92. For exam-

ple, next-nearest-neighbor tunneling terms can realize frustrated magnetism for square lattices [134], and a

model with nearest-neighbor interactions (the extended Bose-Hubbard model) exhibits a charge-density-wave

phase [135]. First, we evaluate the relative strength of the next-nearest-neighbor tunneling term t′,

t′ =

∫

dx w∗
j (x)

[

− ~
2

2m

d2

dx2
+ sxER sin2(kx)

]

wj+2(x). (2.95)

A simple method to determine t′ is to look at the band structure calculated numerically in §2.3.1. The

dispersion with next-nearest neighbor tunneling is

E(q) = 2t

[

1 − cos

(

q

qB
π

)]

+ 2t′
[

1 − cos

(

2
q

qB
π

)]

, (2.96)

so

8t′ = 2E
(qB

2

)

− E (qB) . (2.97)

In Fig. 2.9 we plot t′/t versus the lattice depth. At the lowest lattice depth that we perform experiments

s = 2, |t′/t| = 14%. However, most of our experiments are performed with s ≥ 6 where |t′/t| <4%. The

next approximation was to only keep on-site, ground band terms of the confining potential. For a harmonic

potential we can estimate the neglected terms, and they are always negligible.

For interactions the first approximation is that only on-site terms are important. From Eqn. 2.88 the

first-order off-site term is,

U ′ =
1

2
g

[∫

dx w∗
i+1(x)w

∗
i (x)wi(x)wi(x)

] [∫

dx |wi(x)|4
]2

. (2.98)

In Fig. 2.9 we plot U ′/U versus the lattice depth. At low lattice depths the ratio is non-negligible, however,

at these depths the overall importance of interactions is small. When interactions start to influence the

system for s & 8, this term can safely be ignored. The other approximation we make for the interactions is

that we do not consider the influence of higher bands, nor do we use the fully regularized pseudo-potential.

These approximations are analyzed in detail in [136] and they find two important corrections to the Hubbard

interaction term. First, the value for U is 10% less than expected from Eqn. 2.91 for the parameters of their

experiment, which are similar to the parameters in our 87Rb apparatus (§3.1). Second, there is an additional

interaction term, U3

6 n(n − 1)(n − 2), where U3 is less than 10% of U . These corrections are important for

precision comparisons with theory, but should not affect the qualitative properties of the model. Finally,

we have also ignored the weak, long-range (1/r3) magnetic dipole-dipole interaction between atoms. This

energy is on the order of 10−8ER for atoms in adjacent sites, and therefore has no effect on the system at

the energy scales of interest.

One of the biggest constraints for simulating the Hubbard model is the validity of using a conservative

Hamiltonian (Eqn. 2.42), to describe an optical potential, which has fundamental non-Hermitian processes
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arising from spontaneous emission. In general, this necessitates a master equation approach as in [37].

However, the simpler approach is to treat spontaneous emission as a heat source on top of Eqn. 2.92. The

heating rate is described in detail in §B.8.1 and §C.4. Whether this is a limitation depends on the energy

and time scale of the phenomenon being simulated, however, in many cases these scales are not known. For

known phases, e.g., the Mott insulator (see §2.4.1), we can estimate that the energy scale is U and the time

scale is h/t. This type of analysis is performed in detail in [36]. The general conclusion of this analysis is that

heating is not a limitation to achieving the MI phase, as proven by its experimental realization. However,

realizing magnetic phases will require very low heating rates and therefore large detunings from electronic

resonances of at least several hundred nm. This is an important consideration for the 40K experiment

presented in this thesis (§3.2).

2.3.6 State-Dependent Lattices

1.0

0.5

0.0

d

Figure 2.10: 2D slice through the effective potential seen by harmonically trapped atoms in the state
dependent lattice due to a mean-field interaction with the lattice atoms. Here the lattice atoms have a mean
density of one atom per lattice site, s = 10, d = 400nm, m = mRb, and the scattering length between them
is 100a0. The depth of the potential is plotted in ER. Note that unlike the cubic optical lattice potential,
there are no local minimum of the periodic interaction potential.

Inherent in Eqn. 2.92 is that the lattice and trapping potentials may be state-dependent. As mentioned in

§2.1.1 and detailed in §C.2, such a lattice can be realized using optical lattices with polarization gradients.

A limiting case is when one state experiences no lattice, which is experimentally explored in this thesis.

Clearly this state cannot be described in the tight-binding formalism, so we need to generalize Eqn. 2.92.

For the case of one component in the lattice (α) and one component in a harmonic trap (β),

H = HHubb + HHO + Hint (2.99)

where HHubb is the Bose-Hubbard Hamiltonian for the α component (Eqn. 2.93), HHO is the second-

quantized, interacting harmonic oscillator Hamiltonian for the β component, and Hint is the mutual inter-

action between the α and β particles. To write out HHO and Hint we first construct the 3D harmonic
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oscillator field operator,

ΨHO(~x) =
∑

~n

ψn1
(x)ψn2

(y)ψn3
(z)b~n (2.100)

where n is a sum over the harmonic oscillator eigenstates ψn(x) given by Eqn. 2.19, and b~n is the annihilation

operator for state ~n = {n1, n2, n3}. We substitute the harmonic oscillator field operator and the lattice field

operator (Eqn. 2.75) into Eqn. 2.42 to get

HHO =
∑

~n

[~ωβ(n1 + n2 + n3) − µβ ]b†
~nb~n +

gβ

2

∑

~n,~o,~p,~q

[∫

d3x ψ∗
~n(~x)ψ∗

~o(~x)ψ~p(~x)ψ~q(~x)

]

b†
~nb†

~ob~qb~r, (2.101)

Hint = gα,β

∑

~n,~o,i,j

b†
~nb~oa

†
iaj

[∫

d3x ψ∗
~n(~x)ψ~o(~x)w

∗
i (~x)wj(~x)

]

(2.102)

where i, j is a sum over lattice sites, wi(~x) is the 3D Wannier function at site i, and gα,β is the contact

interaction between particles α and β (Eqn. 2.15). The last term Hint is the mutual interaction between the

gases and can be simplified if we treat the lattice gas as a mean-field with site occupancies ni = 〈ni〉 = ni.

In this case, the harmonically trapped atoms experience an effective lattice potential,

Veff (~x) = gα,β

∑

i

〈ni〉
∣

∣

∣w0

(

~x−~id
)∣

∣

∣

2

(2.103)

which is illustrated in Fig. 2.10 for a uniformly filled lattice.

The model given by Eqn. 2.99 has many interesting inherent features. However, our main goal is to use

the harmonically trapped gas as a probe of the gas simulating the Hubbard model. See §3.1.2, §4.1.7, and

§8 for further details.

2.4 Hubbard Model

The previous sections, §2.1–§2.3, illustrated on theoretical grounds that ultracold atoms in optical lattices

are well-described by the Hubbard model with tunable parameters. However, to experimentally validate this

conjecture we must compare the results of optical lattice experiments to the Hubbard model in parameter

regimes where the model has known solutions. Therefore, in this section we will summarize these regimes

and their properties.

Understanding the known properties of the Hubbard model is also important to identify the Hubbard

model as a candidate to describe a relevant physical system. However, it is not sufficient that a system be

just described by the Hubbard model, it must be described in an unsolved regime. These motivations will

also be discussed in this section.

2.4.1 Bose-Hubbard Model

In the simplest version of the Hubbard model, the uniform single-component Bose-Hubbard model (Eqn. 2.93),

there are three dimensionless parameters, t/U , µ/U and T/U . In the non-interacting limit (U/t→ 0 (§5.1)),
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the system is qualitatively similar to a harmonically trapped non-interacting gas (§2.2.1) and is condensed

for T < TC (TC = 5.591t for one-particle per site in 3D [39]). For a uniform lattice, the ground state is the

zero quasimomentum state. In the Fock basis this state is represented as (for N particles and M sites)

|Ψ〉U=0 ∝
N
∏

j

(

M
∑

i

a†
i

)

|0〉. (2.104)

Each individual atom is maximally delocalized throughout the lattice to minimize kinetic energy. For large

N,M this is nearly equivalent to writing a product of coherent states on each site (n̄ = N/M , the average

number of particles per site),

|Ψ〉U=0 =

M
∏

i



e−n̄/2
∞
∑

j=0

n̄j/2

√
j!
|j〉i



 (2.105)

This is a convenient form for calculation. Also, it clearly shows that the number fluctuations on a given site

in the non-interacting state are Poissonian.

In the opposite limit t/U → 0 (i.e., the atomic limit, §5.2), the Hamiltonian is separable on each site,

and the ground state has an integer number of atoms per site

|Ψ〉t=0 =
∏

i |n〉i , where µ/U < n < µ/U + 1. (2.106)

There are no number fluctuations in this state and each atom is localized to minimize interaction energy.

Importantly, these two states have very different momentum distributions

n(p) = |w(p)|2
∑

j,k

eipd/~(j−k)〈a†
jak〉, (2.107)

where w(p) is the Fourier transform of the Wannier function, and j, k is a sum over lattice sites. For the

non-interacting state, ai|Ψ〉U=0 =
√
n̄|Ψ〉U=0, and

n(p)U=0 = |w(p)|2n̄2
∑

j,k

eipd/~(j−k), (2.108)

= |w(p)|2n̄2M2
∑

n

δp,2qBn, (2.109)

which has sharp diffraction peaks at p = 2qBn (n is an integer), where the peak heights decrease as the

Wannier function envelope. In the atomic limit,

n(p)t=0 = |w(p)|2N, (2.110)

and the momentum distribution is a featureless Wannier function. Since the sum over all sites in the t = 0

ground state adds coherently to create sharp diffraction peaks in the momentum distribution, this state is

often referred to as having “phase coherence.”

The transition between these two limits characterizes the main feature of Hubbard models, the SF to

Mott-insulator (MI) transition [28]. At T = 0, as t/U is tuned from U = 0 → t = 0, there is a quantum phase
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Figure 2.11: Phase diagram of the single component Bose-Hubbard model from site-decoupled mean-field
theory (§5.3.2). (a) Condensate fraction 〈a〉2/n̄, versus µ/U and t/U calculated numerically using the
SDMFT (§5.3.2). The lattice depth for d = 400nm, a = 100a0, m = mRb is shown on the top axis for
reference. There are two main regimes: the superfluid (SF) and MI. The MI regime forms characteristic
lobes corresponding to different integer number of atoms per site. The critical point for the transition with
〈n〉 = 1 from QMC is shown as a white circle [39]. An inhomogeneous trapped system is well-described
by the LDA and the effective chemical potential follows the grey short-dashed line from the trap center to
the trap edge. (b) Condensate fraction versus T/U and t/U at µ = U/2 calculated numerically using the
SDMFT (§5.3.2). The critical temperature decreases as the system approaches the MI regime. For finite T
in the MI regime, the system can be characterized by the number variance, 〈n2 −〈n〉2〉/〈n〉 (plotted in inset
at t/U = 0), which increases sharply with temperature. Based on this, in [137] the melting temperature of
the MI is given as T = 0.2U .
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transition at finite t/U to a MI, a state with strongly reduced number fluctuations, that is incompressible

(∂n/∂µ = 0), and which has an excitation gap. The qualitative features of this transition, in 3D, are shown

in Fig. 2.11 and generated using a mean-field approximation. Evident in Fig. 2.11 are two ways to approach

the MI region from the SF. The first is to start in the SF with n̄ = 1 and then decrease t/U until the

MI transition occurs at (t/U)C . This transition belongs to the (d+1)dimensional XY model universality

class [28]. The other transition is by adding or subtracting atoms at fixed t/U . This transition is more

generic and well-described by mean-field [39]. The MI transition in 3D was observed in a system of bosonic

ultracold atoms in a lattice by measuring the reversible loss of sharp diffraction features in the momentum

distribution and the emergence of an excitation gap [33]. This observation strongly confirms the conjecture

that ultracold atoms simulate the Hubbard model. The MI transition has also been observed in 2D [138,139]

and 1D [139].

A defining characteristic of the MI region is reduced number fluctuations, and an integer number of atoms

per site at t/U = 0 and T = 0. Reduced number fluctuations were detected indirectly through spin-changing

collisions [140] and directly using high-resolution in-situ imaging [56–58]. Number fluctuations are also re-

duced in the SF state proximate to the MI regime. Equivalently, the condensate fraction at T = 0 decreases

due to quantum depletion. Interactions also drive down TC as t/U → 0, until TC = 0 at the MI boundary.

In Fig. 2.11, we plot condensate fraction versus t/U and T/U . The reduction of condensate fraction was

measured in 2D [66] and the TC boundary in 3D [67]. In the MI region there is no defined phase transition

at finite temperature; however, particle-hole excitations essentially destroy the MI domains at t/U = 0 for

T & 0.2U [137].

For experiments with harmonic trapping, the system can be described using the LDA, which was intro-

duced in §2.2.2. In the LDA, the local phase at radial distance r in the trap is given by the uniform phase for

chemical potential µ = µ0 − 1
2mω

2r2 where µ0 is the global chemical potential that determines the overall

number of atoms. In Fig. 2.11, the LDA is represented by the vertical line through the phase diagram.

The harmonic trap confers some advantages for quantum simulation. For example, the trap allows for a

one-shot realization of numerous chemical potentials at fixed t/U . This change in µ vs. r also gives access

to thermodynamic derivatives which can be used to construct equations of state [62]. However, the trap

has disadvantages since measurements in momentum are a convolution of all trapped phases, which makes

it difficult to identify individual phase boundaries. Additionally, measurements of specific critical points are

impeded since only a small fraction of the system is at any particular chemical potential. At t/U ≈ 0, the

LDA predicts sharp steps in number per site going outward from the center of the trap. These “Mott shells”

were measured indirectly from level shifts [141] and spin collisions [140], and directly using high-resolution

imaging [56–58].

A number of theoretical techniques exist that describe the properties of the BH model with high precision.

In 1D, exact numerics are possible using the density matrix renormalization group (DMRG) technique, which

gives (U/t)C = 3.61(13) [142]. In higher dimensions, Quantum Monte Carlo (QMC) is numerically exact

and can simulate the equilibrium properties of up to 106 particles in 3D [39] using current computational

resources. In 2D, QMC calculations give (U/t)C = 16.75 [39], and in 3D (U/t)C = 29.34(2) [143]. For most

quantities, dynamical mean-field theory (DMFT) [144,145] requires less computational resources than QMC

and is nearly as accurate, particularly when fluctuations are not important. An even simpler technique is
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static mean field theory, which is exact as z → ∞ [28, 68] and predicts (U/t)C = 5.8z. In 3D (z = 6)

this is only 20% less than the QMC value (see Fig. 2.11). Close to and in the MI region, one can perform

strong-coupling expansions [31, 146]. However, these expansions fail near the critical point [31]. In the SF

regime, there is the established Bogoliubov theory; however, this clearly breaks down at stronger interactions

as it fails to predict the SF-MI transition [147]. The biggest gap between theory and experiment, and

where BH quantum simulation can make the biggest impact, is for time-dependent and out-of-equilibrium

many-body physics. These properties cannot be computed using QMC. Instead, the only reliable theory is

time-dependent Gutzwiller mean-field [54] and possible extensions to DMFT.

2.4.2 Fermi-Hubbard Model

There are two important differences when comparing the two-component Fermi-Hubbard model (Eqn. 2.94)

to the single component Bose-Hubbard model discussed in the previous section. The first difference is that

the added spin degree-of-freedom opens up an additional axis in parameter space and allows for a number

of new “magnetic” phases. Second, due to Fermi statistics, the basis per site is restricted to

|0〉, | ↑〉, | ↓〉, | ↑↓〉 (2.111)

in the single-band limit. This is most evident in the non-interacting case. Here the spins are decoupled,

but there is no straightforward ground state as there is for bosons (Eqn. 2.104) because the particles fill up

quasimomentum states to the Fermi energy. For a single spin component, if there are N particles and M

sites (N ≤M), then the ground state is

|Ψ〉 ∝
M !/(M−N)!N !

∑

j=1

|fj |eiφj

M
∏

k

(a†
k)nk,j |0〉, (2.112)

where the index j sums over the set {nj,1, . . . , nj,M} of all site occupancy permutations adding up to N

particles, and k is the site index. For each arrangement j there is an amplitude |fj | and a phase φj , which

are complicated functions of the specific permutation. For example, the ground state for N = 2 and M = 3

(in a 1D chain) is (for one spin-component)15

|Ψ〉 =
1

2

(

|110〉 + |011〉 +
√

2|101〉
)

. (2.113)

The Fermi statistics are captured by the basis and unlike the boson ground state for N = 2 and M = 3,

there are no terms where a site is doubly occupied (e.g., |200〉).

If N = M there is only one possible arrangement,

|Ψ〉 =
M
∏

k

â†k|0〉 (2.114)

This is known as a band insulator (BI), since the state is insulating by virtue of all quasimomentum states

being filled. In our grand-canonical model, this occurs when µ > 4Dt. It follows that number fluctuations

15Using the convention that |n1, n2, n3〉 = (a†
1
)n1 (a†

2
)n2 (a†

3
)n3 |0〉.
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are also reduced as the state approaches the BI. For fermions n̂2 = n̂, so

〈n2 − 〈n〉2〉
〈n〉 = 1 − 〈n〉, (2.115)

= 1 − N

M
. (2.116)

For low fillings the number fluctuations are Poissonian, identical to the ground state of the BH model, but

for high fillings the number fluctuations vanish as the system becomes a BI. This is driven by Fermi statistics

and not interactions. In the t = 0 limit, the FH model separates into individual sites and the ground state

is an integer number of atoms per site. Unlike the BH model, the number of states is truncated by Fermi

statistics (Eqn. 2.111). The phase diagram (for t = 0) in the parameter space µ↑/U and µ↓/U at T = 0 is

shown in Fig. 2.12. There are two phases — the BI and the MI. Along the line µ↑ = µ↓ = µ, µ < U the

ground state is degenerate. This is known as half-filling because 〈n↑〉 = 〈n↓〉 = 1/2.

Similar to the BH model, going between the non-interacting and atomic limits involves a metal to in-

sulator transition at (in mean-field) U/t ≈ √
z5 [148], characterized by a vanishing compressibility and a

reduction in the number of doubly occupied sites. However, unlike the Bose system there is not an abrupt

change in the phase coherence since the system starts in a Fermi-liquid. Using measurements of compress-

ibility [34] and double occupancy [35], the MI phase has been observed for fermions in optical lattices with

n↑ = n↓. These measurements confirm that the Hubbard model description extends to fermionic ultracold

atoms in optical lattices. To get a qualitative sense of the phase diagram, results of an exactly diagonalized

5-site system (§5.4) are shown in Fig. 2.12.

The spin degree-of-freedom in the FH model means that there can also be spin correlations (i.e., magne-

tization) in the system. In particular, as interactions reduce number fluctuations deep in the MI phase, spin

is the only free parameter. At half-filling and µ↑ = µ↓, the FH model reduces to a spin-1/2 antiferromagnetic

Heisenberg model (see, e.g., [149])

H =
J

2

∑

<i,j>

~Si · ~Sj , (2.117)

where J = 4t2/U is the superexchange energy. The origin of this term is that a small admixture of doubly

occupied sites can reduce the kinetic energy. However, no tunneling is possible unless opposite spins are

on adjacent sites. A similar reduction can be made for the two-component Bose-Hubbard model with one

atom per site. In that case, J < 0, which is the ferromagnetic Heisenberg model. Eqn. 2.117 means that

the absolute ground state as t/U → 0 is putatively antiferromagnetic. As the system is cooled, the onset

of magnetic ordering occurs at the Néel temperature TN , which is TN = zJ/4kB in the simplest mean-field

theory. Although Eqn. 2.117 is only valid deep in the MI regime when t/U � 1, antiferromagnetic magnetic

correlations develop for all t/U , however, TN is very small when t/U is large [150]. Magnetic correlations

are plotted at T = 0 for the 5-site model in Fig. 2.12. It is instructive to look at the ground state of the

two-site antiferromagnetic Heisenberg model,

|Ψ〉 =
1√
2

(| ↑, ↓〉 − | ↓, ↑〉) (2.118)

which is a singlet. Detecting these correlations is an outstanding experimental issue [151]. The entropy
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Figure 2.12: FH Phase diagram at T = 0. (a) Atomic limit (t = 0) phase diagram as a function of the relative
chemical potentials. (b-d) Qualitative 2D FH phase diagrams for µ↑ = µ↓ = µ via exact diagonalization
of one site connected to 4 adjacent sites. (b) Average number in the middle site versus t/U and µ/U . (c)
Number fluctuations 〈n2−〈n〉2〉/〈n〉. There are two main regions with no number fluctuations. At the top is
the band insulator (BI), which is a trivial non-interacting phase. At the lower-left edge is the Mott insulator

(MI), where number fluctuations are reduced due to interactions. (d) Magnetic correlations
∑5

i=2〈~S1 · ~Si〉,
where ~S = 1/2

[(
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↑a↓ + a†

↓a↑
)

,−i
(

a†
↑a↓ − a†

↓a↑
)

,
(

a†
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↓a↓
)]

. Antiferromagnetic (AFM) correlations

develop on the approach to the MI phase.
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required for Néel ordering is also very low, S/NkB ≈ ln(2)/2, which is around a factor of two lower than

current experiments [152].

Theoretically, the FH model is less tractable to solve than the BH model because of the fermion sign prob-

lem [153], which greatly limits most QMC protocols. Exceptions to this include QMC at half-filling [154],

determinantal QMC on finite lattices [155], and proof-of-principle calculations using diagrammatic Monte

Carlo [156]. Instead, there are a number of approximate methods, such as dynamical mean-field the-

ory(DMFT) [153], which is exact as t → 0, U → 0, or z → ∞ and is accurate for temperatures T & t.

To better account for fluctuations, DMFT can be extended using a cluster approximation (e.g., [157]). An-

other technique, which is highly accurate so long as it converges, are high-temperature series expansions [158].

DMFT and high-temperature series expansions are compared in [159]. Exact diagonalization is possible on

16 site clusters [160]. Together with the LDA, these methods can describe a number of properties of trapped

systems.

For the uniform 1D system there is an exact solution [161], which predicts a MI for U 6= 0. However,

for the harmonically trapped case [162], QMC calculations indicate a local MI phase transition at U/t ≈ 3.

In higher dimensions the transition is determined to be U/t ≈ 15 [163] (3D uniform), U/t ≈ 4.8
√
z [148]

(uniform) and U/t ≈ 12 [159] (3D trapped). There are a number of calculations of magnetic ordering. In

the Heisenberg limit in 3D (U/t & 12), high temperature expansions give kBTN = 0.957J [154]. Simulating

the Néel temperature for all t/U in 3D using QMC (at half-filling) there is a maximum in kBTN = 0.33t at

intermediate coupling U/t = 8 [152,154]. The more relevant thermodynamic quantity for experiments is the

entropy at TN , which is S/NkB = ln(2) for mean-field, but quantum fluctuations reduce this to ln(2)/2 [152].

In 2D, QMC gives a similar value, S/NkB ≈ 0.4 [155]. Experimentally, the whole trapped system does not

necessarily need to be as low as SN since phases at the trap edge can hold entropy.

Away from half-filling and at low temperatures, there is considerable uncertainty regarding the FH phase

diagram. Providing definitive answers in this region is one of the main goals of quantum simulation using

optical lattices. The results of doping are hard to predict. For example, although the half-filled ground state

is always antiferromagnetic, removing just one particle causes the system to be ferromagnetic as U → ∞ [164].

The most controversial conjecture is that competition between antiferromagnetism and delocalization leads

to the emergence of a d-wave superfluid [165] at very low temperatures. Some temperature estimates are

0.01t/kB [40] and 0.02t/kB for 10% doping in 2D and U/t = 4 [166]. The existence of this state in the FH

model has not been proven [160].

2.4.3 Physical Motivations

The main goal of quantum simulation as laid out in Fig. 1.2 is to determine the minimal model describing

important physical systems and to “solve” that model. Therefore, ultracold atoms in optical lattices only

qualify as a true quantum simulator if the Hubbard model is a candidate model for a class of physical sys-

tems. To be a candidate, the known properties of the Hubbard model, discussed in the last two sections,

must agree with experimental data from these systems. For the case of the Bose-Hubbard model, this would

entail a system with bosonic quantum particles that undergoes a superfluid to insulator transition. Examples

include granular superconductors [29], Josephson-junction arrays [30], flux lattices in type-II superconduc-
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tors [31] and 4He in porous media [28].

The Fermi-Hubbard model is more widely applicable since the quantum particles of almost all materi-

als are electrons. Therefore, the FH model is the paradigm for strongly correlated electron systems where

electrons are thought to be highly localized, e.g., due to the particular band structure of the material. For

example, DMFT solutions of the Hubbard model match well to experimental data from transition metal

oxides, such as V2O3 [153]. The strongest motivation is that the FH model is a candidate model for cuprate

(high TC) superconductors, such as La2−xSrxCuO4 [12]. The phase diagram of these materials, e.g., Fig. 1

of [12], is an insulating antiferromagnet at half-filling and a d-wave superconductor when doped. In the

known regimes of the FH model, these phase diagrams are very similar, and the emergence of d-wave super-

conductivity agrees with some, but not all, calculations of the Hubbard model. This is a clear motivation

for pursuing quantum simulation of the FH model.

Another motivation for simulating these models is to validate different theoretical techniques and establish

their regimes of validity. Since the Hubbard model is among the simplest non-trivial models with only a few

parameters, it is an ideal point of comparison between experiment and theory.
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Chapter 3

Experimental Toolkit — Tools

To realize a Hubbard model quantum simulator using ultracold atoms in optical lattices (see overview §2.1),

we need to possess an experimental toolkit. This toolkit is comprised of three main parts: tools, probes and

techniques. Tools are the set of physical elements, “the apparatus”, required to create an ultracold gas in

an optical lattice. Probes and techniques are the elements and procedures that then initialize, measure and

perturb the gas to obtain relevant simulation results. These are detailed in §4. Using a computer analogy

— tools are the physical components inside the box (e.g., the motherboard, memory, and processor), and

probes and techniques are the interface devices (e.g., the monitor, mouse, and keyboard) and software.

In this chapter, I will detail the tools involved in this thesis work. Indeed, a significant portion of the time

required to complete this thesis was spent developing a number of these tools. Of course, many tools were

developed by prior and current colleagues. Where necessary, I will include these tools, with appropriate

credit, for completeness. The work done in this thesis covers apparatuses in two separate labs: a Bose-

Hubbard simulator at the University of Illinois using 87Rb atoms, and a Fermi-Hubbard simulator at the

University of Toronto using 40K atoms.

3.1 87Rb Bose-Hubbard Apparatus

The first apparatus, at the University of Illinois, is designed to create ultracold bosonic gases of 87Rb in

an optical lattice in order to simulate Bose-Hubbard physics. This apparatus was primarily constructed by

post-doctoral associate Hong Gao and graduate student Matt White. A detailed overview of the system is

found in Matt White’s thesis [41]; a schematic of the apparatus is shown in Fig. 3.1. To summarize Ref. [41],

atoms are collected from a Rb vapor in an ultrahigh vacuum glass cell using a magneto-optical trap (MOT).

The MOT loads > 109 87Rb atoms in 30 seconds. The atoms are transferred into a magnetic quadrupole

trap (see §2.1.1) in the state |F = 1,mF = −1〉 = |1,−1〉 (see Fig. A.2). The “cart quadrupole” trap is on a

moveable cart which mechanically carries the atoms through a differential pumping tube into another glass

cell that has orders of magnitude better vacuum. This is the science cell shown in Fig. 3.1.

Once in the science cell, the specific details differ depending on the chronological order of the projects,

since the experiment was partly reconfigured in Fall 2007. Prior to this date, atoms were transferred from the

cart quadrupole to a Ioffe-Pritchard (IP) magnetic trap (§2.1.1), which was fixed in reference to the vacuum

system. After transfer, the cart would return to the MOT cell. Evaporative cooling, using radiofrequency

(RF) magnetic Zeeman transitions, was used to cool the gas in the IP trap to the ultracold regime. In Fall

2007, the IP trap irreversibly broke, so a new procedure was implemented by adding a dipole trap. Now
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Figure 3.1: (a) Illustration of the 87Rb Bose-Hubbard apparatus. Left to right: the cart quadrupole magnetic
coils (i), the MOT cell (ii), the transport tube (iii), and the science cell (iv). The cart quadrupole coils are
on a mechanical cart and move from the MOT cell to the science cell. The science cell region is shown
in detail illustrating the pinch quadrupole coils (v), the dipole trap beams (black), and the lattice beams
(red). Also indicated are the coordinate system which will be used throughout. The crossing beam of the
dipole trap is not always used. A set of bias coils provide a uniform field along the y axis (not shown). The
main imaging beam travels along the x axis. (b) A schematic of the lattice path is shown with an optional
quarter-waveplate for generating spin-dependent lattices. An EOM may be added in the future for dynamic
polarization adjustment.
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experiments use partial RF evaporation in the cart quadrupole, then transfer the atoms to a fixed quadrupole

(“pinch quadrupole”). Once atoms are in the pinch quadrupole the cart returns to the MOT. Further RF

evaporation is done in the pinch quadrupole until Majorana losses become severe. At this point, the atoms

are transferred into a hybrid optical-magnetic trap. This trap consists of a laser beam1 focused to a waist

of 120µm located 100µm below the center of the quadrupole. This beam forms a dipole trap (§2.1.1,§C.3.1)

with strong radial confinement. The pinch quadrupole provides a linear potential along ẑ and additional

harmonic confinement along y and x. Efficient evaporation is achieved by increasing the quadrupole field and

pushing atoms out of the dipole trap [102,103], as shown in Fig. 2.26 of [41]. After this stage of evaporation

the gas is close to TC .

The final stage of evaporation depends on the particular type of experiment. For experiments that

require a single spin component (|1,−1〉), the quadrupole remains on, but is reduced until the force from the

magnetic vertical gradient is equal and opposite to the gravitational force2. Axial confinement is provided

by the magnetic quadrupole. Evaporation proceeds to low temperatures by decreasing the dipole power;

high energy atoms escape along the vertical direction. For experiments requiring multiple spin states there

can be no magnetic field gradients present once we create a state mixture. Although we create mixtures at

the end of evaporation (§3.1.1), we find it optimal to complete the last stage of evaporation in the final trap

configuration. Therefore, the pinch quadrupole is turned completely off before the last evaporation stage,

and a 10G uniform magnetic field along ŷ is provided by a set of bias coils. Since there is no longer axial

quadrupole confinement, the dipole beam is recycled back into the experiment (see Fig. 3.1 and Fig. C.7) and

crossed with the initial beam to form a crossed-dipole (‘x-dipole’) trap; see §C.7 for the alignment procedure.

Although the crossing beam is only needed in this last stage, there is no separate control of the crossing

beam power, so in these experiments the dipole trap is always crossed. To remove the quadrupole field, it

is ramped down in 1s and the dipole power is simultaneously ramped up to 4W. Evaporation proceeds by

reducing the dipole power after which the state mixture is created. From MOT to the ultracold regime, the

cycle takes ≈ 70s. Both traps, the hybrid-dipole and x-dipole, are characterized by three independent trap

frequencies that are measured empirically (§D for the measurement procedure). Typically, the mean trap

frequency is ν̄ = (40 − 50)Hz.

3.1.1 Microwaves for State Preparation

For experiments requiring a state mixture (i.e., spin-dependent lattice experiments), the next step is to

prepare this mixture starting from the single component |1,−1〉 gas. Since loss rates are higher for atoms in

F = 2 (due to relaxation back to F = 1), we almost always utilize mixtures of |1,−1〉 and |1, 0〉. In a 10G

field, the separation between these states is ∆E|1,−1〉,|1,0〉 = h × 7MHz. However, in the low B-field regime

we cannot use RF magnetic fields to transfer directly to |1, 0〉 because the energy splitting between |1, 0〉
and |1, 1〉 (∆E|1,0〉,|1,1〉), is the same as ∆E|1,−1〉,|1,0〉. Therefore, there are two main methods for creating

the mixture: RF transitions at high-field or 2-step transitions using microwaves. A resolvable RF transition

1The laser source is an IPG Photonics YLR-10-1064-LP fiber laser (1064nm, linearly polarized, 10W maximum power). The
beam optics are illustrated in Fig. 2.25 of [41].

2The magnetic quadrupole gradient is slightly less than gravity so that evaporating atoms may escape along the vertical
direction.
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Figure 3.2: (a) State diagram illustrating the two microwave transitions we use to prepare a |1,−1〉/|1, 0〉
mixture. (b) Probability to transfer atoms from |1,−1〉 to |1, 0〉 versus the microwave power attenuation
during the first sweep from |1,−1〉 to |2, 0〉 (blue, dashed arrow in (a)). This sweep is 20ms long and 50kHz
wide with a center frequency of 6827.65MHz. The second sweep (red, dashed arrow in (a)) is a full power
sweep 5ms long and 60kHz wide sweep with a center frequency of 6834.7MHz. The line is a free-parameter
fit using the Landau-Zener formula (Eqn. B.38). To measure the transfer probability we image atoms in
|1, 0〉 and |1,−1〉 after time-of-flight Stern-Gerlach separation.

can be made at higher B-fields due to the quadratic Zeeman shift (Eqn. A.13)

∆E|1,−1〉,|1,0〉 − ∆E|1,0〉,|1,1〉 ≈ h× (0.144B2) kHz/G2; (3.1)

at B = 40 G the difference in transition frequencies is 230kHz. This allows population transfer using RF to

|1, 0〉 without also transferring to |1, 1〉. However, we prefer to use a 2-step transition using microwaves (see

§6.7 of [41] for details of the source), as shown in Fig. 3.2. These transitions are accomplished by sweeping

the frequency of the source through resonance; for details see §B.4. To control the transfer probability, we

change the microwave power for the |1,−1〉 → |2, 0〉 transition (see Fig. 3.2). Maximum power is used for

the |2, 0〉 → |1, 0〉 transition so that all the atoms are transferred out of |2, 0〉 and the result is a mixture of

only |1, 0〉 and |1,−1〉 atoms.

Before creating a state mixture, the cloud of |1,−1〉 atoms is condensed and in thermal equilibrium with

N atoms at temperature T . The transfer process results in two clouds with atom numbers N|1,−1〉, N|1,0〉 < N

where condensate fraction (N0/N) and T are approximately preserved. Since TC is proportional to N1/3,

the TC of each component is less than TC,i (the transition temperature before the transfer), and so the

system after transfer is out-of-equilibrium. Therefore, to allow the system to rethermalize we wait 100ms

after the transfer before proceeding with the experiment. Since our motivation is to use the |1, 0〉 com-

ponent as an impurity, N|1,0〉 is often much less than N and so TC,|1,0〉 can be small and sometimes even

less than T . In this case, we have observed the impurity condensate “melt”; data is shown in Fig. 5 of Ref. [4].

To simultaneously image different spin components at separate locations in the camera plane, we apply

a magnetic field gradient along the ẑ axis during time-of-flight expansion (“Stern-Gerlach field”). This
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gradient (∂Bz/∂z) provides a spin-dependent force

~FSG = (µBgFmF )
∂Bz

∂z
ẑ, (3.2)

which separates the spin components after a sufficiently long time-of-flight. To generate the Stern-Gerlach

field we have a single coil directly underneath the science cell (“Stern-Gerlach coil”). This coil is not shown

in Fig. 3.1.

3.1.2 Lattice

(a) (b)

Figure 3.3: (a) Typical experimental sequence for the optical lattice potential depth (Eqn. 3.3) with τ =
200ms and t0 = 100ms. At the end of the experiment we can turn the lattice off as fast as possible
(< 100ns, “snap-off”, blue curve), linearly in 100µs–1ms (“bandmapping”, red curve), or linearly in 10s
of ms (“adiabatic”, grey curve). (b) Schematic of atomic diffraction from a “snapped-off” lattice (grey
spheres). The imaging beam (red) projects the atomic density integrated along x̂ onto the camera plane
(y-z), resulting in overlapping diffraction peaks. An experimental absorption image for an s = 10 lattice is
shown.

Once the ultracold gas has been created and is in the appropriate state mixture the lattice is superimposed

on the gas. The lattice depth along each direction s(t)ER, is increased according to (see Fig. 3.3)

s(t) =











0, t < 0

s0
et/τ−1
et0/τ−1

, 0 ≤ t < t0

s0, t ≥ t0

(3.3)

where typically τ = 200ms and t0 = 100ms. These values were selected heuristically by optimizing conden-

sate fraction after turning on and then slowly off the lattice. In general, the issue of optimal ramping is

unresolved, but our timescales agree well with those used in similar experiments (see, e.g., [167]).

The lattice itself is comprised of three retro-reflected laser beams (see Fig. 3.1) with orthogonal wavevec-

tors. All the beams are split off from the same laser source3 and coupled into three separate fibers to ensure

sufficient mode quality and pointing stability (see Fig. 4.5 of [41]). The direction of each forward traveling

3The source is a Verdi pumped Ti:Sapphire laser with ≈1W output.
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Figure 3.4: (a) Simplified electronic state diagram of 87Rb illustrating the relevant detunings ∆ for the lattice.
(b) Intensity of the retro-reflected lin-lin and lin-⊥-lin lattice for a forward beam intensity of 50W/cm2 (i.e.,
approximately 5mW focused to an 80µm beam waist). (c) Potential depth for the retro-reflected lin-lin
lattice at λ = 812nm and lin-⊥-lin lattice at λ = 790nm for |1,−1〉 and |1, 0〉 and for forward beam intensity
50W/cm2. The lin-lin potential is purely attractive and state-independent, whereas the lin-⊥-lin lattice for

|1,−1〉 (with k̂ · B̂ = 1) is a combination of attractive and repulsive. The |1, 0〉 state experiences no lin-⊥-lin
potential.

beam, using the coordinate system defined in Fig. 3.1, is

k̂1 = − 1√
2
x̂+

1

2
ŷ +

1

2
ẑ

k̂2 =
1√
2
x̂+

1

2
ŷ +

1

2
ẑ

k̂3 = − 1√
2
ŷ +

1√
2
ẑ (3.4)

The imaging laser beam travels along x̂, so absorption images are formed from the integrated density profile

along x̂ with ŷ and ẑ as the camera axes (see §4.1.1). This projects atomic diffraction peaks from lattice

beams 1 and 2 on top of each other, as shown in Fig. 3.3.

The polarizations of the forward lattice beams are all linear and mutually orthogonal. The polarization

of the retro-reflected beam is also linear, but may be rotated by an angle θ with respect to the forward beam

polarization using a quarter-wave plate4. The full lattice potential for this configuration (lin-θ-lin) is

V (~x) =
I0πc

2Γ

ω3
0

{(

2

∆D2
+

1

∆D1

)

[

1 + cos(θ) cos(2~k · ~x)
]

+

gFmF

(

1

∆D2
− 1

∆D1

)

(k̂ · B̂) sin(θ) sin(2~k · ~x)
}

, (3.5)

4Space has been left in the apparatus to put an electric-optical modulator (EOM) for dynamic polarization control [73]; for
more details see §6 of [41].
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where I0 is the peak intensity of the single beam, ∆D1 and ∆D2 are the detunings from the D1 and D2 lines

of 87Rb (see the simplified state structure in Fig. 3.4), and B̂ is the direction of the quantizing magnetic

field. For the derivation of Eqn. 3.5 see §C.2. We have dropped counter-rotating terms, which are important

for large detunings; these are included in the full potential as given in Eqn. C.31. In this thesis work, we

realize the two limits of this potential: the lin-lin lattice (θ = 0) and the lin-⊥-lin spin-dependent lattice

(θ = π/2).

The lin-lin lattice is created when θ = 0 (i.e., the waveplate is simply omitted), and the potential results

from the intensity standing wave created by the forward-going and retro-reflected beams. The potential is

given by dropping the second term of Eqn. 3.5, and so this lattice is state-independent. For our typical

wavelength (λ = 812nm), the lattice depth (in ER) is s = 2.8 × 10−4I0 [mW/cm2], and the intensity and

potential are plotted in Fig. 3.4.

When θ = π/2, the second term of Eqn. 3.5 gives rise to a fully state-dependent lattice (lin-⊥-lin) with a

potential depth proportional to the magnetic moment gFmF . The first term in Eqn. 3.5 becomes a constant

offset. Since the retro-reflected beam polarization is linear and orthogonal to the forward beam, there is no

intensity standing wave, and the lattice potential is fully due to polarization effects. In theory, a lin-⊥-lin

lattice exists for all λ, but we find it optimal to run at λ = 790nm5 where the first term of Eqn. 3.5 (i.e.,

the scalar light shift) goes to zero. This eliminates residual lin-lin lattices that arise due to imperfect po-

larization rotation of the retro-reflected beam and from polarization impurities in the forward-going beam.

As described in §C.6, these effects can be demonstrated using pulses of the lattice light. At λ = 790nm, the

lattice depth (in ER) for |1,−1〉 is s = 3.2 × 10−4I0[mW/cm2] (k̂ · B̂), and the intensity and potential are

plotted in Fig. 3.4.

Our apparatus represents the first fully three-dimensional spin-dependent lattice realized in the strongly

correlated regime. A number of groups have implemented 1D spin-dependent lattices [73,75,76]. One of the

main differences is that in 1D the prefactor k̂ · B̂ can be set to unity by aligning the lattice and magnetic

field directions. However, in 3D if k̂i · B̂ = 1 for direction i then it will be zero for the other two directions.

Therefore, we must ensure that B̂ has a sizeable projection along all of the lattice directions (Eqn. 3.4). In

our case, B̂ = ŷ, which has a near optimal projection along each beam. To demonstrate the 3D strongly

correlated regime, we realize the SF-MI transition (§2.4.1) for the lin-⊥-lin lattice in Fig. 3.5 using a mixture

of |1,−1〉/|2, 0〉 and |1,−1〉/|2,−2〉 atoms.

The alignment procedure for the lin-lin lattice is detailed in §4.9 of [41] and the calibration procedure

in §C.5. To summarize — calibration is performed by pulsing one direction of the lattice and measuring

the atomic diffraction ratio versus pulse time, which is periodic for short (< 100µs) pulses. The periodicity

is related to the gap between the ground and second excited bands (see Fig. 2.5). This method typically

calibrates the lattice to within a 5% uncertainty. There are some small differences when aligning the lin-⊥-lin

lattice, which are detailed in §C.6.

Since the lattice beams have a Gaussian profile, each beam also adds harmonic confinement, which is

5The value calculated using the known atomic structure of 87Rb is λ = 790.028nm.
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Figure 3.5: Demonstrating the SF-MI transition for the spin-dependent lin-⊥-lin lattice. Lattice depths are
given for each spin component. Images at the same |1,−1〉 depth, in the same black outline are from a single
experimental run, and the spin components were separated during expansion using a Stern-Gerlach field. For
the purposes of this figure, empty regions of the image have been cropped out. Black, dashed lines indicate
the expected mean-field SF-MI transition depth. (a) Diffraction images from a mixture of |1,−1〉 and |2, 0〉
atoms for increasing lattice depth. (b) Diffraction images from a mixture of |1,−1〉 and |2,−2〉 atoms. Since
gFmF for |2,−2〉 is twice as large as for |1,−1〉 for the same lattice realization, the |2,−2〉 atoms experience
twice the lattice depth as given by Eqn. 3.5. In the mixture, the |2,−2〉 atoms undergo the SF-MI transition
at half the lattice intensity as the |1,−1〉 atoms, but at the same depth. Mutual interaction effects are small
since the two spins are not in overlapping lattices; the lattice minima are shifted from each other by half a
period. Figure adapted from Ref. [4] ( c© 2010 IOP Science).
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approximately,

ω2
latt = ξ

4sER

mw2

(

1 − 1

2ξ
√
s

)

, (3.6)

where ξ = 1 for red-detuning, and ξ = 0.5 for the lin-⊥-lin lattice at 790nm. The beam waist w is 120µm.

For more details, see §C.3.2. The total harmonic confinement is a combination of all individual harmonic

confinements: lattice, dipole, and magnetic. To combine these is generally complicated, since the axes of all

individual traps are not aligned. In §D we solve the full problem in detail. The straightforward quadrature

sum of the geometric mean trap frequencies

ω̄ =
√

ω̄2
0 + ω2

lattice (3.7)

is accurate to within a few percent.

An unavoidable consequence of applying an optical lattice to the gas is heating due to momentum diffusion

from spontaneous emission [168]. For the lin-lin lattice, the ratio of lattice depth to heating can be minimized

by using large, red detunings. This same strategy does not work for the lin-⊥-lin lattice, since this ratio has

an upper bound. For the lin-lin lattice at λ = 812nm, the theoretical heating rate per unit lattice depth is

1.8nK/s. For the lin-⊥-lin lattice at λ = 790nm, the theoretical heating rate per |1,−1〉 unit lattice depth

is 19.4nK/s. The lin-⊥-lin heating rate is independent of state and field direction, which implies that the

lattice beams equally heat atoms in |1, 0〉 even though there is no |1, 0〉 potential. These heating rates give

the average energy input per particle (in units of kB) into the gas due to the occurrence of many scattering

events. However, the energy input from each individual scattering event is a complicated function of the

lattice arrangement, detuning, and the density matrix of the gas. Therefore, on experimental timescales,

when the average scattering number of scattering events per particle is much less than one, the effect of these

events on a particular quantum simulation measurement is an open question [37, 169]. For example, if the

energy of a scattering event does not thermalize back into the bulk gas over the course of the experiment,

the effective heating rate may be much less than calculated assuming the standard formulas [168]. For a

more detailed discussion see §C.4.

3.2 40K Fermi-Hubbard Apparatus

The second apparatus involved in this thesis, located at the University of Toronto, is designed to create an

ultracold degenerate Fermi gas comprised of 40K atoms in an optical lattice to simulate the Fermi-Hubbard

model. In particular, the goal is to develop a new tool — single-site imaging resolution of a 2D lattice plane

— to simulate aspects of the 2D Fermi-Hubbard model believed to be relevant to cuprate superconductors

(§2.4.3).

The thesis work on this experiment involved the many facets of designing and building an apparatus.

The work is not complete, however, almost all the main components have been built and integrated together.

For those elements not already built, there is at least a specific design or idea and most are currently under

construction. Therefore, we will give a detailed overview of the apparatus as it exists at the time of writing

(i.e., spring 2012). As is the case for any system still in the construction phase, the plan today may not be

the reality tomorrow. In fact, many elements of the system we will describe have already gone through a
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number of iterations in response to the issues that have thus far preventing completing the apparatus. Where

relevant, we will point out aspects and designs that have changed and why. Not only is this documentation

important for contextualizing the current apparatus, but also to hopefully avoid similar mistakes in the

future. A detailed overview of the system will also be available in a forthcoming thesis by Dylan Jervis.

3.2.1 Overview

(i)

(ii)

(iii)

(iv)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)
(v)

Figure 3.6: Schematic of the two-chamber 40K apparatus as described in the text. Labels: (i) MOT chamber,
(ii) transport system, (iii) science chamber, (iv) quadrupole coils, (v) RF/ microwave antenna, (vi) dipole
beam (two sets), (vii) Feshbach coils, (viii) vertical lattice beam, (ix) in-plane lattice beam (two sets of
retro-reflected beams), (x) imaging window, and (xi) custom objective (NA=0.6 at 404.5nm). Not all laser
beams are illustrated.

Our system, illustrated in Fig. 3.6, consists of a two-chamber vacuum system connected by a differential

pumping tube. In section (i), atoms are collected from a high pressure vapor in a magneto-optical trap

(MOT) and then transported to section (iii) (the ‘science chamber’), which is a low pressure region where

the atoms are evaporated to the ultracold regime and loaded into a lattice. The main feature of this sys-

tem is a 200µm thick, 5mm diameter sapphire window for high resolution imaging with a custom objective

optimized for 404.5nm light. In terms of physical construction, only two elements, the lattice and imaging

system, are incomplete. At present, the biggest impediment to progress is integrating all the components
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together — specifically attaining enough atoms in the MOT and then transporting those atoms to the science

chamber with high enough efficiency. While some of these problems are issues of optimization, mostly they

are hardware issues related to the atomic sources, which I will discuss in more detail in §3.2.6.

There are several routes to attaining an ultracold gas of 40K, and we have iterated through a number

of these. For reasons detailed in §3.2.3, we are currently pursuing sympathetic cooling of 40K using 87Rb.

Therefore, in our current setup, we collect 87Rb atoms and 40K atoms in the MOT. The 87Rb vapor is cre-

ated using a commercial alkali metal dispenser from SAES, and the 40K vapor is created using a home-built

(see [121] for design) dispenser containing enriched potassium (10.8% 40K).

Once in the MOT, atoms are loaded into a magnetic quadrupole trap and transported (ii) to the science

chamber (iii) by ramping the current sequentially on and off in sets of overlapping quadrupole coil pairs

(§3.2.7) . The pressure in the science chamber is sufficiently low, so the lifetime of trapped atoms is on the

order of several minutes. This allows enough time for efficient evaporation to the ultracold regime. In past

iterations, when we attempted 40K only evaporation, too few atoms were transported to the science chamber

to start evaporation. This was caused by a combination of poor transport efficiency and low initial MOT

number (see §3.2.7 and §3.2.6). Our belief is that 87Rb-40K sympathetic cooling will be a more robust solu-

tion, since only large numbers of 87Rb atoms are required. Therefore, the remaining overview is the planned

sequence of events. Although these steps have not been demonstrated, the physical elements required have

been, or are well towards being, constructed.

In the science chamber, the atoms are held in a magnetic quadrupole trap (iv). At low temperatures,

atoms can flip their spin in the zero-field region near the center of the trap (i.e., Majorana losses). To prevent

these losses, we plan on utilizing a “plugged” quadrupole [23, 101] by focusing a blue-detuned (repulsive)

optical beam through the quadrupole center. The source of this λ ≈ 760nm laser beam is a Ti:Sapphire laser

coupled into an optical fiber. In the plugged quadrupole trap, 87Rb atoms will be evaporated via transitions

to untrapped states induced by an RF frequency magnetic field created by a current loop close to the imaging

window (v). 40K atoms are not evaporated as much because the RF frequency removes 40K atoms which are

9/4 times more energetic. As the 87Rb gas cools, the 40K gas cools via 87Rb-40K collisions. Once sufficiently

cold, the 87Rb gas will be ejected from the trap, and the 40K atoms will be loaded into a crossed-dipole trap

(vi) at λ = 1053.57nm6, located close to the imaging window (x).

A hyperfine state mixture consisting of |9/2,−9/2〉 and |9/2,−7/2〉 atoms will be prepared using mi-

crowave and/or RF transitions. In this mixture we can access the Feshbach resonance (§2.1.2) at 202.1G

using a pair of bias coils (vii) to increase the collision rate. Further evaporation will be performed by low-

ering the dipole trap depth until the gas enters the ultracold regime. At this point, atoms will be loaded

into 2D planes by retro-reflecting light (from the same source as the dipole laser) from the imaging window,

which has a high-reflection coating at 1052nm (viii). Finally, a square lattice is applied in these planes (ix).

For imaging, the lattice is ramped to full power, and beams at 404.5nm cause scattering (and cooling) on

the 4S1/2 → 5P3/2 transition (see §E). This light is collected by a custom objective (xi) with a numerical

aperture of 0.6 (resolution ≈ 400nm) located on the air side of the imaging window for single-site imaging.

Not pictured in Fig. 3.6 is the support structure for the objective, consisting of a 3-axis translation stage and

6This is a “magic” wavelength for the 4S → 5P3/2 transition of 40K; see §3.2.10 and §G.1.
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two-axis tilt control as well as the tube lens and CCD camera. This hardware is currently being developed.

More detail on each of these experimental steps is provided in the following sections.

3.2.2 Vacuum System and Support Structure

60L/s
Ion Pump

20L/s
Ion Pump

RGA

All
Metal Valve

All
Metal Valve

VAT
Valve

Turbomolecular
Pump

TSP

Science Side

MOT Side

Figure 3.7: 40K vacuum system including all pumps. The MOT side is pumped with a 20L/s ion pump
and the science side with a 60L/s ion pump and titanium-sublimation pump (TSP). A residual gas analyzer
(RGA) is used to detect leaks and diagnose dispenser performance issues. (Inset) Expanded view of the
three elements of the science chamber. In the middle is a custom built stainless steel, 12-sided chamber from
Kimball Physics. One of the side ports has an increased bore for high conductance to the vacuum pumps.
The top and bottom recessed flanges are custom built by UKAEA.

A necessary component of any ultracold atom experiment is an ultrahigh vacuum (UHV) system. Be-

cause of the conflicting demands of high pressure for atom loading and low (< 10−11 Torr) pressure for

evaporation, simulation, and imaging, we have a two-chamber system as illustrated in Fig. 3.7. The MOT

side, which is at relatively high pressure (≈ 10−9 Torr), is pumped using a single 20L/s ion pump (Duni-

way RVA-20-DD-M). The science side is pumped using a 60L/s ion pump (Duniway RVA-60-DD-M) and a

titanium-sublimation pump (TSP). The two chambers are connected by a narrow tube with a right-angle

for differential pumping. At the narrowest point, the tube has a 0.5”OD (0.43” ID). The tube that connects

vertically into the science chamber is 149.44mm long and has a 0.75” OD (0.68” ID). The whole length of

the differential tube is best illustrated in Fig. 3.18. A rough estimate of the total conductance [170] for H2 is

5L/s through the tube. If the H2 pumping speed in the science chamber is 200L/s (a conservative estimate
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for the TSP), then the H2 pressure is 40 times lower in the science chamber. Differential pumping for the

alkalis is better, both because they are heavier and because they are pumped by all surfaces. In practice,

the differential pumping is sufficient as the lifetime has been measured to be greater than 200s.

The vacuum system has three valves. A VAT 48124 all-metal gate valve separates the MOT side from

the science side, and it can be used to limit alkali contamination when the experiment is not in operation

and to independently bring either side of the vacuum to atmospheric pressure. This is mostly useful for

replacing the atomic sources in the MOT. Two all-metal right angle valves (VG Scienta ZCR40R) provide

air access to either side, which is used to attach a turbomolecular pump during initial pump down and bake

(until the ion pump takes over).

The centerpiece of the vacuum system is the science chamber; an expanded view is provided in Fig. 3.7.

The main element is a stainless-steel chamber from Kimball physics. This chamber has 12 2.75” ports which

are used for windows; one of the ports has an expanded bore (4.5” CF) to increase conductance from the

chamber to the ion pump and TSP. All 12 ports have 7056 glass vacuum windows (Duniway VP-275-150),

which are broadband anti-reflection coated for 700-1100nm. Exact coating specifications are given in Fig. J.5.

The top and bottom sides of the chamber accept 8” flanges. We attach two custom recessed titanium flanges

built by UKAEA to these ports. The vertical transport tube (connecting to the MOT side) is welded to the

bottom flange. The top flange has a bottom insert with a specially brazed 200µm, 5mm diameter sapphire

window for high resolution imaging (more details in §3.2.10). Before constructing this flange, the window

strength under vacuum was tested in Ref. [171]. The brazing process slightly curved the window in towards

the vacuum side. The radius of curvature, ≈ 30cm, is not expected to effect the resolution. The window

assembly was anti-reflection coated at 404.5nm and high-reflection coated at 1000-1060nm; see the coating

specifications in Fig. J.6. Technical drawings of these parts are included in §J.

The entire system was assembled and evacuated according to standard UHV protocol. All surfaces, ex-

cept the inside of the valve, RGA, and MOT cell, were thoroughly cleaned with hot water and alconox, and

then liberally rinsed with hot water, acetone, methanol, and distilled water (in that order). Parts were left

to dry in HEPA-filtered air. Most metal parts, in particular the stainless steel chamber, were vacuum baked

at 400◦C for two months to reduce hydrogen outgassing (see Fig. 3.8). Despite using silver plated gaskets

and screws, significant corrosion occurred during the bake, and the flanges had to be chiseled off, thereby

destroying several parts in the process. Consequently, residual corroded gasket material on conflat knife

edges was a concern. This was primarily removed by scrubbing with a 1M nitric acid solution. After the

acid scrub and a cleaning cycle, these parts were air baked at 450◦C to build an oxide layer on the vacuum

side to further reduce hydrogen outgassing. The TSP was separately vacuum baked and outgassed at 360◦C.

After the system was assembled as shown in Fig. 3.7, it was baked in three stages. First, the system was

baked while being pumped by a turbomolecular pump only. Next, the ion pumps were reduced in tempera-

ture and turned on. Finally, the all-metal valve was cooled down, the valve was closed, and we baked with

only the ion pump running. The total bake time was typically 1-2 weeks. For the MOT chamber, we split

the first bake stage into two sub-stages. First we baked for several days to drive water out of the atomic

sources. Then we turned on the sources at operational current for outgassing. This will be discussed in more

detail in §3.2.4.
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(a)

(b)

(ii)

(i)

(iii)

Figure 3.8: 40K system all-metal bake. All the metal parts were assembled (in no particular order) and
baked under vacuum for two months at 400◦C. (a) Images from the bake. (i) System in the oven before
the bake. The walls of the oven are aluminum-foil-covered firebricks (Thermal Ceramic K23). (ii) The oven
enclosed during the bake. A turbomolecular pump outside the oven pumps on the system through a 1m-long
bellows. (iii) The main chamber after the bake and the chisel required to remove the blank flanges on the
side ports. Note the oxidation on the outside versus the inside of the system, which had not yet been baked
in air. (b) H2 partial pressure measured with an RGA versus the bake time in days. The pressure continued
to decrease as we baked. The bake temperature is shown as an inset. The dip before day 20 was the result
of a broken heater element.
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Where possible, and particularly for the MOT chamber, which has many glass-metal transitions, we built

a firebrick oven for the bake to ensure uniform heating. For some parts of the system this is not possible,

so they were wrapped in Al foil and insulation. In all cases, heat was supplied by lengths of “heater tape”

(Omega STH series) plugged into variable-voltage transformers (“variacs”) running off 120V AC. Tempera-

ture was monitored by ≈ 10 thermocouples, and the voltage on each transformer was adjusted manually to

maintain a uniform temperature. The science chamber was baked to a maximum temperature of 200◦C; a

180◦C temperature was maintained at the imaging window. The MOT chamber was baked to 150◦C. Due

to our system design, several of the transfer quadrupole coils (see Fig. 3.6) were put on before the vacuum

was fully assembled and cannot be removed. Therefore, we needed to arrange our bake around these coils.

A residual gas analyser (SRS RGA100 with Option 1) with an electron multiplier on the MOT-chamber

side allows for extremely sensitive He leak testing (10−13 Torr He noise floor). We detected several leaks this

way. Twice, there was a leak in the TSP feedthrough, which required replacement. The imaging window

developed a leak during the first vacuum bake, likely due to an accidental temperature spike. Ultimately, we

replaced the entire flange and successfully rebaked. Initially, we used a nickel (versus copper) gasket on the

bottom flange of the science chamber to reduce eddy currents. After the bake, this gasket badly leaked, and

so it was replaced with a standard copper gasket. This problem may have been caused by thermal expansion

mismatches between the titanium flange, stainless steel chamber, and nickel gasket, exacerbated by nickel’s

poorer sealing qualities. For example, conflat the knife-edge indention into the nickel was very shallow com-

pared to the deep indention typically formed in a copper gasket. Even the copper gasket developed a very

small leak. We injected a mixture of Vacseal and acetone around the gasket edge (in the gap between the

flanges) using a syringe, which has provided a seal for several years. Since Vacseal has been known to fail,

this should be checked in the event that the vacuum performance degrades.

To support the system and create an interferometrically stable platform for the lattice and imaging,

the chamber is mounted on an anodized aluminum collar set on 4”x4” aluminum posts. These posts also

form the base for three aluminum breadboards (2-Thorlabs PBG12104, 1-Thorlabs PBG12111), which is an

interferometrically stable platform. A schematic and photograph is shown in Fig. 3.9.

3.2.3 Assessing Different Routes to Ultracold 40K Atoms

In comparison to 87Rb, preparing ultracold 40K faces three main challenges. First, as a fermionic isotope it

requires two distinguishable particles for evaporative cooling. Second, the natural abundance of 40K is very

low (0.01%). Lastly, the sub-Doppler laser cooling processes for 40K are weak [172] or non-existent [173],

which degrades the initial condition for evaporative cooling. There are two main approaches to overcome

these problems. One is to sympathetically cool 40K using another species or isotope (almost always 87Rb),

at the cost of significantly complicating the system. The second option is to proceed with evaporation

using two spin-states of 40K. However, because of poor laser cooling, this approach requires a large initial

atom number, which is difficult to produce given the low natural abundance. Surveying 17 groups with

ultracold 40K gases7, 12 used sympathetic cooling (10 using 87Rb [174–183], one using 6Li [184], and one

using 41K [185]), and 5 cooled using 40K [173, 186–189] only. The large number of groups using 87Rb for

7Based on our best effort, this includes every group with ultracold 40K gases as of August 2011.
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Figure 3.9: 40K vacuum system support structure and science chamber optics deck. (Top) schematic with
one of the breadboards removed for viewability. (Bottom) Photograph of the system before the vacuum
system was fully constructed. The base is set of 8 4”x4” aluminum posts. Optics are mounted on aluminum
breadboards from Thorlabs.
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sympathetic cooling is not surprising. 87Rb MOTs are large (N > 109), with efficient sub-Doppler cooling,

and 87Rb has a natural abundance of 27.8% with readily available sources. From a technical perspective,

all the optics for a 40K and 87Rb MOT are interchangeable, since the wavelengths for the D2 transitions for

these species (766.7nm and 780.2nm), are sufficiently close together. These two wavelengths can be easily

combined using a polarizing beam-splitter and a multi-order waveplate.

Initially, we decided to pursue an all 40K evaporation scheme, based on the simplicity of the approach.

We were foiled in two regards. First, achieving a large MOT number (> 109 atoms) depends on a quality

source of enriched K, which was a problematic issue (see §3.2.4). Also, this large MOT must be transferred

into the magnetic trap and then transported to the evaporation region without significant heating or loss.

No group has succeeded in cooling ultracold 40K gases using a fixed coil transport scheme, and indeed, we

found the transport efficiency too low (see §3.2.7). Transport efficiency issues also rule out sympathetic

cooling with 41K, for which the transport efficiency was even worse than 40K. Based on assessing the success

of various groups, in addition to our own experience, our current approach is sympathetic cooling using
87Rb atoms.

3.2.4 Atomic Sources

Atomic sources that produce a high purity atomic gas into a UHV system are essential to the operation of

our apparatus. The source is the first in a long chain of elements required to reach the ultracold regime, and

so small source issues are compounded. Typically, experiments using alkali atoms employ either a ‘lump’

of pure metal (>1g) or a commercial alkali metal dispenser. A dispenser is a small metal vessel contain-

ing compounds that react to produce the alkali gas when heated by passing current through the dispenser

via external leads. A widely used commercial dispenser is produced by SAES. The low natural abundance

(0.01%) of 40K means that using a gram-sized source is not feasible. Instead, we must use very expensive

enriched potassium8, which is only available in mg quantities. Small amounts of pure enriched metal plated

into a glass ampoule are available. These can be placed into the vacuum system as long as the vapor pressure

is well-controlled so that the metal is not rapidly pumped away. For example, at T=300K (27◦C), the vapor

pressure of K is 1.8×10−8Torr [190], which results in 0.06mg/day lost to a 20L/s pump. For small quantities

of material, a dispenser-type source is desirable because the release of the material is easy to regulate —

when there is no current through the dispenser, no K is released.

In the 1990s, commercially enriched dispensers were not available, so a solution was developed at JILA

[121] that uses enriched KCl and ground calcium, which undergoes the following reaction when heated

Ca+ 2KCl → 2K + CaCl2. (3.8)

These ‘homebuilt’ dispensers are used in 8 of the 17 experiments surveyed, but they are time-consuming to

make and require a dry environment, since calcium oxidizes in ≈10 minutes in 40% relative humidity. Several

years ago, commercially enriched dispensers produced by Alvatec appeared on the market. These operate

differently than the SAES and ‘homebuilt’ dispensers as no chemical reaction is used. Instead, the enriched

K metal is alloyed with barium, which decreases the vapor pressure so that an increased temperature is

8K (in the form of KCl) enriched to 10.8% 40K is available for $132/mg from Trace Sciences (July, 2011).
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Figure 3.10: (a) Our first dispenser mounting scheme, and our (b) current scheme. (c) Residual gas analyzer
(RGA) traces firing the dispensers for the first time under vacuum. Alvatec, SAES and homebuilt sources are
shown. Dispensers are considered clean when they are hydrogen-limited and when initial water outgassing is
complete. The data for the Alvatec dispensers was taken from one system with ion pumps on, and the data
for the homebuilt and SAES dispensers were taken in another system with only a turbomolecular pump
(so that we could access higher pressures). For the Alvatec dispensers, a large variation in the behavior
between dispensers was noted, as shown in (c). Whereas one dispenser was almost clean to begin with,
another dispenser had such a high water content that the ion pump controller shut off automatically. For
the homebuilt and SAES dispensers these traces are representative of all dispensers (i.e. there is much less
variation). The SAES dispenser produces a short carbon dioxide and water spike, but is quickly hydrogen
dominated after being turned on. The homebuilt dispensers initially outgas a large volume of water. After
performing approximately 5 current spikes, the water outgassing rate decreases and eventually disappears.
After outgassing, water is the least dominant partial pressure when operating at 8A .
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required to release a sufficient quantity of K. Alvatec’s claim was that these dispensers have a lower overall

vacuum pressure during operation than other sources. Because the alloyed metal can oxidize in air, the

dispensers are filled with argon and sealed with indium. Once in the vacuum system, the indium seal opens

after the dispenser is heated to 160◦C.

Our first two MOT cells used Alvatec dispensers. To mount the dispensers, we used a standard tech-

nique previously employed with SAES dispensers and carried out by Ron Bihler at Technical glass (where

the MOT cells were constructed). The dispensers are spot welded to a “pin press”, which consists of metal

rods sealed directly to the glass wall (see Fig. 3.10). When done correctly, this method creates robust electric

connections, since there are no mechanical connections that can loosen. Additionally, this method uses the

minimal amount of metal located inside the vacuum chamber. Minimizing metal surface area is important,

since K bonds to metal; our early tests with all-metal chambers could only produce a small MOT with a

high-flux source. This bonding technique had been perfected for SAES dispensers, and there were some

issues transitioning to the Alvatec dispensers. The Alvatec sources in our first MOT cell (#1) outgassed a

large amount of water, had visual evidence of oxidation, and some of the spot welds failed during the bake.

We believe that during the bonding process, these dispensers were heated above the melting point of indium

and exposed to air for a long period of time. These sources could only produce MOTs consisting of 107 atoms.

In our next cell (#2), we used the same mounting technique, but the pin press was longer to keep the

dispensers further from the glass during the bonding process (of the pin press to the cell). Additionally, they

were sunk to a cold finger during bonding. The RGA traces we measured when we fired these dispensers

for the first time are shown in Fig. 3.10. A standard technique used to test atomic sources is to look for

fluorescence from a resonant laser beam sent through the cell while the sources are activated. We were unable

to observe fluorescence from the Alvatec dispensers in cell #2, despite operating them up to 13A of current,

which created sufficient dispenser temperature to visually glow orange9. At these high currents a black film,

presumably barium, was deposited on the inside of the glass cell. Fortunately, the dispensers were located

in a separate tube projecting from the cell, and the film did not coat any of the MOT windows. A separate

experimental group in our lab also coated their cell with a black film emitted from Alvatec dispensers. This

film could only be removed with sulfuric acid [191]. Ultimately, we generated sufficient vapor pressure for

MOT operation at N ≈ 108 − 109. While we cannot say with certainty that these sources did not run to

their specification, the lack of fluorescence remains troubling. Strong fluorescence has always been seen using

our homebuilt dispensers. Cell #2 included SAES Rb dispensers on the same side of the MOT cell as the

Alvatec source. When we turned these “Rb dispensers” on after a year of running just the K dispensers,

mostly K vapor and only a small amount of Rb vapor was emitted. It may be that K dispensers were put

into the system by accident instead of Rb dispensers. At that time, SAES did not mark the dispensers; now

all dispensers are marked with their alkali metal content. Another possibility is that the K vapor poisoned

the reactants in the SAES dispensers.

For our third and current cell (#3), we have 3 homebuilt K dispensers each with 7.5mg of K at 10.8%

enrichment and 3 commercial SAES Rb dispensers. Additionally, we used an electrical feedthrough on a

9Due to variations in how dispensers are mounted, the same current in different vacuum systems may produce different
dispenser temperatures. Therefore, we found it imperative to visually estimate the temperature using the color of light emitted
by the dispenser. We observed that dispensers emitted alkali when emitting enough IR to be visible to our IR viewer (FJW
Optical Systems).
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1.33” CF flange instead of a pin press. The dispensers are mounted using mechanical crimp connectors, as

shown in Fig. 3.10. This is a necessary change because of the difficulties associated with shipping homebuilt

dispensers to the glassblower; we mount the dispenses ourselves on site. This design also eliminates thermal

stresses on the dispensers and allows us greater flexibility to change them at a later date (without making

a new cell). Guided by the possible poisoning in cell #2, we located the Rb and K sources on opposite

sides of the cell (see Fig. 3.16). The RGA scans measured while firing the homebuilt and SAES dispensers

are shown in Fig. 3.10. During these scans, we detected strong fluorescence from all dispensers, which is an

encouraging indication of quality. Ultimately, poor dispenser performance ended up delaying this project by

close to two years, which hopefully serves as a cautionary tale for those building future experiments.

3.2.5 MOT Laser System
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Figure 3.11: Simplified 40K state diagram illustrating the required laser frequencies for a standard 4S1/2 →
4P3/2 MOT at 766.7nm. Also shown is how the 39K states are used for locking. Frequencies are referenced
to the bare 4S1/2 → 4P3/2 transition [192].

As shown in Fig. 3.11, to create a magneto-optical trap, we need several laser beams of various powers

which are narrow (<1MHz linewidth) and accurately tuned to an absolute frequency within a part in 108. The

‘trap’ beam performs laser cooling and trapping on the cycling transition 4S1/2, F = 9/2 → 4P3/2, F
′ = 11/2

for 40K (5S1/2, F = 2 → 5P3/2, F
′ = 3 for 87Rb). The trap beam is 10–50MHz red-detuned from this transi-

tion and requires ≈ 200mW of total power. Occasionally atoms are depumped by this beam to the ground

hyperfine state F = 7/2 for 40K (F = 1 for 87Rb), which is not excited by the trap beam. Therefore, we also

need a ‘repump’ beam from 4S1/2, F = 7/2 → 4P3/2, F
′ = 9/2 for 40K (5S1/2, F = 1 → 5P3/2, F

′ = 2 for
87Rb). For 87Rb, this beam only requires ≈10mW, but 40K atoms are more frequently depumped because

the excited state hyperfine splitting is small, so the repump beam is essentially an additional cooling and

trapping beam and requires ≈ 100–200mW of power. Auxiliary low power beams are required for state prepa-

ration and imaging. These include the ‘probe’ beam on resonance with the cycling transition and an optical
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Figure 3.12: Simplified 87Rb state diagram [193] illustrating the required laser frequencies for a standard
5S1/2 → 5P3/2 MOT at 780.2nm. Frequencies are referenced to the bare 5S1/2 → 5P3/2 transition.

pumping (OP) beam resonant with 4S1/2, F = 9/2 → 4P3/2, F
′ = 9/2 for 40K (5S1/2, F = 2 → 5P3/2, F

′ = 2

for 87Rb). All four of these beams are shown with respect to the state diagram for 40K in Fig. 3.11 and for
87Rb in Fig. 3.12.

The laser system which generates these beams can be divided into two main sub-systems. The first part

is designed to create narrow, frequency stabilized beams from which all the other beams will be derived.

For frequency stability these lasers are locked to an atomic transition. These source lasers (‘master’ lasers)

are all external-cavity diode lasers in with frequency-selective feedback. For 40K we have one master laser

(Laser #1), which is a linear Fabry-Perot cavity with an intra-cavity interference filter [194–196]. Rotat-

ing the filter performs coarse wavelength tuning. A piezo-electric transducer controls the cavity length,

which, along with the diode current, allows for fine wavelength tuning. Master laser #1 is referenced to

the 4S1/2 → 4P3/2, F = 1/2 crossover peak of 39K saturation spectroscopy (the excited state is not re-

solved) as shown in Fig. 3.11. A direct reference to 40K is not possible using a natural abundance vapor

cell. To generate the error signal, we frequency modulate the saturation spectroscopy probe beam using an

electro-optical modulator (EOM) at 15MHz and demodulate and filter the photodiode signal; see [194] for

details and layout. We feedback to the laser using homebuilt servo electronics (see §H.1 for circuit diagrams).

For 87Rb we have two master lasers: lasers #2 and #3. Laser #3 is an identical design to #1 and

Laser #2 is a commercial New Focus Vortex laser which uses a Littman-Metcalf laser cavity, although

we expect to replace this with an interference filter laser in the near future. Laser #3 is locked to the
87Rb F = 1 → F

′

= 1/2 crossover using the same FM modulation scheme as used for laser #1. Laser #2

is not referenced to an atomic transition, but instead referenced directly to #3. Light from both lasers is

mixed on a fast photodiode (EOT ET-4000, 10GHz unamplified GaAs photodiode). The photodiode signal is
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Figure 3.13: Optical and electronic setup for beat-note stabilization of Laser#3 to Laser#2. Beams with the
same polarization from the two lasers are combined using a non-polarizing beam splitter cube. The combined
light is focused onto a fast photodiode, resulting in a DC signal plus a time-dependent component at the
frequency difference between the lasers. This photodiode signal is DC blocked, amplified, divided down, and
compared to a reference signal (VCO) using the ADF4007 phase-frequency detector. The error signal is zero
when the absolute frequency difference between the lasers is equal to 32 times the VCO frequency. The sign
of the frequency difference determines the sign of the error signal slope. A snapshot of the beat note on a
spectrum analyzer is shown (averaged). The FWHM is approximately 1MHz, indicating that further servo
optimization is possible.

amplified, divided down by a factor of 64 in frequency, and compared to a VCO (Mini-circuits ZX95-310A,

160-360MHz tuning range) which is frequency-divided by a factor of 2 using a phase-frequency detector

(Analog devices ADF4007). This scheme produces an error signal which is used to lock the difference be-

tween the frequencies of lasers #2 and #3 to 32 times the VCO frequency. This is a convenient method for

generating a laser beam which is shifted in frequency with respect to a reference beam up to 10GHz. In

addition, laser #2 is widely tunable, over hundreds of MHz, by simply changing the VCO frequency. The

beat-note setup is shown in Fig. 3.13.

The next section of the laser system splits, amplifies, and frequency shifts the three reference beams to

produce the beams required for the MOT. The main component we use for frequency control are acousto-

optical modulators (AOMs), which use acoustic waves excited by RF (75-400MHz, depending on the specific

model) to diffract the beam. The ±1 diffraction order is frequency shifted ± the RF drive frequency. By

adjusting the relative angle between the AOM and incoming beam, up to 80-90% of the optical power will

diffract into either the ±1 order. The fraction of diffracted optical power is a function of the RF power,

which makes AOMs also useful for power control and as a fast (µs timescale) switch. The diffraction angle

changes with the RF frequency, so a single AOM pass cannot be used for dynamic frequency control. For

dynamic control, this angle can be canceled in a special ‘cats-eye’ double-pass configuration (see 3.14).

To power-amplify the beams we either injection lock a higher power diode or pass the beam through a

tapered amplifier. For injection locking we use a Faraday isolator to send a small amount of the reference

light into a higher power diode laser that is not in an external cavity (i.e., ‘free running’). Under the right
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Figure 3.14: Schematic of the 40K/87Rb laser system. Beam paths are not exactly as they appear on the
optics table, and some elements have been omitted for simplicity. All beam splitters are polarized. Acousto-
Optic Modulators (AOMs) are listed with the typical frequency. The square projection on the side of the
AOM represents the RF input. Beams angled away from/toward the RF increase/decrease in frequency.
AOMs in a double-passed “cat’s-eye” configuration are shown followed by a lens, waveplate and mirror.
Here the beam picks up twice the frequency shift and exits from the opposite port of the beam splitter.
For both 40K and 87Rb, the probe and optical pumping utilizes the same fiber-coupled beam, which is
dynamically adjusted in frequency. The 87Rb repump beam is shifted into resonance with a single-pass
AOM since no dynamic frequency tuning is required. The 87Rb trap, probe, and optical pumping beams
also only use single-pass AOMs since the frequency of Laser #3 is tuned by adjusting the reference VCO in
the beat-lock setup (Fig. 3.13); the AOMs are only for power control and fast switching. When the frequency
of Laser #3 is set so that the 87Rb trap beam is at the correct frequency, the 87Rb probe/OP beam is close
to resonance for optical pumping.
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conditions, injection causes lasing with the same frequency characteristics as the input light. This is a

highly non-linear amplifier, because the output power is fixed to the output power of the free-running laser.

Below a threshold input power, injection locking will fail, and the output is completely unusable. Therefore,

above threshold, injection locking removes amplitude noise in the injection light. For example, injection

locking has some tolerance to angular deflections of the input beam. Therefore, as shown in Fig. 3.14, we

typically inject after double passing through an AOM. As we dynamically tune the AOM frequency (to

tune the optical frequency) there is some change in both the diffraction beam power and direction. As long

as the laser stays injection locked, these power and direction changes do not impact the light used in the

experiment. Injection is limited to about 100mW of output power. For beams requiring higher powers (e.g.,

the 87Rb trap, 40K trap, and 40K repump beams), we pass the beams through tapered amplifiers (TAs). TAs

are solid-state linear amplifiers, with a maximum output of ≈1W, depending on the specific device (we use

the Eagleyard EYP-TPA series). The downside of using TAs is that the spatial mode of the output is poor.

We send the beam through a single-mode fiber, which improves the mode quality at the cost of 50-70% less

power. Up to 300mW of single-mode light for the MOT is available at the output of the fiber. The overall

setup is illustrated in Fig. 3.14.

3.2.6 MOT

Rb Repump

K Repump K Trap

Rb Trap

λ
/2

λ
/2

To MOT
Cell

4
x

4
x 3
x

3
x

f=-50mm f=200mm

WP’s

DM
QP

K/Rb

DWP’s

Figure 3.15: Optical layout of the 40K/87Rb MOT. Beams for 40K and 87Rb are first combined using a
polarizing beam splitter cube and a dichroic waveplate (λ for 780.2nm and λ/2 for 766.6nm from LensOptics).
After the first 4x telescope, an optional dark spot [197] is added to the repump beam. The repump and trap
beams are overlapped using a non-polarizing beamsplitter (Thorlabs BSW-08), which operates as a 60:40
beamsplitter for polarized light. The resulting two beams are expanded and then split into the three beam
paths for the MOT. The top beam path, which is the vertical MOT beam, has the most power since it does
not need to be split into two beams. There is the option to discard some of the light if better beam balance
is required, but in practice we use the maximum amount of power in all beams. (Inset) One of the MOT
beams going through the cell. Our MOT beams are in a retro-reflected configuration. A dichroic mirror
(DM) allows 404.5nm MOT beams to be added (see §E).

Once on the MOT table, the 40K and 87Rb beams are combined into one dual-wavelength repump beam

and one dual-wavelength trap beam using polarizing beam splitters and dichroic waveplates (LensOptics
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Figure 3.16: Schematic of the 40K/87Rb MOT Cell; see Fig. J.4 for technical drawings sent to the glassmaker.
(Bottom right) Cell shown with beams (red) and quadrupole coil. (Top Right) Actual cell produced by
Technical Glass.

73



27-order waveplates with λ retardance for 780.25nm and λ/2 retardance for 766.7nm). Next, the trap and

repump beams are combined, split into three beams and expanded. These three MOT beams then pass

through windows into the glass cell in a retro-reflected configuration as shown in Fig. 3.15. The MOT Cell

is shown in Fig. 3.16. The MOT beams are apertured by the windows; the horizontal windows are 1.75”

in diameter and the vertical windows are 1.5” in diameter. The magnetic quadrupole field for the MOT is

provided by a set of coils on the top and bottom of the glass cell. These coils form the first quadrupole pair of

the magnetic transport (see §3.2.7). We use a set of three magnetic field shims (not shown) to null magnetic

fields along all axes and to provide a quantization axis for optical pumping. Because the vapor pressure of

K at room temperature is low, we heat the source tube to 60◦C and the main cell to 50◦C. The MOT can be

monitored by collecting fluorescence through the side or front viewing windows (0.75” diameter). We send

a probe beam down the axis of the transport tube to take absorption images and for optical pumping.

(a) (b)

P
ix

e
l 
N

u
m

b
e
r

F
lu

o
re

s
c
e
n
c
e
 S

ig
n
a
l 
(A

.U
.)

Figure 3.17: Fluorescence images of the (a) 40K and (b) 87Rb MOTs. The image of the 87Rb MOT is from
the current setup acquired in 0.7ms; the 40K MOT is from our previous cell acquired in 3ms.

In typical operation, the MOT takes 10-30s to achieve a steady-state atom number. After loading

the MOT, we optimize for transfer into the magnetic trap. We first do a compression stage (CMOT)

by decreasing the repump power and increasing the trap detuning, then a molasses stage (involving laser

cooling only and no magnetic field gradients), and finally optical pumping along the transport axis with a

quantization field applied by one of the shims. We have observed a 87Rb MOT in our current system and a
40K MOT in our previous cell. Fluorescence images of these MOTs are shown in Fig. 3.17. Since we are still

optimizing our MOT, we will not specify exact parameters; these will be available in Dylan Jervis’s future

thesis. We also performed laser cooling and trapping on the 4S → 5P (404.5nm) transition of 40K(see §E
for details).

3.2.7 Magnetic Transport

After CMOT, molasses, and optical pumping, we load the atoms into a magnetic quadrupole trap by in-

creasing the current in the MOT coils to a 100G/cm gradient. To move the atoms to the science chamber

for evaporation, we use a fixed-coil magnetic transport scheme that employs dynamically adjusted currents

in a series of overlapping coils. The fixed-coil method has no mechanically moving parts, but the setup and

electronics are significantly more complicated than the moving coil system used in the 87Rb experiment.

As a result, achieving operational transport occupied a good portion of our time. Although we eventually

succeeded in transporting atoms, the efficiency is low and optimization is still an ongoing project. One of the
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Figure 3.18: Schematic of the magnetic transport path illustrating the transport coils and differential pump-
ing tube. The horizontal section of the transport utilizes 12 quadrupole coil pairs that require unipolar
current; three pairs are on at any one time. Because of the large spacing between the MOT quadrupole
coil pair and the next coil pair, a “push” coil is used to provide the axial field required to move the MOT
quadrupole zero across this gap. At the end of the horizontal section, the atoms are transferred to a series
of vertically stacked coils. Using bipolar current, we transfer the atoms vertically through the center of
these coils. (Inset) Photograph of the horizontal transport coils and mounts. The mounts are made from
brass with a teflon spacer to prevent induced currents. The coils are glued to the mounts using thermally
conductive epoxy, and the mounts are water cooled via soldered on pipes.
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complications of our setup is that, unlike most other transport systems, we transport the atoms horizontally

365mm and vertically 174mm. The system is shown schematically in Fig. 3.18. In particular, getting the

vertical transport to work with high efficiency has been challenging. The initial design and construction are

detailed in [198,199]. The definitive account of this transport system will be in Dylan Jervis’s thesis, so here

I will only summarize and highlight our progress to date and note some important considerations.

The horizontal transport section is a standard design based on [200]. In our system, 12 quadrupole coil

pairs are overlapped perpendicular to the transport axis, as shown in Fig. 3.18. In the middle of the trans-

port system, a unipolar current in three adjacent coils creates a quadrupole trap with a gradient of 100G/cm

along z with a 1.72 aspect ratio10. The atoms start and finish in a single quadrupole coil pair, so the aspect

ratio has to ramp up and then back down to 1. There is a ‘push’ coil at the beginning which provides extra

bias and gradient along x to push the trap from the first pair of coils (the MOT coils) into the second pair

of coils. This is because the overlap between the MOT and second pair is large to allow the vertical MOT

beam into the MOT cell. At the end of the horizontal transport, an extra pair (horizontal-vertical transfer

pair) has been added to maximize the overlap into the vertical transport. This pair was added after the

initial design and construction described in [198, 199]. The horizontal coils are driven from a single 30V,

200A supply with each coil pair regulated by a single low-side FET.

In the vertical transport section, the atoms are transported vertically along the coil axis as shown in

Fig. 3.18; by symmetry, the aspect ratio is 1. Unlike in the horizontal transport section, each individual coil

has an adjustable current, and four of the coils are bipolar. Therefore, these coils are driven by FETS in an

H-bridge configuration. The two top coils form the final quadrupole coil pair for evaporation. They are in a

special H-bridge configuration so that they end up electronically in series to reduce common-mode current

noise. The circuit details and datasheets are listed at http://www.physics.utoronto.ca/ astummer/.

Power handling of the FETs is an important consideration; the power dissipated in each FET is

PFET = I(Vsupply − IRcoil). (3.9)

If we are only driving a single coil we can adjust Vsupply to minimize this power. However, since we are

driving several coils from a single supply we do not have independent control, and a large amount of power

may be inadvertently dissipated in the FET.

To estimate the transfer efficiency to a certain distance xtrans, we transport from the MOT to xtrans and

back, and then measure the number of atoms recaptured by the MOT. Data for 87Rb is shown in Fig. 3.19.

If we assume that the loss rate is the same in each direction, the data indicates a 60% efficiency in the

horizontal transport section and a 33% efficiency in the vertical transport section. There are three main loss

processes. The first is due to collisions with the vapor in the MOT cell during the time it takes to enter the

low pressure region of the pumping tube. This can be improved by operating with low vapor pressure and

loading the MOT longer, or by increasing the transport speed during this stage. However, the latter is not a

desirable solution because it leads to heating of the trapped gas. The second loss mechanism is “clipping”,

10The aspect ratio is defined as the gradient along y to the gradient along x. In a three-coil transport scheme, the aspect
ratio and gradient are free parameters. However, if we constrain the aspect ratio to be constant as the trap zero moves and
that the quadrupole coil pairs are unipolar, then the aspect ratio is fixed. For the geometry of our system, this fixed aspect
ratio is 1.72.
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Figure 3.19: (a) Fraction of 87Rb atoms transported from the MOT cell to the end of the vertical trans-
port section and to the science chamber. Overall, approximately 17% of the 87Rb atoms in the MOT are
transported to the science chamber. (b) Roundtrip efficiency to the end of the horizontal transport system
(normalized to holding in the MOT cell) versus the initial width (controlled by temperature) for 41K. To
heat the gas, we varied the repump power during molasses. This is strong evidence that clipping against the
differential pumping tube is a main loss process during transport.

which occurs when the RMS size of the cloud along direction i (in the direction of the differential pumping

tube wall),

x̄2
i = 2

(

kBT

gFmFµB
∂Bi

∂xi

)2

, (3.10)

is comparable to the radial size of the tube. To minimize clipping we need to load a cold gas, which empha-

sizes the importance of proper cooling in the MOT and loading into the trap without heating. Eqn. 3.10 is

somewhat deceiving because it seems to suggest that increasing the gradient will linearly decrease the size.

However, we must increase the gradient adiabatically, and then the size only scales as the ratio of gradients

to the 1
3 power. Clipping is exacerbated in the vertical transport section because the weak gradients are

in the radial tube direction. For example, in the horizontal transport section the weakest gradient is along

x, but that direction does not clip on the tube. The weakest gradient along a radial tube direction is y,

for which ∂By/∂y = 63G/cm. On the other hand, in the vertical transport section, the weakest gradients

are ∂Bx/∂x = ∂By/∂y = 50G/cm, and both are in radial tube directions. To give typical number, for

gFmF = 1, T = 300µK, and ∂Bi/∂xi = 50G/cm, the cloud diameter (twice the RMS radius) is ≈ 2.5mm,

and the smallest diameter of the transport tube is 11mm. Clipping can also occur if the transport system

and the tube are not properly aligned.

The main uncertainty in predicting clipping is the initial temperature in the magnetic trap. We observe

that the transport efficiencies for three atomic species, 87Rb, 40K, and 41K, are increasingly worse in that

order, which is correlated with the fact that the MOT temperature also increases in that order. As a quan-

titative test, we heated the atoms in the magnetic trap before transport, and the resulting efficiency curve

(Fig. 3.19) supports the conclusion that clipping increases as the temperature increases. The decreased

efficiency of 40K versus 87Rb transport due to temperature issues may explain why all experiments utilizing

fixed coil transport systems use sympathetic cooling by 87Rb (§3.2.3). This is a major reason for our switch.

A final (and large) loss process is due to the coil electronics, which is specifically an issue in the vertical
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transport section. Small current spikes and dead zones in the crossover region of the bipolar channels was

strongly correlated to atom loss. Ultimately these can be minimized with judicious and time-consuming

optimization of the electronics and coil currents.

3.2.8 Science Chamber Evaporation

After the transport, the atoms are in the science chamber and held in a quadrupole trap (see Fig. 3.6 and

Fig. 3.7). The science chamber vacuum is excellent (P < 10−11 Torr), so the lifetime is long enough for

evaporative cooling to the ultracold regime. Inside the top flange, centered on the imaging window, we have

installed a 1.3GHz coil for 40K evaporation (see [201] for details), which also doubles as an RF coil for mF -

changing transitions, e.g., for 87Rb evaporation. As mentioned in §3.2.3, our original plan was to carry out

an all 40K evaporation scheme. Initially, the idea was to evaporate with a polarized sample (all 40K atoms

in |9/2, 9/2〉) in a pure magnetic quadrupole (QP) trap and then transfer to a dipole trap. This is the

technique used in the 87Rb Bose-Hubbard apparatus (see §3.1). Although the gas is polarized, fermions can

still thermalize due to p-wave elastic collisions until they are suppressed when T < 30µK [202]. Calculations

(§G.2) indicated that this approach was feasible and that we could transfer a high fraction of the atoms to

the dipole trap before Majorana losses become severe.

However, in practice our attempts to evaporative 40K were unsuccessful. Although we observed atoms

ejected from the quadrupole trap by applying microwaves, we did not see evidence of decreasing temperature

and increasing phase-space-density. One issue is that we started with a small atom number (N < 5 × 107)

at high temperature (T > 200µK). However, the approach may be flawed. Another group [203] also ob-

served very inefficient 40K evaporation in a pure QP trap even though the standard Majorana rate formula

(Eqn. B.11) does not predict a problem, and number loss is not observed. The survey of 40K experiments

(§3.2.3) revealed that a pure QP evaporation has not been implemented by any group. One possibility is

that the large spin of 40K (F=9/2) means that small spin rotations occur at a faster rate because the gap

between mF states is proportional to 1/F (see the adiabaticity criterion in §B.2). This does not cause large

atom loss because these states are still trapped, but they are trapped in successively weaker potentials. This

reduces the density and therefore the elastic collision rate.

To overcome this problem we decided to optically plug the QP trap [23, 101]. Here a repulsive optical

potential (‘plug beam’) is sent through the low-field region of the QP trap. Atoms are repelled from this

region due to the plug beam and therefore cannot undergo Majorana spin flips. To create our plug beam,

we use a Ti:Sapphire laser tuned to 760nm with up to 400mW after passing through a single-mode optical

fiber. We focus the beam through center of the QP trap to a 40µm waist. A schematic of the optical setup

and the plug beam in the science chamber is shown in Fig. 3.20. Coarse alignment of the plug is typically

done by evaporating the atomic gas in the presence of the plug beam and observing the deformation of the

density profile. Fine alignment is done by minimizing Majorana losses (i.e., maximizing atom number) when

evaporating to a low temperature. With only 40K we are unable to perform any evaporation, so alignment

was not possible. In our new 87Rb/40K setup, we can use the 87Rb signal to align the plug. This works

better than 40K because the 87Rb number is higher and 87Rb evaporation in an unplugged QP is efficient.

After the plug is aligned we will sympathetically cool the 40K by evaporating 87Rb.
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Figure 3.20: (a) Layout of the plug beam optics designed to focus the beam to a 40µm waist at the center
of the science chamber. Active feedback to the AOM from a photodiode signal after the fiber intensity
stabilizes the plug beam. (b) Schematic of the plug beam going through the gas in the center of the science
chamber.

3.2.9 Dipole Trap and Lattice Beams

After evaporation in the plugged QP trap, we will transfer to a crossed-dipole trap at λ = 1054nm

(λ = 1053.57nm). Once in the dipole trap we can further evaporate using a 40K |9/2,−9/2〉/|9/2,−7/2〉
mixture, which has a Feshbach resonance at 202.1G (see Table. A.3). The ultracold 40K gas in the dipole

trap near the imaging window will be loaded into a series of 2D planes formed by a λ = 1054nm (from

the same source as the dipole trap) beam retro-reflected off the imaging window; the window has a high-

reflection coating at that wavelength (see Fig. J.6). Next, a 2D cubic lattice will be applied in these planes

by retro-reflecting 1054nm beams through the science chamber side viewports (Fig. 3.6). Images illustrating

the atoms in the dipole trap and the lattice are shown in Fig. 3.21. Exact beam waists and ellipticity are

still open issues. Some main considerations are having a high enough lattice depth during the imaging phase

(§3.2.10), keeping the Fermi energy below the bandgap, and avoiding heating during transfer between the

dipole trap and lattice.

The dipole and lattice beams all originate from the same source: an NP Photonics “Rock” fiber laser

with a < 10kHz linewidth, 150mW power, λ = 1053.57nm, and a 30GHz thermal tuning range. This light

is sent directly into a NuFern 40W fiber amplifier, which adds < 5kHz frequency noise (in quadrature). Our

source wavelength is not arbitrary — it is a “magic” wavelength for the 4S1/2 → 5P3/2 transition in 40K (see

calculation, §G.1). “Magic” in this case refers to the fact that the dipole potential formed in the 4S1/2 state,

which couples predominantly to the 4P states, is identical to the shift in the 5P3/2 state (due to coupling to

the 12D state). Since 1054nm is far-detuned from the 4S → 4P transitions, the heating rate is small. Also,

when imaging at 404.5nm, the 1054nm photons cannot ionize the 5P3/2 state. For reference, the 40K 4S1/2

shift is (0.137µK × kB)mm2W−1, and the 87Rb 5S1/2 shift is (0.156µK × kB)mm2W−1 (λ = 1054nm).

An outline of the dipole/lattice optical layout for beam splitting and stabilization is shown in Fig. 3.21.

We use a series of AOMs to control the intensity of the beams. Photodiodes close to the chamber and after

the fibers (for the lattice) are used to feedback to the AOM to provide intensity stabilization. Since the
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Figure 3.21: (a) Dipole trap and lattice beam optical layout for splitting the source light and intensity
stabilizing each beam. (b) Illustration of the atoms in the dipole trap close to the imaging window. (c)
Illustration of the atoms in the lattice. The vertical lattice is much stronger than the in-plane lattice, so
that the atoms are described as a 2D gas in each plane.
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lattice beams are all retro-reflected, optical isolators after the fibers prevent the retro light from damaging

or causing high intensity instabilities in the fibers. These optics are still in the process of being set up, so

the layout in Fig. 3.21 is not final.

3.2.10 Imaging

After the 40K gas is loaded into the lattice, our goal is to image the gas in-situ with single-site resolution.

Our imaging system, shown in Fig. 3.22, is oriented so that the imaging plane is aligned with the 2D planes

formed by the vertical lattice beam. Therefore, we will first need to select atoms in a single horizontal

plane, otherwise the image will contain contributions from out-of-focus atoms. To isolate a single plane, we

plan on applying a magnetic field gradient so that a Landau-Zener microwave sweep only transfers atoms

in the imaging plane from F = 9/2 → F = 7/2 [57, 204]. Then, we will apply resonant light on the

4S1/2, F = 9/2 → 4P3/2, F
′ = 11/2 cycling transition at 767nm to remove atoms in all other planes; atoms

transferred to F = 7/2 will be unaffected. Once a single plane of atoms remains, we will ramp the lattice

depth as high as possible, limited by total optical power11 and fiber power handling. This procedure freezes

the atoms to individual lattice sites.

Next, to realize single-site imaging requires two main ingredients: high signal-to-noise and high imaging

resolution (i.e. comparable to the lattice spacing d = 527nm). To fulfill these demands we plan on performing

fluorescence imaging (§4.1.1) by exciting the atoms on the 4S1/2 → 5P3/2 transition at λ = 404.5nm (see

Fig. 3.22). This type of imaging is unable to determine an arbitrary number of atoms per site as pairs of

atoms on lattice sites will quickly photoassociate and become lost, leaving behind lattice sites with either

zero or one atom. To achieve high signal-to-noise we must collect a large number of photons per atom

(> 103); the number of photons collected is the product of the collection efficiency, scattering rate, and total

imaging time. The collection efficiency is
1 − cos(θ)

2
, (3.11)

where θ is the maximum angle for rays from a point source to be accepted by the lens (NA = sin(θ) is the

numerical aperture; see Fig. 4.1). To realize large θ (high NA), we have obtained a custom 0.6NA objective

designed and built by Special Optics which is diffraction limited at λ = 405nm (NA = 0.45 at λ = 767nm)

(see Fig. J.7 for dimensions). Our imaging system will therefore collect 10% of the scattered photons.

Long imaging times allow for large improvements in signal. This will be possible in our setup because

the atoms are trapped to individual lattice sites. Furthermore, by red-detuning our excitation beams, we

will laser cool these single atoms as they fluoresce. Laser cooling allows for long imaging times because the

temperature does not continuously increase as it would for resonant imaging. However, for the atoms to

remain trapped we need to ensure that the steady state temperature is much lower than the lattice depth.

This is an advantage of 404.5nm imaging — although the scattering rate is lower when imaging at 404.5nm

(Γ = 2π×185kHz) versus 767nm imaging on the 4S1/2 → 4P3/2 transition (Γ = 2π×6.04MHz), the Doppler

temperature is 5 times smaller. This significantly reduces the power requirements for the lattice during

the imaging stage. If we excite on the 4S1/2 → 5P3/2 transition, we can also collect 767nm photons scat-

tered at a rate of Γ ≈ 2π × 700kHz from the multi-photon decay path. Collecting these photons allows for

11For fixed power, the lattice depth can also be increased by dynamically decreasing the lattice beam waist.
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background-free imaging (i.e., there is no excitation beam at 767nm). A further reduction in temperature

is possible using sub-Doppler cooling, which is the procedure for single-site imaging in 87Rb [57, 58]. These

processes are not typically observed in free space cooling of 40K, although this may be different in a lattice.

Currently we have developed the laser system at 404.5nm and demonstrated free space cooling of 40K on the

4S1/2 → 5P3/2 transition (§E). Cooling in the lattice is complicated by the lattice potential shift between

the 4S1/2 and 5P3/2 states. Therefore, our lattice will be at the “magic wavelength” λ = 1053.57nm where

the dipole shift is the same in both states (§3.2.9).

(b)
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Figure 3.22: (a) Simplified state structure for fluorescence imaging of atoms on the 4S1/2 → 5P3/2 transition
at 404.5nm (see Table A.2 for the transition properties). For simplicity the intermediate states 5S1/2, 3D3/2,
and 3D5/3 have been combined; see Fig. A.1 for the full state structure. Atoms are excited by a beam slightly
red-detuned from the 4S1/2 → 5P3/2 transition (blue, solid line). Once in the excited state, atoms can decay
(dashed, grey lines). The wavelength of the scattered photon and the transition rate A are shown. The rate
to decay straight back to 4S1/2 and emit a 404.5nm photon is 2π × 185kHz. There is also a decay path
that emits three photons of approximate wavelengths, 3µm, 1.2µm, and 768nm, which occurs at a rate of
2π×1MHz. The total linewidth of the excited 5P3/2 state is 2π×1.19MHz. Because the transition can decay
to the dark F = 7/2 ground state, a repump beam (red, solid line) is applied on the 4S1/2, F = 7/2 → 4P3/2

transition. (b) Schematic of the imaging setup. Atoms in the lattice (red beams) are excited from the side by
the 404.5nm excitation beam (blue). The fluorescence is collected by a 0.6 NA objective through a 200µm
thick sapphire window. (c) Photograph of the custom-built imaging window (vacuum side up). This piece
is attached to the bottom of the top recessed flange.

The other ingredient of single-site imaging is high-resolution. Specifically, our imaging resolution must
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be smaller than the lattice spacing12. The standard resolution limit according to the Rayleigh criterion for

incoherent light is [205]

σ =
1.22λ

2NA
. (3.12)

Therefore, to achieve high resolution, we need high NA, small wavelength, and minimal aberrations (i.e.,

deviations from ideal diffractive imaging). Imaging at 404.5nm improves our resolution limit by almost a

factor of two over imaging on the D2 transition at 767nm. For our 0.6NA, diffraction-limited objective the

resolution is σ = 410nm at λ = 405nm (σ = 1040nm for diffraction-limited NA = 0.45 at λ = 767nm) (see

Fig. J.8 for objective MTF). To achieve a high NA, the working distance is 2.43mm. Since the objective is

in air and the atoms are in ultra-high vacuum, we need to use an extremely thin, low aberration window.

This window consists of a 200µm thick, 12mm diameter sapphire disk (Meller Optics) custom brazed to a

vacuum flange (UKAEA) with a 5mm diameter window aperture, as shown in Fig. 3.22.

Optical
Imaging

Figure 3.23: Sample image of the MRS-5 through the Special Optics objective. The zoomed in region has a
600nm pitch (i.e., each line is 300nm wide).

We have investigated a number of methods to test ex-situ the objective resolution and window aber-

rations. For coarse testing, we use a 1951 USAF resolution target. Since the USAF target does not have

fine enough features to reach the diffraction limit, we used the MRS-5 (Geller MicroAnalytical Laboratory)

target, which has features as small as 80nm (see Fig. 3.23). Although useful, illuminating this target is

difficult because it is tungsten layered on silicon and therefore it must be illuminated through the objective.

Other tests include imaging the slanted edge of a cleaved silicon wafer [206] and imaging a grid of 200nm

diameter holes spaced 500nm apart in a 100nm thick layer of silver (fabricated by Sang-Hyun Oh group at

the University of Minnesota [207]). To test the window aberrations, we have performed some of these resolu-

tion measurements with and without the window and we also tested the window phase in a Twyman-Green

interferometer [208]. We measured the RMS phase roughness to be 0.06λ.

To take site-resolved images, we need to rigidly mount the objective with respect to the lattice and have

three-axis translation combined with two-axis tilt control. Planning and initial construction of this mount

is underway. Another future consideration is using the objective to send beams into the experiment for

12The maximum resolution for which one can claim single-site imaging is a complicated function of the number of photons
collected, noise, coherence of the fluorescence light and the atomic density in the lattice (see §4.1.5). However, the single-site
criteria σ ≤ d is approximately correct.
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high-resolution manipulation of atoms trapped in the lattice.

3.2.11 Computer Control

Control

Imaging

Interlock

Sequencer (Digital/Analog Outputs)

Figure 3.24: Schematic of computer control and monitoring in the experiment.

To run a typical experimental sequence requires controlling all the components of the apparatus with

µs timing and then acquiring and analyzing the resulting image. The core of this process is a set of out-

put analog and digital signals controlled by an FPGA-based computer (‘ADWIN’ Pro II from Jäger). The

ADWIN timing array is loaded via TCP/IP from a standard Windows computer (‘Control Computer’). A

MATLAB program (‘Lattice Sequencer’) on the control computer compiles user generated MATLAB scripts

into the timing array. The Lattice Sequencer also sends information about the current sequence, i.e., the

value of the parameter being changed during each run, to a second computer (‘Imaging Computer’), which

is connected directly to the camera. At the end of the experimental sequence, a MATLAB program (‘Lat-

tice Acquisition’) loads images from the camera and processes them using information sent by the Lattice

Sequencer. For example, a typical set of experimental runs might involve cycling through a parameter such

as a given laser power P , which is controlled via an analog voltage from the ADWIN. For each sequence,

the control computer, based on the instructions in a MATLAB file, determines the ADWIN voltage required

for laser power P . The control computer loads that information into the ADWIN and sends a file with the

variable P to the imaging computer. At the end of the experimental sequence, the imaging computer saves

the image with the value of P in the filename.

At the hardware level, the ADWIN is the direct interface with the experiment. The analog voltages are

±10V and the digital outputs are standard TTL. The ADWIN has a 300MHz clock, but we only update

every 5µs based on our requirements. To prevent noise, ground loops, and damage to the ADWIN, all the

digital channels are isolated at the ADWIN, and analog signals are isolated at the experimental component

if necessary.
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It is also important to be able to monitor the apparatus during the cycle to ensure the ADWIN sequence

is implemented as expected. For passive monitoring we have a National Instruments 32 channel analog input

card (NI-PCI-6224) connected to the experiment to monitor, for example, the MOT level, coil currents, and

laser powers. This is based on the same device in the 87Rb apparatus [41]. For critical components it is also

necessary to have active monitoring. Most of the magnetic field coils require large currents during operation

(in excess of 100A), and therefore they are water cooled. If the water cooling fails and/or the coils are left on

too long, the coils could quickly overheat and cause irreparable damage to themselves and the apparatus. If

the water flow (Proteus 08004BN4 flow monitor) falls below a set value or the coil temperatures (monitored

with 30k thermistors, DigiKey Part#490-4662-ND) exceed set values, the current supplies are automatically

shut off via a relay. The monitor circuit diagram is given in §H.2. An overview of these various components

and how they connect is shown in Fig. 3.24.
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Chapter 4

Experimental Toolkit — Probes and
Techniques

Using the tools described in the last chapter (§3), we prepare an ultracold gas in a lattice which is well-

described by the models we are simulating. However, this is only the first aspect of the full quantum simula-

tion. We also need probes to read out the results and techniques to manipulate the initial state of the system.

A number of standard probes and techniques have been developed over a number of years for ultracold

gas experiments, and more specifically, for optical lattice experiments. In this work, we extend some of

these existing probes/techniques and also develop new ones of our own. In this chapter, I summarize all

the probes/techniques we use, with particular detail given to our new work. Our experimental work on

thermometry probes is given in §7, on impurity probes in §8, and non-equilibrium techniques in §6.

4.1 Probes

Probes are the collection of physical elements, procedures, and analyses we use to detect the atoms and

measure the state of the system. All our probes have one common theme — using near resonant light

to image the atoms. However, how we manipulate the atoms just before the image and the image analysis

set different probes apart. Since imaging is common to all probes, I will describe it first as a separate section.

The probes described in this section are certainly not a complete list for ultracold atom experiments. For

instance, a different class of probes ionize the atoms with light [209] or electrons [210] and directly detect the

ions. Another class use resonant light, but do not form an image and instead measure the diffraction pattern

of the scattered light in the far-field [211,212] to perform crystallography. This is one proposed method for

measuring spin correlations in the Hubbard model [213].

4.1.1 Imaging - Absorption and Fluorescence

Atoms interact strongly with electric fields (i.e., light) via the electric-dipole interaction (Eqn. B.1). In

§2.1.1, we discussed the case when the field frequency is far-detuned from an atomic resonance frequency.

For this situation, the atom-field interaction shifts the energy of the atomic states proportional to the field

intensity, which can be exploited to make atomic potentials. In this far-detuned limit, changes to the electric

field from the interaction are small and typically neglected. However, close to an atomic resonance, atoms

have a dispersive and absorptive effect on the field, both of which can be used for imaging. For our purposes

we will ignore the dispersive effects by imaging on resonance where these effects vanish. On resonance, the

atoms absorb photons from an incoming beam and re-radiate them in a dipole pattern (see §B.7.3). For
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Figure 4.1: Schematics of (a) fluorescence and (b) absorption imaging setups in f − 2f − f configuration.
The collection angle of the imaging is θ. For fluorescence, an excitation beam is incident from an angle
greater than θ and only the scattered light is imaged. In absorption imaging, the excitation beam is sent
straight into the imaging system and the shadow created by light scattered out of the beam (black lines) is
imaged.

dense enough samples we need to worry about re-absorption and coherent effects such as superradiance,

which we will ignore in the following discussion.

To use light scattering for imaging we need to transmit the electric field at the atoms to a CCD detector

using an imaging system. This is performed by optical elements (i.e., lenses) which collect and refocus the

field. An imaging system has a maximum angle of acceptance (see Fig. 4.1) which defines the numerical

aperture, NA = n sin(θ), where n is the index of refraction of the medium between the emitter and lens. If

we image a point emitter, the fraction of light collected is 1−cos(θ)
2 , and the resolution is ≈ 0.61λ(NA)−1 (see

§4.1.5 and §F for more details).

There are two complementary types of imaging - absorption and fluorescence. Fluorescence imaging is

conceptually more straightforward. For this type we send a beam (‘excitation beam’) through the atoms,

and a lens collects light scattered from the atoms perpendicular to the excitation beam (see Fig. 4.1). For

resonant light and no re-absorption, the detected signal W at position (x, y) on the detector is

W (x, y) =
1 − cos(θ)

2
γ

∫ t0

0

dt

∫

dz n(x, y, z, t)
Γ

2

I(x, y, z, t)

Isat + I(x, y, z, t)
, (4.1)

where γ is the detector efficiency, t0 is the imaging time and Isat is the saturation intensity (Eqn. B.70).

I(x, y, z, t) is the local intensity of the excitation beam, noting that I is itself a function of n and the beam

direction since the beam is attenuated as it travels through the gas. Therefore, fluorescence imaging is

difficult to calibrate. However, it does have two distinct advantages. Since the detector signal is directly

proportional to t0, we can increase the signal by collecting fluorescence for long times (t0 → ∞), which is a

feature we exploit for single-site imaging (see §4.1.5). Also, there is no signal for zero atoms (assuming low

detector dark counts), so fluorescence imaging is useful for discriminating between zero and ≥ 1 atoms.

In absorption imaging, the imaging lens is placed in the path of the laser beam (‘probe beam’) we

send through the atoms as illustrated in Fig. 4.1. Each atom scatters light out of the probe beam, which is

therefore attenuated. For a sufficiently weak probe beam (I � Isat) the attenuation is linear, so the detector

signal is,

W (x, y) = γ

∫ t0

0

dt I0(x, y, t)e
−σ

∫

n(x,y,z,t)dz (4.2)
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assuming the depth of field of the imaging system is larger than the atom cloud, σ is the absorption cross-

section (Eqn. B.77), and γ and t0 are defined as above for fluorescence. If we take an image a time t̃ later

after the atoms are gone,

W2(x, y, t̃) = γ

∫ t̃+t0

t̃

dt I0(x, y, t). (4.3)

If n and I are time-independent we can take the logarithm of the ratio of these signals,

ln

(

W2(x, y)

W (x, y)

)

= σ

∫

n(x, y, z)dz (4.4)

to get a signal which is proportional to the atomic density with no calibrations. Importantly, the final signal

does not depend on inhomogeneities in the probe beam. Also, the final signal is not a function of the imaging

time and therefore we can take fast images of the atoms before the distribution changes, limited only by

photon shot noise. On the other hand, we cannot increase our signal by imaging for arbitrarily long times

as we can in fluorescence1. In practical realizations of fluorescence and absorption imaging there are techni-

cal and fundamental noise sources (i.e., photon shot noise). These issues will be discussed in more detail in §F.

Although atoms will scatter close to any resonance, optimal imaging occurs when scattering on a cy-

cling transition. A cycling transition is a ground state-excited state pair coupled by the excitation/probe

beam, where the excited state can only decay to this one ground state. In alkali atoms this is the

nS1/2|F,±F 〉 → nP3/2|F + 1,±(F + 1)〉 transition driven using σ̂± polarized light2 (Eqn. B.22), where

F = I+ 1/2 (I is the nuclear spin) and nS1/2 is the ground state (see state diagrams Figs. A.1 and A.2). If

our excitation/probe beam is on resonance with that transition, it will not excite atoms in the other hyper-

fine ground state F̃ = I− 1/2. Therefore, we can control the effective density by putting (or keeping) some

atoms in F̃ . For example, in the 87Rb apparatus we prepare the atoms in the F = 1 state, but the cycling

transition is F = 2 → F
′

= 3. To image, we transfer a controlled fraction of atoms from F = 1 → F = 2

(“partial repumping”); see §F.2 for a more technical discussion. Partial repumping is particularly important

for absorption imaging due to saturation. When n is too large, the slope ∂V
∂n becomes too small and the signal

is dominated by noise and background light (e.g., off-resonant light in the probe beam path). Empirically

for the 87Rb apparatus, this upper limit is e−σ
∫

n = e−2.

Ultimately, absorption and fluorescence imaging give us a method to convert the integrated density

distribution of the atoms into a measureable signal. Although the equilibrium density in the trap is an

important quantity to measure (§4.1.5), we are not limited to only this probe. By precisely manipulating

the atoms before imaging the density, we can perform a number of probes which are described in the following

sections.
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Figure 4.2: TOF Expansion of a T = 10nK gas from a ν = 50Hz harmonic trap using Maxwell-Boltzmann
statistics. (a) Distributions after different expansion times obtained by summing the expanded harmonic
oscillator eigenstates (Eqn. 4.6) with Maxwell-Boltzmann factors. Comparison of the exact solution to the
semiclassical expansion and semiclassical momentum distributions after (b) 5ms expansion and (c) 20ms
expansion. The semiclassical expansion is a very accurate description of the exact expansion. After 20ms
the distribution is well-described by the momentum distribution with p = mx/t.

4.1.2 Momentum Distribution from Time-of-Flight (TOF) Expansion

To probe the momentum distribution we use time-of-flight (TOF) imaging. In this probe, the atoms are

quickly released from their trapping potentials, and then allowed to expand for some variable amount of time,

typically 20ms, before we take an absorption image. To see that the density distribution after expansion is

the momentum distribution, we use the propagator for free particles (assuming no interactions) [112]

G(x, x
′

, t) =

√

m

2πi~t
eim(x−x′)2/2~t, (4.5)

so that,

Ψ(x′, t) =

∫

dx Ψ(x, t = 0)G(x, x′, t). (4.6)

After sufficient time3,

Ψ(x′, t) =

√

m

2πi~t
eim(x′)2/2~t

∫

dx Ψ(x, t = 0)e−imx′x/~t, (4.7)

1Absorption imaging for longer times increases the signal-to-noise ratio by decreasing the relative photon shot noise, but this
improvement is limited (e.g., by CCD depth). The optimal imaging technique — fluorescence or absorption — is situational
and depends on the details of the setup (e.g., the number of atoms), the noise sources, and the information we want to obtain
from the image.

2In practice, it is difficult to eliminate all light in other polarizations, and so there is always some probability of off-resonant
excitation on a non-cycling transition.

3For a harmonic trap t � ω−1
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which is the Fourier transform with ~k = mx′/t. This means that phase inhomogeneities in the trap map

to density inhomogeneities after expansion, which can then be measured using our imaging techniques. For

example, when we look at lattice diffraction (i.e., for calibrating the lattice) we pulse the lattice on which

imparts a phase on the atoms in the trap. If we were to take an in-trap image we would see no evidence

of that phase, however, after expansion the phase results in diffraction peaks. Although the above presen-

tation is focused on single-particle expansion, for many-body states we similarly expand the field operators.

Information about these states can be extracted from higher order correlations in the momentum distribu-

tion [214].

For finite temperatures we have to take the thermal average of Eqn. 4.6. However, we can also use a

semiclassical approximation where the initial density and momentum (phase-space) distribution, f(x, p), is

semiclassical (Eqn. 2.23), and we assume the atoms ballistically expand so that,

n(x′, t) =

∫

dx f
[

x,
m

t
(x′ − x)

]

1

h3

∫

dx
[

e(
m
2t2

(x′−x)2+V (x)−µ)/kT ± 1
]−1

. (4.8)

For harmonic traps, the final distribution is a polylogarithm (i.e., Eqn. 2.26), where (after integrating over

the probe direction),

n(x′, t) ∝ ∓Li2
[

∓e−
(x′)2

2σ2 + µ
kT

]

(4.9)

σ2 =
kT

m

(

t2 +
1

ω2

)

(4.10)

In the high-temperature limit, where Maxwell-Boltzmann statistics are valid, generically,

〈(x′)2〉 =
t2

m2
〈p2〉 + 〈x2

0〉 (4.11)

which for a harmonic trap is,

〈(x′)2〉 =
kT

m

(

t2 +
1

ω2

)

, (4.12)

which is a standard method for using the width after expansion as a temperature probe. A comparison

between the full quantum expansion and the semiclassical expansion is illustrated in Fig. 4.2, which demon-

strates that the semiclassical approximation is very accurate. An advantage of the TOF method is evident

from Eqn. 4.11 which shows that the size increases linearly with expansion time (at long times). This greatly

reduces the required imaging resolution and imaging complications due to high densities. The main assump-

tion of this probe is that there are no interactions. If there are, then Eqn. 4.6 is not valid. While there

are nearly always some interactions, it is typically the case where some part of the gas (i.e., the low-density

edges) is well-described by Eqn. 4.6. Also, after a short period of expansion, interactions are negligible

because the density has decreased. However, for strongly interacting systems the dynamics immediately

following release are a current area of research [215].

During TOF expansion, the atoms experience a constant downward acceleration due to gravity, and, so
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absent any other forces, the center of mass position is x = x0+ 1
2gt

2. If we add a magnetic field gradient along

gravity during expansion we can increase or decrease the effective g depending on the magnetic moment,

g̃ = g +
µB

m
gFmF

∂|B|
∂z

. (4.13)

There are two advantages to adding a magnetic field gradient. First, we can completely cancel gravity,

g̃ = 0, and allow for a very long expansion, which is important for revealing very small features of the gas

(i.e., vortices). Second, the gradient separates different |F,mF 〉 states (as in the classic Stern-Gerlach ex-

periment), so that we can gain access to the distribution of each individual state in a multi-state experiment.

Although we have focused on the momentum distribution, TOF imaging also reveals the center of mass

momentum. This is important for experiments on transport (§4.2.3). The total center of mass momentum

is not changed by interactions because of translational symmetry.

4.1.3 Quasimomentum Distribution from Bandmapping and TOF

Using TOF expansion to probe the momentum distribution is useful for harmonically trapped systems, but

there are additional complications when the system is in a lattice. These are evident from the tight-binding

(§2.3.2) form of the lattice momentum distribution,

n(p) = |w(p)|2
∑

j,k

eipd/~(j−k)〈a†
jak〉 (4.14)

First, the envelope of the distribution is the Fourier transform of the Wannier function (Eqn. 2.71) reflecting

the zero-point momentum of the atoms in the ground state of each lattice site. Second, because of the lattice

periodicity, the momentum is also periodic. Since both these terms do not add thermodynamic state infor-

mation, the momentum distribution is redundant. Instead, the simplest distribution is the quasimomentum

distribution, f(q), defined for |q| < qB and which is zero outside this region. We can write Eqn. 4.14 in

terms of f(q),

n(p) = |w(p)|2
∑

j

f (q + Pj) (4.15)

where Pj is a reciprocal lattice vector. Therefore, it would be useful if we could directly probe the quasimo-

mentum distribution. In theory, f(q) can be obtained by measuring the momentum distribution and then

using Eqn. 4.15. However, since the imaging process integrates along the probe direction, this transformation

can be non-trivial, especially if the lattice and probe axes are not aligned.

Fortunately, the quasimomentum distribution can be directly imaged by bandmapping immediately be-

fore TOF expansion. Bandmapping is a technique in which the lattice is ramped down slowly compared

to the bandgap, but fast compared to all other timescales [216, 217]. The effects of this procedure are il-

lustrated in Fig. 4.3. The main effect is to greatly suppress the lattice modulations in the density. This

maps quasimomentum in the lattice to momentum in the distribution with the lattice off (q → p), and then

the TOF expansion maps the momentum distribution to density (as discussed in §4.1.2). Although we are

only considering this as a probe for atoms in the lowest band, another benefit of bandmapping is that after
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Figure 4.3: (a) In the top red curve, we plot the distribution of atoms in a lattice (s = 6, d = 400nm) plus
harmonic trap (ν = 54.5Hz) at T = 15nK (kBT/t ≈ 1.7). The black curve is the distribution after linearly
ramping the lattice down in 750µs (bandmapping). The main effect is to remove the density modulation
due to the lattice, but the overall envelope remains the same. The bottom curves are after a 20ms TOF
expansion. Bandmapping greatly reduces the atomic population outside the first Brillouin zone. (b) 2D
quasimomentum distributions after imaging using the probe geometry of the 87Rb experiment as given by
Eqn. 4.19. The top image is at kBT/t = 1.7, which is the same as the data in (a) and the bottom image is
for kBT/t = 5 to demonstrate how the band fills.
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TOF it spatially separates the populations in the different bands, which is used in a number of experiments

(e.g., [218]).

To measure the thermodynamic state from bandmapping, we need an expression for the quasimomentum

distribution in terms of T and µ. In the same way we used the semiclassical approximation for momentum

in §4.1.2, we can also write down an expression for the quasimomentum distribution (see 5.1 for details),

n(q1, q2, q3) =
1

(2π)3
(4π)

∫ ∞

0

dr r2
[

ζ−1e2tβ
∑

i[1−cos(qiπ/qB)]+ 1
2 βmω2r2 ± 1

]−1

(4.16)

= ∓ 1

8π3/2

(

βmω2

2

)3/2

Li3/2

[

∓ζe−2tβ
∑

i[1−cos(qiπ/qB)]
]

(4.17)

where β = (kBT )−1 and ζ = eµβ is the fugacity. The final probe integrated distribution depends sensitively

on the imaging setup since Eqn. 4.17 lacks rotational symmetry. If we image along a lattice direction, then

n(q1, q2) ∝
∞
∑

n=1

(∓)nζne−2ntβ[3−
∑2

i=1 cos(qiπ/qB)]I0 [2ntβ]

n3/2
, (4.18)

where I0(x) is the modified Bessel function of the first kind. If we integrate along x̂ and the lattice vectors

as given by Eqn. 3.4, which is the setup for the 87Rb apparatus, then we can express the distribution as a

doubly infinite sum

n(α1, α2) ∝
∞
∑

n=1

(∓)n e
−2ntβ[3−cos(b)]ζn

n3/2







2(π − a)I0[cos(a)2ntβ] +

∞
∑

j=1

4Ij [cos(a)2ntβ]
sin[j(π − a)]

j







,

(4.19)

where α1, α2 are coordinates along x̂ and ŷ, a = |α1 + α2|/
√

2, and b = |α1 − α2|/
√

2. In §G.5 we derive

Eqn. 4.19 from Eqn. 4.17.

The central component of this probe is that the bandmapping procedure maps quasimomentum to mo-

mentum. However, this is only exact for non-interacting systems and when the ramp-down is very long with

respect to the bandgap. Therefore, one aspect of this thesis work is to understand the limitations of this

probe. In §7.1 we look at using this probe in more detail for thermometry of weakly interacting bosons in the

lattice. There we find that bandmapping does not reproduce the quasimomentum distribution at the level

required for thermometry when the temperature is comparable and greater than t/kB . In §6.2, we explore

the bandmapping timescales for an interacting system by looking at the condensate fraction as a function of

the bandmapping time. We find that interactions quickly redistribute quasimomentum making it impossible

to be both slow compared to the bandgap and fast compared to these processes. Ultimately, bandmapping

as a quasimomentum probe needs to be used cautiously after considering these limitations.

4.1.4 Condensate Fraction from TOF

The probes in the last two sections focused on measuring the state of the system from the low order moments

of the distributions after TOF expansion (i.e., the RMS size). However, when the system is Bose condensed

(§2.2.1), a new probe — condensate fraction — emerges. Condensate fraction (N0/N) is the fraction of
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atoms in the macroscopically occupied single particle ground state4, and, together with the total number,

uniquely determines T and µ. For a weakly interacting harmonically trapped gas, the relation between

N0/N , N and T , µ is analytic (Eqn. 2.57). In the lattice, numerical methods are required, but these are

very accurate (see Fig. 2.11).

When the system is condensed, the distribution of particles is bimodal in an appropriate basis5. This is

the essential property that makes condensate fraction a useful probe. Instead of determining the moments of

the distribution, which is susceptible to technical noise (i.e., distortions during expansion) and interactions

during TOF, condensate fraction only requires identifying the condensate mode and taking the ratio with

the total number. As the modes (condensate and non-condensate) become more separated, the probe is less

sensitive to the functional form of the fit. In the limit that the modes are completely separate, condensate

fraction can be measured by number counting.

The optimal distribution (in-trap or momentum) for probing condensate fraction is a non-trivial property

of the model we are probing. For non-interacting atoms in a harmonic trap, the spatial and momentum

distribution are equivalent, except for the caveat that we need to expand to image the momentum distri-

bution (§4.1.2). If the system has strong repulsive interactions, then the condensate and non-condensate as

spatially well-separated, although the boundaries between the two may not be easy to identify. Repulsive

interactions also counteract the effect of the trap, which increases the size of the condensate in trap and

decreases the size in momentum, but there is nothing preventing overlap in momentum between the modes.

Additionally, these interactions cannot be ignored during expansion unless they can be turned off with a

Feshbach resonance [219]. Therefore, there has been work on both probing in-trap [220] and after expansion.

Our work focuses on the latter, since the issues created by interactions during expansion are mitigated by

the technical issues which are improved by expansion, such as resolution, stray fields, and re-absorption. A

technical absorption imaging issue for condensate probes, which is present both in-trap and after expansion,

is caused by the disparate densities of the condensate and non-condensate modes. Because of the saturation

issue discussed in §4.1.1, we use two absorption images from back-to-back experimental cycles to get a high

signal-to-noise distribution for fitting. First we take a partially repumped image (see §F.2 for calibration

details) to get an unsaturated image of the condensate. Next, we take a fully repumped imaging where the

condensate peak is saturated to get high signal for the non-condensate region.

For the weakly repulsive gas in a harmonic trap (§2.2.2), the effect of interactions during expansion is

well-described by the GP equation (Eqn. 2.47). The largest effect is on the condensate itself due to its high

density. In the trap, interactions result in a Thomas-Fermi (TF) profile for the condensate (Eqn. 2.49), which

is significantly larger than the non-interacting condensate (i.e., the ground state of the harmonic oscillator).

To calculate the expansion of the condensate, we solve the time-dependent GP equation with no trapping

4The macroscopically occupied single particle ground state (i.e., Φ(x) in Eqn. 2.47) is not necessarily the same as the
non-interacting ground state (see Ref. [53] for a more rigorous discussion).

5For example, non-interacting particles in a box always have a uniform average density, so only the momentum distribution
is bimodal.
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potential. It has been shown [221] that starting from a TF profile, the expansion just rescales the widths as

rTF,i(t) = ξi(t)rTF,i(0),

d2ξi
dt2

=
ω2

i

ξiξ1ξ2ξ3
. (4.20)

Therefore, the common zero-order fit for the TOF expansion of the condensate gas is,

n(x′, t) = nth(x′, t) + nTF (x′/ξ(t)) (4.21)

where nth(x′) is the probe integrated semiclassical expansion of the thermal gas given by Eqn. 4.9 (with

µ = 0), and nTF (x′/ξ(t)) is the probe integrated TF profile (assuming integration along z),

nTF (x, y) =







4
3µrTF,z

(

1 − x2

r2
T F,x

− y2

r2
T F,y

)3/2

, x2

r2
T F,x

+ y2

r2
T F,y

≤ 1

0 , else
(4.22)

This distribution is shown in Fig. 4.4. In practice we leave the widths and amplitudes of these two functions

as free-parameters in the fit, so

nfit(x, y) = nthLi2

[

e
−
(

x2

2σ2
x

+ y2

2σ2
y

)]

+ n0

(

1 − x2

r2TF,x

− y2

r2TF,y

)3/2

, (4.23)

and the condensate fraction from these parameters is,

N0

N
=

2π
5 n0rTF,xrTF,y

2π
5 n0rTF,xrTF,y + 2πnthσxσyLi3[1]/Li2[1]

. (4.24)

Using Eqn. 4.9 and Eqn. 2.51 with Eqn. 4.20 for a spherical trap, we can estimate the separation between

the non-condensate and condensate modes by looking at the ratio of the widths after expansion,

σ2

r2TF

≈ 0.44
(aho

a

)2/5
(

1 − N0

N

)1/3

(

N0

N

)2/5
N−1/15. (4.25)

For ν = 50Hz, N = 105, a = 5nm and m = mRb, this ratio is < 1 when N0/N ≈ 0.9. Eqn. 4.25 scales weakly

with our adjustable experimental parameters (ω and N), so the mode overlap is essentially a fixed function

of N0/N . Some techniques have been explored to fully separate the modes using time-dependent potentials

such as Bragg scattering [126] and by pinning the non-condensate with a lattice [222]6.

Eqn. 4.21 is essentially exact in the limits N0/N → 0, N0/N → 1, but is approximate in between these

limits, particularly near the edge of the condensate. The next order approximation is to treat the condensate

as a time-dependent mean-field potential for the non-condensate atoms,

V (x, t) = 2gnTF (x, t) (4.26)

where nTF (x, t) is the expanded TF profile given by solving Eqn. 4.20 and g is the contact parameter

6We see a similar effect in our lattice transport measurements described in §6.1.
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(c) (d) (b)

(c)

Figure 4.4: 1D slices through the 2D distribution of a condensed, weakly interacting harmonically trapped
Bose gas after TOF expansion and imaging. (a) Experimental 87Rb data (7 shot average) after 20ms
expansion and ν = 35.76(8)Hz. The actual data was imaged at lower peak OD using partial repumping and
has been converted to the on-resonance OD using a calibration factor. These data correspond to roughly
N0/N = 0.5. (b) The distribution given by Eqn. 4.21 for 10ms expansion, T = 90nK, and ν = 50Hz
(87Rb) corresponding to N0/N = 0.505 and N0 = 105 atoms. (c) Calculated expansion data for the same
parameters as (b), and then integrated along the probe direction. Details for the calculation are given in
§G.3. (d) Comparing the distributions from (b) and (c). The main discrepancies are at the condensate edge
and the peak value of the distribution.
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(Eqn. 2.15). The condensate mean-field potential is twice as strong for the non-condensate atoms versus

the condensate atoms themselves (i.e., the non-linear term in Eqn. 4.20) because of the exchange term in

the interaction. The non-condensate expansion with the potential in Eqn. 4.26 was solved by Monte Carlo

sampling the classical particle trajectories in [223]. Here we do a full calculation by first determining the

eigenstates for the harmonic oscillator with the condensate mean-field (§2.2.2) and then propagating each

state using the time-dependent Schrödinger equation with the potential given by Eqn. 4.26. Finally, we add

the states together using Bose-Einstein statistics to get the finite temperature expanded distribution. The

full details of the calculation are given in §G.3 and the resulting distribution, compared to experimental

data and Eqn. 4.21, is given in Fig. 4.4.

The calculated data deviates from the zero-order fit (Eqn. 4.21) near the edge of the condensate, whereas

near the tails of the distribution the two are almost identical. This motivates a hybrid ‘multi-step’ approach

that applies Eqn. 4.21 in piecewise fashion to different areas of the distribution. The general idea is to

avoid directly fitting the distribution near the condensate edge. First, we fit the entire image using the full

equation to determine the condensate location and size. Next, we remove (mask out) a region 10% larger

than the condensate and fit the remaining distribution to the non-condensate part of Eqn. 4.21. Then we

subtract this fit from the initial image, including the masked out region, and fit the residual to just the

condensate part of the fit. This approach was formalized and quantified in [224]. The multi-step approach

relies on some theoretical input for the functional form of the distribution.

To alleviate the need for theoretical input to the fit, another fitting approach is the ‘heuristic’ method.

The goal of this method is to separate out the two modes, condensate and non-condensate, and sum to

get the number of non-condensate atoms. First, we do a Gaussian fit, with the condensate peak manually

masked out, to account for most of the non-condensate atoms (the number of atoms under the Gaussian

is NGauss). Next, we subtract the Gaussian from the distribution, zoom into a small region around the

condensate, and fit the distribution to the TF function (Eqn. 4.22). The number of atoms underneath the

TF peak Npeak is a combination of condensate and non-condensate atoms. We use an empirical estimate

of the number of non-condensate atoms under the TF peak by assuming the non-condensate distribution is

flat. This assumption is motivated by the results of our mean-field expansion calculation; see (c) of Fig. 4.4.

We sum around the perimeter of the condensate to get the average density, and multiply this average density

by the TF area to determine the number of non-condensate atoms under the peak Nunder. The remaining

atoms Nsum (i.e., atoms not under the Gaussian or the TF peak) are counted by summing over the entire

image with the condensate masked out. The condensate fraction from this procedure is

N0

N
=

Npeak −Nunder

Nsum +NGauss +Npeak
. (4.27)

This fit procedure is demonstrated in Fig. 4.5. The heuristic method is important for situations with little

theoretic input, such as in the lattice or for general quantum simulations. Using the calculated data we

quantify the different approaches by fitting for the condensate fraction and comparing to the known value.

The results are summarized in Fig. 4.6. Although the heuristic method is the best in terms of relative

error, in practice we use the multi-step approach since it is more robust against noise. The precision is also

sensitive to the exact size of the masks used, which must be selected a priori.

97



(a) (b)

(c) (d)

Figure 4.5: Demonstrating the heuristic method for fitting the condensate fraction on the T = 70nK (N0/N =
0.66) calculated data. (a) The data (black curve) is fit to a Gaussian (red curve) with the condensate peak
masked out. (b) The data with the Gaussian subtracted off (black curve) is fit to a TF peak (red curve).
(c) The non-condensate is all atoms outside the peak plus a flat distribution underneath the peak (blue).
(d) The total non-condensate distribution from the fit is the non-condensate from step (c) added to the
Gaussian (blue). The non-condensate distribution from the data is given by the red curve. The fit is very
accurate except at the center of the distribution where it over-estimates the non-condensate. The Gaussian
fit from step (a) is illustrated as a dashed, white curve. As expected, this does not accurately fit the data
near the condensate edge.
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Figure 4.6: Testing the three fitting methods against calculated expansion data (§G.3) for different temper-
atures. In the zero-order method we fit directly using Eqn. 4.21 (square, red points). The non-condensate
function in this fit is strongly peaked under the condensate which overestimates the non-condensate num-
ber and therefore underestimates the condensate fraction by about 10%. The multi-step method applies
Eqn. 4.21 in steps to different regions of the distribution (described in text). This improves the error, but
it still underestimates the condensate fraction because of the peak in the non-condensate fitting function.
Finally, the heuristic method (described in text and Fig. 4.5) has the best error. However, in practice this
type of fit is the most susceptible to noise.
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In the lattice, all these same advantages and considerations still apply for using condensate fraction

as a probe7, except we have less theoretical insight into the functional form of the expanded distribution.

Although this makes it more challenging to determine an appropriate fitting procedure, one main advantage

of using condensate fraction is that we can use fitting models with minimal theoretical input, such as the

heuristic approach. One part of this thesis work is to extend the heuristic approach to the lattice gas and

test its efficacy by fitting experimental data. These experiments are detailed in §7.3.

4.1.5 In-Situ Imaging

A complementary approach to imaging the system after expansion is to image in-trap (in-situ). However,

this approach is often not utilized because it presents a large number of technical barriers; we list a few major

issues here. To start, the trapping potentials, which are either on or just recently turned off, can lead to

spatially dependent light scattering cross-sections, and therefore make it difficult to interpret images. Also,

without expansion, the system has a very high density, which can result in high losses from light-assisted

collisions and skewed distributions from re-absorption pressure. Finally, depending on the desired measure-

ments, in-situ imaging requires an order of magnitude better imaging resolution than is typically needed to

image after expansion. Nevertheless, in spite of these challenges, in-situ imaging has a number of advantages

and solves fundamental problems associated with probing expanded distributions (discussed below). There-

fore, one part of this thesis work is developing a site-resolved imaging probe for the 40K apparatus (§3.2.10).

We also use low-resolution in-situ images in the 87Rb apparatus for specific measurements (§7.2, §8.1.1).

Technical issues aside, in almost all cases in-situ imaging is intrinsically superior to imaging expanded

distributions for measuring properties in thermodynamic equilibrium. For in-situ imaging, the measured

distribution is directly comparable to the thermodynamic distribution. In contrast, distributions measured

after expansion have to be compared to the thermodynamic distribution obtained after solving the time-

dependent expansion problem. At best, for weak interactions, solving this problem is time-consuming, and

at worst, for strong interactions, the time-dependent solutions are incompatible with our theoretical ap-

proaches, such as QMC.

In-situ imaging is also advantageous for Hamiltonians where the specific form of the potential (e.g., a

lattice) and/or strong local interactions skew the relative importance of spatial to momentum degrees of

freedom. This is typically the case for the models we are simulating. In these types of systems, the effect of

the smoothly varying confining potential is well-described by the local density approximation (LDA, §2.2.2),

which states that at position ~x the local properties are given by the properties of a uniform system with

an effective chemical potential µ̃ = µ − V (~x), where µ is the thermodynamic chemical potential and V (~x)

is the smooth confining potential. These uniform system properties are the basis of comparison with both

theory and experiments on the physical systems we are simulating as embodied by the simulator cycle in

Fig. 1.2. With in-situ imaging, we can directly probe this locally uniform physics, whereas expanded images

are a complicated average over the entire trap. This is a powerful tool, because in a single image there is

information about a range of precisely known chemical potentials. For example, this can be exploited to

7As long as the gas is in the superfluid region of the Bose-Hubbard model.
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measure the equation of state since in a harmonic trap [62],

P (µ̃) =
mωyωz

2π

∫ ∫

dy ñ

(
√

2(µ− µ̃)

mω2
x

, y, z

)

(4.28)

based on the Gibbs-Duhem relation, where ñ is the density measured by in-situ imaging (already integrated

along the imaging direction). This technique has been successfully used for quantum simulation of the Fermi

gas at unitarity [225,226].

Another implication of the LDA is that the trapped system may contain different phases in several regions

of the trap. For example, in the Bose-Hubbard model (see Fig. 2.11) there can be a superfluid in the center

of the trap, a Mott-insulating shell, and then superfluid on the outside. In-situ imaging is required to probe

these phase boundaries, which is essential for constructing the phase diagram for the model. Associated

with these phase transitions is quantum criticality leading to universal scaling of the in-situ density [227].

In particular, for the BH model, it is possible that co-existing phase boundaries in the trap correspond to

different universality classes and therefore have different critical exponents. The ability to locally image

these phase boundaries is essential for measuring these exponents. Also, if the system undergoes a phase

transition to a degenerate or near-degenerate state (e.g. a ferromagnet at zero field), then domains will

form. The trap averaged order parameter may go to zero, so the transition must be probed locally in each

individual domain. For a ferromagnet, for example, there may be no total magnetization after expansion,

but a local measure of spin correlations will reveal non-zero magnetization.

For some Hamiltonians, the imbalance between spatial and momentum degrees of freedom (DOF) is strong

enough that the momentum DOFs are frozen out. In this case, it is not just an advantage, but necessary to

use in-situ imaging to determine thermodynamic-state information. An extreme example is the atomic limit

of the Hubbard model (t/U → 0) when the Hamiltonian becomes diagonal in the site-occupation basis. In

this limit, the temperature is encoded only in the occupation at each site (for two-component fermions)

〈ni〉 =
e−µ↑,i/kBT + e−µ↓,i/kBT + 2e−(U+µ↑,i+µ↓,i)/kBT

1 + e−µ↑,i/kBT + e−µ↓,i/kBT + e−(U+µ↑,i+µ↓,i)/kBT
, (4.29)

where µi = µ − εi (εi is the potential energy shift of site i). Even for non-zero, but small t, the density is

essentially still Eqn. 4.29, and temperature only affects the expanded (momentum) distribution to higher or-

ders. Even in the non-interacting regime of the single-band Hubbard model, there is a finite quasimomentum

bandwidth ε = 4Dt. When T > ε, the band is mostly full and increasing thermal energy goes exclusively to

populating higher energy modes of the trap. At this point, the momentum (or quasimomentum) distribu-

tion is no longer sensitive to temperature. Our experimental work exploring this crossover is detailed in §7.1.

Finally, a technical advantage of in-situ imaging is that since the atoms start trapped we can, in theory,

image for long times by continuing to hold them in the trap. However, this is only beneficial for a certain

limited set of conditions. First, as mentioned in §4.1.1, we must be imaging with fluorescence. Next, each

atom must be trapped to a region smaller than the desired resolution for the imaging duration. This condi-

tion is difficult to satisfy since the light scattering heats the atoms. Therefore, the atoms must be confined

to tight traps, for example, individual lattice wells. Fortunately, the excitation beam can simultaneously
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laser cool [228], such that temperature will reach a steady-state. Still, this temperature (10-100µK) is much

higher than before imaging (� 1µK), so very large confining potentials are required. The final condition is

that the number of atoms per trapping region is small. During fluorescence, pairs of atoms in the same region

are quickly (<2ms) lost due to light-assisted inelastic collisions [229], so that the final density distribution

is determined by the parity of the atom number in each region.

A technical challenge of in-situ imaging is high resolution, but this is only required for specific measure-

ments. In general, the imaging resolution depends on what aspect of the system we are trying to probe.

To measure the cloud width, which can be used for thermometry, approximately 5 − 10µm resolution is

required. One experimental aspect of this thesis was developing a thermometry probe based on the cloud

width, see §7.2. To extract the equation of state or to examine the boundary between phases (e.g., image the

MI plateaus), then, based on current experiments [56,230], a sufficient resolution is approximately 2− 4µm.

However, to measure and/or address [231] the occupancy of each site in a Hubbard lattice, we need to resolve

single sites of the lattice (< 1µm). Experiments that benefit from single-site resolution include measuring

antiferromagnetic spin ordering and observing correlated particle/hole pairs in the Mott insulator [232].

To achieve single-site imaging requires resolution comparable to (or smaller than) the lattice spacing d.

To ease the demands of high resolution we can increase d, however, there is an upper-bound on d set by

the physics we are trying to simulate. The physics of strong correlations (i.e., the Hubbard model) requires

tunneling between sites, which decreases exponentially with d (at fixed potential depth). As tunneling de-

creases, the simulator timescales increase and heating dominates. To put a lower bound on tunneling, we

need to know the sources of heat. Fundamentally, there is always heating due to scattering from lattice light.

In [36] the optimal lattice wavelength (λL), and therefore lattice spacing (d = λL/2), is characterized based

on a figure of merit that compares the absolute heating rate to the energies and timescales of the Hubbard

model. This analysis suggests that λL should be as large as possible. Although the energy scales decrease

and the timescales increase with large λL, the heating rate also decreases. However, at some point other

heating mechanisms (e.g., intensity noise) start to dominate. Empirically, λL ≈ 1µm (d ≈ 500nm) has been

used to achieve strongly correlated Hubbard phases. In our experiments we use 395 ≤ d ≤ 405nm (87Rb)

and d = 526.8nm (40K). Therefore, for single site imaging the imaging resolution (σ) needs to be ≈ 500nm.

In an aberration-free (see §F.3) imaging system that uses incoherent scattering, the resolution is set by

the diffraction limit

σ =
0.61λ

nNA
, (4.30)

as discussed in §4.1.1 and in more detail in §F.3. The diffraction-limit given by Eqn. 4.30 is not insur-

mountable; certain scanning and non-linear techniques can achieve sub-diffraction resolution. However, the

tradeoff is that imaging times are longer, multiple images are required, and/or the data must be post-

processed (see [233] for a review). Therefore, restricting ourselves to Eqn. 4.30, to achieve 500nm resolution

we need to have a high numerical aperture (NA) and small λ. Of course, for atoms, λ cannot be arbitrary and

is limited to a discrete set of values corresponding to atomic transitions. The lower bound on λ is the inverse

energy required to ionize the ground state. However, in practice, only the first few lowest energy transitions

are sufficiently strong for effective fluorescence. For our 40K single-site probe (under-development), we plan

to image on the second-excited 4S1/2 → 5P3/2 transition at λ = 404.5nm using a custom 0.6NA objective
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(σ = 411nm). The technical details of this probe are discussed in the apparatus section, §3.2.10.

To best visualize the effects of resolution on single-site imaging, we simulate images for different numerical

apertures assuming a single plane of atoms in a d = 527nm lattice (the spacing used in the 40K apparatus).

Each lattice site has only zero or one atom, and the atoms scatter light incoherently. In practice, the

scattered light is some combination of coherent and incoherent light [212] because of inelastic scattering in

the laser cooling process and saturation (§B.7.3). The detector (a CCD camera) consists of discrete pixels,

which each collect a mean number of photons. The actual number of detected photons in a given shot is

given by a Poissonian distribution around the mean (because of photon-detector shot noise). There are also

additional technical sources of noise, e.g., detector dark counts, but these are left out of this analysis since

they are system specific. Simulated images are shown in Fig. 4.7 for a mean of 104 photons collected per

atom8. Qualitatively, the ability to determine site occupancy is consistent with the resolution being smaller

than the lattice spacing. Another issue when imaging the lattice is fluorescence from atoms in other planes.

Since the depth of focus is [205]

∆z =
1

2

λ

NA2
, (4.31)

adjacent planes are still in focus, which significantly complicates our interpretation. Even atoms in planes

far out of focus will contribute an overall offset which reduces the imaging contrast. The simplest solution is

to load the atoms in a single plane or remove atoms from all other planes before imaging, which is discussed

in §3.2.10.

Ultimately, the goal of single-site imaging is to determine the state-dependent occupancy of each site in

the lattice. There are two main limitations to achieving this goal. First, as mentioned above, pairs of atoms

on a site are quickly lost, so the measured image is the parity of the number of atoms on each site. The

second limitation is that the imaging is not state sensitive. This is manifestly the case for imaging on the

4S → 5P transition since it only takes approximately five scattering events to decay into the dark hyperfine

ground state. However, even if we image on the cycling transition, off-resonant decay to the dark hyperfine

state will still occur before enough fluorescence signal has been collected for an effective image. For the

two-component Fermi-Hubbard model there are four possible states per site (|0〉,| ↑〉, | ↓〉, and | ↑↓〉) and

two possible measured states (|0〉, and |1〉) with the following mapping:

|0〉, | ↑↓〉 → |0〉, (4.32)

| ↑〉, | ↓〉 → |1〉. (4.33)

The problem is more severe when imaging bosonic gases, as the total number of states is much higher since

the site occupancy is unbounded.

By performing an operation before imaging that is density and/or spin dependent, we may be able to

overcome these issues. For example, a density-dependent technique, experimentally demonstrated in [234],

uses interaction shifts to change the resonance for excitations to higher bands. By modulating the lattice

over a range of frequencies this technique maps sites with n particles to 1 particle and all other states to

8The number of photons collected per atoms should go down with NA as well, but here it is kept fixed to only focus on the
changing resolution.
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Figure 4.7: Single-site imaging of a 2D lattice plane. (a) Fluorescence from atoms in a lattice (not to scale)
is collected by a microscope objective. The distribution of atoms in the lattice (d = 527nm) is illustrated.
The atomic width in each lattice well is set by the temperature, here set to be 20% of the lattice depth.
(b) Simulated in-focus images of the atomic distribution for different numerical apertures and imaging with
λ = 405nm light. The number of collected photons per atom is 104 and the pixel size is 50nm (in the object
plane). The d × d region for each lattice well is indicated by the grid lines in each image. These images
include photon-detector shot noise and are convolved with the initial atomic distribution. Here the Rayleigh
criterion (σ = d) corresponds to NA ≈ 0.46. (c) Out-of-focus images for NA = 0.6. Single-site resolution
refers to our ability to determine with a high degree of confidence whether a site is either empty of full.
These images give a qualitative idea of the imaging resolution and focal stability required; in practice, the
ability to resolve single-sites is a complicated interplay between signal, noise and analysis methodology.
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0 particles by selectively exciting atoms to higher bands and out of the lattice. The total average density

can be reconstructed by taking nmax images in consecutive experiments. In theory this technique could be

sensitive to spin if the interaction is also spin-dependent. Another possible method is to reduce the lattice

depth in the out-of-plane direction (creating a series of 1D tubes) and then apply a magnetic field gradient

which causes different spin states to travel in different directions. After some time, the lattice is ramped

back up to lock them in a new imaging plane. Two subsequent images can be then taken by focusing on

the different planes. From Fig. 4.7, we see that the separation would have to be at least four lattice planes.

Another proposal is to use RF or microwave fields to selectively move some atoms to the dark hyperfine

state, based on spin or density, and then remove the remaining atoms using resonant light on the cycling

transition. If we reduce the lattice depth during the light pulse, only a few recoils are required to eject

the atoms and so the possibility of decaying to the dark state is small. After ejecting the atoms, we pump

the remaining atoms back to the bright state and perform single-site imaging. This technique is especially

advantageous if the atoms are deep in the Mott-insulating regime of the half-filled Fermi-Hubbard model,

where the basis is essentially truncated to | ↑〉, | ↓〉. This operation would allow us to measure these two

states with only one image since | ↑〉 is mapped to |1〉 and | ↓〉 is mapped to |0〉 (or vice-versa). To verify

that the basis really is only these two single-occupied spin states, and not empty or doubly occupied sites,

we take an image without doing the removal operation, which should reveal an image with one atom per

site.

4.1.6 Density Probe using a Spin-Dependent Lattice

Although the discussion of §4.1.5 centered on in-situ imaging, many of the same advantages can be realized

with an in-situ probe that lacks the imaging requirement. In this type of probe, the signal is measured in

time-of-flight imaging (§4.1.2), but the signal itself directly depends on in-situ properties. A familiar example

is a trap-averaged site occupancy probe using the clock-shift [140,141]. In this probe, atoms are transferred

from the initial state |1〉 to an unoccupied state |2〉 using RF (or microwaves depending on the exact states

|1〉 and |2〉). The number of atoms transferred (N2) is measured after expansion and state separation using a

Stern-Gerlach field. N2 is probed as a function of the RF frequency ω; N2 peaks when ~ω equals the energy

separating states |1〉 and |2〉 (∆E). Due to the differential interaction shift between states |1〉 and |2〉 (the

clock shift), ∆E is a local function of the density and is shifted from the single-particle value. Therefore,

this shift directly measures the trap-averaged in-situ density. Deep in the Mott-insulator region, the N2

versus ω signal has discrete peaks corresponding to integer site-occupations. The relative weight of these

peaks indicates the total number of sites with occupation N .

In a similar way, we have developed an in-situ probe where the number of atoms transferred depends

on the trap-averaged density. Instead of using density-dependent interaction shifts, our probe uses spatially

varying state-dependent potentials. Specifically, we use a spin-dependent lattice (§3.1.2), where the lattice

potential is proportional to the magnetic moment of the state gFmF . We start in the state |F = 1,mF = 0〉,
which does not experience the lattice, and transfer to state |2,−1〉, which is lattice-bound.

The essential aspect of this probe is the effect of state-dependent potentials on state transfers. For

standard transitions between different hyperfine and/or Zeeman states using a time-dependent magnetic

field, B(x, t) = B(x)x̂eiωt, the on-resonance Rabi rate (§B.4) for driving between spatial states Ψi(~x) and
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Φf (~x) is,

Ωif ∝ 〈F,mF |Ŝx|F
′

,mF ′ 〉〈Ψi(~x)|B(~x)|Φf (~x)〉 (4.34)

where Ψi,Φf are eigenstates of the Hamiltonian for the initial and final states. Since the magnetic field is

essentially uniform with respect to the size of Ψ and Φ, the Rabi rate is9

Ωif ∝ 〈F,mF |Ŝx|F
′

,mF ′ 〉〈Ψi(~x)|Φf (~x)〉B(~x). (4.35)

If the potential is state-independent then the eigenstates are the same (Φf (~x) = Ψf (~x)), then 〈Ψi(~x)|Ψf (~x)〉 =

δif . Thus, the transition rate does not depend on the spatial distribution of the atom. However, if the Hamil-

tonian is state-dependent, then the wavefunctions can change as long as 〈Ψi(~x)|Φf (~x)〉 6= 0. In general this

means that Ψi will transfer to a number of states depending on how well each state is spectrally resolved. For

example, short pulses which are spectrally broad result in transitions to all Φf weighted by the wavefunction

overlap and so the final and initial spatial wavefunctions are identical. This is a manifestation of the fact

that the spatial wavefunction cannot change arbitrarily fast.

f ~6856MHz0
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Figure 4.8: Making state transitions from |1, 0〉, which does not experience the lattice, to |2, 1〉, which is
lattice-bound. Depending on the frequency of the drive pulse, the atoms make transitions to different bands
of the lattice. The drive frequency is shown with respect to the bare driving frequency next to images taken
after transfer and time-of-flight. The larger weight of the diffraction peaks for increasing drive frequency
is consistent with driving in the higher bands of the lattice. When the drive was tuned between these
frequencies there was no state transfer.

We implement this probe in the 87Rb apparatus using the spin-dependent lattice (lin-⊥-lin) described in

§3.1.2. The spin-dependent lattice potential is proportional to gFmF (the full potential is given by Eqn. 3.5).

9A possible exception is when the atoms are very close to a current carrying wire.
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To probe the density of atoms in state |1, 0〉, we drive to a lattice-trapped state (mF 6= 0). As long as the

frequency width of our pulse is less than the band gap (i.e., the pulse time is less than 50µs), we can selec-

tively drive into the different lattice bands by tuning the pulse frequency. The images resulting from this

process are illustrated in Fig. 4.8.

The Rabi rate for driving to the nth lattice band is obtained by substituting the q = 0 eigenstate (in the

tight-binding form) into Eqn. 4.35

Ωn ∝
∑

i

∫

dxΨ(x)wi,n(x) (4.36)

where wi,n(x) are the Wannier functions at site i in the nth band (§2.3.2), and Ψ is the wavefunction of the

free particle. The Wannier functions are sharply peaked with a width much less than the lattice spacing.

Therefore, Eqn. 4.36 is a probe of the density Ψ(x) on the length scale of the lattice spacing and averaged

over the trap. To measure the Rabi rate, we detect the number of atoms transferred to the second state by

applying a Stern-Gerlach field during TOF. The fraction of atoms transferred, N2/N , is directly related to

the Rabi rate by the relation (on-resonance) N2/N = sin2
(

Ωτ
2

)

(Eqn. B.36). This probe was used as part

of this thesis work to verify the overlap between a |1, 0〉 and |1,−1〉 gas as described in §8.1. Experimental

data for the probe can be found in that section.

We are not limited to transferring from free (mF = 0) to lattice states (mF 6= 0). Transitions are

also allowed between states that experience the lattice because the lattice potential differs in strength

(depth) and/or position for different states; only states with identical gFmF experience the same lattice

potential. This means that we can drive band-band transitions between the states because eigenfunctions

corresponding to different bands (for the different states) are not orthogonal. In fact, these transitions

have been demonstrated as part of a sideband cooling scheme [76, 235] and as a means to transport atoms

between adjacent lattice sites [76]. Analogously to the mF = 0 density probe, we can use these transitions to

spectrally resolve the different band populations for atoms in a given lattice state. For example, to measure

the 2nd excited band population of state 1, one could drive transitions to the ground band of state 2. This

transition is resonant at a lower frequency then the bare transition and so atoms in the ground band of

state 1 are not resonant on any transitions to state 2. This could complement the standard bandmapping

approach (§4.1.3).

4.1.7 Impurity Probe

Another type of in-situ probe, developed in this thesis, utilizes interactions between one atomic system (i.e.,

an impurity) and the atomic system we want to study (“primary”). The interactions imprint the properties

of the primary system onto the impurity. The most direct consequence is that these interactions lead to

thermal contact and so the impurity and primary are at the same temperature. The advantage of this setup

is that we can specifically select the impurity so that its properties are straightforward to measure. We

still need to use a more standard probe (e.g., TOF imaging) on the impurity, but in a regime where these

probes are well-understood. Impurity probes are ubiquitous throughout physics, particularly for measuring

temperature. For example, one can measure temperature by putting a resistor in thermal contact with the

sample under study . The temperature is a well-known function of the easily measured resistance. The main

tenet of impurity probing is that the impurity cannot fundamentally alter the physics being studied.
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For cold atom quantum simulators, a separate sample of cold atoms is an ideal impurity for many of

the reasons discussed in §2 (e.g., interactions between the primary and simulator are well-characterized).

Additionally, a cold atom impurity is already at the low energy scales of the simulator and so minimally

perturbs the simulator physics. One realization is to use another state/species that has weak interactions

and/or different quantum statistics than the primary, both trapped in a similar potential. For example, it

is common to use an impurity of weakly interacting bosonic 7Li to measure the temperature of a strongly

interacting 6Li Fermi gas [225]. Another method, which we pursue here, is to use another state/species that

experiences a much weaker potential than the primary.

In our implementation we use the spin-dependent lattice (§3.1.2) of our 87Rb apparatus. Since the lattice

depth is proportional to gFmF (Eqn. 3.5), atoms with mF = 0 experience no lattice potential and are an

ideal candidate as an impurity. These atoms are well-described by the theory of the weakly interacting Bose

gas (§2.2.2). The primary systems (atoms in states where mF 6= 0) are described by the Bose-Hubbard

model (§2.3.4), which is the focus of our quantum simulation. Therefore, if we transfer a small fraction of

atoms into mF = 0 they should form an impurity probe for our Bose-Hubbard system. However, a main

question is whether the impurity and primary interact on timescales faster than heating rates in the overall

system, which is required for the probe to be useful. Developing and characterizing this impurity probe is a

main part of this thesis work, so this subject is detailed in a dedicated chapter, §8.

4.2 Techniques

To this point, we have outlined the tools and probes of our experimental quantum simulation toolkit. Tools

(§3) are the physical elements which allow us to prepare a system of ultracold atoms which are well-described

by the models that we want to simulate (ingredient 1 of quantum simulation). Probes (§4.1) measure the

state of that system (ingredient 3). However, the toolkit is lacking one last element that connects tools

and probes. These are the techniques of quantum simulation — experimental protocols to perform useful

quantum simulations (i.e., experiments that generate the “comparison observables” required to close the

simulation loop in Fig. 1.2). Techniques include our protocols to generate well-controlled initial states in the

lattice (ingredient 2) and to generate out-of-equilibrium states (ingredient 4). One view is that techniques

are the ‘software’ of the quantum simulator.

4.2.1 Adiabatic Loading

To prepare an equilibrium state in the lattice, the customary technique is to adiabatically load atoms from

the harmonic trap where the ultracold gas is initially created (see Fig. 4.9). The load is accomplished by

ramping up the lattice; the Hubbard model parameters (t and U) are precisely controlled by servoing the

lattice beam power which is calibrated to the lattice depth with high accuracy (§C.5). In the ideal case, this

means the system is in thermal equilibrium in the lattice at depth s×ER with temperature T and chemical

potential µ such that the lattice entropy, Slattice(T, µ; s), is the same as the entropy in the harmonic trap,

Sharmonic. The harmonic trap entropy is measured using time-of-flight probes (§4.1.2, §4.1.4). Therefore,

we have a well-characterized initial state of our simulator, satisfying ingredient 2 of quantum simulation.

We can then probe the lattice state and compare to theory. A slight caveat is that the thermodynamic state
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Figure 4.9: Illustrating the adiabatic ramping process. Starting from a condensate (ground state) in the
harmonic trap, we load into the lattice over 100ms to s = 10. Because the ramp is adiabatic we load into the
ground state of the lattice, which at s = 10 is also condensed (superfluid region of the BH model). Images
are taken after time-of-flight.

in the lattice is characterized by the entropy, S, and total number, N . Although S and N uniquely defines

the thermodynamic state, since T and µ are the primary inputs for theory, any theory that compares to the

experiment also needs to be able to calculate the entropy.

Adiabaticity implies that if the system is in the ground state of the harmonic trap then it will simulate

the ground state of the Hubbard model after loading into the lattice. Since it is almost impossible to be

completely in the ground state, a common assumption is that if we are essentially in the ground state of

the harmonic trap10, that this will also hold in the lattice. This assumption is validated if ground state

properties predicted from theory are observed in the simulator. However, this validation violates the spirit

of the simulation and is not possible when we simulate models that are theoretically intractable.

Adiabaticity is satisfied if the lattice depth is ramped up infinitely slow. In practice we must use a finite

ramp time, which is assumed to be slow compared to the timescales of the model. To know these a priori

requires solving the model, which is again contrary to the goals of quantum simulation. Experimentally

there are two empirical methods to evaluate the timescales. The first method is to measure properties for

different ramp times τ , and determine when these properties are no longer a function of τ . The second

method is to load into the lattice and then ramp the lattice back down to zero depth. Since entropy is easily

measured in the harmonic trap, we can observe whether entropy was generated in the ramping process. One

has to be careful with the last method because if the ramp is too fast then no change will be observed.

There is also an upper bound on τ set by non-ideal heating processes, such as spontaneous scattering from

the lattice (discussed below), intensity noise, 3-body loss, and ultimately the vacuum lifetime. In our exper-

iments (87Rb apparatus) we use the second method to empirically determine that an exponential ramp of

time constant 200ms and ramp time of 100ms is optimal. This ramp time is the same order as those used

in other Hubbard simulators [167]. An additional complication is that there can be both local and global

10For example, with bosonic systems it is common to claim that a visually pure condensate is at ‘zero temperature’. In
reality, the experimentally achievable upper bound on condensate fraction is no better than N0/N ≈ 0.9 because of technical
noise.
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adiabaticity timescales that differ by orders of magnitude. For example, work in this thesis demonstrated

that the timescale for local coherence in the Bose-Hubbard model is ≈ 1ms (§6.2), but mass distribution in

the trap can take 103 times longer [236].

A fundamental optical lattice issue is heating due to scattering from the lattice beams (see §2.3.5), which

is not contained in the Hamiltonian evolution of the Hubbard model. The exact entropy increase from

scattering is non-trivial when we are simulating strongly correlated phases of the Hubbard models [37]. A

rough approximation is that the entropy increases monotonically with the time spent in the lattice potential.

Therefore, we cannot satisfy adiabaticity by going to arbitrarily long lattice load times. Instead, the load

time will have a global optima. It has been shown experimentally [67] that heating due to light scattering

is the dominant source of entropy generation during the lattice loading process.

Because of entropy generation during the lattice loading process, any characterization of the thermody-

namic state (T, µ) in the lattice using the harmonic trap entropy has some amount of error. This error is

our motivation for developing thermodynamic probes directly in the lattice, which is part of the work in

this thesis (§7, §8.1). Heating during the ramp limits the lowest possible entropies that can be obtained

for quantum simulation. Therefore, unless in-lattice cooling methods are developed, we will be unable to

simulate low-entropy phases [36].

4.2.2 Finite Temperature

The adiabatic loading technique loads equilibrium states with well-defined entropy into our simulator. Com-

monly, the entropy is minimized as much as possible so that we are simulating the “ground state” of our

model. However, we also have techniques to control the exact value of the temperature (i.e., entropy) to

simulate the model at finite-temperature (T). Ignoring temperature leaves out a rich set of physics which

is important for the quantum simulator cycle illustrating in Fig. 1.2. The most straightforward approach

to finite-T is to control evaporation to achieve a target entropy in the harmonic trap. Alternatively, we

can create a degenerate gas and then allow 3-body loss processes to input energy. After preparing a finite

entropy gas in the harmonic trap, we adiabatically load into the lattice as described in the previous section.

Another class of finite-T techniques generate entropy directly in the lattice. For example, if we load into the

lattice and then hold for a variable amount of time the entropy will increase due to light scattering. Also,

we can dynamically change the lattice depth to add heat. One such method is to do a quick series of pulses

to a very high lattice depth. Another similar approach is to parametrically oscillate the lattice depth, which

excites the system to higher bands. When the atoms decay back to the ground back they thermalize the

band energy, corresponding to an increase in temperature.

Although finite temperatures are sometimes seen as parasitic because thermal fluctuations can destroy

quantum coherences, temperature is an important axis on any phase diagram. If we are to consider any

model ‘solved’, we must understand the finite temperature properties. Finite temperature is a natural way

to explore the excitation spectrum of a model. In superfluid 4He, Landau was able to deduce the excita-

tion spectrum simply from measurements of how thermodynamic quantities (i.e., the specific heat) scaled

with temperature. Additionally, the temperature scales at which new phenomena emerge can reveal energy

scales in the system. For example, the transition to a superconducting state below a certain temperature,
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TC , in metals indicated the emergence of a many-body energy gap (Cooper pairing). The ratio of the zero

temperature gap to TC and the temperature dependence of the gap helped to confirm the BCS theory of

superconductivity [48]. Measurements of TC also helped to reveal a new class of superconductors not de-

scribed by BCS theory — the high-TC superconductors. Many of the unexplainable phenomena associated

with high-TC materials is related to properties at finite temperature. For example, in the overdoped region

at T > TC , high-TC materials have a resistivity which scales linearly with T , unlike the expected T 2 scaling

of a Fermi liquid [12].

Parasitic thermal fluctuations may also be an advantage. Thermal fluctuations remove long range coher-

ences, so that we can focus on the local physics that is the precursor to eventual global many-body physics.

Again, one of the most interesting regimes of the high-TC materials is for T > TC when the system is gapped,

but not globally coherent (pseudo-gap phase). Similarly, at T > 0 above a quantum critical point, thermal

effects actually increase the region over which the physics of the critical point play a large role [237]. Because

of the interplay between thermal and quantum fluctuations, the only energy scale in this quantum critical

regime is temperature. Therefore, universal scaling relations with temperature reveal the location of the

quantum critical point [227], although such a point is only defined at T = 0.

Another area where finite temperature techniques are important is when investigating quantum-classical

crossovers. For example, if there is an activation barrier to a process, then classically thermal energy is

required to go over the barrier, but quantum mechanically the system can tunnel through the barrier. To

differentiate between these two processes requires looking at the how the rate associated with particles

traversing the barrier scales with temperature. This technique was used to verify quantum versus classical

phase slips as part of the experimental work in this thesis (§6.1).

4.2.3 Transport

To satisfy ingredient 4 of quantum simulation, techniques are required to investigate the system out of

equilibrium. The first of these techniques is transport, which looks at the system response to a macro-

scopic mass current. To start transport we dynamically change an existing trapping potential or introduce

a new potential which applies a force to the atoms. This force varies smoothly over the system size and

in the simplest case is uniform. The different transport modes that are commonly excited are illustrated

in Fig. 4.10. One method to start a dipole mode is to quickly offset the harmonic trap. This will initially

cause the atoms to experience a constant force back towards the new harmonic trap center. Similarly, if

we suddenly increase the harmonic confinement, an inward force is created that will cause the system to

uniformly compress, thereby exciting a monopole mode. In a purely harmonic trap, the dipole mode is a

sensitive probe of the trap frequency, but is completely unaffected by pair-wise interactions (generalized

Kohn’s theorem [124]). However, interactions affect the other modes. For a BEC in a harmonic trap, the

monopole frequency goes is 2ω in the non-interacting limit and
√

5ω in the strongly interacting mean-field

limit. Similarly, the quadrupole mode frequency goes from 2ω (non-interacting) to
√

2ω (strongly interact-

ing) [238]. However, the generalized Kohn’s theorem is not valid in a lattice, so in this case the dipole mode

is a probe of many-body physics. The dipole mode is particularly easy to measure because we just need to

identify the center-of-mass velocity after time-of-flight expansion.
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Figure 4.10: Schematic of some of the transport modes that can be excited. In a dipole mode the cloud
position changes, but the shape does not. For monopole and quadrupole modes, the position is stationary,
but the cloud shape changes. Here the frequencies are shown for a non-interacting gas in a ν = 50Hz trap.
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Transport studies are required to fully characterize the models we are studying because many of the

phases are classified in terms of transport properties. Common examples include superfluid/superconductor

(mass/charge transport without dissipation), insulator (no transport) and liquid/metal (mass/charge trans-

port with dissipation). For the two-component Fermi-Hubbard model, the primary outstanding question is

whether there is a d-wave superfluid state; transport is necessary to answer this question. Transport is also a

sensitive indicator of many-body physics. As an example, consider the fractional quantum Hall effect, which

is due to the correlated motion of 2D electrons in a very high magnetic field [239]. The main signature of this

state is obtained by transport measurements of the Hall conductance, which plateaus at quantized rational

fractions of e2/h. Transport is also sensitive to many-body excitations that have low thermodynamic weight.

As discussed in the previous section, thermodynamically superfluid 4He is well-described by a phonon-roton

spectrum. From this spectrum, the critical velocity is the ratio of the energy to momentum at the roton

minimum (i.e., the Landau critical velocity). This predicted critical velocity is much larger than what is

observed experimentally, because the superflow is sensitive to the nucleation of vortices [240].

Two of the experimental results of this thesis focus on using transport techniques to simulate the Bose-

Hubbard model. In §6.1, we look at the role of dissipation in the dipole mode of the lattice and in §8.2, we

look at the dipole mode of an impurity gas through the lattice gas.

4.2.4 Dynamic Model Parameters

The other out-of-equilibrium technique in our toolkit is the ability to vary the model parameters dynamically.

This ability is quite unique to quantum simulators versus physical systems where, at best, the parameters

can be tuned slowly with pressure. Unlike transport, the forces acting on the atoms are short range so this

technique creates local excitations. Whereas transport tends to probe a model locally in equilibrium, but

globally out-of-equilibrium, this technique allows us to access highly out-of-equilibrium states. For example,

by instantaneously changing the parameters through a phase transition (i.e., a quench), we can use the equi-

librium state of one phase as the initial conditions in a completely different phase. How the system relaxes

and the timescales for that relaxation tell us important information about the model and the phase transition.

Another useful aspect of this technique is to evolve in regimes of the parameter space that are not well-

understood using the initial ground state wavefunction of a regime that is well-understood. To do this we

start in the ground state with one set of parameters and then instantaneously change to another set of

parameters. This is the opposite limit of the adiabatic load technique (§4.2.1). Instead of ramping slowly so

that we preserve the thermodynamic state, we ramp as fast as possible so the wavefunction is unchanged.

This has been demonstrated to show phase collapse and revivals of coherent states on each lattice site in the

deep Mott insulator regime [241]. We can also do the opposite; evolve starting with an unknown wavefunc-

tion in a parameter space with known solutions.

An interesting use of this technique is to look at how certain properties depend on the speed at which we

vary the parameters. In the slow limit we recover the adiabatic load technique. This is useful for elucidating

the timescales of local physics. One of the experiments performed in this thesis is a detailed analysis of con-

densate fraction as a function of ramping speed from the strong to weakly interacting superfluid regime of

the Bose-Hubbard model (§6.2). For quenches there are various predictions for the generation of excitations
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going through a phase transition. We can constrain these different theories by looking at the number of

excitations after a quench as a function of the speed which we vary the parameters [242].

By modulating the parameters at a certain frequency we can couple to single-particle (i.e., band-to-band)

and many-body excitations of the system. Measuring the system response as a function of the modulation

frequency is a method to map out the excitation spectrum [139]. The decay and thermalization of these

excitations is one way to generate a controlled finite temperature sample, as mentioned in §4.2.2.
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Chapter 5

Theoretical Toolkit

The central idea of quantum simulation is to experimentally simulate unsolved quantum models using quan-

tum systems. To achieve this we have assembled an experimental toolkit to simulate the Hubbard model

described in detail in §3 and §4. However, the emphasis on experiment does not preclude the use of theory.

In fact, theory is a key component of any experimental quantum simulation. Although quantum simulation

is motivated by the failure of theory, there are many regimes where we can either exactly solve or approx-

imately solve Hubbard models with a high degree of confidence. These theoretical solutions are critical to

our overall success because they motivate, validate, and help to interpret our quantum simulator.

Theoretical solutions to the Hubbard model, although limited to certain regimes, provide an important

basis of comparison. Any system, such as ultracold atoms trapped in an optical lattice, that is purportedly

well-described by a Hubbard model must have overlapping properties with these theories. Once we have

built our experimental quantum simulator this set of known model properties can be used to validate our

system. Finally, when we run our experiment, theory helps us to interpret the results. Although we may be

in a regime where theory cannot predict the exact phase of the model, theory can predict what a specific

probe will measure for different quantum phases. Experimentally, this allows us to work backwards and

construct a phase diagram. For example, in the Fermi-Hubbard model different theories disagree whether

the ground state of a certain parameter regime is a d-wave superfluid. Yet, assuming the state is a d-wave

superfluid, theory helps to predict the experimental observations.

The relationship between theory and experiment can also be reversed. Although quantum simulation is

focused on modeling physical systems, it is also important for refining theory. In most regimes, theoretical

solutions have to make some type of approximation. Once an approximation has been made they become

tremendously powerful because of the speed and versatility of their solutions. Although they are less accurate

than the experiment, which makes no approximations, the theory can solve for properties that are hard to

probe experimentally, such as high-order correlation functions. Validating the approximations made in the

theory is difficult theoretically, but straightforward by comparing to the results of the quantum simulation.

Therefore, any experimental toolkit for quantum simulation must have a corresponding theoretical toolkit.

In §2.4 some of these theories were discussed to describe known solutions to the Hubbard model. In this

section we will describe some of these theories in more detail. The focus will be theory tools directly

associated with the experimental work in this thesis. Since the experimental work is almost exclusively on

the Bose-Hubbard model, these theories are geared towards that model.
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5.1 Non-Interacting

In the t/U → ∞ limit, we can use the exact non-interacting theory discussed in §2.2.1 for the harmonically

trapped gas to solve for the thermodynamics of atoms in a single-band of the harmonic plus lattice potential

described by the tight-binding Hamiltonian (see also Eqn. 2.85)

H = −t
∑

<i,j>,σ

ai,σa†
j,σ +

∑

i,σ

(

1

2
mω2

σr
2
i − µσ

)

a†
i,σai,σ. (5.1)

Exchange statistics are encapsulated in the operators of Eqn. 5.1, which (anti)-commute for (fermions)

bosons. Fortunately, in the non-interacting theory there is a straightforward procedure for separating out

the issues related to quantum statistics. First, we need to solve for the eigenstates and eigenenergies of

the single particle problem, which for Eqn. 5.1 reduces the problem to determining the coefficients fj of

|Ψ〉 = (
∑∞

j=−∞ fj â
†
j)|0〉 (j is the site index), given [133]

Enfj = −t(fj−1 + fj+1) +
1

2
mω2d2j2fj . (5.2)

The eigenvalues of Eqn. 5.2 are given by Eqn. 2.87 and illustrated in Fig. 2.7. The coefficients of eigenvalue

n are [133],

f
(n)
j =

{

1
π

∫ 2π

0
dx cen(x,−α) cos(2jx), n even

1
π

∫ 2π

0
dx sen+1(x,−α) sin(2jx), n odd

(5.3)

where ce and se are the even and odd periodic π solutions of the Mathieu equations with parameter α (as

defined for Eqn. 2.87). Once we have the single particle energies we can construct thermodynamic functions

from the grand canonical potential (Eqn. 2.22) which take into account the quantum statistics. We can also

take the thermal expectation value of operators (Eqn. 2.21).

If kBT � E1 − E0, or (equivalently) if the de Broglie wavelength λT (Eqn. 2.27) is smaller than the

characteristic length scale of the potential, then we can use the semiclassical approximation, which includes

quantum statistics, but uses classical variables to calculate the energy. For the harmonically trapped gas,

the semiclassical approximation is naturally applied in the x, p basis (i.e., Eqn. 2.24), and the condition that

kBT � ~ω is almost always satisfied. However, in the harmonically trapped lattice gas, the two potentials set

disparate length scales. In the ultracold regime, λT is on the order of the lattice spacing, so the semiclassical

condition is not met. This is equivalent to the fact that kBT is much less than the bandgap, so that we

are simulating single-band physics. Fortunately, the lattice length scale is incorporated directly into the

quasimomentum operator. Rewriting the Hamiltonian in terms of q and x1,

H = 2t
∑

i

[

1 − cos

(

qi

qB
π

)]

+
∑

i

[

1

2
mω2x2

i − µ

]

(5.4)

over the range −∞ ≤ xi ≤ ∞ and −qB ≤ qi ≤ qB . In this representation of the Hamiltonian, we have

projected out the bandgap and the only energy scale is given by the slowly varying harmonic potential. The

1x in the (q,x) representation is a coarse-grained version of the original x operator in the (p,x) representation. It is defined
with respect to q = ~k as x = i∂/∂k + Ω where Ω commutes with k [243].
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semiclassical approximation will hold in this basis, so,

Ω = ∓ 1

β(2π)3

∫ π/d

−π/d

d3k

∫

d3x log
[

1 ± ζe−β( 1
2 mω2x2+2t(3−cos(kxd)−cos(kyd)−cos(kzd))

]

, (5.5)

= ∓
(

2π

d2

)3/2

β−1(βmω)−3/2
∞
∑

n=1

(±)nζne−6tβnI3
0 (2tβn)

n5/2
(5.6)

where β = (kBT )−1, ζ = eβµ is the fugacity, and I0 is the modified Bessel function of the first kind. The

(non-condensate) number is

N = ±(2π)3/2(βmω2d2)−3/2
∞
∑

n=1

(±)nζne−6tβnI3
0 (2tβn)

n3/2
, (5.7)

and the entropy is

S = −∂Ω

∂T

=
5

2

Ω

T
+

(µ− 6t)N

T
∓ 6t

T

(

2π

d2

)3/2

β−3/2(mω2)−3/2
∞
∑

n=1

(±)nζne−6tβnI2
0 (2tβn)I1(2tβn)

n3/2
. (5.8)

In Fig. 5.1 we compare the semiclassical entropy to the exact entropy calculated using the eigenvalues

(Eqn. 2.87) of Eqn. 5.1.

For bosons TC can be determined by inverting Eqn. 5.7 when ζ = 1. There are analytic solutions in two

limits. When kBT � t, then we set e−6tβnI3
0 (2tβn) ≈ 1 and,

kBTC =

(

N

Li3/2(1)

)2/3
mω2d2

2π
(5.9)

The limit corresponds to the band being filled and the harmonic trap is the only energy scale in the problem.

This has the same N scaling as the 2D free gas since there are the same degrees of freedom. From Fig. 5.1,

we see that this scaling is poor unless kBT � t. Another approximation is to sum the first few terms in the

series given by Eqn. 5.7, which from Fig. 5.1 is more accurate. In the opposite limit, t� T , we can use the

large z expansion of I0

I0(z) ≈
ez

(2πz)1/2

(

1 +
1

8z

)

, (5.10)

and so,

kBTC =

(

N

Li3(1)

)1/3

~ω
( m

m∗

)1/2

, (5.11)

where m∗ is the effective mass given by Eqn. 2.82. Therefore, in this limit the only effect of the lattice is to

rescale the trap frequency. The full range of TC/t versus (N1/3
~ω)2/t is plotted in Fig. 5.1.

To get TF for fermions we need to invert Eqn. 5.7 for µ as β → ∞. In this limit the argument of the
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(a) (b)

(c) (d)

Exact

Series Approx

k T >>tB C

k T <<tB C

Exact

Series Approx

k T >>tB F

k T <<tB F

Exact

Semiclassical

Exact

Semiclassical

Figure 5.1: Thermodynamics of the non-interacting harmonically trapped lattice gas. (a),(b) Comparing
the exact solutions using the eigenvalues from Eqn. 2.87 versus the semiclassical approximation for entropy
versus temperature (Eqn. 5.8) at fixed number and T̄C = kBTC/t (normalized temperature) versus N̄ =
N(mω2d2/t)3/2 (normalized number). In these normalized units the plots are essentially universal. For
these calculations N = 105 (for entropy plot), m = mRb, d = 400nm, t = 1.2 × 10−31J (tunneling value
for s = 6 lattice), and ν = 50Hz. (c) Comparing T̄C calculated using exact sums versus N̄2/3 for several
approximations discussed in the text. The kBTC � t curve (red) is given by Eqn. 5.11, and the kBTC � t
curve (grey) is given by Eqn. 5.10. The blue curve (series approximation) takes the first few terms of the
series in Eqn. 5.7. (d) Comparing T̄F = kBTF /t versus N̄2/3 for several approximations. The kBTF � t
curve (red) is given by Eqn. 5.15 and the kBTF � t curve (grey) is given by Eqn. 5.19. The blue curve
(series approximation) is given by Eqn. 5.18. (c) and (d) use the same parameters as (a) and (b).
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Bessel function (2tβn) also goes to infinity, and so we can expand using Eqn. 5.10,

N = −(2π)3/2(βmω2d2)−3/2
∞
∑

n=1

(−)nζn����
e−6tβn���e6tβn

n3/2(4πtβn)3/2

= −β−3(2tmω2d2)−3/2
∞
∑

n=1

(−)nζn

n3

= −β−3(2tmω2d2)−3/2Li3(−ζ) (5.12)

As β → ∞, ζ goes to ∞, so we can use a polylogarithm expansion

Lin(−z) ≈ − 1

n!
log(z)n, (5.13)

and so

N =
1

6
β−3(2tmω2d2)−3/2(kBTF )3β3 (5.14)

kBTF = (6N)1/3
~ω
( m

m∗

)1/2

, (5.15)

which is only valid if kBTF � t because Eqn. 5.14 is the lowest order term in a TF /t series. Therefore, in the

opposite limit (kBTF � t) we cannot use the prior approach. Instead we need to make an approximation to

the N equation

N = −(2π)3/2(βmω2d2)−3/2

∫ π

−π

d3kLi3/2

[

−ζe−β2t(3−cos(kx)−cos(ky)−cos(kz))
]

. (5.16)

We expand using Eqn. 5.13

N ≈ (2π)−3/2(βmω2d2)−3/2

∫ π

−π

d3k
1

Γ[5/2]
log
[

ζe−β2t(3−cos(kx)−cos(ky)−cos(kz))
]3/2

= (2π)−3/2(��βmω
2d2)−3/2�

��β3/2(kBTF )3/2

Γ[5/2]
. . .

∫ π

−π

d3k

[

1 − 2
t

kBTF
(3 − cos(kx) − cos(ky) − cos(kz))

]3/2

(5.17)

= (2π)3/2(mω2d2)−3/2 (kBTF )3/2

Γ[5/2]

[

1 − 6
t

kBTF

]3/2

(5.18)

Since kBTF � t, we ignore the second term in the brackets, and

kBTF = (Γ[5/2]N)2/3(2π)−1mω2d2, (5.19)

consistent with a similar expression in [244]. The full range of TF /t versus (N1/3
~ω)2/t is plotted in Fig. 5.1.

Although the real experiment always has interactions (unless we are near a Feshbach resonance), the non-

interacting theory is still a useful tool. It is applicable when either kinetic or potential energies dominate,

such as at high temperature or when the density is very low. Because we always have a trap, there will be

a dilute region at the edge where we can use a fit to the non-interacting theory to measure temperature.
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Furthermore, it is useful for calculating thermodynamic functions, for example, to determine the temperature

if we adiabatically load into the lattice (§4.2.1). Depending on what quantity we are calculating, the weight

of the non-interacting modes can be high. Energy and entropy, for instance, are dominated by high energy

states where interactions are less important.

5.2 Atomic Limit

The opposite of the non-interacting gas is the atomic limit (t/U → 0). Rewriting Eqn. 2.92 with t = 0,

H =
∑

i







1

2

∑

σ,σ′

Uσ,σ′a†
i,σa†

i,σ′ai,σai,σ′ +
∑

σ

(εi,σ − µσ)ni,σ







. (5.20)

This Hamiltonian is diagonal in the Fock basis at each site, and the LDA is exact. Therefore, we can

extract analytic expressions for thermodynamic quantities of both uniform and trapped systems [245]. Since

particle-hole and trap excitations are contained in Eqn. 5.20, this is a reasonable model for describing these

degrees of freedom for t/U 6= 0, but t/U < 1. For example, this t = 0 theory exhibits the main qualitative

features of the t/U 6= 0 in-trap density profile [137], which for single-component bosons is

ni =

∑∞
n=1 ne

−[β(U/2(n−1)+εi−µ]n

∑∞
n=0 e

−[β(U/2(n−1)+εi−µ]n
. (5.21)

See Eqn. 4.29 for the equivalent expression with two-component fermions. To treat the features of the mo-

mentum distribution, we cannot use Eqn. 5.20, since there is not a definite phase relation between different

sites. Similarly, at high temperature (kBT � t), particle-hole and trap excitations dominate because the

band is full, so the thermodynamics is well-described by Eqn. 5.20.

The atomic limit is the natural starting point for perturbation theory in orders of t/U . To zero-order,

the ground state wavefunction for single-component bosons with 〈n〉 = 1 and M lattice sites is

|Ψ〉 =
M
∏

i

a†
i |0〉 (5.22)

To first-order in the tunneling term, the state in Eqn. 5.22 is connected to any state with a single particle-hole

pair (there are 6M such states). The wavefunction to first-order in perturbation theory is

|Ψ〉 ∝
M
∏

i

a†
i |0〉 +

t

U

∑

<j,k>

a†
kaj

(

M
∏

i

a†
i |0〉
)

(5.23)

From Eqn. 5.23 we can extract first-order corrections to the momentum distribution. Continuing to higher

orders is more suited to strong-coupling expansions of the Green’s function (e.g., [146]). These types of

expansions are not considered in this thesis.
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5.3 Mean-Field Theories

The next level of theory must bridge the gap between the non-interacting and atomic limits. Since there

is no exact solution, a common technique is to search for a mean-field solution. The vital component of

such a theory is determining the best aspect of the model to treat as the mean-field. Starting from the

non-interacting limit, it is natural to treat interactions as the mean-field. On the contrary, starting from the

atomic limit it is more natural to treat tunneling as a mean-field. We will therefore look at an interaction

mean-field theory (§5.3.1) and a tunneling mean-field theory (§5.3.2).

Before going over details, it is helpful to summarize the essential properties and approach to a mean-field

theory by discussing the ferromagnetic spin-1/2 Ising model

H = J
∑

<i,j>

Sz,iSz,j . (5.24)

From the perspective of a spin on site i, it interacts with quantum spins on neighboring sites. The (static)

mean-field approach replaces those quantum spins with the average spin from all the neighbors

Sz,iSz,j = 〈Sz,i〉Sz,j + Sz,i〈Sz,j〉 − 〈Sz,i〉〈Sz,j〉, (5.25)

and the model becomes

H = zJ
∑

i

(

〈Sz〉Sz,i − 〈Sz〉2
)

, (5.26)

where z is the number of neighboring spins (coordination number), and 〈Sz〉 is given self-consistently (ξ =
zJ

kBT ) as

〈Sz〉 =
e−ξ〈Sz〉 − eξ〈Sz〉

e−ξ〈Sz〉 + eξ〈Sz〉 . (5.27)

When we solve Eqn. 5.27, we get that 〈Sz〉 = 0 for ξ < 1 and 〈Sz〉 = ±1 for ξ ≥ 1, corresponding

to a ferromagnetic transition. Therefore, the mean-field approach is able to describe interesting features

of the interacting model without an exponential increase in computational complexity. The consequence,

however, is that the approximation will breakdown in some regime, and it is not always straightforward to

understand where this will occur. An indication of how the theory will breakdown is that the mean-field

neglects fluctuations. For a spin with z = 2 (1D Ising model), these fluctuations are important since a

single spin-flip can change the total spin-spin interaction energy by a factor of two. In fact, the mean-field

theory completely breaks down in 1D, and if we exactly solve Eqn. 5.24 there is no ferromagnetic transition.

However, for z → ∞ these individual spin-flips are negligible and the mean-field theory is exact. Another

situation when fluctuations are important and the mean-field approach fails is in the vicinity of the transition

itself. At this point fluctuations are critical; for example, a single spin-flip may order all the spins — formally

the spin susceptibility goes to infinity.

5.3.1 Hartree-Fock-Bogoliubov-Popov

Our first mean-field theory, Hartree-Fock-Bogoliubov-Popov (HFBP) [123, 124], treats the kinetic and po-

tential terms exactly and replaces some interaction terms with a mean-field. This approach is equally valid

in the lattice or harmonic trap, so we start with the generic second-quantized Hamiltonian (Eqn. 2.42) and
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make two approximations. First, we assume the field-operator can be written as Ψ(r, t) = Φ(r, t) + Ψ̃(r, t),

where 〈Ψ̃(r, t)〉 = 0, and Φ(r, t) is a complex number. The mean-field term Φ(r, t) is directly related to

the condensate (i.e. a macroscopic occupation of a mode of the single particle density matrix), such that

|Φ(r, t)|2 is the condensate density. Expanding the interaction term of eqn. 2.42 we get,

Ψ†Ψ†ΨΨ = |Φ|4 + 2|Φ|2Φ∗Ψ̃ + (Φ∗)2Ψ̃Ψ̃

+2|Φ|2ΦΨ̃
†
+ 4|Φ|2Ψ̃†

Ψ̃ + 2Φ∗Ψ̃
†
Ψ̃Ψ̃

+Φ2Ψ̃
†
Ψ̃

†
+ 2ΦΨ̃

†
Ψ̃

†
Ψ̃ + Ψ̃

†
Ψ̃

†
Ψ̃Ψ̃ (5.28)

The mean-field approximation to the interaction is,

Ψ†Ψ†ΨΨ ≈ |Φ|4 + 2|Φ|2Φ∗Ψ̃ + (Φ∗)2Ψ̃Ψ̃

+2|Φ|2ΦΨ̃
†
+ 4|Φ|2Ψ̃†

Ψ̃ + 4Φ∗〈Ψ̃†
Ψ̃〉Ψ̃

+Φ2Ψ̃
†
Ψ̃

†
+ 4Φ〈Ψ̃†

Ψ̃〉Ψ̃†
+ 4〈Ψ̃†

Ψ̃〉Ψ̃†
Ψ̃ (5.29)

This particular mean-field approximation is the Hartree-Fock-Popov-Bogoliubov approximation [124]. We

also make the static Popov approximation, which assumes that the non-condensate density is static (〈Ψ̃†
(r, t)Ψ̃(r, t)〉 =

〈Ψ̃†
(r)Ψ̃(r)〉). This is the same approximation we made in §2.2.2 to derive the equation of motion for Φ —

the generalized time-dependent Gross-Pitaevskii (GP) equation (Eqn. 2.47).

Substituting Eqn. 5.29 back into the second-quantized Hamiltonian (Eqn. 2.42), we get the effective

Hamiltonian for Ψ̃ [123]

H =

∫

drΨ̃
†
(r)

(

−~
2∇2

2m
+ V (r) − µ+ 2gn(r)

)

Ψ̃(r)+
g

2

∫

drΦ2(r)Ψ̃
†
(r)Ψ̃

†
(r)+

g

2

∫

dr(Φ∗)2(r)Ψ̃(r)Ψ̃(r)

(5.30)

where n0(r) = |Φ(r)|2 is condensate density, nT (r) = 〈Ψ̃†
(r)Ψ̃(r)〉 is the non-condensate density, and

n(r) = n0(r) + nT (r) is the total density. If we ignore the last two terms of Eqn. 5.30, this reduces to the

simple Hartree-Fock mean-field theory discussed in §2.2.2 (Eqn. 2.43). The Hartree-Fock energies are

εHF (r, p) =
p2

2m
+ V (r) − µ+ 2gn(r). (5.31)

If we keep the last two terms in Eqn. 5.30, they are not in the proper form of a single particle Hamilto-

nian. Therefore, we need to perform a Bogoliubov transformation, and in a semiclassical approximation the

solutions are,

εBG(r, p) =
(

εHF (r, p)2 − g2n0(r)
2
)1/2

(5.32)

where the distribution function of non-condensate particles is,

nT (r) =
1

(2π~)3

∫

dp
εHF (r, p)

ε(r, p)

1

eε(r,p)/kBT − 1
. (5.33)

Taking into account the Bogoliubov terms means that NT =
∫

drnT (r) can be non-zero at T = 0. This is

the depletion of the condensate by interactions.

122



In thermodynamic equilibrium, the equations, Eqn. 2.47 (GP Equation), Eqn. 5.32, and Eqn. 5.33 form a

set of self-consistent equations, given a fixed µ and T . To solve for the condensate density n0(r) (Eqn. 2.47),

we need to know µ and the non-condensate density nT (r). Yet, we cannot solve for nT (r) until we know µ, T ,

n0(r), and nT (r) (nT appears on both the left and right sides of Eqn. 5.33). Therefore, the self-consistency

algorithm amounts to solving these different equations iteratively using values from the previous step. For

example, in step i, we solve Eqn. 2.47 using the value of nT,i−1(r) from step i−1 to get the condensate density

n0,i(r). Then we solve for the non-condensate energies (Eqn. 5.32) using nT,i−1(r) and n0,i(r), and calculate

nT,i(r) from Eqn. 5.33. We iterate until nT,i(r) = nT,i−1(r) and n0,i(r) = n0,i−1(r) (to within a set toler-

ance). The iteration loop must be seeded by an initial estimate for nT,−1. We furnish this estimate by solving

Eqn. 5.33 using the non-interacting energies (i.e., set g = 0 in Eqn. 5.32). The semi-ideal model, discussed

in §2.2.2, amounts to setting nT (r) = 0 in Eqn. 2.47 and in the non-condensate energies (Eqn. 5.32). In this

case we only require two steps. We first solve for the condensate density n0(r) from Eqn. 2.47, which is only

a function of µ, and then we solve for the non-condensate density, which is only a function of µ, T , and n0(r).

For the lattice we apply the same procedure to the Hubbard model [64]. We get the lattice version of

the GP equation for each site i

0 = −t
∑

〈j〉
φj + [εi − µ+ UN0,i + 2UNT,i]φi, (5.34)

where 〈j〉 is a sum over all nearest-neighbor sites to i, N0,i is the number of condensate atoms on site i,

NT,i is the number of thermal atoms, and εi is the energy shift of lattice site i (i.e., from a harmonic trap).

The semiclassical lattice versions of the Hartree-Fock (Eqn. 5.31) and Bogoliubov (Eqn. 5.32) energies in the

LDA are,

εHF (q)i = −2t cos (q/qBπ) − (µ− εi) + 2gNi (5.35)

εBG(q)i =
(

εHF (q)2i − g2N2
0,i

)1/2
. (5.36)

If we also solve the condensate using the Thomas-Fermi approximation, the condensate number (per site)

is,

N0 = Max
{ µ

U
− 2NT , 0

}

(5.37)

For a uniform system of M sites, the self-consistent value of NT is

NT =
1

M

∑

q 6=0

εHF (q)

εBG(q)
[coth(βε(q)/2) − 1] . (5.38)

In the lattice the condensate depletion, calculated using Eqn. 5.38, can be quite large as U/t increases,

which is illustrated in Fig. 5.2. In the HFBP theory, condensate fraction is always non-zero at T = 0 for all

U/t, and so it does not predict the known Mott-insulator transition. This demonstrates that the interaction

mean-field approximation fails for strong interactions [147].
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Figure 5.2: HFBP T = 0 condensate fraction versus U/t for µ = U/2 in the uniform 3D lattice. The
Mott-insulator transition should occur at U/t ≈ 35, but the HFBP theory fails such that N0/N > 0 for all
U/t.

5.3.2 Site-Decoupled

The breakdown of the interaction mean-field in the HFBP theory is best illustrated by considering the

exact interaction energy for two states (written in the number basis on a single site), |Ψ1〉 = |1〉 and

|Ψ2〉 = 1√
3
|0〉 + 1√

3
|1〉 + 1√

3
|2〉. Both these states have the same mean number, 〈n̂〉 = 〈â†â〉 = 1, so the

mean-field interaction energy is the same. If we calculate the exact interaction energy, 〈Hint〉 = U
2 〈n(n−1)〉

then we get 〈Ψ1|Hint|Ψ1〉 = 0 and 〈Ψ2|Hint|Ψ2〉 = U
3 . The true interaction energy of |Ψ2〉 is an order U

higher than state |Ψ1〉 because of number fluctuations that are omitted from the HFBP theory. When U is

large compared to t, the difference in interaction energy between these two states is critical and demonstrates

the requirement to treat interactions exactly.

To construct a mean-field theory where interactions are exact, we start from the atomic limit (§5.2) and

add a mean-field tunneling term [68]

a†
iaj → 〈a†

i 〉aj + a†
i 〈aj〉 − 〈a†

i 〉〈aj〉, (5.39)

where 〈a〉 is identified as the condensate. Substituting this mean-field approximation into the single-

component Bose-Hubbard model (Eqn. 2.92)

H =
∑

i



−t
∑

<j>

(

〈a†
j〉ai + a†

i 〈aj〉 − 〈a†
i 〉〈aj〉

)

+
U

2
a†

ia
†
iaiai + (εi − µ)a†

iai



 (5.40)

we get a mean-field Hamiltonian which is diagonal in the number basis on each site. Given Eqn. 5.40, if

the system is inhomogeneous we need to solve self-consistently across the whole lattice since the mean-field
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terms depend on adjacent sites. However, we typically solve for the uniform system and use LDA in which

case the Hamiltonian is

H =
∑

i

[

−zt
(

a∗ai + a†
ia− |a|2

)

+
U

2
a†

ia
†
iaiai − µa†

iai

]

(5.41)

where z is the number of nearest-neighbor sites, and a = 〈Ψ0|a|Ψ0〉. We must solve Eqn. 5.41 iteratively,

because the eigenstates depend on the value of a, but a is calculated from these same eigenstates. In step

i of the iteration, we solve for the eigenstates of Eqn. 5.41 using ai−1 (the value of a from step i − 1), and

then use the lowest energy eigenstate to calculate ai. We iterate until ai = ai−1.
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Figure 5.3: Site-Decoupled Mean-Field T = 0 condensate fraction versus U/t at µ = U/2 in a uniform 3D
lattice. The condensate fraction goes abruptly to zero, indicating the transition to the n = 1 Mott-insulator.

If we solve Eqn. 5.41 for µ = U/2 as a function of U/t and plot |a|2/n (condensate fraction), we see that

the condensate fraction goes to zero at some value of U/t illustrated in Fig. 5.3. This is the superfluid-to-

Mott-insulator transition. Once we are in the MI regime and a = 0, Eqn. 5.41 is equivalent to the atomic

limit. The full phase diagram calculated using Eqn. 5.41 is illustrated in Fig. 2.11. The dimensionality of

the lattice is encoded in the parameter z. For a cubic lattice z = 6, for a square lattice z = 4, and z = 2 in

1D. As expected from a mean-field theory, the discrepancy with QMC increases at lower dimensions where

fluctuations start to dominate as discussed in §2.4.1.

To determine finite temperature properties, we include excited states after solving Eqn. 5.41 when cal-

culating a. We calculate a including a Boltzmann average over all states, a = Z−1
∑

n e
−En/kBT 〈Ψn|a|Ψn〉

where Z =
∑

n e
−En/kBT is the partition function. This theory can also be extended to calculate dynamic

properties if t and/or U are time-dependent. We use this time-dependent version (calculated by Stefan Natu

at Cornell) to compare to our experimental results in §6.2.
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5.4 Exact - Small Systems

An exact solution of the Hubbard model is possible by numerical diagonalization of the Hamiltonian in the

Fock basis. However, this solution quickly becomes numerically intractable and is only possible for a small

number of sites (< 10). Although the results are exact, the small site Hubbard model does not correspond

to the physical system we are trying to model (N = 1023) or even our simulator (N = 105). Still, we gain

insight from the solutions and for certain properties they give reasonably close answers to the full solution.

To better understand the size limitations for diagonalization we need to look at how the number of states

grows as a function of the number of particles N and lattice sites M . For bosons, the number of states is

(M +N − 1)!

(M − 1)!N !
, (5.42)

and for fermions
M !

N !(M −N)!
(5.43)

If we assume that it is possible to diagonalize a maximum of 5000 states (i.e., 25× 106 element matrix) then

for bosons where N = M , this limit corresponds to a maximum of 7 sites (1716 states). For two-component

fermions where N↑ = N↓ = M/2 (half-filling), this limit corresponds to a maximum of 8 sites (4900 states).

Another option is to go back to a standard approach and solve grand-canonically (i.e., not in a fixed-number

basis). Then we need to truncate the number of particles per site. For two-component fermions, the basis

is truncated automatically at four states per site, and the basis grows as 4M . For bosons, if we truncate

to 5 particles per site it grows as 5M . For bosons on 7 sites, this corresponds to 78125 total states, and

for fermions on 8 sites this corresponds to 65536 states, so the fixed-number basis is more efficient. The

advantage of the grand-canonical basis is that we can compute trap quantities using LDA. The speed at

which the basis grows can be seen by considering the number of states required if we double the number of

sites. For the bosons this would mean 2 × 107(6 × 109) states for the canonical (grand-canonical) basis and

for fermions 2 × 108 (4 × 109) states.

One advantage of the exact solution is that we get the complete set of eigenstates and therefore can

compute any quantity — for example, higher order correlations. In Fig. 2.12 we show a number of prop-

erties for the 5 site, 2D Fermi-Hubbard model. In Fig. 5.4 we show the condensate fraction for the 7 site,

7 particle Bose-Hubbard model with z = 6. The method is also trivially extended to the time-dependent

Hubbard model, i~ ˙|Ψ〉 = H(t)|Ψ〉, by simple matrix multiplication. We use this technique for qualitative

understanding of our experimental results in §6.2.

5.5 Comparison

The five main theory tools in our experimental quantum simulation toolkit are non-interacting theory, atomic

limit approximation, the HFBP approximation, site-decoupled mean-field theory, and small system exact
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Figure 5.4: Condensate fraction versus U/t from exact diagonalization of the 3D 7-Site Bose-Hubbard model
with 7 particles at T = 0. The model consists of one central site (site #1) connected via tunneling to 6 outer

sites. Here condensate fraction is defined as 〈∑j 6=1 a†
ja1〉/〈a†

1a1〉. Although the general downward trend of
condensate fraction is observed, there is no sharp transition, which is expected due to the finite system size.
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Figure 5.5: Summary of the different theoretical methods for the Bose-Hubbard model. The diagram is
similar for the Fermi-Hubbard model with the addition of HFBP-theory and site-decoupled MFT. The
regimes of validity and a qualitative level of approximation are shown for each theory. For example, the
atomic and non-interacting limits are exact, but the region of validity is small. This diagram illustrates
the ‘dead-zone’ in the middle of many theories corresponding to the strongly correlated superfluid and the
Mott-insulator transition.
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calculations. Because of the specific approximations made in each theory they have certain regimes of va-

lidity and describe some properties more accurately than others. In some cases the theory breaks down in

a clear way — for example, the lack of a SF-MI transition in the HFBP theory. However, in other cases

the regions of validity are not clear. The limitations to these theories is difficult to judge a priori. The only

certain way to judge the approximations made in a theory are by direct comparison to experiment. However,

we can also learn a lot by comparing the theories against each other. If most theories are in agreement,

but there is one that disagrees then we can infer that it is not valid in that regime. Also, there are regimes

where we know that certain theories, based on the approximation, should be very close to exact. Therefore,

in those regimes we can use those theories as a baseline.

A comparison between the different theories and experiment is done in §7.3 for condensate fraction versus

entropy. Also, the different theories, the rough regimes of validity and level of approximation are summarized

in Fig. 5.5.

5.6 Beyond our Toolkit

There are a number of theoretical tools that can be applied to the Hubbard models beyond the five previously

discussed. However, many of these theories are advanced and must be implemented by specialists. Here we

will list a few of the most relevant tools with references to where more details can be found.

In particular, the main advanced theoretical tool that we have access to is quantum Monte Carlo (QMC)

calculations. QMC is a classical numerical approach using statistical sampling of the path integral, and, as

such, it makes no approximations. The only errors in QMC are statistic. These errors converge to zero for

the equilibrium Bose-Hubbard model as the number of sampling points is increased. However, the statistical

errors do not converge for a number of fermion problems because of the “sign problem” [153], although new

techniques are under development [156]. A number of QMC results and references were discussed in §2.4.

Because QMC can solve the equilibrium Bose-Hubbard model with finite classical computational resources

it is ideal for validating Bose-Hubbard simulators. A future extension is to use QMC to compare to our

experimental work in §7.3.

Another advanced technique extends the mean-field approaches discussed in §5.3, which were all based

on a static mean-field parameter. The next-order approximation is to consider a dynamic mean field theory

(DMFT) [153]. DMFT is particularly useful for examining the Fermi-Hubbard model, for which the HFBP

and site-decoupled MFT do not apply, but can also be applied to the Bose-Hubbard model [144,145]. Other

techniques include strong coupling expansions [146] and high-temperature series expansions [158].
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Chapter 6

Simulating the Bose-Hubbard Model
Out of Equilibrium

The remaining sections will discuss our experimental work performed on the 87Rb apparatus (§3.1). These

experiments fall into two categories: simulating the Bose-Hubbard (BH) model out of equilibrium, which is

discussed in this chapter, and the development of simulation probes (§7 and §8).

Out-of-equilibrium experiments are an important subset of the quantum simulation process (ingredient

4). One motivation is that many physical systems are defined by their non-equilibrium properties; for exam-

ple, the defining characteristic of superfluid 4He is the ability to transport mass without dissipation. Also,

while non-equilibrium physics is often the most challenging problem theoretically, it is intrinsic to our quan-

tum simulator. Therefore, out-of-equilibrium experiments are optimal as a tool to validate new theoretical

techniques.

As part of this thesis work, we performed two experiments simulating the BH model out of equilibrium.

In the first experiment (§6.1), we measure the decay rate of center-of-mass motion in the lattice. We observe

a finite decay rate at zero temperature consistent with quantum phase-slip dissipation. By varying the

temperature, we observe the crossover between quantum and thermal phase-slip activation. In the second

experiment (§6.2), we measure condensate evolution as we linearly decrease the lattice depth — increase t/U

— for varying ramp times. This experiment is a direct probe of many-body dynamics, and in agreement

with time-dependent Gutzwiller mean-field calculations, we observe condensate growth with a characteristic

timescale on the order of the inverse BH interaction energy U−1.

6.1 Phase Slip Dissipation

In this experiment, published in [1]1, we use the 87Rb apparatus (§3.1) to simulate the transport (§4.2.3)
properties of the BH model as a function of U/t and temperature T (§4.2.2). In particular, to probe dissipa-

tion we measure the decay rate (γ) of the center-of-mass velocity (dipole mode). We observe that the decay

rate scales as log(γ) ∝ −
√

t/U and that decay persists down to the lowest temperatures we can experimen-

tally achieve. These measurements are consistent with intrinsic dissipation due to phase slips, a well-known

dissipation mechanism in macroscopic quantum systems. Phase slips are expected to generate topological

The work presented in §6.1 of this chapter was published in: D. McKay, M. White, M. Pasienski and B. DeMarco. Phase-

slip-induced dissipation in an atomic Bose-Hubbard system. Nature 453, 76 (2008). As per the Nature publishing group terms,
copyright of the article is retained by the authors. Figs. 6.2, 6.3, 6.4, and 6.5 are reproduced from this publication. The work
presented in §6.1 of this chapter was published in: Stefan S. Natu, David C. McKay, Brian DeMarco, and Erich J. Mueller.
Evolution of condensate fraction during rapid lattice ramps. Phys. Rev. A 85, 061601 (R) (2012) c©2012 American Physical
Society. Authors are granted the right to include the article in a dissertation without requesting permission from the APS.
Fig. 6.9 is reproduced from this publication.

1Note that in this publication we used J , instead of t, for tunneling.
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(i.e., vortices) excitations — we directly measure vortex-like features in 20% of our images. Additionally, we

measure the finite-temperature phase-slip decay rate and observe the crossover between quantum and thermal

activation of phase slips.

At T = 0 the BH model has two phases: the Mott-insulator (MI) phase for (U/t) ≥ (U/t)c and a su-

perfluid (SF) phase for (U/t) < (U/t)c (§2.4.1). These phases are classified according to their transport

properties. In the MI phase, there is no mass transport (i.e., the system is insulating) and in the SF, there

is dissipation-free mass transport. Specifically, mass transport is dissipation-free in the SF phase because

the flow is metastable to decay. The energy of the moving system is higher than if it were at rest, and so

energetically the system should decay, but there is an energy barrier to this process and therefore metastable

flow at finite velocity (i.e., superfluidity) is possible. The barrier height is velocity dependent, so this stabil-

ity has an intrinsic velocity upper bound. As first argued by Landau and later deduced by Bogoliubov for

weak-interactions, if the system is traveling faster than vc = min(ε(p)/p) (ε(p) is the excitation spectrum)

then the system will decay. For weakly interacting gases, the Landau critical velocity is equal to the speed

of sound. Superfluidity breaks down when the velocity exceeds the Landau critical velocity.

Although this is a tremendous insight, it does not completely explain the observations in many superfluid

and superconducting systems because it neglects the role of vortices, a point first made by Feynman [246]2.

Despite predicting a sharp breakdown in superflow at the Landau critical velocity, many physical systems

display intrinsic dissipation at low velocities and T = 0. This dissipation is thought to be driven by phase

slips, which were used to describe the intrinsic critical velocity of SF He [247] and resistance in thin super-

conducting wires [47].

The general idea of a phase slip is illustrated in Fig. 6.1 for a 1D system between two reservoirs of the

same phase. In a quantum system, velocity is the gradient of the wavefunction phase (phase is defined

modulo 2π), and so velocity is quantized to vn = (h/m)(n/L), where n is an integer. If a vortex moves

through the flow then the velocity can decay by ∆n = 1 [248] — a phase slip. However, there is an energy

requirement for a vortex to enter the system, shown as the well depth in Fig. 6.1. A phase slip can be gen-

erated by thermal activation, or by quantum tunneling through the barrier. In superconducting wires [48]

and superfluid He [249], thermal phase slips are well-understood and can be directly observed. However, the

experimental evidence for quantum tunneling of phase slips is inconclusive [49].

The effect of phase slips in the BH model at zero and finite temperature is an open question. While

phase slips are predicted to occur in the BH model [46], precise calculations are difficult due to the dynamical

nature of the problem which precludes the use of QMC techniques. Therefore, our BH simulator is ideal for

investigating phase slips using our transport measurement techniques (§4.2.3). Similar to physical systems

(superconductors and superfluid 4He), we can measure dissipation as a function of temperature (§4.2.2).

Uniquely, we can also measure dissipation continuously as a function of the BH parameters. Because our

system is “clean”, we are not encumbered by noise and disorder issues, and, in particular, we can probe

the quantum-classical crossover. Transport in this regime has been studied by several other groups; see, for

2Another defining characteristic of a SF is that there is a global phase, Φ(x). The velocity is given by v = ~/m(∇Φ), and,
thus, ∇× v = 0. The system is irrotational, unless there is a singularity (vortex), which must be quantized by the single-valued
nature of the phase parameter.
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Figure 6.1: Schematic of the phase-slip process for a weak link connecting two phase reservoirs. Since the
phase at both ends must equal zero (modulo 2π), the quantized velocities are v = ~/m(∇φ) = (h/m)×(n/L),
where n is an integer (assuming constant velocity in the weak link). For velocity values intermediate to the
quantization condition, a phase kink must exist to satisfy the boundary conditions (see inset). This kink
introduces more kinetic energy, and therefore there is a barrier to decay from n → n − 1. The system can
either cross the barrier via thermal activation or by quantum tunneling. Both processes result in a phase
slip of 2π as the system relaxes to a lower velocity.
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example [44,51,52].

6.1.1 Experiment

Figure 6.2: (a) Schematic of the experimental setup for the phase slip experiment. For more information
about the apparatus, see §3.1. The atoms are held in a magnetic (harmonic) trap that balances gravity, and
a 3D lattice is superimposed. To initiate transport, the harmonic trap frequency is decreased for 7ms, which
causes a constant downward force on the atoms. (b) Timing diagram of the experiment. First, the atoms
are loaded into the lattice over 100ms. Once in the lattice, an impulse is applied, and then atomic motion
evolves for a variable amount of time. Finally, the gas is released from the lattice, and an image is taken to
determine the center-of-mass velocity. To image vortices, we apply a magnetic field gradient to counteract
gravity during TOF; this enables 80ms of expansion time.

We probe phase slips by first creating Bose-Einstein condensates (BECs) of 87Rb in a harmonic trap3

at varied condensate fraction N0/N (i.e., varied temperature). Condensate fraction is measured after time-

of-flight (TOF) expansion (§4.1.4). Next, we adiabatically load the finite-T gas into the λ = 811.8nm,

spin-independent lattice as described in §4.2.1. To start center-of-mass (COM) motion (§4.2.3), we apply an

impulse to the atoms along gravity. In a harmonically trapped gas, COM motion is not sensitive to 2-body

interaction effects because of the generalized Kohn’s theorem [124].

This theorem, however, does not hold with the lattice present. We generate an impulse by lowering the

trapping potential for 7ms and then returning it to the original value. Since the atoms are originally at the

equilibrium position determine by the trap and gravity, weakening the trap imparts a force on the atoms.

The impulse gives the atoms a peak velocity of 0.8–1.8mm/s depending on the lattice depth. Working in this

low velocity regime we avoid well-known Landau and dynamical instabilities [250]. After a free evolution

time t up to 200ms, the lattice is bandmapped, and the atoms are imaged after TOF (§4.1.3). We fit the

3This was in winter 2006-2007, so BEC was prepared in a pure magnetic trap; see §3.1 for details.
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image to a TF combined with a Gaussian profile (with independent centers), and translate the position after

TOF into the velocity in the lattice. The timing sequence is summarized in Fig. 6.2.

Figure 6.3: Representative data from the experiment for two different lattice depths. Each data point
represents one experimental cycle with the free evolution time (Fig. 6.2) as the independent variable. The
black points are the condensate (TF component of the fit) and the open points the thermal component
(Gaussian component of the fit). Velocity is measured using the deviation from the equilibrium position
after TOF. The solid line is a fit to the data using Eqn. 6.7, which is used to extract the decay rate γ. (a)
s = 2, T/TC = 0.85 and 8 × 105 BEC atoms. (b) s = 6, T/TC = 0.93 and 2.7 × 105 BEC atoms. For (b),
sample images with 0.47mm field of view are shown as an inset. Regions of high density are red, and regions
of low intensity are blue. The narrow BEC component oscillates, while the broad thermal component is
stationary (pinned).

In the lattice, the 1D semiclassical equations of motion for an atom at position x with quasimomentum

q are [8]

ẋ =
∂ε(q)

∂q
, (6.1)

= v̄, (6.2)

q̇ =
∂V (x)

∂x
, (6.3)

where ε is the band structure, v̄ is the mean velocity, and V (x) is a smooth, external potential. These are

the lattice-equivalent Newtonian equations of motion. Near the bottom of the band,

∂ε(q)

∂q
=

q2

2m∗ , (6.4)
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where m∗ is the effective mass (Eqn. 2.82). For a harmonic potential V (x) = −kx,

m∗ẍ = −kx. (6.5)

Regardless of the source, dissipation enters into Eqn. 6.5 as a force proportional to −v̄. For example, ohmic

resistance for charge carriers is described by a force −ρv where ρ is the resistivity. Adding a dissipative force

−m∗γẋ into Eqn. 6.5

m∗ẍ = −kx−m∗ẋ, (6.6)

which is a simple-harmonic oscillator. Therefore, we fit data to the curve,

v = v0 sin(ωt + φ0)e
−γt, (6.7)

where v0, ω, φ0, and γ are free-parameters of the fit. The role of phase slips is characterized by the decay

rate γ.

Typical oscillation data for the condensate and thermal components, at two different lattice depths and

temperatures, are shown in Fig. 6.3. The data fit well to Eqn. 6.7 with non-zero γ. An interesting feature

of the data in Fig. 6.3 is that the thermal velocity is smaller and damps more quickly than the condensate

velocity. This suggests that the thermal component is pinned to the lattice, which was also seen in [222].

This may be interesting for exploring physics of the Caldiera-Leggett model [251] and for creating second-

sound, but we did not investigate this phenomena further.

The oscillation data used to measure γ are checked in two ways for nonlinear decay terms. First, no

significant change in the fitted value of γ is measured if the first period of motion is excluded from the fit.

Second, fitting the data to a nonlinear damping model with γ = γ0v
α, where α is the coefficient of nonlinear

damping and γ0 is the damping rate for α = 0, typically increases the reduced χ2 value of the fit by 10-20%.

We find no clear dependence of α on T/TC or t/U , and the fitted value of α averaged across all of the data

is 0.68 ± 0.07. Ultimately, our sensitivity to detect weak velocity nonlinearities in the decay rate is limited

because of finite signal-to-noise ratio in measurements of the COM velocity.

We rule out several technical noise sources as dissipation mechanisms that could explain the damping of

COM motion. Anharmonicity in the dipole potential may effectively damp COM motion for large values of

s. To check for anharmonic behavior, we measure COM motion when the retro-reflected lattice laser beams

are removed (blocked), which eliminates the lattice potential and reduces the depth of the dipole potential

by a factor of 4. Using this technique we measure a value of γ consistent with zero for lattice laser intensities

corresponding to s = 4.5 (if we unblock the retro-reflected beams an s = 18 lattice would result)4. This

eliminates trap anharmonicity as an effective dissipation source for the data in Fig. 6.4. Relative motion

between the lattice and the harmonic potential or fluctuations in s (caused by retro-reflecting mirror motion

and lattice laser intensity fluctuations, respectively) can lead to the dephasing of dipole mode motion by

transferring atoms into states with different values of m∗ in excited bands; we do not, however, observe

population outside of the lowest energy band. The total spontaneous emission rate per atom is less than

0.3 Hz for s = 6, so momentum diffusion caused by scattering light from the optical lattice laser beams is

4In [1] we erroneously state that the laser intensities in this measurement corresponds to s = 9.
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insignificant. The lattice depth varies by less than 3% across the BEC, so spatial variation in the effective

mass can play no role in the dissipation timescales measured in our data.

6.1.2 Results

Figure 6.4: Decay rate vs inverse temperature for (a) s = 2 and (b) s = 6. Each value of γ is obtained from
fitting similar data to that shown in Fig. 6.3. The solid line is a fit to thermal activation of phase slips,
Eqn. 6.8. Fitted values are given in the main text.

After taking a series of curves similar to Fig. 6.3, we extract γ for different lattice depths (different t/U)

and temperatures. In Fig. 6.4 we plot the decay rate γ versus inverse initial temperature in the harmonic

trap (in TC units) for two of these lattice depths5. At finite temperature, phase slips are generated by

thermal fluctuations; the probability for a thermal fluctuation to have enough energy to get over a barrier

of height ∆E is weighted by a Boltzmann factor e−∆E(kBT )−1

. Therefore, we fit to an Arrhenius equation

for thermal activation of phase slips with a finite γ as T → 0 to account for quantum phase slips

γ(T ) = γ0 + (γ∞ − γ0)e
−∆E/(T/TC). (6.8)

For s = 2, ∆ = kB × (0.5 ± 0.1)µK and γ0 = 1.4 ± 0.4Hz, and for s = 6, ∆ = kB × (0.33 ± 0.08)µK and

γ0 = 13± 2Hz. The data shows good agreement to this model and the dissipation rate is non-zero at T = 0,

which is consistent with the concept of quantum tunneling of phase slips. We omit the highest temperature

point taken very close to TC when we fit to Eqn. 6.8. The considerable increase in γ close to TC may be

5At s = 2 there are 14% next-nearest neighbor corrections to the Hubbard model, which should be included in any theoretical
treatment. Therefore, this data will not be used to compare to the scaling solution from [46] in Fig. 6.5. Qualitative phase-slip
features (e.g., thermal activation) should be unchanged.
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due to mutual friction between the pinned thermal component and the BEC [252]. Mutual friction cannot,

however, explain the finite γ at T = 0, since the thermal component vanishes at low T .

Figure 6.5: Logarithm of the decay rate γ versus
√

t/U for T/TC = 0.76 and 3 × 105 BEC atoms (filled
circles) and T/TC = 0.312 and N = 1.1 × 106 BEC atoms (open circles). The equivalent lattice depths are
shown at the top of the graph. The data are well fit by a line, indicating log γ ∝ −

√

t/U , in agreement
with the predicted theoretical scaling from [46]. The offset between the data sets is due to the difference
in thermal activation of phase slips. (Inset) Images taken after long expansion at s = 8 show evidence of
vortex features (highlighted in red) predicted to accompany phase slips. The top row are the raw images
and the bottom are the residuals after subtracting a smooth TF fit.

Zero-temperature phase slips are generated by quantum fluctuations, which allow the system to tunnel

through the activation barrier. The decay rate grows as t/U decreases (the lattice depth increases); at

the MI transition the barrier disappears. For quantum tunneling through a barrier, the tunneling rate is

proportional to e−S , where S is the action in imaginary time [253]. A scaling law for this action in the

Hubbard model S ∝
√

t/U , was derived in [46], so we expect the logarithm of the phase-slip decay rate

to be proportional to −
√

t/U . Therefore, in Fig.6.5 we plot the logarithm of the decay rate log(γ0) versus
√

t/U for two different temperatures. The data fit well to the expected scaling with a slope of -1.6(0.1),

consistent between the two temperatures. The higher temperature data is offset upwards in decay rate,

consistent with a higher rate of thermal activation of phase slips.

Since a phase slip involves vortices entering into the system, direct imaging of these features is strong

evidence of phase slip dissipation. Vortices can be directly imaged in cold atoms system as a density de-

pression in the condensate profile after TOF expansion [254]. However, the vortex size is small, so they can

only be resolved at long expansion times (> 50ms). Additionally, our imaging system is not well-optimized
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to image vortices. Nevertheless, we do observe qualitative features consistent with vortices in 20% of our

images at s = 8, as shown as an inset to Fig. 6.5. These features are not observed if we do not initiate COM

motion in the system.

In summary, we simulated transport in the BH model using ultracold atoms to explore phase-slip dis-

sipation in the superfluid regime of the BH phase diagram. We observe evidence for phase slips that are

both thermally activated and generated by quantum fluctuations. Compared to similar studies in physical

systems (e.g., small-scale superconductors [49]), where the role of quantum phase-slips is obscured by noise,

our results provide some of the most convincing evidence for quantum-phase-slip dissipation. There remain

unresolved experimental and theoretical questions regarding the exact nature of phase slips in our finite,

inhomogeneous system. In the future, a more optimal imaging setup should be able to measure vortex

statistics and dynamics [255], which is essential to understanding the phase slip process. New advances

in lattice thermometry and cooling will allow us to better clarify the zero-temperature limit of transport.

Finally, the recent demonstration of thin channel transport between two cold atom reservoirs [256] could be

utilized to study the phase slip problem in a straightforward setup (Fig. 6.1), which would greatly simplify

the interpretation of the results.

6.2 Rephasing After Lattice Ramps

In this work, published in [2], we investigate the timescales for condensate fraction growth after the lattice is

linearly ramped from the strongly interacting to weakly interacting SF regime. First, we load a pure 87Rb con-

densate adiabatically into a spin-independent lattice at si, and then we linearly ramp down the lattice depth

to sf = 4 in a variable amount of time τ0. We observe that the condensate fraction increases exponential in

τ0 where the 1/e time is approximately 1ms for si = 10 − 14. In agreement with time-dependent Gutzwiller

calculations, we conclude that timescales for condensate fraction growth are comparable to h/U . This pre-

cludes the use of bandmapping (§4.1.3) as a precision probe of the lattice condensate fraction.

The ground-state condensate fraction of the lattice gas decreases for smaller t/U (higher lattice depths),

eventually vanishing at the MI transition. To experimentally observe these changes, the gas is loaded into

the lattice by increasing the lattice depth monotonically over some period of time. Therefore, the conden-

sate fraction must dynamically evolve as the lattice depth increases during the ramp. Understanding the

timescales for condensate fraction evolution is important. If we intend to adiabatically load the gas into

the lattice (§4.2.1), we must ensure that the ramp time is slow compared to all other dynamical processes

in the system. In the opposite limit, bandmapping (§4.1.3), the ramp time must be fast compared to all

other processes except the inverse bandgap (h/Ebg) — this is the bandmapping condition. Ideally we would

prefer to use bandmapping to probe condensate fraction; compared to the momentum distribution, where

the gas is spread over several diffraction orders, the quasimomentum distribution has higher signal-to-noise

ratio, and is easier to interpret. In order to accurately measure condensate fraction from the bandmapped

distribution, the bandmapping ramp time must be sufficiently fast so that quasimomentum redistribution

is not possible. For the non-interacting lattice gas, the only timescales in the Hamiltonian are 2π/ω, the

trap oscillation period, and h/t, the tunneling time. These are much slower than the inverse bandgap, and

thus the bandmapping condition is easily met. A new timescale h/U enters for the interacting gas, which is

much faster than the non-interacting timescales. For example, at s = 10, h/Ebg ≈ 40µs, h/t ≈ 15ms, and
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h/U ≈ 1ms. If the condensate evolution is driven by U, then it will be difficult to satisfy the bandmapping

condition, and the measured condensate fraction will not be accurate.

From a theoretical perspective, there are a number of open questions related to the dynamics of the BH

model [38], and developing non-equilibrium theories is an active area of research. A promising technique

is time-dependent Gutzwiller mean-field theory (similar to a time-dependent version of §5.3.2). Comparing

this theory to the results of our experimental quantum simulator is an excellent method to validate and

test the approximations of this theory. Although our main focus is on local dynamics during fast ramps,

in general there are also slower global dynamics such as global mass and entropy redistribution in the trap.

These effects are also being explored experimentally [236].

Before we investigate the timescales for condensate fraction evolution in the lattice, it helps to understand

the microscopic changes that occur in the ground state for varied t/U . To write down the ground state on

each site we use the SDMFT theory (§5.3.2) at different values of t/U . We express the state |Ψ〉 in the Fock

basis (particle number basis), where the set of basis states are written as {|n = 0〉, |1〉, |2〉, . . .}. When the

lattice is in the weakly interacting SF regime (s = 4, U/t = 1.3), the state with 〈n〉 = 1 is

|Ψ1〉 = 0.5|0〉 + 0.64|1〉 + 0.44|2〉 + 0.23|3〉 + 0.1|4〉 + 0.03|5〉. (6.9)

For a deep lattice, close to the MI transition (s = 12, U/t = 27) the state evolves into

|Ψ2〉 = 0.25|0〉 + 0.93|1〉 + 0.26|2〉 + 0.03|3〉 + 0.001|4〉. (6.10)

In |Ψ2〉, stronger interactions reduce number fluctuations as compared to |Ψ1〉. These number fluctu-

ations give rise to a non-zero condensate fraction. This is apparent if we consider the generic state

|Ψ〉 =
∑

j=0 αje
iφj |i〉. The condensate fraction for this state is

N0

N
=

|〈Ψ|a|Ψ〉|2
〈Ψ|a†a|Ψ〉 (6.11)

=

∣

∣

∣
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∣

2

∑

j=1 jα
2
j

. (6.12)

A state with high condensate fraction is in a superposition of many different Fock states (i.e., has large

number fluctuations) with fixed relative phases. For s = 4, the condensate fraction is 0.99, while at s = 12

it has decreased to 0.36.

6.2.1 Small System Calculation

The change in the local state between s = 12 to s = 4, as determined by MFT, indicates that condensate

fraction increases as the state evolves into a phase-coherent superposition of Fock states on each site. Al-

though we analyzed the wavefunction at a single site, the Fock-state superposition is equivalent to the atoms

becoming delocalized through the lattice. For example, the ground state of the M site non-interacting BH

model is
(

∑M
i â†i

)N

|0〉, where every atom is maximally delocalized. If we expand this state and examine
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terms at a single site, we recover a state similar to |Ψ1〉. Atoms delocalize in the BH model by tunneling to

neighboring sites; the timescale for this process in the non-interacting BH model is set by h/t. Therefore,

one might reason that tunneling sets the timescales for condensate fraction evolution.

12E Ground StateR

4E Ground StateR

(a)

(b)

(c)

Figure 6.6: Small 1D system (5 sites and 5 particles) calculation of the linear lattice ramp from s = 12 to
s = 4 in time τ0. (a) Momentum distribution for various τ0 compared to the s = 12 and s = 4 ground
state momentum distributions. (b) Height of the p = 0 peak as a function of τ0. The peak starts to
increase appreciably around τ0 = 300µs. To adiabatically follow to the ground state requires τ0 > 2ms.
(c) Two representative state populations versus the ramp time. The state notation is |n1n2n3n4n5〉 =
|n1〉⊗ |n2〉⊗ |n3〉⊗ |n4〉⊗ |n5〉, where |ni〉 is a Fock state of particle number n on site i. The |11111〉 state is
highly populated at s = 12 because of interactions. To transfer from the |11111〉 state into the |11021〉 state
requires a single tunneling event from site 3 to site 4. An appreciable fraction of the system has evolved
into the state |11021〉 after a 300µs ramp, consistent with the upturn in peak height. This population
decreases again for longer ramps as atoms become even more delocalized (e.g., population transfers to the
state |11012〉).

To test this supposition, we calculate the exact time-dependent dynamics for the 1D small system BH

model (§5.4) with 5 sites and 5 particles. To start, we first determine the ground state for the initial lattice

depth si via exact diagonalization. Then we propagate the state forward in time using Euler time-steps

|Ψ(t + ∆t)〉 = (I + ∆t/i~H(t)) |Ψ(t)〉. (6.13)

The time-dependence of the BH parameters is set to be equivalent to linearly ramping down the lattice

depth to sf in time τ0. This approach is valid as long as the time-dependence does not cause band-to-band

transitions. In Fig. 6.6 we plot two state populations as a function of τ0. Also, we plot the momentum
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distribution n(p) for different τ0, where

n(p) = |w(p)|2〈Ψ(τ0)|
∑

jk

a†
jake

ipd(j−k)/~|Ψ(τ0)〉. (6.14)

Even when we ramp down quickly (e.g., τ0 ≈ 500µs), the momentum distribution is close to the ground state

momentum distribution. The state populations reveal that only a small admixture of delocalized atoms are

required to develop a strongly peaked momentum distribution.

The results suggest that the timescale is set by h/U and not h/t as earlier conjectured. This is a sensible

result based on the full energetics of tunneling in this system. Although the matrix element for an atom to

tunnel to an adjacent site is t, the energy of the state after the atom has tunneled depends on interactions

with all the other atoms in the lattice. For example, tunneling into an occupied site will occur an energy

cost of U , the interaction energy (if the atom started on a singly occupied site). A similar argument was

made in Ref. [58]. In the two-well model, the problem of tunneling between the wells is formally equivalent

to an off-resonance Rabi oscillation (§B.4). For this problem, the oscillation time is set by the detuning and

not the coupling; the oscillation is also not full contrast. The same holds for tunneling in the lattice; the

detuning is set by U , and so the time for an atom to tunnel is ≈ h/U , but the atom will not completely

transfer to the adjacent site. However, the condensate fraction (Eqn. 6.12) is proportional to the square root

of the number of atoms that tunnel. Therefore, a small admixture of higher number states results in a large

condensate fraction increase, as borne out by the results of our calculation.

6.2.2 Experiment

To experimentally investigate the time evolution of condensate fraction, we use BECs created in the 87Rb ap-

paratus in the single beam dipole plus magnetic quadrupole trap configuration with ν̄ = 35.76(8)Hz (see

§3.1 for more details). For this measurement, we prepare BEC with the highest possible condensate frac-

tion in our apparatus. A small thermal component is visible in saturated images, and we estimate that the

harmonic-trap condensate fraction is greater than 0.81. The atoms are loaded adiabatically into a λ = 812nm

spin-independent lattice to an initial lattice depth si. After waiting 10ms, we linearly ramp the lattice depth

down to s = 4 in time τ0 and then immediately turn off all lattice and trapping potentials. Because we release

the atoms directly from the lattice, the images after TOF have diffraction peaks, and so a heuristic fitting

procedure is required. The fitting procedure is outlined in §7.3, and to increase the signal-to-noise ratio,

we use a combination of high and low OD images as described in §4.1.4. The fitting procedure accurately

identifies the number of condensate atoms, but is susceptible to noise when determining the total number of

atoms. Therefore, the condensate fraction for a particular data run is determined by taking the condensate

number from the fit and dividing by the total number of atoms averaged over all runs. We end the ramp

at s = 4 so that the system is still well-described by a tight-binding Hamiltonian, which is necessary for

comparing to the theory calculations. We observe no significant difference in the measured timescales if the

lattice is ramped to s = 0, as in standard bandmapping.

We measure condensate fraction versus τ0 at lattice depths si = {10, 11, 12, 12.5, 13, 14} with correspond-

ing number, N = {104(5), 82(5), 99(5), 71(3), 100(3), 72(2)} × 103 averaged over the different τ0 (typically

shot-to-shot fluctuations are 25%). The mean-field prediction for the emergence of the MI phase is s ≈ 13,
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Figure 6.7: (a) Condensate fraction versus ramp down time (τ0) for s = 12. The red line is an exponential fit
used to get the exponential time constant for condensate growth τ−1. (b) TOF images from the experiment
for different ramp down times labeled on the plot in (a). The top set of images are fully repumped for best
signal-to-noise ratio for the non-condensate atoms, and the bottom images are partially repumped so that
the OD of the condensate is unsaturated. We use the procedure outlined in §7.3 to measure condensate
fraction from the images.
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so the data at s = 13 and s = 14 may have some MI present, but the majority of atoms in the trap are in

the SF phase. Results for condensate fraction versus τ0 are shown for s = 12 in Fig. 6.7 along with several

of the TOF images. We fit each set of data (condensate fraction versus τ0) to an exponential function to

determine the 1/e time τ−1.

6.2.3 Results
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Figure 6.8: Experimental results for τ−1 vs. lattice depth. The timescales associated with interactions and
tunneling are shown, illustrating that τ−1 is consistent with h/U and much faster than h/t.

The experimental results for τ−1 as a function of the initial lattice depth si are illustrated in Fig. 6.8. In

the SF regime, τ−1 is ≈ 400µs, which is much faster than the tunneling timescale h/t and consistent with

interaction timescale h/U . These results are important because the timescales for condensate fraction to

evolve is comparable to bandmapping times used in many experiments. For example, sample values from

the literature include 200µs [34], 400µs [204], 750µs [3], 1ms [139] and 2ms [200]. We also observe a slight

increase in τ−1 for s ≥ 12.5, which many correspond to a MI phase appearing in the system.

To make quantitative comparison to the data, our theory collaborators Stefan Natu and Eric Mueller at

Cornell University calculated the condensate fraction6 after the ramp for the full 3D trapped system using

time-dependent Gutzwiller theory [257]. In the calculation, the BH model parameters are changed dynami-

cally in a way consistent with a linear ramp of the lattice depth. In addition, the overall trapping potential

is adjusted as ω =
√

ω2
0 + 8s/mw2, where w = 120 ± 10µm is the lattice beam waist. The calculation is

performed for N ≈ 75, 000 atoms on a 55 × 55 × 55 lattice.

The results are illustrated in Fig. 6.9. The theory was calculated considering two different initial condi-

tions. In case #1 (bottom, dashed line in Fig. 6.9), the calculation starts the ramp in the ground state of the

6The condensate fraction is calculated as
∑

i |〈âi〉|
2/N (summing over all sites).
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Figure 6.9: Measured τ−1 compared with time-dependent MFT (lines). The dashed bottom line corresponds
to case #1 and the top line to case #2 (as discussed in the text). The vertical dashed line indicates when
the MI phase is expected to enter into the trap.

experimentally measured lattice depth si. There is good agreement with experiment at low lattice depths

(si ≤ 11), where the MFT is a good approximation. For deeper lattice depths, the experimental timescales

are approximately a factor of two slower than theory. Overall, the same qualitative trend is observed in both

theory and experiment. Exact agreement with theory should not be expected — time-dependent Gutzwiller

MFT is approximate, and, most importantly, does not consider finite-temperature effects. Although theory

and experiment start at the same lattice depth in case #1, the starting condensate fraction in the theory

calculation (the ground state condensate fraction at si) is larger than in the experiment. To account for

this discrepancy, and to put an upper-bound on the theoretical timescales, in case #2 (top, solid line in

Fig. 6.9) the theory starts from the same condensate fraction as in the experiment by artificially increasing

the initial lattice depth. Indeed, the timescales calculated with these starting conditions are higher. All

experimental data points lie between the theoretical curves from the two cases. This demonstrates that the

essential features of the condensate fraction evolution are captured by the Gutzwiller theory.

The Gutzwiller theory can provide insight into the mechanisms responsible for setting the condensate

fraction timescales. By truncating the Fock basis to 2 particles and diagonalizing for µ = U/2, an analytic

expression for the particle/hole gap is found to be

∆ =
U

4



1 +

√

48z2〈a〉2
(

t

U

)2

+ 1



 . (6.15)

This gap sets the timescale for adiabaticity. If our bandmapping ramp is longer than h/∆, then the ground

state in the deep lattice will adiabatically follow to the ground state of the shallow lattice. Likewise, the

condensate fraction will increase as the state changes. Because ∆ is a fast timescale, it foils bandmapping

as a probe of condensate fraction. It is difficult to be both adiabatic with respect to the band and fast with

respect to the particle/hole gap ∆. Therefore, bandmapped distributions must be carefully interpreted when

143



measuring equilibrium properties. On the other hand, these fast timescales imply that bandmapping is an

effective probe of many-body dynamics.

A natural extension to this work is to more closely investigate condensate fraction evolution across the

MI-SF transition, which complements quench experiments also carried out in our group [242]. In addition,

investigating timescales at finite temperature is an important next step and is related to a larger goal of

developing theoretical tools to describe dynamics and thermalization in strongly correlated systems [36].

Finite-temperature issues were already relevant in this work. Even though our experiments were performed

with low entropy gases, we could not make accurate, direct comparison to the zero temperature theory. At

finite temperatures, a number of new effects become important, including the changing density of states and

the suppression of TC in the strongly interacting regime. Quantum simulation is ideal for studying finite-

temperature timescales. Even though these timescales pose a theoretical challenge, they are straightforward

to investigate experimentally.
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Chapter 7

Developing Direct Thermometry
Probes

One of the main ingredients for quantum simulation is the availability of probes to measure the thermo-

dynamic state of the system. Without thermodynamic state information, the simulator cannot fulfill its

mandate because direct comparison between theory and the physical systems being modeled (Fig. 1.2) is

not possible. Unless we are using an impurity (§8), thermometry of an ultracold gas must be performed

by measuring a property of the system with a known dependence on temperature. In the harmonic trap,

a number of such probes are available (§4.1), however, these are mainly undeveloped and untested for use

in the strongly interacting lattice regime. Direct lattice thermometry is difficult because approximations

based on weak interactions break down. A main limitation is that many probes are explicitly based on a

theoretical foundation, e.g., that the TOF expansion is given by Eqn. 4.5. This is a problematic starting

point given that the goals of quantum simulation are mainly to explore physics in regimes where theory is not

established. Additionally, our thermodynamic probes must be decoupled from the physics being simulated

so that biases are not introduced into the results. Furthermore, if we are using the simulator to validate

several theories, these theories cannot be used to determine thermodynamic information.

To circumvent these issues, a common technique is to probe the thermodynamic state in the harmonic

trap and assume the loading process is adiabatic (§4.2.1). The thermodynamic state (T , µ) of the lattice

gas is set by the entropy matching condition

Slattice(T, µ,N) = Sharmonic,

Nlattice(T, µ) = N. (7.1)

However, there are a number of drawbacks to this approach. For one, it depends on adiabaticity, which is

fundamentally unachievable due to light scattering from the lattice. Furthermore, to achieve the low temper-

atures (and entropies) associated with interesting phases in the lattice (e.g., the Nèel state), in-lattice cooling

techniques must be developed [36]. Direct thermometry of the lattice gas is vital to assess these techniques.

A lack of proper thermometry in the lattice is a pressing issue and has led to controversy regarding the

interpretation of results [258].

In this set of experiments, we investigate developing probes for direct thermometry of the lattice gas:

bandmapping (§7.1), in-situ RMS width (§7.2), and condensate fraction (§7.3). An altogether different type

of probe is to use an impurity gas in thermal constant with the lattice gas (§4.1.7). Although this also

The work presented in §7.1 and §7.2 of this chapter was published in: D. McKay, M. White, and B. DeMarco. Lattice

thermodynamics for ultracold atoms. Phys. Rev. A 79, 063605 (2009) c©2009 American Physical Society. Authors are granted
the right to include the article in a dissertation without requesting permission from the APS. Figs. 7.2, 7.3, 7.4, and 7.6 are
reproduced from this publication.
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allows for direct thermometry, it will be considered in a dedicated chapter due to its unique challenges and

opportunities (§8).

7.1 Bandmapping

In this work, published in [3], we explore thermometry of a thermal Bose gas in a lattice by fitting the

bandmapped distribution (§4.1.3) to a quasimomentum distribution with temperature as a free parameter

in the fit. We compare the temperature measured from the fit against the temperature expected assuming

adiabaticity when loading the atoms into the lattice. We find a large discrepancy between the measured and

expected temperatures for kBT/t & 2. Using insight from numerical bandmapping calculations, we conclude

that the main source of error is the inability of the bandmapping process to faithfully produce the quasimo-

mentum distribution when the temperature of the gas is larger than the bandwidth.

In §4.1.3, we introduced the concept of measuring the thermodynamic state of the lattice gas by fitting

the quasimomentum distribution obtained via bandmapping and TOF expansion. Bandmapping is a process

whereby the lattice is ramped down adiabatically with respect to the bandgap and fast compared to all other

timescales. This maps quasimomentum (q) in the lattice to momentum (p). The momentum distribution is

then measured by TOF expansion (§4.1.2). Once we have measured the quasimomentum distribution, we

can fit it to Eqn. 4.19 with temperature and chemical potential as free parameters. The crucial step is the

mapping of q → p. Already, in §6.2, we saw that interactions can disrupt this process. In this work, we

focus on investigating the limitations at the single-particle level.
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Figure 7.1: RMS Quasimomentum width versus temperature calculated from a thermal average of the exact
quasimomentum states using Maxwell-Boltzmann statistics for s = 6, d = 400nm, and ν = 54.5Hz (see
Eqn. 2.87 and Eqn. 5.3). At low temperatures, the width is set by the size of the n = 0 state (the ground
state), and at high temperatures the size saturates to qB/

√
3 as the band fills.
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There are two main potential weaknesses of the bandmapping probe. The first issue is that the quasi-

momentum distribution becomes a less sensitive thermodynamic probe as the temperature becomes larger

than the tunneling t. To illustrate this point, we plot the RMS width of the quasimomentum distribution

versus temperature in Fig. 7.1. The probe becomes very sensitive to non-thermal variations of the width

due to noise and imaging distortions since the width saturates in this regime. Furthermore, for kBT & 2t

the edge of the distribution becomes critical, and a second issue arises related to the bandmapping process

itself. The bandgap decreases (see Fig. 2.5) for states at the edge of the Brillouin zone, and, therefore, it

is harder to satisfy the bandmapping adiabaticity condition. Imperfect mapping of q → p will smooth out

the sharp edge of the Brillouin zone and cause large errors in the measured temperature. It is important to

understand the impact of these two issues for bandmapping thermometry.

7.1.1 Numerical Calculation

These issues are all single-particle effects, which are straightforward to explore numerically. To gain insight

into the problem, we perform a bandmapping and TOF calculation for the 1D non-interacting harmonically

trapped lattice gas by solving the time-dependent Schrödinger equation using a Crank-Nicolson solver (code

in §I.4.3). To construct the thermal bandmapped distributions, we use the exact single-particle eigenstates.

Analytic solutions for the eigenstates and eigenvalues from Ref. [133] are written out in Eqn. 5.3 and

Eqn. 2.87, respectively. The eigenstates given by Eqn. 5.3 are the coefficients fn
i of the Wannier function on

each site. We approximate the Wannier function by a Gaussian so that

Φn(x) =
∑

j

fn
j

(

[

πσ2
]−1/4

e−(x−jd)2/2σ2
)

(7.2)

where σ = (d/π)(2s)−1/4. We evolve each eigenstate for a linear ramp down of the lattice depth in time τ0,

so the time-dependent potential is

V (t) =
1

2
mω2r2 + s0

(

1 − t

τ0

)

cos2(kz). (7.3)

After bandmapping (t = τ0), the state is propagated for 20ms TOF using the free particle propagator

(Eqn. 4.5). This procedure results in a set of bandmapped states Ψn(x). We show the results for the

bandmapped n = 0 eigenstate in Fig. 7.2. To construct the thermal bandmapped distribution, we make a

thermal average over the propagated states

ρ(x) =
∑

n

|Ψn(x)|2
(

e[En−µ]/kBT − 1
)−1

. (7.4)

For simplicity we assume that µ� 0 so that the statistics are Maxwell-Boltzmann. We then fit ρ(x) to the

semiclassical 1D Maxwell-Boltzmann quasimomentum distribution

ρ(x)SC = Ae
−2
(

1−cos
[

πm
tqB

x
])(

t
kBT

)

(7.5)

where t is the TOF expansion time, and A and kBT/t are free parameters of the fit.

The distributions for kBT = 2.9t and kBT = 23t and corresponding fits, are illustrated in Fig. 7.3. We
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Figure 7.2: Example of the bandmapping calculation for the n = 0 eigenstate. The in-trap eigenstate is
illustrated in the top-left, and the in-trap state after 750µs bandmapping is shown in the top-right. The main
effect is to remove the density modulations caused by the lattice. The states after 20ms TOF propagation
are shown below.
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Figure 7.3: Calculated distributions (black line) for (a) kBT/t = 2.9 and (b) kBT/t = 23. The distribu-
tion is fit (blue line) using the function given by Eqn. 7.5 to measure kBT

′/t. For comparison, the exact
quasimomentum distribution is shown (red line) using the exact eigenstates. (c) The results of the measured
kBT

′/t from fitting the calculated distributions versus the value kBT/t used to generate the distribution
(using Eqn. 7.4). A significant deviation is observed for kBT/t > 5. The reason for this discrepancy is
evident from (a) and (b) — the edge of the calculated distribution is distorted.
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also plot the quasimomentum distribution obtained directly from the eigenstates, which should be identical

to the bandmapped distribution in the limit that the q → p mapping is exact. The difference between these

distributions is visually apparent — the bandmapped distribution is smoothed at the edge. To quantify this

effect, we plot the temperature of the fit (kBT
′/t) as a function of the actual temperature used in Eqn. 7.4

(kBT/t). As kBT/t increases, kBT
′/t greatly underestimates kBT/t. In this temperature range, the fit is

dependent on the shape of the distribution at the edge, and so the smoothing, an artifact of the bandmapping

process, dominates and puts an upper bound on the temperature that can be accurately measured. This

is even more problematic for the experiment, because other smoothing processes (e.g., finite resolution) are

also present.

7.1.2 Experiment and Results

To investigate this problem experimentally we use the 87Rb apparatus (§3.1) in the hybrid single-beam

dipole/magnetic quadrupole trap configuration. We prepare ultracold gases in the dipole trap that are not

condensed. To access low temperatures so that we can probe the kBT . t range in the lattice, we use

sufficiently small number of atoms such that T > TC . The temperature in the harmonic trap is measured

using the momentum distribution after TOF (§4.1.2). The gas is adiabatically loaded into a λ = 812nm,

spin-independent 3D lattice to a depth of either s = 2 (U = 0.05ER, t = 0.17ER) or s = 6 (U = 0.17ER,

t = 0.05ER). These depths were selected to be far from the MI transition in order to minimize the role of

interactions. While s = 6 is well-described by a tight-binding Hamiltonian, for s = 2 the next-nearest neigh-

bor tunneling is 14% of t; this leads to a small deviation from the tight-binding dispersion. The temperature

in the lattice is inferred by matching the lattice entropy to the harmonic trap entropy using semiclassical

non-interacting thermodynamics (§5.1).
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Figure 7.4: Temperature measured by fitting bandmapped distributions (points) versus the temperature
expected for adiabatic loading into the lattice (grey, shaded region) at (a) s = 2 and (b) s = 6. For this
data, N varied from 3 × 103–1.4 × 105 and fugacity from 0.35–0.75.

Once the atoms are in the lattice, we bandmap in 750µs and expand for 8−20ms TOF1. Images are then

fit to Eqn. 4.19 (the 2D semiclassical Bose-Einstein quasimomentum distribution) with kBT
′/t and fugacity

as a free parameter. The results are plotted in Fig. 7.4. The shaded region is the predicted temperature

1Shorter TOFs were used to obtain high enough signal-to-noise ratio when using a small number of particles.
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based on the entropy matching calculation. Similar to the calculation, we see that the measured temper-

ature is substantially lower than the predicted temperature when kBT & 2.5t. One possibility is that the

temperature in the lattice is truly different than we predict, but measurements discussed in §7.2 confirm

that this is not the case. Also, the measured temperatures are lower than expected, whereas a failure of

adiabaticity during the ramping process would lead to a higher temperature in the lattice. Effects due to

interactions can be straightforwardly ruled out as the source of this discrepancy, as the ratio of mean energy

to estimated interaction energy per particle is greater than 30.

Therefore, the experimental and calculated data consistently show that bandmapping fails to give ac-

curate quasimomentum distributions at high temperature (kBT/t & 2t) when the band starts to be filled.

However, bandmapping can still be used for thermometry at low temperatures as in Ref. [66]. An alterna-

tive to bandmapping is to turn the lattice off fast compared to all timescales and measure the momentum

distribution after expansion. As noted in §4.1.3, the momentum distribution is a periodic function of the

quasimomentum distribution. Still, deconvolving the quasimomentum distribution from the momentum dis-

tribution can be non-trivial after the imaging process integrates through the distribution along the probe

beam. Nevertheless, even if these challenges could be overcome, the quasimomentum distribution is not

sensitive to temperature when the band is filled. Therefore, it is prudent to look at other thermometry

methods, particularly in-situ (§4.1.5).

7.2 In-situ RMS Width

In this work, also published in [3], we experimentally investigate measuring the temperature from the in-situ

RMS width in the temperature regime where bandmapping fails. We verify that this is a reliable technique

and is only limited by our ability to image the cloud in-situ.

A complementary approach to measuring temperature using bandmapped distributions is to measure

the RMS width of the in-situ distribution (see §4.1.5 for an overview of in-situ probes). This approach

addresses the main issues that result in large errors for bandmapping when kBT & t. In-situ probes do not

rely on any time-dependent mapping operations, such as bandmapping, which ensures that we measure the

equilibrium distribution. Also, the harmonic trap energy scale is unbounded. So, unlike quasimomentum

which drastically loses sensitivity to temperature when the band starts to fill, the sensitivity of the RMS

width is only weakly a function of temperature. Indeed, when the band is full, thermal energy is exclusively

added to trap degrees of freedom.

For a single-band non-interacting gas at high temperatures the system can be described by Maxwell-

Boltzmann statistics and from equipartition the RMS size is

〈x2〉 =
kBT

mω2
. (7.6)

Eqn. 7.6 emphasizes the point that the in-situ width grows continuously with temperature. In Fig. 7.5, we

plot Eqn. 7.6 compared to the exact width from the non-interacting eigenstates. The agreement is almost

exact, except at extremely low temperatures when kBT ≈ ~ω∗ (ω∗ = ω
√

m/m∗), and the width is set by

the n = 0 eigenstate. The width is a useful probe even when interactions are strong. In Fig. 7.5, we also
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Figure 7.5: Calculated in-situ RMS width (black line) versus temperature for the (a) non-interacting gas and
(b) in the atomic limit using Maxwell-Boltzmann statistics. The grey, dotted line is the equipartition result
〈x2〉 = kBT/mω

2. For (a) the calculation used the exact eigenstates of the non-interacting harmonically
trapped lattice gas for s = 6, d = 400nm, and ν = 54.5Hz. There is excellent agreement with the equipartition
result until very low temperatures kBT . ~ω∗ when the size is set by the finite size of the n = 0 eigenstate.
For (b), the calculation was performed numerically in the atomic limit (§5.2) truncating at 10 particles per
site and U = 0.5ER, d = 400nm, ν = 50Hz, and N = 5 × 104. In the atomic limit, the width is insensitive
to temperature until kBT & 0.2U , consistent with the MI “melting temperature” defined in Ref. [137]. For
kBT > U , the atomic limit converges to the equipartition result.

plot Eqn. 7.6 compared to the width in the atomic limit. Here the width is sensitive to temperature if

kBT & 0.2U and equal to the equipartition result (Eqn. 7.6) if kBT & U . When kBT < 0.2U in the strongly

interacting gas, temperature information can be extracted from the distribution at the edge of the gas, but

this requires high resolution imaging [62]. One assumption of this probe is that the system is in global

thermal equilibrium, which is not the case in all experiments [236]. However, for the experiment described

in Ref. [236] there is a large MI phase in the system, which is a regime we are not considering here.

Experimentally, we investigate this in-situ temperature probe in the 87Rb apparatus using the same con-

figuration as in the bandmapping experiment (§7.1). The measurements are performed using non-condensed

gases loaded into an s = 6 lattice. One drawback of in-situ probing is that the fields from the trapping po-

tential can affect the imaging process. This was an issue here since the trap includes a magnetic quadrupole

and it takes ≈ 2ms after releasing the atoms before a uniform imaging field is created. Therefore, to measure

the in-situ size we turned off the potentials suddenly and let the gas expand for some small time τ . We

measure the width using a Gaussian fit for different τ and fit the results to the standard expansion formula
√

x2
0 + (vτ)2 to determine x0. Characteristic data are shown in Fig. 7.6. A direct image would be preferred

for a more precise implementation of this probe. From x0 we use Eqn. 7.6 to determine the temperature.

Using the same procedure as the bandmapping experiment, we calculate the predicted temperature in the

lattice using the harmonic trap entropy and assuming the loading process is adiabatic. The agreement

between the measured and predicted temperature is excellent as evident in Fig. 7.6. In this range of tem-

perature at s = 6, the quasimomentum probe (Fig. 7.4) did not agree with the predicted temperature by

greater than 10 standard deviations.
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Figure 7.6: Experimental results using the in-situ RMS width for thermometry. (a) Temperature measured
from the RMS width (square points) using T = mω2〈x2〉/kB versus the temperature predicted assuming
adiabatic transfer into the lattice (grey, shaded region). There is good agreement between the measured and
expected temperatures, especially compared to the level of disagreement for the bandmapping probe in the
same regime. (b) Sample expansion data (square points) used to extrapolate the in-situ width (grey curve).

These results, at high-temperatures confirm that the observed inaccuracies in the quasimomentum probe

are real, and that the in-situ width is an accurate measure of temperature. Certainly a priority for refining

this probe is to reduce uncertainties, which were large mainly due to two issues. The main source of un-

certainty is the extrapolation method, which was required because of the magnetic trap. In an all-optical

setup, such as the crossed-dipole trap, we can take in-situ images since the magnetic field is already uniform.

Second, we could improve our resolution and magnification, which in this experiment was optimized for TOF

imaging.

Ultimately, our investigation demonstrates that the in-situ probe is a straightforward method for mea-

suring the temperature despite the complications of the lattice. The main validation of any probe is whether

or not it is adapted by other groups. Shortly following the publication of our measurement, this method was

successfully compared against the temperature measured using spin-gradient thermometry [59]. Also, prob-

ing temperature using the in-situ distribution is now a standard tool in high-resolution experiments [56–58].

7.3 Lattice Condensate Fraction

In this work, we investigate peak fraction, a heuristic measure of condensate fraction, as a thermodynamic

probe for the lattice gas in the SF regime of the BH model. We formally define peak fraction based on a

procedure for measuring and fitting experimental TOF images. This measure is designed to be as close to

the actual condensate fraction as possible and to be non-zero exclusively when the condensate fraction is also

non-zero. Therefore, the peak fraction measure is ideal for determining the SF phase boundary. We test this

fitting procedure against simulated data. We measure the peak fraction of the gas at s = 6−12 for a range of

entropies S/NkB = 0.25−3 (determined in the harmonic trap). The peak fraction is compared to condensate

fraction predicted using the non-interacting (§5.1), HFBP (§5.3.1), and SDMFT (§5.3.2) theories.
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There are discrepancies between the measured peak fraction and predicted condensate fraction. In partic-

ular, the peak fraction is non-zero when the predicted condensate fraction is zero in certain regimes. This

is surprising since most non-idealities (e.g., heating from the lattice beams) result in a lower than expected

condensate fraction. This may point to two effects. First, this result could reflect a failure of the peak

fraction measure because of sharp peaks in the momentum distribution not associated with the condensate.

This possibility was pointed out theoretically [60, 258], but others have argued [259] that this effect is not

appreciable in trapped, finite size experiments. Second, this discrepancy could be evidence for long timescales

associated with reversible changes to the condensate fraction.

Based on the arguments given at the beginning of this chapter (§7), we are motivated to search for ther-

modynamic probes that measure a temperature proxy: a unique, easy to measure quantity that is monotonic

in and sensitive to temperature, but insensitive to experimental details. This proxy can be later calibrated

to temperature in a number of ways. For example, we can make a direct comparison to time-consuming

numerical calculations (e.g., QMC calculations of the distribution [67]) at a few points and then interpolate.
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Figure 7.7: Various thermodynamic proxies that have been investigated for the TOF distribution of the
lattice gas in the SF regime illustrated with experimental data (s = 8). (a) Visibility: n1−n2

n1+n2
where n1 (n2)

is the number of atoms in the area indicated by box 1 (box 2). (b) Peak height and width: from the 2D
distribution (inset) evaluate a 1D cross section along the dotted line. The peak height (ν) and peak width
(σ) are labeled on the plot. These measures may also be applied to the first-order diffraction peaks. (c)
Peak fraction: the number of atoms under the peaks (blue) compared to all the atoms (blue plus red). To
determine which atoms under the peaks are condensate and which atoms are non-condensate requires careful
consideration.

Thermodynamic proxies are well-suited to the TOF distribution of a gas in the SF regime of the BH

model for two reasons. First, the strongly interacting SF regime is difficult to treat theoretically because it

contains the crossover between theories that treat t as a small parameter and those that treat U as a small

parameter (see Fig. 5.5). Only a non-perturbative approach such as QMC can accurately describe the whole

parameter space. Therefore, we cannot rely on theory for probes in this regime. Proxies are also ideal for

the TOF distribution in the SF regime because there are strong features in the distribution; the defining

attribute of the SF is that the momentum distribution is bimodal with sharp, narrow features (‘peaks’)

corresponding to atoms in the condensed state. The properties of these peaks are ideal potential proxies, a

number of which have been investigated, including visibility [260], peak height, peak width [67], and peak

fraction. These methods are illustrated in Fig. 7.7.
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In this experiment, we focus on peak fraction, which is an empirical measure that quantifies the fraction

of atoms in the narrow peaks of the bimodal distribution. With the appropriate fitting function and proce-

dure, the peak fraction converges to the condensate fraction — the number of atoms in the macroscopically

occupied single particle state [53]. In the harmonic trap, a standard peak fraction probe exists that can

accurately measure the condensate fraction. As discussed in §4.1.4, this probe is based on a priori theoretical

guidance, which is not possible in the lattice. Even though a lattice peak fraction probe is not necessarily a

condensate fraction probe, the advantages outlined in §4.1.4 still apply. One of the main advantages is that

a peak fraction probe is weakly dependent on the functional form used to identify the narrow condensate

peaks in the distribution. Therefore, the peak fraction probe is decoupled from theory and, to some level,

local distortions of the distribution during TOF. Since it is a ratio, it is also insensitive to global distortions

and certain sources of technical noise. Consequently, peak fraction is an ideal choice as a thermodynamic

probe.

7.3.1 Defining the Peak Fraction Fitting Procedure

The premise of the peak fraction probe is to define a procedure that counts the number of condensate atoms

in a TOF distribution. Since the distribution is bimodal, identifying regions of the distribution that con-

tain condensate atoms is typically not difficult — the condensate is a sharp, narrow peak. However, these

“condensate regions” may also contain non-condensate atoms. For example, in the TOF distribution of the

harmonically trapped condensate, discussed in §4.1.4, the condensate atoms are contained in a circle centered

on zero momentum with a size defined by the TF radius. However, this region is not exclusively condensate

atoms; the distribution of non-condensate atoms is also centered on zero momentum, but continues outward

beyond the TF radius. To definitively distinguish condensate from non-condensate atoms one strategy is to

completely separate condensate from non-condensate using a time-dependent potential (e.g., Bragg scatter-

ing [126]), but this procedure is not always successful and it adds new complications. An added difficulty,

unique to the lattice system, is that the condensate is spread over several peaks. In principle, bandmapping

can be used to reduce these to a single peak, however, the issues discussed in §6.2 and §7.1 prevent us from

pursuing this option2. Therefore, we define a peak fraction procedure for TOF distributions after the lattice

and all other confining potentials are turned off (‘snapped-off’) as fast as possible (within 10ns). Our goal

is to define our measure in such a way that peak fraction can identify the phase boundary and is therefore

zero exclusively when the condensate fraction is zero.

Although our goal is to define a procedure that is simple and independent of theory, we can still use

theory in limiting cases to motivate our overall strategy. For example, if we neglect interactions during

expansion, then the image will be the probe-integrated momentum distribution, which was discussed in

§4.1.3. The overall integrated tight-binding momentum distribution is

n(px, py) =

∫

dpz |w(px)w(py)w(pz)|2
∑

j,k

ei d
~

~p·(~j−~k)〈â†j âk〉 (7.7)

2On a historical note, our original intent for this experiment was to probe peak fraction using bandmapped images. However,
during the preliminary phases of this work we noticed some of the issues associated with bandmapping, and our subsequent
investigation evolved into the work presented in §6.2.
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where w(p) is the Fourier transform of the Wannier function (Eqn. 2.71), which is approximately Gaussian.

In the thermal, non-interacting limit, Eqn. 7.7 is given by combining Eqn. 4.15 and Eqn. 4.18 (integrating

along a lattice axis)

nth(px, py) ≈ A|w(px)w(py)|2
∑

j,k

( ∞
∑

n=1

(∓)nζne−2ntβ{3−cos((px−Pj)d/~)−cos((py−Pk)d/~)}I0 [2ntβ]

n3/2

)

, (7.8)

where j sums over the reciprocal lattice momenta and quasimomentum distribution is only defined for

|px − Pj |, |py − Pk| < qB . Alternatively, we can make a Gutzwiller approximation |Ψ〉 =
∏

j |φj〉, then

n(px, py) =

∫

dpz |w(px)w(py)w(pz)|2
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where 〈âj〉 = 〈φj |aj |φj〉 = aj , and |aj |2 is the number of condensate atoms on site j; aj can be calculated

from the LDA using SDMFT (§5.3.2). In the limit t/U → 0, then aj → 0 and

n(px, py) ∝ |w(px)w(py)|2, (7.10)

which is just a featureless Gaussian. When U/t → 0, T → 0 (i.e., the limit of a non-interacting, pure

condensate), then
∑

j |〈âj〉|2 = N , and

n(px, py) =

∫

dpz |w(px)w(py)w(pz)|2
∣

∣

∣

∣

∣

∣

∑

j

ei d
~

~p·~j〈âj〉

∣

∣

∣

∣

∣

∣

2

, (7.11)

where the last term is just the square of the Fourier series of the condensate wavefunction. For an infinite,

uniform lattice this distribution is a delta function periodic in h/d (the “diffraction peaks”), with a Wannier

function envelope. For typical lattice depths, only the first-order peaks are sizable. For a trapped conden-

sate, the width of the condensate peak in TOF images, based on Eqn. 7.11, is set by the inverse size in

the trap. These peaks are also broadened by interactions (§4.1.4) and the Fresnel terms relevant for finite

expansion times [261]. Combinations of Eqn. 7.8, Eqn. 7.10, and Eqn. 7.11 (with the peaks approximated as

a Gaussian or TF profile) have been used by several other groups to determine the peak fraction. Although

this is only the zero-order theory, it reveals the basic general features of the TOF distribution of the lattice

gas — strong diffraction peaks associated with the condensate, an overall broad Gaussian from incoherent

quantum depletion, and a narrow structured distribution for the thermally excited atoms.

When interactions cannot be neglected, the functional form of the expanded condensate peaks and the

distribution of non-condensate atoms under these peaks is unresolved. Insight into these issues can be gained

from the results of our numerical calculation of the expansion of the harmonically trapped weakly interact-

ing gas (§4.1.4). In the harmonically trapped gas, the condensate expansion is well-described by the GP

equation (Eqn. 2.47) and is driven by the condensate mean-field interactions. The condensate distribution

remains a TF profile after expansion and is much larger than expected from a Fourier transform of the

in-trap density. It seems reasonable to assume that a similar type of dynamics governs the expansion of

the lattice condensate. Counter-arguments for neglecting the mean-field interactions during expansion are
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given in [261], but we empirically find agreement with the GP expansion (§7.3.2). A complication is that

there are multiple condensate peaks, each with a different number of atoms. It is likely that each peak has

unique expansion dynamics. Indeed, the peak widths in the experimental data are different; the outer peaks

(with a smaller number of atoms) are narrower than the central (zero-order) peak. Another issue associated

with multiple peaks is that during early expansion times, when the peaks are spatially overlapped, binary

collisions between atoms in different peaks moving relative to each other cause atoms to be scattered out of

the peaks [262]. This process will increase the discrepancy between peak fraction and condensate fraction

when the condensate number is large. There is little that can be done to account for this except to add a

corrective factor using a first-principles calculation.

The main issue is the distribution of non-condensate atoms under the condensate peak. There is no

signature in images that can be used to resolve this problem. We could rely on the non-interacting ther-

mal distribution (Eqn. 7.8) to infer the distribution under the peak by fitting to the distribution outside

the peak, as is used in the harmonic trap fits (§4.1.4). This conjecture is almost certainly false. QMC

calculations of the full interacting non-condensate momentum distribution strongly deviate from the non-

interacting case [60]. The best information we have is the density of non-condensate atoms directly adjacent

to the peak. Given this information, a reasonable assumption is that the distribution underneath is flat.

This is supported by our calculation of non-condensate atoms expanding in the mean-field potential of the

condensate when released from the harmonic trap (§4.1.4). These interactions cause the non-condensate

distribution under the peak to be more uniform, and a similar effect is likely to occur for the lattice gas.

Based on this discussion, we define our peak fraction fitting procedure in the following way:

1. An area around each condensate peak in the original image (I1) is masked. This mask is determined ad

hoc based on the peak position and typical peak size. Next, the masked image is fit to a Gaussian with

an offset and slope. This fit is subtracted from the image; the resulting image is I2. The number of

atoms from the Gaussian fit is NGauss. If the condensate fraction is very high (i.e. no broad Gaussian

feature is evident in image I1), then the Gaussian peak height may be constrained to zero during the

fit.

2. Each peak in I2 is fit to a single TF profile (no offset or slope) in a series of separate fits. An ad hoc

method is used to minimize the size of the mask around each peak. The number of atoms from all

these TF fits is Npk. The TF radii along x and y from the fit to peak i are σx,i and σy,i.

3. The average density at the edge of peak i (n̄i) is measured by summing around the perimeter set by

σx,i and σy,i. The number of non-condensate atoms under all the peaks is Nup =
∑

i πσx,iσy,in̄i.

4. The condensate peaks in I2 are masked to obtain I3. The image I3 is summed to measure the remaining

atoms N∑ .

After finishing these steps, the peak fraction is determined according to

Npk −Nup

Npk +NGauss +N∑
. (7.12)

In practice, we typically use two images to increase the signal-to-noise ratio over a larger dynamic range

(2-shot technique discussed in §4.1.4). We take a high OD image to determine NGauss, N∑ , and Nup, and
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a low OD image to measure Npk. The fitting procedure is illustrated in Fig. 7.8 step-by-step for typical

experimental data.

A slight variation of the above procedure is to replace the denominator of Eqn. 7.12 with the total num-

ber measured using a different image. For example, if we ramp the lattice to high s (t/U → 0), then the

TOF distribution will become approximately a single Gaussian, which we can easily fit to determine total

N. Another option (if we know N is conserved during the lattice ramp) is to measure N in the harmonic

trap where the distribution is well-known. Finding alternative methods for measuring N reduces our biggest

source of error: the sum in step #4. Unlike fitting to a smooth function, which acts as a low-pass filter, the

sum does not filter noise, such as fringes in our imaging system and photodetector shot noise. The sum is

also very sensitive to offsets in the image. Since the imaging area is very large, the atom-number signal can

be overwhelmed by this offset. Fortunately, the Gaussian fit in step #1 mostly removes this offset. Residual

noise can reduced by averaging N over several shots if N fluctuations are small.

7.3.2 Simulated Data

To test the above fitting procedure, we apply it to simulated data including realistic technical noise. We

use Eqn. 7.10 to represent the quantum depleted non-condensate atoms and Eqn. 7.8 for the thermal non-

condensate atoms. For the condensate, we use the momentum-space Wannier function envelope to determine

the relative number of atoms in each diffraction peak and then assume that each peak expands as a TF

profile according to the scaling discussed in §4.1.4. The exact details of the simulated data are given in §G.4.

Sample data is shown in Fig. 7.9 compared to experimental data at the same lattice depth. To replicate

noise, we add the simulated data to a region of an experimental image that did not contain any atoms. This

effectively captures fringes, photodetection shot noise, and artifacts such as offsets and slopes.

We generate these simulated data samples at s = 12 for several different condensate fractions and add

them to 3 separate noise samples. The peak fraction is measured using the peak fraction fit procedure.

The results are plotted in Fig. 7.9. The simulated data is a simple approximation for the actual TOF data

and ignores a number of effects, including all non-condensate interactions (in the lattice and during the

expansion), and finite expansion time corrections (i.e., Fresnel terms [261]). Also, the condensate expansion

is described heuristically to agree with the experimental data. Therefore, this test is not a proof, but it

does benchmark the procedure for many generic features of the experimental data, such as multiple peaks,

a broad non-condensate distribution, and noise.

7.3.3 Experiment

To experimentally investigate peak fraction thermometry we use the 87Rb apparatus in the single beam

dipole plus magnetic quadrupole trap configuration (see §3.1 for more detail). We use approximately 2×105

87Rb atoms in |1,−1〉 state at various values of the entropy per particle in the harmonic trap ranging from

S/NkB ≈ 0.2 (almost a pure condensate) to S/NkB ≈ 3 (just below TC). The initial entropy is controlled

using our finite temperature techniques (§4.2.2); to achieve lower entropies we evaporate to lower dipole

trap depths. Since atoms are lost when we evaporate to lower depths, we decrease the efficiency of earlier

evaporation stages to maintain a reasonably constant atom number. After evaporation, we ramp to a con-
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Figure 7.8: Applying the fit procedure to experimental data (s = 10, 7 shot average). (a) Raw images:
high OD (fully repumped) image to acquire high signal-to-noise ratio for the non-condensate, and low OD
(partially repumped) image used to obtain an unsaturated image of the condensate peaks. (b) Applying
the fit procedure to the high OD data. (i) The condensate peaks are masked and (ii) the remainder of the
image is fit to a Gaussian (red area is the fit). The Gaussian fit is subtracted from the image. (iii) Each
peak is fit to a TF profile. The result of the fits is shown aggregated onto a single image. We use only the
peak widths and positions from the high OD data. (iv) The remaining non-condensate atoms are counted
assuming a flat distribution under the peaks. The inferred density directly under the peaks is delineated by
the light grey lines. (c) Steps (i)–(iii) are repeated for the low OD data to determine the number of atoms
in each peak (blue). The number of non-condensate atoms under each peak from step (iv),(b) is subtracted
to measure the condensate number.
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Figure 7.9: Simulated lattice data used to test the peak fraction fitting procedure. (a) Samples of simulated
data compared to data from the experiment for s = 6 and s = 12. For simplicity the simulated data is
integrated along a lattice axis and rotated to match the orientation of the experimental data. The procedure
used to generate the simulated data is summarized in the text and detailed in §G.4. Additionally, the noise
added to the simulated data was taken from an empty area of an experimental image. While there are
many qualitative similarities between the two sets of images, there are also clear differences. The simulation
overestimates the peak width, particularly for the outer diffraction peaks and for all peaks at s = 12. The
simulated peaks are spherically symmetric, whereas some of the experimental peaks are rotated and elliptical.
(b) Measuring the peak fraction for the s = 12 simulated data using the procedure outlined in the text. We
consider the case for no noise and for three different noise samples. For no noise, the fit is nearly perfect;
with noise, errors are at the 10% level (grey line). The magnitude of the error is dependent on the specific
noise sample.
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stant dipole depth with ν̄ = 35.76(8)Hz for all measurements. The condensate fraction in the harmonic trap

is measured using the 2-shot probe described in §4.1.4. The entropy in the harmonic trap S0 is calculated

using the semi-ideal model (see Eqn. 2.57).

Atoms are loaded into the lattice (λ = 812.0nm, ER = 2.307 × 10−30J) over 100ms, which is intended

to be adiabatic (§4.2.1). We investigate four different depths, s = 6, 8, 10, and 12, all corresponding to the

SF region of the BH phase diagram (see Fig. 2.11). The lattice increases the harmonic confinement (see §D
for more information on trap frequency measurements). The lattice depth is calibrated using Kapitza-Dirac

diffraction to within 1% error, with a maximum drift of 6% over a month (see §C.5). The experimental

parameters t U and ν are summarized in Table 7.1. Once loaded into the lattice the atoms are held for

10ms, then the potentials are snapped-off (lattice and dipole < 10ns, magnetic quadrupole < 200µs), and

the atoms are imaged after 20ms TOF expansion. We take images from two subsequent experimental cycles,

one image with high OD and the other with low OD using partial repumping (§4.1.1, §4.1.4, see §F.2 for

information on the repump calibration). The peak fraction fit procedure described in the previous section

(§7.3.1) is applied to the two lattice images. Fig. 7.8 illustrates a step-by-step fit to one set of data. For each

lattice depth and initial condensate fraction, we average the results of 7 sets; each set is a high OD/low OD

pair in the lattice and harmonic trap corresponding to four images from four separate experiment cycles.

The averaged results for each lattice depth and initial entropy are given in Table 7.1.

The averaged high OD lattice images for each lattice depth and initial entropy are shown in Fig. 7.10.

A clear trend is evident; the non-condensate increases monotonically with entropy and lattice depth. Sharp

diffraction peaks are visible in the majority of images and are only missing in the two highest entropies at

s = 12 and the highest entropy at s = 10. The measured peak fraction versus initial entropy and harmonic

trap condensate fraction is shown in Fig. 7.11.

7.3.4 Comparison with Theory and Discussion

In Fig. 7.11, we compare the experimentally measured peak fraction to theoretical predictions for condensate

fraction using the non-interacting (§5.1), HFBP (§5.3.1), and SDMFT (§5.3.2) theories. There are signif-

icant discrepancies between the theoretical predictions and the experimental data. For all lattice depths

at low entropies, the measured peak fraction is lower than predicted and vice-versa at high entropies. The

disagreement at high entropies is perhaps the most surprising because most non-ideal behavior (e.g., heating

from the lattice beams) is expected to result in lower than predicted peak fraction. The question raised by

these data is whether the theory is incorrect, the peak fraction fit procedure is not a good representation of

condensate fraction, or that the assumption of adiabaticity if flawed.

The validity of each theory is a difficult question to assess, but an additional advantage of these plots is

that we can directly compare different theories against each other. This comparison provides further insight

into the regimes of validity for these theories. At the lowest lattice depth (s = 6) the theories all agree,

so we can be quite confident in the prediction. At s = 6 it is not surprising that the non-interacting and

HFBP theories are fairly consistent — the gas is far from the MI transition, and so we expect interactions

to have a small effect as demonstrated by the small shift between the HFBP and non-interacting curves.

It is surprising that the finite temperature extension to the SDMFT is fairly accurate, since this theory is
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s = 6 t = 5.08 × 10−2 U = 0.170 ν = 51.27
(N0/N)0 0.109(5) 0.212(4) 0.536(7) 0.816(8) 0.905(8)
S (kB/N) 2.98(2) 2.56(2) 1.44(2) 0.55(3) 0.28(2)
N (×103) 256(2) 224(2) 186(4) 245(3) 220(3)
(N0/N)latt 0.061(2) 0.16(1) 0.44(1) 0.68(2) 0.69(2)

s = 8 t = 3.08 × 10−2 U = 0.227 ν = 55.48
(N0/N)0 0.12(1) 0.21(1) 0.57(8) 0.80(1) 0.90(1)
S (kB/N) 2.95(4) 2.58(3) 1.33(3) 0.60(2) 0.28(4)
N (×103) 259(2) 215(2) 198(3) 239(3) 210(5)
(N0/N)latt 0.032(2) 0.108(5) 0.38(2) 0.54(2) 0.63(2)

s = 10 t = 1.92 × 10−2 U = 0.281 ν = 59.4
(N0/N)0 0.109(5) 0.22(1) 0.57(1) 0.81(1) 0.914(4)
S (kB/N) 2.98(2) 2.56(4) 1.34(2) 0.58(3) 0.25(1)
N (×103) 266(4) 207(4) 194(4) 245(7) 215(4)
(N0/N)latt 0.0023(4) 0.041(4) 0.25(2) 0.44(3) 0.43(3)

s = 12 t = 1.23 × 10−2 U = 0.332 ν = 63.07
(N0/N)0 0.11(1) 0.22(1) 0.53(1) 0.82(1) 0.91(1)
S (kB/N) 2.96(4) 2.54(4) 1.45(3) 0.55(2) 0.26(3)
N (×103) 258(4) 218(5) 183(4) 253(6) 220(4)
(N0/N)latt 0 0.0040(4) 0.110(4) 0.27(1) 0.28(2)

Table 7.1: Summary of the experimental lattice parameters, condensate fraction ((N0/N)0) and entropy
in the harmonic trap, number, and measured peak fraction. The experimental parameters s, t, and U are
given in ER units, and ν is in Hz (ω = 2π×ν) calculated from

√

f2
0 + 8sER(mw2(2π)2)−1 where w = 120µm

is the lattice beam waist and f0 = 35.76Hz is the bare trap frequency. The lattice depth s is measured
experimentally using Kapitza-Dirac diffraction, and t and U are calculated from s.
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Figure 7.10: High OD TOF images (averaged from 7 experimental runs), for each of the lattice depths
studied versus different initial entropies in the harmonic trap. The top line (and the labeled entropies)
correspond to the gas in the harmonic trap before loading into the lattice for the s = 6 data, however, the
starting conditions were almost identical for all lattice depths. At the lowest entropies, the peaks shrink and
the non-condensate grows due to quantum depletion as s increases. At even higher lattice depths than shown
here, the transition to the MI will drive the condensate fraction to zero. The MI first appears at s ≈ 13, but
the SF does not disappear across the entire trap until s & 16. At high entropy, the SF fraction decreases
due to thermal fluctuations. As expected, the decrease occurs faster at higher lattice depths because the
critical entropy (SC) is reduced by interactions — SC = 0 at the MI transition.
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Figure 7.11: (a) Summary of the peak fraction results versus condensate fraction in the harmonic trap and
corresponding entropy. The peak fraction is monotonically increasing with decreasing entropy (except at
one point). Also, the peak fraction is always monotonically increasing as lattice depth decreases at all values
of the entropy. (b) Comparing the peak fraction results at each lattice depth to theoretical predictions using
the non-interacting (§5.1), HFBP (§5.3.1), and SDMFT(§5.3.2) theories. In general, there is poor agreement
between the measured peak fraction and the predicted condensate fraction. This is discussed further in the
main text.
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designed to be exact in the T → 0, t/U → 0 and T → 0, U/t → 0 limits and it has no band structure. At

intermediate depths (s = 8 and s = 10) the two interacting theories essentially agree, but deviate appreciably

from the non-interacting theory. This discrepancy demonstrates the increasing role of interactions at higher

s. The agreement between the two interacting theories provides confidence in their accuracy. At s = 12

(proximate to the MI transition), all three theories are fairly divergent. It is expected that the HFBP theory

gives wrong results in this regime because it does not predict a MI transition. The SDMFT does predict

the SF-to-MI transition, but it is unclear whether the entropy predicted by this theory can be trusted. Ulti-

mately, the only calculation that is valid in all regimes is QMC. However, calculating entropy using QMC is

challenging, and so calculations have only been performed for the 2D BH model [263]. Indeed, in a similar

experiment (Ref. [67]), the lattice-gas entropy, used to calculate temperature by assuming adiabaticity, was

also calculated using mean-field theory3 and not QMC. Overall, incorrect theory is not the probable source

for the entire range of discrepancies we observe since these issues persist down to s = 6 where we have a

high degree of confidence in the theoretical assumptions.

To address whether the peak fraction fit procedure can measure condensate fraction, we need to exam-

ine separately the low and high entropy regions. At low entropy (i.e., high condensate fraction), there are

two main effects not accounted for by the peak fraction fit. The first is that atoms are scattered out of

the condensate because of collisions between atoms in different diffraction peaks at the beginning of the

expansion. The second is that condensate atoms are misidentified as non-condensate atoms. For example,

at high condensate fraction, deviations of the condensate peak from a TF profile (i.e., smoothing at the

edge of the condensate peak) is identified incorrectly as non-condensate and results in a measured peak

fraction lower than the condensate fraction. Unfortunately, both these effects are hard to incorporate into a

fitting procedure and will likely impede accurate thermometry at low entropies. However, they only cause

a proportionality error and do not prevent the peak fraction from identifying that a condensate exists. The

most significant issue is at high entropies where, if the fit is to blame, it is identifying a condensate when

none exists. There are suggestions that such an effect may be due to peaks that exist in the momentum

distribution of the normal phase of the BH model [60]. Still, visual analysis of Fig. 7.10 suggests that the

peaks present, particularly the first-order diffraction peaks, are truly bimodal features that are distinct from

the surrounding distribution and therefore associated with a condensate. To rule out an error such as this,

we must apply our peak fraction fit procedure on simulated BH data (i.e., from QMC). For example, in the

Ref. [67] experiment, simulated finite-temperature TOF distributions from QMC, taking into account finite

expansion time and imaging resolution, were accurately compared to experimental distributions. QMC is not

able to calculate the full interaction dynamics during the expansion, but Refs. [67,261] concluded that TOF

interactions are not important. The peak sizes and shapes in our experiment suggest otherwise (Fig. 7.10),

however, our central filling is approximately 3–4 atoms per site, while the data in Ref. [67] is unity filling.

The final possibility is that the assumption of adiabaticity is not true. A breakdown of adiabaticity

could play a role for the discrepancies we observe. For example, entropy generation from light scattering

(§C.4) would result in a lower than expected condensate fraction, consistent with our data at low entropies.

This was shown to be an important effect in the Ref. [67] experiment. Adiabaticity may also be violated if

the gas is loaded too quickly into the lattice (i.e., fast compared to the timescales for condensate fraction

evolution). At zero-temperature, the condensate fraction decreases for increasing lattice depths approaching

3The exact details of this calculation are not described in Ref. [67].
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Figure 7.12: Peak fraction at s = 6 versus the ramp time into the lattice. Data are taken at three different
values for the entropy per particle measured in the harmonic trap. Each point corresponds to a single high
OD/low OD image pair. The peak fraction is calculated by measuring the peak number (i.e., the numerator
of Eqn. 7.12) at a given ramp time and then dividing by the average number from all images at the same
initial entropy (the same procedure used in §6.2). The vertical grey line indicates the ramp time used for
the main data in this chapter. At longer ramp times the data continues to decrease monotonically to zero;
the S = 1.2kB/N data goes to zero for a ramp time of 2000ms and the S = 0.44kB/N data goes to zero for
a ramp time of 3000ms.
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the MI transition. These changes are caused by coherent interaction effects (i.e. number squeezing), which

have fast (1ms) timescales — this was the effect measured in §6.2. There are also slower timescales for global

many-body adiabaticity (e.g., mass transport) at T = 0. An experimental study ( [167]) concluded that ramp

times of 100ms are sufficiently adiabatic. At finite-temperatures, condensate fraction also changes because

of alterations to the density of states. For example, reversible condensation (in non-lattice experiments)

has been observed by changing the density of states using a “dimple trap” [72, 264, 265]. These changes in

condensate fraction require collisions out of the condensate [266], which occur at much slower timescales [265].

Timescales are one of the main differences between our experiment and the experiment in Ref. [67]. In

our experiment, we load the atoms into the lattice in 100ms (motivated by our own measurements similar

to Ref. [167]), but in Ref. [67] the loading time is 300ms. Assessing these loading rates is difficult because

we lack both theoretical and experimental studies of finite-temperature dynamics in the lattice. As a pre-

liminary investigation, we measure the peak fraction for s = 6 at different loading times for three different

entropies (Fig. 7.12). At all entropies there is a general trend towards lower peak fraction (and eventually

zero peak fraction) for longer ramp times. At high entropies this improves our agreement with theory, but at

low entropies it increases our discrepancy. The complication is that the data in Fig. 7.12 combines two pos-

sible effects: heating and thermalization. Separating out these two effects is non-trivial since simple heating

assumptions (i.e., light scattering) do not always quantitatively agree with experiment4 (e.g., in the Ref. [67]

experiment), and the relation between light scattering and heating in a many-body system is not straightfor-

ward [37]. Still, if the timescales associated with heating and thermalization are sufficiently different, then

theoretical input is not required because two separate timescales will be observed. Unfortunately, there is

no strong evidence for a separation of timescales in the data. However, the data in Fig. 7.12 illustrates an

important point — if we repeat our main experiment (i.e., the data in Fig. 7.11) with a different lattice load-

ing time, then we will get a different result. Understanding this issue is a major open question from this work.

Therefore, future extensions to this work are twofold. First, our theory collaborators in the group of

David Ceperley at the University of Illinois are in the process of calculating entropy curves from QMC

and generating simulated data to test our peak fraction fit. The other task is to analyze timescales in

the experiment. Part of this task is to experimental investigate these timescales in more detail than the

data presented in Fig. 7.12, but we need theoretical input. Most importantly, this will require developing

theoretical techniques to study finite-temperature dynamics of the BH model.

4We can calculate the estimated heating rate from the basic light scattering theory (§C.4). For s = 6 and λ = 812nm, the
rate of energy increase per particle is 33nK×kB/s (Eqn. C.67), corresponding to a scattering rate of 0.1s−1. During the lattice
loading ramp the average lattice intensity is a factor of two smaller than s = 6, so divide these numbers by two. If we assume a
heat capacity of 3kB (harmonically trapped thermal gas), then the HFPB theory (§5.3.1) predicts an approximate condensate
fraction decay during the ramp of 0.1/s. This is the right order of magnitude, however, we also measured the peak fraction
versus load time at λ = 833nm and observed essentially identical results, which supports our assertion that straightforward
light scattering mechanisms are insufficient to explain these results. Uncontrolled heating poses a problem because the system
does not satisfy ingredient 2 of quantum simulation (i.e., the intial state is not well-defined).
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Chapter 8

Developing Impurity Probes

Direct thermometry probes of the lattice gas (discussed in §7) have a distinct disadvantage — they must

invoke theory to relate measurable system properties (e.g., the 2D distribution after TOF expansion) to the

thermodynamic state. This type of measurement is problematic when we simulate theoretically unsolvable

models (i.e., the goal of quantum simulation). Instead, we can alternatively probe using a well-understood

auxiliary system (an impurity) in contact with the lattice gas (the primary). This type of probe is advan-

tageous when the impurity properties are related to the lattice gas properties in a straightforward manner.

Such an approach is common, for example, in condensed matter physics; a resistor in thermal contact with

the sample under study is often used to measure temperature. This is an optimal impurity probe — resis-

tance is simple to measure and usually has a linear temperature dependence.

For quantum simulators using ultracold atoms, an impurity can be a small sample of atoms in another

state or from a different species. This type of impurity probe was introduced in §4.1.7. Mutual interactions

imprint the properties of the primary system onto the impurity. The specific type of impurity is selected so

that its properties are easily measured using our standard set of probes (§4.1).

To create an impurity for our 87Rb Bose-Hubbard simulator (§3.1), we use a sample of atoms in the

|F = 1,mF = 0〉 state; the technical details of transferring atoms to this state are discussed in §3.1.1. The

primary system, which realizes the Bose-Hubbard model, is a degenerate gas of |1,−1〉 atoms in a lin-⊥-lin

spin-dependent lattice at λ = 790nm (§3.1.2, §C.2.3). The depth of the lin-⊥-lin lattice is proportional to

|mF |, and so the impurity experiences no lattice potential. The full Hamiltonian for our impurity/primary

system is given by Eqn. 2.99. In developing these impurity probes we are exploring the solutions of this model.

In this chapter we focus on developing two specific impurity probes. First, we investigate using the

impurity for thermometry (§8.1) by measuring the impurity temperature after it has been in contact with

the lattice gas. Ideally, this type of thermometry would provide a theory-free temperature measurement of

a Bose-Hubbard simulator. However, we observe a lack of thermalization between the two systems when

the primary is loaded into the lattice, and so we mainly investigate thermalization timescales between the

primary and impurity. For our second probe (§8.2), we measure the decay of the impurity center-of-mass

motion (dipole mode) through the primary. This decay rate may probe the excitation spectrum of the lattice

gas, however, further theoretical input is required.

167



8.1 Impurity Thermometer

In this work, we investigate using a harmonically trapped impurity to perform thermometry on a primary

gas simulating the Bose-Hubbard model in a spin-dependent lattice. First, we experimentally confirm that

the impurity and primary are overlapped using a combination of low resolution in-situ images and a novel

probing technique (§4.1.6). Next, we measure how the impurity temperature changes as the primary system

is loaded into the lattice. The impurity temperature is insensitive to the primary lattice depth, and so the two

systems are not in thermal contact. To investigate thermalization in more detail, we perform two separate

experiments using the lattice to input energy into the primary gas. We then measure the collisional energy

exchange with the impurity. The results of these measurements are consistent with thermalization decreasing

as the lattice depth increases. We compare these results to a Fermi’s golden rule calculation of the energy

exchange rate, which implies that thermalization decreases because of dispersion mismatch between the free

impurity and the lattice-bound primary. These results significantly constrain the applicability of an impurity

thermometer.

Thermometry is a natural application for an impurity probe since two interacting system will eventually

come into thermal equilibrium (irrespective of the interaction details). If we measure the impurity tempera-

ture then we know the temperature of the primary without theoretical input, which is desirable for quantum

simulation. Of course, this is only beneficial if the impurity has an easy to measure, well-known property

that depends on temperature and if the presence of the impurity does not affect the primary system. The

canonical example of an impurity thermometer is the standard glass thermometer. In this case, the impurity

is an extremely small perturbation to the primary system — the air. A suitable liquid is used, e.g., mercury

or alcohol, which has a linear density dependence with temperature.

In this work, we investigate an impurity thermometer based on a small sample of |1, 0〉 atoms that do

not experience a lattice potential. The impurity is co-trapped with a primary system of atoms in the |1,−1〉
state. The |1,−1〉 atoms experience a lattice potential and are well-described by the Bose-Hubbard model.

The impurity is a weakly interacting Bose gas (§2.2.2), and its temperature can be reliably measured from

the momentum distribution (§4.1.2) or condensate fraction (§4.1.4) after TOF. The question of whether the

impurity will affect the primary system is difficult to answer. In Ref. [4], we estimate the maximum impurity

size from SDMFT heat capacity calculations of the lattice gas. In the deep lattice limit, we estimate an

impurity-size upper bound of 500 atoms, which may cause issues with signal-to-noise ratio. Experimentally

investigating this effect is left as a future extension to this work.

The more immediate issue for thermometry is whether the system reaches thermal equilibrium during

typical experimental timescales. While interactions are necessary for thermalization, they are not sufficient

and, in fact, strong interactions could be a hindrance. Thermalization requires interactions which lead to

energy exchanging collisions between the impurity and the primary. These collisions may be inhibited at the

2-body level, e.g., if the scattering length is zero, or at the many-body level, e.g., by a gap in the excitation

spectrum. The question of thermalization in the impurity/primary system considered here has not been

addressed either experimentally or theoretically, so the main body of experimental work presented in this

section focuses on this topic.
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8.1.1 Overlap

For a system with local interactions, a necessary condition for thermalization is that the impurity and

primary must be physically overlapped in the trap. Although the two gases share the same trap minima,

they may be prone to phase separation. The gases phase separate when one component increases its potential

and/or kinetic energy to minimize the global interaction energy (e.g., by moving to the edge of the trap).

In the simplest case (two pure condensates in a harmonic trap) the stability condition is [125]

a2
12 < a11a22 (8.1)

where aij is the scattering length between states i and j (aii is the scattering length between atoms in the

same state). For the states used in this work, |1, 0〉 (impurity, state #1) and |1,−1〉 (primary, state #2),

the scattering lengths are a12 = 100.4a0, a11 = 100.9a0 and a22 = 100.4a0 (Table A.3), so Eqn. 8.1 predicts

a stable mixture. Therefore, the impurity and primary are overlapped at the start of the experiment before

the lattice is applied. However, there will be a new condition when the primary is loaded into the lattice.

In general, to determine this condition we need to solve the Hamiltonian given by Eqn. 2.99. A zero-order

approximation is to assume the lattice gas is in the atomic limit (§5.2) and the impurity is described by a

condensate wavefunction in the TF approximation Φ(x), where the number of condensate particles in a d3

volume centered on lattice site i is

Ñi = d3|Φ(xi)|2. (8.2)

The approximate form of Eqn. 2.99 is

H =
∑

i

Hi, (8.3)

Hi = ni
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. (8.4)

From the general condition for mixture stability given in [125], we can determine that stability in this case

requires

a2
12 < a11

πd

8

U

ER
. (8.5)

Since U/ER ∼ 0.1, then πd
8

U
ER

∼ 15nm for a 400nm lattice spacing, and the stability condition given by

Eqn. 8.5 is easily satisfied. However, it is still important to experimentally test the overlap. Also, in any

two-component experiment where the states have different magnetic moments, stray fields could lead to

separation.

Experimentally we investigate phase separation in two ways. In the first method, we take an image of

the atoms 200µs after releasing from the x-dipole trap (essentially an in-trap image). We can take an image

immediately after turning off the trap because there is a bias field on during the experiment, and so we do

not have to wait for the imaging bias field to turn on. If we have a mixture of the states |1, 0〉 and |1,−1〉
in the trap, we can selectively image either state by adjusting the repump procedure. To image |1,−1〉
we use an extremely short off-resonance repump pulse (§F.2). Since the repump has a stronger effect on

|1,−1〉 than |1, 0〉 and there are more |1,−1〉, the resulting image is predominantly of the |1,−1〉 atoms.

Alternately, to image just |1, 0〉, we do a microwave sweep to transfer from |1, 0〉 → |2, 0〉 and do not pulse
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Figure 8.1: In-situ separation between the |1, 0〉 and |1,−1〉 gas centers (each fit to a Gaussian) in the
yz plane. For the mixture (blue circles), the two gases are together in the same trap. The ratio of |1, 0〉
to |1,−1〉 atoms is approximately 1:3. For the “not mixed” data (red squares), the images are fit in two
subsequent experiments with all the atoms in either |1, 0〉 or |1,−1〉. Each data point is the average of four
runs. For reference, the FWHM of the gas is approximately 15–20µm.

the repump beam. These images are low resolution and can only determine if there is macroscopic phase

separation. We fit each gas to a Gaussian to determine the center, and in Fig. 8.1 we plot the difference

between the impurity and primary centers as a function of the lattice depth. There are no obvious signs of

phase separation and the separation between the components is less than the gas diameter.

Another possibility is that the impurity and primary do not overlap on microscopic length scales. Since

the primary density is concentrated in a narrow region around each lattice site, visualized in Fig. 2.10, one

might imagine that the impurity atoms become density modulated to avoid these regions. This is not likely

the case since we do not observe diffraction peaks in TOF images of the impurity. To rule this out more

definitively, we use the density probe described in §4.1.6. In this probe we use microwaves to transfer the

impurity atoms to the |2, 1〉 state, which experiences the same lattice potential as the primary in |1,−1〉1.
Since the Rabi rate depends on the impurity wavefunction overlap with the lattice wavefunction, this probes

the impurity at lattice length scales. Results for s = 12 are shown in Fig. 8.2, where we transfer |1, 0〉 atoms

to |2, 1〉 with and without |1,−1〉 atoms present. If there is significant phase separation on microscopic

length scales we expect to see a strong decrease in the transfer rate when the primary (|1,−1〉) atoms are

also in the trap. Since this is not the case, there is no strong evidence for microscopic phase separation.

8.1.2 Thermometry Test

Since we have confirmed that the impurity and primary are overlapped, the benchmark test of our proposed

impurity thermometer is to load the primary gas into the lattice and observe whether the impurity temper-

ature follows changes in the primary temperature. There is some difficulty associated with interpreting the

1|2, 1〉 and |1,−1〉 have the same magnetic moment.
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Figure 8.2: Using the microwave density probe (§4.1.6) to measure the impurity density in a s = 12 lattice
with and without |1,−1〉 atoms present. In both experiments there are approximately 1.5×104 |1, 0〉 atoms.
In the mixture there are 5.3(6)×104 |1,−1〉 atoms. We transfer atoms from |1, 0〉 to |2, 1〉 using a 80µs
microwave pulse at various microwave frequencies and plot the ratio transferred. For reference, the free-
space transition frequency (no lattice) is 6856.20MHz. We fit both curves to a Lorentzian. For the no mixture
data, the peak is 0.32(5), the FWHM is 12(3)kHz, and the center frequency is -47.9(6)kHz (referenced to
6856.18MHz). For the mixture data, the peak is 0.28(4), the FWHM is 11(3)kHz, and the center frequency
is -47.2(6)kHz. The data are consistent with no effect from the presence of the |1,−1〉 atoms.
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Figure 8.3: (a) Condensate fraction versus primary lattice depth s for an impurity (|1, 0〉) and primary
(|1,−1〉) mixture. Each point is an average over several experimental runs. For s =2–10 (circle and square
points), the lattice was snapped off and condensate fraction was fit using the procedure outlined in §7.3.1.
For s = 12 and s = 16 (triangle and diamond points) the lattice was bandmapped and the condensate
fraction was fit using the procedure from §4.1.4. Bandmapping is known to bias condensate fraction to
slightly higher values (§6.2), so these points are an upper bound. The lattice turn off does not affect
the impurity data, which was fit using the standard harmonic trap procedure in §4.1.4. The lattice gas
(primary) condensate fraction displays the characteristic decrease as the lattice depth increases towards the
MI transition (s = 12.9). However, the condensate fraction of the impurity is remarkably flat, which is
a sign that there is no inter-state thermalization. (b) Number versus lattice depth for the impurity and
primary. The number in the primary decreases towards larger lattice depths, which may be an indication
of spontaneous emission from the lattice beams or a bias in the fitting procedure. (c) Temperature versus
lattice depth calculated using the data in (a) and (b). For the impurity, the temperature is calculated using
the semi-ideal model (§2.2.2) and agrees well with the temperature obtained by fitting the high momentum
tails of the data from (a). For the primary, the temperature is calculated using the SDMFT (§5.3.2). The
geometric mean of the x-dipole trap used in this data is ν̄0 = 44.5Hz. The primary trap frequency increases
as ω = (ω2

0 + 4sER/mw2)0.5 where w = 120µm is the heuristic lattice beam waist (see §D).
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results since we lack an adequate independent method to measure the primary temperature. Experimen-

tally, we start with a mixture of |1, 0〉 impurity atoms and |1,−1〉 primary atoms. The primary atoms are

then loaded into the λ = 790nm spin-dependent lattice over 50ms. This loading time is half our loading

time for the λ = 812nm spin-independent lattice (e.g., §7.3) because the heating rate is higher in the spin-

dependent lattice (the lattice frequency is detuned closer to resonance). A ramp time of 50ms still allows us

to load a condensate into the lattice to the MI regime (s ∼ 16) and then ramp the lattice off and recover a

non-zero condensate fraction. After loading into the lattice, it is turned off suddenly (“snapped off”), releas-

ing the impurity and primary which are spatially separated during expansion using a magnetic field gradient.

The impurity condensate fraction is fit using the well-established technique for a harmonically trapped

gas discussed in §4.1.4. There is no standard technique for fitting the primary (lattice) condensate fraction,

so we use our procedure developed in this thesis and outlined in §7.3.1. The experimental condensate frac-

tions are shown in (a) of Fig. 8.3. The primary condensate fraction displays the characteristic monotonic

decrease with lattice depth and eventually vanishes at s = 16. For this lattice, the MI appears at s = 12.9

according to a mean-field calculation. On the other hand, the measured impurity condensate fraction is

essentially insensitive to the lattice depth with a mean value of 0.47(1).

The more relevant quantity to compare is temperature, although this is difficult because our ability to

convert lattice condensate fraction into temperature is inaccurate (§7.3.4). Indeed, our inability to measure

temperature from condensate fraction (§7.3) is one of the main motivations for an impurity thermometer.

However, the lattice temperature calculated using SDMFT (§5.3.2) should give as estimate for the primary

temperature. The impurity temperature is calculated from condensate fraction using the semi-ideal model

(§2.2.2) and has a mean value of 44(1)nK. The temperatures are shown in (b) of Fig. 8.3. The primary tem-

perature falls as the lattice depth increases since the tunneling energy scale decreases, however, the impurity

temperature clearly does not follow. This is strong evidence for lack of thermalization between these two

systems.

When there is slow thermalization the typical solution is to hold the system in contact for a longer

duration. However, there is another competing timescale in the problem since the lattice is continually

heating both the impurity and primary equally due to spontaneous emission (see §C.4.2). Therefore, after

enough time the two gases will come into steady-state with this heat source, and the impurity temperature

will not reflect the initial temperature of the primary. To overcome this problem, we require an experiment

that can measure thermalization on short timescales, i.e., we need a large temperature gradient. This is

not possible by adiabatically loading the primary into the lattice, since we are limited by adiabatic cooling

to ∆T = TImpurity. Also, a measurement technique in which the primary cools the impurity is not optimal

because this effect is canceled out by the heating from the lattice — it is difficult to discern whether a

null result is due to this cancellation or simply a lack of thermalization. Instead, we need to create a large

positive temperature difference between the two systems by selectively heating the primary using the lattice.

A schematic of this process is illustrated in Fig. 8.4 and two experimental realizations will be discussed in

the following sections.
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Figure 8.4: Using selective heating to measure thermalization. (a) Heat is applied to the primary (blue),
which starts at a similar temperature to the impurity (red). Both the impurity and primary experience
equal heating due to spontaneous emission from the lattice (§C.4.2). This fundamental lattice heat load
(Qlatt) is smaller than the applied heat load (Q). (b) After some time, the applied heat source is removed
and the primary is at a higher temperature T ′

p. Heat flows into the impurity, which can be measured. We
can measure the temperature increase of the impurity versus time or wait for a constant time after removing
the heat and determine the effect of changing Q.

8.1.3 Parametric Heating

To implement the type of heating experiment outlined in Fig. 8.4, we need a method to selectively heat

the primary (lattice) gas. Since the impurity is unaffected by the lattice, a time-dependent lattice sequence

is an obvious choice for selective heating. In this experiment we use parametric heating, which involves

modulating the lattice depth at the frequency corresponding to the energy difference between the ground

and second excited band (ω2,0 = E2,0/~). Atoms are excited to this band and then decay, thereby releasing

energy.

For parametric oscillation, the single-particle Hamiltonian is

H =
p2

2m
+ ER [s+ ∆s sin(ωt)] cos2(kx). (8.6)

When ∆s = 0, this is the lattice Hamiltonian which gives rise to the band structure as described in §2.3.

Rewriting Eqn. 8.6 in terms of the Bloch waves of quasimomentum q in 1D

H =
∑

n

∫

dq 2t

[

1 − cos

(

π
q

qB

)]

|qn〉〈qn| +

ER∆s sin(ωt)
∑

n,n′

∫ ∫

dq dq
′〈qn| cos2(kx)|q′

n′ 〉|qn〉〈q
′

n′ | (8.7)

where n is the band index. We can rewrite the Bloch waves in terms of plane waves (Eqn. 2.64)

|qn〉 = eiqx/~

∞
∑

j=−∞
bj;q,ne

i(2kj)x, (8.8)
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so the off-diagonal matrix element for the excitation is

2〈qn| cos2(kx)|q′

n′ 〉 = �����:0
〈qn|1|q

′

n′ 〉 + 〈qn| cos(2kx)|q′

n′ 〉, (8.9)

=
1

2
〈qn|ei2kx + e−i2kx|q′

n′ 〉, (8.10)

=
1

2

∑

j,j′

∫

dx ei(q−q′)x/~b∗j;q,nbj′;q′ ,n′

[

ei(2k)(j−j′−1)x + ei(2k)(j−j′+1)x
]

, (8.11)

=
δ(q − q′)

2

∑

j

(

b∗j;q,nbj+1;q′ ,n′ + b∗j;q,nbj−1;q′ ,n′

)

. (8.12)

Therefore, the excitation couples states with the same quasimomentum and parity. If we start in a single

q state of the ground band and oscillate close to ω2,0 (the bandgap to n = 2), then the problem is just

a two-level Rabi oscillation (§B.4). In the s → ∞ limit the resonance frequency is 2~ω (where ω is the

well frequency), and this reduces to parametric oscillation of a harmonic oscillator [77]. The single particle

picture is not complete because the atoms can decay from the excited band back to the ground band due to

interactions and inhomogeneities [79]. When an atom decays from a higher band, the excitation energy is

released into the system.

A schematic of the parametric oscillation experiment is shown in Fig. 8.5. First we create an impu-

rity/primary mixture2 and load the primary into the lattice over 50ms (as described in §8.1.2). Once the

atoms are in the lattice, we modulate one of the beams at the parametric resonance frequency for 2ms.

The resonance frequency is determined by a band structure calculation and confirmed at s = 4 as shown

in Fig. 8.5. After holding for 50ms, we release the atoms and measure the condensate fraction of the im-

purity as a function of the strength of the parametric oscillation ∆s, which changes the heat input into the

primary (Q in Fig. 8.4). The time in each experiment is fixed, so the heating from light scattering is held

constant. In Fig. 8.5 we show the condensate fraction of the impurity as a function of ∆s at s = 4, with and

without the primary present. In contrast to the loading data, energy is clearly exchanged from the primary

to the impurity. For large ∆s, the effect saturates, so for quantitative measurements we limit the oscillation

strength to the linear region determined by this figure (∆s ≤ 0.5ER). We measure for primary lattice depths

of s = 2, 4, 6, 8, and 11 using oscillation frequencies of 15.5, 18, 20.8, 24.5, and 31kHz respectively.

The full data for the impurity condensate fraction versus modulation depth is shown in (a) of Fig. 8.6

for s = 4 and s = 11. The decreasing condensate fraction is heuristically fit to a decaying exponential,

Ae−∆s/∆̄s . The fit parameter ∆̄s for each lattice depth is shown in (b) of Fig. 8.6. Higher values of ∆̄s

indicate a decreasing response of the impurity to the parametric drive. Therefore, the data trends towards

less heat transfer to the impurity at higher lattice depths.

These results suggest less thermalization as the lattice depth increases. However, there is considerable

uncertainty in the parametric heating process of the |1,−1〉 primary (lattice) gas. Sample bandmapping

images for the primary are shown in (a) of Fig. 8.6. At s = 4 the lattice gas is clearly heated by the parametric

oscillation as evidenced by the change in condensate fraction between ∆s = 0 and ∆s = 0.5. However, heating

in the s = 11 data is unclear because the band is essentially full even without the parametric oscillation.

2There are 70(5)×103 atoms in |1, 0〉 and 97(7)×103 atoms in |1,−1〉.
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(a)

(b)

(c)

Figure 8.5: (a) Lattice depth versus time for the parametric oscillation. The inset is zoomed into the
oscillation. After the parametric oscillation, the atoms are held for 50ms to allow energy to transfer from
the primary to the impurity. (b) Testing the modulation frequency with only |1,−1〉. First the lattice is
ramped on, then the depth is modulated, then the lattice is ramped off, and the |1,−1〉 condensate fraction
is measured. These data (at s = 4) show that the oscillation maximally heats at the predicted resonance of
18kHz. (c) The impurity condensate fraction versus modulation depth at s = 4. In the control experiment
(red squares) there are only impurity (|1, 0〉) atoms present. In a 40:60 mixture (blue circles), the modulation
heats the primary and this energy is transferred to the impurity, causing the condensate fraction to decrease.
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(a) (b)

s=4 s=11 s=4 s=11

Primary

Figure 8.6: (a) Impurity condensate fraction versus parametric oscillation modulation depth ∆s at s = 4 (blue
circles) and s = 11 (red squares). The data are fit to a heuristic exponential decay N0/N(∆s) = Ae−∆s/∆̄s

(solid curves). To visualize the effect of the parametric oscillation on the primary gas, we show images of the
|1,−1〉 primary atoms (after 0.5ms bandmapping) for ∆s = 0 and ∆s = 0.5 (at bottom). For viewability,
the two lattice depths have different color scalings. (b) The fit parameter ∆̄s versus lattice depth obtained
by fitting data similar to (a). This parameter characterizes the effect of the modulation on the impurity
condensate fraction.
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Therefore, energy can only go into trap degrees of freedom, which may not contribute to thermalization.

The excitation process is difficult to address theoretically since we need to understand the band decay rates

and how the energy is thermalized within the band; both topics are current areas of study. Ultimately, we

need an excitation process which is better understood. We address this issue in the next section.

8.1.4 Dephasing

1.5ms 1ms

Up/
Down
0.1ms

s=4

s=6 s=12

s=10

s=8

Primary
No Dephase

Primary
Dephase

2000 1000 0

400 200 0

No Dephase

Dephase

(a) (b)

thold

Figure 8.7: (a) Lattice ramp sequence for the dephasing experiment shown for s = 4. To dephase the
primary atoms the lattice is ramped up to 20ER and back three times in a row. The ramp is 0.1ms
to prevent band transitions. After the dephasing step, we hold the impurity and primary for thold. (b)
Primary (|1,−1〉) atoms with and without the dephasing step after bandmapping for different lattice depths
s =4–12 (thold = 0). For viewability the two sets of images are scaled differently. Each image is a 10-shot
average.

To make a quantitative comparison with theory, we need to understand the temperature gradient be-

tween the primary and impurity generated by the excitation process. Unfortunately, no reliable thermometry

methods are available for the lattice gas. However, another option is to heat the primary in such a way that

effectively T → ∞. In the lattice gas this is a physical limit because the lattice kinetic energy is bounded. In

a uniform single-band lattice, this limit corresponds to a homogeneously filled band; the maximum kinetic

energy is 12t. In the trapped gas, this limit is not physical because the trap degrees of freedom are not

bounded, so the gas would become infinitely large and dilute. Nevertheless, we can define a temperature

Tq associated with the quasimomentum DOFs, where Tq → ∞ corresponds to the filled band. In the ex-

perimental lattice we also have to contend with higher bands, so in reality the Tq → ∞ limit is actually

kBTq � t, kBTq < Eband.

Several methods exists to fill the band by dephasing individual lattice sites. Motivated by [241], we

ramp our lattice three times from the starting lattice depth s to 20ER. The gas at 20ER is strongly out of

equilibrium and a combination of interactions and the harmonic trap cause different phase windings at each

site. This procedure is shown schematically in (a) of Fig. 8.7. The change to the primary (|1,−1〉) lattice

gas due to the dephasing step is shown using bandmapped images in (b) of Fig. 8.7. Without the dephasing,

the gas is condensed at all lattice depths and the cloud is very dense near low quasimomentum (see change

178



in scale). With the dephasing, the quasimomentum distribution is nearly uniform and similar at each depth.

(a) (b)

(c)

Figure 8.8: Impurity (|1, 0〉) dephasing data for s = 4. (a) 10-shot average of temperature data versus hold
time (mean errors are shown). (b) Raw temperature data before averaging. Heating rate is determined by
fitting the data to a line (solid curve). (c) Temperature is not fit directly from the raw images. We fit
the measured distribution to a TF plus Bose-thermal momentum distribution (Eqn. 4.21) to measure the
condensate fraction and number shown in this plot. Temperature is then calculated from these using the
semi-ideal model discussed in §2.2.2 using a trap frequency of ν = 44.5Hz.

Once the dephasing step is performed, we hold the impurity/primary mixture in the lattice for thold and

then release. We measure the impurity condensate fraction and number from TOF images, repeating the

experiment 10 times at each hold time. Temperature is calculated from condensate fraction and number.

We fit T versus thold to a line to determine the heating rate. The hold time is short so that the temperature

increase is linear and the filled band approximation remains valid. Typical data for s = 4 are shown in

Fig. 8.8. Two sets of control data are also taken to rule out heating from other sources. In the first control

dataset we load the mixture into the lattice, but do not dephase the primary. In the other control we transfer

all the atoms to the impurity (|1, 0〉), keeping the impurity number the same as when there is a mixture.

Both control tests are consistent with zero heating (see (b),(c) of Fig. 8.9). The null result of the second

test is surprising since the heating rate from the lattice itself should be on the order of 0.1–1nK/ms. Likely,

atoms that spontaneously scatter off the lattice beams are lost since the impurity atoms are trapped in a

shallow trap. This is consistent with the atom loss rate observed. If this is the case, then energy from the
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lattice beams is not thermalized. This is a topic that warrants future study.

(a)

(b) (c) (d)

Figure 8.9: (a) Heating rate of the impurity after dephasing the primary as a function of the primary lattice
depth. The heating rate decreases as the lattice depth increases and is essentially zero at s = 12. (b),(c)
Control data for the heating rate. (b) Impurity heating rate when we load the mixture into the lattice
without the dephasing pulses outlined in Fig. 8.7. (c) Impurity heating rate with the lattice on, but without
primary atoms. The impurity number is similar between (b) and (c). (d) Impurity (|1, 0〉) and primary
(|1,−1〉) number for the dephasing experiment. Approximately 25% of the atoms are in the impurity. To
measure the primary number we fit the dephased images to a Gaussian.

The impurity heating rate versus lattice depth, when the primary is dephased, is shown in (a) of Fig. 8.9.

The trend of the data is consistent with the loading (§8.1.2) and parametric heating data (§8.1.3) — all

experiments imply that at higher lattice depths energy exchange (thermalization) between the impurity

and primary slows down. However, the data still does not constitute hard proof because of uncertainties

in the dephasing process. Questions remain about how the lattice gas thermalizes after the dephasing

procedure and whether the Tq → ∞ assumption is valid at higher lattice depths where interactions start

to fill the band at T = 0. In the next section (§8.1.5), we compare the experimental results to a zero-

order thermalization theory. These calculations corroborate the observed trend and identify that mismatch

between the dispersion curves can prevent thermalization. The mismatch between the lattice gas dispersion

(Eqn. 2.81) and the free condensate Bogoliubov dispersion suppresses energy exchanging collisions at higher
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lattice depths. Therefore, using a harmonically trapped impurity for thermometry of the strongly correlated

lattice is not feasible. This result also impacts proposed lattice gas cooling schemes that require heat to be

transferred to a bath of harmonically trapped atoms (e.g., [69]).

8.1.5 Thermalization Theory

The full calculation for the thermalization between the harmonically trapped impurity and the Bose-Hubbard

lattice gas requires a quantum Boltzmann approach (see, e.g., [124]), which is beyond the scope of this work.

Instead, we pursue a Fermi’s golden rule calculation which models weak collisions between a free impurity

condensate with Timp = 0 and a non-interacting lattice gas with Tlatt = ∞. Although straightforward, this

calculation includes an important effect that may be the basis of our experimental result — these two sys-

tems have functionally distinct dispersion curves whereas energy exchanging collisions must conserve total

momentum and energy. This condition limits thermalization between our impurity and the lattice gas.

To start, we consider the collision between a single lattice atom (in volume V ) with quasimomentum ~q1

and a free condensate of Nimp atoms at rest. The collision scatters the lattice particle into quasimomentum

~q2 and creates a Bogoliubov excitation in the condensate with momentum ~p. From Fermi’s golden rule, the

rate for this process is

Γ|~q1,0〉→|~q2,~p〉 =
2π

~
|〈~q2, ~p|Vint|~q1, 0〉|2 δ (E~q1

− E~q2
− ε~p) (8.13)

where E~q1
is the energy of a lattice particle with quasimomentum ~q1 (Eqn. 2.81), ε~p is the energy of a

Bogoliubov excitation3 with momentum ~p (see e.g., [125]), and Vint is the contact interaction given by

Eqn. 2.16 summing over all condensate particles. The delta function enforces energy conservation in the

collision process. The matrix element is4

|〈~q2, ~p|Vint|~q1, 0〉|2 = Nimp

(

4πa~2

mV

)2
p2

2mε(p)
δ~p+~q2,~q1

(8.14)

where the Kronecker delta imposes momentum conservation.

For thermalization, we are interested in the rate of energy transfer to the impurity due to all possible

collisions. Therefore, we need to multiply the collision rate by ε(~p) and integrate over all possible final states

~q2, ~p, average over initial states ~q1, and multiply by the number of lattice atoms Nlatt. Because Tlatt = ∞,

the initial ~q1 states are all equally occupied. Therefore, the total energy transfer to the impurity (per unit

volume) is

∂∆Ẽ

∂t
=

2π

~

(

4πa~2

m

)2
Nimp

V

Nlatt

V

∫

d~q1
∫

BZ
d~q

∫

d~p

(2π~)3
p2

2mε(~p)
ε(~p)

∫

d~q2 δ~p+~q2,~q1
δ (E~q1

− E~q2
− ε~p) , (8.15)

= 2
a2

m3
nimp

Ñ

d3

∫

d~q
∫

BZ
d~q

∫

d~p p2δ (E~q − E~q−~p − ε~p) (8.16)

3At low momentum ε~p = c~p where c is the speed of sound and at high momentum ε~p = p2/2m (free particle dispersion).
4The matrix element is related to the dynamic structure factor, see e.g., [267,268].

181



where the quasimomentum index is dropped in the final expression, nimp is the condensate density, and Ñ

is the number of lattice atoms per site5. For the trapped gas, we calculate the thermalization using LDA

and divide by the total number of condensate particles to get the energy transfer rate per particle

∂∆E

∂t
= 2

a2

m3

1
∫

d~r nimp(~r)

∫

d~r nimp(~r)
Ñ(~r)

d3

∫

d~q
∫

BZ
d~q

∫

d~p p2δ (E~q − E~q−~p − ε~p,~r) . (8.17)

Figure 8.10: The normalized energy transfer rate (Eqn. 8.18) compared to the experimentally measured
heating rate. A similar trend is observed — thermalization decreases as the lattice gas increases. The black,
dashed curve is calculated assuming energy conservation between the Bogoliubov impurity condensate and
a non-interacting lattice gas. The red, solid curve is calculated by replacing the energy conserving delta
function in Eqn. 8.17 with a Gaussian of width U . This corresponds to assuming energy conservation up to
the neglecting interaction energy in the lattice.

We numerically calculate Eqn. 8.17 for the experimental parameters in §8.1.4 and approximate the energy

conserving delta function as a Gaussian. In Fig. 8.10 we plot the normalized energy transfer rate (c0 is the

speed of sound at the center of the condensate)

d3

2a2mc30

∂∆E

∂t
, (8.18)

compared to the experimental data. We do not make a direct quantitative comparison to the data, but

instead analyze the trend as the lattice depth increases. Similar to the experimental data, the transfer of

energy decreases as the lattice depth decreases — collisions are suppressed as the dispersion curves start to

diverge. Two theoretical curves are shown corresponding to different approximations for the width of the

5Ñ is the number of lattice atoms per site averaged over the volume V, i.e., Ñ = Nlatt/(V/d
3). In the LDA, Ñ(r) is a

continuous variable that smoothly interpolates the discrete variable Ni (the number of lattice atoms in site i).
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Gaussian delta function. For the bottom curve, the width is extrapolated to zero (i.e., the true delta function

limit). This predicts a faster than observed decrease in thermalization. However, energy conservation should

be influenced by interactions in the lattice gas. In the top curve, the Gaussian width is given by the Hubbard

interaction energy U . This better follows the experimental trend and may indicate that lattice interactions

are modifying the energy spectrum at higher depths.

There are several possible extensions to this calculation that could be considered in the future. One of

these extensions is to recalculate for finite temperatures of the impurity condensate. Although we assume that

Timp = 0, experimentally the initial impurity condensate fraction is approximately 0.5. We also assume that

the density of the impurity and the lattice gas is fixed. However, the density will change as thermalization

proceeds. Also, the lattice density is slightly time-dependent due to the dephasing procedure; these changes

were neglected in the calculation. Ultimately, it will be important to calculate the dynamics of the dephasing

process to confirm that the lattice gas can be approximated as having a homogeneously filled band. Although

our original goal of thermometry was not realized, the experiment stimulated understanding thermalization

in this system and demonstrates the possibility to study out-of-equilibrium physics in the spin-dependent

lattice.

8.2 Impurity Transport Probe

In this work, we measure the decay rate of the center-of-mass (dipole mode) of the harmonically trapped

impurity co-trapped with a static Bose-Hubbard lattice gas (primary). To selectively apply an impulse to

the impurity we use a combination of magnetic and optical forces, which cancel for the primary (|1,−1〉).
After the impulse we wait a variable amount of time in the trap and then image the position after TOF. The

decay is measured by fitting the motion to a damped simple harmonic oscillator. We find that the decay rate

drops as the lattice depth for the primary atoms increases. This data demonstrates another method type of

impurity probe, although theory is required to definitely relate the decay rate to the lattice properties. We

conjecture that this probe could be used to measure the excitation spectrum of the lattice gas.

There are many possible applications of an impurity probe beyond thermometry. For example, if im-

purity/primary interactions are strongly repulsive then impurities can be used to probe defects and vortex

cores. Alternatively, if impurity/primary interactions are strongly attractive then impurities can probe the

primary flow patterns. If interactions are sufficiently weak, so that the impurity can penetrate into the

primary, impurities can be used as a scattering probe. The momentum distribution of the scattered impu-

rities is directly related to the static structure factor. This has been investigated with ultracold atoms in

1D [82]. Here we similarly send impurity atoms through the primary, except we measure the decay rate

of this transport (mass current). The advantage of this method is that the signal is unambiguous and the

initial conditions are well-controlled compared to the experiments in §8.1. However, relating the decay rate

to properties of the primary system requires theoretical input. Nevertheless, the decay rate can probe a

number of interesting properties. For example, in a classical gas this decay rate can be used to measure

the scattering length between different atomic species, such as 41K and 87Rb [84], and the damping rate

can be directly related to the thermalization rate [269]. In addition, the damping rate is a sensitive probe

of Fermi statistics [270], integrability in 1D systems [271], spin drag at unitarity [272], superfluidity [273],

Gross-Pitaevskii physics [85,274] and the structure factor [83].
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Figure 8.11: (a) Impurity (|1, 0〉) and primary (|1,−1〉) oscillations along ẑ (gravity) in the x-dipole trap
at ν = 64.0(4)Hz after the spin-dependent impulse. Data are from separate experiments with either all
atoms in |1, 0〉 or all atoms in |1,−1〉. The primary moves less than 0.25µm/ms, whereas the impurity shows
clear oscillations. The data is fit to a damped sinusoid, v(t) = v0e

−tγ sin(2πνt + φ), where γ =19(2)s−1

and v0 = 2.0(1)µm/ms. If the trap were purely harmonic γ should be zero, so the non-zero γ is due to
anharmonicities. (b) Residual movement from the spin-dependent kick along ŷ. The magnetic gradient (see
text) used to cancel the |1,−1〉 motion along ŷ induces some motion in the orthogonal direction.

The main technique developed for the impurity transport probe is the ability to apply a force to the

|1, 0〉 impurity atoms along one direction but not to the |1,−1〉 primary atoms. Applying a force to only the

|1,−1〉 atoms is trivial because |1, 0〉 has no magnetic moment and therefore does not experience a force from

magnetic field gradients. Therefore, to only apply a |1, 0〉 force, we need to use a combination of magnetic

and optical forces. Specifically, we shift the cross-dipole trap in the direction of gravity (ẑ in the coordinates

of Fig. 3.1), which imparts an equal force to both the impurity and the primary. Concurrently, we apply

a magnetic field gradient using our Stern-Gerlach coil, also along gravity, which only exerts a force on the

primary (|1,−1〉) atoms. The two forces cancel for the primary, so only the impurity experiences a force

and therefore starts to move. There is some residual motion for both the impurity and the primary in the

orthogonal direction (see Fig. 8.11). The impurity starts to move through the primary system and oscillates

due to the harmonic confinement. After a variable amount of time thold, we image the system after TOF and

measure the center-of-mass velocity of the impurity. The velocity curves for the primary and impurity, when

they are not mixed together, are shown in Fig. 8.11. There is some decay of the impurity even without the

primary present due to anharmonicities in the trapping potential. As described in the caption to Fig. 8.11,

we fit the velocity to a damped sinusoid and the baseline damping rate of the control data is 19.0(2)s−1.

We perform the impulse procedure when there is mixture of 60(3)×103 atoms in the primary and

23(2) × 103 atoms in the impurity with an initial impurity condensate fraction of approximately 0.5. If

we do the impulse without the spin-dependent lattice, this essentially reproduces past experiments investi-

gating out-of-phase condensate oscillations in a harmonic trap [85, 274]. Similar to those experiments, we

observe damping of the center-of-mass velocity. Since the impurity starts with condensate fraction less than
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(a) (b)

Figure 8.12: (a) Impurity velocity versus time for a mixture where the primary is loaded into a s = 6 lattice.
The data is fit to a damped sinusoid (solid curve). (b) Impurity damping rate versus the lattice depth for the
primary. The grey box is the baseline decay rate from the impurity oscillation without the primary atoms
present (Fig. 8.11). As the lattice depth increases the damping rate for decreases. Eventually at s = 14 the
rate is consistent with the background rate.

unity, we fit the images after TOF to a Gaussian plus BEC (TF profile) with separate centers. However,

the impurity motion induces large distortions in the cloud, which makes a clean fit difficult. In many cases,

the condensate itself is not described by a single peak. Nevertheless, the fits were almost always able to

ascertain a broad Gaussian feature and a dominant condensate peak; we fit the condensate velocity to a

damped sinusoid to measure the decay rate6. Next, we measure the impurity decay rate when the primary

is loaded into the lattice. The damping rate as a function of the primary lattice depth and velocity data for

s = 6 are displayed in Fig. 8.12. When the primary is in the lattice, the impurity decay rate initially grows,

and then, as the lattice depth increases, the damping rate decreases (at s = 14 the rate consistent with no

damping).

The work presented here establishes a new type of impurity probe of the lattice gas. However, interpreting

the decay rate data (Fig. 8.12) requires theoretical input — this is left as an extension to this work. Similar

to the thermalization data, decay of impurity velocity involves energy exchange between the lattice and

impurity. Excitations must be created in the lattice gas in order to damp the impurity motion. Therefore,

this technique may be useful as an excitation spectrum probe. This is consistent with the observed trend

in the data. At high lattice depths spectral weight is transferred in the lattice gas to a gapped mode (see,

e.g., [275]). This gap suppresses the creation of excitations in the lattice and as a result, the impurity motion

does not damp. Perhaps this hypothesis can be evaluated in a future theoretical collaboration.

6Analyzing the Gaussian motion may be an interesting future extension to this work.
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Chapter 9

Conclusions and Outlook

The work presented in this thesis centers on quantum simulation using ultracold atoms trapped in optical

lattices. In particular, we focused on developing a toolkit for experimental quantum simulation — tools (§3),

probes, and techniques (§4). Most of the experimental work in this thesis was performed on a 87Rb optical

lattice apparatus designed to simulate the Bose-Hubbard model (§3.1). This apparatus was essentially com-

plete before this thesis started [41], so my work centered on investigating the non-equilibrium Bose-Hubbard

model (§6), developing thermometry probes (§7, §8.1), and realizing a novel 3D spin-dependent lattice in

the strongly correlated regime (§8).

While the toolkit is not yet (and may never be) complete, my thesis work has significantly advanced it.

We have advanced our understanding of thermometry probes, added new tools (spin-dependent lattice and
40K single-site apparatus), and simulated the BH model out of equilibrium in unexplored regimes. Based

on our work, we develop several important conclusions:

The Bose-Hubbard model has intrinsic dissipation: In the transport experiment described in

§6, we demonstrated that the clean lattice gas has zero-temperature dissipation for mass transport consis-

tent with the generation of phase slips. This experiment highlights the capabilities of quantum simulation;

phase-slip dissipation is a dynamical, many-body effect that is impossible to simulate numerically, but it

was straightforward to study using our lattice gas (“quantum simulator”). These results are important for

understanding charge transport in superconducting materials thought to be described by the Bose-Hubbard

model. There are a number of unexplored subjects that could motivate future experiments. Possible topics

include the relationship between dimensionality and decay rate, measuring the decay rate dependence on

velocity and density, and understanding why the thermal gas is pinned to the lattice. Furthermore, to better

understand the dissipation process, an enhanced setup for direct imaging of phase slips is required. With

improved imaging, we could investigate the role of quantum turbulence in finite-temperature dissipation

(analogous to superfluid 4He).

Bandmapping fails as a thermometry probe: Bandmapping is a process whereby the lattice depth

is linearly ramped down adiabatically with respect to the bandgap and diabatically (fast) compared to all

other timescales to map q → p (quasimomentum to momentum). We investigated bandmapping as a probe

of the quasimomentum distribution in a single band. In theory, there are many advantages to bandmapping

(e.g., to increase signal-to-noise ratio), yet, from the results of two experiments, we conclude that it fails

as a probe. In the first experiment, we explored direct thermometry of a thermal lattice gas by fitting

bandmapped distributions (§7.1). We found that bandmapping does not reliably produce quasimomentum
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distributions because of band transitions at the edge of the Brillouin zone when kBT & t. Additionally,

the quasimomentum distribution is not sensitive at these temperatures because the kinetic energy band-

width is finite — additional thermal energy is accommodated as potential and interaction energy. In the

second experiment, we measured condensate fraction versus the bandmapping time (§6.2). We found that

bandmapping was not accurate because interactions redistribute atoms into the condensate.

In-situ thermometry probes are required for lattice gases: Loading a weakly interacting harmonic-

trapped gas into a lattice fundamentally alters the distribution of thermal energy — the lattice potential

and interactions break the symmetry between momentum and spatial degrees of freedom which is present

in the harmonic potential. In the harmonically trapped Bose-Hubbard model, the kinetic energy is finite,

but the trap energy is unbounded. Thermodynamic state information is therefore encoded primarily in

spatial properties, e.g., the in-trap size and on-site number fluctuations. We measured temperature using

the in-trap size (§7.2), which resulted in an order of magnitude improvement in accuracy compared with

bandmapping. In-situ probing is the motivation behind constructing the 40K single-site apparatus (§3.2).

The requirement for in-situ probes is evident from the known phases of the two-component Fermi-Hubbard

model: the Mott insulator and the antiferromagnet. Both are characterized by signatures in the density

distribution: the Mott insulator has reduced number fluctuations on each site, and the antiferromagnet has

spin correlations between next-nearest neighbors. In addition, direct in-situ thermometry probes will allow

us to assess lattice cooling schemes, which will enable studying low entropy phases (e.g., antiferromagnetism).

Finite-temperature dynamics are an open question: Finite-temperature dynamics are an im-

portant element for quantum simulation (§4.2.2). For example, in our BH transport experiment (§6.1),

measuring the decay rate versus temperature revealed the crossover to thermal activation of phase slips.

However, an incomplete understanding of finite-temperature dynamics is impeding quantum simulation be-

cause we are unable to properly assess one of our main assumptions — that a gas can be adiabatically

transferred into the lattice. We investigated adiabaticity by measuring the finite-temperature condensate

fraction after loading into the lattice (§7.3). We observed significant deviation from theoretical predictions,

and, notably, we observe a condensate in the lattice when, according to equilibrium thermodynamics, the

temperature should be too high. We also observed that the condensate fraction is strongly dependent on

the lattice ramp time — evidence that our adiabaticity assumption is incorrect. Finite-temperature also

caused discrepancies between zero-temperature theory and experiment when we investigated fast ramps of

the lattice depth (§6.2). Both these results indicate that we require theoretical techniques to study finite-

temperature dynamics of the Bose-Hubbard model. These techniques are also needed to assess in-lattice

cooling schemes.

3D spin-dependent lattices are a promising new quantum-simulation tool: In this thesis work,

we demonstrated the first 3D spin-dependent lattice in the strongly correlated regime (§3.1.2, §8). The depth

of this lattice is proportional to |gFmF |, so atoms with mF = 0 do not experience the lattice. This allows

us to simulate the physics of a Hubbard model immersed in a bath of free-particles, for example, to simulate

electron-phonon interactions in materials. Furthermore, as explored in this thesis, we can use the free-gas

as an impurity probe. The spin-dependent lattice will allow future investigation into proposals for cooling

based on emission into the free-particle bath from band decay in the lattice [70].
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A harmonically trapped impurity does not thermalize with the lattice gas: Thermometry is

an ideal application of the free-gas impurity using the spin-dependent lattice. Indeed, this was proposed as

part of this thesis work in Ref. [4]. However, from a series of experiments described in §8.1, we conclude that

there is insufficient thermalization between the impurity and lattice gas to enable effective thermometry.

Energy-exchanging collisions are suppressed due to a mismatch between the dispersion of the impurity and

lattice gas. There are a number of difficulties preventing a more quantitative understanding of the ther-

malization timescales, namely, fundamental heating due to spontaneous emission from the lattice beams.

Heating in the spin-dependent lattice is more severe because the lattice beams must be detuned close to

resonance (on the order of the fine-structure splitting). A promising future direction would be to explore

impurities in a conservative spin-dependent lattice, for example, based on patterned magnetic lattices [97].

Towards single-site imaging of 40K: A separate aspect of this work was building a new apparatus

capable of single-site imaging of a 2D gas of 40K in an optical lattice to simulate the Fermi-Hubbard model

(§3.2). We did not achieve this goal, but it was ambitious — no group has demonstrated single-site imaging

of ultracold fermions. Consequently, the success of this thesis work was to establish a foundation for the

experiment so that we are positioned to, in the near future, become the first group to perform single-site

imaging of fermions.

In the decade since the first experimental demonstration of the Mott insulator [33], quantum simulation

using ultracold atoms in optical lattices has greatly advanced as a field. However, there is still work to

be done for quantum simulation to reach its intended goal of implementing the feedback cycle illustrated

in Fig. 1.2 and motivating the search for new materials. The ultimate success of quantum simulation will

depend on our ability to attain low entropies, develop more sensitive probes, and to delve into unknown

regimes of quantum models.
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Appendix A

Properties of 87Rb and 40K

The quantum particles of our simulator are ultracold atoms. Conceptually, the simulator is insensitive to

the technical details of the atoms except for their statistics under exchange (i.e., whether they are bosons

or fermions). However, from an experimental perspective these details (e.g., mass, magnetic moment, and

transition energies) are important parameters required for implementation and analysis of results. In this

appendix we summarize relevant properties of the two atoms used in this thesis: 87Rb for our Bose-Hubbard

quantum simulator (§3.1) and 40K for our Fermi-Hubbard quantum simulator (§3.2)1. The physical proper-

ties of each are summarized in Table A.1, state and transition properties in §A.1, and collisional properties

in §A.2. All physical constants in this section are given by the 2010 CODATA values [5].

87Rb 40K Ref.
Atomic Number (Z) 37 19
Mass 86.90918053(1)u 39.9639985(2)u [276]

1.44316065(7) × 10−25 kg 6.6361769(2) × 10−26 kg
Abundance 27.83(2)% 0.0117(4)% [277]
Nuclear Spin (I) 3/2 4
Nuclear Magnetic Moment (µN ) h×−1392.824(1) Hz/Gauss h×247.02(5) Hz/Gauss [278]
Melting Point 36.31◦C 63.38◦C [192,193]
Vapor Pressure at T = 300K 3.7 × 10−7 Torr 1.8 × 10−8 Torr [190,279]
Vapor Pressure at T = 400K 1.0 × 10−3 Torr 1.2 × 10−4 Torr [190,279]
Half-life 49.2(2) Gy 1.25(1) Gy [280]

Table A.1: Physical Properties of 87Rb and 40K.

A.1 States

Atoms have a number of discrete quantum states corresponding to different arrangements of the constituent

electrons and orientation of the nuclear spin. For the atoms used here, 40K and 87Rb, the states are illus-

trated in order of increasing energy in Fig. A.1 and Fig. A.2 respectively. For alkali atoms, with a single

valence electron, the standard labeling convention for the atomic state is to first specify the state of the

outer electron, nLJ , where n is the principle quantum number, L is the orbital angular momentum of the

electron (L = S, P,D(0, 1, 2) . . .), S is the electron spin angular momentum (S = 1/2) and J is the total

187Rb is also used in the Fermi-Hubbard quantum simulator as a coolant.
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Figure A.1: 40K state diagram up to the 5P state, including hyperfine details for the states used in this
thesis 4S1/2, 4P3/2, and 5P3/2. Transition probabilities are from [192], except for 4P → 4S (from [281]),
and listed as A = 1/τ in units of µs−1. The total measured lifetime from all decay channels is 134(2)ns for
5P3/2 [282] and 137.6(1.3)ns for 5P1/2 [283]. Level energies E referenced from the 4S state are from [192]
and presented in both frequency units (as E/h) and wavelength units (in italics, as hc/E). The ionization
energy, from [192], is shown at the top. Hyperfine splittings ∆E referenced to the level energies are from [278]
for 4S1/2 and 5P3/2, from [192] for 4P3/2, and given in frequency units (as ∆E/h). The g-factor for each
hyperfine state is calculated using Eqn. A.8. Figure adapted from Ref. [36].
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Figure A.2: 87Rb state diagram up to the 5P state, including hyperfine details for the states used in this
thesis 5S1/2, and 5P3/2. Transition probabilities are from [284] and listed as A = 1/τ in units of µs−1.
Level energies E referenced from the 4S state are from [193] and presented in both frequency units (as
E/h) and wavelength units (in italics, as hc/E). The ionization energy, from [193], is shown at the top.
Hyperfine splittings ∆E referenced to the level energies are from [193] and given in frequency units (as
∆E/h). Uncertainties in the 4S hyperfine splittings are on the order of 1mHz. The g-factor for each
hyperfine state is calculated using Eqn. A.8.
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(orbital plus spin) electron angular momentum 2. Since S = 1/2, J takes on integer spaced values from

|L+ 1/2| to |L− 1/2|. In the ground state, where L = 0, J = S = 1/2. For each atom, the value of n corre-

sponding to the ground state depends on the number of states filled by the electrons in the closed shell, and

so n = 1−6 for H, Li, Na, K, Rb, and Cs. The electronic ground state of K is therefore 4S1/2 and Rb is 5S1/2.

The nucleus also has a total spin quantum number I (see Table A.1) and so each electronic state is split

into a further (2J + 1)(2I + 1) states depending on the direction of the electronic and nuclear spin angular

momenta. The eigenstates in the J manifold are determined by the following Hamiltonian [278]

H = Hhf + HZeeman, (A.1)

Hhf = A~I · ~J + B
3
2
~I · ~J(2~I · ~J + 1) − I(I + 1)J(J + 1)

2I(2I− 1)J(2J − 1)
, (A.2)

HZeeman = µBgJ
~J · ~B. (A.3)

Hhf is the hyperfine interaction Hamiltonian, where A characterizes the interaction of the electron with the

nuclear magnetic moment and B with the nuclear electric quadrupole moment (B = 0 when J = 1/2). Both

A and B are unique to each isotope and electronic state and are summarized for most alkali atomic states

in Ref. [278].

The Hamiltonian HZeeman describes the interaction of the electron spin with the magnetic field3 ~B

(Zeeman effect) where µB = e~/2m is the Bohr magneton (≈ h×1.4MHz/Gauss) and the gyromagnetic

factor is [285]

gJ =
3

2
+
S(S + 1) − L(L+ 1)

2J(J + 1)
. (A.4)

When ~B = 0, the Hamiltonian is diagonal in ~F2 where ~F = ~I+~J is the total nuclear plus electronic angular

momentum. In terms of K = F (F + 1) − J(J + 1) − I(I + 1), the energy is

E(K) =
A

2
K +

3

8
B K(K + 1)

I(2I− 1)J(2J − 1)
− B I(I + 1)J(J + 1)

2I(2I− 1)J(2J − 1)
. (A.5)

The splitting between F states is

EF − EF−1 = AF +
3

4
B F (1 + 2K − 2F )

I(2I− 1)J(2J − 1)
. (A.6)

Each F state has 2F + 1 degenerate states corresponding to the orientation of F . This degeneracy is lifted

when B 6= 0 by HZeeman . In weak magnetic fields HZeeman can be considered perturbatively, and

E(F,mF ) = E(F ) + µBgFmF | ~B| (A.7)

2All the non-bold numbers (L, J,S, I, F ) are the eigenvalues of the corresponding vector operator squared, e.g., ~L2|ψ〉 =

L(L+ 1)|ψ〉. J is the eigenvalue of the operator ~J2 where ~J = ~L + ~S.
3We ignore the nuclear Zeeman effect and assume gS = 2, gL = 1.
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where mF is the eigenvalue of the Fz operator (mF = {−F,−F + 1, . . . , F − 1, F}) and gF is [285]

gF =
F (F + 1) + J(J + 1) − I(I + 1)

2F (F + 1)
gJ . (A.8)

In the large | ~B| limit (Paschen-Back regime), mJ and mI are eigenstates,

EmJ ,mI
= AmJmI + B (3m2

J − J(J + 1))(3m2
I − I(I + 1))

4I(2I− 1)J(2J − 1)
+ µBgJmJ | ~B| (A.9)

For arbitrary magnetic fields the eigenstates are given by diagonalizing Eqn. A.1. The eigenvalues for the

ground states of 40K and 87Rb as a function of the magnetic field are shown in Fig. A.3.

For the alkali atom ground state, when J = 1/2 and L = 0, there are two hyperfine levels F = I ± 1/2

split by energy A(I + 1/2) and with gF = ±(2I + 1)−1. There is an analytic formula for the ground state

energies at all field strengths, the Breit-Rabi equation [286]

Em = −A
4
± A(2I + 1)

4

(

1 +
4m

2I + 1
ε+ ε2

)1/2

, (A.10)

ε =
2gJµB | ~B|
A(2I + 1)

, (A.11)

where m is the magnetization (mJ +mI). Expanding to second order in ε,

Em ≈ −A
4
± A(2I + 1)

4
+ gFmFµB | ~B| ± (gFµB)2

2A(2I + 1)

(

(2I + 1)2 − 4m2
F

)

B2. (A.12)

Some care has to be taken when applying the Breit-Rabi equation to get the correct sign and to make sure

the energy level is physical. The quadratic Zeeman shift from Eqn. A.12 is

Equad(mF ) = ± (gFµB)2

AFmax

(

F 2
max −m2

F

)

| ~B|2 (A.13)

for the F = I± 1/2 manifold where Fmax = I + 1/2.

For manipulation and imaging, the ground state is optically coupled to higher energy (excited) states.

A review of optical transitions is given in §B.6. For alkali atoms the D1 (nS1/2 → nP1/2) and D2 (nS1/2 →
nP3/2) transitions are the strongest (see Figs. A.1 and A.2), and so almost all optical interactions occur

along these two transitions. For scattering we exclusively use the D2 transition. In this thesis work, we also

explore transitions to the higher (n + 1)P3/2 level in 40K. The D2 transition properties for 87Rb and 40K,

and the 4S1/2 → 5P3/2 transition properties for 40K are summarized in Table A.2.

A.2 Collisional Properties

The pairwise interactions between atoms, discussed in §2.1.2, are parameterized by an s-wave scattering

length. For pairs of atoms in a particular species and state, the scattering length can be tuned using the

magnetic field via a Feshbach resonance. For a broad resonance (see definition in [111]), the scattering length
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Figure A.3: (a) 87Rb 5S1/2 and (b) 40K 4S1/2 hyperfine states versus magnetic field. For 87Rb A =
3.4173413054522(5)GHz [193] and for 40K A = −285.7308(24)MHz [278]. The graphs on the right side are
zoomed into the low-field regions of each hyperfine manifold. The zero-field energy has been subtracted off:
-4.2717Ghz for 87Rb F = 1, 2.563GHz for 87Rb F = 2, -571.46MHz for 40K F = 9/2, and 714.33MHz for
40K F = 7/2.
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87Rb: 5S1/2 → 5P3/2
40K: 4S1/2 → 4P3/2

40K: 4S1/2 → 5P3/2

Line Width Γ/2π 6.06(2)MHz 6.04(1) MHz 1.19(2) MHz
Branching Ratio Cycling Cycling 1/6.4(7)
Cross Section (σ) 0.2907 µm2 0.2807 µm2 0.010 µm2

Saturation Intensity (Isat) 1.669(4) mW/cm2 1.752(3) mW/cm2 23(2) mW/cm2

Steady-State Polarization 100% 100% 61(1)%
Depumping Probability 0% 0% 18(2)%
Doppler Temperature 145.5(4) µK 145.0(3) µK 23.5(7) µK

Table A.2: Properties of the D2 transition (nS1/2 → nP3/2) for 40K and 87Rb and the 4S1/2 → 5P3/2

transition of 40K. For the D2 transition, the properties are calculated using values from Figs. A.1 and A.2
using Eqn. B.77 for the cross-section, and Eqn. B.73 for Isat. Values for the 4S1/2 → 5P3/2 transition are
calculated using the procedure described in §E.1. Branching ratio is the ratio of decay events that occur
back along the transition versus all decay paths. Steady-state polarization is defined as the fraction of atoms
in the stretched ground state when weakly driving the transition with σ+ light and with infinite repump
light (if the transition is not closed). The depumping probability is the probability of decaying from the
excited F

′

= I+ 3/2 hyperfine level to the dark F = I− 1/2 ground hyperfine level (I is the nuclear spin).

tuning is well-described as

a(B) = abg

(

1 − ∆

B −B0

)

. (A.14)

The scattering lengths and Feshbach resonance properties (where applicable) are summarized in Table A.3

for the states used in this thesis.

State 1 State 2 a/abg (a0) B0 (G) ∆B Ref.
87Rb: |2, 2〉 87Rb: |2, 2〉 98.98(4) - - [287]
87Rb: |1,−1〉 87Rb: |1,−1〉 100.4(1) - - [287]
87Rb: |1,−1〉 87Rb: |1, 0〉 100.4(1) - - [287]
87Rb: |1, 0〉 87Rb: |1, 0〉 100.9(1) - - [287]
40K: |9/2, 9/2〉 40K: |9/2, 7/2〉 169.7(3) - - [288]
40K: |9/2,−9/2〉 40K: |9/2,−7/2〉 174 202.10(1) 7.8(6) [289]
40K: |9/2,−9/2〉 40K: |9/2,−5/2〉 174 224.21(5) 9.7(6) [290]
40K: |9/2, 9/2〉 87Rb: |2, 2〉 -214(4) - - [291]
40K: |9/2,−9/2〉 87Rb: |1, 1〉 -189 546.6(2) -3.1 [291]

Table A.3: Zero-field scattering lengths (a) for the 40K and 87Rb states used in this thesis. For states with
a Feshbach resonance, we list the parameters necessary to calculate the scattering length near the resonance
using Eqn. A.14. The scattering lengths are given in units of the Bohr radius (a0=52.917721092(17)pm).

The simplified scattering picture presented in §2.1.2 is correct in most situations, however, there are a

few relevant deviations to discuss. At high temperatures we must also consider the p-wave component of the

interaction, particularly for identical fermions since s-wave collisions are forbidden. The p-wave cross-section

(σp) for 40K atoms in |9/2, 9/2〉 was measured in Ref. [202] and peaks to σp ≈ 2× 10−11cm2 at T = 100µK,

and then starts to decrease at lower temperatures due to the centrifugal barrier. At low temperatures the

cross-section scales as σp ∝ T 2. Five collisions are required for p-wave thermalization (three are required for

s-wave thermalization).
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For s-wave collisions at high energy there are added corrections to the cross-section (Eqn. 2.11) that

depend on the details of the interaction potential. One correction is the “effective range” (r0), and the

resulting cross-section is

σ =
4πa2

k2a2 +
(

1 − 1
2r0ak

2
) . (A.15)

For 40K-87Rb scattering the effective range was measured to be 381(6)a0 [292]. For negative scattering

lengths there is also a Ramsauer-Townsend minimum caused by the cancellation of phase shifts at a certain

value of k. This minimum occurs at T ≈ 100–200µK for 40K-87Rb collisions [292].

Although we assume the interactions are diagonal in the state (i.e., Eqn. 2.16), this is only approximately

true. The free space eigenstates (|F1,mF1
〉, |F2,mF2

〉) are mixed in the interaction region and the eigenstates

are the total spin (S = S1+S2) singlet (S = 0) and triplet (S = 1). However, the total hyperfine (F = F1+F2)

magnitude and projection are eigenstates in all regions [293], so the potential can be written as [98]

V(r1, r2) = δ(r1 − r2)

2f
∑

F=0

4π~
2

M
aF PF (A.16)

where PF is the projection operator onto the total F subspace. By symmetry, aF 6= 0 for F even (odd) for

bosons (fermions). In a given hyperfine manifold the set of aF need to be calculated from the full scattering

potentials (for 87Rb F = 1, aF=2 = 100.4(1)a0 and aF=0 = 101.8(2)a0 [287]). Using the set of aF values we

can calculate the scattering length between two F,mF states. For example, the collision between two |1, 0〉
particles is described by the potential

V|1, 0〉|1, 0〉 = δ(r1 − r2)

2f
∑

F=0

4π~
2

M
aF PF |1, 0〉|1, 0〉. (A.17)

Expanding into the total F subspace

|F1 = 1,mF1
= 0〉|1, 0〉 =

√

2

3
|F = 2,mF = 0〉 −

√

1

3
|0, 0〉, (A.18)

and back

|F = 2,mF = 0〉 =

√

2

3
|F1 = 1,mF1

= 0〉|1, 0〉 +
1√
6

(|1, 1〉|1,−1〉 + |1,−1〉|1, 1〉) , (A.19)

|F = 0,mF = 0〉 = − 1√
3
|F1 = 1,mF1

= 0〉|1, 0〉 +
1√
3

(|1, 1〉|1,−1〉 + |1,−1〉|1, 1〉) , (A.20)

then

V|1, 0〉|1, 0〉 = δ(r1 − r2)
4π~

2

M

(

2aF=2 + aF=0

3
|1, 0〉|1, 0〉 +

aF=2 − aF=0

3
(|1, 1〉|1,−1〉 + |1,−1〉|1, 1〉)

)

.

(A.21)

For non-spin changing collisions the effective scattering length of two |1, 0〉 particles is (2aF=2 + aF=0)/3.

However, this full potential illustrates that we can also have spin changing collisions from |1, 0〉|1, 0〉 →
|1, 1〉|1,−1〉. This process can be tuned out of resonance using a sufficiently strong magnetic field due to

the quadratic Zeeman shift (Eqn. A.13). The spin-changing process is minor for 87Rb because all the states
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have essentially the same scattering length (aF=2 ≈ aF=0).
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Appendix B

Atoms Interacting with
Electromagnetic Fields

To interact with the atoms we utilize electromagnetic fields that vary in frequency from DC to 1015 Hz. For

example, we employ DC magnetic fields for trapping, RF magnetic fields (0-100MHz) to generate transitions

between mF states, microwave magnetic fields (1-10GHz) to transition between F manifolds and light (high

frequency electric fields, λ = c/f =400nm-10µm) for trapping, cooling, and imaging.

Atom-field interactions are treated in numerous references, however, all relevant topics are spread through-

out the literature in different forms and notations that need to be adapted to our particular conventions and

experimental situation. Therefore, in this appendix we summarize key topics regarding the atom-field inter-

action which are used throughout this thesis and we present formulas in a convenient form for experimental

calculation.

B.1 Interaction Hamiltonian

The atom-field interaction Hamiltonian can be greatly simplified by taking the lowest order terms of a

multipole expansion (magnetic-dipole and electric-dipole) [294,295], so that

Hint = −~d · ~E − ~µ · ~B (B.1)

where ~d = −e~r and ~µ = −µBgJ
~J for the alkali atoms considered in this thesis1. This “dipole approximation”

is excellent since the wavelength of the fields we consider are always large compared to the atomic size. We

only need to consider higher order terms when a selection rule forbids dipole coupling between a particular

set of states (a “dipole-forbidden” transition). However, this situation does not arise for the states used in

this thesis.

The atom-field interaction Hamiltonian (Eqn. B.1) operates on the set of atomic states discussed in

§A.1, and so we need to add Eqn. B.1 to the atomic interaction Hamiltonian Eqn. A.2. Since Eqn. A.2

is spherically symmetric, the direction in space of the atomic states is ambiguous. An explicit method is

to define a constant reference frame, but this becomes unwieldy in the presence of inhomogeneous fields.

Instead, we assume that there is a magnetic field present at all times that defines a quantization axis (taken

to be along ẑ), which is the case in our experiments. Even when the field is inhomogeneous, the z projection

is preserved as the atom moves through space (see discussion in §B.2).

1See §A.1 for the definition of gJ , µB and ~J. The operator, ~r, is the position operator of the outer valence electron with
respect to the nucleus.
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B.2 DC Magnetic Fields

The eigenstates and energies in a uniform DC magnetic field due to the magnetic-dipole (Zeeman) interaction

are detailed in §A.1. These energies are plotted versus |B| in Fig. A.3 for 40K and 87Rb. At low fields, the

magnetic dipole interaction is a perturbation to the hyperfine interaction (Eqn. A.2) and using the projection

theorem [112] we can rewrite it as

HZeeman = µBgF
~F · ~B (B.2)

where gF is given by Eqn. A.8. As demonstrated by Fig. A.3, Eqn. B.2 lifts the (2F+1) degeneracy in each

F manifold into states |F,mF 〉 where mF is the projection onto the field. The energy of each |F,mF 〉 state

is

EF,mF
= µBgFmF | ~B|. (B.3)

This interaction is important because it results in distinct, robust states for the experiment. Indeed, we do

all calculations in the |F,mF 〉 basis and assume that the state populations are well-defined. Furthermore,

since the Zeeman energy shift between the states is almost always the largest term in Eqn. B.1, we can apply

all other interactions perturbatively.

When the DC magnetic fields are inhomogeneous, the Zeeman energy shift (Eqn. B.3) is also inhomoge-

neous

EF,mF
(x) = µBgFmF | ~B(x)|. (B.4)

Atoms with gFmF > 0 are trapped in magnetic fields with a local minima in |B(x)| (local maxima are not

possible). A few trapping field configurations are discussed in §2.1.1. The form of Eqn. B.4 assumes that the

local projection is preserved as the atoms move through the inhomogeneous field even as the field changes

direction. For cold atoms this is a good assumption under most conditions (see below). Eqn. B.4 illustrates

why defining the atomic states with respect to a fixed reference frame is overly complicated; adiabatically

the system would be in a spatially-dependent superposition of states. When these states are defined with

respect to the local field the system remains in a single state.

To define a bounds on the validity of Eqn. B.4 (i.e., the conditions under which the system can follow

the local field direction), consider an atom at x = 0, t = 0 traveling along x with velocity v in the field

~B = [0, αx,B0] . (B.5)

The time-dependent interaction is

HZeeman(t) = µBgF (FzB0 + Fyαvt). (B.6)

The adiabaticity criteria for a general time-dependent Hamiltonian is [296]

∣

∣

∣

∣

∣

∣

max
(

〈j|∂H/∂t|i〉
~ωij

)

min(ωij)

∣

∣

∣

∣

∣

∣

2

� 1 (B.7)

where i, j are the eigenstates without the time-dependent coupling and ~ωij is the energy difference between
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these states. For the Hamiltonian given by Eqn. B.6, i and j are the states |F, F 〉 and |F, F − 1〉 and

~ωij = µBgFB0. These states are coupled by the Fy operator as

〈F, F − 1|Fy|F, F 〉 =
√

F/2. (B.8)

Therefore, the adiabaticity criteria (close to x = 0) becomes

∣

∣

∣

∣

α

B0

~v

µBgFB0

√

F/2

∣

∣

∣

∣

2

� 1. (B.9)

Since α/B0 = ∂θ/∂x (the change in the field direction), more generally

∣

∣

∣

∣

∂θ

∂(~x · v̂)
~|~v|

µBgFB0

√

F/2

∣

∣

∣

∣

2

� 1. (B.10)

The adiabaticity criterion from Eqn. B.10 indicates that Eqn. B.4 breaks down when the atoms is traveling

quickly in regions of small field magnitude. This is a common issue for the quadrupole trapping field, which

fully goes to zero at the center of the trap. Fast atoms in the center of this trap do not satisfy Eqn. B.10

and can go from a trapped projection gFmF > 0, to an untrapped projection gFmF < 0, also known as a

“spin-flip”. When atoms spin-flip they are lost from the trap, a process referred to as Majorana loss. The

Majorana loss rate is an important factor when utilizing quadrupole traps and is given by the formula [103]2,

ΓMajorana = 1.85
~

m

(

µBgFmFBgrad

kBT

)2

(B.11)

where Bgrad is the gradient along the strong axis of the quadrupole field and 1.85 is an empirical factor.

B.3 Oscillating Fields

When the field is oscillating at frequency ω the interaction Hamiltonian gives rise to a number of interesting

phenomena. However, solving Eqn. B.1 is more involved because of the time-dependence of the oscillating

field. Fortunately, there are several approaches that simplify the problem, each with different advantages

and disadvantages. The approach we take here is to quantize the fields and work in the dressed-state pic-

ture. Although this approach is conceptually more involved, in practice it simplifies the calculation because

the time-dependence is naturally included in the formalism. Furthermore, field-quantization is necessary to

describe all possible phenomena (e.g., spontaneous decay).

To quantize the fields we expand into photon operators in the Schrodinger representation [297]

~E(~X) → i
∑

k

∑

ε̂

Ak

(

ε̂ak,ε̂e
ik~X − ε̂∗a†

k,ε̂e
−ik~X

)

, (B.12)

~B(~X) → i

c

∑

k

∑

ε̂

Ak

(

(k̂ × ε̂)ak,ε̂e
ik~X − (k̂ × ε̂∗)a†

k,ε̂e
−ik~X

)

, (B.13)

2This formula was original postulated for atoms in the F = 1 manifold, which only has one trapped state, so any violation
of Eqn. B.10 leads to loss. Applying this formula to high F states may not be accurate and will not reflect any changes in mF

which still result in a trapped state.
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where Ak =
√

~ωk

2ε0V is the field mode volume (V is the volume of space) and a†
k,ε̂ creates a “photon” with

wavevector k and polarization ε̂. In this formalism, we include the field energy in the full Hamiltonian, and

so, assuming for simplicity two atomic states (|g〉 and |e〉),

H =
~P2

2m
+ V (~X) + ~ω0b

†b +
∑

k

∑

ε̂

~ωka
†
k,ε̂ak,ε̂ +

i
∑

k

∑

ε̂

Ak

(

ε̂ak,ε̂e
ik~X − ε̂∗a†

k,ε̂e
−ik~X

)(

〈e|~D|g〉b† + 〈g|~D|e〉b
)

(B.14)

where b = |g〉〈e| is the lowering operator for the atomic states. For a particular field, only one of the two

terms from Eqn. B.1 dominates, so we have written down a general one-term form of the interaction with a

generic dipole operator, ~D. If Eqn. B.14 describes an electric-dipole interaction then ~D = −~d = e~x and a†
k,ε̂

creates a photon with electric-field polarization ε̂. On the other hand, if Eqn. B.14 describes a magnetic-

dipole interaction then ~D = −~µ = µBgJ

c
~J and a†

k,ε̂ creates a photon with magnetic-field polarization ε̂.

For completeness we include the atomic center-of-mass operators ~P and ~X, which couple to the field via

the phase term. These terms describe the photon imparting momentum to the atom during an absorption

or emission process. We often neglect these terms and consider ~X and ~P as classical variables since the

timescales for atomic motion are considerably slower than the atomic state timescales.

The fields that we generate in the experiment are predominantly classical fields with peak field amplitude

|E0|(|B0|) and phase φ (i.e., coherent states). Coherent states are written in terms of the photon number

states (Fock states) created by operator a†
k as [298]

∣

∣|E0|eiφ
〉

= e−N̄/2
∞
∑

n=0

N̄n/2eiφn

√
n!

|nω,k〉 (B.15)

where N̄ is the mean photon number related to |E0|(|B0|) as

|E0|2 = N̄
~ωk

ε0V
, (B.16)

|B0|2 = N̄
~ωk

ε0c2V
. (B.17)

A common experimental measure of the field amplitude is the intensity

I =
~ωcN̄

V
. (B.18)

In Eqn. B.14 the interaction couples Fock states |nω〉 → |nω ± 1〉, so a full calculation with the coherent

state requires keeping an infinite number of terms. For simplicity, we calculate with the Fock state pair

{|N̄ω〉, |N̄ω − 1〉} and assume that the answer is equivalent to the full coherent state result. This is a good

approximation when N̄ � 1. However, the full coherent field is important when calculating the expectation

value of the dipole operator (see §B.4.1).
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The interaction part of Eqn. B.14 expands into four terms

ak,ε̂b
†, a†

k,ε̂b, ak,ε̂b, a†
k,ε̂b

† . (B.19)

The first (second) term couples atomic state from |g〉 → |e〉 (|e〉 → |g〉) and removes (adds) a photon to

the field. For the last two terms, the opposite process occurs. The energy cost to go from |g〉 → |e〉 is

~ω0 and the energy to add a photon to the field is ~ω. When the detuning ∆ = ω − ω0 is small compared

to ω0 (|∆| � ω0), the first two terms (co-rotating terms) are near resonance, whereas the last two terms

(counter-rotating terms) are far from resonance. Therefore, for small detuning we apply the rotating wave

approximation (RWA) and keep only these first two terms. The RWA Hamiltonian for a single field mode is

(α = e−ik~X〈g|~D · ε̂∗|e〉)

H =
~P2

2m
+ V (~X) + ~ω0|e〉〈e| + ~ωka

†
k,ε̂ak,ε̂ +

iAk

(

α∗ak,ε̂b
† − αa†

k,ε̂b
)

. (B.20)

B.3.1 Coupling Matrix Element for Alkali Atoms

The atom-field interaction causes transitions between atomic states because of the off-diagonal matrix ele-

ments

〈g|~D · ε̂∗|e〉 (B.21)

where ~D is a vector operator and ε̂ is the field polarization. By writing ε̂ in a specific basis we can determine if

the coupling is non-zero based on a set of criteria known as selection rules. To start we write the polarization

in the atomic basis

σ̂+ =

(

x̂+ iŷ√
2

)

,

σ̂− =

(

x̂− iŷ√
2

)

,

π̂ = ẑ (B.22)

where x̂, ŷ, and ẑ are defined according to the local quantization axis. The operators obtained by projecting
~D onto this basis σ̂+ · ~D = D

(1)
1 , σ̂− · ~D = D

(1)
−1, and σ̂+ · ~D = D

(1)
0 are spherical tensor operators. These

are a convenient representation so that we can apply the Wigner-Eckert theorem [112]

〈nFmF |D(1)
q |n′F ′m′

F 〉 = i(−1)Fmax−mF

(

F 1 F ′

−mF q m′
F

)

〈nF ||D(1)||n′F ′〉 (B.23)

using the alkali notation described in §A.1 and q = −1, 1, 0 for σ+, σ−, π respectively3. The term in the

brackets (. . .) is the Wigner 3J symbol and is non-zero only if

mF −m′
F = q, (B.24)

F ′ = F, F ± 1. (B.25)

3Because of the form of Eqn. B.21, the q in Eqn. B.23 refers to the complex conjugate of the driving polarization.
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These are the selection rules of the transition. The final term 〈nF ||D(1)||n′F ′〉 is the reduced matrix element,

and it has no angular dependence. Since F = I + J we can further reduce the matrix element to

〈nFJI||D(k)|||n′F ′J ′I〉 = (−1)J+I+Fmin+1
√

(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}

〈nJI||D(k)||n′J ′I〉 (B.26)

where {. . .} is the Wigner 6J symbol.

For magnetic-dipole transitions the reduced operator is just the identity, so the reduced matrix element

is δn,n′δJ,J ′ . Therefore, the total matrix element is

〈F,mF |J(1)
q |F ′m′

F 〉 = i(−1)Fmax−mF +J+I+Fmin+1
√

(2F + 1)(2F ′ + 1)

(

F 1 F ′

−mF q m′
F

){

J F I

F ′ J 1

}

.

(B.27)

For the electric-dipole transition the matrix element is

〈n, J, F,mF |d(1)
q |n′, J ′, F ′m′

F 〉 = i(−1)Fmax−mF +J+I+Fmin+1
√

(2F + 1)(2F ′ + 1)

(

F 1 F ′

−mF q m′
F

)

. . .

{

J F I

F ′ J ′ 1

}

〈nJ ||d||n′J ′〉. (B.28)

We are left with a single quantity to calculate — the reduced dipole matrix element. This is given by the

decay rate from |n, J〉 → |n′, J ′〉 summed over all possible F ′,m′
F final states (see Eqn. B.101)

Γ =
ω3

0

3~c3πε0

|〈nJ ||d||n′J ′〉|2
2J + 1

. (B.29)

The factor of (2J+1)−1 is conventional and J here always refers to the higher energy state. Using Eqn. B.29

and Eqn. B.28 we can calculate any dipole matrix element using the Wigner symbols and a quantity that

can be looked up in the NIST tables (note: Aij = Γ).

Certain pairs of states have the property that they are a closed decay pair because the excited state

can only decay to the lower energy state. Together this pair of states forms a cycling transition. For alkali

atoms, a cycling transition occurs between |i〉 = |n, 1/2, F̃ , F̃ 〉 and |f〉 = |n, 3/2, F̃ +1, F̃ +1〉 where n is the

ground state principle quantum number and F̃ = I+ 1/2. The matrix element between these states has the

form

|〈i|d(1)
−1|f〉|2 = (2F + 1)(2F + 3)

∣

∣

∣

∣

∣

(

F 1 F + 1

−F −1 F + 1

)∣

∣

∣

∣

∣

2

. . .

∣

∣

∣

∣

∣

{

1/2 F I

F + 1 3/2 1

}∣

∣

∣

∣

∣

2

||d||2. (B.30)
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This can be simplified using the following identities

∣

∣

∣

∣

∣

(

F 1 F + 1

−F −1 F + 1

)∣

∣

∣

∣

∣

2

=
1

2F + 3
,

∣

∣

∣

∣

∣

{

1/2 F F − 1/2

F + 1 3/2 1

}∣

∣

∣

∣

∣

2

=
1

4(2F + 1)
. (B.31)

Applying these identities to Eqn. B.30 we obtain

|〈i|d(1)
−1|f〉|2 = ((((((((

(2F + 1)(2F + 3)
1

����2F + 3

1

�����4(2F + 1)
(�4Γ)

3~c3πε0
ω3

0

,

=
3~c3πε0Γ

ω3
0

. (B.32)

This result is a corollary of the fact that the decay rate from any excited state to all possible ground states

is the same.

B.4 Rabi Oscillations and Landau-Zener Transitions

To solve Eqn. B.14 for transitions between atomic states when a near resonance field of frequency ω (with

mean photon number N) is applied, we use the RWA Hamiltonian. The RWA Hamiltonian (Eqn. B.20) is

block diagonal in the basis |g,Nk,ε〉, |e,Nk,ε−1〉 (ignoring center-of-mass terms), so we write it out in matrix

form and drop the constant ~ωN energy offset

H =

[

0 −iαAk

√
N

iα∗Ak

√
N −~(ω − ω0)

]

. (B.33)

We solve for the wavefunction evolution |Ψ(t)〉 = ξg(t)|g,N〉+ξe(t)|e,N−1〉 using the Schrödinger equation.

Instead of solving for ξg and ξe directly, a convenient approach is to solve for the density matrix ρ, which

for pure state evolution is related to |Ψ〉 by ρ = |Ψ〉〈Ψ|. The density matrix is more general than the

wavefunction because it can also describe the evolution of statistical ensembles. This will be required when

we include non-Hermitian evolution of the state (e.g., due to spontaneous emission) in §B.6. The equations

of motion for the atomic density matrix are

ρ̇ = − i

~
[H,ρ], (B.34)

ρ̇ee = i
Ω

2
ρeg − i

Ω∗

2
ρge,

ρ̇gg = −iΩ
2
ρeg + i

Ω∗

2
ρge,

ρ̇eg = ρ̇∗ge = i∆ρeg − i
Ω∗

2
(ρgg − ρee),

ρee + ρgg = 1, (B.35)

where ∆ = ω − ω0 and Ω = 2Akα
√

N̄
~

. To convert Ω into experimentally measured quantities use Eqn. B.16

or Eqn. B.17.
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Starting in the ground state (ρgg(0) = 1) and solving Eqns. B.35 when the field is turned on suddenly at

t = 0

ρee(t) =
|Ω|2

∆2 + |Ω|2 sin2

(

√

|Ω|2 + ∆2

2
t

)

. (B.36)

Therefore, Ω has a natural interpretation as the on-resonance (∆ = 0) oscillation frequency between atomic

states and is referred to as the Rabi frequency. Applying an on-resonance field for tπ = π/|Ω| transfers all

the atoms to |e〉 (“π-pulse”) and applying for tπ/2 = π/2|Ω| creates an equal |g〉, |e〉 superposition (“π/2-

pulse”). Off-resonance, the effective Rabi frequency increases (
√

∆2 + |Ω|2), but the population is only

partially transferred to the excited state.

The Rabi frequency and ∆ may also be time-dependent. If ∆ = γt, then

H =

[

0 ~Ω
2

~Ω∗

2 −~γt

]

, (B.37)

and as ∆ goes to resonance at t = 0 atoms are transferred to the excited state; these are known as Landau-

Zener transitions. The fraction of atoms in the ground state at t → ∞, if we start with all the atoms in the

ground state at t = −∞, is [299]

ρgg = exp

(

−π|Ω|2
2γ

)

. (B.38)

If the detuning changes slowly with respect to the Rabi frequency squared then all the atoms will be trans-

ferred from the ground to the excited state. This is equivalent to a π-pulse, but experimentally advantageous

for population transfer since it is less sensitive to changes in the resonance frequency during the sweep.

B.4.1 Relating the Density Matrix to the Dipole Operator

The density matrix indicates how the state populations evolve due to the atom-field coupling. Another

quantity of interest is the expectation value of the dipole operator ~D. For example, a non-zero electric-

dipole expectation value gives rise to a radiated field, which will be discussed further in §B.7.3. The general

form of ~D is

~D =
∑

q

σ̂qD
(1)
q , (B.39)

D(1)
q = 〈g|~D · σ̂∗

q |e〉b + 〈e|~D · σ̂q|g〉b†, (B.40)

where σ̂q are the atomic polarizations defined by Eqn. B.22, and b† and b are the raising and lowering

operators for the atomic state. The matrix elements 〈g|~D · σ̂∗
q |e〉 are detailed in §B.3.1. It is conventional to

define the dipole operators as

D−
q = 〈e|~D · σ̂q|g〉b†, (B.41)

D+
q = 〈g|~D · σ̂∗

q |e〉b, (B.42)
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and

D−
q D+

q = |〈e|~D · σ̂q|g〉|2b†b. (B.43)

The expectation value of any operator O is calculated from the density matrix as

〈O〉 = Tr[ρO]. (B.44)

If we apply Eqn. B.44 using the density matrix from §B.4, which is defined in the basis |g,N〉, |e,N − 1〉,
then

〈O〉 = ρeg〈g,N |O|e,N − 1〉 + ρgg〈g,N |O|g,N〉 + ρge〈e,N − 1|O|g,N〉 + ρee〈e,N − 1|O|e,N − 1〉 (B.45)

and the off-diagonal terms proportional to ρeg, ρge are zero if the operator does not change the photon

number. Since the dipole operator ~D only operates on the atomic states,

〈D−
q D+

q 〉 = |〈e|~D · σ̂q|g〉|2ρee, (B.46)

and

〈D±
q 〉 = 0. (B.47)

This is a direct consequence of restricting the field basis to a single Fock state pair. A non-zero dipole

expectation value would indicate a classical atomic dipole, which cannot be created by coupling to a non-

classical field state (e.g., a single Fock state). Since we are actually driving with a coherent state, we need

to include all the coherent state terms when calculating the dipole expectation value. The coherent state

(Eqn. B.15) is a superposition of Fock states, so the wavefunction evolution is

|Ψ(t)〉 = e−N̄/2
∞
∑

n=0

N̄n/2e−i(ωt−φ)n

√
n!

(

ρge,n(t)
√

ρee,n(t)
|g, nω,k〉 +

√

ρee,n(t)|e, nω,k−1〉
)

(B.48)

where ρn are the solutions of Eqn. B.35 with photon number n. Since there are different photon numbers

states, we need to keep the phase factor e−iωtn in front of each term (we dropped this term from Eqn. B.33

in §B.4). Using the above form of the wavefunction the expectation value of the dipole operator is

〈D+
q 〉 =

〈Ψ(t)|D+
q |Ψ(t)〉

〈Ψ(t)|Ψ(t)〉 , (B.49)

' 〈e|~D · σ̂q|g〉e−i(ωt−φ)ρge,N̄ (t), (B.50)

for N̄ � 1. The D±
q operator corresponds to a dipole of positive (negative) frequency. The preceding dis-

cussion demonstrates that a coherent superposition of Fock states is required to have a non-zero expectation

value of the atomic dipole and that the dipole oscillates at the drive frequency. Although we considered all

the coherent state terms in this derivation, Eqn. B.50 illustrates that we can determine the dipole operator

by solving a single set of equations for the Fock state |N̄〉. In §B.7.3 we use Eqn. B.50 to calculate the

scattered field.
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B.5 Dipole Potential (AC Stark Shift)

When there is a non-zero atom-field coupling term the atomic states are not eigenstates of the full Hamil-

tonian. If the field is turned on slowly, then the atomic states will follow to these new eigenstates. To

solve for the energy of these new states, we can diagonalize the RWA Hamiltonian (Eqn. B.33), but this

neglects the counter-rotating terms (the last two terms of Eqn. B.19). If we include counter-rotating terms

then the Hamiltonian couples all photon Fock states (i.e., the Hamiltonian is not block-diagonal in a finite

basis). Nonetheless, for an off-resonant field it is sufficient to calculate the energy shift to second-order in

perturbation theory. The second-order ground state (|g,N〉) energy shift is

E(g) =
∑

M

|〈g,N |Hint|e,M〉|2
~(ω0 + (M −N)ω)

. (B.51)

The matrix element is only non-zero for M = N + 1, N − 1, so

E(g) =
|〈g,N |Hint|e,N − 1〉|2

~(ω − ω0)
− |〈g,N |Hint|e,N + 1〉|2

~(ω0 + ω)
. (B.52)

Using the notation from the previous section

E(g) =
NA2

k|α|2
~(ω − ω0)

− NA2
k|α|2

~(ω0 + ω)
,

= −~|Ω|2
4

(

1

ω0 − ω
+

1

ω0 + ω

)

. (B.53)

To lowest order, the new ground eigenstate is (
√
N ± 1 ≈

√
N)

|g〉 → |g〉 − 1

2

(

Ω

ω0 − ω
+

Ω∗

ω0 + ω

)

|e〉. (B.54)

The atom-field coupling causes a small mixture with the excited state to shift the ground state energy.

The energy shift (Eqn. B.53) — the “AC Stark shift” — depends on the field strength through the |Ω|2
prefactor (Eqns. B.16, B.17). If the field strength is spatially varying, then it will form a potential for the

atoms. Although both the electric-dipole or magnetic-dipole interaction give rise to this type of potential,

typically only an electric field can have a large enough field gradient to impart a significant force (see §C).

Therefore, we will only consider electric-dipole potentials in the following discussion.

To calculate the potential for the state |n, J, F,mF 〉 due to coupling to |n′, J ′, F ′m′
F 〉 for an optical field

of intensity I, we expand the Rabi rate into the coupling terms

~|Ω|2
4

=

(

ω

2ε0V

)

∑

q

Nq|〈n, J, F,mF |d(1)
q |n′, J ′, F ′m′

F 〉|2, (B.55)

and relate photon number Nq to intensity using Eqn. B.18. The dipole matrix element can be replaced with
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Eqns. B.28 and B.29

~|Ω|2
4

=
3c2πΓ

2ω3
0

(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}2

(2J ′ + 1)
∑

q

Iq

(

F 1 F ′

−mF q m′
F

)2

(B.56)

where ~ω0 is the energy difference between |n, J, F,mF 〉 and |n′, J ′, F ′m′
F 〉. Then the energy shift of

|n, J, F,mF 〉 is

E(g) = −3c2πΓ

2ω3
0

(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}2

(2J ′ + 1)
∑

q

Iq

(

F 1 F ′

−mF q m′
F

)2

(

1

ω0 − ω
+

1

ω0 + ω

)

. (B.57)

This assumes |n, J, F,mF 〉 is the lower energy state. The energy shift of |n′, J ′, F ′m′
F 〉 is equal and opposite.

B.5.1 Multi-Level

To get the total energy shift of |n, J, F,mF 〉 we need to sum the energy shifts from all |n′, J ′, F ′m′
F 〉 states

with non-zero coupling matrix elements. For example, the energy shift of the alkali atom ground state nS1/2

is obtained by summing over all P states. If the detuning is larger than the hyperfine splittings inside a

particular n′PJ ′ state then we sum Eqn. B.57 over the hyperfine levels F ′,m′
F after taking the frequency

term out of the sum

EF,mF
= −3c2π

2

∑

q

Iq
∑

n′,J ′= 1
2 , 3

2

Γn′PJ′→nS1/2

(

ωn′PJ′ − ωnS1/2

)3

(

1

ωn′PJ′ − ωnS1/2
− ω

+
1

ωn′PJ′ − ωnS1/2
+ ω

)

. . .

∑

F ′,m′
F

(2J ′ + 1)(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}2(

F 1 F ′

−mF q m′
F

)2

. (B.58)

The sum over the Wigner symbols is given by the identity

∑

F ′,m′
F

(2J ′ + 1)(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}2(

F 1 F ′

−mF q m′
F

)2

=
J ′ + 1

2 − 2(J ′ − 1)qgFmF

3
,

(B.59)

and so

EF,mF
= −c

2π

2

∑

q,n′,J ′= 1
2 , 3

2

Iq
Γn′PJ′→nS1/2

(

ωn′PJ′ − ωnS1/2

)3

(

J ′ +
1

2
− 2(J ′ − 1)qgFmF

)

. . .

(

1

ωn′PJ′ − ωnS1/2
− ω

+
1

ωn′PJ′ − ωnS1/2
+ ω

)

. (B.60)
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For most laser frequencies, the largest contribution to Eqn. B.60 is from the D1 and D2 transitions (n′ = n).

Keeping only D1 and D2 terms, Eqn. B.60 (for the ground state) reduces to [99],

EF,mF
= −c

2π

2

∑

q

Iq

[

Γ3/2

ω3
3/2

(2 − qgFmF )

(

1

∆3/2
+

1

ω3/2 + ω

)

+

Γ1/2

ω3
1/2

(1 + qgFmF )

(

1

∆1/2
+

1

ω1/2 + ω

)

]

. (B.61)

Eqn. B.61 is the general dipole potential we use to describe our optical lattice. For convenience define

Vsc = −c
2π

2

[

2Γ3/2

ω3
3/2

(

1

∆3/2
+

1

ω3/2 + ω

)

+
Γ1/2

ω3
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)

]

, (B.62)

Vv = −c
2π

2

[

Γ1/2

ω3
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)

− Γ3/2

ω3
3/2

(

1

∆3/2
+

1

ω3/2 + ω

)

]

, (B.63)

so that

EF,mF
= VscI + Vv(Iσ+ − Iσ−)(gFmF ). (B.64)

The first term is the scalar light shift and the second is the vector light shift. The scalar light shift is state

independent and proportional to the total intensity, whereas the vector light shift is state dependent and

depends on the projection of the intensity onto the atomic basis. In the far-detuned limit Vv → 0 and

∆3/2 ' ∆1/2, so Eqn. B.60 becomes,

EF,mF
= −3c2πI

2

∑

n′

[

Γn′

ω3
n′

(

1

∆n′

+
1

ωn′ + ω

)]

(B.65)

where

ωn′ =
2ωn′,3/2 + ωn′,1/2

3
. (B.66)

B.6 Optical Bloch Equations

In the general Hamiltonian (Eqn. B.14) the atom is coupled to all field modes. Although only a specific

mode is macroscopically occupied by the applied field, we cannot neglect the empty modes since the excited

atomic mode can emit into one of these field modes and return (decay) back to the ground state. To describe

the state populations when driving between transitions if there is decay from the excited state we need to

add non-Hermitian decay terms to Eqn. B.35 by means of a Liouvillian operator [294]. Here we state these

new equations without proof

ρ̇ee = i
Ω

2
ρeg − i

Ω∗

2
ρge − Γρee,

ρ̇gg = −iΩ
2
ρeg + i

Ω∗

2
ρge + Γρee,

ρ̇eg = ρ̇∗ge = i∆ρeg − i
Ω∗

2
(ρgg − ρee) −

Γ

2
ρeg. (B.67)
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This set of equations describe the average density matrix since individual atoms will have sharp jumps as

the excited state decays. The decay term is related to the transition frequency as Γ ∝ ω3
0 (see §B.7), so

the decay terms are only relevant for states with transition frequencies in the optical range (hence “optical”

Bloch equations).

B.6.1 Steady-state Transition Properties

In the steady-state limit (set all derivatives to zero) the excited state fraction is

ρee =
|Ω|2

Γ2 + 4∆2 + 2|Ω|2 , (B.68)

and the off-diagonal term is

ρeg = Ω∗ 2∆ − iΓ

Γ2 + 4∆2 + 2|Ω|2 . (B.69)

The saturation intensity is defined as

Isat =
IΓ2

2|Ω|2 , (B.70)

so the excited state fraction is expressed in terms of the dimensionless quantities I/Isat and ∆/Γ

ρ22 =
1

2

I
Isat

1 + 4
(

∆
Γ

)2
+ I

Isat

. (B.71)

For I/Isat � 1 the excited state fraction increases linearly with I, but saturates to 1/2 as I/Isat → ∞. We

can use Eqn. B.55 to relate the saturation intensity to an atomic matrix element

Isat =
~IΓ2

8

(

∑

q

Iq
2ε0c~

|〈n, J, F,mF |d(1)
q |n′, J ′, F ′m′

F 〉|2
)−1

. (B.72)

For the cycling transition the saturation intensity is (using the identity from Eqn. B.32)

Isat =
~ω3

0Γ

12πc2
. (B.73)

The decay terms correspond to light scattered out of the driving field. The power scattered out of the field

is P = ρeeΓ~ω. This scattering can also be expressed as an absorption

dI

dz
= −nσI (B.74)

where the absorption cross section is (dI/dz = dI/dt · dt/dz and İ = cP )

σ =
P

nI
,

=
nρeeΓ~ω

nI
, (B.75)

=
~ωΓ

2Isat

(

1 + 4

(

∆

Γ

)2

+
I

Isat

)−1

. (B.76)
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For ∆ = 0 and I/Isat � 1

σ =
~ωΓ

2Isat
, (B.77)

which for the cycling transition (substituting Eqn. B.73) is

σ =
3λ2

2π
. (B.78)

B.6.2 Multi-Level OBE

1

2
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Ω13
Γ23Ω23
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Γ13

(a) (b)

(c)

Figure B.1: Several multiple-level decay and driving configurations. The configuration is (c) is difficult to
solve using the OBEs, so we split the upper state into two states. This corresponds to neglecting coherent
driving effects between the two ground states.

To extend the OBE to multiple levels we add new terms to the density matrix. For the configuration in

(a) of Fig. B.1 the density matrix has 9 terms, but we ignore coherences between levels 2 and 3, and 1 and

3, so

ρ̇11 = i
Ω

2
ρ12 − i

Ω∗

2
ρ21 + Γ13ρ33 + Γρ22,

ρ̇22 = −iΩ
2
ρ12 + i

Ω∗

2
ρ21 − Γ23ρ22 − Γρ22,

ρ̇33 = Γ23ρ22 − Γ13ρ33,

ρ̇12 = ρ̇∗21 = −i∆ρ12 + i
Ω

2
ρ11 − i

Ω∗

2
ρ22 −

Γ + Γ23

2
ρ12,

ρ11 + ρ22 + ρ33 = 1. (B.79)

In steady state Γ13ρ33 = Γ23ρ22, and the equations reduce to two-level OBE equations except the decay rate
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is Γ + Γ23. Assuming Γ13 � Γ,Γ23 (ρ11 + ρ22 ≈ 1), Isat is

Isat =
~ω3

0(Γ + Γ23)
2

12πc2Γ
,

= I ′sat

(

Γ + Γ23

Γ

)2

, (B.80)

where I ′sat is the two-level value (i.e., Γ23 = 0). The cross-section is

σ =
3λ2

2π

Γ

Γ + Γ23
, (B.81)

and the excited state fraction is

ρ22 =
1

2

I
Isat

1 + 4
(

∆
Γ+Γ23

)2

+ I
Isat

. (B.82)

If we have multiple driving fields (e.g., (b) and (c) of Fig. B.1), then the equations are significantly more

complicated. However, we can obtain approximate solutions for the level populations if we ignore coherences

between the driving fields. For example, in (b) the simplified equations are

ρ̇11 = i
Ω1

2
ρ12 − i

Ω∗
1

2
ρ21 + i

Ω2

2
ρ13 − i

Ω∗
2

2
ρ31 + Γ13ρ33 + Γρ22,

ρ̇22 = −iΩ1

2
ρ12 + i

Ω∗
1

2
ρ21 − Γ23ρ22 − Γρ22,

ρ̇33 = −iΩ2

2
ρ13 + i

Ω∗
2

2
ρ31 + Γ23ρ22 − Γ13ρ33,

ρ̇12 = ρ̇∗21 = −i∆1ρ12 + i
Ω1

2
ρ11 − i

Ω∗
1

2
ρ22 −

Γ + Γ23

2
ρ12,

ρ̇13 = ρ̇∗31 = −i∆2ρ13 + i
Ω2

2
ρ11 − i

Ω∗
2

2
ρ33 −

Γ13

2
ρ13. (B.83)

For the configuration in (c) of Fig. B.1, we create effective two-level systems by splitting the excited state

into two separate states. Each new excited state retains the decay paths of the original state. This neglects

coherent processes that excite from one ground state and then drive down to the other ground state (e.g.,

dark states). If the decay rate is larger than the Rabi rate then this is a reasonable description. This

approach also allows for easy identification of which excitation path the atom takes to get into the excited

212



state. The effective OBEs are

ρ̇11 = i
Ω13

2
ρ13b

− i
Ω∗

13

2
ρ3b1 + Γ13(ρ3a3a

+ ρ3b3b
),

ρ̇22 = i
Ω23

2
ρ23a

− i
Ω∗

23

2
ρ3a2 + Γ23(ρ3a3a

+ ρ3b3b
),

ρ̇3a3a
= −iΩ23

2
ρ23a

+ i
Ω∗

23

2
ρ3a2 − (Γ13 + Γ23)ρ3a3a

,

ρ̇3b3b
= −iΩ13

2
ρ13b

+ i
Ω∗

13

2
ρ3b1 − (Γ13 + Γ23)ρ3b3b

,

ρ̇13b
= ρ̇∗3b1

= −i∆13ρ13b
+ i

Ω13

2
ρ11 − i

Ω∗
13

2
ρ3b3b

− Γ13 + Γ23

2
ρ3b3b

,

ρ̇23a
= ρ̇∗3a2 = −i∆23ρ23a

+ i
Ω23

2
ρ22 − i

Ω∗
23

2
ρ3a3a

− Γ13 + Γ23

2
ρ3a3a

,

ρ11 + ρ22 + ρ3a3a
+ ρ3b3b

= 1. (B.84)

B.7 Scattering

The decay term introduced into the optical Bloch equations corresponds to the atom scattering a photon

from the drive field into the infinite number of empty field modes that the atomic dipole is coupled to in

Eqn. B.14. In this section we will calculate this decay rate and also calculate the resulting scattered field.

Understanding the direction and coherence of this field is important for imaging (§4.1.1).

B.7.1 Decay Rate

To determine the decay rate of an atom in the excited state we use Fermi’s Golden rule starting with the

state |e, 0〉 and decaying to |g, 1~k,ε̂〉 (~k is the scattered photon wavevector and ε̂ is the polarization)

Γ|e〉→|g,1~k,ε̂
〉 =

2π

~
|〈g, 1~k|H|e, 0〉|2δ(~ωk − ~ω0). (B.85)

The only non-zero atom-field coupling term in Eqn. B.19 for these states is α[k]a†|g〉〈e|, and so

Γ|e〉→|g,1~k,ε̂
〉 =

2π

~
|〈g, 1~k|Aka

†
ω,k|e, 0〉|2δ(~ωk − ~ω0), (B.86)

=
2π

~

(

~ωk

2ε0V

)

|〈g|~d · ε̂|e〉|2δ(~ωk − ~ω0). (B.87)

To get the total rate we sum over all ~k and ε̂

Γ|e〉→|g〉 =
∑

~k,ε̂

2π

~

(

~ωk

2ε0V

)

|〈g|~d · ε̂|e〉|2δ(~ωk − ~ω0). (B.88)

The ~k sum becomes an integral when V → ∞ [298]

∑

~k

→
∫ π

0

dφ

∫ 2π

0

dθ sin(θ)

∫ ∞

0

dk
V k2

(2π)3
, (B.89)
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so (ω = ck)

Γ|e〉→|g〉 =

∫ π

0

dφ

∫ 2π

0

dθ sin(θ)
∑

ε̂

|〈g|~d · ε̂|e〉|2
∫ ∞

0

dk
V k2

(2π)3
2π

~

(

~ω

2ε0V

)

δ(~ωk − ~ω0), (B.90)

=

∫ π

0

dφ

∫ 2π

0

dθ sin(θ)
∑

ε̂

|〈g|~d · ε̂|e〉|2
∫ ∞

0

dk
k2ω

(2π)2

(

1

2ε0

)

δ (~ωk − ~ω0) , (B.91)

=

∫ π

0

dφ

∫ 2π

0

dθ sin(θ)
∑

ε̂

|〈g|~d · ε̂|e〉|2
∫ ∞

0

d(~ω)
ω3

~c3(2π)2

(

1

2ε0

)

δ (~ωk − ~ω0) , (B.92)

=
ω3

0

2ε0~c3(2π)2

∫ π

0

dφ

∫ 2π

0

dθ sin(θ)
∑

ε̂

|〈g|~d · ε̂|e〉|2. (B.93)

Since the scattered light is TEM polarized, ε̂ is a function of φ. Writing out Eqn. B.93 in the atomic

polarization basis (quantized along z)

Γ|e〉→|g〉 =
ω3

0

2ε0~c3(2π)2

(

∑

q

|〈g|dq|e〉|2
)

∫ π

0

dφ

∫ 2π

0

dθ sin(θ)αq(φ) (B.94)

where αq(φ) is the fraction of q polarized light scattered at angle φ. The integral is the total solid angle for

q polarized light. Since the total solid angle is 4π and there are 2 TEM polarizations per direction, then the

solid angle per q polarized light is 8π/3, and

Γ|e〉→|g〉 =
ω3

0

3πε0~c3

(

∑

q

|〈g|dq|e〉|2
)

. (B.95)

The measured decay rate is the rate for an atom in excited state |n′, J ′, F ′,m′
F 〉 to decay to any ground

state in a certain n, J level. This rate is

Γ|n′J ′〉→|nJ〉 =
ω3

0

3πε0~c3

∑

F,mF ,F ′,m′
F

1

(2J ′ + 1)(2I + 1)

(

∑

q

|〈n, J, F,mF |dq|n′, J ′, F ′,m′
F 〉|2

)

.(B.96)

Substituting the result from Eqn. B.28 into the above equation we get

Γ|n′J ′〉→|nJ〉 =
ω3

0

3πε0~c3

∑

F,mF ,F ′,m′
F ,q

1

(2J ′ + 1)(2I + 1)
(2F + 1)(2F ′ + 1)

(

F 1 F ′

−mF q m′
F

)2

. . .

{

J F I

F ′ J ′ 1

}2

|〈nJ ||d||n′J ′〉|2. (B.97)

Applying the Wigner 3J identity

∑

mF ,m′
F ,q

(

F 1 F ′

−mF q m′
F

)2

= 1, (B.98)
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when F ′ = F, F ± 1, the rate is

Γ|n′J ′〉→|nJ〉 =
ω3

0

3πε0~c3
|〈nJ ||d||n′J ′〉|2

(2J ′ + 1)(2I + 1)

∑

F,F ′

(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}2

. (B.99)

Applying the Wigner 6J identity

∑

F,F ′

(2F + 1)(2F ′ + 1)

{

J F I

F ′ J ′ 1

}2

= 2I + 1, (B.100)

the rate is

Γ|n′J ′〉→|nJ〉 =
ω3

0

3πε0~c3
|〈nJ ||d||n′J ′〉|2

2J ′ + 1
, (B.101)

which is the rate to decay from the excited state |n′J ′〉 to the ground state |nJ〉. For the total decay rate

from |n′J ′〉 we must sum over the decay rates to all lower energy states.

B.7.2 Scattering Rate Off-Resonance

In the previous section we derived the decay rate starting in the state |e〉, however, this is not a typical

experimental situation. A common scenario is that |g〉 and |e〉 are coupled with an off-resonant field. For

example, if we apply a beam for dipole trapping then the initial state is |i〉 =
√
ρgg|g,Nω〉+

√
ρee|e,Nω −1〉.

The rate to scatter a photon into a new mode ~k and end up in state |g,Nω − 1, 1~k〉 (using Fermi’s golden

rule) is

Γ|i〉→|g,Nω−1,1~k,ε̂
〉 =

2π

~
|〈g,Nω − 1, 1~k|H|

(√
ρgg|g,Nω〉 +

√
ρee|e,Nω − 1〉

)

|2δ(Ef − Ei), (B.102)

= ρee

[

2π

~
|〈g,Nω − 1, 1~k|H|e,Nω − 1〉|2δ(Ef − Ei)

]

, (B.103)

Γ|i〉→|g,Nω−1,1~k,ε̂
〉 = ρee

[

2π

~
|〈g,Nω − 1, 1~k|H|e,Nω − 1〉|2δ(~ωk − ~ω)

]

. (B.104)

This rate calculation is similar to before except ω0 → ω since the scattered photon is at the frequency of the

excitation beam and not the excited state energy. Therefore the off-resonant scattering rate is

Γ|(√ρgg|g,Nω〉+√
ρee|e,Nω−1〉)〉→|g,Nω−1,1~k,ε̂

〉 = ρeeΓ|n′J ′〉→|nJ〉

(

ω

ω0

)3

. (B.105)

B.7.3 Properties of the Scattered Light

The physical origin of the scattering process is that the induced atomic dipole acts as a source term in

Maxwell’s equations. This is a standard problem in any electricity and magnetism textbook [300] and taking

the correspondence between the classical solution and the expectation value of the quantum operator4

〈~E(~x, t)〉 =
k2

2πε0

eik|~x|

|~x| 〈~d − (n̂ · ~d)n̂〉 (B.106)

4As pointed out in [300], the atomic dipole defined here is a factor of 2 larger than the classical dipole defined in [300].
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where n̂ is a unit vector pointing from the origin. Using the result from §B.4.1 for 〈~d〉, written in terms of

the atomic projections q and the density matrix,

〈~E+
q (~x, t)〉 =

k2

2πε0

eik|~x|

|~x| (ε̂q − (n̂ · ε̂q)n̂)〈e|~d · σ̂q|g〉e−i(ωt−φ)ρge,N̄ (t). (B.107)

The radiated power per unit solid angle is [300]

dP

dΩ
= 〈~E−(~x, t)~E+(~x, t)〉, (B.108)

=
ω4

4π2c3ε0

〈(

~d−~d+ − |~d− · n̂|2
)〉

, (B.109)

=
ω4

4π2c3ε0

∑

q

〈d−
q d+

q 〉(1 − (n̂ · ε̂q)2). (B.110)

Replacing 〈d−
q d+

q 〉 with the dipole expectation value calculated in §B.4.1 (Eqn. B.50), the radiated power is

dP

dΩ
=

ω4

4π2c3ε0
ρee

∑

q

|〈e|~d · σ̂q|g〉|2(1 − |n̂ · ε̂q|2). (B.111)

If φ is the angle with the quantization axis, then (1−|n̂ · ε̂0|2) = sin2(φ) and (1−|n̂ · ε̂±1|2) = (1+cos2(φ))/2.

If we are exciting on the cycling transition with σ+ light, then we can replace the matrix element with

Eqn. B.32 and

dP

dΩ
=

ω4

4π2c3ε0
ρee

3~c3πε0Γ

ω3
0

1 + cos2(φ)

2
, (B.112)

=
3

4π

(

ω

ω0

)3

(Γ~ωρee)

(

1 + cos2(φ)

2

)

. (B.113)

The radiated power is twice as strong along the quantization axis versus the perpendicular direction. Inte-

grating over all angles, the total radiated power is

P =

(

ω

ω0

)3

(Γ~ωρee), (B.114)

as expected from the Fermi’s golden rule calculation (Eqn. B.105).

For a steady-state driving field close to resonance, we can replace ρeg in Eqn. B.107 and ρee in Eqn. B.114

with the results from §B.6.1, and then the total radiated power is

P =

(

ω

ω0

)3

(Γ~ω)
|Ω|2

Γ2 + 4∆2 + 2|Ω|2 , (B.115)

and the electric field is

〈~E+
q (~x, t)〉 =

k2

2πε0

eik|~x|

|~x| (ε̂q − (n̂ · ε̂q)n̂)〈e|~d · σ̂q|g〉e−i(ωt−φ)

[

Ω∗ 2∆ − iΓ

Γ2 + 4∆2 + 2|Ω|2
]

. (B.116)

In the strong drive limit ( |Ω|2 � ∆2,Γ2) the mean value of the electric field goes to zero, but the radiated
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power asymptotes to a finite value — the radiated field is incoherent. The ratio of coherently radiated power

to total power is [301]

Pcoherent

P
=

〈~E−
q (~x, t)〉〈~E+

q (~x, t)〉
〈~E−

q (~x, t)~E+
q (~x, t)〉

, (B.117)

=
|ρeg|2
ρee

, (B.118)

=
4∆2 + Γ2

Γ2 + 4∆2 + 2|Ω|2 , (B.119)

= 1 − 2ρee. (B.120)

In the strong-drive limit when Pcoh/P → 0, the radiated field picks up sidebands in the power spectrum at

±Ω (the so-called Mollow triplet [301]). The above result is an important consideration for high-resolution

fluorescence imaging; resolution is functionally dependent on the coherence of the scattered light.

B.8 Mechanical Effects of Scattering

The full atom-field Hamiltonian (Eqn. B.14) includes the center-of-mass operators. These couple to the field

through the phase term in the atom-field interaction, which transfers momentum from the field to the atom

and vice-versa. One result of this coupling is that the field can act as a conservative potential to trap or

repel the atoms due to the coherent redistribution of momenta among the applied field modes. The form

of this potential was detailed in §B.5. Momentum is also transferred to the atom as photons are scattered

into previously empty modes. In this section we review how this scattering affects the atomic center-of-mass

(mechanical) degrees of freedom.

B.8.1 Heating

The random nature of the scattering direction leads to a kinetic energy increase when the photon exchanges

momentum ~k with the atom. The atomic momentum after scattering (starting from rest) is ~k−~k′ where ~k

is the wavevector of the excitation beam and ~k′ is the wavevector of the scattered photon (|k| = |k′|). The

atomic energy after scattering is

∆E =
~

2(~k − ~k′)2

2m
,

=
~

2(2k2 − 2~k · ~k′)
2m

. (B.121)

Integrating over all possible ~k′ directions

∆E = 2
~

2k2

2m
,

= 2ER. (B.122)

The rate of energy increase is

Ė = 2ERρeeΓ

(

ω

ω0

)3

. (B.123)
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This calculation ignores heating due to dipole fluctuations if there is a gradient in the electric field. A more

detailed formula for the heating rate from a far-detuned field, taking all effects into consideration (assuming

ground state |g〉 and excited states |e〉), is [168]

Ė =
ER

~2

∑

e

Γ|e〉→|g〉

(

ω

ωe

)3(
1

ωe − ω
+

1

ωe + ω

)2

×

|〈g|~d|e〉 · ~E|2


1 +
1

k2

∣

∣

∣

∣

∣

∇(〈g|~d|e〉 · ~E)

〈g|~d|e〉 · ~E

∣

∣

∣

∣

∣

2


 . (B.124)

The matrix elements in the heating rate are similar to the matrix elements for the dipole potential. Summing

over the D1 and D2 excited states, assuming the detuning is large compared to the hyperfine splittings, then

(see §B.5)

Ė = ER

∑

q

c2π

2~
Iq

(

1 +
1

k2

∣

∣

∣

∣

∇Eq

Eq

∣

∣

∣

∣

2
)[

(

ω

ω3/2

)3 Γ2
3/2

ω3
3/2

(2 − qgFmF )

(

1

∆3/2
+

1

ω3/2 + ω

)2

+

(

ω

ω1/2

)3 Γ2
1/2

ω3
1/2

(1 + qgFmF )

(

1

∆1/2
+

1

ω1/2 + ω

)2
]

. (B.125)

For convenience define the following

Hsc =
c2πω3

2~

[

2Γ3/2

ω6
3/2

(

1

∆3/2
+

1

ω3/2 + ω

)2

+

(

Γ1/2

Γ3/2

)

Γ1/2

ω6
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)2
]

, (B.126)

Hv =
c2πω3

2~

[

(

Γ1/2

Γ3/2

)

Γ1/2

ω6
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)2

− Γ3/2

ω6
3/2

(

1

∆3/2
+

1

ω3/2 + ω

)2
]

, (B.127)

so that

Ė = ERΓ3/2

[

HscI

(

1 +
1

k2

∣

∣

∣

∣

∇E
E

∣

∣

∣

∣

2
)

+Hv(gFmF )
∑

q

qIq

(

1 +
1

k2

∣

∣

∣

∣

∇Eq

Eq

∣

∣

∣

∣

2
)]

. (B.128)

For a scalar plane wave E = E0e
ikz (|∇E|2/k2|E|2 = 1)

Ė = 2ERΓ3/2HscI0. (B.129)

From Eqn. B.54 (the eigenstate of the atom coupled to a far-detuned beam), we can write Eqn. B.129 in

terms of the excited state fractions in the D1 and D2 states

Ė = 2ER

[

ρD2Γ3/2

(

ω

ω3/2

)3

+ ρD1Γ1/2

(

ω

ω1/2

)3
]

. (B.130)

Therefore, the heating from a scalar plane wave is equal to the recoil heating rate Eqn. B.123. However, in

lattice geometries Eqn. B.125 does not equal Eqn. B.123; these geometries are discussed in §C.4.
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Figure B.2: Schematic of a MOT (along one direction) for a simplified atom with F = 0 in the ground state
and F ′ = 1 in the excited state. The image is described in the main text.

B.8.2 Scattering Force - Laser Cooling and MOT

Since each scattering event changes the momentum of the atom, this results in an average force

~F = 〈~̇P〉,

= ~〈(~k − ~k′)〉ρeeΓ

(

ω

ω0

)3

,

= ~~kρeeΓ

(

ω

ω0

)3

. (B.131)

The scattering force is negligible unless the driving field is close to resonance (ω ≈ ω0). Then ρee is given

by Eqn. B.71 and the force is

~F =
~~kΓ

2Isat

I

1 + 4
(

∆
Γ

)2
+ I

Isat

. (B.132)

If Eqn. B.132 depends on position then the scattering force can trap the atoms. There are several elements

of Eqn. B.132 that could depend on position I, Isat, and ∆. Since Isat depends on the polarization of the

light (due to selection rules), it can change if the direction of the quantizing field is spatially dependent. The

detuning ∆ is spatially dependent (due to the Zeeman shift) if there is an inhomogeneous magnetic field.

A magneto-optical trap (MOT) uses these two spatially-dependent terms in the scattering force to trap the

atoms as shown schematically in Fig. B.2. The MOT requires a linearly changing field Bz = B′z. Since our

convention is that mF is defined with respect to the local field direction, the states flip at z = 0. As the field

magnitude grows the energy levels split further apart due to the Zeeman shift. The atoms can scatter from

two counter propagating beams with opposite σ polarizations (in the atomic basis). The beams are detuned

in frequency −∆ from the B = 0 transition. For z > 0, the σ− beam, which couples mF = 0 → mF ′ = −1
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and has k̂ = −ẑ, is shifted closer to resonance by the magnetic field. The scattering force from this beam

pushes the atoms back to z = 0. For z < 0, the process is flipped. Quantitatively, the force is

~F = −~kΓI

2Isat







1

1 + 4
(

∆−B′gF mF z
Γ

)2

+ I
Isat

− 1

1 + 4
(

∆+B′gF mF z
Γ

)2

+ I
Isat






, (B.133)

= −8~k
I

Isat

∆

Γ
B′gFmF

z
(

1 + 4
(

∆−B′gF mF z
Γ

)2

+ I
Isat

)(

1 + 4
(

∆+B′gF mF z
Γ

)2

+ I
Isat

) , (B.134)

≈ −8~k
I

Isat

∆

Γ
B′gFmF

z
(

1 + 4
(

∆
Γ

)2
+ I

Isat

)2 . (B.135)

The MOT therefore forms a harmonic trap.

The force is also velocity-dependent. For an atom moving at velocity ~v, the laser frequency, in the atomic

frame of reference, is ω′ = ω + ~k · ~v due to the Doppler shift. Ignoring polarizations and field detunings, for

two counter-propagating beams the force is

~F = −~kΓI

2Isat





1

1 + 4
(

∆−kv
Γ

)2
+ I

Isat

− 1

1 + 4
(

∆+kv
Γ

)2
+ I

Isat



 , (B.136)

= −8~k2 I

Isat

∆

Γ

v
(

1 + 4
(

∆−kv
Γ

)2
+ I

Isat

)(

1 + 4
(

∆+kv
Γ

)2
+ I

Isat

) , (B.137)

≈ −8~k2 I

Isat

∆

Γ

v
(

1 + 4
(

∆
Γ

)2
+ I

Isat

)2 . (B.138)

If ∆ > 0 (red-detuned), then this force will damp the atomic motion and lead to cooling. The atom will not

damp to zero velocity because of recoil heating (Eqn. B.123). Combining the two effects, the energy change

is

Ė = Ėheat + F · v, (B.139)

= 2ER
I/Isat

1 + 4
(

∆
Γ

)2
+ I

Isat

Γ − 8~k2 I

Isat

∆

Γ

v2

(

1 + 4
(

∆
Γ

)2
+ I

Isat

)2 . (B.140)

In steady-state Ė = 0 and

mv2 =

(

1 + 4

(

∆

Γ

)2

+
I

Isat

)

~

8

Γ

∆
. (B.141)

The minimum occurs when ∆ = Γ/2 and

mv2 =
~Γ

2
. (B.142)
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From equipartition kBT = mv2, so the effective temperature is

T =
~Γ

2kB
, (B.143)

which is the Doppler temperature for laser cooling of a two-level atom. For an atom with multiple ground

states (e.g., an alkali atom), sub-Doppler laser cooling is possible [302].
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Appendix C

Optical Lattice and Optical-Dipole
Trap

The atom-field coupling shifts the atomic energy levels (§B.5). This shift can be employed to produce con-

servative potentials (dipole potentials) for manipulating the atoms. To generate an appreciable force on the

atoms, the field must vary over short distances. Therefore these potentials are typically formed using light,

which can have feature sizes on the order of λ ' 1µm. An optical-dipole potential can result from a light

field with a spatially-dependent intensity and/or polarization (Eqn. B.61). In this appendix we consider

both cases.

Optical potentials are a key component to our quantum simulation apparatus. Simple traps are formed

by focusing a Gaussian laser beam, which creates a harmonic potential near the center of the beam. We

review the properties of Gaussian beams in §C.3. More interesting geometries are obtained by interfering

two or more beams, leading to periodic structures with periodicity on the order of λ. Atoms in these

“optical lattices” facilitate simulating interesting models in condensed matter physics. In this appendix we

summarize the common lattice geometries used in this thesis. We perform a detailed derivation for lin-θ-lin

spin-dependent lattices, which has not been reproduced elsewhere. We also discuss some technical details

for implementing optical-dipole potentials such as heating in the potential, and calibration and alignment.

C.1 Scalar Optical Lattice

The general dipole potential (Eqn. B.61) depends on the intensity and the polarization (in the atomic basis

σ̂±, π̂) of the optical fields. However, if all the fields are π̂ polarized or if the detunings are large, then we

only need to keep the first term of Eqn. B.64 — the scalar light shift. The scalar potential is proportional

to the total intensity

V (~x) = VscI(~x) (C.1)

where Vsc is defined by Eqn. B.62. For optical-lattice potentials, the scalar potential is more widely appli-

cable since it applies to all linearly polarized counter-propagating fields. The scalar optical-dipole potential

(Eqn. C.1) is a straightforward starting point to explain most of the interesting features of optical lattices

and is valid for many of our experimental lattice configurations. For simplicity, we will consider scalar plane

waves E(~x) = ei~k·~x−iωt, although in practice our lattices are formed from focused Gaussian beams. Gaussian

beam lattices are discussed in §C.3.2.
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Figure C.1: Scalar lattice setups: (a) two beams intersecting at an angle, (b) retro-reflected beams, and
(c) four beams at 90 degrees with different frequencies. (d) and (e) illustrate the time-averaged intensity
pattern for two cases of setup (c). In (d), ∆1 = ∆2, ∆3 = ∆4, but |∆1−∆3| is large. The resulting intensity
is the sum of two 1D retro-reflected intensities with a lattice spacing of λ/2. In (e), ∆1 = ∆2 = ∆3 = ∆4,
so all terms interfere. The lattice spacing is λ along x and y and λ/

√
2 along x = y.
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C.1.1 Two Fields Intersecting an Angle

The canonical optical lattice configuration is two identical fields intersecting at angle θL (illustrated in (a)

of Fig. C.1). The two dimensional electric field in this configuration is

E(x, y) = E0e
i(cos(θL)y+ωt+)

(

eik sin(θL)x + e−ik sin(θL)x+i∆φ
)

(C.2)

where ∆φ is the phase difference between the fields. The potential is proportional to the time-averaged

intensity

I(x, y)

cε0
= |E(x, y)|2,

= |E0|2
(

eik sin(θL)x + e−ik sin(θL)x+i∆φ
)(

e−ik sin(α)x + eik(sin(θL)x−i∆φ
)

,

= |E0|2
(

2 + e2i(k sin(θL)x+∆φ) + e−2i(k sin(θL)x+∆φ)
)

,

= 4|E0|2 cos2(k sin(θL)x+ ∆φ), (C.3)

= 4|E0|2 cos2
(πx

d
+ ∆φ

)

, (C.4)

where d = λ
2 sin(θL) , and the absolute position of the lattice minima is set by ∆φ. This intensity highlights

the basic principles of the optical lattice — when two fields intersect at some angle, the interference creates

a sinusoidal intensity pattern with a periodicity of d. The periodicity is controlled by changing either λ or

θL; the lower bound is λ/2 consistent with diffraction theory. When θL = π/2, the configuration can be

obtained by retro-reflecting the beam (illustrated in (b) of Fig. C.1). Since the beams are from the same

source there is intrinsic phase stability; any phase shift to the beam before the lattice region does not change

the lattice intensity. Only phase shifts in the retro beam path (labeled in Fig. C.1) can affect the lattice

position.

C.1.2 Four fields at 90 Degrees with Offset Frequencies

To create a lattice along more than one direction we need additional beams. In the retro-reflected config-

uration we need four beams to create lattices along two directions. The general arrangement, illustrated

in (c) of Fig. C.1, is that all these four beams have different frequencies1. Assuming |∆| � ω, so that the

wavevectors are all approximately equal, the overall field is

E(x, y) = E0e
iωt
(

e−iky+i∆1t + eiky+i∆2t + eikx+i∆3t + e−ikx+i∆4t
)

. (C.5)

1Although the retro-reflected beam is from the same laser source as the forward beam, an AOM in the retro path can add
a frequency shift to the retro beam.
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The intensity, time-averaging over oscillating terms of order ω, but leaving time-dependent terms of order

∆, is

I

cε0
= |E0|2

(

e−iky+i∆1t + eiky+i∆2t + eikx+i∆3t + e−ikx+i∆4t
)

(

eiky−i∆1t + e−iky−i∆2t + e−ikx−i∆3t + eikx−i∆4t
)

,

= |E0|2 {4 + 2 cos[2ky + (∆2 − ∆1)t] + 2 cos[k(x+ y) + (∆3 − ∆1)t]+

cos[k(x− y) + (∆1 − ∆4)t] + 2 cos[k(x− y) + (∆3 − ∆2)t] +

2 cos[k(x+ y) + (∆2 − ∆4)t] + 2 cos[2kx+ (∆3 − ∆4)t]} . (C.6)

The resulting intensity is a time-dependent lattice. We will discuss a few common choices for ∆.

If all the frequencies are the same (∆ = 0), then the intensity is

I

cε0
= 2|E0|2 [2 + cos(2ky) + 2 cos(k(x+ y)) + 2 cos(k(x− y)) + cos(2kx)] . (C.7)

All the beams are mutually interfering and this intensity is plotted in (e) of Fig. C.1. The intensity along x

at y = 0 is

I

cε0
= 2|E0|2 [3 + 4 cos(kx) + cos(2kx)] ,

4|E0|2
[

1 + 2 cos(kx) + cos2(kx)
]

,

4|E0|2 [1 + cos(kx)]
2
, (C.8)

which has a periodicity of λ. The intensity along x = y is

I

cε0
= 8|E0|2 [1 + cos(2kx)] ,

16|Ẽ0|2 cos2(kx) (C.9)

which has a periodicity of λ/
√

2.

If the frequencies between the x and y counter-propagating beam pairs are sufficiently different then the

cross terms will time average to zero, and the intensity is

I

cε0
= |E0|2 {4 + 2 cos[2ky + (∆2 − ∆1)t] + 2 cos[2kx+ (∆3 − ∆4)t]}

= 4|E0|2
{

cos2[ky + (∆2 − ∆1)t/2] + cos2[kx+ (∆3 − ∆4)t/2]
}

, (C.10)

which is the sum of the intensities from two retro-reflected beams. Therefore, to superimpose lattice poten-

tials, we can add frequency offsets between any fields that we do not want to interfere. If there is a frequency

difference between the reflected beams (∆2 − ∆1) 6= 0 then the lattice potential is moving with a constant

velocity. This effect can be used to study transport of atoms in the lattice. If this frequency detuning is too

large, this potential will also time average to zero. Typically, the forward and retro beams are at the same
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frequency, so
I

cε0
= 4|Ẽ0|2

[

cos2(ky) + cos2(kx)
]

, (C.11)

which is a standard 2D square lattice with d = λ/2. To create a 3D lattice we add a third retro-reflected

field along the direction in and out of the page. This is how the spin-independent lattice potential is created

for experiments in this thesis.

C.2 The Lin-θ-Lin Retro-Reflected Lattice Potential

E
P

Figure C.2: Illustrating the Lin-θ-Lin lattice beam setup. Figure reproduced from Ref. [4] ( c© 2010 IOP
Science).

In the general case, all terms in Eqn. B.61 contribute and the full potential is (Eqn. B.64),

V = VscI + Vv(Iσ+ − Iσ−)(gFmF ). (C.12)

A lattice potential can be produced if the polarization of the lattice beams (in the atomic basis) is spatially

dependent. This type of potential occurs for the lin-θ-lin lattice configuration. In this configuration, the

lattice beams are retro-reflected and both beams are linearly polarized, but the retro beam polarization is

rotated by an angle (θP ) with respect to the forward lattice beam polarization. The lin-θ-lin lattice setup is il-

lustrated in Fig. C.2. When θP = 0, the lin-θ-lin lattice is equivalent to the scalar potential discussed in §C.1.

The total intensity is straightforward to calculate. The intensity of the forward lattice beam with the

retro beam blocked is

I0 = cε0|E0|2, (C.13)

and the lattice intensity is

I

I0
= |eikz + cos(θP )e−ikz|2 + sin2(θP ), (C.14)

= 1 + cos2(θP ) + 2 cos(θP ) cos(2kz) + sin2(θP ), (C.15)

= 2[1 + cos(θP ) cos(2kz)]. (C.16)

When θP = π/2, there is no scalar lattice potential because the intensity is featureless.

To calculate the vector potential (second term of Eqn. C.12), we solve for the intensity of the field
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projected onto σ̂±. To start, we define ~k to be along z in some coordinate system

~k = [0, 0, 1] , (C.17)

and define a polarization basis in the plane orthogonal to ~k (the field is TEM)

~p1 = [1, 0, 0] , (C.18)

~p2 = [0, 1, 0] . (C.19)

We set the coordinate system by defining the forward beam polarizations as

~pk = ~p1. (C.20)

Since the retro-polarization is the forward polarization rotated by θP

~p−k = cos(θP )~pk + sin(θP )~pk⊥ (C.21)

where ~pk⊥ = ~p2. We define the magnetic field direction as rotated from our current coordinate system by

angles θB and φB . Given this definition of ~B, the atomic polarizations are

σ̂± =
1√
2

[cos(φB) cos(θB) ∓ i sin(φB), sin(φ)B cos(θB) ± i cos(φB),− sin(θB)] . (C.22)

Define the projections of the polarizations onto the atomic basis

γ = σ̂+ · ~pk,

= |γ|eiθγ ,

=
1√
2
(cos(φB) cos(θB) − i sin(φB)),

η = σ̂+ · ~pk⊥,

= |η|eiθη ,

=
1√
2
(sin(φB) cos(θB) + i cos(φB)). (C.23)

Since σ̂− = (σ̂+)∗, the projections onto σ̂− are γ∗ and η∗. From the above definitions, the σ+ intensity of

the lattice field is

Iσ+

I0
= |γeikz + (cos(θP )γ + sin(θP )η)e−ikz|2,

= |γ|2(1 + cos2(θP )) + |η|2 sin2(θP ) + 2|γ||η| sin(θP ) cos(θP ) cos(θγ − θη) +

2|γ|2 cos(θP ) cos(2kz) + 2|γ||η| sin(θP ) cos(2kz + θγ − θη), (C.24)
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and the σ− intensity Iσ− follows by replacing θγ → −θγ and θη → −θη in Iσ+

Iσ−

I0
= |γ|2(1 + cos2(θP )) + |η|2 sin2(θP ) + 2|γ||η| sin(θP ) cos(θP ) cos(θγ − θη) +

2|γ|2 cos(θP ) cos(2kz) + 2|γ||η| sin(θP ) cos(2kz − θγ + θη). (C.25)

The vector potential is proportional to the difference of the σ̂ intensities (the vector intensity)

Iσ− − Iσ+

I0
= 2|γ||η| sin(θP ) (cos(2kr + (θη − θγ)) − cos(2kz − (θη − θγ))) , (C.26)

= 4|γ||η| sin(θP ) sin(2kz) sin(θγ − θη). (C.27)

Because of the projection factor |γ||η| sin(θγ − θη) this appears to contain a complicated dependence on the

field direction. However, this factor can be calculated in terms of the angles using Eqn. C.23

|γ||η| sin(θγ − θη) = |γ||η|(sin(θγ) cos(θη) − cos(θγ sin(θη)),

= Im(γ)Re(η) −Re(γ)Im(η),

=
1

2
(− sin(φB) sin(φ)B cos(θB) − cos(φB) cos(θB) cos(φB)) ,

= −1

2
cos(θB)

�����������:1
(

sin2(φB) + cos2(φB)
)

,

= −1

2
cos(θB). (C.28)

Since we defined k̂ = [0, 0, 1] this is − 1
2 k̂ · B̂, which is frame independent. Therefore, the vector intensity is

Iσ− − Iσ+

I0
= −2 sin(θP ) sin(2kz)(k̂ · B̂). (C.29)

Substituting the scalar and vector intensities into Eqn. C.12, the potential is

V = 2VscI0(1 + cos(θ) cos(2kz)) + 2(gFmF )VvI0 sin(θP ) sin(2kz)(k̂ · B̂). (C.30)

We can rewrite the potential as a single lattice term

V = 2VscI0 +
sER

2
cos

[

2kz + tan−1

(

gFmFVv(k̂ · B̂)

Vsc
tan(θP )

)]

(C.31)

where the lattice depth is

sER = 4I0

√

V 2
sc cos2(θP ) + (gFmF )2V 2

v (k̂ · B̂)2 sin2(θP ). (C.32)

In the following we will discuss the potential for specific values of θP and λ.
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C.2.1 Lin-Lin

When θP = 0 the lattice is

V = sER cos2(kz) (C.33)

where the lattice depth is

sER = 4I0Vsc, (C.34)

= −2c2πI0

[

2Γ3/2

ω3
3/2

(

1

∆3/2
+

1

ω3/2 + ω

)

+
Γ1/2

ω3
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)

]

. (C.35)

The lattice depth is proportional to the total intensity, which is the scalar lattice limit. This applies for any

linear polarization, even if the linear polarization is not π̂. This is a general feature of counter-propagating

beams; the vector potentials terms (if any) cancel out between the forward and retro beams.

C.2.2 θ Independent Lattice Depth

When the following condition is met

V 2
sc = (gFmF )2V 2

v (k̂ · B̂)2, (C.36)

then

V = 2I0Vsc + 2I0Vsc

√

cos2(θP ) + sin2(θP ) cos
(

2kz + tan−1 (± tan(θP ))
)

, (C.37)

= 2I0Vsc [1 + cos (2kz ± θ)] (C.38)

where ± depends on the sign of the ratio of terms in Eqn. C.31. Changing the polarization angle θP

continuously shifts the location of the lattice minima. This is the principle behind a number of spin-

dependent transport experiments (e.g., [73, 74]). For 87Rb in the |1 ± 1〉 state and k̂ · B̂ = 1, the condition

given by Eqn. C.36 is satisfied when λ ≈ 785nm.

C.2.3 Lin-⊥-Lin

When θP = π/2, the potential is referred to as the lin-⊥-lin (lin-perpendicular-lin) lattice. The lin-⊥-lin

lattice potential is

V = 2VscI0 + (gFmF )2VvI0(k̂ · B̂) sin (2kz) ,

V

c2πI0
=

[

2Γ3/2

ω3
3/2

(

1

∆3/2
+

1

ω3/2 + ω

)

+
Γ1/2

ω3
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)

]

+

(gFmF )(k̂ · B̂)

[

Γ3/2

ω3
3/2

(

1

∆3/2
− 1

ω3/2 + ω

)

+
Γ1/2

ω3
1/2

(

1

∆1/2
+

1

ω1/2 + ω

)

]

sin (2kz) ,(C.39)

and the lattice depth and location are both spin dependent. In general, there is a constant offset given by the

scalar potential. Depending on the wavelength, this offset can be quite large. For example, at large detunings

the vector shift is proportional ∆−2 whereas the scalar shift is proportional to ∆−1. When the scalar shift
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is large compared to the vector lattice depth, the lin-⊥-lin configuration requires pure polarization. If θP

deviates slightly from π/2, a large scalar lattice may be formed. This effect can be mitigated by tuning the

wavelength so that Vsc = 0 (λ ≈ 790nm for 87Rb).

C.3 Gaussian Beams

z

r

2w0

2z0

Figure C.3: Schematic of a Gaussian beam propagating along z. In the radial direction the intensity has
a Gaussian shape defined by a e−2 width of w (the beam waist). The beam focuses to a new waist after a
lens (the new waist is given by Eqn. C.45) and always propagates with a Gaussian cross-section. Because of
diffraction, the beam expands away from the focus; the distance away from the focus after which waist has
expanded by

√
2 is the Rayleigh length z0.

In practice, the lattice is not constructed from pure plane waves since these require infinite power for a

finite intensity. Instead, real propagating optical fields are beams (i.e. a field where the power is concentrated

close to the propagation axis). Beams will eventually diverge due to diffraction. Large beams, which diffract

slowly, are used for propagation over long distances, and then are focused at the atoms to create sufficiently

high intensities required to generate lattices of appreciable depth. Beams propagating along z are described

by the electric field ~E = ~f(~x)eikz where ~f obeys the paraxial wave equation [100]

∂2 ~f

∂x2
+
∂2 ~f

∂y2
− 2ik

∂ ~f

∂z
= 0 (C.40)

The paraxial wave equation is an approximation of the full wave equation when the power is close to the

propagation axis.

The lowest-order solution of Eqn. C.40 is a beam with a Gaussian cross-section [100]

E(z, r) =

√

2P

ε0cπw(z)2
exp

[

i

(

kz − tan−1(z/z0) + k
r2

2R(z)

)

− r2

w(z)2

]

(C.41)

where z = 0 is defined as the focus of the beam and P is the beam power. The function w(z) is the waist

and defines the e−1 size of the electric field

w(z) = w0

√

1 +
z2

z2
0

. (C.42)

R(z) is the radius of curvature,

R(z) = z +
z2
0

z
, (C.43)
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and z0 is the Rayleigh length

z0 =
πw2

0

λ
. (C.44)

The only free parameter is w0, which is the beam waist at the focus. Consistent with diffraction theory, the

beam expands away from the focus and the waist is
√

2 times larger z0 away from the focus. The effect of

optical elements (e.g., a lens) on the beam are described by the ABCD matrix theory (see e.g., [100]). If we

propagate a collimated beam of waist wi through a lens of focal length f , the new waist is

wf =
λf

πwi

1
√

1 + f2

z2
i

. (C.45)

C.3.1 Dipole Trap

The scalar potential (Eqn. B.62) from a focused Gaussian beam is

V (z, r) = Vsc
2Pz2

0

πw2
0(z

2
0 + z2)

exp

[

−2
r2z2

0

w2
0(z

2 + z2
0)

]

. (C.46)

If we expand Eqn. C.46 around z, ρ = 0 the potential is

V (z, r)

Vsc
≈ 2P

πw2
0

− 4P

πw4
0

r2 − 2P

πw2
0z

2
0

z2, (C.47)

which is a harmonic potential with trap frequencies

ωr =
2

w2
0

√

2VscP

mπ
, (C.48)

ωz =
2λ

πw3
0

√

VscP

πm
, (C.49)

ωr

ωz
=

w0

λ

√
2π. (C.50)

Typically w0 � λ, so the radial confinement is much stronger than the axial confinement. Characteristic

experimental values for the dipole trap depth and trap frequencies are given in §2.1.1. This is an anharmonic

potential, so the confinement will change away from the center. The radial frequency decreases as

ω′
r = ωre

−2r2/w20 . (C.51)

The frequency at r = 0.1w0 is 90% of the frequency at r = 0.

C.3.2 Gaussian Beam Lattices

To create optical lattices in the experiment we interfere focused Gaussian beams. These Gaussian beam

lattices differ in certain ways from the plane waves lattices considered in §C.1. For one, there are new phase

terms, however, these are not important since the lattice potential for the atoms is formed close to the

focus (z � z0). The main Gaussian beam effect is that the intensity decreases radially. If we consider a

retro-reflected scalar lattice with a forward beam power P and beam waist w1, and a retro beam power αP
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(α ≤ 1) and beam waist w2, then the electric field and intensity are

E(z, r) =

√

2P

ε0cπw2
1

e−r2/w21eikz

[

1 +
√
α
w1

w2
e−2ikze

−r2

(

1

w22
− 1

w21

)]

, (C.52)

I(z, r) =
2P

πw2
1

e−2r2/w21

[

1 + α
w2
1

w2
2

e
−2r2

(

1

w22
− 1

w21

)

+ 2
√
α
w1

w2
e
−r2

(

1

w22
− 1

w21

)

cos(2kz)

]

. (C.53)

We rewrite the potential in terms of the lattice depth (s < 0 for red-detuned, s > 0 for blue-detuned)

sER = Vsc
8P

√
α

πw1w2
, (C.54)

V

ER
=

s

4
√
α

w2

w1
e−2r2/w21 +

s
√
α

4

w1

w2
e−2r2/w22 +

s

2
e
−r2

(

1

w21
+ 1

w22

)

cos(2kz), (C.55)

= −s
2
e
−r2

(

1

w21
+ 1

w22

)

+
s

4
√
α

w2

w1
e−2r2/w21 +

s
√
α

4

w1

w2
e−2r2/w22 + se

−r2

(

1

w21
+ 1

w22

)

cos2(kz). (C.56)

The first three terms are due to imperfect mode matching between the forward and retro beams. We can

expand these terms to order r2

V

ER
=

s

2

(

1

w2
1

+
1

w2
2

)

r2 − s

2
√
α

w2

w3
1

r2 − s
√
α

2

w1

w3
2

r2 + se
−r2

(

1

w21
+ 1

w22

)

cos2(kz). (C.57)

The last term, the lattice potential, is coupled to the Gaussian envelope of the beam. One effect of the

Gaussian envelope is that the lattice depth decreases radially. For example, 20µm off-center (w1 = w2 =

120µm), the lattice depth is 5% less than in the middle. In terms of Hubbard parameters, a 5% decrease

in lattice depth corresponds to an ≈10% increase in t and a 2% decrease in U . The Gaussian envelope

also forms a harmonic potential for atoms trapped in the lattice minima. Along the z direction, in the

tight-binding limit (§2.3.2), the atomic wavefunction is a Wannier function (Eqn. 2.71). The radial energy

shift of the Wannier function is

ε

ER
= s e

−r2

(

1

w21
+ 1

w22

)

∫

dz |w(z)|2 cos2(kz), (C.58)

For red-detuned lattices, this energy shift is equivalent to a confining harmonic potential with trap frequency

ω2 =
2sER

m

(

1

w2
1

+
1

w2
2

)(

1 − 1

2
√
s

)

, (C.59)

and for blue-detuned lattices the harmonic potential is deconfining with frequency

ω2 = −
√
sER

m

(

1

w2
1

+
1

w2
2

)

. (C.60)

The blue-detuned lattice deconfinement is weaker than the red-detuned confinement because in the blue-

detuned lattice the Wannier functions are peaked in the minima of the beam intensity. The overall red-
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detuned lattice trap frequency is

mω2

sER
= 2

(

1

w2
1

+
1

w2
2

)(

1 − 1

2
√
s

)

+
1√
α

w2

w3
1

+
√
α
w1

w3
2

−
(

1

w2
1

+
1

w2
2

)

. (C.61)

The first term is valid for all lin-lin lattices, however, the last three terms are only valid for a π̂− π̂ lattice or

large detunings. These terms represent the residual dipole trap formed because of mode mismatch between

the forward and retro beams. In general, they will have some vector shift contribution. When the beams

are perfectly matched (α = 1, w1 = w2), the last three terms cancel.

For the spin-dependent lin-⊥-lin lattice, the confinement has a slightly different form because the lattice

is a combination of red and blue detuning. For 87Rb atoms and λ = 790nm, the lattice is exactly half

attractive and half repulsive, so the confinement from the lattice term is

ω2 =
sER

m

(

1

w2
1

+
1

w2
2

)(

1 − 1√
s

)

. (C.62)

C.4 Heating

Energy diffusion due to spontaneous scattering (§B.8) is a fundamental source of heating in optical potentials.

The energy transferred to the atomic mechanical degrees of freedom from the trapping beam per unit time

is given generally by Eqn. B.125. In this section, we will compute this rate for several lattice geometries.

For the dipole trap this rate is essentially given by the plane wave heating rate Eqn. B.129. There is

also technical heating, e.g., due to intensity and vibration noise [77]. In principle, technical noise can be

eliminated, whereas scattering is an unavoidable consequence of the optical potential.

C.4.1 Scalar Lattice Heating

For the case of two lattice beams intersecting at an angle (§C.1.1), the electric field is given by Eqn. C.2 and

the intensity by Eqn. C.4. The gradient of the electric field is

~∇E(x, y) = E0ike
ik(cos(α)y+sin(α)x)

[

sin(α)
(

1 − e−2ik sin(α)x
)

x̂+ . . .

cos(α)
(

1 + e−2ik sin(α)x
)

ŷ
]

, (C.63)

|~∇E(x, y)|2 = 4|E0|2k2
[

sin2(α) sin2(k sin(α)x) + cos2(α) cos2(k sin(α)x)
]

. (C.64)

The heating rate is proportional to

[

|E|2 +
|∇E|2
k2

]

= 4|E0|2
[

sin2(α) sin2(k sin(α)x) + (1 + cos2(α)) cos2(k sin(α)x)
]

, (C.65)

= 4|E0|2
[

sin2(α) + 2 cos2(α) cos2(k sin(α)x)
]

. (C.66)

The full heating rate is

Ė = 4ERΓ3/2I0Hsc

[

sin2(α) + 2 cos2(α) cos2(k sin(α)x)
]

(C.67)
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where Hsc is defined by Eqn. B.126. The ratio of the heating rate to lattice depth in terms of d = λ/2 sin(α),

λ, and the lattice depth Vlatt is

Ė

Vlatt
= ERd

[

1 + 2

(

(

2d

λ

)2

− 1

)

cos2(k sin(α)x)

]

Γ3/2Hsc

Vsc
(C.68)

where ERd
is the recoil energy for a photon of λ = 2d.

Although Eqn. C.68 depends on position, the atoms are essentially localized to particular values of x by

the lattice potential. For red-detuned lattices, the atoms are localized to x = nπ[k sin(α)]−1 (n is an integer),

and for blue-detuned lattices x = (1+2n)π[2k sin(α)]−1. For 87Rb, Fig. C.4 illustrates the wavelength which

minimizes Eqn. C.68 for a lattice of spacing d. When the retro wavelength is close to resonance, the heating

rate is lower if we use an angled blue-detuned lattice. However, outside this range it is optimal to always use

a retro configuration. The absolute lowest ratio of heating rate to depth is achieved for large red-detunings.

For large-detunings and a retro-reflected lattice Eqn. C.68 simplifies to

Ė

Vlatt
= ERd

ΓHsc

Vsc
, (C.69)

' ERd
Γ

(

λ0

λ

)3 ∣
∣

∣

∣

1

∆
+

1

ω0 + ω

∣

∣

∣

∣

. (C.70)

As λ→ ∞, the heating rate to depth can be made arbitrarily small.

C.4.2 Lin-θ-Lin Lattice Heating

For the general lin-θ-lin retro-reflected lattice we need to use the full heating rate (Eqn. B.128)

Ė = ERΓ3/2

[

HscI

(

1 +
1

k2

∣

∣

∣

∣

∇E
E

∣

∣

∣

∣

2
)

+Hv(gFmF )
∑

q

qIq

(

1 +
1

k2

∣

∣

∣

∣

∇Eq

Eq

∣

∣

∣

∣

2
)]

. (C.71)

To calculate the vector term use our general notation from §C.2. The square of the gradient for the σ̂+

projection of the field is

∇Eσ+

E0
= ikγeikz − ik(cos(θP )γ + sin(θP )η)e−ikz, (C.72)

|∇Eσ+ |2
|E0|2k2

= |γ|2(1 + cos2(θP )) + sin2(θP )|η|2 − 2|γ|2 cos(θP ) cos(2kz) −

2 sin(θP )|γ||η| cos(2kz + θγ − θη) + 2 cos(θP ) sin(θP )|η||γ| cos(θγ − θη). (C.73)
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(a)

(b)

Figure C.4: (a) Wavelength which minimizes Eqn. C.68, the ratio of heating to lattice depth, for a 87Rb scalar
lattice of spacing d. (b) Heating rate to depth in the retro-reflected lattice versus the optimal lattice. For
these plots we only consider the D1 and D2 transitions.
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Using the result for Iσ+ given by Eqn. C.24

1

|E0|2
(

|Eσ+ |2 +
|∇Eσ+ |2

k2

)

= |γ|2(1 + cos2(θP )) + |η|2 sin2(θP ) + 2|γ||η| sin(θP ) cos(θP ) cos(θγ − θη) +

((((((((((
2|γ|2 cos(θP ) cos(2kz) +

(((((((((((((((
2|γ||η| sin(θP ) cos(2kz + θγ − θη) +

|γ|2(1 + cos2(θP )) + sin2(θP )|η|2 −((((((((((
2|γ|2 cos(θP ) cos(2kz) −

(((((((((((((((
2 sin(θP )|γ||η| cos(2kz + θγ − θη) +

2 cos(θP ) sin(θP )|η||γ| cos(θγ − θη), (C.74)

= 2|γ|2(1 + cos2(θP )) + 2|η|2 sin2(θP ) +

4 cos(θP ) sin(θP )|η||γ| cos(θγ − θη). (C.75)

Since the same term for σ̂− is given by making the substitution θγ → −θγ and θη → −θη

(

|Eσ+ |2 +
|∇Eσ+ |2

k2

)

=

(

|Eσ− |2 +
|∇Eσ− |2

k2

)

(C.76)

and the vector term cancels to zero because of the sum over q.

To calculate the heating for the scalar term start from the electric field,

E = E0(e
ikz + cos(θP )e−ikz)x̂+ E0 sin2(θP )e−ikz ŷ (C.77)

where x̂ is defined along the forward polarization. The gradient squared is

|∇E|2
|E0|2k2

= 1 + cos2(θP ) − 2 cos(θP ) cos(2kz) + sin2(θP ), (C.78)

= 2(1 − cos(θP ) cos(2kz)), (C.79)

and so

(

|E|2 +
|∇E|2
k2

)

= 2|E0|2(1 + cos(θP ) cos(2kz)) + 2|E0|2(1 − cos(θP ) cos(2kz)) (C.80)

= 4|E0|2. (C.81)

Substituting into the full heat equation

Ė = 4ERΓ3/2I0Hsc (C.82)

which is the exact same expression as the heating in the scalar retro-reflected lattice, Eqn. C.67. Heating in

the lin-θ-lin lattice is independent of mF gF , θP or k̂ · B̂. For large detunings, the heating rate scales as ∆−2.

However, unlike the scalar lattice depth, the vector lattice depth scales as ∆−2 and not as ∆−1. Therefore,

the heating rate to lattice depth does not decrease at large detunings.
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C.4.3 Impact of Heating on Hubbard Experiments

To understand the relevance of the heating rate derived above (Eqn. C.82) it must be compared against the

energy and timescales in our experiments. For simulating the Hubbard model these energy and timescales

are associated with combinations of the Hubbard parameters t and U . A full understanding of the timescales

is difficult, but an estimated figure of merit is presented in Ref. [36]. It is also possible that the heating rate

is not the appropriate benchmark and instead we want to look at the related rate of entropy generation.

Calculations to this effect are presented in Ref. [37].

C.5 Calibrating the Lattice with Diffraction

(a)

(a)

0 kħ

2 kħ

-2 kħ
(b)

Figure C.5: Calibrating lattice depth using diffraction. (a) Measured ratio of atoms in the ±2~k diffraction
peaks (inset) to the number of atoms in the central (undiffracted) peak as a function of the pulse time at
fixed power. The data is fit to Eqn. C.87 to determine the bandgap, which is related to the lattice depth
using a numerical bandstructure calculation. (b) Lattice depth measured using the procedure in (a) for two
different pulse powers (in units of photodiode voltage). The slope of the fit is the calibration.

Diffraction is used to calibrate the depth of the lattice to the experimentally measured beam power.

After preparing a BEC in the harmonic trap (§3.1) we pulse the lattice along one direction for a short time

(< 100µs). The atoms are then released and imaged after TOF. Clear diffraction peaks are visible at ±2~k

(see Fig. C.5). The number of atoms in the diffraction peaks as a function of the pulse time τ is used to

measure the lattice depth for a fixed pulse power.

The lattice eigenstates form a bandstructure (§2.3.1) and when we turn on the lattice quickly with

respect to the band gap, the atoms are projected into the various bands. Because of parity, a BEC with

zero momentum (p = 0) can only project into even bands with zero quasimomentum (q = 0). We assume

that the initial state projects predominantly into the ground (n = 0) and second-excited (n = 2) bands and

therefore we can treat the time evolution as an effective two-level system. The evolution of the state after

pulse time τ is

|Ψ(τ)〉 = γ0|q0, n0〉 + eiω02τγ2|q0, n2〉 (C.83)
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where ~ω02 is the bandgap between n = 0 and n = 2 and γ0, γ2 are the BEC projections onto the band

states |q0, n0〉 and |q0, n2〉. The lattice states can be decomposed into a series of momentum states at 2j~k

(j is an integer)

|n〉 =
∞
∑

j=−∞
αn,j |p = 2j~k〉. (C.84)

After the pulse, the probability to be in p = 0 is

|〈p = 0|Ψ(τ)〉|2 = |γ0α0,n0
+ eiω02tγ2α0,n2

|2,
= |γ0α0,n0

|2 + |γ2α0,n2
|2 + 2γ0γ2α0,n0

α0,n2
cos(ω02t), (C.85)

= A+B cos(ω02t). (C.86)

To normalize to the total number we look at the diffraction ratio, the number of atoms in both diffraction

peaks at ±2~k over the number of atoms in the original peak at 0~k. We assume that the main momentum

components are 0,±2 so that
N2~k +N−2~k

N0~k
=

1 − [A+B cos(ωt)]

A+B cos(ωt)
. (C.87)

Fig. C.5 shows diffraction data fit to Eqn. C.87. A band structure calculation then converts the fit parameter

ω into the lattice depth.

The pulse power must be constant from shot-to-shot during the calibration, but the diffraction pulses are

too fast for active feedback. For accurate calibration we post-select diffraction runs where the pulse power

was within an acceptable range (typically ±5% of the average value). To get the overall calibration we take

2–3 diffraction data sets at different overall pulse powers. Then we fit the lattice depth versus pulse power

data to a line with the intercept fixed to zero, as shown in Fig. C.5 (b).

C.6 Alignment and Setup of the Spin-Dependent Lattice

(a) (b)

Figure C.6: Optimizing the (a) wavelength and (b) waveplate angle for the spin-dependent lattice
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To align the spin-dependent lattice (§3.1.2) we follow the same basic procedure for the spin-independent

lattice outlined in [41] except for a few added steps. To start we do a coarse alignment of the forward and

retro beams using fluorescence. Next, we do fine alignment of the forward beam by blocking the retro and

loading the atoms into the combined dipole plus lattice potential. The forward beam is aligned when the

position of the atoms does not change as the lattice beam is turned on. However, for the spin-dependent

lattice we cannot test this alignment at λlatt ≈ 790nm because there is no dipole force. Instead, we first align

at λ = 782nm where the dipole force is strong and attractive, and then align at λ = 785nm to be as close as

possible to λlatt. Empirically, the change in alignment over the 5nm change in wavelength is negligible.

Next, we need to determine the exact value of λlatt where the scalar light shift disappears. The most

sensitive measurement of this shift is diffraction using the lin-lin lattice. First we align the lin-lin retro

beam at λ = 785nm by maximizing diffraction. Then we look at the diffraction ratio versus λ. If the lattice

is perfectly lin-lin, it is state-independent. However, since the polarization gets slightly rotated as it goes

through the glass vacuum cell, the lattice is not perfectly lin-lin and is therefore slightly state-dependent.

Fortunately, the mF = 0 state is only sensitive to the scalar light shift. Therefore, we use the state |1, 0〉 to

probe diffraction versus λ; the data is shown in Fig. C.6. Fitting the data to a parabola to get the minima,

the wavelength is λ = 790.01(1)nm. The theoretical value is obtained by setting Eqn. B.62 to zero, ignoring

counter-rotating terms,

λ =
2λ1/2Γ1/2λ

4
3/2 + λ3/2Γ1/2λ

4
1/2

2Γ3/2λ
4
3/2 + Γ1/2λ

4
1/2

,

= 789.998(7)nm, (C.88)

using values from [193]. Including the counter rotating terms we get λ = 790.028(7)nm. Therefore, our mea-

sured value is in good agreement with the theoretical values. Our experimental value also has an unknown

systematic error from our wavemeter, which has not been calibrated in several years.

Once we determine the correct wavelength, we put in the quarter-waveplate (see Fig. 3.1) and maximize

the diffraction versus waveplate angle. At the optimal angle, we realign the retro to maximize diffraction.

These last two steps are iterated in case there is some small cross-talk between the waveplate angle and

retro alignment. In practice, the biggest jump in alignment is when the waveplate is first put into the retro

path, and further alignment is fairly insensitive to the angle. Typical data for the waveplate optimization is

shown in Fig. C.6.

C.7 X-Dipole Trap Alignment and Heating

In the 87Rb apparatus, part of the trapping potential is a crossed dipole trap (“x-dipole”) as described in

§3.1. In addition the atoms are also trapped by a magnetic quadrupole potential. The setup is shown in

Fig. C.7. The alignment procedure for the forward beam is given in [41], and so here we will assume that

the forward beam is aligned and we will summarize the additional steps required to align the crossing beam.

Coarse alignment of the crossing beam is the same as the forward beam; resonant light is overlapped along

the beam path and the beam is imaged in the cell via fluorescence.
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Figure C.7: Schematic of the x-dipole trap setup. The forward beam is sent through the side of the science
cell at 45◦ and focused to the atoms. After the cell, the forward beam is collimated and recycled around
before being focused to the atoms at as close to a 90◦ angle to the forward beam as possible given the
physical constraints (crossing beam). Note that the crossing and forward beams are not in the same plane
as drawn here. The crossing beam is coming up out of the page and enters the cell from the bottom (see
Fig. 3.1). The crossing beam is rotated by a half-waveplate to minimize heating (see main text). The entire
setup is only intensity servoed on the forward beam, so the ratio of crossing to forward beam power is fixed.
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Fine alignment proceeds in two stages. In stage 1 we load atoms into the x-dipole plus magnetic

quadrupole trap and then significantly relax the quadrupole gradient and increase the dipole power (to

compensate for gravity). If the beams are not crossing, then the atoms will significantly expand along the

axis of the forward beam, which provides almost no confinement. Once the crossing beam starts to become

aligned the size of the cloud shrinks and localizes to the crossing region. The trap is free to form anywhere

along the forward beam axis, so we shift the crossing beam until the atoms remain near the original position.

In the final stage, the ultra-fine alignment, we keep the quadrupole trap on to balance gravity, and measure

the dipole trap depth at constant beam power. First, with the crossing beam blocked, we ramp down the

dipole trap linearly in ' 3s to a depth just below the point where there are no remaining atoms. Then, we

unblock the crossing beam and optimize the atom number with alignment. For best results we iterate the

final depth (i.e., once the atom number is optimized, repeat the optimization with a lower dipole depth).

To minimize heating, we rotate the polarization of the crossing beam so that there is no residual inter-

ference between the beams. Because of the angle that the beam enters the cell, there is significant coupling

between crossing beam power at the atoms and the waveplate angle. We cannot simply optimize number

at a certain point in the evaporation cycle versus waveplate angle because more atoms may be transferred

if the crossing beam has more power. Instead, we looked at cloud width and atom number as a function of

the hold time immediately after the transfer into the x-dipole trap for different waveplate angles.
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Appendix D

Characterizing Trap Frequencies for
the Lattice System

In our experiments, the atoms are trapped in a harmonic potential

V (~x) =
1

2
M

[

∑

i

ω2
i (~x · ω̂i)

2 +
∑

i

ω2
ki

[si]
(

~x− (k̂i · ~x)k̂i

)2
]

, (D.1)

which is a combination of a fixed trap (magnetic and/or optical-dipole) and confinement from the lattice

beams (as described in §C.3). The fixed trap has principle axes ω̂i and trap frequencies ωi. Each lattice

beam provides harmonic confinement in the direction orthogonal to the wavevector k̂i with a trap frequency

ωki
[si], which depends on the lattice depth (si). Calculating the trap frequencies and principle axes of the

full harmonic potential (Eqn. D.1), as a function of the lattice depth, is critical for comparing experiment

and theory. To do this calculation, we must diagonalize Eqn. D.1, which requires full knowledge of ω̂i, ωi

and k̂i, ωki
[si]. However, our ability to directly measure these quantities is limited since we can only observe

trap oscillations projected onto our 2D imaging plane(s). Additionally, the bare trap frequencies entering

into Eqn. D.1 are obscured when the atoms are loaded into the lattice by the effective mass, which is a

function of lattice depth, and interaction effects (e.g., §6.1). This appendix will summarize the series of trap

frequency measurements that can be used to fully characterize Eqn. D.1. We then compare to our heuristic

calculation for the geometric mean trap frequency as a function of lattice depth,

ω̄ =

√

(ω1ω2ω3)
2/3

+
8sER

mw2
(D.2)

where w is an empirical beam waist determined via this calculation (w = 120µm).

D.1 Experimentally Measuring the Trap Frequency

To measure the trap frequency we create a BEC, give it a “kick”, and let the BEC oscillate in the trap for

time τ . Then we measure at the velocity by imaging after TOF (§4.1.2). A sample oscillation is shown in

Fig. D.1. In the following we detail several of the methods for kicking the atoms in the 87Rb apparatus. We

use the coordinate system defined in Fig. 3.1.

D.1.1 87Rb Apparatus Kicks

To start motion of the BEC in the trap we need to provide an impulse to the atoms by applying a uniform

force for a short period of time. One method for applying this impulse is to shift the trap position. For a

harmonic trap this is equivalent to a uniform force ~F = mω~x0 where ~x0 is the displacement vector. We have
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Figure D.1: Example of a trap oscillation measurement along ẑ in the 87Rb apparatus using a Stern-Gerlach
coil kick. The curve is a fit to a single frequency sinusoid with amplitude, offset, frequency and phase as free
parameters.

several tools at our disposal to create this displacement depending on the particular type of trap.

The Stern-Gerlach coil1, a single many-turn coil used to create a field gradient in the direction of gravity

(ẑ), can be pulsed on for a short amount of time. The gradient along ẑ from this coil applies a uniform

force on the atoms in that direction, proportional to gFmF . The coil also creates a bias field, which can

indirectly provide an impulse to the atoms. If the atoms are initially trapped in a quadrupole field, then the

bias field from the AG coil shifts the quadrupole zero. This generates a force on the atoms because they are

off-center in the quadrupole field. A typical kick size for the AG Coil is a few amps for a few ms. An example

of an AG coil kick can be seen in Fig. D.1. The AG coil is best used for measuring the trap frequency along ẑ.

The bias coil, a coil for producing uniform fields along ŷ, can be used to induce a kick by also shifting

the zero position of the quadrupole field. If the quadrupole field is off then they can both be pulsed on to

provide a kick in the ŷ direction. If the bias coil is off before the pulse, then the time and current specified

in the control program will not be the actual time and current due to windup lag in the servo. Therefore,

it is important to directly monitor the coil current during a kick. Specifying “10ms” and “8.5A” in the

program empirically works well when atoms are confined in the single-beam plus magnetic quadrupole trap.

The imaging coil, a coil for generating a uniform field for imaging along x̂, can be used to generate a similar

kick along x̂.

Changing the frequency of the dipole beam servo AOM changes the angle of the dipole beam before it

hits the focusing lens which in turn shifts the position of the dipole beam at the atoms. By quickly shifting

the position of the beam this imparts a force on the atoms along ẑ. An advantage of the dipole trap kick

is that unlike all the previous methods which utilize magnetic fields, this kick is state independent. If the

1This coil is also referred to as the Anti-Gravity (AG) coil.
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dipole trap is supporting against gravity (e.g., in the x-dipole trap with the magnetic quadrupole off), then

a kick can be generated along ẑ by quickly increasing or decreasing the beam power.

D.1.2 Measuring Along a Non-Principle Axis
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Figure D.2: Two frequency oscillation after giving a kick along ŷ and projecting the velocity along the x̂
direction. The curve is a two-frequency fit.

Imaging the atoms after TOF (§4.1.1) projects the 3D motion in the trap onto a 2D imaging plane. In

the 87Rb apparatus we can measure projections onto the xy and xz planes. As an example for the type of

data we expect, consider the following potential,

V =
1

2
mω2

zz
2 +

1

2
mω2

1

(

x+ y√
2

)2

+
1

2
mω2

2

(

x− y√
2

)2

. (D.3)

If we apply force along ŷ then the atoms will start with a non-zero velocity along ŷ. The initial conditions

are ~x(t = 0) = 0 and ~v(t = 0) = v0ŷ. If we solve the equations of motion, then

z(t) = 0, (D.4)

x(t) + y(t)√
2

=
v0√
2ω1

sin(ω1t), (D.5)

x(t) − y(t)√
2

= − v0√
2ω2

sin(ω2t), (D.6)

so if we project onto yz by imaging we get

y(t) = v0

(

sin(ω1t)

ω1
+

sin(ω2t)

ω2

)

. (D.7)

z(t) = 0 (D.8)

Therefore in a non-principle direction we will see a multi-frequency curve and fitting we can measure two
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frequencies. An example of a multi-frequency curve measured experimentally is presented in Fig. D.2. To

measure the three principle frequencies of the full trap we take curves similar to the data in Fig. D.2 using

different kicks until we identify three unique frequencies.

D.2 Parameterizing the Fixed Trap

The fixed trap consists of a combination of separate magnetic and/or optical potentials. We know the

trap axes of these individual traps based on their symmetries and the geometry of the physical setup. To

calculate the axes (required for adding in the lattice confinement) and frequencies of the full trap, we need

to know the frequencies of these individual traps. For certain traps we can calculate the trap frequencies

theoretically, however empirical measurements are preferred. The complication is that the trap frequencies

that we measure are a convolution of all the individual traps. To separate out the individual contributions,

we need to vary the relative strengths of these traps and model how the full trap frequencies should change.

D.2.1 Example: 87Rb Apparatus Hybrid-Dipole Trap

Figure D.3: Parameterizing the hybrid-dipole trap by fitting the measured principle frequencies to
Eqns. D.12, D.13 and D.14 as a function of dipole trap power. For the fit to ω1 (top-left) we get A = 1.54(2).
For the fit to ω2 (top-right) we get ωA = 16(4), ωB = 49(9), A = 1.4(5). For the fit to ω3 (bottom) we get
ωB = 39.7(1.4), A = 1.44(6). This fit was not sensitive to ωA so it was set to the value from the ω2 fit.

The hybrid-dipole trap consists of a magnetic quadrupole field (strong axis along ŷ) and a single horizon-

tally propagating dipole beam (λ = 1064nm). The quadrupole field is set so that the gradient along ẑ just
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balances gravity for atoms in the F = 1,mF = −1 state. Therefore, all the confinement along ẑ is provided

by the dipole trap. The dipole beam sets the position of the trap along ẑ, which is away from the quadrupole

zero so that there is a finite magnetic field and no Majorana losses. Because we are away from the center of

the quadrupole field, the quadrupole field provides harmonic confinement along x̂ and ŷ. The angle of the

dipole beam with the x̂ and ŷ axes is almost perfectly 45◦ since the beam is physically constrained by input

and output apertures. Therefore, we can model the trap as (m = 1)

V (~x) =
1

2
ωAx

2 +
1

2
ωBy

2 +
1

2
APz2 +

1

4
AP (x+ y)2 (D.9)

where ωA, ωB (the quadrupole trap frequencies) and A are free parameters. A is a function of the dipole

beam shape, wavelength and power loss from the point where the power (P ) is measured.

We can rewrite Eqn. D.9 into a diagonalized form,

U =
1

2
ω2

1z
2 +

1

2
ω2

2(cosφx+ sinφy)2 +
1

2
ω2

3(sinφx− cosφy)2 (D.10)

The physical parameters in Eqn. D.9 are related to ω1, ω2, ω3 and φ as,

tan(2φ) =
AP

ω2
A − ω2

B

(D.11)

ω1 =
√
AP (D.12)

ω2 =
1

2

√

ω2
A + ω2

B +AP −
√

(AP )2 + (ω2
B − ω2

A)2 (D.13)

ω3 =
1

2

√

ω2
A + ω2

B +AP +
√

(AP )2 + (ω2
B − ω2

A)2 (D.14)

From these equations we see that, as expected, if P → ∞, the dipole trap sets the principle axes (φ = π/4).

In Fig. D.3 we fit the frequencies measured in the experiment, as we vary the dipole beam power P ,

to Eqns. D.12, D.13, and D.14 with A, ωA, and ωB as free parameters . From the fit to the vertical trap

frequency we get that A = 1.54(2), and from the two horizontal frequencies we get A = 1.4(5), 1.44(6).

This agreement is reasonable and also very good among the two horizontal curves. For the values of ωA

and ωB there is only one reliable value for ωA (16(4)Hz) and for ωB we measure 49(9)Hz from one fit and

39.7(1.4)Hz from the other. Although the error in these parameters is high, we are only measuring these

parameters to determine the principle axes (defined by the angle φ). Once we have determined the principle

axes, the frequencies along those axes are from the empirical trap frequency measurements, which typically

have < 1% error. Ultimately, the final frequencies of the full trap (fixed plus lattice) will be only weakly

dependent on φ.

D.3 Parameterizing the Lattice Confinement

The lattice is created by retro-reflecting a focused laser beam as discussed in §C.3.2. Therefore, the potential

is characterized by the forward beam and retro beam power P and αP (α ≤ 1), the beam waists w1 and w2,
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the polarizations, and the detuning. For a 1D spin-independent, red-detuned lattice with wavevector along

k̂i, the harmonic confinement is given by Eqn. C.61 (dropping 1/
√
s terms),

Vlatt,i(~x) =
sER

2

[(

1

w2
1

+
1

w2
2

)

+
w2√
αw3

1

+
√
α
w1

w3
2

]

(

~x− (k̂i · ~x)k̂i

)2

. (D.15)

We know k̂i well from the geometry of the physical setup. The lattice depth s is independently measured

using diffraction. Therefore, to fully characterize the lattice confinement we need to measure α, w1, and w2.

These are fixed quantities that only need to be measured once.

To measure α we need the ratio of the forward and retro beam powers, however, there are two complica-

tions. First, P refers to the power when the beam is in vacuum, so it cannot be directly measured. Second,

the retro beam cannot be measured without blocking the forward beam. To overcome to the first problem

we measure the power directly before (PB) and after (PA) the glass vacuum cell and assume the main loss

is due to Fresnel reflections at the four surfaces. Since the Fresnel losses are polarization dependent, they

change slightly after each surface as the polarization rotates. However, this effect is small and the forward

power is well-approximated as P1 = PB ×
√

PA/PB . The retro beam travels through several optical ele-

ments after the vacuum cell (mirrors and lenses) before being reflected. Losses in these are characterized by

measuring the power just before the retro-mirror, PR. Then the retro power at the atoms is approximately

P2 = PR×PR/PA×
√

PA/PB . The ratio of retro to forward beam power at the atoms is α = PR/PB×PR/PA.

To measure w1 and w2 we can use two more pieces of information. First, we can measure the lattice

power required for a certain lattice depth. The lattice depth to power ratio (ξ = P/sER) is a fixed constant.

Then, the product of beam waists is (Eqn. C.54)

w1w2 =
Vsc8

√
α

π
ξ. (D.16)

Next, we can measure the trap frequency with the retro blocked and the power set so that if we unblock the

retro we measure a lattice depth s0. The trap frequency from the lattice beam with the retro blocked is

ω2
bl = s0ER

w1w2√
αw4

1

. (D.17)

We cannot directly measure ωbl because we need to add the forward lattice beam dipole trap to the fixed

trap given by Eqn. D.10. After measuring the principle axes of the full trap we can use the methods of §D.4

to solve for ωbl. Substituting Eqn. D.17 into Eqn. D.15

Vlatt,i(~x) =
1

2

s

s0
ω2

bl

[

√
α
w1

w2
+ 1 +

√
α

(

w1

w2

)3

+ α

(

w1

w2

)4
]

(

~x− (k̂i · ~x)k̂i

)2

, (D.18)

so we just need to scale the blocked frequency measurement by s/s0 and a fixed (with respect to lattice

depth) proportionality constant. The ratio of waists is

(

w1

w2

)2

=

(

π

8Vscαξ

)(

s0ER

ω2
bl

)

(D.19)
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If we have perfect mode matching (α = 1, w1 = w2), then

Vlatt,i(~x) =
1

2

s

s0
(2ωbl)

2
(

~x− (k̂i · ~x)k̂i

)2

, (D.20)

and the confinement can be determined from a single blocked retro measurement.

D.4 Trap Plus Lattice Confinement

Using the fixed trap axes and frequencies ({ωi, ω̂i}) given by Eqn. D.10 and the lattice wavevectors and trap

frequencies ({k̂i, ωki
(si)}) we can determine the new trap axes and frequencies as a function of the lattice

depth using Eqn. D.1. A coordinate system defined along the lattice wavevectors x̃ = (k̂1 · x̂), ỹ = (k̂2 · x̂),
and ẑ = (k̂3 · x̂) is natural to use because these are the principle harmonic axes in the s→ ∞ limit. We can

write the full harmonic potential in matrix form as
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(D.21)

where Vtrap is the fixed trap. The eigenvalues of this matrix are the principle trap frequencies squared.

D.4.1 Example: 87Rb Apparatus Hybrid-Dipole and λ = 812nm Lattice

In the 87Rb apparatus the lattice beam wavevectors are given by Eqn. 3.4 and the fixed trap potential is

given by Eqn. D.10. Using the wavevectors as the coordinate system the full potential is

U =
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2. (D.22)

For a dipole power of P = 500mW the measured fixed trap frequencies are ω1 = 2π×34.8Hz, ω1 = 2π×27Hz,

and ω1 = 2π × 48.65Hz. From the fits to the model potential (Eqn. D.9) as a function of dipole power

(Fig. D.3), we infer that φ = −0.329.

To determine the lattice parameters we use the procedure outlined in §D.3. To measure the frequency of

the individual retro-blocked lattice beams we invert Eqn. D.22. The results are summarized in Table D.1.

Using the fixed trap and lattice parameters we calculate ω̄ as a function of the lattice depth in Fig. D.4.

We compare to the heuristic geometric mean frequency (Eqn. D.2) with w = 120µm. The heuristic calculation

is good to within 2% for s ≤ 15 and 3% for s ≤ 30. Therefore, the full calculation validates the heuristic

approach.
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P/s (mW/ER) α νmeas (s = 20) νlatt νcalc (s = 20) w1(µm) w2(µm)
Beam #1 1.57 0.46 {36.1, 52.1, 59.5} 40.62 {36.9, 51.5, 59.9} 108 170
Beam #2 1.15 0.61 {27.9, 41.4, 51.7} 21.72 {28.6, 41.2, 50.1} 136 114
Beam #3 1.88 0.88 {36.9, 40, 52.7} 26.9 {36.1, 39.9, 53.5} 138 219

Table D.1: Lattice results for λ = 812.03nm. P is the forward beam power at the atoms and α is PR/P
where PR is the retro beam power at the atoms. ωmeas are the trap frequencies measured with the lattice
on at s = 20 and the retro blocked. ωlatt is the lattice beam frequency with the retro blocked at s = 20 as
calculated from Eqn. D.22 to get the total trap frequencies ωmeas. For comparison, ωcalc are the calculated
trap frequencies given ωlatt. From the powers and trap frequency we calculate the forward and retro beam
waists w1 and w2.

(a) (b)

Figure D.4: (a) Calculation of the principle trap frequencies versus lattice depth using Eqn. D.22 and
the experimentally measured trap and lattice parameters summarized in Table D.1. These frequencies are
compared to the naive calculation, Eqn. D.2 using w = 120µm. (b) The error in the naive calculation versus
lattice depth. By definition the error must be zero when there is no lattice. For the range of lattice depths
considering in this thesis, the error is less than 2%.
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Appendix E

K 4S → 5P Laser System and
Magnetic-Optical Trap

To achieve single-site imaging (§3.2.10,§4.1.5) for our 40K Fermi-Hubbard simulator (§3.2), we plan to image

on the 4S1/2 → 5P3/2 transition of potassium at 404.5nm (see state diagram, Fig. A.1). By imaging on a

transition with a smaller wavelength, versus the standard D2 transition at 767nm, we can improve the limit

of our resolution by almost a factor of two. However, to image at 405nm requires developing a new set of

locked lasers at this novel wavelength. Fortunately, this task is simplified by the availability of inexpensive

GaN diode lasers in the 395-410nm range. This appendix describes our laser system capable of generating

30mW of single-mode, single-frequency light at 405nm.

Resolution is not the only consideration for single-site imaging. We also need to have high signal-to-noise,

which implies collecting as many scattered photons as possible in comparison to spurious counts from e.g.,

detector dark counts and background scattering. Even absent these sources, there is fundamental photon

shot noise. To collect a large number of photons we need high scattering rates and long imaging times.

High scattering rates are obtained by using transitions with large linewidths. The D2 transition has the

largest linewidth Γ4S→4P = 2π× 6.04MHz, which is more than thirty times larger than the linewidth of the

4S → 5P transition at 405nm, Γ4S→5P = 2π × 185kHz (the total linewidth of the 5P state from all decay

channels is Γ = 2π × 1.19MHz). On the other hand, narrow linewidths are advantangeous for long imaging

times since we need to simultaneously cool with the excitation light. For the simplest two-level cooling the-

ory (§B.8.2) the minimum temperature TD (the Doppler temperature), is ~Γ
2kB

(Eqn. B.143). This suggests

a significant temperature improvement for 405nm cooling. Yet, small Γ is not always beneficial because in

many alkali atoms, such as 87Rb, the D2 cooling is not limited to TD due to sub-Doppler processes. However,

in 40K sub-Doppler is weak [172, 303] or difficult to observe [24]. Since the lattice depth during imaging

needs to be at least several times the laser cooling temperature, 405nm imaging on the 4S → 5P transition

should greatly reduce the power demands of the lattice and allow for longer imaging times.

To test our premise for imaging and cooling on the 4S → 5P transition we explored 405nm laser cool-

ing and magneto-optical trapping of 40K in free space with our vapor cell MOT (§3.2.6). In addition,

the predicted cooling benefits may be useful as an enhanced cooling step after the collection MOT stage

to increase the initial phase-space density before evaporative cooling. In fact, this is a standard tech-

nique for earth alkaline atoms, which have narrow, cycling transitions (Γ < kHz), due to intercombination

lines and electric-dipole forbidden transitions. However, unlike narrow line cooling in earth alkaline atoms,

The work presented in this appendix was published in: D. C. McKay, D. Jervis, D. J. Fine, J. W. Simpson-Porco, G. J.
A. Edge, and J. H. Thywissen. Low-temperature high-density magneto-optical trapping of potassium using the open 4S→5P

transition at 405 nm. Phys. Rev. A 84, 063420 (2011). Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Figs. E.2, E.13, E.14, E.15, E.17, and E.18 are reproduced from this publication.
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4S1/2, F = 9/2 → 5P3/2, F = 11/2 in 40K is an open and cascading transition. The 5P3/2 state can decay via

a three-photon cascade to the F = 7/2 ground state, which cannot be excited by the same laser-cooling light.

Still cooling has been demonstrated on the nS ground state to the (n + 1)P excited state in two systems,

He* [89,90] and 6Li [91]. In the case of He*, a MOT on the 2S → 3P transition at 389 nm, which is cascading

but closed, was shown to have a lower two-body loss rate β, lower re-absorption rates, and a larger cooling

force per recoil, resulting in increased density. No reduction in temperature was observed since the He* 2P

and 3P excited states have the same lifetime. In the case of 6Li, a MOT on the open 2S → 3P transition

at 323 nm did have a reduced temperature, but not an increased density. Unlike lithium and metastable he-

lium, potassium has a D-state decay channel that could perturb laser cooling more significantly (see Fig. A.1).

In §E.3 we will describe our cooling and MOT experiment and results. To summarize we start by

accumulating atoms using a standard D2 MOT (4S1/2 → 4P3/2) which has a high capture velocity and

volume. Then we transfer to a blue MOT for ≈ 30ms of cooling and compression. We observe temperatures

as low as 63(6)µK and a 10-fold increase in density. For optimal parameters this translates to an almost 20

times increase in phase-space density.

E.1 4S → 5P Calculation

To understand cooling and imaging on the 4S → 5P transition, in particular to estimate the power required

for our laser setup, we performed a multi-level optical Bloch equation (OBE) calculation; an overview is

discussed in §B.6.2. In the calculation we include all the electronic levels indicated in Fig. A.1 and their

corresponding (2J + 1)(2I + 1) hyperfine levels — a total of 234 individual |n, J, F,mF 〉 states. The OBE’s

form a set of linear equations, ẏ = Ay. To solve, we diagonalize the matrix A so that A = PDP−1 where

D is diagonal, and then y(t) = PeDtP−1y0. To get the steady-state populations we let t → ∞.

To calculate the transition properties (Table A.2), we include a single excitation beam into the calculation

from 4S1/2, F = 9/2 → 5P3/2, F
′ = 11/2. Since the transition is not closed we also need a repump beam

which connects 4S1/2, F = 7/2 → 4P3/2, F
′ = 9/2. We define the steady-state ρee as the total population in

all 5P3/2 states and then we calculate transition properties assuming the two-level formulas. For example, we

define Isat as the intensity required to get 35% of the population into the excited state, which is equivalent

to the two-level definition (Eqn. B.71). To calculate the cross-section we use Eqn. B.75 with the calculated

ρee where Γ is the total scattering rate 2π × 1.19MHz.

For cooling and trapping calculations we include two counter-propagating 405nm cooling beams and

two counter-propagating 767nm repump beams. As discussed in §B.6.2, we split the excited states so that

the two counter-propagating beams couple to different states. This also allows us to separate excitations

caused by different beams, which is important for determining the scattering force1. The state schematic

for the calculation is shown in Fig. E.1. The dashed excitation beams are coming from the left and the solid

excitation beams from the right.

1We ignore the dipole force and coherences that can form between ground states which together can lead to sub-Doppler
cooling mechanisms. This approximation is valid when calculating the force curves at large velocities and displacements. It
may also be valid in all regions because sub-Doppler cooling may be interrupted by the depolarizing effects of the three-photon
cascade. An exact calculation of these effects is beyond the treatment presented in this thesis.
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Figure E.1: State scheme for the 4S → 5P cooling and trapping calculation. The solid blue (red) and
dashed blue (red) lines indicate the cooling (repump) excitation beams. The solid grey lines are the possible
decay paths. For the purposes of the calculation the 5P3/2 and 4P3/2 states have been divided into several
quasi-states as described in §B.6.2. See Fig. A.1 for the transition rates and state energies.

Using the state labeling from Fig. E.1, the total force on the atom is

~F = ~
(

(na − nb)k405Γ5P3/2
+ (naa − nbb)k767Γ4P3/2

)

(E.1)

where k is the wavevector 2π/λ, and the total recoil heating is

Ė = Ėabs + Ėdecay, (E.2)

Ėabs =
~

2

2M

(

(na + nb)k
2
405Γ5P3/2

+ (naa + nbb)k
2
767Γ4P3/2

)

, (E.3)

Ėdecay =
1

2Mc2

∑

i,j<i

niΓi→j(Ei − Ej)
2, (E.4)

where i is a sum over all states and j is a sum over all states to which i can decay. To calculate the force

as a function of the atomic velocity v, we change the effective frequency of the dashed excitation beams in

Fig. E.1 to be ω′ = ω − kv and the solid excitation beams to be ω′ = ω + kv. To calculate the spatially

dependent force due to a magnetic field gradient, we solve for the force at a fixed field by changing the

energy of each mF level due to the Zeeman shift (§A.1). Then the force is ~F (x) = ~F (B = αx). We can do

a similar calculation for the 767nm MOT by only including states up to 4P and having four effective 4P3/2

states (2 cooling, 2 repump). The force curves for both MOTs are shown in Fig. E.2.
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(a) (b)

Figure E.2: Calculated force curves (in units of Mg) versus (a) position at v = 0 and (b) velocity at x = 0
for excitation on the 4S → 5P (blue) and 4S → 4P (red) transitions. For both curves the gradient is
10G/cm, the intensity per beam is Isat/5 (see Table A.2) and the detuning is −Γ/2. For the 405nm data
there is a repump beam at 767nm with 10% of the 404.5nm intensity. Near zero velocity, the damping rate
is γ = 1.8 × 104 s−1 for the red and γ = 6.9 × 104 s−1 for the blue. Near zero displacement, the spring
constant corresponds to an undamped trap frequency ω/(2π) = 730 Hz for the red and ω/(2π) = 650 Hz for
the blue.
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Figure E.3: Temperature versus detuning for cooling on the 4S → 5P transition. The black curve is the full
OBE calculation for I = Isat/50 (the repump intensity is 10% of the cooling beam intensity). The red curve
and blue curves are from the two-level Doppler theory, Eqn. B.141 with Γ = 2π × 1.19MHz. The red curve
is for I � Isat and the blue curve is for I = Isat. Grey lines highlight TD and the Doppler detuning.
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Steady-state laser cooling occurs when the heating and cooling rates are equal,

Ė = −F (v)v. (E.5)

Near v = 0, F (v) = −γv, so

v2 =
Ė

γ
. (E.6)

From equipartition T = Mv2/kB , and so

T =
M

kB

Ė

γ
. (E.7)

In general, T is a function of the detuning and intensity of the cooling and repump beams. At low intensities,

we plot the temperature as a function of detuning in Fig. E.3 and compare it to the two-level theory,

Eqn. B.141. We see that the calculated temperature is slightly lower than the two-level theory because

recoil heating from the three-photon cascade is less than the heating from a single photon kick at the same

total energy. From the calculation the lowest temperature is 23.5µK at ∆ = −Γ/2. This detuning coincides

with the detuning at the lowest temperature in the two-level theory (the Doppler detuning). To demonstrate

the effect of high intensity on temperature, we also plot temperature versus detuning at I = Isat (for the

two-level theory). The minimum temperature is approximately twice as high and occurs at a larger value of

the detuning.

E.1.1 Ionization
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Figure E.4: For each K state, up to 5P3/2, we list the wavelength corresponding to a photon with the
minimum ionization energy.

Fig. E.4 lists the wavelength of a photon with the minimum photoionize energy for the various states

of K. In a D2 MOT, where atoms are in the 4S and 4P levels and there is only 767nm light, there is no

photoionization; 767nm photons are not sufficient to ionize the 4P state. However, in the 4S → 5P MOT,

the 405nm cooling light can ionize all excited state levels and the 767nm repump light can ionize atoms in
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the 5P level.

The photoionization rate from state i due to a beam of intensity I and frequency ω is [304]

R = ρiiσi

(

I

~ω

)

(E.8)

where σi is the photoionization cross-section for state i and ρii is the state population. There are no measured

cross-sections for the ionization of the 5P states of K, just for the equivalent state, 6P, of Rb [305–307].

However, the K 5P and Rb 6P values should be comparable since the ionization cross-section for the K 4P

state [308,309] is within a factor of 2–3 of the Rb 5P cross-section [304]. Using σ = 2×10−18cm2, measured for

Rb 6P at λ = 350nm [307], we estimate the 404.5nm ionization rate of 5P3/2 to be 0.5s−1 if all the atoms are

in the 5P state (I404.5 = 100mW/cm2). Using σ = 1.5× 10−17cm2, measured for Rb 6P at λ = 690nm [307],

and we estimate the 767nm ionization rate of 5P3/2 to be 0.33 s−1 (I766 = 5mW/cm2). Since we cool for <

100ms these ionization rates should not an issue and in §E.3 this conclusion is experimentally confirmed.

E.2 Laser System and Setup

For imaging, cooling and trapping we have developed a 405nm laser system based on GaN laser diodes

capable of delivering up to 30mW of single-mode, single-frequency light to the experiment. GaN laser diodes

have been previously used before for K spectroscopy [283, 310–314], but never for K cooling and trapping.

The overall system is illustrated in Fig. E.5.

E.2.1 Master Laser and Saturation Spectroscopy

The source of single-frequency light is a Toptica DL 100 external cavity diode laser2 (ECDL) with P=10mW

output. The spectrum of the master laser measured with a scanning cavity (§E.2.3) shows a single peak

with a linewidth is below the cavity resolution. After a few years of operation, small peaks appeared in the

spectrum which were removed by re-aligning the feedback.

The schematic of the laser setup is shown in Fig. E.5. Part of the master laser light is used to lock

the laser to a 39K saturation spectroscopy feature (see Fig. E.6). For saturation spectroscopy we use a

natural abundance K vapor cell that is 15cm long and heated to 100◦C inside a thermally insulated box. We

heat the cell to increase the K density, which is proportional to the vapor pressure. According to [190] the

vapor pressure increases a factor of ≈ 103.5 per 100◦C at T = 50◦C. Higher temperatures are required for

saturation spectroscopy on 4S → 5P than 4S → 4P (T ≈ 50− 60◦C) because the 4S → 5P cross-section in

the Doppler broadened gas is nearly 300 times smaller. To obtain an error signal we frequency modulate the

pump beam at fmod using an acousto-optical modulator (AOM) and then demodulating the probe signal

at fmod using the mixer circuit shown in §H.3 (modulation transfer spectroscopy). The error signal height

is temperature optimized, as shown in Fig. E.6. If the cell is overheated, the optical density becomes too high.

40K features are not observed in the error signal because of the low natural abundance of 40K. Therefore,

we lock to the closest possible feature, the 4S1/2, F = 1 → 5P3/2 transition of 39K. The 39K excited state

2Diffraction grating feedback in Littrow configuration.
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Figure E.5: Schematic of the 405nm laser system for generating 30mW of single-mode, locked laser light to
the experiment. The single-frequency source is a Toptica ECDL (master laser). The light out of the master
laser is split two ways. Part of the light goes to a modulation transfer spectroscopy setup for locking to the
4S1/2, F = 1 → 5P3/2 transition of 39K. The frequency is shifted by a series of AOMs so that the maser laser
is near-resonant with the 4S1/2, F = 9/2 → 5P3/2, F

′ = 11/2 transition of 40K. The remaining master laser
light is used to injection lock a high power diode (P = 100mW). To monitor the injection we use a homebuilt
scanning cavity (§E.2.3). The injected diode light is sent through a single-mode polarization maintaining
fiber to the MOT setup.

256



0 200 400 600 800
-1

-0.5

0

0.5

1

Frequency (MHZ)

S
ig

n
a
l 
(A

.U
.) F=1F=2

Crossover

41
K

40
K,F=9/2

(a) (b)

Figure E.6: (a) 4S1/2 → 5P3/2 saturation spectroscopy in a heated, natural abundance potassium cell. The
Doppler envelope has been subtracted off and the signal filtered to illustrate the saturation spectroscopy
features. The three main peaks are from 39K and the smaller peaks are from 41K. We lock to the 39K F = 1
peak, which is the closest 39K feature to the 40K transitions, which are not visible. (b) Optimizing the cell
temperature using the peak-peak value of the error signal.

hyperfine manifold is not resolved. To lock the ECDL master laser, we feedback to the current and PZT

of the Toptica controller using homebuilt servo electronics (see §H.1 for the schematic). When the laser is

locked to the F = 1 39K peak, it is ≈ 500MHz red-detuned from the 40K 4S1/2, F = 9/2 → 5P3/2, F = 11/2

transition. To compensate for this difference we shift the frequency of the light with AOMs. These are

standard TeO2 AOMs with AR coatings that are only designed to go down to 450nm. Because of this, there

is some power loss from the coatings and the damage threshold at 404.5nm is quite low. Therefore, we avoid

using these AOMs after the high power diode to prevent damage. Empirically, a few mW of the master laser

light focused with an f = 100mm lens has not resulted in any damage.

E.2.2 Testing the Master Laser — Probing 4S → 5P in the 767nm MOT

To make a 40K MOT on the 4S → 5P transition our cooling laser has to be narrow, stable and at the correct

absolute frequency. To achieve stability we lock to the F = 1 saturation spectroscopy feature of 39K and

then shift to the 40K 4S1/2, F = 9/2 → 5P3/2, F
′ = 11/2 transition frequency using AOMs. However, the

isotope shift3 between these transitions is not a priori known. For the 4S1/2 → 5P1/2 transition, the isotope

shift has been measured to be 235(2)MHz [313] and 207(13)MHz [315]. We can estimate the 4S1/2 → 5P3/2

isotope shift by taking the 4S1/2 → 4P3/2 shift 125.6MHz [316], and then multiply by the ratio of the

transition wavelengths 767/404.5, to get 238MHz. To get the exact shift in our setup we need to probe
40K atoms. Probing atoms can also test our linewidth, which has to be on the order of the 5P3/2 linewidth

(2π×1.19MHz) for cooling to be effective. An important test of the master laser linewidth and frequency

shift is whether we can probe 40K atoms and resolve the 5P3/2 hyperfine structure (see Fig. A.1 and Fig. E.8).

To test the master laser and determine the isotope shift we probe a 40K 4S → 4P MOT (§3.2.6) with

the 405nm master laser. The setup is shown in Fig. E.7. We send the laser through the MOT and collect

all fluorescence, 767nm and any possible 405nm, on a photodiode. Using the same AOM that shifts the

405nm frequency, we amplitude modulate the beam at 1kHz. Then we use a lock-in amplifier to detect any

3The isotope shift is defined as the shift of the bare transition frequency (no hyperfine splittings) between different isotopes.
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Figure E.7: Laser setup for probing the 4S → 5P transition with the 767nm MOT. Master laser light is sent
through a double-pass AOM setup, which increases the frequency by approximately 400MHz and amplitude
modulates the beam at 1kHz. Then the light is sent via a single-mode fiber through a 40K MOT operating
on the 4S → 4P transition at 767nm. Fluorescence from the MOT is collected on a photodiode and a
lock-in detector is used to measure the 1kHz component of the photodiode signal. Data is obtained for
various frequencies of the 405nm light by scanning F1 (see data in Fig. E.8).
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Figure E.8: Results of probing the 40K 4S1/2, F = 9/2 → 5P3/2, F
′ transition. (a) The state structure being

probed. For reference we show the 39K locking line (light blue). Frequencies are given with respect to the
bare 40K 4S1/2 → 5P3/2 transition assuming an isotope shift of 240MHz. (b) The lock-in signal (inverted)
as a function of the frequency of the probe beam with respect to the locking transition. The data is given
by the solid blue line and the dashed black line is a three Gaussian fit.

The results of this probe experiment are shown in Fig. E.8. The signal indicates an isotope shift of

≈ 240MHz, similar to our estimate. To reach the transition frequency required for a MOT, F = 9/2 →
F ′ = 11/2, we need to shift the laser ≈510MHz from the 39K,F = 1 reference line. The measured probe

signal is not due to 405nm fluorescence since the peaks vanish if we repeat the experiment with a blue filter

over the photodiode. Instead, the signal appears to be a decrease (quench) in the 767nm fluorescence as the

probe beam comes on resonance. One explanation is that atoms are pumped into the dark F = 7/2 ground

state by the 405nm light and therefore these atoms cannot fluoresce until pumped back into F = 9/2 by the

repump light. The plot also puts an upper bound of ≈3MHz on the laser linewidth. The actual linewidth

is likely much less as the signal is significantly broadened from the magnetic field gradients required for the

MOT.

E.2.3 Scanning Cavity

To characterize the fine (<1GHz) features of the laser spectra we use a scanning cavity. This consists of two

spherical mirrors in confocal configuration4, with a piezo element to scan the cavity length. As we scan the

cavity length, a single-frequency laser will produce a sharp peak in the cavity signal (a photodiode after the

cavity) at a specific cavity length. If we change the laser frequency by the free-spectral range c/4L, the peak

will appear at the same value of the cavity length. Similarly, a single-frequency will reappear as a new peak

after the cavity length changes by λ/4. The full width at half maximum (FWHM) of the peak is set by the

cavity finesse F where FWHM= c(2LF )−1 and F = π
√
R(1 −R)−1 where R is the mirror reflectivity.

4In confocal configuration, the cavity length is equal to the mirror radius of curvature Rcurv , and all cavity modes are
resonant at the same cavity length.
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Figure E.9: (a) Custom made 405nm scanning cavity. Mirrors (#1) are Layertec 100599, Rcurv = 50mm,
D = 0.5” spherical mirrors which are HR coated at 370-410 and 700-825nm (R > 99.8% at 400nm and
800nm). The cavity is scanned by applying voltage to a ring piezo (#2, PiezoMechanik HPSt 500/15-8/5).
The signal is measured by a 0.5” tube mounted SMA photodiode (#3, Thorlabs SM05PD1B). The Thorlabs
SA-201 cavity controller is used to drive the piezo and amplify the photodiode signal. All mounting parts
are from Thorlabs; the cavity bars are 6mm diameter stainless steel rods (Thorlabs ER series). (b) Cavity
trace of the Toptica master laser scanning the piezo over a 30V range. The two peaks correspond to the free-
spectral range (FSR) of the cavity, 1.5GHz. Zooming in on a peaks, we see that there is some asymmetry,
likely due to imperfect alignment and/or the cavity length slightly off from the confocal configuration. Fitting
the peak to a Gaussian we measure a FWHM of 11MHz giving a finesse of approximately 270.
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When we started this project, a low cost scanning cavity was not available at 405nm; subsequently at

least one has entered the market (Thorlabs SA200-3B). Therefore, we constructed our own using off the

shelf components as illustrated and discussed in Fig. E.9. Although the cavity body consists of four thin

rods, the cavity worked as intended, except that it is very sensitive to frequency drifts due to temperature

changes and air currents. Enclosing the cavity in a box significantly improved this issue. A sample cavity

trace is shown in Fig. E.9.

E.2.4 High Power Injection Locked Diode

To obtain the required 405nm power for cooling and imaging we injection lock a high power (up to 100mW)

GaN diode [317,318]. Without injection the spectra of these diodes is extremely poor and, for the diodes we

tested, the center wavelength is approximately 407–408nm (see Fig. E.10) . The diode wavelength tunes as

a function of current (temperature) as +0.02nm/mA (+0.05nm/◦C). This temperature tuning is an order

of magnitude worse than our InGaAs diodes at 767nm. To get to 404.5nm we would need to cool the diode

from room temperature to ≈ −30◦C.
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Figure E.10: High power diode spectra measured using an Ocean Optics spectrometer with 0.1nm resolution.
(a) Spectra as a function of temperature for 108mW output power. (b) Spectra as a function of current
at T = −5◦C. In each plot the spectra after injection is shown for comparison; with sufficient injection
power we can pull the diode wavelength up to 2nm. (c) Required injection power as a function of the diode
temperature for an output power of 95mW.
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Figure E.11: High power diode mount and enclosure (top lid not shown). Parts are described in the text.
(Bottom inset) Protection circuit for the diode, based on a similar circuit in [173].

To reach temperatures below the dew point (approximately 9◦C in the lab), the diode must be thermally

insulated from the environment and free of moisture to prevent ice formation. To accomplish this, the diode

is enclosed in a hermetically sealed box on a mount that is only in thermal contact with the air in the box.

The box has desiccant to minimize moisture and is also designed to be vacuum pumped to improve thermal

isolation and eliminate moisture entirely. The laser enclosure and diode mount is illustrated in Fig. E.11.

The diode is heat sunk to a custom aluminum (Al) diode mount using an Al faceplate to maintain good

thermal contact and to keep the diode in place. No thermal grease is used directly on the diode. A 10k

thermistor (Thorlabs TH10K) is glued into the top of the diode mount for temperature monitoring and

stabilization. Four Thorlabs ER1 rods are threaded into the diode mount to hold the aspheric collimating

lens (Thorlabs C671TME-405). The mount is put on top of two thermo-electric coolers (TECs), wired in

series, which are sunk straight to the Al baseplate. Boron nitride thermal grease is applied to the diode

mount and TECs. The mount is screwed to the baseplate using nylon hardware to maintain thermal iso-

lation. Copper pipes were soldered to the baseplate for water cooling. Since Al/Cu soldering is difficult,

in the future, it would be sufficient to use thermal epoxy as the heat load is small. Another option would

be to construct the baseplate from copper or brass. Heat is removed from the baseplate using a computer

CPU chiller (Coolance Exos LT), which runs liquid coolant through the baseplate and dissipates the heat

at a heat exchanger using fans. There is no active cooling and therefore this chiller is limited to keeping the

baseplate at room temperature.

The baseplate plus diode mount is covered by an Al box (Digikey HM845-ND). A hole in the bottom of

the box goes around the diode mount and the box sits on a Buna-N O-ring (Shore A Durometer 40) coated

in Dow Corning high vacuum grease. The box screws directly into the baseplate to complete the seal. The

box lid also has an O-ring that is coated in vacuum grease. The light goes out through a window on the front

of the box sealed with Torr Seal glue. Electrical connections for the diode current, thermistor and TECs are
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made using magnet wire which is individually passed through holes in the box and sealed with Torr Seal.

We avoid standard BNC feedthroughs since they are not hermetically sealed [319]. A copper tube with a

Swage-Loc ball value and CF20 connector goes through the side of the box and is sealed with Torr Seal. The

plan was to connect the box to a roughing pump, seal the system with the ball valve, and then remove the

pump. However, the vacuum seal did not hold. The box can be pumped down, but a few seconds after the

pump is turned off, the box returns to room pressure. Nevertheless, the seal is effective at keeping moisture

out and a homemade mesh pouch of desiccant (≈ 10cm3) is sufficient to keep ice off the diode.

The diode is cooled using TECs, which are characterized by three parameters, A, B, and C. These

parameters relate the heat pumped Q, the voltage V , the current I, and the temperatures at the hot and

cold side of the TEC TH and TC (∆T = TH − TC) as

Q = ATCI −BI − C∆T, (E.9)

V = 2BI +A∆T. (E.10)

Typically a TEC datasheet does not give A, B, and C, but rather Qmax (Q when ∆T = 0 at a given TC1)

and ∆Tmax (∆T when Q = 0 at a given Imax, Vmax and TC2). These values can be used to get A, B, and

C using the relations

A =
−∆Tmax +

√

(∆Tmax)2 + 2TC1TC2VmaxImax

Qmax

TC1TC2Imax

Qmax

, (E.11)

B =
Vmax −A∆Tmax

2Imax
, (E.12)

C =
ATC2Imax −BI2

max

∆Tmax
. (E.13)

Given A,B and C it is straightforward to use Eqns. E.9 and E.10 to calculate the required I and V to run the

TEC for a given heat load and temperature gradient. For most TECs, ∆Tmax ≈ 60◦C when TH2 = 25◦C, so

for a larger temperature gradient the TECs must be stacked, which is the configuration we use for cooling

the diode mount. Once we know the parameters of the top and bottom device we need to solve Eqns. E.9

and E.10 setting the hot side temperature of the top device to the cold side temperature for the bottom

device. The bottom TEC needs to pull all the heat from the system being cooled (the diode mount) plus

the heat generated by the top TEC (Qload + ItopVtop). Therefore the optimal configuration is for the top

TEC to have low resistance and the bottom TEC to be large so that it is capable to pulling large heat loads.

The heat generated by the bottom TEC is less important since it is in thermal contact with a large heat sink.

We modeled different pairs of TECs that are available by solving Eqns. E.9 and E.10 where each TEC

has the same current since we put the TECs electrically in series. One of the main inputs into the cal-

culation is the expected heat load from the diode mount. When running, heat is generated by the diode

itself, however, the main contribution is convective heat transfer from the air in the box. We estimate the

convective load to be approximately 4W when the diode mount is −30◦C. Therefore, for the calculation we

looked at four sets of parameters; {TC = −20◦C,TH = 20◦C,Q = 3W}, {TC = −20◦C,TH = 20◦C,Q = 5W},
{TC = −30◦C,TH = 20◦C,Q = 3W}, and {TC = −40◦C,TH = 20◦C,Q = 3W}. The best combination of

TECs is Digikey 102-1680-ND and 102-1681-ND which can meet all the above parameters within the current
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and voltage constraints of the Thorlabs ITC510 TEC controller (4A, 8V ). An alternative design, which may

be more flexible, is to run the bottom TEC from a high current supply and only feedback to the current of

the top TEC [319].

Ultimately the diode can be cooled to < −20◦C without pumping, but it was important to add a layer

of fiberglass insulation to the mount and collimating lens assembly. To inject the high power diode we send

some of the master light back through an isolator into the diode. The diode spectra before after injection is

shown in Fig. E.10. Although we do not cool the diode all the way to 404.5nm, the injection is able to pull

the diode the remaining distance. In Fig. E.10 we show the minimum required injection power as a function

of temperature. This plot justifies cooling the diode as the injection power continues to drop until the diode

is cooled below −10◦C.

E.3 4S → 5P MOT and Laser Cooling

In this section we summarize our results for trapping and cooling 40K on the 4S1/2 → 5P3/2 transition at

404.5nm. These results are published in Ref. [88]. To realize a MOT on the 4S1/2 → 5P3/2 transition, we

first load 40K from an enriched K vapor using our high capture velocity (high power, large beams) 767nm

MOT described previously in §3.2.6. After 10s we turn on the 405nm, 4S → 5P cooling beams with up to

30mW of total power. The blue beams are mixed with the 767nm beams using dichroic mirrors, as illustrated

in Fig. E.13. The two MOTs overlap for 3ms before we turn off the 767nm cooling light; we leave on the

767nm repump light at a reduced power. The state structure for the 4S → 5P MOT is shown in Fig. E.12

and a schematic of the physical setup is shown and described in Fig. E.13.
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Figure E.12: (a) State diagram for the 4S → 5P MOT. The blue line indicates the 405nm cooling beam and
the red line indicates the 767nm repump beam. The cooling beam is locked to the 4S1/2, F = 1 → 5P3/2

transition of 39K (see Fig. E.8) and the repump beam is locked to the 4S1/2 → 4P3/2 crossover transition of
39K (see Fig. 3.11). (b) Possible decay paths for atoms excited by one of the MOT beams. Atoms excited to
the 5P3/2 state can decay straight back to 4S1/2 or via a three-photon cascade by decaying to either 3D or
5S. The repump beam excites atoms to 4P3/2, which can only decay straight back to 4S1/2. For transition
rates see Fig. A.1.
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Figure E.13: 4S → 5P MOT setup and timing diagram. The 405nm light is combined with the 767nm MOT
light using a 2 inch dichroic mirror (DM). Each MOT beam is retro-reflected through two sets of dichroic
wave plates (DWP). The DWP is a quarter wave retardation for one wavelength and no retardation for the
other. There are three orthogonal beam paths in total; for clarity only one is shown. The quadrupole field
strong axis is aligned parallel to the direction of gravity.
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Figure E.14: Characterizing the 4S → 5P MOT. Absorption images taken on the 4S → 4P cycling transition
of the (a) 4S → 4P MOT and the (b) 4S → 5P MOT illustrate that the gas is significantly compressed
in the 405nm MOT. (c) We plot the RMS Gaussian width of the vertical direction (open, red circles) and
horizontal direction (black squares) versus the time after the transfer to the 405nm MOT. The vertical
direction is aligned with the strong axis of the quadrupole field. The widths exponentially relax to lower
values in 1.8ms (4ms) for the vertical (horizontal). (d) To determine the required 6-beam 405nm intensity
we measure the sag of the 405nm MOT and the transfer efficiency from the 767nm MOT. The data is fit
to an exponential and the e−1 intensity of the fit is comparable to Isat. For sufficient intensity the transfer
efficiency is nearly 100%. (e) Similar data looking at the 767nm repump intensity. Again, I > Isat is
sufficient. As this is a retro-reflected MOT, we estimate the 6-beam intensities by measuring the power
before and after the cell. However, given uncertainties in losses and the atom position in the beam, quoted
values of the intensity should be taken as good to within a factor of two.
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After loading in the 405nm MOT, the cloud size shrinks exponentially to a new steady state value

(Fig. E.14). The exponential timescales (τ = 2 − 4ms) are consistent with the damping rates predicted

by the MOT calculations (§E.1). To characterize the required power for the 405nm cooling beams and the

767nm repump beams, we look at the fraction of atoms transferred to the 405nm MOT and the trap sag un-

der gravity versus the total 6-beam 405nm and 767nm intensity. These results are also displayed in Fig. E.14

and indicate that the required intensity is approximately Isat (see Table A.2). If I > Isat, there is nearly

perfect transfer efficiency into the 405nm MOT. Since our beams are small and the MOT is retro-reflected

this intensity corresponds to around 2mW of total 405nm power, which is easily produced by our laser system.

E.3.1 One and Two-Body Loss Rates

405nm MOT Time (s)

Figure E.15: Atom number versus hold time in the 4S → 5P MOT. The main data is fit to two exponential
timescales as described in the text. (Top inset) Peak density for short hold times is approximately constant.
(Bottom inset) For low atom number, an exponential fit to the data gives the one-body lifetime. The lifetime
decreases as we increase the 6-beam 405nm intensity. We fit the data to a model including photoionization
losses (Eqn. E.19).

If we measure number versus the time in the 405nm MOT (Fig. E.15), there are no signs of loading even

after a hundred-fold reduction in number. This is expected since the capture rate scales as Γ4d4 for small

beam diameters d. Since there is no loading, measuring N versus t provides a clean method for measuring

loss processes since we can ignore loading terms in the rate equation [320],

dN

dt
= −N

τ
− β

∫

n(~x)2d3x (E.14)

where τ is the one-body lifetime, β is the two-body loss coefficient and n is density. The data is Fig. E.15

fits well to an exponential with a different slope at high and low densities. At low densities (long hold time)
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an exponential fit to N vs. t returns τ . In the high-density regime, the peak density appears roughly fixed

(see inset to Fig. E.15) and n ≈ n0e
−r2/2σ(t)2 , so

dN

dt
= −N

τ
− βn2

0

∫

e−r2/σ(t)2d3x, (E.15)

= −N
τ

− βn2
0π

3/2σ(t)3, (E.16)

= −N
τ

− β
n0√

8
N, (E.17)

= −
(

1

τ
+ β

n0√
8

)

N. (E.18)

In this limit, N versus t also fits to an exponential and we can get β from the exponential time constant if we

know τ and n0. To measure τ we fit the low density regime and to measure n0 we take an absorption images of

the MOT. At ∆ = −2MHz, we find β = 2.0(1)×10−10cm3/s for I ≈ 75mW/cm2, and β = 1.4(1)×10−10cm3/s

for I ≈ 20mW/cm2. These are relatively high two-body loss rates compared to 40K MOTs on the D2 tran-

sition, which are typically in the range of 10−12 to 10−10cm3/s [188,189,321]. Therefore, density-dependent

loss rates in the potassium nS → (n+ 1)P MOT, unlike metastable helium [89,90], are not smaller than in

the nS → nP MOT. However, for the < 100ms timescales required for blue MOT cooling this loss rate is

negligible.

(a) (b)

Figure E.16: (a) Fluorescence per atom from the 405nm MOT at ∆ = −2MHz and I405 = 76mW/cm2 versus
repump power. The fluorescence clearly asymptotes to a fixed value once the system is not repump limited.
The data is fit to an exponential (black line). In the data shown here, the asymptotic value is 0.048. (b)
Fluorescence per atom for infinite 767nm repump (asymptotic value the curve in (a)) versus 405nm intensity
I405. This curve is fit to fmaxI405/(I

′ + I405) (black line) to get the maximum fluorescence value fmax; for
this data fmax = 0.186. From fmax the excited state fraction is determined as 1

2
f

fmax
where f is the measured

fluorescence. For example, in part (a) we measure a fluorescence value of f = 0.035 when the repump power
is 20mW and so the excited state fraction is approximately 10%.

The decrease of the one-body lifetime, τ , versus total intensity (inset to Fig. E.15) indicates possible

photoionization. To convert the loss rate into a photoionization cross-section using Eqn. E.8 we need to

know the excited state fraction, ρee. This can be estimated by looking at MOT fluorescence since the

fluorescence per atom f is proportional to ρee. If we can determine the maximum possible fluorescence fmax,

which occurs when ρee = 1/2, then ρee = 1
2

f
fmax

. To get fmax we have to look at the fluorescence versus
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405nm intensity for infinite repump power. This process is explained further in Fig. E.16. Once we know

fmax, we can get the photoionization cross-section, σ, by fitting the lifetime versus 405nm intensity I to the

formula

τ =

(

1

τbk
+ σ

I

hc/λ

f(I)

2fmax

)−1

(E.19)

where τbk (the vacuum lifetime) is a free parameter. Fitting the data from the inset to Fig. E.15 we get

that σ = 8 × 10−18cm2 for the 5P3/2 ionization at 404.5nm. We quote this as an upper bound because

we cannot rule out other loss processes and there is considerable uncertainty in our ability to measure the

intensity. This cross-section is comparable to the Rb value we used as an estimate in §E.1.1. Overall, the

photoionization losses are on the seconds timescale and have no effect on cooling. Ionization will place an

upper bound on the number of photons we can collect for imaging. For an objective with NA=0.6, fluores-

cence imaging at Isat/4 could collect 104 blue photons with a 1% upper bound on the probability of ionization.

E.3.2 Temperature and Density

(a) (b)

Figure E.17: (a) 4S → 5P MOT temperature and (b) density for several magnetic quadrupole gradients:
5G/cm (black squares), 7.5G/cm (red circles), and 10G/cm (blue triangles). Temperature is shown along a
weak axis of the quadrupole (horizontal direction); temperatures along the strong axis (along gravity) were
1.82(15) times higher.

The temperature and density performance of the MOT is summarized in Fig. E.17. A minimum tem-

perature of 63(6)µK is seen for a 5G/cm gradient. As the gradient increases, so does the temperature and

density. At all gradients the minimum temperature and maximum density occurs at ∆ ≈ −Γ. One uncon-

ventional aspect of the measurement is that the vertical temperature (along gravity) is 1.82(15) times higher

than the horizontal temperature. This may be due to differences in the gradient along these directions; the

strong axis of the quadrupole is vertical, so there is twice the gradient in that direction. Nevertheless, this

issue warrants further study.

The optimal phase space density, which scales as n0T
−3/2, occurs when T = 75µK and n0 = 1.2 ×

1010cm−3 (7.5G/cm, ∆ = −1.5MHz). In comparison, the 767nm MOT has a typical temperature and den-

sity of T = 180µK and n0 = 2×109cm−3. Therefore, the 405nm MOT realizes a twenty-fold enhancement in

phase space density. The biggest contribution to this improvement is the nearly ten-fold increase in density.
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We attribute the increase in density to three factors. First, the temperature in the MOT is lower. Sec-

ond, expulsive forces due to re-absorption are reduced, because the same spring constant is achieved with a

scattering rate that is six times smaller. The open transition may further reduce re-absorption by pumping

to the F = 7/2 ground states. Third, the optical density seen by both the incident and the scattered blue

photons is reduced by a factor of nearly thirty.

Figure E.18: 4S → 5P molasses temperature along the horizontal direction versus detuning. Temperature
along the strong axis of the quadrupole field (along gravity) are 1.96(11) times higher. The black curve is a
theoretical calculation at low intensities from Fig. E.3.

In Fig. E.17 the minimum temperature appears to decrease monotonically with decreasing gradient,

which suggests that temperature may asymptote to the Doppler temperature TD = 23.5µK in the zero-field

(molasses) limit. However, the minimum experimental molasses temperature (Fig. E.18) is only 85µK. This

minimum temperature occurs around the expected Doppler detuning ∆/Γ = −0.6(2). This temperature is

more than three times the Doppler temperature calculate in §E.1, which may be due to a low cooling rate as

compared to the short molasses time available. Indeed we observe that the temperature asymmetry between

the vertical and horizontal axes in the MOT persists during the molasses phase, when no gradient asymmetry

remains. Even the asymptotic temperature might not be expected to reach the Doppler limit: while the cal-

culation in §E.1 includes multi-level effects, it neglects three-dimensional effects, reabsorption, and heating

due the intensity fluctuations. The latter effect has been shown in [322] to limit one-dimensional Doppler

cooling to several times TD in Sr, when Sisyphus and other sub-Doppler mechanisms are absent [322]. In the

case of 4S → 5P cooling in 40K, polarization gradient cooling may be interrupted by the optical pumping

and depolarization effects of the three-photon cascade.

In summary, we have demonstrated the feasibility of cooling on the 4S1/2 → 5P3/2 transition of 40K at

λ = 404.5nm. This is a promising first step towards our ultimate goal of site resolved imaging in the lattice

using the 405nm scattered light.
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Appendix F

Imaging

In this appendix we review several imaging topics.

F.1 Number Calibration of Absorption Images

For resonant absorption imaging on the cycling transition (§4.1.1), which is the predominant imaging tech-

nique used in this thesis, the relation between optical depth (Eqn. 4.4) and density is given by the cross-

section on the cycling transition (Eqn. B.78). The experimental cross-section is smaller than the cycling

transition cross-section due to deviations from ideal imaging (e.g., imperfect polarization). To empirically

calibrate absorption images we use an experimental observable that depends on particle number. Of the

several possible observables, we use TC to calibrate N , which is a common choice in many experiments.
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Figure F.1: TC data used to calibrate number for the 87Rb apparatus. The intercept measured from the
data is 3.21(7), so γ−1 = 7.9(5). This data has only been partially repumped, so we also need to account
for the repump factor of 5.4(5) and therefore the on-resonance number calibration is γ−1

0 = 1.46(17).

Our procedure in the 87Rb apparatus is to evaporate until the system is just below TC and take alternating

high and low OD images (see §F.2). We fit the high momentum tails of the thermal distribution in the high
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OD image to measure temperature. We fit the low OD image to get N0/N (the condensate fraction) and

Ñ (the number assuming the cycling transition cross-section). Ñ is related to the actual number (N) as

Ñ = γN where γ is the calibration factor. Since the BEC number drifts as we run the experiment, this is a

natural method to extrapolate back to N0/N = 0. As seen in Fig. F.1, we plot T (γN)−1/3 versus γN0 and

fit to a line to get the intercept (A) at γN0 = 0. In our trap (ν̄ = 35.76(8)Hz), TC/N
−1/3 = 1.613 and so

γ = (1.613/A)3.

F.2 Partial Repumping

With absorption imaging there is an upper bound on the optical depth that can be imaged of OD ' 3 (see

§4.1.1). To circumvent this issue we can control the number of atoms that are imaged by partial repumping.

For 87Rb, the cycling imaging transition is F = 2,mF = ±2 → F ′ = 3,mF ′ = ±3 as shown in Fig. F.2.

Atoms in F = 1 are dark to this imaging light and will not be imaged. Since we perform our experiments

with atoms in F = 1, we have to actively transfer atoms to F = 2 for imaging using repump light on the

F = 1 → F ′ = 2 transition. When the repump light is on-resonance we transfer all the atoms to F = 2 and

the resulting absorption image has high OD. However, if the repump is detuned from resonance we can vary

the repump pulse length (4µs–600µs) to control the fraction of atoms that are imaged where

Nlow

Nhigh
= 1 − e−τ/τ0 . (F.1)

We refer to this as a low OD image. High and low OD images are shown in Fig. F.2.

Often there is complementary information in both the high and low OD images, so we take both types of

images in sequential experimental runs. For example, the high OD image has good signal-to-noise ratio in

the high momentum region, which is ideal for measuring temperature, but the condensate peak is saturated.

The low OD image is therefore required to measure the condensate number.

To calibrate the partial repumping we prepare a thermal cloud and take alternating high OD and low

OD images to get the fraction of atoms repumped. One technique is to set the atom number so that the high

OD image is just below the point of being saturated and then take both images at the same expansion time.

The problem is that at very low repump times there can be very little signal in the low OD image. To get

higher signal, we can take the low OD image at shorter expansion times, but one has to be careful because

the repump intensity may vary as a function of position. A sample repump calibration curve is shown in

Fig. F.3.

F.3 Resolution

For time-of-flight imaging, resolution is not a major issue since the feature sizes after expansion are much

larger than the wavelength of the imaging light. However, this is not the case when imaging in-situ and

particularly if we want to achieve single-site resolution of a gas in an optical lattice (§4.1.5). This section

will briefly overview several high resolution topics as a reference for the main text and to motivate design

considerations for the 40K apparatus where the goal is to image atoms with single-site resolution (§3.2.10).
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Figure F.2: (a) Imaging and repump transition for 87Rb. Atoms start in F = 1 during the experiment and
are repumped to F = 2 for imaging. We can transfer a controllable fraction to F = 2. (b) Cross-section
through an image with all the atoms repumped (top) and only a fraction repumped (bottom). The dense
middle part of the condensate is completely saturated in the top image, but the signal-to-noise ratio at the
edge is higher.
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Figure F.3: Sample calibration curve for partial repumping. The fraction repumped, taken from alternating
high OD/low OD shots, is fit to Eqn. F.1 with τ0 as a free parameter.
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The resolution of an imaging system is limited by two effects, diffraction and aberrations. Aberrations are

technical deviations from ideal imaging and may be random, e.g., due to phase fluctuations in poor quality

glass, or smooth, e.g., spherical aberrations due to lens shape. In theory, aberrations may be eliminated by

judicious choice of optics and/or corrective optics at which point the resolution becomes diffraction limited.

At the diffraction limit (DL), the only parameter defining the imaging system is the wavelength (λ) and

numerical aperture (NA), NA = n sin(θ), where n is the index of refraction between the object and the lens

and θ is the acceptance half-angle of the imaging lens (see Fig. 4.1). The NA specifies the size of the point

spread function (PSF), which is the light intensity distribution in the imaging plane of a point source in the

object plane. If we define a normalized variable

ξ = (2πNA)
r

λ
, (F.2)

at the imaging plane (on focus), the PSF is [205]

PSF (ξ) =
1

π

(

J1 (ξ)

ξ

)2

(F.3)

where J1 is the Bessel function of the first kind. In the form of Eqn. F.3, the PSF is normalized to unity.

In order to discuss resolution, we need to image two objects. If we consider two incoherent point sources

separated by distance ξ0, then the image is given by adding the two point spread functions (Eqn. F.3).

As shown in Fig. F.4, when the objects are closer together the PSFs overlap and it becomes more difficult

to resolve whether there are two separate sources. There is no absolute definition of resolution — it is a

subtle concept that depends on any a priori knowledge of the object and noise. For example in Fig. F.4

we also show the two point sources at a fixed distance with increasing noise. It is clear that as the noise

increases, distinguishing the two objects becomes more difficult. Therefore, determining a metric to define

when they are unresolvable requires careful consideration. Nevertheless, to establish a universal imaging

language, there are several standard definitions of resolution. The most common is the Rayleigh criterion,

which defines resolution as the distance from the center of the peak to the first zero in the PSF,

σ =
0.6098λ

NA
(F.4)

When two objects are separated by σ the contrast is 15.3% (without noise).

From the PSF we can derive the image f(ξ) from an arbitrary incoherent source distribution H(ξ)

f(ξ) =

∫ ∞

−∞
dξ′ PSF (ξ − ξ′)H(ξ′). (F.5)

The following are some common examples. The edge spread function (ESF) is the image formed from a

source that has an infinitely sharp edge

LSF (ξ) =

∫ 0

−∞
dξ′ PSF (ξ − ξ′). (F.6)

The resolution is the distance is takes the ESF to drop from 92.7% to 7.4% of the value at −∞. The
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Figure F.4: (a) Image of two incoherent point sources as a function of the distance between the sources in
ξ units (Eqn. F.2). The Rayleigh criterion of resolution is defined as a separation of ξ0 = 3.83. For point
sources separated by less than the Rayleigh resolution some contrast is still evident. (b) Pixelized image
with photon shot noise for two point sources separated by ξ0 = 3.4 varying the max photon number in a
bin. Noise makes it increasingly more difficult to detect two individual objects.
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modulation transfer function (MTF) is the image formed from a sinusoidally varying source with spatial

period ξ0

MTF (ξ, ξ0) =

∫ ∞

−∞
dξ′ PSF (ξ − ξ′) sin2(πξ′/ξ0). (F.7)

When the period of the MTF is equal to σ the contrast is 7%. A similar function is the contrast transfer

function (CTF), which is the image formed from a source with a square wave intensity. If the spatial period

is ξ0 then

CTF (ξ, ξ0) =

∞
∑

i=−∞

∫ ξ0(i+1/2)

ξ0i

dξ′ PSF (ξ − ξ′). (F.8)

When the period of the CTF is equal to σ the contrast is 8.8%. For a diffraction limited imaging system the

ESF, MTF, and CTF do not provide additional information. However, they are each unique experimental

measures that can be used to characterize a non-ideal imaging system. Deviations of these measures from

the diffraction limit indicates the presence of aberrations. If an imaging system resolution is limited by

aberrations, these measures are useful because they can still define a reasonably accurate resolution by con-

necting back to the diffraction-limited result. For example, we can define the aberration-limited resolution

based on the CTF frequency with a contrast of 8.8%.

An important consideration when imaging a lattice system, with many planes of atoms, is how the PSF

changes away from the imaging plane (i.e., out of focus). If we define the normalized distance away from

the focus (z) as

γ = (2πNA2)
z

λ
(F.9)

then the PSF as a function of ξ and γ is [205]

PSF (ξ, γ) =

[ ∞
∑

i=0

(−1)i

(

γ

ξ

)2i
J1+2i(γ)

γ

]2

+

[ ∞
∑

i=0

(−1)i

(

γ

ξ

)1+2i
J2+2i(γ)

γ

]2

. (F.10)

This function is plotted in Fig. F.5. The depth of focus is defined roughly as γ = π (i.e., the depth at which

the peak height is approximately 80% of its value at γ = 0). An important note is the scaling of resolution

versus depth of focus. Resolution scales as NA−1 whereas depth of focus as NA−2.
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(a) (b)

Figure F.5: (a) Image of the PSF versus the radial coordinate ξ at different focus depths γ. (b) The peak
height versus depth normalized to the height when γ = 0.
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Appendix G

Supporting Calculations

The purpose of this appendix is to provide supporting calculations and more detail for topics discussed in

the main thesis text. These details may be useful to readers attempting similar calculations. The sections

of this appendix are independent of each other.

G.1 K 4S-5P Magic Wavelength for Dipole Trapping

Our plan for the 40K apparatus (§3.2) is to implement single-site imaging of atoms in the lattice on the

4S1/2 → 5P3/2 transition at 404.5nm (§4.1.5). In order to facilitate long imaging times, the excitation light

must double as laser cooling light. Free-space laser cooling on this transition was demonstrated as part of

this thesis work; see §E for details. Laser cooling in the lattice is more complicated because the lattice

potential is generated by coupling the ground and excited states with the lattice light (§B.5). The potential

depends strongly on the whether the atom is predominantly in the ground or excited state and can change

as we drive on the imaging transition.

In the simplest case, the two-level atom, the atomic ground state follows to a new dressed ground state

with an energy shift proportional to the lattice light intensity. The atomic excited state also follows to a

dressed data; the excited state energy shift is equal and opposite to the atomic ground state energy shift.

For fluorescence imaging we must transition between the ground and excited states to scatter photons. If

the excited state experiences the opposite potential then the atom, which starts out in the lowest energy

region of the light, will be in the highest energy region when it transitions to the excited state. The atom

experiences an effective potential

Veff = ρggVg + ρeeVe, (G.1)

and if Ve = −Vg then

Veff = Vg(ρgg − ρee). (G.2)

For strong driving ρee ≈ ρgg, so Veff → 0 and the atom will be unconfined.

Fortunately, alkali atoms are not two-level systems. For two coupled states (1 and 2), it is not necessarily

true that V1 = −V2 because state 2 may also couple to higher energy states. The shift of the two states

will be equal at specific wavelengths. These wavelengths are referred to as a “magic wavelengths”. At a

magic wavelength the effective potential is state-independent. The purpose of this calculation is to deter-

mine these magic wavelengths for the pair of imaging states in the 40K experiment: 4S1/2 and 5P3/2. There

are technical and fundamental constraints on the possible wavelengths we can use. To minimize heating
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Figure G.1: (a) Possible transitions from/to the 5P3/2 and 4S1/2 states in potassium (these are the main
states for fluorescence imaging at 404.5nm). For the 5P3/2 state we show transitions up to the last bound
states (46S and 46D), and for the 4S1/2 state we show transitions up to the 5P3/2 state. For clarity, the
17S − 45S states and the 15D − 45D states have been omitted. Each S state is J = 1/2 and each D state
consists of a J = 3/2, 5/2 couplet. All wavelengths and transition strengths are from Ref. [192]. Red, dashed
lines indicate transitions that have an unknown transition strength; these strengths are extrapolated for
the calculation. The highest transition rates (expressed as Γ/2π) are listed. We also list the 5P3/2 → 12D
rate, since this transition is the source of the magic wavelength. For the D states, the nD5/2 → 5P3/2

rate is shown. (b) Extrapolations for the 5P3/2 → nD transition rates for n > 11. For 5P3/2 → nD5/2

we extrapolate using the formula (1.2 − 0.2(n − 12)) × 104, and for 5P3/2 → nD3/2 we use the formula
(2.1 − 0.3(n− 12)) × 103. (c) Extrapolations for the 5P3/2 → nS1/2 transition rates for n > 12. For n > 6,
the data fits well to the curve 2.2 × 109(n4 − 54)−1.
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during the simulation the wavelength must be far and red-detuned from 4S1/2 → 4P . (i.e., λ � 800nm).

To prevent ionization directly from the lattice light in the 5P3/2 state λ > 972nm. The final constraint is

that a high-power (> 20W) laser needs to be available. To satisfy these three conditions, we focus in on

wavelengths around λ = 1064nm (±10nm), where ytterbium doped fiber lasers are available.

For any two pairs of states |nJFmF 〉 and |n′J ′F ′m′
F 〉, the energy shift of the lower energy state is given

by Eqn. B.57 where Γ is the decay rate from the higher to lower J manifold. The energy shift of the higher

energy state is the negative of Eqn. B.57. To get the full shift of state |nJFmF 〉, we sum over the energy

shift due to the coupling with all other states. For our two states considered here, 4S1/2 and 5P3/2, Fig. G.1

illustrates these couplings. 4S1/2 can couple to any P states, however, given our choice of wavelength, the

energy shift is predominantly due to coupling to the 4P and 5P states. The 5P3/2 state can couple to any

S and D states. Because the 4S1/2 state is far from resonance when λ ' 1µm, the magic wavelength will

be due to a resonant shift in the 5P3/2 energy. From Fig. G.1, we can identify several candidate 5P3/2

transitions: 13S, 14S, 11D, and 12D. Unfortunately, information about the transition rates to these states

is unknown, however, we can extrapolate from the known rates at lower n, as described in the caption of

Fig. G.1. It is preferable to couple to a D state because there is less polarization dependence. The 5P3/2

shift is not spin-independent at large detunings when coupling to an S state. For example, if we are in the

5P3/2, F = 11/2 ,mF = 11/2 state then only a σ− beam can couple to an S state. Ultimately, we decided

to use the 12D resonance.

(a) (b)

12D

Figure G.2: (a) 4S1/2 and 5P3/2 energy shift for an unpolarized beam with 1µm< λ < 2µm. (b) Energy
shift around the 12D magic wavelength, λ = 1053.582nm.

In Fig. G.2 we plot the energy shift for the 4S1/2 and 5P3/2 states versus the wavelength of an unpolarized

beam in the range 1µm< λ < 2µm. Throughout this regime the 4S1/2 shift is entirely negative and smoothly

varies from −0.075µKmm2W−1 at λ = 2µm to −0.156µKmm2W−1 at λ = 1µm. The 5P3/2 shift is mostly

positive, however, there are numerous resonances. Zooming into the region around the 12D peak, we see

that the 4S1/2 and 5P3/2 shifts are equal when λ = 1053.582nm. Because the 5P3/2 → 12D transition is so

weak, we need to tune λ within 25GHz of resonance to get a large enough negative shift. Fig. G.2 is a good
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indication of our tuning constraints. Since the transition is so narrow, we need to have frequency stability

of < 1GHz.

Figure G.3: Energy shift of all intermediate states between 5P3/2 and 4S1/2 for an unpolarized beam at the
magic wavelength, λ = 1053.582nm.

The 5P3/2 state can also decay via a 3-photon cascade either along the path 5P → 3D → 4P → 4S or

5P → 5S → 4P → 4S (see Fig. A.1). Therefore, we need to consider the energy shift of these intermediate

states. If the lattice wavelength is at the magic wavelength (λ = 1053.582nm) then the differential shift for

each state along the cascade is shown in Fig. G.3. In all the other states the energy shift is positive, however,

the atom spends little time in these intermediate states.

G.2 Quadrupole to Dipole Transfer

In a magnetic quadrupole trap at low temperatures, atoms undergo Majorana spin-flips at the trap center

where the magnetic field goes to zero and are lost from the trap (§B.2). Unless the zero is “plugged”, the

atoms must be transferred to a dipole trap away from the field zero before Majorana losses become severe.

This is the procedure used in the 87Rb apparatus (§3.1). However, when moving to a dipole trap there

is a compromise between transferring at low or high temperatures. At low temperature, the fraction of

atoms captured by the dipole trap is large, but Majorana losses lead to a decrease in number. At high

temperatures, Majorana losses are not a concern, but a significant fraction of atoms are not transferred

to the dipole trap, which has a small depth compared to the quadrupole trap. To better understand this

process, these calculations model the relationship between transfer efficiency, initial temperature and the

dipole trap parameters. One purpose is to assess the feasibility of using this procedure for cooling 40K in

the 40K apparatus (§3.2).

To model the transfer we use Maxwell-Boltzmann statistics and assume adiabaticity. These assumptions

are justified since our system is far from degeneracy and the transfer is slow compared to trap and collisional
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(1) (2)

(3) (4)

Figure G.4: Stages of the quadrupole-dipole transfer: (1) a pure quadrupole trap, (2) the dipole trap is
turned on, (3) the quadrupole gradient is reduced and the dipole power is increased, and (4) the quadrupole
trap is balancing gravity.

timescales. The different stages of the transfer are shown in Fig. G.4. In general, the full time-dependent

potential is

V (t) = Vquad(t) + Vdipole(t) −mgz, (G.3)

Vquad(t) = A(t)

√

(x

2

)2

+
(y

2

)2

+ z2, (G.4)

Vdipole(t) =
2P (t)Vsc

πw2
e
−2

(

( x
wx

)
2
+
(

y
wy

)2
+( z−z0

wz
)
2
)2

, (G.5)

where we assume the strong direction of the quadrupole field is along gravity. The dipole trap considered

here has Gaussian confinement along all three directions. In the calculation, we set wy � wx, wz, which models

a single beam trap with finite volume for numerical tractability. At t = 0 the trap is a pure quadrupole

(A(0) = A0 and P (0) = 0). After the transfer at t → ∞ the quadrupole is just balancing gravity and the

dipole trap is at maximum depth (A(∞) = mg and P (∞) = P0). Since the dipole trap has a limited depth,

some of the atoms will escape. In the calculation we let A(∞) = 1.02mg so that the partition function

integral will converge. Since we assume the transfer is adiabatic, we only need to consider equilibrium

thermodynamics. The n-particle partition function is

ZN =
1

N !
ZN

1 , (G.6)

(G.7)

where

Z1 = Λ−3

∫

d3xe−βV (~x), (G.8)

and Λ is the de Broglie wavelength

Λ =

√

2π~2

mkBT
. (G.9)
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The entropy is
S

NkB
= ln

(

Z1

N

)

+ 1 +
T

Z1

∂Z1

∂T
. (G.10)

The general procedure is to equate the entropies of the different potentials to calculate the change in

temperature. At t = 0 the single-particle partition function is

Z1 =
32π(kBT )3

A3
0Λ

3

1
(

1 − mg
A0

)2 (

1 + mg
A0

)2 , (G.11)

and entropy is
S

NkB
= ln

(

Z1

N

)

+
11

2
. (G.12)

At t → ∞ we need to calculate the partition function numerically using Eqn. G.8.
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Figure G.5: Final temperature after transfer to the dipole trap versus initial temperature in a 300G/cm
quadrupole trap. The λ = 1064nm dipole trap has a beam waist of 80µm and is traveling along y. All
calculations are for 40K.

The most efficient method for determining the final temperature is to construct entropy versus temper-

ature tables and then interpolate. Using this method, the final temperature versus initial temperature is

shown in Fig. G.5 for different dipole trap powers P0. There are three regimes depending on the initial

temperature. For high initial temperatures the atoms are predominantly still in the weak quadrupole poten-

tial after the transfer. Therefore, the final temperature is independent of the dipole trap. The temperature

decreases due to adiabatic decompression of the quadrupole trap. In the intermediate regime atoms start to

load into the dipole trap. The final temperature becomes less sensitive to the initial temperature because

the temperature is set by the depth of the dipole trap (empirically kBTf is ≈ 10% of the dipole trap depth).

Finally, when the initial gas is very cold, there is 100% transfer to the dipole trap. The atoms are located
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near the bottom of the dipole trap, which is well-described as a harmonic potential. The ratio of initial

and final temperatures can be calculated by assuming transfer from a quadrupole to a harmonic trap. The

harmonic trap frequencies are larger for higher dipole powers.

(a) (b)

Figure G.6: (a) Quadrupole to dipole transfer efficiency versus initial quadrupole temperature (300 G/cm)
and Majorana loss rate (top axis). The grey dashed line indicates where the Majorana loss rate is 1s−1,
which is around the point that these losses impede evaporation. We see that for P0 ≥ 5W, we can transfer
approximately half the atoms at this point. (b) Final phase-space density (PSD) at the bottom of the dipole
trap versus initial temperature. For cold initial temperatures there is 100% transfer so the PSD is just given
by atoms in a harmonic trap. Since the phase-space density is not a function of the trap frequency, all dipole
powers give the same PSD (in the low temperature regime). For higher temperatures, the dipole trap has a
dimple effect and can lead to a significant PSD increase.

An important experimental benchmark is the transfer fraction. We define atoms as transferred to the

dipole trap if their energy is less than the dipole trap depth (the bottom of the dipole trap is defined to be

V = 0). The transfer fraction is then

1

Z

1

h3

∫

e−V (x)/kBT dx

∫

√
2m(E−V (x))

0

dpp2e
− p2

2mkBT (G.13)

where E is the cutoff and the integrand is zero if U(x) > E. This can be expanded as

Λ−3

Z
√
π
dx

∫

e−V (x)/kBT



−2

√

E − V (x)

kBT
e
−E−V (x)

kBT +
√
πerf





√

E − V (x)

kBT







 . (G.14)

Using the above definition, the transfer efficiency versus initial temperature for different dipole power is

shown in Fig. G.6. The Majorana loss rate (Eqn. B.11) is shown on the top axis of this plot. This rate

formula agrees well with experiments in the F = 1 state of 87Rb , but likely underestimates the actual

rate for 40K. From Fig. G.6 we see that imperfect transfer is not necessarily negative because there is an

evaporation type effect which leads to a phase space density improvement.

The calculation agrees well with the observation from the 87Rb apparatus that we can transfer approx-
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imately 50% of the atoms into a 7W dipole trap (w = 100µm) when the initial cloud is T ≈ 20µK. For

fermions, such as 40K, an interesting question is whether this method would work with a polarized sample

where only p-wave collisions are allowed. This would be ideal because a mixture is difficult to maintain

and create in a magnetic trap. However, p-wave collisions in the polarized sample decrease rapidly when

T < 40µK [173]. This may cause the adiabaticity assumption to break down during the transfer.

G.3 Expansion in Condensate Mean-Field

In §4.1.4, we discussed using condensate fraction after time-of-flight (TOF) as a thermodynamic probe. Be-

cause of interactions during TOF an analytical fit to determine the condensate fraction is not possible, so

several heuristic methods have been developed. To evaluate these methods and to gain insight into the dis-

tribution after TOF, we numerically calculate the expanded distribution keeping the main interaction terms.

In general, the full interacting expansion requires a time-dependent many-body approach. However, since

interactions are weak and dominated by the dense condensate, we can make several reasonable approxima-

tions that greatly simplify the calculation yet retain the most important features of the expansion. First, we

assume that the condensate expansion is described by the GP equation (Eqn. 2.47), ignoring interactions

with the non-condensate atoms. Although several experiments have observed that non-condensate atoms

exert a pressure on the condensate (e.g., [126]), this effect is small and does not alter the main features of the

full distribution. Using this assumption, the condensate expansion is only a function of condensate number

N0, and not temperature T or total number N .

Next, we assume that as the thermal atoms expand, they experience the condensate mean-field po-

tential, but we neglect any interactions between thermal atoms (semi-ideal model, §2.2.2). The overall

time-dependent potential is

V (r, t) =
1

2
mω2(t)r2 + 2U0N0|Φ(r, t)|2 (G.15)

where U0 = 4π~
2a/m, |Φ(r, t)|2 is the time-dependent condensate, and ω(τ) = ω0 for t < 0 and ω(t) = 0

for t ≥ 0. In the trap the non-condensate distribution is

nT (r) =
∑

n

(

eEn/kBT − 1
)−1

|ψn(r)|2 (G.16)

where ψn are the eigenstates of the semi-ideal model. Based on our assumption, each of these eigenstates

expands independently so that

nT (r, t) =
∑

n

(

eEn/kBT − 1
)−1

|ψn(r, t)|2. (G.17)

Therefore, once we solve the time-dependent single particle Schrödinger equation for each eigenstate, we

can construct the distribution for any arbitrary T . A similar calculation was performed in Ref. [223] except

they treated the thermal atoms as classical particles. They showed a distinct change in the thermal atom

distribution near the edge of the condensate which agreed with experiment. The final distribution that we
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calculate is

n(r, t) = N0|Φ(r, t)|2 +
∑

n

(

eEn/kBT − 1
)−1

|ψn(r, t)|2. (G.18)

In this calculation the total condensate number is 105 and we use a = 5.5nm, m = mRb, and ν0 = 50Hz.

G.3.1 Spherical Coordinates

In a spherically symmetric trap, the problem reduces to 1D, which greatly decreases the computational

time and resources required. To write the equations in the 1D radial coordinate, we start with the full 3D

Schrödinger equation

i~
∂Ψ(~x, t)

∂t
=

(

− ~
2

2m
~∇2 + Vext(r, t)

)

Ψ(~x, t). (G.19)

In spherical coordinates the Laplacian is

∇2 =
1

r2
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∂
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1
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[

1

sin2(θ)

∂2
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+

1

sin(θ)

∂

∂θ

(

sin(θ)
∂

∂θ

)]

. (G.20)

The terms in the square bracket comprise the total angular momentum operator (−L2/~2). The spherical

harmonics are the eigenstates of this operator (L2Y m
l (θ, φ) = l(l + 1)). Rewriting the wavefunction as

Ψ(~x, t) = ψ(r, t)Y m
l (θ, φ) we obtain an effective 1D equation for the radial wavefunction (ψ(r, t))

i~
ψ(r, t)

∂t
=

(

− ~
2

2m

1

r2
∂

∂r

(

r2
∂

∂r

)

+
~

2l(l + 1)

2mr2
+ Vext(r, τ)+

)

ψ(r, t). (G.21)

G.3.2 Condensate Expansion

The condensate is described by the spherical GP equation

i~
∂Φ(r, t)

∂t
=

(

− ~
2

2m

(

∂2

∂r2
+ 2r

∂

∂r

)

+ Vext(r, t) +
4π~

2aN

m
|Φ(r, t)|2

)

Φ(r, t) (G.22)

where the condensate is normalized such that 4π
∫∞
0
r2|Φ(r, t)|2 = 1. To get the in-trap condensate, we solve

for the ground state of Eqn. G.22 with Vext = 1
2mω

2
0r

2 by performing imaginary time propagation using the

code in §I.4.2. Then we do forward time propagation of Φ(r, t) with Vext = 0.

We compare the numerical solution of Eqn. G.22 to the standard approximate solution

|Φ(r)|2 =
m

4π~2a

(

µ− 1

2
mω2

0r
2

)

(G.23)

which we get by setting the kinetic energy term in Eqn. G.22 to zero (Thomas-Fermi approximation). As

the condensate expands during TOF, the in-trap profile in Eqn. G.23 (Thomas-Fermi profile) is just rescaled

as [221]

|Φ(r, t)|2 =
1

λ3
|Φ(r/λ)|2, (G.24)

λ̈ =
ω0

λ4
. (G.25)
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Expansion Time (ms)

(a) (b)

Figure G.7: (a) TF radius of the condensate versus expansion time (black curve). The TF radius is obtained
by fitting the distribution that was numerically propagated using the GP equation to a TF profile. The
data fits well to a heuristic expansion function given by Eqn. G.26 (red, dashed curve). At long times the
condensate expands ballistically (gray, dashed curve). (b) Condensate distribution in-trap (black curve) and
after 10ms expansion (red curve).

The numerical solutions are shown in Fig. G.7. If we fit the numerical data at each expansion time to the

profile in Eqn. G.23 with the width as a free parameter, then the width versus expansion time fits well to

the function

rTF (τ0) = ra + (r2b + αaτ0 + (αbτ0)
2)0.5 (G.26)

where ra = 4.53, rb = 4.13, αa = −3.44 and αb = 2.15. If we fit the scaling solution to the same formula the

agreement with the numerical calculation is within 0.5%.

G.3.3 Non-Condensate Expansion

To get the initial eigenstates in the trap, we diagonalize Eqn. G.21 with the potential given by Eqn. G.15

at t = 0, so

En,lψn,l(r) = − ~
2

2mdr2
(ψn,l(r − dr) + ψn,l(r + dr) − 2ψn(r)) − . . .

~
2

m(2dr)

1

r
(ψn,l(r + dr) − ψn,l(r + dr)) + . . .

(

1

2
Mω2

0r
2 +

~
2

2mr2
l(l + 1) +

8~
2πaN

m
|Φ(r)|2

)

ψn,l(r), (G.27)

which can be solved with straightforward matrix math in the discretized r basis. Next we forward propagate

each ψn,l using the discretized time-dependent version of Eqn. G.21

i~
ψn,l(r, t + dt) − ψn,l(r, t− dt)

2dt
= − ~

2

2mdr2
(ψn,l(r − dr, t) + ψn,l(r + dr, t) − 2ψn,l(r, t))

− ~
2

m(2dr)

1

r
(ψn,l(r + dr, t) − ψn,l(r + dr, t)) +

(

~
2

2mr2
l(l + 1) +

8~
2πaN

m
|Φ(r, t)|2

)

ψn,l(r, t). (G.28)
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In the calculation, Φ(r, t) is given by the Thomas-Fermi distribution with the widths given by Eqn. G.26.

If a = 0 in Eqn. G.28, then this equation solves for the momentum distribution of the eigenstates (i.e., the

Fourier transform). Solving for the non-condensate expansion is computationally intensive because we need

to include a large number of states (the occupation of each state is less than one). Fortunately, for states

with higher l values there is a 2l + 1 degeneracy, so not all states need to be calculated.

For the actual calculation we propagated 17134 states comprising all states with energy less than 2〈E〉
where 〈E〉 is the mean thermal energy for a non-interacting gas with T = 105nK (N0/N ≈ 0.5 at T = 105nK

for N0 = 105). The maximum l state was l = 260 and including the 2l + 1 degeneracy this corresponds

to almost 3 million total states. For the in-trap eigenstates we used 1500 points with dr = 33.56nm. We

propagated each state for t = 10ms with dt = 300ns. Sample in-trap and propagated eigenstates are shown

in Fig. G.8.

(a) (b)

Figure G.8: (a) Sample non-condensate states in the trap. (b) Sample non-condensate states after 10ms
expansion. The black curve is the lowest energy non-condensate state. It is pushed away from the center of
the trap because of the condensate mean-field.

G.3.4 Results

Once we have numerically calculated the propagated eigenstates we construct the thermal distribution using

Eqn. G.17. Fig. G.9 displays these distributions for T = 70nK both in-trap and after 10ms expansion.

Although the high momentum tails of the distribution are well-described by a non-interacting fit, near the

condensate edge there is noticeable deviation. Under the condensate there is a prominent decrease in the

non-condensate density (a “hole”) due to the condensate mean-field repulsion. This hole appears in-trap and

after propagation. In the experiment, we measure the integrated 2D atomic distribution, which is also shown

in Fig. G.9. The integration smooths the hole, but the distribution still deviates from the non-interacting

distribution, which is peaked.
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(a) (b)

(c)

Figure G.9: Thermal distributions after numerically solving the mean-field expansion. (a) Condensate
and non-condensate thermal distribution in-trap at T = 70nK. The thermal distribution is obtained using
Eqn. G.16 after diagonalizing Eqn. G.27 to solve for the eigenstates. (b) Condensate and non-condensate
distribution after expanding for 10ms. The non-condensate distribution was obtained by propagating the
eigenstates using Eqn. G.28. For reference, the semiclassical non-interacting momentum distribution is
shown. The non-interacting and mean-field distribution converge at the edge of the trap where the influence
of the condensate is small. (c) The expanded distribution integrated along the imaging probe direction.
The integration minimizes the indent in the non-condensate distribution caused by the repulsive condensate
interactions.
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(a) (b)

Figure G.10: (a) Cross-section of simulated condensate fraction data at s = 6 for ν = 50Hz and N = 1.5×105

atoms after 20ms expansion. The condensate distribution is determined using the procedure outlined in the
main text. (b) Comparable experimental data, averaged over 7 shots. The experimental peaks are higher and
narrower, indicated that our procedure over-estimates the contribution of the mean-field to the expansion.
However, interactions must play a role in the experimental data as the first-order diffraction peaks are
narrower than the central peak.

0

300

Figure G.11: Noise samples used in Fig. 7.9 taken from experimental images without atoms.
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G.4 Simulated Bose-Hubbard TOF Distributions

In §7.3.2 we use simulated data to assess our lattice fitting procedure. In this section we will describe how

that data is generated. The form of the simulated distribution is motivated by two limits. In the finite T

non-interacting limit, the bimodal distribution is composed of a thermal non-condensate distribution given

by Eqn. 7.8 and condensate peaks at the diffraction orders (±2n~k). The entire distribution is multiplied

by the Fourier transform of the Wannier function (Eqn. 7.10, essentially a Gaussian). As T → 0 the thermal

distribution disappears and only the condensate peaks remain. However, as T → 0 in the interacting limit,

described by the SDMFT (§5.3.2), the distribution remains bimodal. In addition to the condensate peaks,

there is a quantum depleted non-condensate given by the Fourier transform of the Wannier function. There-

fore, combining these two limits, our simulated distribution consists of a thermal non-condensate (Eqn. 7.8,

NT ), a Gaussian quantum depleted non-condensate (Eqn. 7.10, NNC), and the condensate (N0). We use

the SDMFT to determine the ratio of these three quantities for a fixed total number N = NT +NNC +N0.

The T = 0 condensate fraction gives the ratio NNC/N0, which we assume is temperature independent, and

the finite T condensate fraction gives the ratio N0/N .

The above procedure gives the total number of condensate atoms. We use the Wannier envelope to

determine how these atoms are divided into diffraction peaks, but we still need to decide on the form of

the condensate peak after expansion. If we ignore interactions during expansion, then the condensate after

expansion is the free propagated in-trap wavefunction given by SDMFT. If we drop the Fresnel terms, then

this is just the Fourier transform. The peak height given by this procedure is far greater than the peak height

observed experimentally. In Ref. [261] it was pointed out that these Fresnel terms should not be dropped for

finite expansion times. If we include Fresnel terms, the peak height drops by an order of magnitude at 20ms

(our experimental expansion time). However, the peaks are still higher than we measure experimentally.

Also, we observe that the central peak is wider than the first order diffraction peaks. Since the central peak

has more atoms, this suggests interaction effects need to be considered.

To take interactions into consideration during the condensate peak expansion, we have devised a heuristic

method that qualitatively captures relevant features. First we use the Wannier envelope to determine the

number of atoms in peak j, N0,j . Then we use the lattice TF approximation to determine the condensate

size if the number of atoms in the condensate were N0,j [323]

rTF (0) =

√

2µ

mω2
, (G.29)

µ =

(

15

16

d3m32N0,jUω
3

√
2π

)2/5

. (G.30)

Finally, the TF radius after expansion time τ is given by the scaling equation (Eqn. 4.20). For a spherically

symmetric trap of ν = 50Hz, the numerical solution of the scaling equation is.

rTF (t)

rTF (0)
= 0.4 +

√

0.6052 − 0.01625t + (0.25829t)2. (G.31)

In Fig. G.10 we compare the generated data to experimental data at s = 6. The quantitative agreement is

not exact, but this gives a good approximation for testing our fit procedure. As expected, the widths are
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overestimated for the first order diffraction peaks where the mean-field interaction effects are small.

To simulate experimental noise we take an image without atoms from the experiment and add it to

the simulated data. This effectively captures the fringes and photon shot noise from the experiment. In

Fig. G.11 we show the three noise samples used in §7.3.2. Final simulated distributions with noise are shown

in Fig. 7.9.

G.5 Deriving the Probe Integrated Quasimomentum

Distribution

In this section we derive Eqn. 4.19, the 2D quasimomentum distribution after integrating along the probe

direction in the 87Rb apparatus. To keep the derivation free of extraneous symbols, we drop all prefactors in

front of the distributions. These are irrelevant since we will ultimately leave the prefactor as a free parameter

in the fit. The starting point of the derivation is the 3D quasimomentum distribution for the lattice plus

harmonically trapped gas (Eqn. 4.17)

n(q1, q2, q3) ∝ Li3/2

[

∓ζe−2tβ
∑

i{1−cos(qiπ/qB)}
]

(G.32)

where qi are the quasimomentum along the lattice axes, β = (kBT )−1, and ζ is the fugacity. In Eqn. 3.4

these lattice axes are written in terms of the fixed coordinate system defined by Fig. 3.1. We integrate the

3D quasimomentum distribution along x̂, the probe direction, and image in the yz plane. The boundary

condition for the integral is set by the condition that |qi| < qB (i.e., the quasimomentum is only defined in

the first Brillouin zone). In the following we assume that the physical coordinates are written in terms of the

dimensionless wavevector coordinates after expansion time, τ , i.e., x→ x(md/~τ). Therefore, the boundary

conditions on the spatial coordinates are

|y − z| <
√

2π, (G.33)
∣

∣

∣

∣

x+
1√
2
(y + z)

∣

∣

∣

∣

<
√

2π, (G.34)

∣

∣

∣

∣

−x+
1√
2
(y + z)

∣

∣

∣

∣

<
√

2π. (G.35)

Since the integral is along x̂ we can arrange these conditions into the form

|y − z| <
√

2π, (G.36)

|y + z| < 2π, (G.37)

|x| <
√

2

(

π − 1

2
|y + z|

)

. (G.38)
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We define new variables in the yz plane

α1 =
y + z

2
, (G.39)

α2 =
y − z√

2
, (G.40)

x = x/
√

2. (G.41)

The 2D quasimomentum distribution in terms of these variables is

n(α1, α2) ∝
∫ π−|α1|

−(π−|α1|)
dx Li3/2

[

ζe−2tβ{3−cos(α2)−cos(x+α1)−cos(−x+α1)}
]

, (G.42)

∝
∫ π−|α1|

−(π−|α1|)
dx

∞
∑

n=1

ζne−2tnβ{3−cos(α2)−cos(x+α1)−cos(−x+α1)}

n3/2
, (G.43)

∝
∞
∑

n=1

ζne−2tnβ{3−cos(α2)}

n3/2

∫ π−|α1|

−(π−|α1|)
dx e2tnβ{cos(x+α1)+cos(−x+α1)}. (G.44)

Expanding the cosines in the integrand

∫ π−|α1|

−(π−|α1|)
dx e2tnβ{cos(x+α1)+cos(−x+α1)} =

∫ π−|α1|

−(π−|α1|)
dx e4tnβ cos(x) cos(α1). (G.45)

To solve the above we substitute in a series expression for the exponential (Jacobi-Anger expansion)

eξ cos(x) = I0(ξ) +

∞
∑

n=−∞,n 6=0

In(ξ)einx, (G.46)

and so

∫ π−|α1|

−(π−|α1|)
dx e4tnβ cos(x) cos(α1) =

∫ π−|α1|

−(π−|α1|)
dx



I0(4tnβ cos(α1)) +

∞
∑

n=−∞,n 6=0

In(4tnβ cos(α1))e
inx



 ,

= 2(π − |α1|)I0(4tnβ cos(α1)) +
∞
∑

n=1

In(4tnβ cos(α1))
4 sin(n(π − |α1|))

n
. (G.47)

The full distribution is

n(α1, α2) ∝
∞
∑

n=1

ζne−2tnβ{3−cos(α2)}

n3/2

[

2(π − |α1|)I0(4tnβ cos(α1)) +
∞
∑

n=1

In(4tnβ cos(α1))
4 sin(n(π − |α1|))

n

]

, (G.48)

which is a doubly infinite sum. An example of the distribution given by Eqn. G.48 is shown in Fig. 4.3.
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Appendix H

Circuits

This appendix overviews three specific circuits developed for this thesis work. Other circuits developed for

the 87Rb apparatus may be found in [41] and for the 40K apparatus at

http://www.physics.utoronto.ca/~astummer/. For further information about the circuits presented in

this appendix (e.g., board layouts), please contact the author.

H.1 Laser Lock

The laser lock circuit is a generic laser servo designed to provide piezo and current feedback for stabilizing

the laser frequencies in the 40K apparatus. The input to the circuit is an error signal (e.g., from a saturated-

absorption spectroscopy setup) and the error signal zero crossing (lock-point) is set using a potentiometer

on the front panel of the circuit. Switches on the front panel enable/disable feedback to the laser; the circuit

generates proportional plus integrator (PI) error output for piezo feedback and a high pass proportional

output for current feeback.

The piezo output has an front panel adjustable bias, which centers the laser on the error feature. To

scan across this feature there is a front panel adjustable ramp (supplied internally or externally) that can be

switched on/off. One distinct feature of this circuit is an integrator fault detect. If the integrator is engaged

and the absolute value of the output goes beyond a user-set voltage, a fault condition is tripped and the

integrator is disabled until it is manually switched off and reset. A front panel LED alerts the user when

the integrator fault trips. This feature helps to prevent large changes to the piezo voltage which can cause

the laser to mode hop.

This lock circuit has two optional settings: a double integrator on the piezo and a fast (up to 10MHz)

proportional feedback. The double integrator may be useful when absolute laser frequency stability is re-

quired. The fast error is for direct feedback to the diode for narrowing the linewidth of lasers with fast noise

processes. In practice, we have not used these features, but they are available for future consideration.

The front and back panels of an assembled laser lock are illustrated in Fig. H.1 with locking instructions.

The circuit schematic is shown in Figs. H.2, H.3, and H.4.
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Current
Error Out

Piezo
Error Out

Error In

Current On/Off

Piezo On/Off

Ramp On/Off

Piezo Bias Adjust

Ramp Gain
Adjust

Figure H.1: Photograph of the assembled laser lock circuit front and back panel. To lock, first supply an
error signal input to the circuit and connect the outputs to the laser controller. Next, disable the piezo
and current servo integrators using the switches on the front, and turn on the ramp. Use the ramp adjust
knob on the front panel to increase/decrease the ramp range. Use the piezo bias to center the error feature.
When the error feature is centered, turn off the ramp and turn on the piezo integrator. If the lock does not
“capture” then the integrator will rail and the fault light will turn on. Turn the piezo integrator off, press
the reset button, and repeat the previous steps. If the piezo locks successfully then turn on the current
error. DIP switches on the board invert the piezo and current error outputs if the sign of the error signal is
incorrect.
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Figure H.2: Pg. 1 of the laser lock circuit schematic.
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Figure H.3: Pg. 2 of the laser lock circuit schematic.
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Figure H.4: Pg. 3 of the laser lock circuit schematic.
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H.2 Experiment Monitor and Interlock

This circuit is a dual purpose monitor and interlock. It can monitor the MOT fluorescence, a water flowme-

ter voltage, and twelve thermistors. Using a rotary switch on the front panel (see Fig. H.5), one can select

any of these signals and view them on a LCD voltmeter display (top-left of Fig. H.5). The water flow and

thermistors are compared against individual setpoints. If these setpoints are exceeded then an interlock is

tripped.

The first part of this circuit, the MOT photodiode monitor, subtracts and then amplifies the signals from

two unamplified photodiodes. The first of these photodiode is optimized to collect the MOT fluorescence

and the other photodiode collects stray light from the MOT beams. The stray light photodiode input is

subtracted from the fluorescence photodiode input to obtain a pure fluorescence signal (i.e., a signal that is

zero if the MOT beams are on, but there are no atoms). This signal is then amplified to produce a clean,

high contrast monitor of the MOT size. The schematic for this circuit is shown in Fig. H.6.

On the interlock board, the water flow and twelve thermistor inputs are compared to individual setpoints.

For the thermistors this is accomplished by incorporating each thermistor into a Whetstone bridge. When

the setpoint is exceeded, the interlock trips and remains tripped until the input goes back below the setpoint

and the interlock is manually reset via a push button on the front panel. For historic reasons the thermistors

are in three separate groups. The circuit can be setup so that each groups trips independent of the other

groups (e.g., if the thermistors correspond to coils run by separate supplies). However, we run the circuit in

the mode where any thermistor trips all the interlocks. The water flow is always set to trip all interlocks.

The interlock circuit schematics are shown in Figs. H.7, H.8, and H.9.

When an interlock is tripped, an output from the board goes to TTL high. We use this TTL signal to

drive three relays, shown in Fig. H.10. These relays are connected to shutoff switches on our power supplies.

H.3 Mixer

To create an error signal for laser locking, one method is to frequency modulate the pump or probe beam

of a saturated-absorption spectroscopy setup at f0 and then demodulate the probe photodiode signal at f0.

This type of modulation/demodulation spectroscopy is an effective method to generate a signal with a true

zero crossings that is immune to first-order temperature and pressure drifts in the atomic vapor cell. This

circuit mixes the probe photodiode signal with the modulation signal and then low pass filters the output

to perform demodulation. The schematic is shown in Fig. H.11
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Set Point
Potentiometers

Interlock Indicator
Lights and Reset Switches

Select input/set point
to display on
screen or output to BNC

Figure H.5: MOT photodiode monitor and interlock front panel.
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Figure H.6: MOT photodiode Monitor Schematic.
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Figure H.7: Pg. 1 of the interlock.
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Figure H.8: Pg. 2 of the interlock.
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Figure H.9: Pg. 3 of the interlock.
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Figure H.10: Relay board for the interlock. The output of the interlock board are a set of TTL signals. This
board, separate from the interlock PCB, uses the TTL signals to drive a set of relays, shown as resistors in
the schematics. These relays are hooked up to the shutoff inputs of the various power supplies in the lab.

305



-

+
AD826

5
0

1
0
k

1
0
k

1k
500nF

10pF

100k
Saturation
Spectroscopy
Photodiode In RF

-

+
AD826

1
0
k

1
0
k

10k
500nF

10pF

100k

Modulation
In

LO

SRA-6+

RF

LO

IF

1
0
0
k

1
n
F

15k

-

+

LF356

20k

5
k

5k

1
0
0
n
F

1k

Out #1

Out #2

100

100

Figure H.11: Mixer circuit schematic. The signal is mixed using part SRA-6+ from Mini-Circuits. Out #1
is sent to the laser servo for locking and Out #2 is a filtered, amplified monitor output.

306



Appendix I

Code

This appendix contains MATLAB code developed for this thesis.

I.1 SDMFT Code

This code implements the theory discussed in §5.3.2. The following function, sdmft solve, computes the

properties at a single site given temperature T and chemical potential mu.

%=============================================================

%------------------

%Inputs:

%mu: Chemical Potential

%T: Temperature

%U: Bose-Hubbard interaction parameter

%J: Bose-Hubbard tunneling parameter

%Outputs:

%y(1): N

%y(2): H-mu*N

%y(3): S

%y(4): |<a>|∧2 (Condensate number, N0)

%y(5): <a>

%y(6): <N∧2>

%y(7): (<N∧2>-<N>∧2)∧(0.5)

%y(8): Heat Capacity

%------------------

function y = sdmft solve(mu,T,U,J,flag)

%Number of fock states for the calculation

nvals = 0:15;

nlength = length(nvals);

if T =0

%scale everything by kT for numerical reasons

beta = 1/(1.38E-23*T);

mu = mu*beta;

U = U*beta;

J = J*beta;

else

%zero temp, scale everything by U

U0 = U;
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mu = mu/U0;

U = 1;

J = J/U0;

end

%guess mean field parameter

a = 2.7;

%coordination number

z = 6;

%Do maximum 100 iterations

for i = 1:100

%Fock basis Hamiltonian

H0 = zeros((nlength+2),(nlength+2));

%Add terms to the Hamiltonian

for j = 2:(nlength+1)

H0(j,j) = U/2*nvals(j-1)*(nvals(j-1)-1)-nvals(j-1)*mu+z*a*conj(a)*J;

H0(j+1,j) = -z*J*a*sqrt(nvals(j-1)+1);

H0(j-1,j) = -z*J*conj(a)*sqrt(nvals(j-1));

end

%Take off padding

H = H0(2:(nlength+1),2:(nlength+1));

%Diagonalize

[estates evals] = eig(H);

%Calculate mean field parameter

aold = a;

a = 0;

if T =0

%Finite temperature so calculate by summing states with a Boltzmann factor

for j = 1:length(evals(1,:))

for k = 2:nlength

a = a + exp(-(evals(j,j)))*sqrt(nvals(k))*conj(estates(k-1,j))*estates(k,j);

end

end

a = a/sum(exp(-(diag(evals))));

else

%Zero temperature so calculate using the ground state

for j = 1:1

for k = 2:nlength

a = a + sqrt(nvals(k))*conj(estates(k-1,j))*estates(k,j);

end

end

end
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%Has the mean-field parameter converged?

if abs(aold-a)/abs(aold) < 1E-6

break

end

end

if T =0

%make a matrix with boltzmann factors and the squares of the eigenstates

part func = sum(exp(-(diag(evals))));

boltz states = (conj(estates).*estates)*diag(exp(-(diag(evals))))/part func;

energ states = boltz states*evals;

energ states2 = boltz states*(evals.∧2);

n states = diag(nvals)*boltz states;

n2 states = diag(nvals.∧2)*boltz states;

else

n states = nvals’.*abs(estates(:,1)).∧2;

n2 states = (nvals.∧2)’.*abs(estates(:,1)).∧2;

energ states = evals(1,1)*U0;

energ states2 = evals(1,1)∧2*U0∧2;

end

%calculate N

y(1) = sum(sum(n states));

%calculate H-uN

y(2) = sum(sum(energ states));

%calculate S (kb*log(Z)+U/T)

if T =0

y(3) = log(part func)+y(2);

else

y(3) = 0;

end

%calculate condensate number

y(4) = a*conj(a);

%<a>

y(5) = a;

%<n∧2>

y(6) = sum(sum(n2 states));

%variance

y(7) = sqrt(y(6)-y(1)∧2);

%this is the heat capacity

y(8) = sum(sum(energ states2))-sum(sum(energ states)).∧2;

end

%=============================================================

The following function takes the above code and computes the properties of the trapped gas using LDA.

%=============================================================

%------------------

%Inputs:
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%mu: Chemical Potential

%T: Temperature

%U: Bose-Hubbard interaction parameter

%J: Bose-Hubbard tunneling parameter

%m: Mass

%w: Trap frequency

%d: Lattice spacing

%Outputs:

%y(1): N

%y(2): S

%y(3): N0 (Condensate Number)

%y(4): N0/N

%y(5): Energy

%y(6): Heat Capacity

%------------------

function y = sdmft solve trap(mu,T,U,J,m,w,d)

%Number of sites radially to sum over

nsites = 60;

%Check our radial estimate against an exact sum

exact sum = 0;

%Trap Energy

trapenerg = 0.5*m*w∧2*d∧2;

if exact sum

%Do a radial approximation to the trap

r = 0:nsites;

%calculate the chemical potential in the LDA

mulda = mu-trapenerg*(r.∧2);

ntest = zeros(1,length(mulda));

stest = zeros(1,length(mulda));

n0test = zeros(1,length(mulda));

etest = zeros(1,length(mulda));

ctest = zeros(1,length(mulda));

n0test2 = zeros(1,length(mulda));

%calculate n,s,n0 for the different chemical potentials across the

%lattice

for i = 1:length(mulda)

y2 = sdmft solve(mulda(i),t,U,J);

ntest(i) = y2(1);

stest(i) = y2(3);

n0test(i) = y2(4);

etest(i) = y2(2);

ctest(i) = y2(8);

end
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%calculate the totals across the lattice by weighting with the

%appropriate area factors (4*pi*r∧2)

y(1) = sum(4*pi*ntest.*r.∧2);

y(2) = sum(4*pi*stest.*r.∧2);

y(3) = sum(4*pi*n0test.*r.∧2);

y(5) = sum(4*pi*etest.*r.∧2)*t+mu/1.38E-23*y(1);

y(6) = sum(4*pi*ctest.*r.∧2)/y(1);

else

%Do the exact 3D sum

y(1) = 0;

y(2) = 0;

y(3) = 0;

for i = 1:nsites

for j = i:nsites

for k = j:nsites

mulda = mu-trapenerg*(i∧2+j∧2+k∧2);

y2 = sdmft solve(mulda,t,U,J);

y(1) = y(1) + 6*y2(1);

y(2) = y(2) + 6*y2(3);

y(3) = y(3) + 6*y2(4);

end

end

disp(i);

end

y(1:3) = 8*y(1:3);

end

y(4) = y(3)/y(1);

end

%=============================================================

I.2 HFBP

This code implements the HFBP theory discussed in §5.3.1. To run the code we first need to create an array

with the non-interacting energies of a uniform lattice in k-space (quasimomentum space).

%=============================================================

%------------------

%Inputs:

%nsites: Number of sites in the lattice array

%Outputs:

%y: Energies (per unit 4t) in one octant of a lattice in k space

%------------------

function y = make lattice array(nsites)

j = 0:nsites;

[jx, jy, jz] = meshgrid(j,j,j);

y = ((1-cos(pi*jx/nsites))+(1-cos(pi*jy/nsites))+(1-cos(pi*jz/nsites)));

end
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%=============================================================

Next, we use the array created from the above function to compute the HFBP energies in a uniform

lattice. Once these have been computed, we divide by the number of sites to get the quantities per site in

the uniform lattice. The following function hfbp solve, also contains a subfunction nT solve.

%=============================================================

%------------------

%Inputs:

%mu: Chemical Potential

%T: Temperature

%U: Bose-Hubbard interaction parameter

%J: Bose-Hubbard tunneling parameter

%latt array: Lattice k-space energies from "make lattice array.m"

%Outputs:

%y(1): N per site

%y(2): N0 per site

%y(3): S per site

%------------------

function y = hfbp solve(mu,T,U,J,latt array)

beta = 1/1.38E-23/T;

e0 = 0;

%Nsites here refers to the number of sites on either

%side of zero

nsites = (length(latt array(1,1,:))-1)*2;

nsites mid = 1;

%Use latt array to compute the non-interacting energy

ej = 2*J*latt array+e0;

%The absolute ground state cannot contribute to these sums because it is the condensate.

%Set it to a really high energy so that it is essentially removed from the

%calculation.

ej(nsites mid,nsites mid,nsites mid) = 1;

%For the HFBP solution we have to solve self-consistently for the value of nT (thermal number)

%from mu and T. If we have nT,mu and T we can calculte n (total number) and n0 (condensate number).

%Seed with self-consistency loop with the non-interacting value of nT

nT solve(0,0);

%maximum number of iterations

n max iters = 30;

dx = 1;

%Solve by interpolation. Make the region bigger or smaller depending on if

%the results are getting better or worse

for i = 1:n max iters
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%This is our best guess for the thermal number

nT seed = nT;

%create an 10 element array of thermal number guesses around our best guess in a

%region of size 1-dx to 1+dx

nT guess = linspace(max([(1-dx),0])*nT seed,(1+dx)*nT seed,10);

nT2 = zeros(1,10);

%solve for the thermal number generated using our guesses

for j = 1:10

nT solve(nT guess(j),U);

nT2(j) = nT;

end

%interpolate to the thermal number where the guess and the result are

%the same

nT new = interp1(spline(nT guess,nT guess-nT2,linspace(nT guess(1),. . .

nT guess(end),1000)),linspace(nT guess(1),nT guess(end),1000),0);

%nT cannot be negative

if nT new<0

nT new=0;

end

%Need to make the guess interval bigger if the interpolation fails

if isnan(nT new)

dx = dx*3;

nT = nT seed;

continue;

end

%solve for thermal number using the interpolated guess value

nT solve(nT new,U);

%check self-consistency to 0.1%

if (sqrt((nT-nT new)∧2/nT new∧2) < 10∧(-3) || (nT==0 && nT new==0))

break;

end

%If we were able to interpolate, but with not enough precision then

%We need to calculate in a smaller region for higher precision

nT = nT new;

dx = dx/2;

if i==n max iters

disp([’Did not converge for mu ’ num2str(mu)])

end

end

%calculate S (units of kB)

s = (8*sum(sum(sum(beta*Ej.*(exp(beta*Ej)-1).∧(-1)-log(1-exp(-beta*Ej)))))-...

4*sum(sum(sum(beta*Ej(1,:,:).*(exp(beta*Ej(1,:,:))-1).∧(-1)-log(1-exp(-beta*Ej(1,:,:))))))-...
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4*sum(sum(sum(beta*Ej(:,1,:).*(exp(beta*Ej(:,1,:))-1).∧(-1)-log(1-exp(-beta*Ej(:,1,:))))))-...

4*sum(sum(sum(beta*Ej(:,:,1).*(exp(beta*Ej(:,:,1))-1).∧(-1)-log(1-exp(-beta*Ej(:,:,1))))))+...

2*sum(sum(sum(beta*Ej(1,1,:).*(exp(beta*Ej(1,1,:))-1).∧(-1)-log(1-exp(-beta*Ej(1,1,:))))))+...

2*sum(sum(sum(beta*Ej(1,:,1).*(exp(beta*Ej(1,:,1))-1).∧(-1)-log(1-exp(-beta*Ej(1,:,1))))))+...

2*sum(sum(sum(beta*Ej(:,1,1).*(exp(beta*Ej(:,1,1))-1).∧(-1)-log(1-exp(-beta*Ej(:,1,1)))))))...

/(nsites∧3-1);

if (nT==0&&n0==0)

s=0;

end

y(1) = nT+n0;

y(2) = n0;

y(3) = s;

%This is a subfunction which calculates the thermal number from a guess value for the thermal

%number nT 0 for a given interaction strength U0

function nT solve(nT 0,U0)

mu0 = mu;

%From the thermal number guess and chemical potential get n0

if U0==0

%If non-interacting then set condensate and chemical potential to zero

%For the purposes of this calculation

n0 = 0;

mu0 = 0;

else

n0 = mu0/U-2*nT 0;

end

%n0 cannot be negative

if n0<0

n0=0;

end

%HF energy

HFj = (ej-e0)-mu0+2*U*(n0+nT 0);

%HFBP energy

Ej = (-(U*n0)∧2+HFj.∧2).∧(0.5);

%solve for the thermal number

%odd sum because latt array was one octant of the full k-space

nT = (8*sum(0.5*(HFj(:)./Ej(:).*coth(beta*Ej(:)/2)-1))-...

4*sum(sum(0.5*(HFj(1,:,:)./Ej(1,:,:).*coth(beta*Ej(1,:,:)/2)-1)))-...

4*sum(sum(0.5*(HFj(:,1,:)./Ej(:,1,:).*coth(beta*Ej(:,1,:)/2)-1)))-...

4*sum(sum(0.5*(HFj(:,:,1)./Ej(:,:,1).*coth(beta*Ej(:,:,1)/2)-1)))+...

2*sum(sum(0.5*(HFj(1,1,:)./Ej(1,1,:).*coth(beta*Ej(1,1,:)/2)-1)))+...

2*sum(sum(0.5*(HFj(1,:,1)./Ej(1,:,1).*coth(beta*Ej(1,:,1)/2)-1)))+...

2*sum(sum(0.5*(HFj(:,1,1)./Ej(:,1,1).*coth(beta*Ej(:,1,1)/2)-1))))/(nsites∧3-1);
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%nT cannot be negative

if nT<0

nT=0;

end

end

end

%=============================================================

Solve for the trapped gas using LDA.

%=============================================================

%------------------

%Inputs:

%mu: Chemical Potential

%T: Temperature

%U: Bose-Hubbard interaction parameter

%J: Bose-Hubbard tunneling parameter

%m: Mass

%w: Trap frequency

%d: Lattice Spacing

%latt array: Lattice k-space energies from "make lattice array.m"

%Outputs:

%y(1): N per site

%y(2): N0 per site

%y(3): S per site

%------------------

function y = hfbp solve trap(mu,T,U,J,m,w,d,latt array)

%Outputs

%y(1): total N

%y(2): total S

%y(3): total N0

%y(4): cond frac

%Number of lattice sites to sum over

nsites = 200;

%get the trap energy

trapenerg = 0.5*m*w∧2*d∧2;

r = 0:nsites;

%calculate the chemical potential in the LDA

mulda = mu-trapenerg*(r.∧2);

%calculate n,s,n0 for the different chemical potentials across the

%lattice

ntest = zeros(1,length(mulda));

stest = zeros(1,length(mulda));
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n0test = zeros(1,length(mulda));

%calculate n,s,n0 for the different chemical potentials across the

%lattice

for i = 1:length(mulda)

y2 = hfbp solve(mulda(i),T,U,J,latt array);

ntest(i) = y2(1);

stest(i) = y2(3);

n0test(i) = y2(2);

%no more sites needed

if i>10 && (4*pi*ntest(i)*r(i)∧2) < 1

%disp(i)

break;

end

end

%calculate the totals across the lattice by weighting with the

%appropriate area factors (4*pi*r∧2)

y(1) = sum(4*pi*ntest.*r.∧2);

y(2) = sum(4*pi*stest.*r.∧2)*1.38E-23;

y(3) = sum(4*pi*n0test.*r.∧2);

y(4) = y(3)/y(1);

end

%=============================================================

I.3 Small System Exact Hubbard Solver

The following code performs exact diagonalization to solve small system Hubbard models.

I.3.1 1D BH Model

To solve the exact system, we first need a function to generate a matrix of all possible states in the Fock

basis. The following function generates this matrix recursively. The state matrix is independent of the

dimensionality of the problem and only depends on the total number of particles and the number of sites.

%=============================================================

%------------------

%Inputs:

%n: Number of sites

%m: Number of particles

%max m: Maximum number of particle per site

%Outputs:

%y: n x (number of states) matrix where the columns represent each state

%and the rows are the number of particle in site i for that state

%------------------
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function y = create state matrix bosons(n,m,max m)

if nargin < 3

max m = m;

end

y = [];

%no sites

if n==0

return;

end

%trivial case

if n==1

if m>max m

return;

end

y = m;

return;

end

%no atoms

if m==0

y = zeros(n,1);

return;

end

count = 1;

%create matrix

psi = zeros(n,factorial(n+m-1)/factorial(n-1)/factorial(m));

if m>max m

mm = max m;

else

mm = m;

end

for j = 0:mm

%recursively get all the possible states if we put j particles in

%site i

psi2 = create state matrix(n-1,m-j,max m);

psi(1,count:(count+size(psi2,2)-1))=j;

psi(2:end,count:(count+size(psi2,2)-1)) = psi2;

%readjust counter

count = count+size(psi2,2);

end

y = psi(:,1:(count-1));

return;

%=============================================================
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Next, we need to construct the BH Hamiltonian for 1D given the state matrix generated in the previous

function. The diagonal terms of the matrix are proportional to U and the off-diagonal are proportional to

t (specified as J in the code). This matrix is sparse, i.e., most elements of the matrix are zero. Therefore,

this function exports the coordinates of the non-zero off-diagonal elements, so that we can easily replace

these terms if t changes. Once we have the Hamiltonian we can diagonalize to get the eigenstates and/or

use matrix multiplication to time-propagate an initial state.

%=============================================================

%------------------

%Inputs:

%J: Bose-Hubbard tunneling parameter

%U: Bose-Hubbard interaction parameter

%state matrix: State matrix from function "create state matrix bosons"

%nsites: number of sites (needs to be the same as in state matrix)

%Outputs:

%H: Hamiltonian

%Jrep: an nx2 matrix given the matrix elements in H which need to be

%replaced if J changes

%------------------

function [H Jrep] = construct BH matrix(J,U,state matrix,nsites)

%construct an n-site BH matrix in a 1D chain with a fixed particle number

%The first row of state matrix is the one end of the chain and the last row

%the end of the chain

H = zeros(size(state matrix,2));

Jrep = zeros(size(state matrix,2),2);

jrep count = 1;

for i = 1:size(state matrix,2)

for j = i:size(state matrix,2)

%tunneling terms

for k = 1:nsites

test vector = state matrix(:,i);

%tunnel to the "right"

if k =nsites

test vector(k) = test vector(k)-1;

test vector(k+1) = test vector(k+1)+1;

if (state matrix(:,j)-test vector)

if H(i,j)==0

Jrep(jrep count,:) = [i j];

jrep count = jrep count+1;

end

H(i,j) = H(i,j) - J*sqrt(state matrix(k+1,j)*state matrix(k,i));

end

end
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test vector = state matrix(:,i);

%tunnel to the "left"

if k =1

test vector(k) = test vector(k)-1;

test vector(k-1) = test vector(k-1)+1;

if (state matrix(:,j)-test vector)

if H(i,j)==0

Jrep(jrep count,:) = [i j];

jrep count = jrep count+1;

end

H(i,j) = H(i,j) - J*sqrt(state matrix(k-1,j)*state matrix(k,i));

end

end

end

%interaction terms

if (i==j)

H(i,j) = U/2*sum(state matrix(:,i).*(state matrix(:,i)-1));

end

end

end

for i = 1:size(state matrix,2)

for j = (i+1):size(state matrix,2)

H(j,i) = H(i,j);

end

end

Jrep = Jrep(1:(jrep count-1),:);

end

%=============================================================

The following function constructs the matrix corresponding to the momentum field operator. With this

matrix we can determine the density at momentum p using matrix multiplication.

%=============================================================

%------------------

%Inputs:

%p: Momentum value to construct the matrix for

%state matrix: State matrix from function "create state matrix bosons"

%nsites: number of sites (needs to be the same as in state matrix)

%Outputs:

%y: Momentum field operator matrix

%------------------

function y = create p matrix(p,state matrix,nsites)

%create the field operator matrix for momentum

y = zeros(size(state matrix,2));

%also symmetric so only due top triangle
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for i = 1:size(state matrix,2);

for j = i:size(state matrix,2)

%tunneling terms

for k = 1:nsites

for kk = 1:nsites

test vector = state matrix(:,i);

test vector(k) = test vector(k)-1;

test vector(kk) = test vector(kk)+1;

if (state matrix(:,j)-test vector)

y(i,j) = y(i,j)+exp(sqrt(-1)*p*(k-kk))*sqrt(state matrix(k,i)*state matrix(kk,j));

end

end

end

end

end

for i = 1:size(state matrix,2);

for j = (i+1):size(state matrix,2)

y(j,i) = conj(y(i,j));

end

end

end

%=============================================================

I.3.2 5 Site 2D FH Model

There are new considerations for a small system FH solver as compared to the BH solver. First, we need to

include two states, otherwise the solutions are trivial. Also, the number of Fock states per site is naturally

truncated by Pauli blocking, so creating the state matrix is more straightforward. However, one has to be

extremely careful about the sign of the creation/annihilation operators acting on the states when construct-

ing the Hamiltonian and/or any operator matrix. The following function creates the state matrix and FH

Hamiltonian for 5 sites in 2D (one site in the center, connected to five outside sites). The state matrix is

organized so that each row corresponds to a given site. The first row is the center site and all other rows

correspond to the outside sites. Two state matrices are generated, one for state 1 (“spin up”) and the other

for state 2 (“spin down”).

%=============================================================

%------------------

%Inputs:

%J: Fermi-Hubbard tunneling parameter

%U: Fermi-Hubbard interaction parameter between states 1 and 2

%mu1: Chemical Potential for state 1

%mu1: Chemical Potential for state 2

%Outputs:

%H: Hamiltonian

%Psi1: state matrix for state 1

%Psi2: state matrix for state 1
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%------------------

function [H Psi1 Psi2] = construct FH matrix(J,U,mu1,mu2)

%construct a 5 site FH matrix with the basis in each site (2D)

%|00>,|10>,|01>,|11>

n sites = 3;

%create state matrix

%for each spin...can only be 1 or 0

state matrix1 = zeros(n sites,4∧n sites);

state matrix2 = zeros(n sites,4∧n sites);

state indices = 0:(4∧n sites-1);

for i = 1:n sites

state matrix1(i,:) = floor(mod(state indices/4∧(n sites-i),2));

state matrix2(i,:) = floor(mod(state indices/4∧(n sites-i),4)/2);

end

H = zeros(4∧n sites);

for i = 1:(4∧n sites)

for j = (i+1):(4∧n sites)

for k = 1:1

%tunneling terms

if k==1

kk2 = 2:n sites;

elseif k==2

kk2 = 4;

else

kk2 = 5;

end

for kk = kk2

for l = 1:2

if l==1 %up spin

test vector1 = state matrix1(:,i);

test vector2 = state matrix1(:,j);

test vector3 = state matrix2(:,i);

%other spin state needs to be the same

if sum((state matrix2(:,i)==state matrix2(:,j))) =n sites

continue;

end

else %down spin

test vector1 = state matrix2(:,i);

test vector2 = state matrix2(:,j);

test vector3 = state matrix1(:,i);
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%other spin state needs to be the same

if sum((state matrix1(:,i)==state matrix1(:,j))) =n sites

continue;

end

end

%subtract particle from center site and add to site k

if (test vector1(k)==1 && test vector1(kk)==0)

%this is to take into account the phase associated

%with the anti-commuting fermion operators...I’m

%not sure if I did this exactly right...sort of

%trial and error

prefactor = sum(test vector1(2:(kk-1)))+sum(test vector3(1:(kk-1)));

if l==2

prefactor = prefactor + test vector3(1)+test vector3(kk);

end

test vector1(k) = 0;

test vector1(kk) = 1;

if sum((test vector1==test vector2))==n sites

H(i,j) = H(i,j) - (-1)∧(prefactor)*J;

end

continue;

end

%add particle to center site from site k

if (test vector1(kk)==1 && test vector1(k)==0)

prefactor = sum(test vector1(2:(kk-1)))+sum(test vector3(1:(kk-1)));

if l==2

prefactor = prefactor + test vector3(1)+test vector3(kk);

end

test vector1(kk) = 0;

test vector1(k) = 1;

if sum((test vector1==test vector2))==n sites

H(i,j) = H(i,j) - (-1)∧(prefactor)*J;

end

end

end

end

end

end
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%interaction and chemical potential terms

H(i,i) = U*sum(state matrix1(:,i).*state matrix2(:,i))-...

mu1*sum(state matrix1(:,i))-mu2*sum(state matrix2(:,i));

end

%make Hermitian

for i = 1:(4∧n sites)

for j = (i+1):(4∧n sites)

H(j,i) = conj(H(i,j));

end

end

Psi1 = state matrix1;

Psi2 = state matrix2;

end

%=============================================================

This functions constructs a matrix corresponding to the spin correlation operator
∑4

j=2
~Sj · ~S1.

%=============================================================

%------------------

%Inputs:

%Psi1: state matrix for state 1

%Psi2: state matrix for state 2

%Outputs:

%S: Spin correlation matrix

%------------------

function [S] = construct spin corr matrix(Psi1,Psi2)

%construct the spin correlation matrix

n sites = 3;

S = zeros(4∧n sites);

for i = 1:(4∧n sites)

for j = i:(4∧n sites)

%Sx 1*Sx j+Sy 1*Sy j

for kk = 2:n sites

for ii = 0:1

for jj = 0:1

%spin up

test vector1 = Psi1(:,i);

%spin down

test vector2 = Psi2(:,i);

%check we have one spin at site 1 and one spin at

%site kk

if (Psi1(1,i)==ii && Psi2(1,i)==(∼ii) && Psi1(kk,i)==jj && Psi2(kk,i)==(∼jj))

%flip the spins at site 1 and site kk

test vector1(1) = ∼test vector1(1);

test vector1(kk) = ∼test vector1(kk);

test vector2(1) = ∼test vector2(1);
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test vector2(kk) = ∼test vector2(kk);

if (sum((test vector1==Psi1(:,j)))==n sites && ...

sum((test vector2==Psi2(:,j)))==n sites)

%sigma x just adds a 1

S(i,j) = S(i,j) + 1;

%sigma y has a sign

if ii==jj

S(i,j) = S(i,j) - 1;

else

S(i,j) = S(i,j) + 1;

end

end

end

end

end

end

end

for kk = 2:n sites

%Sz 1*Sz j

S(i,i) = S(i,i) + (Psi1(1,i)-Psi2(1,i))*(Psi1(kk,i)-Psi2(kk,i));

end

end

%make Hermitian

for i = 1:(4∧n sites)

for j = (i+1):(4∧n sites)

S(j,i) = S(i,j);

end

end

end

%=============================================================

I.4 Wavefunction Solvers

This section contains different sets of code to solve for the wavefunction. The GP Solver (§I.4.2) is optimized

to solve the GP equation (Eqn. 2.47), which is essentially the Schrödinger equation with a non-linear term.

However, the GP Solver can also be used to solve the single particle problem if the interaction term is set

to zero. However, the Crank-Nicolson solver (§I.4.3) is optimized for the non-interacting problem.

I.4.1 Schrodinger Equation Eigenstates

This function computes the eigenstates of the 1D or radial Schrodinger equation given an arbitrary single

particle potential sent in as a function handle.
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%=============================================================

%------------------

%Inputs:

%xb: Upper bound on x for the solution

%pts: Number of points to use (i.e., dx = xb/pts)

%m: mass

%Ufunc: handle to a function that gives the potential. Potential needs to

%have the form @(x,t,flag) where x is the position, t is time. If flag==1

%then the function needs to return the characteristic length scale of the

%potential. If flag==2 then it needs to return whether or not it is

%time-dependent.

%L: If L<0 then this is a 1D problem. If L>=0, then this is a spherically

%symmetric problem and we are solving in the radial variable. L is the

%total angular momentum

%nstates: Number of eigenstates to solve for (if nstates=1 then ground

%state is returned)

%Outputs:

%x: Position vector

%E: Eigenvalues

%Psi: Eigenstates

%------------------

function [x E Psi] = solve estates(xb,pts,m,Ufunc,L,nstates)

%Solve for the eigenstates of a potential Ufunc on the bound +- xb with

%number of points (’pts’). This is the finite different method

%------Define Constants----

hbar=1.055e-34;

momentum prefactor = hbar∧2/2/m;

%set up grid

dx=2*xb/(pts-1); %step size

v = [0:pts-1]’;

x = v*dx - xb;

%spherically symmetric so x is dx to 2*xb

if L>=0

x = x(1:end)+xb+dx;

end

if Ufunc(0,0,2)

warning(’Potential is not time independent. t=0 will be used.’);

end

%Make Hamiltonian matrix

H = diag(Ufunc(x,0,0)/momentum prefactor+2/dx∧2+(L*(L+1)./x.∧2).*(L>0));

%Put in off-diagonal momentum terms using finite different

for i = 1:size(H,1)

if i =1

H(i,i-1) = -1/dx∧2 + (L>=0)/dx/x(i);

end
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if i =size(H,1)

H(i,i+1) = -1/dx∧2 - (L>=0)/dx/x(i);

end

end

%diagonalize

[Psi E] = eigs(H,nstates,’sm’);

E = diag(E)*momentum prefactor;

%Sort by energy

[E IX] = sort(E);

Psi = Psi(:,IX);

end

%=============================================================

I.4.2 GP Solver

The following is code used to solve the GP Equation (Eqn. 2.47), but this code can also be used to solve the

single particle Schrödinger equation if interactions are set to zero. Earlier versions of this code were provided

by Professor Brian P. Anderson at the University of Arizona. The code is divided into code optimized for the

3D solution and the 1D radial solution. However, if we just want to solve for the condensate TF expansion,

then we can use the scaling equations, Eqn. 4.20. The following is a small function that can be used to solve

these equations numerically.

%=============================================================

%------------------

%Inputs:

%omega: Trap frequency vector

%t: Time vector

%Outputs:

%t3: Output time vector (same as t)

%lambda: Scaling solutions at each time t. Is a six vector where elements

%1:3 are the lambda derivatives and 4:6 are the lambdas.

%------------------

function [t3 lambda] = solve tf scaling expansion(omega,t)

%Solve the TF expansion using the equations of Castin and Dum (PRL 77,

%5315)

[t3 lambda] = ode23(@(t,y)(tf eqns(t,y,omega)),t,[0 0 0 1 1 1]);

end

%Sub function sent to ode23

function yprime = tf eqns(t2,y,omega)

%6 equations

yprime(4:6) = y(1:3);

yprime(1:3) = omega(1:3).∧2./(y(4)*y(5)*y(6))./y(4:6)’;

yprime = yprime’;

end
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%=============================================================

Radial GP

The following code solves the radial GP equation (if L ≥ 0) or 1D GP equation (if L < 0). For stability the

time propagation is Ψ(t+dt) = Ψ(t−dt)+2dtiH/hbarΨ(t0) where the kinetic energy terms of H are computed

using a finite difference method. If the propagation time is negative this code will perform imaginary time

propagation which will converge to the ground state. A good guess value is the non-interacting ground state.

%=============================================================

%------------------

%Inputs:

%Psi0: Initial wavefunction (guess for imaginary time propagation)

%dx: step size

%N: Number of particles

%m: mass

%a: scattering length

%Ufunc: handle to a function that gives the potential. Potential needs to

%have the form @(x,t,flag) where x is the position, t is time. If flag==1

%then the function needs to return the characteristic length scale of the

%potential. If flag==2 then it needs to return whether or not it is

%time-dependent.

%dt: Time step

%tmax: Maximum propagation time. If tmax < 0 then do imaginary time propagation and propagate

%until convergence or until count*dt > -tmax. If tmax > 0 then do regular

%propagation.

%L: If L<0 then this is a 1D problem. If L>=0, then this is a spherically

%symmetric problem and we are solving in the radial variable. L is the

%total angular momentum

%flag: If 1 then save the wavefunction every 1000 time propagation steps.

%Otherwise only the end result is output.

%Outputs:

%x: Position vector

%y: Wavefunction (see flag)

%t: time vector

%------------------

% Variant of Visscher scheme for solving GPE

% See PRE 62, 7438 (2000) and PRE 62, 1382 (2000)

function [x y t] = GP(Psi0,dx,N,m,a,Ufunc,dt,tmax,L,flag)

%constants

%experimentalists use physical units!

hbar=1.055e-34;

num = N;

%trap length scale

ax=Ufunc(0,0,1);
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xb=dx*(size(Psi0,2)-1)/2; %space extends to +/- xb

pts=size(Psi0,2); %number of grid points

npsi = size(Psi0,1);

if npsi==1

sumdir = 1;

else

sumdir = 2;

end

x=ones(npsi,1)*linspace(-xb,xb,pts); %grid

x = reshape(x,1,1,size(x,1),size(x,2));

if L>=0

x = x+xb+dx; %solve for x=[dx 2xb+dx]

end

dx2=dx*dx;

%Is the potential time-independent? If so then we don’t have to update the

%Hamiltonian matrix every time step

timeind = Ufunc(0,0,2);

U=Ufunc(x,0,0); %potential

%interaction parameter...note psi is normalized to unity in this

%calculation

g=4*pi*hbar∧2*a*num/m;

if L<0

%renormalization parameter...see Jamie William’s thesis

alpha=0.269/num∧0.4/(a∧4*ax∧16)∧0.1;

else

alpha = 1;

end

if a==0

alpha = 0;

end

if L<0

normalizer = 1;

else

normalizer = x.∧2*4*pi;

end

%kinetic energy

ke=-hbar*hbar/2/m/dx2;

%kinetic energy prefactor

ke2 = hbar*hbar/2/m;

%timestep prefactor

tprop = 2*dt/hbar*[1 -1];

if tmax<0

%imaginary time propagation
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tprop = -tprop;

tprop(2) = 0;

prop index = [1 2];

main index = 2;

else

prop index = [2 1];

main index = 1;

end

if L<0 %use periodic boundary conditions

leftoffset = [pts 1:(pts-1)];

rightoffset = [2:pts 1];

else

leftoffset = [1 1:(pts-1)];

rightoffset = [2:pts pts];

end

%Solve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Psi = zeros(3,2,size(Psi0,1),size(Psi0,2));

Psi(1,1,:,:)=real(Psi0);

Psi(1,2,:,:) = imag(Psi0);

%setup and normalize wavefunction

AA = (sqrt(sum(squeeze((abs(Psi(1,1,:,:)).∧2+0*abs(Psi(1,2,:,:)).∧2).*...

normalizer),sumdir)*dx))*ones(1,pts);

AA = reshape(AA,1,1,size(AA,1),size(AA,2));

Psi(1,1,:,:)=Psi(1,1,:,:)./AA;

Psi(1,2,:,:) = Psi(1,2,:,:)./AA;

count=-1;

stepsize=1000; %make plots every this many steps (if flag=1 then save this many steps)

t = zeros(1,ceil(tmax/dt/stepsize));

if flag

y = zeros(ceil(tmax/dt/stepsize),length(x));

y(1,:) = squeeze(Psi(1,1,:,:) + sqrt(-1)*Psi(1,2,:,:));

t(1) = 0;

count2 = 1;

end

olderr=1e-6;

newerr=1e6;

Psi(2,1,:,:) = Psi(1,1,:,:);

Psi(2,2,:,:) = Psi(1,2,:,:);

%------Procedure-----

%There are 6 wavefunctions we keep track of t=t0-dt,t=t0 and t=t0+dt (real

%and imaginary)

%Psi(t0+dt) = Psi(t0-dt) + iH/hbar Psi(t0)

total potential = (U+ke2*(L>0).*L*(L+1)./x.∧2);
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if alpha==0

V=0;

end

%this finds where the wavefunction starts so that we can replace the

%centrifugal barrier with an infinite potential (and force the wavefunction

%to zero)

if L>=0

minx = pts;

for i = 1:npsi

%find where the wavefunction starts to set the centrifugal barrier

x indices = 1:length(x(1,:));

x2 = x indices((abs(Psi(1,1,i,:)).∧2>(max(abs(Psi(1,1,i,:)).∧2)/100)));

minx = min(minx,floor(x2(1)/2));

end

end

while (1)

count=count+1;

%enforce boundary conditions

if L<0 %solved on -x to x

for i = 1:2

for j = 1:2

Psi(i,j,:,1)=0;

Psi(i,j,:,pts)=0;

Psi(i,j,:,2)=0;

Psi(i,j,:,pts-1)=0;

end

end

else %solved on x=0 to 2xb

for i = 1:2

for j = 1:2

Psi(i,j,:,1)=Psi(i,j,:,2); %derivative at the origin must be zero

Psi(i,j,:,(pts-1):pts)=0; %must be zero at infinity

%Psi(i,j,:,pts) = Psi(i,j,:,pts-1);

end

end

%for high L need to set the wavefunction near the origin

%to zero because of the centrifugal barrier

if minx =0

Psi(:,:,:,1:minx) = 0;

end

end

if alpha =0

den=Psi(2,1,:,:).∧2+Psi(2,2,:,:).∧2; %density

V=g*alpha*den; %interaction energy

330



end

%time dependent potential

if timeind

U=Ufunc(x,dt*count,0); %potential

end

%note this non-staggered time evolution seems necessary for stability

%(Tzu-Chieh found the same thing)

if alpha =0 || timeind

total potential = (U+V+ke2*(L>0).*L*(L+1)./x.∧2);

end

%time propagate

for i = 1:2

prop psi = Psi(2,prop index(i),:,:);

Psi(3,i,:,:)=Psi(main index,i,:,:)+tprop(i)*(ke*(prop psi(1,1,:,leftoffset)+...

prop psi(1,1,:,rightoffset)-2*prop psi+(L>=0)./x.*...

(prop psi(1,1,:,rightoffset)-prop psi(1,1,:,leftoffset))*dx)+...

total potential.*prop psi);

end

%renormalize (only if we are solving for a case with interactions)

if alpha =0

AA = (sqrt(sum(squeeze((abs(Psi(3,1,:,:)).∧2+...

abs(Psi(3,2,:,:)).∧2).*normalizer),sumdir)*dx))*ones(1,pts);

AA = reshape(AA,1,1,size(AA,1),size(AA,2));

Psi(3,1,:,:)=Psi(3,1,:,:)./AA;

Psi(3,2,:,:) = Psi(3,2,:,:)./AA;

end

if rem(count,stepsize)

figure(1);

plot(squeeze(x(1,1,1,:))/1e-6,squeeze(abs(Psi(3,1,1,:)).∧2+abs(Psi(3,2,1,:)).∧2));

if flag

y(count2,:) = squeeze(Psi(3,1,1,:) + sqrt(-1)*Psi(3,2,1,:));

t(count2) = count*dt;

count2 = count2 + 1;

end

end

%check break conditions

olderr=newerr;

newerr=sum((Psi(3,1,:,:)-Psi(main index,1,:,:)).∧2.*normalizer*dx,4);

%break conditions

if tmax<0

%converging
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if max(newerr)<(dt∧2)

disp(count)

break;

end

if ((dt*count) > (-tmax))

%did not converge

disp(’Warning: Did Not Converge’)

break;

end

elseif (dt*count > tmax)

break;

end

%go forward in time dt

for i = 1:2

for j = 1:2

Psi(i,j,:,:) = Psi(i+1,j,:,:);

end

end

end

if flag

y(count2,:) = squeeze(Psi(3,1,1,:) + sqrt(-1)*Psi(3,2,1,:));

else

y = squeeze(Psi(3,1,:,:) + sqrt(-1)*Psi(3,2,:,:));

end

x = squeeze(x);

end

%=============================================================

The above code was used to time-propagate the non-condensate wavefunctions expanding in the conden-

sate mean-field potential given by the following,

%=============================================================

%------------------

%Inputs:

%x: Position

%t: time

%omega: trap frequency (before release)

%m: Mass

%NBEC: Number of atoms in BEC

%a: Scattering length

%flag: If 1 output the characteristic length scale of the potential. If 2

%output whether time-independent. If 3 then return the TF profile, but not

%the potential

%Outputs:

%Psi0: Guess for initial wavefunction

%dx: step size

%------------------
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function y = TF potential(x,t,omega,m,NBEC,a,flag)

hbar=1.055e-34;

%harmonic oscillator length

aosc = sqrt(hbar/m/omega);

%compute the BEC chem potential in trap (t<=0)

mu = 15∧(2/5)/2*(NBEC*a/aosc)∧(2/5)*hbar*omega;

%interaction

U0 = 4*pi*hbar∧2*a/m;

%TF radius in trap (t<=0)

rTF = sqrt(2*mu/m/omega∧2);

%time dependent solution (from fit to N=1E5 data)

rTF2 = rTF*(4.126+(4.53∧2-3.439*t/1E-3+(2.146*t/1E-3).∧2).∧(0.5))/(4.126+4.53);

%return the characteristic length scale

if flag==1

y=rTF2; %Thomas Fermi radius

return;

elseif flag==2

y=1; %time dependent

return;

end

%TF profile

y = mu/U0*(1-(x/rTF2).∧2);

%set zero if outside the Thomas-Fermi radius

y = (y>0).*y;

y = y*(rTF/rTF2)∧3;

if flag==3 %just want the TF profile...not the potential

return;

end

%interaction potential

y = y*2*U0;

%=============================================================

3D GP

For solving the 3D GP equation we use a split step method. First compute the propagation due to the

spatially on-diagonal terms (potential and interaction energy) of the hamiltonian for time step dt/2. Then

compute the kinetic energy using an FFT. Finally, propagate the other half of the on diagonal terms for dt/2.

%=============================================================

%------------------
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%Inputs:

%Psi0: Initial wavefunction (guess for imaginary time propagation)

%dx: step size

%N: Number of particles

%m: mass

%a: scattering length

%Ufunc: handle to a function that gives the potential. Potential needs to

%have the form @(x,t,flag) where x is the position, t is time. If flag==1

%then the function needs to return the characteristic length scale of the

%potential. If flag==2 then it needs to return whether or not it is

%time-dependent.

%prop: Set to i for normal time propagation and 1 for imaginary time

%propagation

%dt: time step

%tmax: Maximum propagation time. If tmax < 0 then do imaginary time propagation and propagate

%until convergence or until count*dt > -tmax. If tmax > 0 then do regular

%propagation.

%Outputs:

%[x y z]: Position vectors

%f: Wavefunction after tmax

%------------------

function [x y z f] = GPsplitstep 3D(Psi0,dx,N,m,a,Ufunc,prop,dt,tmax)

%------Define Constants----

hbar=1.055e-34;

num=N; %atom number

xb=dx*(length(Psi0)-1)/2; %space extends to +/- xb

pts=length(Psi0); %number of grid points

%Set up the grid

nmid = floor(pts/2);

v = [0:pts-1]’;

x = v*dx - xb;

%setup 3D grid

[x y z] = meshgrid(x,x,x);

%setup momentum grid

kmax = 2*pi/dx;

dk = kmax/pts;

p = find(v > nmid);

v(p) = pts - v(p);

kx = v*dk;

%setup 3D momentum grid

[kx ky kz] = meshgrid(kx,kx,kx);

K = exp(-1 * prop * dt * (kx.∧2+ky.∧2+kz.∧2) * hbar/2/m); %propagator for Kinetic energy

timeind = Ufunc(0,0,0,0,2);

if timeind

U=Ufunc(x,y,z,0,0); %potential

end
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g=4*pi*hbar∧2*a*num/m; %interaction parameter...note psi is normalized to unity in this calculation

%Solve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

psi = Psi0;

%psi normalized to one

psi=psi/sqrt(sum(abs(psi(:)).∧2)*dx∧3);

count=-1;

stepsize=10; %make plots every this many steps

olderr=1e-6;

newerr=1e6;

while (1)

count=count+1;

psiold=psi;

den=abs(psi).∧2; %density

if a==0

V = 0*den;

else

V = g*den; %get density for nonlinear part of f equation

end

%time dependent potential (need to evaluate every time step)

if timeind

U=Ufunc(x,y,z,dt*count,0); %potential

end

%note this non-staggered time evolution seems necessary for stability

%(Tzu-Chieh found the same thing)

psi = psi.*exp(-1* prop * (U+V)*dt/2/hbar);

%propagate kinetic energy

psi = fftn(ifftn(psi).*K); %straight forward for 1D case

den = abs(psi).∧2;

if a==0

V = 0*den;

else

V=g*den; %get density for nonlinear part of f equation

end

psi = psi.*exp(-1*prop*(U+V)*dt/2/hbar); %propagate OTHER HALF of potential and interaction energy

%renormalize

psi=psi/sqrt(sum(abs(psi(:)).∧2)*dx∧3);

if rem(count,stepsize)

figure(1);
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plot(squeeze(x(nmid,:,nmid))/1e-6,abs(squeeze(psi(nmid,:,nmid))).∧2);

disp([’Count’ num2str(count)]);

end

olderr=newerr;

newerr=sum((abs(psi(:)-psiold(:)).∧2)*dx∧3);

%break conditions

if tmax<0

if abs(newerr)<(dt∧2)

disp(count)

break;

end

if rem(count,stepsize)

disp(dt*count);

disp(newerr)

end

if ((dt*count) > (-tmax))

%did not converge

disp(’Warning: Did Not Converge’)

break;

end

elseif (dt*count > tmax)

break;

end

end

f = psi;

%=============================================================

I.4.3 Crank-Nicolson

For solving the single-particle Schrödinger equation the Crank-Nicolson method (Ψ(t+dt) = I−idt/2~H

I+idt/2~H
Ψ(t))

is very stable and conserves unitary evolution. It can be computationally intensity because we need to invert

the Hamiltonian. However, for time-independent problems this only needs to be done once. The following

is code to implement the Crank-Nicolson time evolution.

%=============================================================

%------------------

%Inputs:

%psi init: Initial wavefunction

%x: Spatial points in 1D

%t: time vector

%vfunc: handle to a function that gives the potential. Potential needs to

%have the form @(x,t) where x is the position, t is time.

%time indep: 1 if the potential is time-independent

%Outputs:

%y: Wavefunction at each time step
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%------------------

function y = cn solve(psi init,x,t,vfunc,time indep)

%psi init: initial wavefunction (column vector)

%x: row vector of x values

%t: row vector of times

%vfunc: potential energy function of the form vfunc(numpts,deltax,t)

%time indep: is the potential time independent (1 or 0)

%NOTE: column and time vectors must be spaced evenly and must be increasing

hbar = 1.05E-34;

mRb = 87*1.67E-27;

dt = t(2)-t(1);

dx = x(2)-x(1);

psi cur = psi init;

df = i*dt*hbar/dx∧2/2/2/mRb;

y = zeros(length(psi cur),length(t));

A1 blank = eye(length(psi cur)+2)*(1-2*df);

A2 blank = eye(length(psi cur)+2)*(1+2*df);

if time indep

%if the potential is time-independent then only invert the matrix once

A1 = A1 blank;

A2 = A2 blank;

%returns with a 0 on each end, must return a col vector

v vec = vfunc(x,0)*i*dt/2;

%just need to add off-diagonal terms

for ii = 2:(length(psi cur)+1)

A1(ii,ii-1) = df;

A1(ii,ii+1) = df;

A2(ii,ii-1) = -df;

A2(ii,ii+1) = -df;

A1(ii,ii) = A1(ii,ii)-v vec(ii);

A2(ii,ii) = A2(ii,ii)+v vec(ii);

end

A1 = A1(2:(length(psi cur)+1),2:(length(psi cur)+1));

A2 = A2(2:(length(psi cur)+1),2:(length(psi cur)+1));

A3 = A1/A2;

for j = 1:length(t)

psi cur = A3*psi cur;

y(:,j) = psi cur;

end
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else

%need one extra time step

t = [t (t(end)+dt)];

for j = 1:(length(t)-1)

%returns with a 0 on each end, must return a col vector

v vec = vfunc(x,t(j))*i*dt/2;

v vec2 = vfunc(x,t(j+1))*i*dt/2;

A1 = A1 blank;

A2 = A2 blank;

%just need to add off-diagonal terms

for ii = 2:(length(psi cur)+1)

A1(ii,ii-1) = df;

A1(ii,ii+1) = df;

A2(ii,ii-1) = -df;

A2(ii,ii+1) = -df;

A1(ii,ii) = A1(ii,ii)-v vec(ii);

A2(ii,ii) = A2(ii,ii)+v vec2(ii);

end

A1 = A1(2:(length(psi cur)+1),2:(length(psi cur)+1));

A2 = A2(2:(length(psi cur)+1),2:(length(psi cur)+1));

psi cur = A1/A2*psi cur;

y(:,j) = psi cur;

end

end

%=============================================================

I.5 Band Structure

The following is code to calculate the bandstructure and Bloch wavefunctions of a cubic lattice.

%=============================================================

%------------------

%Inputs:

%s: Lattice depth (in Er)

%q: Quasimomentum (vector with M elements)

%nband: Bands to solve for (vector with L elements)..must be integers

%Outputs:

%Eq: eigenenergies at q (n x L matrix)

%Psiq: Bloch wavefunctions in plane wave basis (n x L x M) where n is the truncation

338



%------------------

function [Eq Psiq] = solve lattice bloch(s, q, nband)

n trunc = 7;

Eq = zeros(length(q),length(nband));

Psiq = zeros(2*n trunc+1,length(q),length(nband));

plane waves = -n trunc:n trunc;

%go through for each value of q

for i = 1:length(q)

%construct matrix

H = zeros(length(plane waves)+2);

for j = 2:(length(plane waves)+1)

H(j,j) = (2*plane waves(j-1))∧2+(4*plane waves(j-1)*q(i))+q(i)∧2+s/2;

H(j,j+1) = -s/4;

H(j+1,j) = -s/4;

end

H = H(2:(length(plane waves)+1),2:(length(plane waves)+1));

%diagonalize

[V D] = eig(H);

%output the results

for j = 1:length(nband)

Eq(i,j) = D(nband(j)+1,nband(j)+1);

Psiq(:,i,j) = V(:,nband(j)+1);

%make sure overall wavefunction phase is consistent

%this works for even "n"

if sum(V(:,1))<0

Psiq(:,i,j) = -1*Psiq(:,i,j);

end

end

end

%=============================================================

The solutions of the bandstructure code can be used to construct Wannier function using the following

function.

%=============================================================

%------------------

%Inputs:

%Psiq: matrix of q eigenstates (in a single band)

%q: vector of q values

%x: Position row vector (in units of the lattice spacing)

%R: Position of Wannier (integer lattice units)

%Outputs:

%Wannier: Wannier wavefunction at x

%------------------

function Wannier = construct wannier(Psiq,q,x,R)
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%get the plane wave states

k states = 2*pi*(-((size(Psiq,1)-1)/2):((size(Psiq,1)-1)/2))’;

plane waves = exp(sqrt(-1)*k states*x);

%the quasimomentum plane waves

plane q waves = exp(sqrt(-1)*pi*q’*x);

%construct the bloch wavefunctions

bloch waves = ((Psiq’)*plane waves);

bloch waves = bloch waves.*plane q waves;

%offset

offset factor = exp(sqrt(-1)*q*R*pi)’*ones(1,length(x));

%Wannier is the integral over the bloch waves

Wannier = sum(bloch waves.*offset factor,1)*(q(2)-q(1))/2;

end

%=============================================================

The Wannier functions can be used to calculate the Hubbard t and U parameters using the following

function.

%=============================================================

%------------------

%Inputs:

%s: lattice depth

%a: scattering length

%m: mass

%d: lattice spacing

%dq: Delta q

%Outputs:

%t: Hubbard tunneling parameter (in Er)

%U: Hubbard interaction parameter (in Er)

%Er: Recoil energy

%------------------

function [t U Er] = Hubb t U(s,a,m,d,dq)

hbar = 6.626068E-24/2/pi;

gs = 4*pi*hbar∧2*a/m;

Er = hbar∧2*(pi/d)∧2/2/m;

q = -1:dq:1;

for i = 1:length(s)

%solve for the band structure

[Eq Psiq] = solve lattice bloch(s(i), q, 0);

%t is defined from the bandwidth

t(i) = (Eq(1)-Eq((length(q)-1)/2))/4;

%get Wannier function

x = -1:0.01:1;

[PsiWann] = construct wannier(Psiq,q,x,0);

%U is an integral over the Wannier function

U(i) = real(sum(PsiWann.∧4*(x(2)-x(1))).∧3/d∧3*gs/Er);
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end

end

%=============================================================

I.6 Atomic Physics

This section contains a set of functions for calculating atomic properties.

I.6.1 Atomic Special Functions

These are a collection of useful functions for atomic physics calculations. First, this is the Clebsch-Gordan

coefficient used to decompose an alkali ground state |F,mF 〉 into |S,mS ; I,mI〉 states.

%=============================================================

%------------------

%Inputs:

%F: Total hyperfine number

%mF: Hyperfine projection

%mS: Spin projection

%mI: Nuclear spin projection

%I: Total nuclear spin

%Outputs:

%y: Clebsch-Gordan coefficient

%------------------

function y = S State CG coeff(F,mF,mS,mI,I)

%Clebsch-Gordan Coefficient for the alkali (nS) ground state

%i.e., <SS,mS;I,mI|F,mF> where |F-I|=0.5 and SS=1/2 (total spin)

if (mS+mI-mF∼=0)

y = 0;

return;

end

if (F-I)==0.5

y = 1/2∧(0.5)*(-1)∧(1 - 2*I + mS + mI + mF)*(1 + 2*(1/2 + ...

I))∧(0.5)*((factorial(1/2 + mS)*factorial(I - mI)*factorial(1/2 + I - mF)*...

factorial(1/2+I+mF))/((1+3*I+2*I∧2)*factorial(1/2 - mS)*factorial(I+mI)*...

(factorial(I + mS - mF))∧2*(factorial(1/2 - mI + mF))∧2))∧(0.5);

else if (F-I)==-0.5

y = -1/2∧(0.5)*(-1)∧(0.5+mS)*...

(1 + 2*(-0.5+I))∧(0.5)*...

((factorial(0.5-mS)*factorial(I-mI)*factorial(I+mI)*factorial(-0.5+I-mF))/...

((I+2*I∧2)*factorial(0.5+mS)*(factorial(-0.5+I-mS-mI))∧2*...

(factorial(0.5+mI-mF))∧2*factorial(-0.5+I+mF)))∧(0.5);

end

end

%=============================================================
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This code calculates the Wigner-3J symbol.
%=============================================================

%------------------

%Inputs:

%F1: Total hyperfine number of state 1

%mF1: Hyperfine projection of state 1

%F2: Total hyperfine number of state 2

%mF2: Hyperfine projection of state 2

%q: Polarization (-1,1,0)

%Outputs:

%y: Wigner 3J coefficient

%------------------

function y = wigner3J(F1,mF1,F2,mF2,q)

if ∼(-mF1+mF2+q==0)

y = 0;

return;

end

if abs(F2-F1)>1

y = 0;

return;

end

if (F1==0 && F2==0)

y = 0;

return;

end

if (F1==F2)

F = F1;

y = -1/2*(-1)∧(-F+q+mF2)*(q+F*q-mF1+F*mF1+q*mF1-mF1∧2-mF2-F*mF2+mF1*mF2)*...

sqrt((factorial(1+q)*factorial(F-mF1)*factorial(F+mF1)*...

factorial(F-mF2))/(F*(1+3*F+2*F∧2)*factorial(1-q)*...

(factorial(F+q-mF1))∧2*(factorial(1+mF1-mF2))∧2*factorial(F+mF2)));

elseif (F2==F1+1)

F = F1;

y = -(-1)∧(F+q-mF1)*...

sqrt((factorial(1-q)*factorial(F-mF1)*factorial(1+F-mF2)*factorial(1+F+mF2))/...

((3+11*F+12*F∧2+4*F∧3)*factorial(1+q)*factorial(F+mF1)*...

(factorial(F-q-mF2))∧2*(factorial(1-mF1+mF2))∧2));

elseif (F2==F1-1)

F = F1;

y = (-1)∧(-F+q+mF2)*...

sqrt((factorial(1+q)*factorial(F-mF1)*factorial(F+mF1)*factorial(-1+F-mF2))/...

(F*(-1+4*F∧2)*factorial(1-q)*factorial(-1+F+mF2)*...

(factorial(-1+F+q-mF1))∧2*(factorial(1+mF1-mF2))∧2));

end

%=============================================================
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This code calculates the Wigner-6J symbol.
%=============================================================

%------------------

%Inputs:

%J: Total electronic angular momentum of state 1

%F: Total hyperfine number of state 1

%J2: Total electronic angular momentum of state 2

%F2: Total hyperfine number of state 2

%I: Total nuclear spin

%Outputs:

%y: Wigner 6J coefficient

%------------------

function y = wigner6J(J,F,J2,F2,I)

if abs(F-F2)>1

y = 0;

end

if abs(J-J2)>1

y = 0;

end

if (J==J2)

if (F==F2)

if F==0

y = 0;

else

y = -1/2*(-1)∧(-F-I-J)*sqrt(1/(F*(1+F)*(1+2*F)*J*(1+J)*(1+2*J)))*(F+F∧2-I-I∧2+J+J∧2);

end

elseif (F+1==F2)

y = -1/2*(-1)∧(-F-I-J)*sqrt((1+F+I-J)*(1+F-I+J)*(-F+I+J)*...

(2+F+I+J)/((1+F)*(1+2*F)*(3+2*F)*J*(1+J)*(1+2*J)));

elseif (F-1==F2)

y = 1/2*(-1)∧(-F-I-J)*sqrt((F+I-J)*(F-I+J)*(1-F+I+J)*...

(1+F+I+J)/(F*(-1+2*F)*(1+2*F)*J*(1+J)*(1+2*J)));

end

elseif (J+1==J2)

if (F==F2)

y = -1/2*(-1)∧(-F-I-J)*sqrt(((F+I-J)*(1+F-I+J)*(1-F+I+J)*...

(2+F+I+J))/(F*(1+F)*(1+2*F)*(1+J)*(1+2*J)*(3+2*J)));

elseif (F+1==F2)

y = 1/2*(-1)∧(-F-I-J)*sqrt((1+F-I+J)*(2+F-I+J)*(2+F+I+J)*...

(3+F+I+J)/((1+F)*(1+2*F)*(3+2*F)*(1+J)*(1+2*J)*(3+2*J)));

elseif (F-1==F2)

y = 1/2*(-1)∧(-F-I-J)*sqrt((-2+F-I-J)*(-1+F-I-J)*(-1+F+I-J)*...

(F+I-J)/(F*(-1+2*F)*(1+2*F)*(1+J)*(1+2*J)*(3+2*J)));

end

elseif (J-1==J2)
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if (F==F2)

y = 1/2*(-1)∧(-F-I-J)*sqrt(((1+F+I-J)*(F-I+J)*(-F+I+J)*...

(1+F+I+J))/(F*(1+F)*(1+2*F)*J*(-1+2*J)*(1+2*J)));

elseif (F+1==F2)

y = 1/2*(-1)∧(-F-I-J)*sqrt((F-I-J)*(1+F-I-J)*(1+F+I-J)*...

(2+F+I-J)/((1+F)*(1+2*F)*(3+2*F)*J*(-1+2*J)*(1+2*J)));

elseif (F-1==F2)

y = 1/2*(-1)∧(-F-I-J)*sqrt((-1+F-I+J)*(F-I+J)*(F+I+J)*...

(1+F+I+J)/(F*(-1+2*F)*(1+2*F)*J*(-1+2*J)*(1+2*J)));

end

end

end

%=============================================================

This code calculates a prefactor, which contains the Wigner-3J and Wigner-6J identities, for writing out

the electric-dipole matrix element between states.

%=============================================================

%------------------

%Inputs:

%J1: Total electronic angular momentum of state 1

%F1: Total hyperfine number of state 1

%mF1: Hyperfine projection of state 1

%J2: Total electronic angular momentum of state 2

%F2: Total hyperfine number of state 2

%mF2: Hyperfine projection of state 2

%I: Total nuclear spin

%q: Polarization (-1,1,0)

%Outputs:

%y: Wigner coefficient

%------------------

function y = wig coefficient(J1,F1,mF1,J2,F2,mF2,I,q)

%this is the coefficient in front of the J->J decay rate

%#1 is the EXCITED (higher energy) state

y = 0;

y1 = (2*F1+1)*(2*J1+1)*(2*F2+1)*...

(wigner6J(J1,F1,J2,F2,I))∧2;

if nargin < 8

for i = -1:1

y = y + y1*(wigner3J(F1,mF1,F2,mF2,i))∧2;

end

else

y = y1*(wigner3J(F1,mF1,F2,mF2,q))∧2;

end

end

%=============================================================
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I.6.2 Zeeman and Hyperfine Shift

This function calculates the eigenvalues of the full Zeeman plus hyperfine interaction in the |J,mJ ; I,mI〉
basis.

%=============================================================

%------------------

%Inputs:

%I: Nuclear spin

%J: Electronic angular momentum

%L: Orbital angular momentum

%AHF: Hyperfine A term

%BHF: Hyperfine B term

%B: Magnetic field (Gauss)

%Outputs:

%y: vector of the eigenvalues for the (2J+1)(2I+1) states

%------------------

function y = zeemanshift(I,J,L,AHF,BHF,B)

%ALL energies in Hz and B is in Gauss

%returns the energies in order of largest to smallest

num states = (2*J+1)*(2*I+1);

%do the calculation in the |J,mj;I,mI> basis

for i = -J:J

start index = (i+J)*(2*I+1)+1;

end index = (i+J+1)*(2*I+1);

mJ(start index:end index) = i;

mI(start index:end index) = -I:I;

end

%gyromagnetic ratio

gJ = 3/2 + (3/4-L*(L+1))/(2*J*(J+1));

%denominator of the B hyperfine term;

b denom = 2*I*(2*I-1)*J*(2*J-1);

if BHF == 0

b denom = 1;

end

%create eigenstates

Hmatrix = zeros(num states,num states);

for i = 1:num states

for j = 1:num states

%The hyperfine energies are on diagonal

if i==j

%magnetic field energy

Hmatrix(i,i) = mJ(i)*B*gJ*1.399624555E6;

aa = mJ(i)*mI(i);
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%hyperfine interaction

Hmatrix(i,i) = Hmatrix(i,i) + AHF*aa + BHF/2/b denom*...

((3*mJ(i)∧2-J*(J+1))*(3*mI(i)∧2-I*(I+1)));

end

%off diagonal hyperfine terms

if (mJ(j)==(mJ(i)-1) && mI(j)==(mI(i)+1))

Hmatrix(i,j) = 1/2*(AHF+3*BHF/b denom*(1/2+mJ(i)*mI(i)+(mJ(i)-1)*...

(mI(i)+1)))*alpha(-1,J,mJ(i))*alpha(1,I,mI(i));

end

if (mJ(j)==(mJ(i)+1) && mI(j)==(mI(i)-1))

Hmatrix(i,j) = 1/2*(AHF+3*BHF/b denom*(1/2+mJ(i)*mI(i)+(mJ(i)+1)*...

(mI(i)-1)))*alpha(1,J,mJ(i))*alpha(-1,I,mI(i));

end

if (mJ(j)==(mJ(i)-2) && mI(j)==(mI(i)+2))

Hmatrix(i,j) = 1/4*3*BHF/b denom*alpha(-1,J,mJ(i))*alpha(-1,J,mJ(i)-1)*...

alpha(1,I,mI(i))*alpha(1,I,mI(i)+1);

end

if (mJ(j)==(mJ(i)+2) && mI(j)==(mI(i)-2))

Hmatrix(i,j) = 1/4*3*BHF/b denom*alpha(1,J,mJ(i))*alpha(1,J,mJ(i)+1)*...

alpha(-1,I,mI(i))*alpha(-1,I,mI(i)-1);

end

end

end

y = eig(Hmatrix);

y = sort(y);

%Subfunction which gives the angular momentum addition/subtraction

%prefactor

function yy = alpha(pm,x,mx)

yy = sqrt((x-pm*mx)*(x+pm*mx+1));

end

end

%=============================================================

I.6.3 Create State Structure

The first step towards doing atomic OBE calculations is to construct an atomic state structure. This struc-

ture contains all the state information (e.g., the state energy, and how the states are linked via decay paths).

Each state is added with a certain index which is then used as a reference for decay. The following shows

example code for how to create the state structure of 40K up to the 5P level.

%=============================================================

%------------------

%Inputs:
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%B: Magnetic field

%Outputs:

%y: State structure

%------------------

function y = create state structure(B)

%this creates a state vector y which is a structure that contains all the

%states for a certain atoms. Currently hard coded for K-40

%decay structure (for specifying the decay rates for a certain level)

decaystruct = struct(’gamma’,0,... %decay rate

’index’,0); %decay to which state

%speed of light (in cm/s)

c = 2.99792E10;

%K: All hyperfine splittings are for K-40. For higher states

%the energies are just for K-39. Probably the only difference are the

%standard reduced mass shifts... < 1GHz shift to energy levels.

%4S1/2

y = addstates([],1,4,1/2,4,0,-285.72E6,0,B,[],0);

decay2 = decaystruct;

%4P1/2

decay2 = decaystruct;

decay2(1).gamma = 3.75E7; %4S1/2

decay2(1).index = 1;

y = addstates(y,2,4,1/2,4,1,-34.523E6,0,B,decay2,389286.184353E9);

%4P3/2

decay2(1).gamma = 3.8E7;

y = addstates(y,3,4,3/2,4,1,-7.585E6,-3.445E6,B,decay2,391016.296050E9);

%5S1/2

decay2(1).gamma = 7.9E6; %4P1/2

decay2(1).index = 2;

decay2(2).gamma = 1.56E7; %4P3/2

decay2(2).index = 3;

y = addstates(y,4,5,1/2,4,0,68.9E6,0,B,decay2,391016.296050E9+239344.49E9);

%3D3/2

decay2(1).gamma = 2.2E7; %4P1/2

decay2(2).gamma = 4.34E6; %4P3/2

y = addstates(y,5,3,3/2,4,2,0,0,B,decay2,391016.296050E9+254647.22E9);

%3D5/2

decay2(2).gamma = 2.59E7; %4P3/2

y = addstates(y,6,3,5/2,4,2,0,0,B,decay2(2),391016.296050E9+254578.00E9);

%5P3/2

decay2(1).gamma = 1.16E6; %4S1/2

decay2(1).index = 1;
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decay2(2).gamma = 4.6E6; %5S1/2

decay2(2).index = 4;

decay2(3).gamma = 1.5E5; %3D3/2

decay2(3).index = 5;

decay2(4).gamma = 1.4E6; %3D5/2

decay2(4).index = 6;

y = addstates(y,7,5,3/2,4,1,-2.45E6,-1.16E6,B,decay2,741091.33E9);

%5P1/2

decay2(1).gamma = 1.07E6; %4S1/2

decay2(1).index = 1;

decay2(2).gamma = 4.5E6; %5S1/2

decay2(2).index = 4;

decay2(3).gamma = 1.5E6; %3D3/2

decay2(3).index = 5;

y = addstates(y,8,5,1/2,4,1,-46.3E6,0,B,decay2(1:3),740529.15E9);

end

%=============================================================

This is the addstates function used above.

%=============================================================

%------------------

%Inputs:

%curstates: Current state structure

%index: index to identify the state we are adding

%n: Principle quantum number of new state

%J: Electronic angular momentum

%I: Nuclear spin

%L: Orbital angular momentum

%A: Hyperfine A

%B: Hyperfine B

%Bfield: Magnetic Field

%decays: Decay structure

%energy: Bare energy of the state

%Outputs:

%y: Updated state structure with the new states

%------------------

function y = addstates(curstates,index,n,J,I,L,A,B,Bfield,decays,energy)

%double check that index hasn’t already been used

for i = 1:length(curstates)

if curstates(i).index == index

error(’Duplicate Index’);

end

end

%Add the individual F states

y = [curstates createFstates(index,n,J,I,L,A,B,Bfield,decays,energy)];

end
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%=============================================================

The addstates function adds F states using (note that gF and hfshift are functions that calculate the

gyromagnetic factor and the hyperfine energy shift) the following function.

%=============================================================

%------------------

%Inputs:

%index: index to identify the state we are adding

%n: Principle quantum number of new state

%J: Electronic angular momentum

%I: Nuclear spin

%L: Orbital angular momentum

%A: Hyperfine A

%B: Hyperfine B

%Bfield: Magnetic Field

%decays: Decay structure

%energy: Bare energy of the state

%Outputs:

%y: state structure with the new states

%------------------

function y = createFstates(index,n,J,I,L,A,B,Bfield,decays,energy)

y = [];

%go through all possible F manifolds

for i = abs(J-I):abs(J+I)

F = i;

%calculate gF

gF2 = gF(J,I,L,1/2,F);

%calculate F energy splitting

Fenergy = hfshift(A,B,I,J,F);

%create mF states

y = [y createmFstates(index,n,F,J,I,L,gF2,Bfield,decays,energy+Fenergy)];

end

%=============================================================

The createFstates function adds individual mF states using the following function.

%=============================================================

%------------------

%Inputs:

%index: index to identify the state we are adding

%n: Principle quantum number of new state

%F: Hyperfine number

%J: Electronic angular momentum

%I: Nuclear spin

%L: Orbital angular momentum

%gF: Gyromagnetic factor

%Bfield: Magnetic Field

%decay: Decay structure

%energy: Bare energy of the state
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%Outputs:

%y: state structure with the new states

%------------------

function y = createmFstates(index,n,F,J,I,L,gF,B,decay,energy)

%This is the structure for representing an individual |F,mF> state

y = repmat(struct(’index’,index,...

’energy’,0,...

’n’,n,...

’F’,F,...

’J’,J,...

’I’,I,...

’L’,L,...

’mF’,0,...

’decay’,decay),1,2*F+1);

%Create a state for each mF with the appropriate energy shift due to the

%field

for i = 1:(2*F+1)

y(i).mF = F-i+1;

y(i).energy = energy+1.4E6*y(i).mF*gF*B;

end

end

%=============================================================

I.6.4 Multi-Level Stark Shift

Using the state structure created in §I.6.3 and the special functions from §I.6.1, we can compute the multi-

level stark shift using the following code.

%=============================================================

%------------------

%Inputs:

%drive wavelength: Wavelength of field

%polarization: Polarization of the field [sigma-,pi,sigma+], e.g.

%unpolarized is [1 1 1]/3

%state index: State index to find shift (e.g., "9" is 4S 9/2,9/2)

%Outputs:

%energy shift: AC Stark shift

%heating rate: Heating Rate

%------------------

function [energy shift heating rate] = ACstark shift(drive wavelength, polarization, state index)

%For a given atomic structure determine the AC Stark shift

%constants

c = 299792458;

hbar = 1.05457148E-34;

m = 40*1.67262158E-27;

kB = 1.3806503E-23;

%create state
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y = create state structure(0);

drive freq = c./drive wavelength;

%sum over all states

for i = 1:length(y)

connect flag = 0;

if i∼=state index

%check if state "i" decays to the state we want the energy shift

%for

for j = 1:length(y(i).decay)

if y(i).decay(j).index == y(state index).index

state2 = i;

state1 = state index;

decayrate = y(i).decay(j).gamma;

connect flag = 1;

break

end

end

%check if the state we want the energy shift for decays to state

%"i"

if ∼connect flag

for j = 1:length(y(state index).decay)

if y(state index).decay(j).index == y(i).index

state2 = state index;

state1 = i;

connect flag = 1;

decayrate = y(state index).decay(j).gamma;

break;

end

end

end

if connect flag %these two states are connected

%state2 is always the higher energy state (state we decay from)

energydifference = abs(y(state2).energy-y(state1).energy);

%recoil energy between the states

Er = (hbar*2*pi*drive freq/c).∧2/(2*m);

new energy shift = 0;

%assume that "energydifferent" and "drive freq" are both in

%frequency units (so add in the 2*pi to make them angular

%frequencies

prefactor = -3*pi*c∧2*decayrate/2/(2*pi*energydifference)∧3*...
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(1./(energydifference-drive freq)+1./(energydifference+drive freq))/2/pi;

%if we are trying to find the shift in the excited state make

%the prefactor negative

if (state2==state index)

prefactor = -prefactor;

end

for j = -1:1

new energy shift = new energy shift + ...

prefactor*wig coefficient(y(state2).J,y(state2).F,y(state2).mF,...

y(state1).J,y(state1).F,y(state1).mF,4,j)*polarization(j+2);

end

energy shift = energy shift + new energy shift;

%don’t calculate a heating if the state we are calculate

%the shift for is the "excited" state because I don’t think it

%makes sense

if ∼(state2==state index)

%calculate the scattering rate for this state just assuming

%simple two level to get ball park

heating rate = heating rate - 2*Er./kB.*new energy shift/hbar*decayrate.*...

(1./(energydifference-drive freq)+1./(energydifference+drive freq))/2/pi.*...

(drive freq/energydifference).∧3;

end

end

end

end

end

%=============================================================

I.6.5 OBE Equations

We can also use the state structure from §I.6.3 to construct optical Bloch equations. First we construct a

rate equation matrix for the diagonal density matrix terms (i.e., matrix A of the equation ρ̇ = Aρ) using

the following code.

%=============================================================

%------------------

%Inputs:

%states: state structure

%Outputs:

%y: Rate matrix for the on-diagonal density matrix terms given the decays

%in states

%------------------

function y = createdecaymatrix(states)

%the decay matrix is off the form dN i = A (ij)*N j

352



y = zeros(length(states));

for i = 1:length(states)

if ∼isempty(states(i).decay)

for jj = 1:length(states(i).decay)

for kk = 1:length(states)

if (states(kk).index==states(i).decay(jj).index)

%calculate clebsch-gordon coefficient

wig coeff = wig coefficient(states(i).J,states(i).F,states(i).mF,...

states(kk).J,states(kk).F,states(kk).mF,states(i).I);

y(i,i) = y(i,i)-states(i).decay(jj).gamma*wig coeff;

y(kk,i) = y(kk,i)+states(i).decay(jj).gamma*wig coeff;

end

end

end

end

end

%=============================================================

We can add a driving field between certain sets of states (see considerations for multiple driving fields in

§B.6.2) to the decay matrix using the following code.

%=============================================================

%------------------

%Inputs:

%curmatrix: Current OBE matrix

%states: State structure

%m: Mass

%n1: Index of the ground state

%n2: Index of the excited state

%drivingfields: Drivingfields is structures of the form

%.intensity

%.freq

%.q (vector [sigma+ sigma- pi])

%gamma1: Decay along the driving path

%atom velocity: Velocity of the atom

%Outputs:

%y: Updated OBE matrix

%------------------

function y = drivingtransitions(curmatrix,states,n1,n2,drivingfields,gamma1,atom velocity)

y = curmatrix;

c = 299792458;

hbar = 1.05457148E-34;

for i = 1:length(n1)

for j = 1:length(n2)
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ground state = states(n1(i));

excited state = states(n2(j));

%energy separation between the states

omega0 = 2*pi*abs(excited state.energy-ground state.energy);

%prefactor

Omega = (6*pi*c∧2*gamma1*drivingfields.intensity/hbar/omega0∧3)∧(0.5);

%calculate matrix element for the transition

matrix element = (2*excited state.J+1)*(2*ground state.F+1)*(2*excited state.F+1)*...

(wigner6J(ground state.J,ground state.F,...

excited state.J,excited state.F,ground state.I))∧2;

matrix element = matrix element*((wigner3J(excited state.F,excited state.mF,...

ground state.F,ground state.mF,1)*drivingfields.q(1))∧2+...

(wigner3J(excited state.F,excited state.mF,ground state.F,ground state.mF,-1)*...

drivingfields.q(2))∧2+...

(wigner3J(excited state.F,excited state.mF,ground state.F,ground state.mF,0)*...

drivingfields.q(3))∧2);

%matrix element needs to be square root

matrix element = sqrt(matrix element);

%add off-diagonal elements of the density matrix

if ∼sum(matrix element)==0

%increase the size of the matrix to include the coherences

y(:,end+2) = 0;

y(end+2,:) = 0;

%detuning

detuning = excited state.energy-ground state.energy-...

drivingfields.freq*(1+atom velocity/c);

%add off-diag decay

%NOTE: this is the total decay out of the excited state

y(end,end) = y(n2(j),n2(j))/2;

y(end-1,end-1) = y(n2(j),n2(j))/2;

%add Rabi oscillation terms

y(end,end) = y(end,end)-sqrt(-1)*2*pi*detuning;

y(end,n1(i)) = y(end,n1(i))-sqrt(-1)*Omega*matrix element/2;

y(end,n2(j)) = y(end,n2(j))+sqrt(-1)*Omega*matrix element/2;

y(end-1,end-1) = y(end-1,end-1)+sqrt(-1)*2*pi*detuning;

y(end-1,n1(i)) = y(end-1,n1(i))+sqrt(-1)*Omega*matrix element/2;

y(end-1,n2(j)) = y(end-1,n2(j))-sqrt(-1)*Omega*matrix element/2;

y(n1(i),end) = y(n1(i),end)-sqrt(-1)*Omega*matrix element/2;

y(n1(i),end-1) = y(n1(i),end-1)+sqrt(-1)*Omega*matrix element/2;

y(n2(j),end) = y(n2(j),end)+sqrt(-1)*Omega*matrix element/2;
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y(n2(j),end-1) = y(n2(j),end-1)-sqrt(-1)*Omega*matrix element/2;

end

end

end

end

%=============================================================
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Appendix J

Technical Drawings

All
dimensions in
mm

Figure J.1: Technical drawing of the 40K apparatus top vacuum flange.
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All dimensions
in mm

Figure J.2: Technical drawing of the 40K apparatus bottom vacuum flange.
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Figure J.3: Technical drawing of the 40K science chamber with the top and bottom flanges attached.
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Figure J.4: Technical drawing of the 40K MOT Cell as sent to the glassmaker.
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Figure J.5: Coating specifications for 40K science chamber windows.
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Figure J.6: Coating specifications for 40K sapphire imaging window at (a) 0 degrees (b) 25 degrees and (c)
50 degrees incident angle and assuming unpolarized light.
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200170

2.43

(a) (b)

(c)

Figure J.7: (a) Dimensions of the Special Optics objective. (b) Dimensions of the Special Optics tube lens.
(c) Objective and tube lens imaging configuration. Rays are just a guide and not representative of the actual
ray traces (e.g., the objective is not infinity conjugated). Working distance of the objective is 2.43mm and
the effective focal length is 3.3mm.
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(a)

(b)

Figure J.8: (a) MTF of the Special Optics objective at NA = 0.6 and λ = 405nm. (b) MTF of the Special
Optics objective at NA = 0.45 and λ = 767nm. The objective is not diffraction limited at higher NA for
λ = 767nm .
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[288] Stephan Falke, Horst Knöckel, Jan Friebe, Matthias Riedmann, Eberhard Tiemann, and Christian Lis-
dat. Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular
spectroscopy. Phys. Rev. A, 78:012503, 2008. 195

[289] C. A. Regal, M. Greiner, and D. S. Jin. Observation of resonance condensation of fermionic atom
pairs. Phys. Rev. Lett., 92:040403, 2004. 195

[290] C. A. Regal and D. S. Jin. Measurement of positive and negative scattering lengths in a Fermi gas of
atoms. Phys. Rev. Lett., 90:230404, 2003. 195

[291] A. Simoni, M. Zaccanti, C. D’Errico, M. Fattori, G. Roati, M. Inguscio, and G. Modugno. Near-
threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy. Phys. Rev. A,
77:052705, 2008. 195

[292] S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. Leblanc, D. McKay, A. Stummer, and J. H. Thywissen.
Rapid sympathetic cooling to Fermi degeneracy on a chip. Nature Physics, 2:384, 2006. 196

[293] D. J. Heinzen. Ultracold atomic interactions and Bose-Einstein condensation. Int. J. Mod. Phys. B,
11:3297, 1997. 196

378



[294] P. Meystre. Light-matter interaction. In G. W. F. Drake, editor, Springer Handbook of Atomic,
Molecular and Optical Physics, chapter 21, page 307. Springer, 2006. 198, 209

[295] B. H. Bransden and C. J. Joachain. Physics of atoms and molecules. Longman Group, 1983. 198

[296] L. I. Schiff. Quantum Mechanics. McGraw-Hill, 1949. 199

[297] R. Loudon. The Quantum Theory of Light. Oxford, 1983. 200

[298] M. O. Scully and M. S. Zubairy. Quantum Optics. Cambridge University Press, 1997. 201, 213

[299] C. Zener. Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A, 137:696, 1932. 205

[300] J. D. Jackson. Classical Electrodynamics. Wiley, 1999. 215, 216

[301] B. R. Mollow. Power syectrum of light scattered by two-level systems. Phys. Rev., 188:1969, 1969. 217

[302] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization gradients:
simple theoretical models. J. Opt. Soc. Am. B, 6:2023, 1989. 221

[303] F. S. Cataliotti, E. A. Cornell, C. Fort, M. Inguscio, F. Marin, M. Prevedelli, L. Ricci, and G. M.
Tino. Magneto-optical trapping of fermionic potassium atoms. Phys. Rev. A, 57:1136–1138, 1998. 250

[304] T. P. Dinneen, C. D. Wallace, K.-Y. N. Tan, and P. L. Gould. Use of trapped atoms to measure
absolute photoionization cross sections. Op. Lett., 17:1706, 1992. 255

[305] M. Anderlini, E. Courtade, D. Ciampinie, J. H. Müller, O. Morsch, and E. Arimondo. Two-photon
ionization of cold rubidium atoms. J. Opt. Soc. Am. B, 21:480, 2004. 255

[306] E. Courtade, M. Anderlini, D. Ciampini, J. H. Müller, O. Morsch, E. Arimondo, M. Aymar, and E. J.
Robinson. Two-photon ionization of cold rubidium atoms with a near resonant intermediate state. J.
Phys. B, 37:967, 2004. 255

[307] R. V. Ambartzumian, N. P. Furzikov, V. S. Letokhov, and A. A. Puretsky. Measuring photoionization
cross-sections of excited atomic states. Appl. Phys., 9:335, 1976. 255

[308] I. D. Petrov, V. L. Sukhorukov, E. Leber, and H. Hotop. Near threshold photoionization of excited
alkali atoms Ak(np) (Ak = Na, K, Rb, Cs; n = 3–6). Euro. Phys. J. D, 10:53, 2000. 255

[309] N. Amina, S. Mahmooda, S.U. Haqa, M.A. Kalyara, M. Rafiqa, and M.A. Baig. Measurements of
photoionization cross sections from the 4p, 5d and 7s excited states of potassium. J. Quant. Spec.
Rad. Trans., 109:863, 2008. 255

[310] U. Gustafsson, J. Alnis, and S Svanberg. Atomic spectroscopy with violet laser diodes. Am. J. Phys.,
68:660, 2000. 255

[311] U. Gustafsson, G. Somesfalean, J. Alnis, and S. Svanberg. Frequency-modulation spectroscopy with
blue diode lasers. Applied Optics, 39:3774, 2000. 255

[312] S. Uetake, K. Hayasaka, and M. Watanabe. Saturation spectroscopy of potassium for frequency
stabilization of violet diode lasers. Jpn. J. Appl. Phys., 42:L332, 2003. 255

[313] A. Behrle, M. Koschorreck, and M. Köhl. Isotope shift and hyperfine splitting of the 4S→5P transition
in potassium. Phys. Rev. A, 83:052507, 2011. 255, 257

[314] L. J. S. Halloran, S. Fostner, E. Paradis, and J. A. Behr. Specific mass shift of potassium 5p1/2 state.
Op. Comm., 282:554, 2009. 255

[315] Y. Iwata, Y. Inoue, and M. Minowa. Development of a compact resonance ionization mass spectrometer
for trace element analysis of potassium. 2010, arXiv:1010.5902. 257

379



[316] Robert S. Williamson III. Magneto-Optical Trapping of Potassium Isotopes. PhD thesis, University of
Wisconsin - Madison, 1997. 257

[317] C. Y. Park and T. H. Yoon. Frequency stabilization of injection-locked violet laser diode with Doppler-
free absorption signal of ytterbium. Jpn. J. Appl. Phys., 42:L754–L756, 2003. 261

[318] K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki. Injection-locking of blue laser
diodes and its application to the laser cooling of neutral ytterbium atoms. Jpn. J. Appl. Phys., 42:5059,
2003. 261

[319] Josh Zirbel. Private Communication, 2010. 263, 264

[320] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne. Experiments and theory in cold and ultracold
collisions. Rev. Mod. Phys., 71:1–85, 1999. 267

[321] G. Modugno, G. Roati, M. Inguscio, M. S. Santos, G. D. Telles, L. G. Marcass, and V. S. Bag-
nato. Comparative investigation of 39K and 40K trap loss rates: alternative loss channel at low light
intensities. Euro. Phys. J. D, 23:409, 2003. 268

[322] T. Chanelière, J.-L. Meunier, R. Kaiser, C. Miniatura, and D. Wilkowski. Extra-heating mechanism
in Doppler cooling experiments. J. Opt. Soc. Am. B, 22:1819, 2005. 270

[323] Markus Greiner. Ultracold quantum gases in three-dimensional optical lattice potentials. PhD thesis,
Ludwig-Maximilians-Universität München, 2003. 291

380


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	List of Symbols
	Chapter 1 Introduction
	Chapter 2 Strongly Correlated Atoms in Optical Lattices 
	2.1 Ultracold Atoms 
	2.1.1 Tailored Potentials 
	2.1.2 Tunable Interactions 

	2.2 Ultracold Atoms in Harmonic Traps 
	2.2.1 Non-Interacting Atoms: Bose-Einstein Condensation and Fermi Degeneracy 
	2.2.2 Weak Interactions 

	2.3 Ultracold Atoms in Optical Lattices 
	2.3.1 Non-Interacting Atoms in the Lattice: Band Structure 
	2.3.2 Tight Binding 
	2.3.3 Combined Lattice-Harmonic Potential
	2.3.4 Adding Interactions: The Hubbard Model 
	2.3.5 Limitations 
	2.3.6 State-Dependent Lattices

	2.4 Hubbard Model 
	2.4.1 Bose-Hubbard Model 
	2.4.2 Fermi-Hubbard Model 
	2.4.3 Physical Motivations 


	Chapter 3 Experimental Toolkit --- Tools 
	3.1 87Rb Bose-Hubbard Apparatus 
	3.1.1 Microwaves for State Preparation 
	3.1.2 Lattice 

	3.2 40K Fermi-Hubbard Apparatus 
	3.2.1 Overview
	3.2.2 Vacuum System and Support Structure
	3.2.3 Assessing Different Routes to Ultracold 40K Atoms 
	3.2.4 Atomic Sources 
	3.2.5 MOT Laser System
	3.2.6 MOT 
	3.2.7 Magnetic Transport 
	3.2.8 Science Chamber Evaporation 
	3.2.9 Dipole Trap and Lattice Beams 
	3.2.10 Imaging 
	3.2.11 Computer Control 


	Chapter 4 Experimental Toolkit --- Probes and Techniques 
	4.1 Probes 
	4.1.1 Imaging - Absorption and Fluorescence 
	4.1.2 Momentum Distribution from Time-of-Flight (TOF) Expansion 
	4.1.3 Quasimomentum Distribution from Bandmapping and TOF 
	4.1.4 Condensate Fraction from TOF 
	4.1.5 In-Situ Imaging 
	4.1.6 Density Probe using a Spin-Dependent Lattice 
	4.1.7 Impurity Probe 

	4.2 Techniques
	4.2.1 Adiabatic Loading 
	4.2.2 Finite Temperature 
	4.2.3 Transport 
	4.2.4 Dynamic Model Parameters 


	Chapter 5 Theoretical Toolkit 
	5.1 Non-Interacting 
	5.2 Atomic Limit 
	5.3 Mean-Field Theories 
	5.3.1 Hartree-Fock-Bogoliubov-Popov 
	5.3.2 Site-Decoupled 

	5.4 Exact - Small Systems 
	5.5 Comparison 
	5.6 Beyond our Toolkit

	Chapter 6 Simulating the Bose-Hubbard Model Out of Equilibrium 
	6.1 Phase Slip Dissipation 
	6.1.1 Experiment
	6.1.2 Results

	6.2 Rephasing After Lattice Ramps 
	6.2.1 Small System Calculation
	6.2.2 Experiment
	6.2.3 Results


	Chapter 7 Developing Direct Thermometry Probes 
	7.1 Bandmapping 
	7.1.1 Numerical Calculation
	7.1.2 Experiment and Results

	7.2 In-situ RMS Width 
	7.3 Lattice Condensate Fraction 
	7.3.1 Defining the Peak Fraction Fitting Procedure 
	7.3.2 Simulated Data 
	7.3.3 Experiment
	7.3.4 Comparison with Theory and Discussion 


	Chapter 8 Developing Impurity Probes 
	8.1 Impurity Thermometer 
	8.1.1 Overlap 
	8.1.2 Thermometry Test 
	8.1.3 Parametric Heating 
	8.1.4 Dephasing 
	8.1.5 Thermalization Theory 

	8.2 Impurity Transport Probe 

	Chapter 9 Conclusions and Outlook 
	Appendix A Properties of 87Rb and 40K
	A.1 States 
	A.2 Collisional Properties 

	Appendix B Atoms Interacting with Electromagnetic Fields 
	B.1 Interaction Hamiltonian
	B.2 DC Magnetic Fields 
	B.3 Oscillating Fields
	B.3.1 Coupling Matrix Element for Alkali Atoms 

	B.4 Rabi Oscillations and Landau-Zener Transitions 
	B.4.1 Relating the Density Matrix to the Dipole Operator 

	B.5 Dipole Potential (AC Stark Shift) 
	B.5.1 Multi-Level

	B.6 Optical Bloch Equations 
	B.6.1 Steady-state Transition Properties 
	B.6.2 Multi-Level OBE 

	B.7 Scattering 
	B.7.1 Decay Rate 
	B.7.2 Scattering Rate Off-Resonance
	B.7.3 Properties of the Scattered Light 

	B.8 Mechanical Effects of Scattering 
	B.8.1 Heating 
	B.8.2 Scattering Force - Laser Cooling and MOT 


	Appendix C Optical Lattice and Optical-Dipole Trap 
	C.1 Scalar Optical Lattice 
	C.1.1 Two Fields Intersecting an Angle 
	C.1.2 Four fields at 90 Degrees with Offset Frequencies

	C.2 The Lin--Lin Retro-Reflected Lattice Potential 
	C.2.1 Lin-Lin
	C.2.2  Independent Lattice Depth
	C.2.3 Lin--Lin 

	C.3 Gaussian Beams 
	C.3.1 Dipole Trap 
	C.3.2 Gaussian Beam Lattices 

	C.4 Heating 
	C.4.1 Scalar Lattice Heating
	C.4.2 Lin--Lin Lattice Heating 
	C.4.3 Impact of Heating on Hubbard Experiments

	C.5 Calibrating the Lattice with Diffraction 
	C.6 Alignment and Setup of the Spin-Dependent Lattice 
	C.7 X-Dipole Trap Alignment and Heating 

	Appendix D Characterizing Trap Frequencies for the Lattice System 
	D.1 Experimentally Measuring the Trap Frequency
	D.1.1 87Rb Apparatus Kicks
	D.1.2 Measuring Along a Non-Principle Axis

	D.2 Parameterizing the Fixed Trap
	D.2.1 Example: 87Rb Apparatus Hybrid-Dipole Trap 

	D.3 Parameterizing the Lattice Confinement 
	D.4 Trap Plus Lattice Confinement 
	D.4.1 Example: 87Rb Apparatus Hybrid-Dipole and =812nm Lattice


	Appendix E K 4S 5P Laser System and Magnetic-Optical Trap 
	E.1 4S5P Calculation 
	E.1.1 Ionization 

	E.2 Laser System and Setup 
	E.2.1 Master Laser and Saturation Spectroscopy
	E.2.2 Testing the Master Laser --- Probing 4S 5P in the 767nm MOT 
	E.2.3 Scanning Cavity 
	E.2.4 High Power Injection Locked Diode

	E.3 4S 5P MOT and Laser Cooling 
	E.3.1 One and Two-Body Loss Rates
	E.3.2 Temperature and Density


	Appendix F Imaging 
	F.1 Number Calibration of Absorption Images
	F.2 Partial Repumping 
	F.3 Resolution 

	Appendix G Supporting Calculations
	G.1 K 4S-5P Magic Wavelength for Dipole Trapping 
	G.2 Quadrupole to Dipole Transfer 
	G.3 Expansion in Condensate Mean-Field 
	G.3.1 Spherical Coordinates
	G.3.2 Condensate Expansion
	G.3.3 Non-Condensate Expansion
	G.3.4 Results

	G.4 Simulated Bose-Hubbard TOF Distributions 
	G.5 Deriving the Probe Integrated Quasimomentum Distribution 

	Appendix H Circuits
	H.1 Laser Lock 
	H.2 Experiment Monitor and Interlock 
	H.3 Mixer 

	Appendix I Code
	I.1 SDMFT Code 
	I.2 HFBP 
	I.3 Small System Exact Hubbard Solver
	I.3.1 1D BH Model
	I.3.2 5 Site 2D FH Model

	I.4 Wavefunction Solvers
	I.4.1 Schrodinger Equation Eigenstates
	I.4.2 GP Solver 
	I.4.3 Crank-Nicolson 

	I.5 Band Structure
	I.6 Atomic Physics
	I.6.1 Atomic Special Functions 
	I.6.2 Zeeman and Hyperfine Shift
	I.6.3 Create State Structure 
	I.6.4 Multi-Level Stark Shift
	I.6.5 OBE Equations


	Appendix J Technical Drawings 
	Appendix K References

