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Kurzfassung

In dieser Arbeit werden Experimente vorgestellt, in denen es gelungen ist, die Quantenphysik
eindimensionaler Systeme mit ultrakalten atomaren Gasen zu untersuchen. Mithilfe von opti-
schen Gittern wird die Bewegungsfreiheit der Atome auf eine Dimension beschréankt, wahrend

in den transversalen Richtungen nur quantenmechanische Grundzustandsbewegungen erlaubt
sind. Zusatzlich zur Dimensionalitat kann auch die Starke und das Vorzeichen der Wechselwir-
kung zwischen den Atomen verandert werden. Diese einzigartige Flexibilitat erlaubt die prazise
Untersuchung grundlegender Fragen der Festkdrper- und Quantenphysik.

Der Zustand eines kinematisch eindimensionalen Bose Gases wurde durch die Messung der
kollektiven Moden charakterisiert. Diese geben Auskunft tber den Quantenzustand des Viel-
teilchensystems und belegen, dal ein eindimensionales Bose-Einstein Kondensat erzeugt wur-
de. Indem wir ein zusatzliches periodisches Potential entlang der Bewegungsrichtung anlegten,
konnten wir in das Regime stark korrelierter Systeme vordringen: wir beobachteten den Uber-
gang von einer eindimensionalen Supraflissigkeit in den Mott-Isolator Zustand und charakteri-
sierten ihn durch Messungen des Anregungsspektrums sowie der Koharenzeigenschaften. Dabei
fanden wir Anzeichen fur verstarkt auftretende Quanten-Fluktuationen, die in eindimensionalen
Systemen eine besondere Rolle spielen.

Die Verwendung von Feshbach-Resonanzen eréffnet die Mdglichkeit, die Molekulbildung
und die Streueigenschaften der Atome in einer Dimension zu untersuchen. In einer Dimen-
sion wurden schwach gebundene Dimere sowohl fur positive als auch fir negative Streulange
erzeugt und charakterisiert, wahrend im dreidimensionalen Fall gebundene Zustande grundsatz-
lich nur fur positive Streulange existieren. Die gebundenen Zustande bei negativer Streulange
sind Besonderheiten des niederdimensionalen Systems und werden durch den starken radia-
len Einschluss im optischen Gitter stabilisiert. Neben der Molekulbildung andern sich auch
die Streueigenschaften drastisch. In diesem Zusammenhang wurga\diBenstreuung un-
tersucht, die aufgrund ihrer anisotropen Wechselwirkung besonders interessant ist. Durch die
Spinausrichtung und Dimensionalitdt konnten gezielt einzelne Streukanéle unterdriickt wer-
den. Die Experimente zu den Streueigenschaften und der Molekulbildung zeigen, dal3 sich die
Zweikorperphysik in einer Dimension in grundlegender Weise von der in hoheren Dimensionen
unterscheidet.



Eindimensionale System nehmen einen besonderen Platz in der Vielteilchenphysik ein, da
Wechselwirkung und Quantenfluktuationen eine dominierende Rolle spielen. Mit der Untersu-
chung des bosonischen Mott-Isolator Ubergangs haben wir dieses faszinierende Gebiet betreten.
Die in dieser Arbeit entwickelte Apparatur eignet sich in idealer Weise dazu, auch stark korre-
lierte fermionische Systeme zu erforschen. Eine besonders spannende Herausforderung stellt in
diesem Zusammenhang die Beobachtung des BEC-BCS Ubergangs in einer Dimension dar, der
dort durch ein exakt I6sbares Modell beschrieben wird.



Abstract

In this thesis | present experiments which enabled us to explore the quantum physics of one-
dimensional systems with ultracold atomic gases. Using optical lattices the motion of the atoms
was restricted to one dimension, permitting only ground state oscillations in the transverse
directions. In addition to the dimensionality, the strength and the sign of the interaction are
adjustable. This unique tunability facilitates the investigation of fundamental issues of solid
state and quantum theory.

A one-dimensional Bose gas was realised and characterised by measuring its lowest lying
collective oscillations. The collective oscillations are a very sensitive probe of the state of
the gas, proving that a one-dimensional Bose condensate was created. By applying a periodic
potential in the direction of motion the regime of strongly correlated systems was entered: we
observed the transition from a one-dimensional superfluid to a Mott insulator and characterised
it by studying its excitation spectrum as well at the coherence properties. We detected signatures
for increased fluctuations which are characteristic for one-dimensional systems.

Feshbach resonances offer the possibility to explore the effects of reduced dimensionality
on the formation of molecules and the scattering properties of the atoms. We created and stud-
ied weakly bound dimers in one dimension which exist irrespective of the sign of the scattering
length, contrary to the situation in free space. These confinement induced molecules are pecu-
liar to the low dimensional system and are stabilised by the confining potential. The reduced
dimensionality has also a profound influence on the scattering properties. We investigated the
p-wave scattering, which is especially intriguing due to its anisotropic character. By controlling
the symmetry and the dimensionality of the system a selective suppression of indi/idaae
scattering channels was achieved.

One-dimensional systems occupy a special place in many-body physics because interactions
and quantum fluctuations play a dominant role. With our studies of the bosonic Mott insulator
transition we have entered this fascinating regime. The apparatus that was constructed in the
course of this thesis is ideally suited to study also strongly correlated fermionic systems. A
particularly exciting challenge in this context is the observation of the BCS-BEC crossover for
which exactly solvable models exist in one dimension.
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1 Introduction

When the motion of the particles in a system is restricted to one dimension instead of the usual
three, the properties of the system change in a fundamental and often counterintuitive manner.
One striking observation is that with decreasing particle density a one-dimensional gas becomes
more strongly interacting, contrary to the three-dimensional case. Moreover, quantum fluctua-
tions preclude the existence of long-range order such as Bose-Einstein condeit$alti6y. |

This dominant role which interactions and fluctuations play in one dimension leads to fascinat-
ing effects such as the separation of spin and charge excitations or the pinning of the atoms to a
Mott insulating state in an arbitrarily weak periodic potentBili€031j.

This thesis presents the first realisation of one-dimensional atomic and molecular gases.
The quantum degenerate gases offer an unprecedented amount of control: the sign and the
strength of the interactions as well as the density can be adjusted. Moreover, the atoms in a one-
dimensional Fermi gas be converted into weakly bound bosonic molecules. Exploiting these
possibilities of control, fundamental issues of two- and many-body physics in low dimensions
were investigated.

The strict conditions for achieving one-dimensional behaviour present a considerable chal-
lenge. Traps with very high radial trapping frequencies are necessary to reduce all radial motion
to zero point oscillations. Besides, very low densities need to be achieved, otherwise the chem-
ical potential exceeds the radial level spacing. We solved these problems by trapping the atoms
at the intersection of two perpendicular standing wave light fields, so called optical lattices.
The resulting interference pattern features very elongated field maxima in which the particles
accumulate. The great advantage of the two-dimensional standing wave pattern is manifest in
the extremely tight radial confinement of only a fraction of the optical wavelength. Moreover,
the geometry makes it possible to study many copies of the one-dimensional system at the same
time, thereby avoiding problems arising from the detection of low particle numbers.

Although a homogeneous one-dimensional gas cannot Bose condense at finite temperature
[Hoh67), it is possible in the ensembles we prepared, due to the presence of a longitudinal
harmonic trapping potential: the gas has a finite size, and condensation occurs when the length
scale of density and phase fluctuations exceeds this size. We created a quantum degenerate
one-dimensional Bose gas and characterised it by measuring its collective excitations.



1. INTRODUCTION

When considering the behaviour of atoms in the one-dimensional traps, several questions
arise. To begin with, one wonders whether the atoms may pass each other, seeing that the
motion is restricted to one dimension. Noninteracting bosons, according to the laws of quantum
mechanics, may pass one another. With increasing interaction strength, however, they transform
into hard-core bosons, which are impenetrable. We explored this evolution by applying an
additional periodic potential along the axis of the one-dimensional trap. This increases the
effective mass, thereby enhancing the role of interactions. As the gas becomes more interacting,
it undergoes a crossover to a strongly correlated Mott insulator. In one dimension, the quantum
fluctuations are expected to affect this transition and to shift it to lower effective interaction
strength than in higher dimensions. We observed this crossover in the experiment and saw
signatures of the increased fluctuations by comparing it to the three-dimensional case.

With the realisation of one-dimensional behaviour, a problem gains importance that has
been academic up to now: what is the effect of the reduced dimensionality on the collisional
properties and on the molecule formation that may take place during collisions? We addressed
this issue by employing Feshbach resonances, which enabled us to tune the scattering length.
Feshbach resonances have recently gained significance in the manipulation of cold atomic gases,
e.g. in the investigation of the BEC-BCS crossover. Yet until now they were only studied in
situations in which the confinement plays no significant role. In this situation weakly bound
molecules are formed at positive scattering.

The reduced dimensionality has a profound influence on the molecule formation: in a one-
dimensional Fermi gas we observed two-particle bound states, which exist irrespective of the
sign of the scattering length, in contrast to the situation in free space. Using radio-frequency
spectroscopy, we investigated these fragile entities which are stabilised only by the strong con-
finement. The strongly interacting Fermi gas created in the course of this investigation repre-
sents a realisation of a tunable Luttinger liquid.

When considering collisions in reduced dimensigrg/ave interactions seem particularly
intriguing due to their anisotropic character. They are predicted to give rise to fascinating phe-
nomena such gswave superfluidity and the mapping of strongly interacting one-dimensional
fermions to noninteracting bosons. The asymptotic scattering states are restricted in reduced
dimensions, and we observed that the symmetry and spin alignment affects the scattering: colli-
sions with a particular projection of the angular moment on the quantisation axis are completely
suppressed in one dimension, whereag-allve scattering vanishes in a three-dimensional lat-
tice.

It is the combination of Feshbach resonances with optical lattices which makes our experi-
ment unique. While the optical lattices permit us to create condensed matter systems of arbitrary
dimensionality, the control over the interactions opens up the path leading to the wealth of phys-
ical phenomena within the strongly correlated regime. In order to demonstrate the wide range



of possibilities, the first studies of a Fermi gas in a three-dimensional lattice are presented here.
They reveal the great versatility of the experiment as a simulator of quantum many-body mod-
els. The particular focus of this thesis is put on one-dimensional quantum gases, whereas the
related thesis of my coworker Thilo Stoferle concentrates more on the investigation of strongly
correlated phenomena in 3D lattices.

Outline of this thesis

» A short introduction to the theory of ultracold gases in optical lattices is given in chapter
2. It deals with Bose-Einstein condensation in three and one dimensions as well as with
degenerate Fermi gases. Furthermore, the theory of optical dipole potentials and quantum
mechanics in optical lattices is presented. The experimental setup built in the course of
this thesis is described in the third chapter. It includes a step by step account of the
experimental procedure used to cool atomic gases to quantum degeneracy and to load
them into optical lattices.

* The experiments with one-dimensional bosonic atoms are reported in chapters 4 and 5.
These include the creation of a one-dimensional Bose condensate and its characterisa-
tion by measuring its collective excitations as well as the observation of the transition to
the Mott insulator state. The complementary methods which are employed to study the
transition are explained and the results discussed.

» From the sixth chapter onwards, all the experiments are performed with fermidhic
atoms. Using Feshbach resonances, which are explained in detail, confinement induced
molecules in a one-dimensional Fermi gas are formed. The unique properties of these
dimers are investigated in chapter 6 with radio-frequency spectroscopy and compared
to the predictions of two-body theory. Chapter 7 focuseg-avave scattering in low
dimensions, where distinct structures are observed, depending on the dimensionality and
symmetry of the system,

» Chapter 8 does not deal with a one-dimensional gas: instead, the properties of a Fermi gas
in a three dimensional optical lattice are investigated and its Fermi surfaces are imaged.
This chapter is meant to broaden the scope of the thesis and point out capabilities of our
setup which will be important for the future direction of research.
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2 Quantum degenerate gases in opti-
cal lattices

As the temperature is decreased, the quantum mechanical properties of dilute gases begin to
play an important role. At sufficiently low temperatures the wave packets of the individual
atoms start to overlap and the gas becomes quantum degenerate. For atoms in a harmonic trap
the occupation probability of low-lying trap states approaches unity.

Ultimately, the cooling of dilute alkali gases has led to the spectacular observation of Bose-
Einstein condensatio®hd9% Dav954 in 1995. In this novel state of matter, which was already
predicted by EinsteinHin25 in 1925, following on the work on photons by BosBds24,
the occupation of the ground state of the system becomes macroscopic and the corresponding
wavefunction displays long-range coherence. Unmatched control over momentum and position
of the atoms is attained, limited only by the uncertainty principle.

Recently, quantum degenerate gases have been loaded into the periodic potential of a stand-
ing wave produced by laser light. The physics of the cold gas in the crystal structure of such an
optical lattice changes fundamentally, and concepts from solid state physics such as the Bloch
functions become relevant. This chapter deals with the essential theoretical prerequisites for
understanding the behaviour of quantum degenerate gases in optical lattices. For further details
the reader is referred to the textbooks by Pitaevskii and StrinBafid] as well as by Pethick
and SmithPet02.

2.1 Bose-Einstein condensation

Bose-Einstein condensation is an important paradigm of statistical mechanics. For a Bose gas in

a trap, the occupation probability of each energy lévgk determined by the Bose distribution

function .
N(Ei,p) = 5=

i H ?

eFsT —1

where the chemical potential is determined by the condition that the sum over all possible
energy levels be normalised to the total particle numWer= ). N(E;, ). The chemical

2.1)
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potential must always be smaller than the energy of the lowest trap kgvekith the latter

being setto zero. As the temperatUrés lowered, the chemical potentiaimust approach zero

from below in order to fulfill the condition; consequently the occupation number of the ground
state becomes macroscopic. If the temperaluggeatly exceeds the energy level spacing, the
changes in the Bose distribution function become small and the sum can be replaced by the
integral

N =Ny + /OO D(e)N (e, p)de. (2.2)
0

HereD(e) = 2(5—51)3 is the density of states for the isotropic three-dimensional harmonic oscilla-
tor with trapping frequency, which we will consider in the following. As the density of states
vanishes foe — 0, the ground state contributiab, = N(E, = 0, 1) has to be accounted for
separately. The integral represents the number of excited atoms and its maximum value, which
is reached fop: = 0, is finite and decreases with temperature. Once the temperature is reduced

below the critical valud’. given by

Y 1 B keT.\°
V= [ e () 22)

the excited states cannot accommodate all the atoms any more and the ground state occupation
becomes macroscopic. The transition temperature can be found by solving ecaion (

hiw N 1/3

A macroscopic wavefunction with long-range order

At zero temperature and for weak interactions all particles are condensed into the ground state
and each particle is described by the same single particle wavefungtion The resulting
many-body wavefunction can be written as a product wavefunction

N
Un(ryta, o ry) = [J o). (2.5)

It is convenient to describe the Bose-Einstein condensate by a macroscopic wavefunction which
also represents the order parameter of the systeg(]]

D(r) = v/ Noo(r). (2.6)

This is just the wavefunction of a single particle in the ground state with the normalisation
adjusted so that the particle density is givenidy) = | (r)|?. Alternatively the wavefunction
can be written ag(r) = /n(r)e*>") with S(r) being the phase of the condensate.



2.1. BOSE-EINSTEIN CONDENSATION

Penrose and Onsagd@dn56 proposed a general criterion for Bose-Einstein condensation
which is of fundamental importance for the understanding of macroscopic quantum phenomena.
It states that the existence of a condensate implies a hon-vanishing value of the single particle
density matrixp at large distances:

p(r',r) = (WHI)D() — () (W), 2.7)

[’ —r|—o00

wherey and<" are the bosonic field operators. In the framework of the “spontaneously bro-
ken gauge symmetry’And66, [Leg97, [Leg94, (/(r)) can be replaced by(r). To gain an

intuitive understanding of this so-called “off-diagonal long range order”, we consider Bose-
Einstein condensation in a homogeneous system. The macroscopic wavefunction in this case
is ¢(r) = \/nge’?, wheren, is the condensate density apdthe spatially constant conden-

sate phase. Consequently, the single particle density m&trix’) = n, does not vanish for

large separations. The existence of off-diagonal long-range order according to ecRadia (
equivalent to the phase coherence of the condensate at long distances, which is described by the
first order correlation functiop™ (r’, r) oc (¢ (r')ep(r)).

A Bose-Einstein condensate constitutes a coherent matter wave, and with the experimental
realisation of Bose-Einstein condensation it has become possible to demonstrate the wavelike
properties in a compelling set of experiments. Interference of two condensates was observed
[And97] and the spatial coherence measuBtb00]. In another experiment, a coherent atom
laser beam was extracted from a Bose-Einstein condensate, the temporal coherence of which
was demonstratedpbh07].

2.1.1 Bose-Einstein condensation in lower dimensions

We have seen above that Bose-Einstein condensation seems feasible for a gas trapped in a three-
dimensional harmonic oscillator potential; yet in other geometries the density of state changes.

It has been proven by Hohenbeiddh67] that for a homogeneous one- or two-dimensional
system long-range order and consequently a true Bose-Einstein condensate does not exist for
finite temperature. Phase fluctuations gain importance in low-dimensional systems and destroy
the long-range order.

The energy of each mode of the phase fluctuations with wavevéawgiven by E,
w(k)?|Sk|?* [Pit0]. The amplitudesS; of the modes are the Fourier components of the phase
S(r) of the wavefunction, where we assurfiér) = 0 without fluctuations. To estimate the
total phase deviation we note that the energy residing in each maég&'isc w(k)?|S,|* due to
equipartition and that the excitation spectrum is lineak inith w(k) = ck for low momenta.
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The variance of the phase is then given by

2\ 2 Feut kBT d—1
(15P) =D 18uPoc | Sk k. (2.8)
k

where only low momenta smaller than a cutéff; are relevant for the integral because at
higher momentas(k) « k2. The integral diverges at its lower boundary- 0 if the dimension

d < 2. Hence, long wavelength phase fluctuations destroy the phase coherencé&at danyn
homogeneous two- or one-dimensional Bose gases.

A system of particular interest for this work is the trapped one-dimensional Bose gas. Due
to the finite size of the system, the maximum wavelength of phase fluctuations is limited to the
harmonic oscillator ground state extensign= +/%/(mw), with m being the particle mass.
Consequently, the divergence in the integag) is cut off. At sufficiently low temperatures
phase fluctuations die out and long-range order on the length scale of the trapped sample is
established.

To calculate the transition temperature and the number of particles in the ground state, we
must evaluate the integre2.) with the density of states of the one-dimensional harmonic
oscillatorD(e) = 1/(fw). This yields

<1 1 kgT _ Bg_
N(T,0) — Ny = —————de=———1In(1—e€ *87), 2.9
(7,0) — No = % ( ) (2.9)
which diverges logarithmically witl; — 0. In the harmonic oscillator the ground state has
Ey, = hw/2 and the divergence is cut off. The ground state becomes macroscopically occupied
below a transition temperature which is determined by

kpT. [ 2kgT,
N(T,0) = ;fm( éf), (2.10)

assuming thatw < kgT'. In contrast to the 3D case, the 1D transition temperature

N
kT~ oho (2.11)

is significantly lower than the degeneracy temperaflire~ Nhw, at which the deBroglie
wavelength equals the mean interparticle separation. The above results were first obtained by
Ketterle and van DruterKet9€] and extended to interacting gases by Petrov et/ BetQ0h

Pet044

To summarise, we have seen that despite the non-existence of a true Bose-Einstein con-
densate in a homogeneous 1D gas at finite temperature, condensation in a trapped 1D gas is
possible.
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2.1.2 Interactions in Bose gases

In a real atomic gas, particles interact with each other via the van der Waals forces. At the
low temperatures considered here, the kinetic energy is too small to allow for any scattering
process involving angular momentum. Onhwave scattering occurs, which is independent

of collision energy and angle. The information relevant for the scattering is contained in the
s-wave scattering lengtt. In the Born approximation the interaction potential can be replaced
by an effective contact interaction of the form

Ath*a

Vint(r-r’) = gé(r-r’)y  with g = (2.12)

Until recently most experiments have been conducted with weakly interacting Bose gases where
the scattering length is significantly smaller than the interparticle separdtiarin this regime

only the interactions between pairs of atoms have to be considered while simultaneous interac-
tions between more than two atoms can be safely ignored. Nevertheless, the interaction energy
exceeds the kinetic energy as the latter is exceedingly small in a condensate. Most properties
of the condensate can be accounted for by incorporating the interactions into the Schrédinger
equation with a mean-field term.

Gross-Pitaevskii equation

In a weakly interacting gas only binary interactions between atoms need to be considered. The
Hamiltonian in second quantisation is

/w* (—— +Vm) W(r) dr

T / GO ) Viaa ()b (r) dr dr, (2.13)

whereV,,, is the external trapping potential andr ) is the bosonic field operator. Bogoliubov
[Bog47] introduced an important approximation by assuming that the condensate contribution
to the bosonic field can be described by a classical fi¢hy and fluctuationg+). The former

is the condensate wavefunction or order parameter already mentioned in earlier in this chapter.
In the framework of a broken gauge symmetry the condensate wavefunction is the expectation
valuey(r) = (&(r)> of the field operator. The meaning of this approximation is that we neglect
the quantum nature of the field operator and set its commutator to zero. In the limit of large
the particle numberd/y, this is reasonably well justified as the commuteitfzir, 1&] = 1 while

(@Z> ~ +/N,. In other words, the classical limit emerges for large particle numbers.

We can find the condensate wavefunctiem) by minimising the energy2 13 for ¢)(r) =
¥(r) + d1(r) and enforcing particle conservatidngg07]. We treatd:)(r) only as the variation
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subject to which the energy has to be minimised, and set it to zero in the end. This yields the
Gross-Pitaevskii equatio®iro6], Pit6]]
h2

/W(rﬂf) = _%VQ + ‘/emt(r) + QW(VJ)’Z ¢(r7 t)' (214)
The interactions appear in this nonlinear Schrédinger equation in a mean-field term propor-
tional to the condensate densityr) = |+ (r)|?. The Gross-Pitaevskii equation has been very
successful and describes many features of the condensate, for example the ground state ex-
tension, vortices and collective modes. To find the density distribution in the trap, the kinetic
energy term, which is usually small compared to the interaction energy, is neglected. In this
Thomas-Fermi approximation the wavefunction has the inverse form of the trapping potential

Y(r) = max( %‘M,O) (2.15)

However, the Gross-Pitaevskii formalism assumes that all particles condense into the many-
body ground staté which is the product state @¥ single particle states. Therefore the micro-
scopic correlations between particles are disregarded.

Bogoliubov excitations

In the Gross-Pitaevskii equation all fluctuatiohs were ignored. The Bogoliubov theory (see
[Pet02 Pit03]) takes these fluctuations in equatidh X3 into account and can therefore de-
scribe the elementary excitations of the Bose-Einstein condensate. The excitations behave like
noninteracting quasi-particles which obey the dispersion relation

e(p) = \/(cp)2 + (%)2. (2.16)

At small momentum they are phonon-like and the interactions determine the sound velocity
¢ = /gn/m. At higher momenta the quasi-particles behave similar to free particles with
e(p) = /p?/(2m) + gn. The higher the temperature, the more of the elementary excitations
exist. Yet even at zero temperature they do not disappear, leading to a quantum depletion of the
number of atoms in the condensa{gto [Pit0J

No 8

— =1—-—=Vna?. 2.17

N 3T e 2.17)
In typical experiments with bosons in a harmonic trap, the gas parametes of the or-
der of 1079, and therefore the condition for a weakly interacting condensate is fulfilled and
the quantum depletion is small. Recently, two avenues have opened up to access the strongly

10



2.1. BOSE-EINSTEIN CONDENSATION

interacting regime: In one approach, so called Feshbach resonances are used to increase the
scattering length significantly (for experiments, see dr9€ Cor0(]). We have not accessed

a Feshbach resonance in our experiments with bosons but will instead discuss them in detail in
connection with the molecule formation in fermions in chagier

The second pathway relies on the use of optical lattices. Jaksch & first conceived
that by exposing ultracold atoms to the periodic potential of an optical lattice, the role of interac-
tions can be enhanced to the point where the gas enters the Mott insulating phase. In a seminal
experiment, Greiner et aldre0z observed the superfluid to Mott insulator transition. The key
idea is that the kinetic energy decreases continuously with increasing periodic potential depth
due to the diminishing Bloch bandwidth. At the same time, the mutual interaction energy rises
as the density distribution localises in the potential minima. We have employed this technique
extensively: with bosons, we used it to study the excitations of weakly and strongly interacting
superfluids/$ch04 and to induce the superfluid to Mott insulator transition in one dimension
(chapteb). The relevant theory of optical lattices will be treated in secAdh

2.1.3 Experimental demonstration

This short excursion links the concepts introduced in the preceding sections to experimental
observations. One of the main attractions of experiments with Bose-Einstein condensates is
that fundamental properties such as condensation, coherence and superfluidity become directly
visible in images of the gases. Typically the atomic cloud is suddenly released from its trap
and expands freely for some time. If the interactions during this expansion are negligible, the
momentum information in the trap is mapped to the spatial distribution. The spatial distribution
after the expansion is probed by a resonant laser pulse which is absorbed by the atoms. The
resulting shadow is imaged onto a CCD chip. We will examine a few characteristic experimental
pictures.

Figure 2.1: Absorption image of a partially condensed cloud after time of flight.

Figure2.1 shows the spatial distribution of a partially condensed cloud after time of flight.
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2. QUANTUM DEGENERATE GASES IN OPTICAL LATTICES

The condensate appears as a dense, elliptical core in the middle of the picture with a surround-
ing thermal cloud. Neglecting interactions, one would expect the momentum distribution of
the condensate to be far smaller than observed here. However, as the interactions dominate the
shape, the trapped cloud has the characteristic parabolic form given by the Thomas-Fermi dis-
tribution, which is the inverse of the trapping potential. Because the potential is anisotropic with
different spatial trapping frequencies in this experiment, the condensate wavefunction takes on
the form of a horizontally elongated ellipsoid. During the expansion, the repulsive interaction
energy is converted into kinetic energy with faster growth in the direction in which it was ini-
tially more confined. After some time the aspect ratio is inverted. The thermal cloud, on the
other hand, has a spherically isotropic momentum distribution in the trap and its interactions
during the expansion are negligible. A spherical shadow in the absorption image is observed.
This bimodal distribution is the standard signature for Bose-Einstein condensation.

Figure 2.2: Diffraction of a coherent matter wave from a light grating.

The coherence of a condensate is illustrated in a striking way in f@drdn this experi-
ment, the condensate was diffracted from a potential grating prior to the expansion. In contrast
to the usual diffraction of light from a solid grating, the roles of light and matter are reversed.
Here, the grating is formed by the periodic potential of a standing wave light field, and the
diffracted wave is a coherent matter wave, the Bose-Einstein condensate. Just before expan-
sion, the periodic potential is switched on rapidly, giving a spatially varying phase shift to the
matter wave, and the free expansion and imaging corresponds to the traditional observation of
the interference pattern on a screen. The width of the interference peaks is determined by the
coherence length of the condensate, although there is a minimal width given by the repulsive
mean field.

Even though superfluidity and Bose-Einstein condensation are closely connected, they do
not necessarily follow from one anoth#fa94. While Bose-Einstein condensation is an equi-
librium property of the system, superfluidity is a kinetic property which requires the presence
of interactions. Again, a direct observable for superfluidity in experiments exists: the presence
of vortices provides a clear signature for superfluidal99. In our experiment we were able

12



2.1. BOSE-EINSTEIN CONDENSATION

Figure 2.3: Vortices in a BEC. In the left panel, a giant vortex is visible, which probably has
several quanta of angular momentum. In the right panel, a vortex lattice is just visible as a
hexagonal pattern of lighter circles in the cloud

to produce vortices, as seen in fig&.é.
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2. QUANTUM DEGENERATE GASES IN OPTICAL LATTICES

2.2 Degenerate Fermi Gases

While bosons and fermions behave similarly in the classical limit, the Pauli principle plays a
decisive role in cold quantum gases. In a spin-polarised-gesve scattering is forbidden, and
cooling can only be achieved either in a spin-mixture of fermionic atoms or through sympathetic
cooling with bosonic atoms. Once cooling has reduced the temperature to the point where the
deBroglie wavelength approaches the interparticle separation, the Pauli principle affects the
distribution of the atoms in the trap noticeably: the atoms fill all available energy levels up to
the Fermi energy instead of condensing into the ground state.

The exact occupation of the trap levels is governed by the Fermi distribution function

1

The chemical potential is determined from the total particle number conservation

N = /: D(e)f(e)de. (2.19)

In a cylindrically symmetric harmonic trap with a radial trapping frequesnagcyand an axial
trapping frequency. the density of states is given iy(c) = ﬁ with © = (w,w?)/3. The
chemical potential changes with temperature and its valle-at0 is called the Fermi energy
Er. Integrating’2.19 at7 = 0 and solving forEr yields

Ep = kgTp = ho(6N)Y?, (2.20)

which also defines the Fermi temperatilie

The momentum distribution of a noninteracting Fermi gas in a harmonic trap is always
isotropic because the operatgrs p, andp, enter the Hamiltonian

A 1 1
H = 5 (02 + Dy + 2) + gm(w;d” + g +w227) (2.21)

with the same coefficient. The coefficients of the position operators, on the other hand, reflect
the symmetry of the trap, in this case cylindrical. Consequently the spatial distribution can be
anisotropic. In the scaled coordinateith magnitude? = 22 +y%+(w. /w,)?z? this anisotropy

is taken care of. The functional dependence of the distributions can be found when assuming a
semi-classical phase space distributig(n, p) to describe the many-body wavefuncti@ut97,
DeMO014d. The state of each atom is assigned a poiahd momentunp. The atom number
distribution in phase space is given by

1
w(r,p) = (27h)3 e P =w)/ksT 4 1"

(2.22)
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2.2. DEGENERATE FERMI GASES

When looking for the momentum distributidi(p), the atom number distribution must be inte-
grated over space:

(p) = /d3r w(r,p) (2.23)

1 ksT N\ et
- (27rh2 m(waz)z/3> Liss (_56 2”’"“BT), (2.24)

wherez = e#/(ks1) is the fugacity andi,(—xz) := > p,(—x)*/k" is the Poly-Logarithmic
function of ordem. Similarly, the density distribution is

mkgT 3/2 ) mewy 2
n(p) = < 9712 ) Ligys <—362’“BTP ) : (2.25)

At zero temperature, the momentum and the density distribution simplify to the form of inverted
parabolas, e.gu(p) < 1 — (p/Rrr)? [But97] with Ry = (48Nw. /w,) 0\ /B/(mw,).

Changes due to finite temperature only modify the wings of the position or momentum
distribution. However, with the analytic form of the momentum distribution known, the tem-
perature can be determined experimentally. The Fermi gas is released from its trap and expands
freely. After a sufficient time of flight, the spatial distribution reflects the momentum distribu-
tion in the trap. Fitting the appropriate functional dependence, which can be calculated using
equation’2.24) [DeMO014, yields the fugacity;. The latter is related to the temperature as

= (6 Lis(—3)) . (2.26)

This relation can be derived by integrating and rearranging eque®ds) (for 7 > 0 and
inserting the definition foFr (eq. 2.20).

Ultracold fermi gases have rapidly gained importance following the first production of a
guantum degenerate Fermi gieM994. A very clean fermionic system is now at the exper-
imentalists’ disposal, in which the occurrence of superfluidity is predi@sadld, similarly to
3He. However, the interactions need not be as strong &dénin fact, they can even be tuned
[Lof02] by means of a magnetic field Feshbach resonance (see cbahtl}r Moreover, Fesh-
bach resonances enable the creation of bosonic moleRigg®BI) from fermionic atoms, and
the last two years have seen rapid progress in the field: molecular Bose-Einstein condensates
were createdGre03 ' Joc03lp, and the pairing gap measured at the crossover from the BEC to
the BCS regimeChi04]. The observation of vorticeZvi05] proved the superfluidity of these
strongly interacting gases.
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2. QUANTUM DEGENERATE GASES IN OPTICAL LATTICES

2.3 Optical lattices

Standing wave light fields offer great promise for the study of ultracold quantum gases. When

a degenerate gas is loaded into the crystalline structure of the trapping potential, it realises
an ideal model system for the investigation of solid state physics with quantum gases. The
trapping potential is perfectly periodic and its strength is adjustable. Contrary to solid state

systems, all important parameters, such as the filling, the interaction strength and the tunneling
rate, can be changed at will. A feature of particular interest here is the possibility to reduce the

dimensionality by suppressing tunneling processes in specific directions.

Research on atoms trapped in optical lattices has been marked by a constant decrease in
temperature. Initially, the cooling mechanisms in dissipative standing waves formed the focus
of attention. The first experiments observing the vibrational levels of atoms confined in multi-
dimensional lattices were performed in 19%8m93 Gry93. When temperatures below the
recoil temperature were reached, the wavelike properties of the atoms came to light: the de-
Broglie waves extended over several lattice sites, enabling the observation of Bloch oscillations
[Dah9q.

With the advent of Bose-Einstein condensation, it was no longer necessary to cool the gas
in the lattice as an extremely cold ensemble was at hand. After adiabatic loading of the conden-
sate into the lattice, the ground state is populated without further cooling. In a single standing
wave phenomena such as Josephson oscillations, tunneling and number-squeezing were ob-
served (Cat0J, And9§ Orz0J]. The first strongly correlated system was created through the
combination of three-dimensional lattices with Bose-Einstein condensates. The observation of
the quantum phase transition from a superfluid to a Mott insul&ce(2 heralded the unique
capabilities of the novel physical system.

It is particularly interesting to study quantum degenerate Fermi gases in optical lattices
because fundamental questions of condensed matter physics may be addressed. However, it is
technically challenging to bring fermionic gases to quantum degeneracy, which explains why
the first experiments with them have only been performed very recently.

Experiments with fermionic atoms trapped in a single standing wave have revealed the in-
sulating behaviour of a Fermi geBéz04 and collisionally induced transpor©itt04]. More-
over, gravity was measured by observing the Bloch oscillations of a cold Fermi gas in a lattice
[Roa04. The first studies of Fermi gases in two- and three-dimensional lattices will be pre-
sented in chapte®-8.
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2.3.1 The dipole force

Atoms were first trapped in the focus of a laser beam by Chu in 18868¢. Nowadays,
optical traps form a standard technique to confine neutral atoms; a review can be found in
[Gri0Q]. They rely on the dipole force exerted on an atom by an inhomogeneous light field.
The electrons and protons in an inhomogeneous light field experience an alternating electric
field gradient, which induces a dipole momentOnce induced, the dipoles experience a force
towards or away from the field maximum, depending on their orientation relative to the electric
field gradient.

In a simple classical approach, the valence electron of an alkali atom can be regarded as
a harmonic oscillator with a characteristic frequency given by the transition frequgnay
the atom to the first excited level. If the detunidg = w — w, of the light field is small
with respect to the atomic transition frequency, the near resonant excitation can polarise the
atom very efficiently and the complex polarisabilityw) is high. The induced dipole moment
d = a(w)E oscillates with the same frequency as the electric fiéldut not necessarily in
phase. The potential deptf,, can be found by integrating the forég;,

Fuip(r) = d-VE(r) = Rda(w)| E(r) VE(r)
1
= Vap(r) = 5—Rea(w)]I(r), (2.27)
€oC
where(r) is the intensity at position of the atom. Only the real part of the polarisability
needs to be considered because only this part of the dipole moment is in phase with the electric
field. The imaginary part, on the other hand, determines the amount of scattered light, with the

photon scattering rate given by
[yo(r) = —— = — Im[a(w)] I(r). (2.28)

The polarisability can be calculated using Lorentz's model of a classical damped oscillator.
Inserting this polarisability in equation2.27) and @.2§) yields [Gri0Q]

3rc? r r 3rc® (T
V(1) = =—— I(r) = — | I(r 2.29
3rc? [ w\® r r 2 3rc® (T\?
Iee(r) = —= | — I(r) =~ — | I(r), 2.30
(r) 2hw (w0> (w—wg * w—i—wo) (r) 2hw (A) (r) (2.30)

with I" being the damping rate on resonance. On the right hand side the rotating wave approxi-
mation was employed which is only correct if the detuning is small. For a red detined))
trapping laser the dipole potential is attractive and the atoms accumulate at maxima of the elec-
tric field, e.g. the focus of a laser beam. Conversely, a blue detuked () laser exerts a
repulsive force on the atoms.
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2. QUANTUM DEGENERATE GASES IN OPTICAL LATTICES

From a quantum mechanical point of view, the origin of the dipole potential becomes appar-
ent when treating the problem with second order perturbation theory. The incoming light wave
leads to an admixture of excited states to the ground state so that the energy shift is given by

[ [ Hin 1)
i

The perturbing Hamiltonian is simplif;,,, = —e f E, with f being the position operator. If the
saturation is small, the population of excited states is negligible. The atom resides mainly in the
ground state, and only its energy shiffv, determines the potential felt by the atom. The result
for the ground state energy shitF, is identical with the classical result in equati¢h29).
Corrections to the classical model only arise from the fact that several excited levels exist in
reality. However, as long as the detuning is large compared to the fine and hyperfine splitting,
these corrections can be ignored.

When considering which parameters to choose for an optical trap, it is important to bear in
mind that for larger detunings the potential depth decreases witthaunctional dependence
(eq. 2.29), while the scattering rate drops off much faster with\? (eq. 2.30)). Conse-
quently it is preferable to work at large detunings, provided sufficient laser power is available
to create an optical potential of the desired depth.

2.3.2 Standing wave potentials

When a Gaussian laser beam is retro-reflected, the interference between the counterpropagating
beams gives rise to a standing wave pattern. If the laser frequency is smaller than the atomic
transition, atoms can be trapped at the antinodes of the standing wave, the points with the highest
field intensity. The individual field maxima have a pancake-like structure with the radial profile

e D

EEIIISIERN

Figure 2.4:

determined by the Gaussian envelope of the laser beam. The optical lattice is created at the
focus of two counterpropagating laser beams, as depicted in Bodire

The lattice depth decreases when moving away from the focus position because of the in-
creasing beam diameter. However, on the length scale of the atomic cloud this effect is usually
so small that it can be ignored. The potentig}, of a one-dimensional optical lattice is given
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by
Vip(z,y,2) = =V e 2 sin®(kz) (2.32)

with k£ = 27/ being the wavevector associated with the lattice laser waveléngtlstands for

the beam waist, the radius at which the intensity has droppedigftoof its maximum value.

The maximum potential depti is four times higher than calculated with equati@?2€) for

a running wave trap. This is caused by the constructive interference which doubles the electric
field. In the rest of this thesis the potential depth of an optical latfice s - £, will always be
referred to in units of the recoil energy, = £

2m *

Higher dimensional periodic potentials can be created by adding a second or third optical
lattice, which need to be at right angles to the others for cubic symmetry. Although the beams
making up the different optical lattices might interfere with each other, this cross-interference
usually does not have an effect on the atoms trapped in the lattices. This is due to the fact
that the frequencies of the different optical lattices are chosen to be different. Then the cross-
interferences change so quickly that their forces average to zero. Consequently, the potentials
of several optical lattices simply add up independently.

=

Figure 2.5: The geometry of trapped 1D gases in a two-dimensional optical lattice. The spacing
between the tubes /2.

The case of two superimposed optical lattices is of particular interest here. Atoms trapped
in the minima of the combined potential accumulate in elongated tubes as shown in figure
2.5. The atoms are confined radially to a fraction of the wavelength, while the relatively low
longitudinal trapping frequency is caused by the lattice beam envelope. The potgptiad
such a two-dimensional lattice is given by

z2+y2

Vap(z,y,2) = =V, e ? w2 sin?(kz) — Ve~

y2+z2

2 sin®(ka), (2.33)

Close to the minima the potential can be accurately reproduced by a harmonic potential. If
the optical lattices have the same depth in both directions Witk V, = sFE,., the harmonic
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2. QUANTUM DEGENERATE GASES IN OPTICAL LATTICES

oscillator is characterised by a radial trapping frequendyof~ 2,/sE, and an axial trapping
frequency offiw, ~ 2%\/5&. The aspect rati6y” is determined only by the laser wavelength
and the beam waist. It is important to bear in mind that the harmonic potential caused by the
laser envelope is not only present in the direction of the tubes but also persists in the radial
direction. Therefore the central tubes reach a lower minimum potential than the surrounding
ones.

Optical lattices offer the unique possibility to change the dimensionality of a cold quantum
gas. The motion in the longitudinal lattice direction can be restricted to zero point oscillations,
provided the gas is cold enough. In a one-dimensional lattice the gas has two-dimensional
features, whereas we manage to create one-dimensional gases in a two-dimensional lattice.
Finally, the light field of three orthogonal standing waves results in point-like confinement. The
array of potential wells in such a configuration resembles the cubic crystal structure known from
solid state physics. The three-dimensional lattice potential is the sum of three individual optical
lattices with respective depth§, V,, andV.:

oyt
Vap(x,y,2) = — Vye = »F sin®(kx)
_ges?
— Vye i sin®(ky)
_gz?4y?

V.e = »% sin®(kz), (2.34)

Moving away from the center, the depth of the wells decreases, which leads to a smaller os-
cillation frequency in each well and gives rise to an underlying harmonic potential. In our
experiments, however, the radius of the region occupied by the atoms never exceeds a fifth of
the laser waist. Consequently the trapping frequencies in the individual wells deviate by only
a few percent over the extension of the cloud, which constitutes a negligible correction. The
underlying harmonic potential, on the other hand, is important as it determines the size of the
cloud in the lattice. Hence, the potential can be approximated as the sum of a homogeneous
periodic potential and an additional external harmonic potential:

Vap(z,y,2) = — Visin®(kz) — V, sin?(kx) — V, sin’(kz)
1
+ Em(wxe + wyy® + w,2?). (2.35)

The trapping frequenayy, , .} in any of the three spatial directions is determined by the enve-
lope of the two optical lattices perpendicular to it. For example,

2 2
o= 2 () (2 v, 236
Tw, L, Tw, F, '

wherew.,. , describes a possible additional external potential.
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2.3.3 Quantum mechanics in periodic potentials

Optical lattices constitute periodic potentials which can be treated with the methods originally
developed for solid state physics. The characteristic feature of a periodic potential is the emer-
gence of a band structure in the energy spectrum. The eigenfungtjQ(is) of the Hamiltonian

. K2

H = —V? — Vsin?(kr) (2.37)
2m

with periodicityd = A\/2 must satisfy the Bloch theoremA$h7€]
Ygm(x) = /My (2) With  wg, (2 + d) = ugn (). (2.38)

The eigenfunctions are functions of the so-called quasimomentushich ranges from-k

to +k; there are several solutions belonging to the sanenoted by the band index The
wavefunctions have - up to a phase factor - the same periodicity as the lattice and are delocalised
over the entire lattice. All the eigenenergies with the same band indeake up one energy

band. In order to find these eigenenergigs, it is useful to bear in mind that both the periodic
potential and the, ,,(x) share the same periodicity and can therefore be expanded into a Fourier
series over all reciprocal lattice vect@® - Z.

Vgn(r) = qu/hchn 2k (2.39)
lez
Vo, = V=V
—Vsin®(kr) = ZVTGM’“ with Vo = =V/2 (2.40)
ez V\r|>1 = 0

Inserting these expansions into the Schrodinger equation yields

zqm/h 2 :an z2lkx + 2 :V€z2rkz iqr/h § an i2lkr _ = gt ’Lq:B/h E an i2lkx

which simplifies to

igrarkn | [ (g +2URK) V.
; e (—Zm cl, + Z c

Due to the orthogonality of the plane waves, each term in the sum must be zero. These terms
form a set of linear equations, determining the energy bapgsThree examples are displayed

in figurel2.6. With rising potential depth, the energy bands flatten. For extremely deep lattices,
the potential resembles an array of isolated wells, and the band structure becomes similar to the
level structure of the harmonic oscillator.

= 0 (2.41)
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Figure 2.6: Band structure in a one-dimensional periodic potential. The energy of the different
Bloch states ,, is plotted as a function of the quasimonentum in the reduced zone scheme.
The origin of the energy scale is chosen to be at the trap minimum, and the green dashed line
marks the continuum threshold above which the atoms are untrapped.

Probing the state in a lattice

When a very weakly interacting Bose-Einstein condensate is adiabatically loaded into a periodic
potential by slowly turning on an optical lattice, nearly all particles occupy the lowest energy
states,—o,—o. With increasing repulsive interactions, this distribution becomes unfavourable,
as the perfect overlap of the single particle wavefunctions maximises the interaction energy.
Instead, most atoms occupy the ground state of the interacting system and have a spread of
guasimomenta. The quasimomentum distribution of the atoms may be probed experimentally:
the lattice potential is ramped down adiabatically with respect to the band separation. At the
same time the ramp-down is fast enough to suppress collisional processes which change the
guasimomentum. When using this procedure, the single particle states follow the evolution
of the eigenstates from Bloch states to free particles states. Some intermediate steps of this
development can be seen when looking at the sequence of spectra i2fnoen right to left.

As a result of this procedure the quasimomentum is mapped to real momentum. Measured after
some time of flight, the density distribution directly reflects the quasimomentum distribution in
the lattice (see figurd.?).

When the lattice is switched off quickly with respect to the tunneling time, a new picture
evolves: the eigenstates within the lattice are suddenly projected onto the free atomic states
eP*/h which then propagate during free expansion according to their momentulys the
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Figure 2.7: Quasimomentum distribution of atoms in a lattice. a) Experimental quasimomen-
tum distribution of atoms obtained after lattice ramp-down and free expansion in an absorption
image. Due to heating prior to the ramp-down, the atoms populate the entire lowest band uni-
formly. This is reflected in the filling of the first Brillouin zone. For reference, the corresponding
Brillouin zones for a cubic lattice are drawn schematically in b).

Bloch wavefunctions), ,,(x) are periodic with the lattice spacing, their projection onto free
states has to involve contributions with higher momenta of the foemng + j2hk, wherej is
integer.

A weakly interacting Bose-Einstein condensate loaded into an optical lattice, for example,
has only a small quasimomentum sprégd< ik aroundg = 0. When observing the den-
sity distribution after some time of flight, several peaks appear which reflect the momentum
components withh = 0 £ dq + j2hk, as shown in figur@.8a.

AU

- i g o l free

expansion
: A %

Figure 2.8: Expansion and interference of atomic wavepackets that are suddenly released from
the lattice traps. a) Experimental absorption image of a Bose-Einstein condensate loaded into
a lattice after rapid switch off and free expansion. b) Schematic drawing of the evolution of
the wavepacket. In the upper section the atomic wavepackets (blue) are shown in the lattice
potential (black). The individual wavepackets are assumed to be in phase, so that the coherence
length is determined by the size of the matter wave (red). During expansion, the wavepackets
spread out until the interference pattern reflects the momentum distribution in the trap. The size
of the peaks is given by the size of the original matter wave, therefore displayed in red, while
the initial size of the wavepacket governs the envelope (blue).

a)
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A more intuitive understanding of the measured momentum distribution can be gained by
considering the expansion of the atomic wavepackets released from the individual wells of the
lattice (see figur2.8b). The wavepackets expand and interfere with each other. If the atoms at
the different sites all have a fixed phase relation before they are released, they represent a coher-
ent matter wave. When released from the lattice, this matter wave spreads just like a coherent
light beam passing a periodic array of slits. Interference maxima appear in the momentum dis-
tribution similarly just as they would in the far-field for the diffracted light wave. The width of
the individual peaks is determined by the coherence length. The total number of peaks which
is observed, on the other hand, is directly related to size to which the individual wavepackets
from each site expand, because the interference peaks can only appear where several of these
wavepackets interfere. This size is directly related to the kinetic energy of the atoms and con-
sequently depends on the localisation of the atomic wavefunctions before expansion.

Wannier functions

Although the Bloch wavefunctions form an orthogonal set of functions clearly reflecting the
periodicity of the lattice, it is often useful to work with localised states. In an insulating material,
for example, the particles are not delocalised over the entire lattice, as implied by the Bloch
description, but are confined to a small space around a particular lattice site. The Wannier
functions provide such a set of localised states, which is more appropriate for dealing with
strong periodic potentials than the Bloch wavefunctions, in particular in the presence of strong
interactions. The Wannier functions are linear combinations of all Bloch functions within one
band of the formKKit87]

wy(z — x;) = N7V? Z e~ irh, . (). (2.42)
q

Herexz — z; denotes the distance between the position of the patrtieled the lattice site at
x; around which the particle is localised, andis the normalisation constant. The Wannier
functions at all different lattice sites form a complete orthogonal set. An example for a Wan-
nier function in the lowest band, which is the band we are interested in, is displayed in figure
2.S. Within the central well, a Wannier function can very well be approximated by a Gaussian
function for deep lattices. The probability distribution in the neighbouring sites, however, is
significantly underestimated by a Gaussian. In order to find the probability for the tunneling of
a particle from one sitg to its neighbouring sitéalong the x-axis, the integral

Jy = /wl(x — ;) (%VQ + V(a;)) w (z — ;) (2.43)

must be evaluated. The tunneling enerflyquantifies the kinetic energy gained by delocal-
isation and the tunneling rate is given by/h. The tunneling energy is also directly related
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x [M2]

Figure 2.9: Occupation probability for a Wannier wavefunction in a lattice with= 2 F,..

to the width of the Bloch band through = (Maximum(e, ;) — Minimum(e,;))/4. For deep
lattices {// E,. > 1) the exact solution for the bandwidth is obtained by solving the 1D Mathieu-
equatior2.37, yielding a tunneling energy oZwe0J

4 (VN

Jy = —— (—) e VVIE (2.44)
VT \E;

For a three-dimensional optical lattice the Hamiltonian is separable and the total wavefunction

is simply the product of the Wannier functions in each spatial direction. The total tunneling rate

J /R to all six neighbours in this geometry equdls= 2(J, + J, + J.).

The interaction energy/ on a given lattice site can also be calculated once the Wannier

function is known:
8 Ve VyVz 1/4
_ 4 _/°
U—g/|w(:1:) |dx = \/;ka (Er B Er> E,., (2.45)

wherea stands for the scattering length aig, V,, andV, denote the lattice depths in each
spatial direction. The right hand side was calculated by approximating the Wannier function by
a Gaussian, which is a good approximation for deep lattices. Seeing #ratl characterise

the kinetic and interaction energy in the lattice, respectively, it is interesting to look at their ratio,
which determines when the system enters the strongly interacting regime. EitiQsbows the
evolution of this ratio for increasing lattice depth. In this example, two optical lattices provide
very strong confinement, thereby creating one-dimensional tubes, while a third lattice is used to
tune the effective interaction strength.
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Figure 2.10: The interaction energy/ and the kinetic energy for periodic potentials along the
longitudinal direction of a one-dimensional system. Two optical lattices Witk V, = 30 E,
create the strong radial confinement. The third lattice with d&pttunes the ratid//.J over
several orders of magnitude. The parameters chosen correspgdiRbtatoms withu = 103 aq
trapped in an optical lattice with = 826 nm.



3 The experimental setup

When this project started in the year 2001, degenerate Fermi gases had been studied for little
more than a yeaileM994 DeMO01h Tru01, 'Sch0] while the first use of multidimensional

optical lattices had just been demonstrated with a Bose-Einstein condeGsa@il). The
objective of the experimental setup constructed in this thesis has been to bring these two de-
velopments together and to realise the first apparatus capable of stdiegimgnic atoms in

two- and three-dimensional optical lattices. The setup has been developed based on a design by
Markus GreinerGre01d.

Fermionic atoms are intrinsically hard to cool because the Pauli principle forbids collisions
between identical fermions at low temperatures. Two approaches exist to remedy this problem:
to use a spin-mixture of fermionic atoms, or to sympathetically cool a spin-polarised Fermi
gas by thermal contact with a Bose gas. One of the reasons why we have chosen sympathetic
cooling is the possibility to study bosons and Bose-Fermi mixtures in addition to the fermionic
atoms.

In the apparatus two different technologies play a prominent role. On the one hand, ultra-
high vacuum (UHV) technology provides the environment for the trapping of the atoms. On the
other hand, a significant amount of laser technology is necessary to exert cooling and trapping
forces on the atoms, to manipulate them and finally to perform absorption imaging on the cold
cloud. The excellent optical access which is essential to perform these operations imposes strict
conditions on the design of the vacuum chamber. A sophisticated arrangement of magnetic
coils surrounds the vacuum chamber and creates the conservative potentials which are used to
transport the atoms and to trap them during evaporative cooling.

3.1 Design considerations

Atomic species

Alkali atoms are very favourable for cooling and trapping due to their relatively simple level
structure. However, only two alkali elements with stable, naturally occurring fermionic isotopes
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3. THE EXPERIMENTAL SETUP

exist, 5Li and “°K. We have decided to work witf’K for two main reasons: Firstl?"Rb
provides an excellent bosonic coolant with an optical transition frequency very cl84¢ ice.

780 nm for®"Rb and766.7 nm for “°K. The availability of laser diodes at these wavelengths and
the small difference in frequency facilitate the experimental realisation. Secondly, it is easier
to create deep optical/( > J) lattices with*°K than®Li due to its higher mass. This becomes
apparent when looking at the ratiol@f .J (equations2.44) and 2.45)), which is an exponential
function of the lattice depth in units of the recoil energy. Whereas the absolute lattice depth that
is achievable with a far detuned laser is similarfbrand “°K, it differs considerably in units

of the recoil energy sinc&, oc m=1.

Cooling strategies and the vacuum system

The trapping and cooling of the dilute atomic gases proceeds in several stages which are re-
flected in the components of the experimental setup (see fRidye At first, the atoms are
trapped from the background vapour with a combination of dissipative light fields and magnetic
fields in a magneto-optical trap (MOTRBa8T. Only a small fraction of the background par-
ticles is trapped and cooled to 10~*K, because the magneto-optical trap can only capture
atoms with a temperature lower than10 K from the background vapour which is in thermal
contact with the vacuum walls at room temperature.

MOT

chamber atom

transport

Figure 3.1: Schematic layout of the vacuum system.

The next step consists of evaporative cooling, in which the sample is cooled by continuous
removal of the hottest atoms and simultaneous rethermalisation. The speed of the evaporative
cooling is limited by the rethermalisation time, which is needed in order to repopulate the high
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3.1. DESIGN CONSIDERATIONS

energy tail of the Boltzmann distribution. Evaporation fra6t* K to 10~7 K, which increases

the phase space density from approximatély’ to unity, takes typically more than ten seconds.
The atoms must therefore be trapped without losses, apart from the intentional removal of the
high energy tail during this period.

This requirement is in conflict with conditions needed for a well working magneto-optical
trap. In the latter, a high background pressure is necessary to provide a reservoir of atoms which
can be trapped. Yet such a high background pressure entails many collisions and trap losses. The
most common solution lies in a two chamber apparatus, one chamber with moderate vacuum
and a second with ultra-high vacuum, where the evaporation and further experiments take place.
A difficulty in such a scheme is the transport of the cold trapped cloud from one region to the
other. Traditionally, the atoms were pushed to the UHV cell by light forces and a second MOT
recaptured them again. The drawback of this implementation is that the second MOT blocks
optical access otherwise needed, for example for the optical lattices.

We have decided to closely follow a scheme pioneered by Markus Greiner GraD1d
which employs the magnetic transport from one region to the other by a conveyor belt-like
structure of magnetic coils. The excellent optical access offered by this scheme has been one
of the crucial points for the success of the experiments. The magnetic field necessary to trap
the atoms during evaporation is provided by a combined quadrupole loffe (QUICHsap§,
which combines high stability with low power consumption in a simple geometry.

Once the evaporative cooling has proceeded to the point where both species reach quan-
tum degeneracy, the atoms are loaded into the optical lattices. For bosons, this is achieved by
slowly ramping up the intensity of three retro-reflected laser beams, which generate the periodic
potential. For fermions a complication arises: the cold Fermi gas produced by the sympathetic
cooling is spin-polarised and newave interactions are allowed. The interest in studying fermi-
onic atoms, however, focuses mostly on interacting fermions, in particular close to a magnetic
field induced Feshbach resonance.

In order to study interactions, a spin mixture must thus be created, preferably in the partic-
ular quantum states which exhibit a Feshbach resonance for collisions. These quantum states,
however, cannot be trapped magnetically. Moreover, creating a spin-mixture invariably leads to
an increase in the relative temperatiii&l », whereTr is the Fermi temperature. We therefore
introduce a further evaporative cooling stage in an optical trap, before loading the degenerate
Fermi gas into the lattice.
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3. THE EXPERIMENTAL SETUP

3.2 Magneto-optical trap

In the first cooling step, atoms with ~ 10K from the low energy tail of the room tem-
perature Boltzmann distribution are captured from the background vapour at a pressure of
10~% — 1072 mbar by a combination of magnetic fields and dissipative light forces. Three pairs
of counterpropagating laser beams which are slightly red detuned from the atomic resonance
shine on the cloud of trapped atoms from all three spatial directions as in Bduréhe laser

Figure 3.2: The magneto-optical trap. Three pairs of red-detuned laser beams intersect at the
center of a quadrupole field, trapping a cloud of atoms. The arrows on the magnetic coils
indicate the direction of the electric current whereas the arrows on the laser beam symbols
denote the light polarisation.

beams exert a cooling force on the atoms due to the Doppler shift: whenever an atom is not

stationary but moves along one of the beam directions, the counterpropagating beam is tuned
into resonance with the atomic transition whereas the copropagating beam is detuned even fur-
ther. The photon scattering rate from the counterpropagating beam predominates and the net
momentum transfer slows down the atom.

Moreover, an inhomogeneous magnetic field is applied which causes a spatially dependent
Zeeman shift of the optical transition. This shift leads to a spatially varying effective detuning
of the laser beams with respect to the transition which differs for the copropagating and counter-
propagating laser beams due to their different polarisations. This results in a spatially dependent
light force which confines the atoms. More information on the theory of the magneto-optical
trap can be found inAhi9g Met9q. The trapped clouds have typical temperatures of a few
hundred microkelvin, densities ®6~!' /cm* and diameters of several millimeters. We can trap
both species simultaneously with atom numbers of uyp~ 2 - 10° and Ny ~ 107.

After the end of the magneto-optical trapping phase, two cooling and manipulation stages
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3.2. MAGNETO-OPTICAL TRAP

happen in rapid succession. The temperature is first reduced by molasses daxiBapefore
all the atoms are optically pumped into the hyperfine states required for the subsequent magnetic

trapping.

3.2.1 Vacuum chamber

The magneto-optical trap operates inside a stainless steel vacuum chamber (s€&3jgare
which optical access is provided by six indium sealed windows. Six laser beams along all
three spatial directions can enter through the 40 mm diameter windows and intersect at the
center of the vacuum chamber. Two magnetic coils in anti-Helmholtz configuration situated
directly above and below the chamber create a magnetic quadrupole field. The magnetic zero
of this quadrupole field coincides with the intersection point of all laser beams and represents
the center of the magneto-optical trap. An ion pump with a nominal pumping speed of 751/s
maintains the vacuum. As we were not sure whether the pumping speed might be to high and
lead to an unwanted drain of of potassium and rubidium background vapour, a rotatable disk
was placed in the tube connecting the MOT chamber to the ion pump. This obstruction is now
in fact used to reduce the pumping diameter and consequently also the effective pumping speed.

Figure 3.3: The vacuum chamber for the magneto-optical trap. The front and top parts have
been removed in this CAD rendering in order to show more details. Six windows give optical
access to the trapping beams (red arrows). The upper quadrupole coil (green) is visible whereas
the lower coil is hidden beneath the chamber. After the MOT phase the cloud is transported to
the right towards the UHV chamber. The vacuum tube at the back leads towards the ion pump
while the one at the front is used to connect the MOT chamber to the potassium source.
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3. THE EXPERIMENTAL SETUP

Sources

The only contaminants in the MOT chamber should ideall§j’BRb and*’K atoms at a pressure

which is adjusted to supply sufficient atoms for trapping while not seriously limiting the lifetime

of the trapped atoms. Rubidium and potassium atoms originate from two different sources: a
glass ampule filled with 2 g of pure Rubidium is mounted in an extension of the MOT chamber,
where it can be sealed off and pumped separately. It is broken under vacuum and subsequently
heated. The vapour pressure rises and the atoms which evaporate diffuse throughout the MOT
chamber.

The natural abundance &fK in potassium is very low, only 0.012%. However, potas-
sium enriched to 5%°K is available as a salt in the form of KEIWe employ this salt in a
dispenser source, following a design by DeMarco et BleNI99L]. Approximately 6 mg of
enriched KCI and 15mg of pure calcidnare finely ground, sieved and mixed under argon
atmosphere. Subsequently they are filled into a small container made from folded Nichrome
foil®. Mounted on an electrical feedthrough, they are placed in the vacuum system at a distance
of ~ 20 cm from the MOT. When running a current of 3.5 ampere through the Nichrome con-
tainer, the dispenser heats up to several hundred degrees centigrade, thus enabling the chemical
reaction 2KCL+Ca—2K+CaCl. The K atoms escape into the vacuum chamber, where some
are captured by the MOT.

3.2.2 Laser system

The laser system providing the light for the MOT is set up on a separate optical table (see figure
3.6). Single mode optical fibers, which are polarisation maintaining, guide the light from the
laser table to the vacuum setup, spatially filtering the beams at the same time. Close to the
vacuum setup, the beams are sent through a series of beam splitters and telescopes in order to
create the three pairs of counterpropagating beams with’aradius of~ 20 mm which enter

the MOT chamber.

In order for the MOT to work, two light frequencies per atomic species are needed (see
figure3.4). One drives the main cooling transition. This transition is not completely closed,
and from time to time atoms decay from the excited state to the wrong hyperfine state. The
second light frequency, the repumper, pumps those atoms back to the cooling cycle. The light
is generated by external cavity diode las&&P5. Their frequencies are stabilised to features
of the atomic spectra by performing frequency modulation spectros®jp83] on rubidium
and potassium vapour cells. Typically one laser, the so-called reference, is locked directly to an

Trace Sciences International Corporation, Ontario, Canada
2ESPI, Ashland, Oregon, USA
3Advent Research Materials Ltd., Oxford, UK
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Figure 3.4: Level structure of"Rb [Ste0] and “°K [Wil97]. The cooling transition irf”Rb

which is nearly resonant with the = 2 — F’ = 3 line is almost closed due to the large
splitting of 267 MHz between the excited levels F'=2 and F'=3. Only rarely is an atom excited
into the F'=2 state, which is allowed to decay into the F=1 ground state. Consequently, very
little repumping light is needed to reintroduce those atoms into the cooling cycle!’lkpa

slightly different scenario arises. The small excited state splitting leads to high probability of
excitations to the F'=9/2 state and subsequent decay into the F=7/2 ground state. Therefore the
ratio of repumping to cooling light power is about five times highet’iK than in®"Rb. As

a result the!°K repumping laser is red-detuned, providing a cooling force as well as emptying
out the F=7/2 state.

atomic feature while a second laser generating the cooling light is locked to the first laser with a
variable frequency differenc&Eh99. In order to increase the power in the cooling beam, this
light is sent through a tapered amplifier which has an output of several hundred milliwatts.

In the case of"Rb, the repumping light is created by an additional laser directly locked
to the relevant atomic transition by frequency modulation spectroscop$’Kinthe cooling
beam passes through an electro-optic modulator (EOM), which generates two sidebands in the
frequency spectrum, one of which provides the repumping light, while the second has no effect
on the atoms.

For the molasses stage which follows the MOT phase, no additional laser frequencies are
needed. The magnetic quadrupole field is simply switched off and the earth’s magnetic field is
compensated. The MOT laser beams remain switched on, with their detuning changed slightly
to optimise the cooling. After this stage optical pumping transfers the atoms infd'the
2, mp = 2) state fo¥’Rb and into thé ' = 9/2, my = 9/2) state for'°K. Circularly polarised
light resonant with thé = 2 — F/ = 2andF = 9/2 — F’ = 9/2, respectively, is used in
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Repumper Cooler

Amplifier

Fibers

Amplifier
Rb ~< RF-Lock

Repumper Referenz Cooler

Figure 3.5: Laser setup witi”Rb lasers at the bottom (red) atftk lasers at the top (green).

The lasers are stabilised either to an atomic transition by radio-frequency modulation spec-
troscopy (RF-Lock) or to another laser with a variable frequency difference (Offset-Lock). The
relevant transition frequency is given in black. In the case of the reference lasers, the frequencies
are shifted with acousto-optic modulators (AOM). The modulator foftKereference laser can

either produce light appropriate for imaging (F'=11/2) or for optical pumping (F'=9/2). Finally,
the®"Rb and'’K beams are combined sent into four fibers.

combination with the repumping light. The entire MOT laser setup is summarised schematically
in figure3.5.
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3.3. MAGNETIC TRANSPORT

Figure 3.6: Laser setup providing the light for the double species MOT, pumping and imaging.
Grating stabilised diode lasers and tapered amplifiers (in grey or translucent housings) emit
light at the desired frequencies. After passing optical insulators which protect the delicate laser
diodes from back-reflections, the beams are shaped and divided. The laser frequencies are
stabilised by performing spectroscopy on self-made glass vapour cells and the radio-frequency
modulated signal is detected on fast photodiodes. Mechanical shutters enable us to block a beam
entirely while the intensity and frequency is changed very rapidlyl {us ) with acousto-optic
modulators. Finally, the beams are coupled into optical fibers.

3.3 Magnetic transport

After the atoms are pumped into the maximally polarised stgigs = 2, mr = 2) and

|Fx = 9/2,mp = 9/2), they are trapped magneticalM{g85]. The Zeeman energl(r) =

gr mp g B(r) of these low field seeking states increases with increasing magnetic field, lead-
ing to trapping at the minimum of a magnetic quadrupole field. Heres the Landé-factor,

up the Bohr magneton anB(r) the local magnetic field. The trapped cloud is magnetically
transported 40 cm from the MOT chamber to the UHV region following a scheme developed by
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Markus Greiner/Gre014. In this scheme, a sequence of overlapping éaitsanti-Helmholtz
configuration as shown in figu@7is used to realise the transport.

Figure 3.7: The transport coils (green) connecting the MOT chamber on the left with the UHV
glass cell on the right. The front and top parts have been removed in this CAD rendering in order
to show more details. The cloud first passes a vacuum valve, which can be used to shut off the
ultra-high vacuum section from the MOT chamber. After a change of the transport direction,
the atoms are moved into the glass cell, where two large quadrupole coils (red) above and below
as well as a small loffe coil (purple) to the right generate the QUIC trap.

The basic idea is to turn on the current through one pair of coils after the other so that the
minimum of the magnetic quadrupole field moves continuously from the MOT chamber to the
UHV region. In order to avoid heating of the atomic cloud through constant variations of the
trap geometry, the current flow through the coils is optimised to keep the aspect ratio and the
changes in the gradient of the field nearly constant.

In order to understand this requirement in more detail, let us look at two limiting cases: if
only one pair of coils is switched on, the trap has an aspect ratio of one with circular equipoten-

tial lines in the symmetry plane afgf’ = 9% = 1920, If, on the other hand, the atomic cloud
is situated exactly between two pairs of coils, the trapping geometry is elongated in the x-y

plane with an aspect ratio (%%/% ~ 1.6 in our case. During transport, the trap geometry

4The coils were wound, cast in Araldit F resin and glued to the water cooled mounts with Stycast 2850FT by
Oswald Magnettechnik, Miltenberg, Germany.
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would constantly change from circular to elongated and back to circular. By running current
through additional coil pairs, this heating effect is avoided: when for example the position of
the atom cloud is centered exactly on the symmetry axis of a coil pair, additional current is run
through the two neighbouring colil pairs, increasing the aspect ratio ta6. Following this

idea, the current through three adjacent coil pairs must be adjusted independently to achieve
transport at constant aspect ratioofl .6 and constant gradient ggz’i ~ 200 G/cm.

The three adjacent coil pairs are served by independent power supplies. We use four very
fast linear power suppli€svhich are multiplexed by banks of high-power MOSFETS to the 30
coils. During the transport, the cloud passes through a tube which is 100 mm long and 8mm
wide and serves as a differential pumping section dividing the MOT chamber from the UHV
region at~ 2 - 10~ mbar. We have observed transport efficiencies higher than 80% with no
detectable heating of the cloud.

3.4 Evaporative cooling

The quadrupole field configuration employed during the transport is unsuitable for the cooling
of the gas to quantum degeneracy. At the center of the trap the magnetic field and consequently
the Larmor frequency is zero. The atoms cannot follow the local magnetic field vector any more
and undergo Majorana spin flipB&v95H to untrapped states, which are lost. We avoid this by
transforming the quadrupole magnetic field configuration to a loffe type trap with a finite offset
field By. The Quadrupole-loffe-Configuration (QUICE$s98 which we use is distinguished

by a simple geometry, low power consumption and high bias field stability. In addition to a coll
pair in anti-Helmholtz configuration a smaller coil is placed between the pair at right angles
(see figure8.8 and3.7). The small coil produces a field with high curvature which provides the
finite offset field of By = 3.1 Gauss at 25 A at the trap minimum.

The coils are placed around a fused silica glas$,oghich serves as an UHV chamber with
particularly good optical access. A mu-metal shieldinipich encloses both, the glass cell and
the magnetic coils, reduces static magnetic stray fields by a factor of 30 and alternating fields at
50 Hz by a factor of 7. The vacuum in the UHV section is maintained by a 751/s ion pump and

5The power supplies are a customised version of the 3000 W NLN series by F. u. G. Electronik GmbH, Rosen-
heim, Germany. They are optimised to be able to ramp the current up to the maximum of 150 A and down again to
zero within 2 ms with an inductive load.

5The glass cell is a custom design manufactured by Hellma GmbH & Co. KG, Miihlheim, Germany. It has
been antireflection coated by Laseroptik, Garbsen, Germany. The glass to metal seal from the cell to the 304 steel
chamber is provided by a gasket made by Helicoflex, Columbia, SC, USA.

"The box was laser-cut and formed by our mechanical workshop from a 1 mm thick soft-magnetic NiFe alloy
from Vacuumschmelze, Hanau, Germany. Afterwards it was heated to approximat&fy @@fer H atmosphere
to improve the magnetic shielding at the Paul Scherrer Institute, Villingen, Switzerland.
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Figure 3.8: Comparison between a quadrupole field (dashed) created by the red quadrupole
coil pair and the QUIC configuration (solid) with an additional smaller purple coil .

and a titanium sublimation pump.

In the QUIC trap the lifetime of the cloud is on the order of minutes, limited only by the
background pressure. This is long enough to perform the evaporative coofifiglofA radio-
frequency or microwave field limits the effective trap depth and leads to the loss of atoms in the
high energy tail of the Boltzmann distribution. Rethermalisation and further evaporation result
in a decrease of temperature. The radio-frequency field induces transitions from the trapped
|FF = 2,mp = 2) state via thgF' = 2, mp = 1) state to the untrapped’ = 2, mp = 0)
state. The energy dependence of the radio-frequency knife is caused by the Zeeman splitting
between the states. When the frequency is adjusted to drive transitions at a magnetic field that
is reached far from the trap minimum, only hot atoms are evaporated. For mixtufés arfid
87Rb radio-frequency evaporation may also lead to losses df khatoms and therefore we use
microwave evaporation in this instance. The microwave field at approximately 6.8 GHz only
affects theé’’Rb atoms, inducing transitions to the untrappgd= 1, mr = 1) state. Care is
taken to remove all Rubidium atoms in thé = 2, m = 1) state, because we suspect that they
induce inelastic losses with tHéK atoms.

Before going on to describe the laser system for the optical lattices, a quick overview of all
the different vacuum and magnetic components needed to create the quantum degenerate Bose
and Fermi gases is given. A schematic of the apparatus has already been dispBageshcha
technical drawing is shown B.S. The actual apparati310is more complex than the drawing,
with the MOT, lattice and imaging optics closely surrounding the vacuum chamber.
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3.4. EVAPORATIVE COOLING

Figure 3.9: Overview over the vacuum setup and the magnetic transport. The front and top

parts have been removed in this CAD rendering in order to show more details. The transport
coils are attached to water cooled mounts shown in green. At the far left and right the two ion

pumps are visible. The extension of the MOT chamber at the front hous&4<thlispensers.

Figure 3.10: The vacuum setup with surrounding optics. The glass cell is hidden beneath the
mu-metal shielding at the center of the image.
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3.5 The lattice

In many ways, the optical lattice is the centrepiece of the apparatus. Every experiment de-
scribed in this thesis is performed in the optical lattice potential and all previous experimental
steps are precursors to create quantum degenerate gases for loading into the periodic potential.
Considerable work has been spent on creating optical lattices of high quality with negligible im-
perfections. Detrimental effects which had to be avoided include spatial ripples in the Gaussian
profile caused by reflections from the various optical elements as well as fluctuations of the
intensity, frequency and position of the lattice laser light.

3.5.1 The lattice lasers

The three laser beams which intersect at the position of the trapped cloud (se@fid)i@e
generated by semiconductor lasers running at 826 nm. For this application, the laser diodes
need to be stabilised because the frequency fluctuations of free-running laser diodes are unac-
ceptably high. These frequency fluctuations reduce the coherence length and the corresponding
wavelength variations result in position fluctuations of the lattice wells, leading to paramet-
ric heating. We stabilise one external cavity laser diode to a high finesse cavity and thereby
reduce its linewidth to the order of 10 kHz. By injection locking three free-running 150 mW
laser diodes to this master laser, sufficient optical power for the three lattice axes is created. In
later experiments (chaptérand?) the injection locked laser diodes were replaced by tapered
amplifiers which yield higher output powers.

The light of each laser is frequency shifted by an acousto-optic modulator after passing
through an optical isolator which protects the delicate lasers from back-reflections. The acousto-
optic modulators serve two purposes: firstly, the frequency shifts which they introduce differ
by more than 15 MHz for the three lattice axes. This frequency difference is sufficiently large
to average out all undesirable cross-interference terms between the different lattice axes, as
discussed in sectioB.3.2 Secondly, they provide a means to control the lattice depth: by
changing the amount of radio-frequency power which drives the modulators, the intensity of
the frequency-shifted beam can be adjusted.

3.5.2 The optical setup

Single mode optical fibers transport the light to the vacuum setup and filter the spatial mode
at the same time. The light is expanded with suitable telescopes and focused onto the atomic
cloud with high quality achromatic lenses. In order to be able to perform absorption imaging,
imaging light copropagates with the lattice beams. The resonant imaging light is polarised
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orthogonally to the lattice beams and added to the beam path with a polarising beamsplitter
cube as shown in figui@.11. After passing the atomic cloud, the lattice beam is recollimated

and then retro-reflected by a dichroitic mirror. The two counterpropagating beams form one
lattice axis. Resonant enhancement of the trapping light in the cavity formed by the retro-
reflecting mirror and the end-facet of the optical fiber is suppressed by an optical isolator in the

beam path.

iiis il :
T

CCD

Figure 3.11: The lattice laser setup. In the middle of the figure, three standing waves intersect

at the position of the cloud, forming a three dimensional cubic lattice. The beam path of one

lattice laser (in blue) is shown in more detail. Starting from the fiber, the beam passes an optical
isolator and a telescope before being combined with the imaging beam (in red). The lattice
beam is focused onto the cloud, recollimated and retro-reflected. The shadow image of the
atoms passes the dichroic mirror and is imaged onto a CCD camera.

The imaging light passes through the dichroitic mirror and is imaged onto a CCD camera.
In this way, absorption images of the atomic sample can be taken along the lattice axis. This
alignment is also very useful for the adjustment of the lattice: a small fraction of the lattice light
passes the mirror and is imaged on the camera. By comparing the image of the sample in the
trap with the lattice laser beam, the position of the latter adjusted. For the fine alignment of
the beams, we use the atomic sample as a probe. Just before switching off the magnetic trap
and time of flight imaging, the lattice beams are switched on for a few ten microseconds. If
the beams are perfectly aligned with the center of the magnetic trap, the center of mass of the
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atomic cloud should feel no net force. By comparing the cloud positions after time of flight
with and without this laser pulse, the fine alignment is performed.

The resulting optical lattice is characterised by the power, the diameters and polarisations as
well as the frequencies of the laser beams. These values are summarisec3riltalite lattice
depth is stabilised in order to reduce the effect of fluctuations in the laser power and the fiber
coupling. This is done by measuring the laser power of the lattice beams with a photodiode and
feeding the signal into a servo-loop which controls the diffraction efficiency of the acousto-optic
modulator.

Lattice axis X y z
Beam waists for experiment
in chapte4 and5
Beam waists for experiment
in chapter$-8

S
120pm | 120pm | 105pm

S
50pm 70um 70pm

Polarisation linear, but mutually orthogonal
Laser wavelength 826 nm
Laser linewidth ~ 10kHz
Frequency difference >15MHz
Lattice depth up to 30E;

Table 3.1: Summary of the optical lattice parameters.

3.6 One experimental cycle

After having introduced the methods and technology used in our experiment, this section sum-

marises the experimental procedure step by step. Starting with a brief overview over the hard-

ware which controls the experiment, the experimental sequence for studying degenerate Bose
gases in optical lattices is described. This is relevant for the experiments presented in chap-
tersd and5. The experiments reported in chaptét8 are performed with fermionic atoms in

the lattice. The sequence deviates from the one for bosons in many small details, so that it is
described in a separate section.

Experiment control

The process of creating a quantum degenerate gas, loading it into the lattice and performing
imaging takes roughly a minute, while individual events of millisecond duration sometimes
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follow each other in quick succession. Up to 60 digital and 10 analog outputs as well as several
radio-frequency generators have to be controlled with microsecond precision. This is realised
by computer control with a program developed by my coworker Thilo Stoéferle and realtime
capable hardwafe

At the end of each cycle the images from the CCD canfemes transferred to the image
processing software. The software is capable of automatically processing the data and fitting
it to theoretical models. As the imaging is destructive, the whole sequence has to be repeated
for each new data point. Therefore, the reliable reproducibility of the sequence is of paramount
importance and great care has been taken to avoid thermal and other drifts.

3.6.1 Experiments with bosonic  *'Rb

MOT-phase

In the first 10 seconds of the experimental sequence we capturgd x 10° 8’Rb atoms in

the magneto-optical trap. For high capture rates, we use about 120 mW of cooling light, which
is slightly red-detuned with respect to the cooling transition¥oerrp = —2.5 I'rn, Where

I'rp = 27 x 6 MHz is the natural linewidth of the rubidiunm, line. At the same time, ap-
proximately 5 mW of resonant repumping light transfer the atoms which have decayed to the
“wrong” hyperfine state back to the cooling cycle. A pair of anti-Helmholtz coils generates the
magnetic gradient field with a gradient of abduc.%, which causes the spatial dependence of
the light forces.

In order to compress the atomic cloud, the magnetic gradient is increased by a factor of three
in 10 ms at the end of the MOT-phase. After that, all magnetic fields are abruptly turned off and
polarisation gradient cooling is performed for 9 ms with the detuning increasédotor, =
—10Trp- Finally, the atoms are optically pumped to the magnetically trappéble 2, mp =
2) state with a 2 ms long sequence of laser pulses.

8Digital output is provided by a PCI DIO-64 card from Viewpoint Systems Inc. (Rochester, NY, USA), analog
output by several NI PCI-6713 and NI PCI-6733 cards from National Instruments (Austin, TX, USA). Moreover,
we use a NI PCI-GPIB controller card from National Instruments to communicate with the frequency synthesizers
(Agilent 33250A and Tabor 8025).

%0One slow-scan CCD camera per lattice axis is used: AP1E cameras from Apgoee Instruments Inc. (Auburn,
CA, USA) on thez- and z-axes and a SIS SC-90 camera from Theta System Elektronik GmbH (Grébenzell,
Germany) on thg-axis.
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3. THE EXPERIMENTAL SETUP

Magnetic transport

The magnetic field gradient is rapidly ramped up to avah%ﬁok 50 % for ideal transfer with
minimal heating from the MOT to the magnetic trap. Subsequently, the gradient is increased
linearly within 50 ms to a value o% ~ 200 gn which is used during transport. The entire

transport over approximately 40 cm to the glass cell takes 1.5 seconds, where another 500 ms
are spent on fading to the final QUIC configuration.

Evaporative cooling

In the QUIC trap a radio-frequency field is applied to remove the hottest atoms. After 25s
of forced evaporative cooling with a exponential radio-frequency sweep, an almost pure Bose-
Einstein condensate of up 8ox 10° 8’Rb atoms is formed. In order to reduce inelastic three-
body losses during the cooling, the magnetic trapping potential is lowered slightly during the
sweep. At the end the trapping frequencieswarg, = 27 x 20 Hz, w, grp = 27 x 122 Hz and

W, Rrb = 27 X 124 Hz.

Loading the lattice

After condensation we adiabatically change the trapping geometry to an approximately spher-
ical symmetry with trapping frequencies of = 27 x 17Hz, v, = 27 x 20Hz, andw, =

21 x 22Hz. This reduces the peak density by a factod @nd allows us to load the optical
lattice more homogeneously.

Adiabatic loading into the ground state of the optical lattice is achieved by ramping up
the laser intensity to the desired value with an exponential ramp with a duration of 100 ms
or 150 ms, depending on the experiment. We have verified experimentally that all atoms are
loaded into the lowest Bloch band of the optical lattice: we ramped down the intensity of the
lattice laser beams adiabatically and observed in the time of flight image, after release from the
magnetic trap, that only the lowest Brillouin zone was occupi@ct01).

We calibrate the potential depth of each of the optical lattice laser beams by measuring the
frequency of small amplitude dipole oscillations along the axis of the laser beam. From the
oscillation frequency we deduce the effective masgm at the quasi momentum= 0 in the
band structure, which is a measure of the potential depth of the optical la@@t@I Kra0Z].

The calibration error is estimated to be10%. Further details on the optical lattice geometry
can be found in tabl8.1.
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3.6. ONE EXPERIMENTAL CYCLE

3.6.2 Experiments with fermionic  *°K

When working with*°K, the bosoni¢”Rb cloud is used to sympathetically cool the fermions.
The rubidium atoms are not transferred into the lattice, however, and therefore the procedure
is optimised to maximise the number of cold potassium atoms rather than the size of the Bose
condensate.

Two-species MOT

Both species must be trapped simultaneously in our MOT-chamber as it is necessary to transport
them to the UHV section in the same moving magnetic trap. The simultaneous loading of a
magneto-optical trap oK and®*’Rb leads to losses in the potassium cloud, possibly caused
by light assisted hetero-nuclear collisiongdl0Z]. A strategy which has proven successful

to minimise these losses consists of avoiding overlapping high densities of the both clouds.
Therefore the®’K MOT operates for 12 seconds while tfdRb light is only turned on for the

last two seconds of this phase. Moreover, the densities of both clouds are reduced by employing
relatively far detuned trapping light.

We use more than 300 mW of cooling and 100 mW of repumping laser power, both with a
detuning ofAcoolerk = Arepumperk= —5.5 'k With respect to the two relevant transitions, which
are indicated in figur8.4. I'x ~ 27 x 6 MHz denotes the linewidth of the potassium transition.
The detuning of th&"Rb cooling light iSAcooierro= —3 I'ro. We estimate that we capture about
107 4°K atoms and x 10° 8’Rb atoms.

The sequence continues with 6 ms of polarisation gradient coolingAvigherk = —3 'k,
Arepumperk= —3 'k andAcooer,rn= —10T'rp. Finally, both species are pumped optically to the
maximally polarised statd$'x = 9/2, mp = 9/2) and|Fg, = 2, mp = 2) within 1.8 ms.

Magnetic transport and evaporative cooling

The magnetic transport works as well with two species as with one. The only change to the
sequence is an added pre-evaporation phase because the atomic clouds are so large that normally
the hottest atoms hit the inner walls of the glass cell. While this is not a problem for the
rubidium atoms because it results in evaporative cooling, it reduces the potassium atom number
unnecessarily. The pre-evaporation phase takes place in a QUIC trap located further away from
the glass cell walls than usual. Both cloud sizes are reduced by selective evaporation on the
rubidium atoms before fading to the final QUIC configuration.

Now the hottest rubidium atoms are selectively removed by a microwave field resonant with
the |Fr, = 2,mr = 2) — |Fr, = 1,mr = 1) transition around 6.8 GHz. The potassium
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3. THE EXPERIMENTAL SETUP

atoms, which are unaffected by this microwave field, are cooled sympathetically. After a 20s
long microwave sweep a Bose condensate With5 x 10° 8’Rb atoms forms in the presence

of 6 — 10 x 10° *°K atoms atI’ = 0.357. No sign of a collapse induced by the attractive
interspecies interactioMod0Z] is observed.

Optical evaporation

So far we have only performed experiments with pure Fermi gases and therefore we remove
all rubidium atoms with a microwave sweep before proceeding. It is particularly interesting to
study interactingK atoms close to a Feshbach scattering resonance. However, the states for
which resonant control of the scattering has been obseh@@2] cannot be trapped magnet-
ically. Moreover, the production of the desired spin mixture leads to additional heating. The
experimental strategy to produce a cold spin mixture is the following: the potassium atoms are
transferred into a crossed-beam optical dipole trap, in which the desired spin mixture is pre-
pared. After further evaporative cooling, the quantum degenerate spin mixture is transferred
into the optical lattice.

The experimental details of this procedure are the following: starting from the magnetically
trapped puré’K cloud in the|Fx = 9/2, mr = 9/2 state, the optical dipole trap is turned in
100 ms. The optical dipole trap is formed by the lattice laser beams along tad y-axis.
In this instance, however, the retro-reflecting mirrors are blocked by mechanical shutters so
that no standing wave patterns develops. The maximum trapping frequencies in the trap are
Wek = 27 X 93HZ,w, x = 27 x 154 HZ andw, x = 27 x 157 Hz. Next, the current through the
magnetic trapping coils is linearly ramped down in 100 ms while a homogenous offset field is
simultaneously applied with a final value of approximately 13 G. A short radio-frequency pulse
drives a Landau-Zener transition transferring all atoms intg #ae= 9/2, mp = —9/2) state.
The magnetic field then is increased to 232.9 G, where a 50/50 spin-mixtung ¢ —9/2
andmp = —7/2 states is created with a 200 ms long radio-frequency pulse.

At this magnetic field, which is far from the Feshbach resonance at 20RO} and
the zero crossing of the scattering length at 210 G, optical evaporation is possible due to the
relatively large scattering length between the two spin states ©20 a,. After lowering the
laser power in the optical trapping beams by approximately a factor of three we end up with a
spin mixture of5 x 10* to 2 x 10° atoms afl’/Tr = 0.2 to 0.25. The sample is now ready to be
transferred into the optical lattice.
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3.6. ONE EXPERIMENTAL CYCLE

Transfer into the optical lattice

Prior to loading the atoms into the optical lattice we tune the magnetic fiel8l to (210 +

0.1) G, so that thes-wave scattering length between the two states vanishes. Due to the fact
that optical trap is formed by the lattice laser beams with the retro-reflecting mirrors blocked
by shutters, the loading procedure is somewhat involved. First, the standing wave laser field
along the verticak-axis is turned on. Subsequently, the optical dipole trap along/thes

is turned off and a standing wave laser field along the same axis is turned on, and finally the
dipole trap along the-axis is ramped down. This procedure results in a one-dimensional tubes
oriented along the-axis. For the experiments in chap&:we use a three-dimensional lattice

and therefore a standing wave alan@xis is turned on as well. In order to keep the loading of

the atoms into the lattice as adiabatic as possible the intensities of the lasers are slowly increased
(decreased) using exponential ramps with time constants of 10 ms (25 ms) and durations of 20
ms (50 ms), respectively.

The lattice depth is calibrated by modulating the laser intensity and studying the parametric
heating. The calibration error is estimated tob&0%. Further details on the lattice parameters
are listed in tabl@.1. After having gone through the steps described above, a degenerate fermi-
onic spin mixture in an optical lattice is at hand which can be studied at arbitrary interaction
strength by making use of a Feshbach resonance.
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4 Realisation and characterisation of
a 1D Bose gas

An ultracold Bose gas in one spatial dimension is different from its two- or three-dimen-
sional counterparts. One striking example is that Bose-Einstein condensation does not occur at
finite temperature in a homogeneous one-dimensional sy$temol/]. In an interacting Bose
gas the constraint to one dimension leads to another remarkable and unexpected property. With
decreasing atomic density the interactions become increasingly dominant and the character of
the system changes. Lieb and Linig&rd63Lk Lie634 studied the 1D Bose gas assuming
delta-functional interaction. The corresponding Hamiltonian is

n* 02
H = Z + 91DZ5(Ii - xj), (4.1)
J

2m Oz —
1<

where the coupling constapip specifies the interaction strength amdhe atomic mass. Re-
markably, they found exact solutions for the ground state and the excitation spectrum for ar-
bitrary interaction strength. The system is characterised by the single parametkich is

the ratio between the interaction energyn,p and the characteristic kinetic energ% of
particles with the mean separation given by the inverse dengityy:

_ Mg
hQ nlD'

(4.2)

With decreasing density the kinetic energy is reduced faster than the interaction energy and the
1D gas becomes interaction dominated for small densities instead of becoming more ideal. The
prospect that this unique model in many-body quantum physics might become experimentally
accessible has led to an increased theoretical interest in trapped 1D gases. Assuming elongated
trapping geometries in which the radial atomic motion is confined to zero point oscillations,
different physical regimes could be identifie@I§9§ Ho99, Pet00l Pet04a Dun0], Gir01,

Men02, Lie03, Ped03}.

Parts of this chapter are publishedMdr03].
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4. REALISATION AND CHARACTERISATION OF A 1D BOSE GAS

4.1 Regimes of quantum degeneracy in 1D

Contrary to the homogeneous case, Bose-Einstein condensation in harmonically confined ideal
gas is possibleKet9€]. Decreasing the temperature belGyw = N7w,/In(2N) strongly in-

creases the occupation of the ground state. The clear crossover to a macroscopic occupation of
this state is due to the discrete level structure of the trap (see s@ctidh

Weakly interacting Bose gas

Interactions can change this picture. Only if the interaction among the particles in the lowest
eigenstate is smaller than the trapping frequency, it is possible to distinguish the individual
trap levels. Otherwise the discrete level structure is smeared out and a gradual crossover to a
Bose-Einstein condensate with Thomas-Fermi profile results. While the density fluctuations are
small for temperatures below the degeneracy temperajure N hw., phase fluctuations persist

down to temperatures on the orderiof= T, hw,/u [PetOOhPet044 Below this temperature

a true Bose-Einstein condensate appears, whilelfoxx 7' < T} density fluctuations are
suppressed but the phase fluctuates on a length scale much smaller than the sample length.
Such a condensate with fluctuating phase is usually termed a quasi-condensate.

Strongly interacting gas

When the 1D density is lowered, the kinetic energy of the ground state is reduced and may
become smaller than the interaction energy, thereby bringing the gas into the strongly interacting
regime wherey > 1. The longitudinal motion of the particles is highly correlated and the
bosons do not occupy the same positions, so that the mutual repulsion is minimised. At small
interparticle distances the relative wavefunction of two particles is strongly reduced. In the
limit v — oo, often referred to as the Tonks-Girardeau regime, this repulsion mimics the Pauli
principle and the Bose gas acquires fermionic properties. In particular, the density distribution
and the density-density correlation functions of such a strongly interacting Bose gas are given
by the corresponding properties of a noninteracting Fermi@as$().

4.1.1 Phase diagram in a harmonic trap
Usually, atoms in a dilute gas can move and scatter off each other in all three dimensions. Only

if they are subject to strong radial confinement does one have an effectively one-dimensional
gas, as all radial motion is reduced to zero point oscillations. The 1D regime is reached when
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4.1. REGIMES OF QUANTUM DEGENERACY IN 1D

the condition
1, kgT < hw, (4.3)

is fulfilled, wherew, denotes the radial trapping frequency and thus the strength of the radial
harmonic confinemeny, the chemical potential, arfl the temperature. Yet even when the 1D
regime is reached, the ground state extension in the radial diregtien,/1/(mw,) is usually

much larger than the characteristic radius of interatomic potential. Therefore the confining
potential plays no significant role during the scattering process, which continues to be three-
dimensional. The outgoing wavefunction, on the other hand, has to travel along the direction of
the waveguide. As a result, it is possible to describe the system with a fully one-dimensional

Hamiltonian:

n* 02 1 5,

H = Z__+91DZ5(xi — ;) +Z§mwzzj, 4.4)
i<j J

with w, characterising a harmonlc potential along the direction of motion. The 1D coupling

strengthy; p in an atomic gas can be expressed in terms of the 3D scattering leagtIsog

2h% a
gip=——— fora < Q. (45)
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Figure 4.1: Phase diagram of a harmonically trapped 1D Bose gas at finite temperatures. With
decreasing temperature the ideal classical gas is transformed continuously to a gas dominated
by either its interaction or its quantum statistics. The parameters are chosen to match our
experimental conditions. For temperatures or particle numbers above the ones displayed, the
1D conditionu, kT < hw, is violated (figure adapted froriPEtOOl).

In the following, the phase diagram of a trapped 1D gas subject to this Hamiltonian will
be discussed, following the treatment given by Petrov et/@etQ0). To come to the most
important point first, the phase diagram is shown in figud<for the situation pertaining to our
experiments. The lines dividing the phases only indicate the presence of crossovers as no phase
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4. REALISATION AND CHARACTERISATION OF A 1D BOSE GAS

transitions exist in a trapped one-dimensional gas. While temperature and particle number are
the variables describing the gas, the phase diagram is also determined by the trap parameters and
the atomic scattering properties. These parameters are characterised by the harmonic oscillator
length in transversal and longitudinal direction, termme@nd!, respectively, as well as by the
scattering lengtlh. They are constrained by the particular experimental realisation.

When the trapping potential is created by a red detuned lattice, the maximum anisotropy
(I./a,)? = 7w/ (see sectioi2.3.2) is determined by the available laser power, which limits
the waistw. For our experiment, typical values dre= 1.2 ym anda,, = 60 nm. Moreover, the
scattering length is fixed by the alkali atom trapped, RéRb witha = 5nm.

The starting point for finding the different phase boundaries will be a one-dimensional con-
densate in the Thomas-Fermi regime. Here the kinetic energy term can be omitted and the
density profile takes the parabolic form typical for condensates in harmonic traps with a density
in the center of,;p = 11/ g1p. Integrating over the density profile, one obtaiRef044

2 2/3
PR (3Ni) . (4.6)

- 2.2
2m [2a?

This equation will be employed to find the crossover to the neighbouring phases, namely the
noninteracting and quasi condensate as well as the strongly interacting degenerate Bose gas.

1D regime

The chemical potential has to meet< hw,, which is equivalent to a maximum number of

N L 35—2& atoms. Any additional atoms would have to occupy the next transversal oscillator
level and correspondingly the gas cannot be regarded as 1D any more. In the experimentally
realised 1D trap that will be presented in this chapter the number of particles is therefore limited

to N < 2 - 10%, making the experimental realisation of 1D gases challenging.

Noninteracting condensate

In order to have a distinctly observable crossover to a nearly noninteracting Bose-Einstein con-
densate, the chemical potential has to be smaller than axial trapping frequercyiw, =

N < % which is smaller than one for our parameters. This regime can only be accessed
by reducing the scattering lengthor the aspect ratia, /w.. Otherwise a gradual crossover
occurs, either to a weakly interacting Bose-Einstein condensate in the Thomas-Fermi regime or
to an interaction dominated Bose gas.
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4.2. CREATING A 1D BOSE GAS

Crossover from weak to strong interactions

The two cases are separated by a transition region characterisgdsbyl. Assuming the
validity of the Thomas-Fermi approximation, the coupling constacean be reexpressed as

a2l? 2/3
— z . 4.7
7=8 <3Na;‘:> (.7)

Here the definition ofy (eq. 4.2)) and the fact that,, = 11/g1p holds in the Thomas-Fermi
regime were used. With this explicit expression for the coupling strength at hand we can esti-
mate the crossover between weak and strong interactions to happ®n~fa20 in our experi-

ment. Below this number the interactions dominate.

Quasi-condensate

Even ify < 1, the existence of a true Bose-Einstein condensate requires the temperature to be
belowT} = T, (hw. /) [Pet00. Using equations4.6) and @.7) yields T,/ hw, = 2°/2/(3,/7).

This value is significantly smaller than the degeneracy temper@iyve., = N, in particular

close to the crossover to a strongly interacting gas.

4.2 Creating a 1D Bose gas

There has been significant progress towards the realisation of trapped 1D atomic gases over
the past years. Both in @.i/"Li mixture [Sch0] and in?*Na [G6r0]], quantum degenerate
gases have been created in extremely elongated traps, and features of one-dimensional conden-
sate expansion were observed. Considering only the condensed fraction, a chemical potential
of = 0.5 hw, was attained in these experiments. However, the thermal component, a sub-
stantial portion of the gas, was in a 3D configuratiégl{ > hw,) leaving the whole sample

in an interesting crossover regime. In a similar experimental regiBose-Einstein conden-

sates with attractive interparticle interactions were launched into 1D matter waveguides forming
bright matter wave soliton&Kha0Z. Moreover, a Bose-Einstein condensate of rubidium was
loaded into the ground state of a two-dimensional optical lattice. The transverse oscillations
were frozen out but the tunneling rate between the tubes exceeded the axial trapping frequency,
resulting in an array of strongly coupled tub€a¢€011).

In our experiment we have realised both quantum degenerate and thermal one-dimensional
atomic gases with the conditiod.@) being well fulfilled: for all our experimentsg1'/hw, <
6 x 1073 andu/hw, < 0.1. The atoms are prepared in a 2D optical lattice which offers the
advantage of an extremely tight radial confinement of only a fraction of the optical lattice wave-
length. Moreover, the geometry (see fig4r€a) makes it possible to study many copies of
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4. REALISATION AND CHARACTERISATION OF A 1D BOSE GAS

the 1D system at the same time, thereby avoiding problems arising from the detection of a very
low number of particles. The parameteranges approximately froih4 to 1, which is at the
crossover from the mean field to the strongly correlated regime.

In our experimental setup, we produce almost pure Bose-Einstein condensates 8fup to
10° 8"Rb atoms in thé ' = 2, mr = 2) hyperfine ground state, as described in cheBtérl.
The Bose gas is adiabatically loaded into the ground state of an optical lattice by ramping

a),_./”

15 ym
OT
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Figure 4.2: a) The geometry and size of trapped 1D gases in a two-dimensional optical lattice.
The spacing between the 1D tubes in the horizontal and vertical directids ism. b) Dipole
mode with center of mass motion. c¢) Breathing mode of the 1D gas.

up the laser intensity td; = 30 E; with an exponential ramp using a time constant 75ms
and a duration of 150ms. The two-dimensional optical lattice created from two laser beams
along thex- andz-axis produces an array of tubes, tightly confined in the radial direction with
w, ~ 37kHz and spaced by the periodicity of the latti¢e= \/2 (see figure4.2a). Further
details on the lattice laser beams can be found in the Baflend in chapte8.6.1.

The 1D systems in the optical lattice are not perfectly isolated, but the tubes are coupled by
the tunneling matrix element. For sufficiently deep lattice potentials, the tunneling becomes
exponentially small and contributes only a minor correction of otfler to the 1D charac-
teristics in the individual tubes. If/; < 1 the gas acquires 1D properties and can be well
described by a local Lieb-Liniger model, even though the whole sample is three-dimensional
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[Ped03. Experimentally we observe the disappearance of the matter wave interference pat-
tern with increasing lattice depth when the atoms are suddenly released from the optical lattice.
Higher order momentum peaks2hk, +4hk, ...) are usually observed at lower laser intensi-
ties [Gre01K. We attribute this loss of coherence between the individual tubes to the very small
tunnel coupling at large lattice depths, which is too small to stabilise the global phase coherence.

4.3 Collective excitations in 1D

Having created a one-dimensional Bose gas, we need to find a way to characterise it. Specif-
ically, the excitation spectrum can be used to determine the different regimes of the 1D gas
in the optical lattice. The frequency ratio between the lowest compressional mode (breathing
mode) and the dipole oscillatidos /wp)? is a sensitive measure, both for isolated 1D systems
[Men0Z and for atoms in an optical lattic®ed03. The two modes are depicted in figut€b

and c.

4.3.1 Theoretical prediction

The easiest case to consider is that of a thermal gas, where neither interactions nor statistics
play a role. Here the ratio i&vg/wp)?> = 2%, which becomes obvious if we examine the
motion of two particles which initially start out in the center of the trap with opposite velocities.
While they perform one oscillation (withp), their respective separation — z,| exhibits two
maxima, corresponding to two oscillations of the breathing mode. In the Tonks-Girardeau limit,
the strongly interacting Bose gas maps to a noninteracting Fermi gas. Therefore one expects
the latter to have the same collective modes as a thermal gas.

In order to understand the behaviour of the breathing mode of a 1D mean-field Bose-Einstein
condensate, we study an interacting classical 1D gas. Its density distributian is subject to
the equation of motiod'(z, ¢) = —Z (3mw?2? + Unyp(z, t)), where the last term describes the
mean-field interaction. The stationary distributiof(z) = n1p(0) — 55mw?2? is determined
by F'(z) = 0 and has the parabolic shape characteristic for the potential. We are interested in
oscillating solutions ofi(z,t) and assume that an infinitesimally small volume element moves
along the trajectory(t) = A(t)z(0) given by the scaling parameter The equation of motion

becomes

mi(t) = —mw?z(t) — UmnlD<z’t)
y 0 z
m2(0)X = —muw?z(0)\ — %%(0) ”m(A(O))
= A= e U;_z (4.8)
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Looking at small periodic deformationgt) = 1 + esin(wpt) of the gas simplifies equation
(4.9 to

2

Wy

(1 + esin(wpt))?
~  —3ew?sin(wpt). (4.9)

— ewhsin(wpt) = —w?(1 + esin(wpt)) +

Hence, in this classical model for a gas in the 1D mean field regime, one(figdsp)? = 3.

The considerations above are purely classical. In a more appropriate treaMestiz]
Ped03Fuc0d, the density of the gas is described by the hydrodynamic equations of superfluids.
Oscillating solutions depend on the equation of sjate;p(z)), which is described locally
by the Lieb-Liniger theorylllie63k]. Analytic solutions can be found in the limiting cases
of the 1D-mean field and Tonks-Girardeau regime, which coincide with the ones found with
our simple models above. For a degenerate gas in the 1D mean field regime, one expects
(ws/wp)? = 3, whereas in the Tonks-Girardeau regifag /wp)®> = 4. The latter frequency
ratio is the same for both a thermal gas and a gas of degenerate, noninteracting fermions. In
contrast, for a three-dimensional elongated condensate in the mean field regime the ratio of the
oscillation frequencies i§ug/wp)? = 5/2 [Str96 Mew9€, Che02. Between these regimes, the
ratio can be found numerically using a sum rule approAt@n02]; the result is displayed in
figure4.2.

10% 10° 10* 102 10° 10* 10* 10?
No, /o,

Figure 4.3: Ratio of the two lowest collective modés s /w.)? as a function of the parameter
Nw, /w, [Men0Z. In our experimenta, /a ~ 10. To the right the particle number is so high
thaty > hw, and the gas is three-dimensional(/w? = 2.5). Reducing the particle number
brings the gas into the 1D mean-field regimé,(w? = 3). At the lowest particle numbers
interactions dominate and the characteristic frequengy/¢? = 4) of the Tonks-Girardeau

regime is obtained. This figure is published with the kind permission of C. Menaotti.
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4.3.2 Experimental observation

We measure the frequency of the collective excitations of the atoms in the optical lattice. The
breathing mode is excited by sinusoidal intensity modulation of the optical lattice with an am-
plitude of4 E; for five cycles and a frequency ©50 Hz, which is close to but does not match the
expected frequency of the breathing mode. At the end of the modulation period alsmsit (
magnetic field gradient is applied along the symmetry axis of the 1D tubes to induce a dipole
oscillation of the condensate in the axial trapping potential. After a variable evolution time in
the combined optical and magnetic trapping potential all confining forces are suddenly switched
off! and we detect the atoms after ballistic expansion by absorption imaging. The density distri-
bution of the atoms is fitted by a Gaussian to extract the position and width of the cloud. Figure
4.4shows a data set of a dipole oscillation (figdtda) and a breathing mode (figudedb). In

order to extract the frequencies of the modes, we fit an exponentially decaying sine function to
the position of the cloud and an exponentially decaying sine function plus a linearly increasing
term to the rms axial width of the cloud. The latter accounts for the observation that there is a

@ .

center position [um]
o

rms axial width [um]

time [ms]

Figure 4.4: Dipole oscillation (a) and breathing mode (b) of a quantum degenerate one-
dimensional Bose gas. For this data set an almost pure Bose-Einstein condensate-with
(9.840.8) x 10* atoms is loaded into the optical lattice and imaged after 15 ms of ballistic ex-
pansion. From the fits we obtaimh = 27 x (84.6 +0.4) Hz andwg = 27 x (152.6 & 2.0) Hz.

1The switch-off time for the optical lattice sps and for the magnetic trego ps.
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4. REALISATION AND CHARACTERISATION OF A 1D BOSE GAS

slight increase in the width of the cloud with longer hold times, possibly due to technical noise.
The damping coefficients vary betwees ! and40 s~ for the dipole oscillations and between

3s !t and60s! for the breathing mode. We find that the damping coefficients depend critically
on the alignment of the optical lattice and the quality of the beams.
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Figure 4.5: The measured frequency ratiog /wp)? for a Bose condensed 1D gas (solid sym-
bols). The solid curve is the theoretical prediction frdPed03 using the measured dipole fre-
guency along the 1D tubes = 27 x84 Hz and the frequenay of the slowly varying confining
potential in the transverse direction WW&; = 27 x 4 Hz. Averaging all measurements,
independent of the atom number, we obtain a frequency ratiogfwp)? = 3.15 & 0.22. For

a 1D gas of thermal atoms we fifidg /wp)? = 4.10 + 0.08 (open circles). The depth of the
optical lattice is30 E;. The error bars reflect only the statistical uncertainties on the total atom
number and fit errors on the frequencies.

Figure'4.5 shows the measured ratjag/wp)? for a pure 3D-Bose-Einstein condensate
loaded into a 2D optical lattice for various total atom numbers. There is no discernible thermal
cloud for any data point, which allows us to estimate for the temperdtlifgsp < 0.3, where
Tt 3p denotes the critical temperature for Bose-Einstein condensation in the final magnetic trap-
ping configuration. We compare the measured ratig/wp)? to the theoretical prediction of
[Ped03 (solid line) and find good agreement over the wide range of atom numbers investigated.
This serves as proof that the gas is indeed one-dimensional. For the lowest total atom numbers
N = 1.7 x 10* the parametey reaches unity in the central tube of the lattice, indicating that we
are in the crossover region from the 1D mean field regime to the Tonks-Girardeau regime. We
estimate the number of atoms in the central tube t8(h@ssuming that the overall 3D density
profile is Thomas-Fermi-like and using an effective coupling consjamhich is modified by
the optical lattice Kra0z, Kra0Jd.

We also load thermal gases into the optical lattice and obtain an averagéwglug)? =
4.10 + 0.08 without significant dependence on the total atom numkesnd temperaturé’
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over the range o6 x 10* < N < 1.6 x 10° and54nK < T < 91nK. For thermal clouds

we observe that the frequency of the dipole oscillations is ugi4emaller than for the Bose
condensed clouds. We attribute this to the larger size of the thermal clouds which therefore
might experience anharmonic parts of the optical potential.

In order to study the transition from the 1D quantum degenerate gas to the 1D thermal
gas we prepare atomic clouds in the optical lattice with increasing non-condensed fraction but
constant atom number. We load an initially pure Bose-Einstein condensatel6f atoms into
an optical lattice and trap it there for different hold times before exciting the collective modes.
During the hold period the condensate is subjected to heating by off-resonant photon scattering
with a calculated heating rate of 70 nK/s and possibly technical noise on the trapping fields. We
find that together with the hold time the axial width of the atomic cloud increases (see inset
of figure'4.€), whereas the radial size is unaffected. Since the timescale for thermalisation of
the 1D gas is unknown it remains unclear whether the cloud is in thermal equilibrium and we
refrain from calculating a temperature from the rms axial width of the cloud. Férehows
the measured ratiwg /wp)? as a function of the rms axial width of the cloud. For increasing
width the ratio(ws/wp)? approached, which is the value for a classical noninteracting gas.
From a simple estimate we deduce that the 1D gases are in a collisional regime along the axial
direction, sinceN;p - (1 — 7) > 1, whereT is the transmission coefficient for a 1D collision
of two bosonsQIs9f and N;p ~ 70 is the number of atoms in a 1D tube.
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Figure 4.6: The measured frequency ratiog /wp)? for a Bose gas witlT x 10* atoms after
heating in the optical lattice. The rms axial width is measured &afitars of time-of-flight and is

an indicator of the rising temperature. The ratio increases from its initial value of approximately
310 4, as is expected for a transition from a 1D Bose gas to a thermal gas. The inset shows the
evolution of the axial width vs. hold time in the optical lattice prior to excitation of the collective
modes.
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4. REALISATION AND CHARACTERISATION OF A 1D BOSE GAS

In conclusion, we have realised both thermal and quantum degenerate gases in one dimen-
sion and investigated their physics by measuring the low-lying collective excitations. Our mea-
surements have shown that the properties of the 1D ground state are extremely sensitive to
thermal excitations, and that finite temperature effects must be taken into account when study-

ing 1D gases, in particular for the identification of the Tonks-Girardeau regime of impenetrable
bosons.
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5 Strongly interacting 1D Bosons —the
Mott insulator

Quantum gases trapped in the periodic potential of an optical lattice have opened a new
experimental window on many-particle quantum physics. Besides enabling us to change the di-
mensionality and study one-dimensional systems - as in the last chapter - it is possible to control
the effect of interactions with optical lattices. This ability has led to the observation of the tran-
sition from a three-dimensional superfluid to a Mott insulator by Greiner efzakQdz. Such
strongly correlated phases lie at the heart of guantum many-body physics. By studying them in
experiments where nearly all parameters can be tuned, one hopes to gain a deeper understanding
of general concepts related to superfluidity and superconductivity. In one dimension quantum
fluctuations play an important role, changing the transition from a superfluid to a Mott insulator
significantly. By introducing a periodic potential along the direction of motion of a 1D gas, we
were able to observe the transition from the superfluid to the Mott insulator in one dimension
and see signatures of increased quantum fluctuations.

5.1 Bose-Hubbard model

Degenerate Bose gases trapped in the lowest band of an optical lattice can be modelled using
the Bose-Hubbard Hamiltoniakis89 Jak9§, in which the hopping of atoms between neigh-
bouring lattice sites is characterised by the tunneling matrix elemhentile the interaction
energy for two atoms occupying the same site is givetvby

H = —JZajaj+%Zm(m— D)+ € (5.1)
(i.4) i i

Here d} anda,; denote the bosonic creation and annihilation operators for a particle at site
andn; = ala,; is the number occupation of site The last term introduces a site-specific

%

Parts of this chapter are published 8t04 K6h04, K6h05K.
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5. STRONGLY INTERACTING 1D BOSONS — THE MOTT INSULATOR

energy offset; related to a possible external potential. The physics of this model is governed
by the ratio betwee/ and J, i.e. between interaction and kinetic energy. This parameter
can be controlled by changing the depth of the lattice potential. If the &atibis below a

critical value, it is favourable for the atoms to delocalise due to the large energy/ gamd

the ensemble becomes superfluid. The number fluctuations which are an inherent feature of
superfluidity become energetically unfavourable wiéfy is above the critical ratio, due to

the large repulsive interactidil. Instead, the interaction energy is minimised when each site is
occupied by the same number of atoms. In order to achieve this, the atoms must localise and the
system becomes Mott insulating. In order to compare the phase diagram in different geometries
(see figuréb. ), the total energy gainJ due to delocalisation to allneighbours has to be taken

into account, where = 2in 1D andz = 6 in 3D.
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Figure 5.1: Schematic phase diagram Bt = 0 showing the Mott lobes. Within the Mott

lobes the system is incompressible with a fixed particle numbeer site. Outside, the su-
perfluid phase prevails. The phase boundaries in the three-dimensional case can be determined
accurately by mean-field calculatiorfa$89, while in the one-dimensional case, the increased
guantum fluctuations have to be taken into acccBat9() Fre94 Kih9§. As a consequence,

the insulating phase is entered at much lower interaction strength.

We access the one-dimensional regifas89 Bat0Z, BlicO3tj using a non-isotropic optical

lattice consisting of three mutually perpendicular standing waves. By choosing large potential
depths in two axes we can selectively suppress tunneling and hopping is possible only along
one dimension. Therefore an array of one-dimensional tubes with periodic modulation along
their axis is formed. While the displayed phase diagram (fisutedepicts the homogeneous
case, the envelopes of the laser beams give rise to a harmonic trapping potential along the axial
direction of the tubes. Consequently, the chemical potential decreases when moving away from
the trap center. As a result, different phases are found, depending on the position. The green
line in figure5.1 shows the values the chemical potential can take at different positions when
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5.2. OBSERVING THE SUPERFLUID TO MOTT INSULATOR TRANSITION

teenter/U =~ 2. In the center of the trap the gas is superfluid. Further out, the decreasing
chemical potential favours a Mott insulating zone with= 2, followed by a superfluid region

and another Mott insulating zone with = 1 before the density goes to zero in the outer
superfluid shell. The horizontal positiaty/U can be changed by adjusting the laser intensity
for the standing wave along the axial direction.

5.2 Observing the superfluid to Mott insulator transi-
tion

The details of the experimental sequence and the setup are described in 8lGfitén brief,

we produce an almost pure Bose-Einstein condensate of typitallx 10° 8’Rb atoms in

the |FF = 2, mr = +2) hyperfine state and load the condensate into the ground state of the
optical lattice. The intensities of the lasers are slowly increased to their final values using an
exponential ramp with a time constantZfms and a duration af00 ms. The resulting optical
potential depthd/, , . are proportional to the laser intensities and are expressed in terms of the
recoil energyFE,. To prepare an array of one-dimensional tubes, two lattice axes are ramped
toV, =V, =V, = 30 E,. The third one is simultaneously ramped to a much lower value
Vaxo = V4. In this configuration, the transverse tunneling matrix eleménend.J, are small

and contribute a correction of the order.bf. /i < 1 to the one-dimensional characteristics of
the individual tubes. The ratio between interaction and kinetic energy is controlled by choosing
different lattice depthd/,xo. In the following paragraphs this ratio will be given in terms of
U/J,with J = 2(J, + J, + J.) including the non-isotropic tunneling between ak= 2d next
neighbour sites.

5.2.1 Excitation spectra

We study the excitation spectrum by modulating the amplitude of the axial lattice potéptial

in order to perform two-photon Bragg spectroscoBief9. The lattice potential takes the form
Ve (Y, 1) = (Vazo + Amod SI (2704t ) ) sin?(ky). The modulation with amplitudd,,,.; and
frequencyv,,.q introduces two sidebands with frequencies,,, relative to the lattice laser
frequency which define the energy,,..q of the excitation. Due to the Bragg condition, atoms
scattering two photons receive a momentum transferiéfor 2hk. In contrast to applying

a potential gradient across the lattid®ré02, this method is not susceptible to effects like
Bloch oscillations and Zener tunneling which occur for low axial lattice depths. Furthermore,
the excitation energy is precisely determined and does not involve any parameters that need
calibration.

63



5. STRONGLY INTERACTING 1D BOSONS — THE MOTT INSULATOR

After the excitation, the experimental sequence is continued by ramping down the lattice
potentials linearly in 15 ms t¥,, = V| = 4 Ez where the atoms are able to tunnel again in all
three dimensions between the sites of the lattice. To allow for re-thermalisation of the system,
the atoms are kept at this lattice depth fons. Then all optical and magnetic potentials are
suddenly switched off. The resulting matter wave interference pattern is detected by absorption
imaging after25 ms of ballistic expansion. The width of the central momentum peak is taken as
a measure of how much energy has been deposited in the sample by the excitation. If the energy
increase is small, the peak is well fitted by a bimodal distribution. For resonant excitation
there is only a single Gaussian component, reflecting that the temperature of the atoms has
significantly increased. In order to be independent of the shape of the peak we use the full width
at half maximum (FWHM) as a measure of the introduced energy. Although this underestimates
small energy increases, the important resonances and features of the spectra are shown well.

The durationt,,,,, = 30 ms and amplitude4,,.; = 0.2V, o of the modulation are chosen
so that the resulting excitation of the condensate does not exhibit saturation effects for all mea-
surements presented here. We have verified that all atoms remain in the lowest Bloch band by
adiabatically switching off the lattice potentialSie01l after the modulation. When we load
a cold thermal cloud into the lowest Bloch band and apply our modulation scheme, we do not
observe excitations.
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Figure 5.2: Spectroscopy of the 1D superfluid (open circles) and the Mott insulating phase
(filled circles) with values ot/ /j of approximately 2.3 and 14 respectively. The error bars
reflect the statistical error of 5 measurements.

Figure5.2 displays the fundamental change in the excitation spectrum for a 1D Bose gas
when the crossover from the superfluid to the Mott insulating phase occurs: the broad contin-
uum of the superfluid contrasts with the discrete spectrum of the Mott insulator. One surprising
feature is that we can excite the superfluid with our scheme at largg, contrary to predic-
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5.2. OBSERVING THE SUPERFLUID TO MOTT INSULATOR TRANSITION

tions for the weakly interacting superfluid in an optical lattice formed by a single standing wave
[Men0Qd. In our experiment strong interactions lead to quantum depletion and higher order ex-
citations beyond Bogoliubov theory become possibleg59. In combination with the broken
translational invariance in the inhomogeneous trap, this could explain the non-vanishing excita-
tion probability observed in the experimenat and high energie®8ic034. In another expla-
nation, the parametric excitation of the Bogoliubov mode at frequepgy/2 and the ensuing
nonlinear dynamics are held responsible for the broad continuum obs&mé&E[ Toz05. We

have experimentally studied the issue in more detaibichi04.

A full series of spectra for different values 6f/.J, ranging from the superfluid via the
crossover region to the Mott insulating phase, is shown in fiL&e We observe the appear-
ance of the discrete structure betwdéh/ ~ 4 andU/.J ~ 8, which is characteristic for the
Mott insulating phase. Abovéf/j ~ 20 there is no more background due to the superfluid.
Our results are in accordance with the predictiod/¢f/ ~ 5.8 made by employing mean-field
theory [Fis89 Jak9§ for the borderline between superfluid and the- 1 Mott insulator. Cal-
culations beyond the mean-field approach indicate an onset of the Mott insulating phase in the
homogeneous 1D system(atj ~ 1.8 [KUh9€]. However, the finite size of the trap prohibits a
sharp transitionBat02], so that the fraction of Mott insulating atoms increases gradually with
increasing// J.
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Figure 5.3: The measured excitation spectrum of an array of 1D gases is shown for different
values of the lattice potential depihx o The corresponding ratios between interaction and
kinetic energyUU/J are calculated numerically using a band structure model in the tight-binding
approximation, which is described in sect®:3.3

For the superfluid we obtain spectra which differ significantly from the results of Greiner et
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5. STRONGLY INTERACTING 1D BOSONS — THE MOTT INSULATOR

al. |Gre03, since the superfluid excitations decrease at higher energies. Our excitation scheme
does not induce dephasing that occurs when the strongly interacting condensate is accelerated
near the edge of the Brillouin zon81001]. This dephasing might cause the broadening and

the background in the tilted lattice experiments at high energies in@e£0]. The width of

the superfluid spectra for the 1D gas is on the same order as twice the width of the lowest band
for Bogoliubov excitations.

In the Mott insulating phase we find the first resonant peak for all data sets close to the
calculated value ot/. A second peak appears @t91 + 0.04) times the energy of the first
resonance, slightly smaller than the value of 2 reporte@Gire0Z. This resonance might be
attributed to defects at positions where initially one site with= 1 atom is next to one with
n = 2 atoms. In the excited state the single atom has hopped onto the doubly occupied site. A
much weaker resonance appear&ai0 + 0.05) times the energy of the first resonance, which
could indicate higher order processes of two atoms tunneling simultaneously.

5.2.2 Coherence properties

Compared to the superfluid properties, the coherence properties of the system provide comple-
mentary information about the state of the gas. They are probed by studying the matter wave
interference patteridrz01, Gre0d.

We first prepare the array of 1D systems as above but do not apply our excitation scheme.
Instead, after holding the atoms at the final lattice depthtfor= 30 ms, we increasé’,,
rapidly (< 40 us) to abouRb Er and then abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial configurations onto the same Bloch state.
To extract the number of coherent atoris,, from the interference pattern, the peak$at,
+2hk and+t4hk are fitted by Gaussians (see figlixdb). At V, = 30 Er, coherence between
the individual 1D systems is lost after a few milliseconds. Thus perpendicular to the axis of
the tubes the expansion of the ground state is Gaussian. Incoherent atoms give rise to a broad
Gaussian background which dominates for highgr,. Taking this fit as a measure of the
number of incoherent atoms;,,.,,, we calculate the coherent fractigh = # For
comparison, we have performed the same experiment in three-dimensional isotropic geometry
whereV,, = V. As shown in figureb.4a, f. decreases slowly to zero for increasing values
of U/.J and appears to be almost independent of the dimensionality. This coincides with the
prediction that for strongly interacting Bose gases in optical lattices the superfluid fraction can
be significantly different from the coherent fraction, and that the decregsésaifiot a sufficient
signature of entering the Mott insulating phaB®1{0d.

In figure’5.4c we plot the width of the central peak of the interference pattern, which is
a measure of the coherence length of the gas. An increasing width is a good indicator for
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Figure 5.4: a) Coherent fraction vi]/J. The error bars are determined by the statistical error

of 4 measurements. b) The column sum of the optical density (circles) and the fits (solid line)
from which the number of coherent and incoherent atoms is deduced for the 1D case. The inset
shows the absorption image aftérms of time-of-flight (dimension860 um x 467 pm). c)

Width of the central momentum peak Vig/.J.

the presence of a Mott insulating phase since even a small Mott insulating domain reduces
the coherence length of the sample, as elucidated in numerical calculdwd][ Our data

show that the increase in width commences at much lower valugs.bffor the 1D gas than

for the 3D gas. This supports the expectation that due to the more pronounced quantum fluc-
tuations in the 1D geometry the gas enters the Mott insulating state at lower valﬂ@/sfof
[KUh9& Bat02, BiicO3h Kol04]. Experimentally, thermal fluctuations may also contribute to
the observed width. However, by comparing the width of the interference peak at different hold
times ¢, = 1 ms andt;, = 30 ms) we find that the primary effect of the additional heating is an
overall increase of the width rather than a change of the slope of the curve.
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5. STRONGLY INTERACTING 1D BOSONS — THE MOTT INSULATOR

5.3 A dimensional crossover

So far we have considered the gases in each tube of the lattice as entirely isolated systems
because the tunneling time/J, between the tubes exceeds the experiment duration. It is,
however, very instructive to look at the effect that the tunneling between the tubes has on the
ground state properties of the system.

For infinitely long tubes at zero temperature it has been shown that even an infinitesimally
small tunneling drives the system into a three-dimensional superfluid state, provided there is
no periodic potential along the tube axif€75. If such a periodic potential is present, the
formation of Mott insulating domains competes with the tendency of the atoms to delocalise
due to the tunneling between the tubes. This competition leads to a deconfinement transition
between a 1D Mott insulator and a 3D superfluitbD4, Gan04 for densities commensurate
with the lattice spacing. The corresponding phase diagram case is shown irbii§ure

The one-dimensional systems realised in this work are of finite size and harmonically trapped.
Therefore the phase transitions described above are replaced by crossovers and the harmonic
confinement gives rise to an inhomogeneous state with coexisting superfluid and Mott insulat-
ing phases. Moreover, the individual tubes can be treated as “atomic” quantum dots which have
a finite “charging energy” representing the energy cost of adding one patrticle to the tube. This
charging energy may play the same role as the interaction energy for a single site and drive a
transition from a superfluid to a two-dimensional Mott insulatéo04, Gan04. The tunnel-
ing between the tubes is suppressed by the charging energy and the 2D Mott insulator state is
characterised by a fixed number of atoms per tube. Meanwhile, the state within an individual
tube need not be Mott insulating. The new crossovers arising from the finite size have also been
included in the phase diagram in figuses.

It is now interesting to evaluate the relevance of this phase diagram to our experimental
observations. The dashed green line in fighu®indicates the range of the experimental para-
meters. To obtain these parameters the density in the mean-field regime was calculated using the
theory presented irKra0d, leading to a particle number of 150 atoms per tube. This particle
number was then inserted into the formdlé to yield the chemical potential for smallU/.J.

In the Mott insulator regime the particle number of the central sites was estimated+@ lny

using the one-dimensional density in the mean-field regime. Therefore the chemical potential in
the Mott insulator is approximately 1.5 U. The other necessary parameter is the tunneling time
atV, =30 E,, whichish/J, =110ms.

The comparison of the experimental parameters with the phase diagram suggests that the
dimensional crossover from a one-dimensional Mott insulator to a three-dimensional superfluid
should in principle be observable. For the experiment, however, one must bear in mind that the
loading of the atoms into the two-dimensional lattice is not fully adiabatic for high lattice depths
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1 15 2 2.5
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Luttinger parameter K, (U/J)

Figure 5.5: Phase diagram of an array of coupled tubes as a function of the tunneling between
the tubes/, and the effective interaction strength. The latter is given in terms of the Luttinger
parametet (for more information seeGia04]). For convenience the corresponding values of
our experimental parameté’r/j are also given. The black lines illustrate the phase boundaries
for the case of infinitely long tubes with a periodic potential along the direction of the tubes. In
the case of harmonically confined system, the black lines show the corresponding crossovers.
The additional blue dashed lines denote the crossover from the 2D Mott insulator to the 3D
superfluid (horizontal) and from the 2D Mott insulator to the 1D Mott insulator (vertical), for a
particle number of 100 atoms per finite tube. The regime of the experimental measurements in
this chapter is indicated by the green dashed line. This figure is adaptedHia¥] with kind
permission of A. Ho.

due to the low tunneling rate between the tubes. Instead, the underlying harmonic potential will
lead to a variation of the chemical potential between the tubes. The low tunneling, rate

is insufficient to counteract this difference and establish phase coherence between the tubes, as
we have already observed in figuselb. Consequently, the observed crossover is between a
strongly interacting one-dimensional superfluid and a one-dimensional Mott insulator.

5.4 Prospects for 1D Bose gases

In the experimental work described in the last two chapters one-dimensional Bose gases were
created and brought into the strongly interacting regime for the first time. Several methods were
developed which enabled these studies. The measurement of collective excitations proved to be
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5. STRONGLY INTERACTING 1D BOSONS — THE MOTT INSULATOR

a sensitive tool to characterise the gas, drawing attention to the very low temperatures needed
to achieve a one-dimensional Bose-Einstein condensate. Applying a periodic potential along
the direction of motion increased the effective interaction strength and allowed us to study the
superfluid to Mott insulator transition. The characteristic energy gap in the excitation spectrum
was observed in a variation of two-photon Bragg spectroscopy. It became apparent, however,
that the property most sensitive to the appearance of the Mott insulating regions is the coherence
length.

Using these techniques we found indications that the quantum fluctuations inherent to one-
dimensional systems shift the Mott insulator transition to lower valuds/of than in three-
dimensional systems. However, further studies which pin down the transition region more ac-
curately will be necessary to test the agreement between quantum Monte Carlo simulations and
physical reality. A limiting factor is the trapping potential associated with the Gaussian enve-
lope of the lattice lasers. In the confined system different phases can coexist in different regions
of the trap. While it is impossible to realise unconfined systems, it seems feasible to create
larger homogeneous regions. In such a set-up the curvature in the center of the trap would have
to be compensated by the anti-trapping potential of a blue detuned laser. Due to its smaller
spatial extent a bathtub potential would result.

Studies of the correlation functions could shed new light on the intriguing physics of strongly
interacting 1D Bose gases. It has been predicted that the two and three body correlations are
strongly reducedGan03 Khe03 and first evidence of this has been seen in three-body loss
measurements in a gas with~ 1 [Tol04]. The two-body correlations might be measured by
performing photoassociation in the lattice.
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6 Confinement induced molecules In
a 1D Fermi gas

Although it is conceptually simple, the scattering of two particles is of fundamental interest.

It mediates interactions and can lead to the formation of molecules. The study of two particles
forming a bound state has a long history both in physics and chemistry because it constitutes
the most elementary chemical reaction. Cold atomic gases represent the ideal model system
for these investigations as effects of temperature or the environment can be neglected, and
the collisions are accurately described by standard quantum mechanics. For unconfined atoms
undergoings-wave interaction, a bound molecular state is only supported when the scattering
length between the atoms is positive, whereas for negative scattering length the bound state is
absentWWig33].

Using optical lattices, we are in the unique position to be able to study scattering and mole-
cule formation when motion is confined to one dimension. The strong confinement affects
the two-particle physics fundamentally, provided that the scattering length and the size of the
transverse ground state are simil@i49§ Pet0] Ber03 Mor04]. We observe bound states
irrespective of the sign of the scattering length, contrary to the situation in free space.

The experiments described in this chapter are performed with fermfitgiatoms. Due to
the Pauli principle, three-body collisions are suppressed and the weakly bound dimers are more
stable than in comparable bosonic systems. Besides, the interactions are tunable &cause
features an easily accessible Feshbach resonance, which will be discussed in the next section.
The strongly interacting one-dimensional Fermi gas which we create therefore represents the
first realisation of a tunable atomic Luttinger liquid.

Parts of this chapter are publishedMdr05].
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6. CONFINEMENT INDUCED MOLECULES IN A 1D FERMI GAS

6.1 Scattering Theory

In ultracold atomic gases, the interaction strength can be changed by tuning the magnetic field
to values in the vicinity of a Feshbach resonante93 Ino9€. The physical origin of such
Feshbach resonances and their consequences on the scattering properties of atoms and on mole-
cules formation will be discussed in this section. Further details can be fouSdk94 Dal9q

which feature comprehensive introductions to scattering theory, while Feshbach resonances are
treated ChiO%, Szy04.

The interatomic potential which causes scattering stems from two main physical origins:
strong repulsion at short distances caused by overlap of the two electron clouds and the van der
Waals attraction at larger separations. Several minor effects such as spin-spin and spin-orbit
interactions are usually neglected. In the low energy limit it is useful to expand the scattering
wavefunctionyy (r) into partial waves)y (r) = Yin(0, ¢) Ri(1), where the¥j(0, ¢) are spherical
harmonics with the projection of the angular momentumingm(not to be confused with the
massm). The probability distribution in the radial direction is given By(r) and obeys a
modified 1D-Schrédinger equation

2 2
[—h— < T+ 2i> " veff(r)} Ri(r) = BR() with V() = v+ Y 61)

om \dr? ' rdr

For higher angular momenta the effective potential includes a centrifugal barrier as shown in fig-
urel6.1which prevents low energy particles from feeling the poteritial). Therefore usually
only s-wave scattering is relevant, which is isotropic.

TVeﬁ(r)

Figure 6.1: Effective interaction potential fos- andp-wave scattering.

The effect of the interaction is to give an extra phaséo the outgoing wavefunction, so
that it becomes asymptotically proportionalte Ry(r) o sin(kr + d5). For cold atomic gases
the deBroglie wavelength,z = 27 /k ~ 1 pym greatly exceeds the extension of the interatomic
potential of approximately 3 nm. Therefore the sine-function can be approximated by a straight
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6.1. SCATTERING THEORY

line at small distances. Within the interatomic potential the wavefunction is disturbed leading
to the aforementioned asymptotic phase shifias demonstrated in figufe2. It is more con-
venient to parameterise the effect of the interaction by the intercept of the outside wavefunction
with the z-axis. This yields the scattering length

a) rRou b) rRO“
| a0
4””’ ___ . . \\\ ¢
1 r ~ 7
a<o0 V
rO

Figure 6.2: Scattering wavefunctionR, in a simplified attractive potential. a) For a weak
potential (red), the wavefunction (solid black) is modified only slightly. The asymptotic wave-
function, drawn in dashed green, intercepts:thaxis at negative.. b) The stronger potential

with a > 0 supports a true bound state (blue), in contrast to the quasi-bound state in a) (dashed
blue).

As long as the potential is not deep enough to support a bound state, the wavefunction is
only slightly modified andi < 0 (see figures.2a). Once the potential depth is sufficient for
a bound state, the effect on the wavefunction is more pronounced (seelBigbje Instead
of having a positive slope, the wavefunction is tilted downwards again resulting in a positive
scattering length. The latter wavefunction is very similar to that of a bound state in the potential
well. Indeed, when solving the Schrddinger equati®i)(for a box potential with negligible
radiusry, — 0 (see e.g. $ak94), it is found to support a bound state for all positivevith
binding energy

Ep=—. (6.2)

For negative a, this equation can be used to define a quasi-bound state just above the continuum.
The above formula is correct as long as the scattering length is much larger than the effective
ranger, of the potential. For a square well potential with finite sizethe scattering length

a in eq. 6.2) has to be replaced by — r,. For the more realistic van der Waals potential

Veaw = —Cs/r®, the validity of the formula can be extended to lower valueg @fith the
correction [Gri93]

. ” o T(3/4) (mC\ !
EB_W Wltha—2r<5/4) <4h2> . (6.3)

In potassium, the “mean scattering lengtivas determined fronCs = 3927 ay [Tic04] is
a = 62.2 qp.
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6. CONFINEMENT INDUCED MOLECULES IN A 1D FERMI GAS

6.1.1 Feshbach resonances

So far, we have had no reason to consider the internal states of the colliding atoms during
the scattering process. However, if the two atoms with the quantum nurffiersr,) and

|5, mp,), which are good quantum numbers at large distances, approach each other the re-
spective electron clouds overlap. The electron spins couple to each other and the exchange
interactionS; - S, may become comparable to the hyperfine interaction. Looking at the spin-
spin interaction as a perturbation, it couples channels with differentigtak F| + F; of the
unperturbed scattering Hamiltonian. The projection on the quantisatiodgxis mpg, + mpg,

has to be conserved for symmetry reasons.

o & — - |F=9/2>
m_=|-9/2>, |-7/2>

Figure 6.3: Level scheme of’ K at nonzero magnetic field . Ther-number increases from
left to right. The vertical line indicates the coupling between the different channels.

We are especially interested in collisions betweenapg, —9/2) and thg9/2, —7/2) states
of potassiunt’K, because a Feshbach resonance is accessible at a moderate magnetic field.
The only other combination with the samér is |9/2, —9/2) and|7/2, —7/2) (see Fig./6.3).
The former combination is called the open channel and the latter the closed channel. The two
channels have different total magnetic moments and therefore their relative potential energy
curves can be shifted against each other.

Bound states

Each potential curve dfK supports approximately 40 deeply bound states, but we concentrate
only on the highest vibrationally excited state of each channel. The background scattering
lengtha,, is given by the energy of the most weakly bound state in the open channel and is
only valid if the coupling to the closed channel does not modify the scattering properties. The
coupling to the closed channel becomes relevant if the closed channel has an energy level close
to the collision energy of the two atoms. For realistic magnetic fields, this is only possible for
the most weakly bound state of the closed channel.

When the molecular state of the closed channel is tuned close to resonance with the in-
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Figure 6.4: Resonant behaviour of the scattering length and formation of molecutéof
atoms. The scattering length (in black) diverge8at= 202.1 Gauss/Reg04, and below this
value, for positive scattering length, a bound state exists, the binding energy of which is shown
in green. The insets demonstrate the qualitative evolution of the interaction potential curves of
the open (red) and closed (blue) channel.

coming particle energy, second order processes during the scattering are enhanced, and virtual
occupation of the closed channel becomes likely. The effective scattering potential is modi-
fied strongly and the scattering length divergé®®J. Putting it another way, the coupled
Hamiltonian has an eigenstate with the binding energy close to zero, so that the corresponding
scattering length as given by equati@2) approaches infinity. The exact dependence of the
scattering length on the magnetic field is given MoEe94

AB

CZ(B) = abg(l — B_ BO

); (6.4)

where the widthA B and the positiorB, parameterise the Feshbach resonance. In figdithe
dependence of the scattering length, the binding energy and the separation of the two channels
are depicted as functions of the magnetic field. For magnetic fields above the Feshbach reso-
nance, no bound state exists and the scattering length is negative. The closed channel molecular
state is above the continuum. At the Feshbach resonance itself, it crosses the continuum and
the scattering length diverges, changing its sign in the process. As soon as the closed channel
molecular state comes to lie below the continuum, a bound eigenstate develops.
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6. CONFINEMENT INDUCED MOLECULES IN A 1D FERMI GAS

The Feshbach molecule

The resulting bound eigenstate is not identical with the molecular state of the closed channel.
This is already obvious from the fact that the closed channel energy depends linedsly on
while the energy of the bound state is a quadratic functioB,0odis seen by inserting equation
(6.4) into (6.2). The bound state is a solution of the coupled system, and the Feshbach molecule
is a coherent mixture of the molecule in the closed channel and a long-range atom pair in the
open channel.

A

energy

open channel
continuum

e "

Jes
bound state

Feshbach molecular state

closed channel bound state

magnetic field

Figure 6.5: Evolution of the Feshbach molecule. The behaviour shown corresponds'tdihe
Feshbach resonance and is not universal. The magnetic field dependence of the open channel
has been subtracted, so that the continuum threshold is independe&nTbé first bound state

of the open channel (red dashed) is responsible for the positive background scattering length
apg. The inset shows the quadratic dependence of the binding energy of the Feshbach molecule
when it comes close to the continuum threshold (figure adapted i@, Szy0Y).

To illustrate the exact nature of the bound state, a closer look at the coupling of the channels
is necessary (see figufeS). The bound states of the closed and the open channel form an
avoided crossing, as it is well known from two discrete coupled levels. As the upper branch of
the avoided crossing approaches the open channel threshold, coupling to the continuum must
be taken into account, which results in the quadratic dependence shown in the inset. For large
negative detuning? — B, from resonance, thK Feshbach molecule is not dominated by a
large closed channel contribution, as one might expect, but instead approaches the open channel
bound state. The closed channel admixture to the bound state never exceésisy8% [The
Feshbach resonance K qualifies as a "broad” resonance, which is dominated by the open
channel.
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Experimental progress

Although Feshbach resonances were originally discussed in nuclear pliesés}| they have

had great impact on experiments with ultracold quantum gases recently. After the first ob-
servation in a Bose-Einstein condensate in 19889¢ they were used to tune the interac-
tions in Bose gases in various experiments. These studies include the implosion of a con-
densateDon0]], the formation of solitons$tr02, Kha0Z and the observation of molecules
[Don02, Chi03 Her03. The first Feshbach molecules from fermionic atoms were created in the
group of D. Jin Reg03lp, quickly followed by others$tr03 [Cub03 Joc03% The composite
fermions are much more stable against collisional relaxation of the vibrationally highly excited
state than the bosons, because the Pauli principle suppresses the inelastic three-body collision
[Pet04l. Lifetimes up to 100 ms if’K, and 40 s irfLi, have been observed close to the Fes-
hbach resonance. This enabled the Bose-Einstein condensation of mol&rel@3Joc03lp.

The character of the pairs in a many-body system changes continuously with the magnetic
field strength. Above resonance, no two particle bound state exists, but the fermionic atoms
are expected to form a many-body BCS-like ground state with Cooper pairing which exhibits
superfluidity. On the resonance, the scattering length diverges. The elastic collision cross sec-
tion, on the other hand, is finite: The dependence on the relative wavevector of the scattering

particles has the fornal99
2

T 1+ k2a?
For k a > 1 the cross section becomes universal and depends orityasir (k) = 47 /k%. In

this strongly interacting region the many-body ground state is notoriously hard to find theoret-
ically. However, at sufficiently low temperatures vortices have been obseZva@3], which

are a proof of superfluidity. Below resonance, the binding energy increases and the bosonic
character of the molecules dominates. They can Bose condense and their size is approximately
equal to the scattering lengih

(k) (6.5)

6.1.2 Molecule formation in the presence of 1D confinement

Tight radial confinement alters the scattering properties of two colliding atoms fundamentally:
a bound state exists irrespective of the sign of the scattering leBgtJ]. Moreover, the in-
teraction strengtly, , diverges when the scattering length approaches the transverse oscillator
lengtha, = /h/mw, [OIs94, with w, being the radial trapping frequency. The actual scatter-
ing process is three-dimensional, because the effective range of the interatomic pogastial
much smaller than the transverse oscillator lengthThe asymptotic scattering states, on the
other hand, are restricted to motion along the unconfined direction, and the radial wavefunction
is given by the harmonic oscillator state of the waveguide potential.
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6. CONFINEMENT INDUCED MOLECULES IN A 1D FERMI GAS

The scattering properties under these circumstances are described by a short range potential
g1p0(2z) and the interaction strength depends on the scattering lenigtithe following way
[Ols9]:
a

91D = QWrTa/ar (6.6)

with A ~ 1.0326. Whena — a,/A, the interaction strength diverges in a one-dimensional
system, in contrast to a gas without confinement, where the interaction strength becomes largest
whena — oo (see figuréb.€).

—2__  a[a0]
1-Aala’
aar A

2000

/ 1900

200 210 B[G]

Figure 6.6: Comparison between confinement induced (red) and standard (black) Feshbach
resonance if’K centered around 202.1 G. The interaction strength is proportiongl(to—

Aa/a,) (eq. 6.6)) anda (eq. 2.12)) respectively. The confinement induced resonance is
calculated for a harmonic oscillator lengih = 62 nm which corresponds t§K in a 25 Fg

deep lattice.

The molecule formation under one-dimensional confinement is special: a bound state ex-
ists irrespective of the sign of the scattering length. This peculiar behaviour arises from the
additional radial confinement which raises the continuum energy to the zero point energy of the
confining potential, e. g. the two-dimensional harmonic oscillator ground state energyhe
energy of a bound or quasi-bound state remains nearly unaffected by the external confinement
because the effective range of the interaction is small compared to the extension of the confined
ground state. Therefore, a quasi-bound state, which for negative scatteringddiagtiabove
the continuum in free space, is below the new continuum in the confined system.

This explanation is instructive, but not numerically exact. The correct analysis which takes
all exited harmonic oscillator states into account yields a binding engggyf the dimers of
[Ber0d

a V2

o ((1/2,=By/(2hw,))’ ©0
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where( denotes the Hurwitz zeta function. For negativand |a| < a, a weakly bound
state withE}, ~ mw?a? exists which has a very anisotropic shape. The effective axial size is
I. ~ a?/a as compared to the radial sizg[Tok04]. In the limit [a| > a, the binding energy
takes the universal formy, ~ 0.6 hw, and for positiveu anda < a, the usual 3D expression
for the binding energy, = /?/(ma?) is recovered with spherical molecules of size

T bound state

energy

Z,

r

Figure 6.7: Interaction potential of the open (red) and closed (blue) channel in the presence
of strong confinement. The continuum energy of the open channel is identical withetkis,
provided that no confinement is present. The confinement, however, leads to the increase of
the potential at larger distances and to a rise in the continuum energy. The new continuum is
depicted with the green dashed line and lies above the bound state of the closed channel even
for negative scattering length.

6.2 Preparation of the strongly interacting 1D gas

A trapped gas is kinematically one-dimensional if both the chemical potential and the temper-
ature are smaller than the level spacing due to the transverse confinement (seed}h&juter

a harmonically trapped 1D Fermi gas the Fermi endigy= N hw. must be smaller than the
energy gap to the first excited state in the transverse direkiipnHere N denotes the number

of particles andv, is the trapping frequency along the weakly confining axis.

In our experiment we employ a two-dimensional optical lattice in order to create 1D Fermi
gases. For atoms trapped in the intensity maxima of the two perpendicular standing wave laser
fields, the radial confinement is only a fraction of the optical lattice period. The much weaker
axial trapping is a consequence of the Gaussian intensity envelope of the lattice laser beams.
The resulting aspect ratio, /w, = mw/\ is determined by the waist and the wavelength
of the beams. The two-dimensional optical lattice creates an array of 1D tubes, approximately
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70 x 70 of which are occupied. For a noninteracting gas in the lattice trap we mebgtfre
cloud diameters of approximatei um along the tube axis angb um radially. This array
fulfills the 1D conditionN < w,/w, = 270 in each tube while simultaneously providing a good
imaging quality because we study many isolated 1D Fermi gases at the same time.

One-dimensional qguantum systems have been realised with fermions, e. g. in semiconductor
nanostructuresWar8€, and with bosons in ultracold atomic gases (see chapéed Mor03,
St604 Tol04, Par04 Kin04h]) but so far the scattering length could not be tuned. We overcome
this by using a Feshbach resonance between two different spin states of the atoms. This allows
us to access any value of the scattering length and to study the predicted bound states in one
dimension.

The precise experimental procedure to produce a quantum degenerate spin mixture of fermi-
onic atoms in a two-dimensional optical lattice is described in ch&g In brief, we use
bosonic®”Rb to sympathetically cool a spin-polarised gas of fermidflic atoms to quantum
degeneracy. The potassium atoms are then transferred from the magnetic trap into an optical di-
pole trap where we prepare a spin mixture with+4)% in each of the F' = 9/2, mp = —9/2)
and|F = 9/2,mr = —7/2) spin states. After further evaporative cooling in the optical trap,
we reach temperatures betweEn= 0.2 7 and0.25 T with 5 x 10* to 2 x 10° particles, re-
spectively. The spin mixture is then transferred into a two-dimensional optical lattice formed
from beams along thg- andz-direction as described in chap@&6.2 This process takes place
at a magnetic field oB = 210G, so that thes-wave scattering length between the two states
vanishes. The magnetic field strength is calibrated by radio-frequency spectroscopy between
different Zeeman levels dfK, and the uncertainty is below 0.1 G.

6.3 Radio-frequency spectroscopy

We create molecules by ramping from the zero crossing of the scattering lerigjth @0 G in

10 ms to its desired value close to the Feshbach resonance. Depending on the final value of this
magnetic field sweep the binding energy of the molecules varies according to eq@atjokie
measure the binding enerdy, of the dimers by radio-frequency (rf) spectroscope§03l).

The idea behind this method is explained in figaré

A pulse with a frequency,; and a duration 040 ps dissociates the molecules and transfers
atoms into the initially unpopulated-5/2) state which does not exhibit a Feshbach resonance
with the statg —9/2) at this magnetic field. The power and duration of the pulse is optimised
to constitute ar-pulse on the free atom transition. The number of atoms in each spin state is
detected using absorption imaging after ballistic expansion. For this we ramp down the lattice
exponentially with a duration of ms and a time constant 6f5 ms from the initial depth/

80



6.4. OBSERVATION OF CONFINEMENT INDUCED MOLECULES

—(O—)— Im=>5/2>
_g__L_ |m_=-7/2>
—@— @~ m-o

Figure 6.8: Scheme of the rf spectroscopy. An rf pulse with frequengyis applied to the
gas. Free atoms are transferred from|the: = —7/2) state to the emptynr = —5/2) by an

rf photon resonant with the Zeeman level separatignTo break up molecules, the rf photon
needs to bring an extra energy > Ep along. Here the detuning is definedd@s= v,y — vy.
Excess rf energy is converted into kinetic energy of the fragments.

to 5 E;, in order to reduce the kinetic energy of the gas in the transverse directions, and then
quickly turn off the trapping potential. The magnetic offset field is switched off rapidly at the
start of the expansion, so that no molecules can be formed in the short time that the field passes
the Feshbach resonance. We apply a magnetic field gradient dumsgof the totalr ms of

ballistic expansion in order to spatially separate the spin components.

Figurel6.9 shows rf spectra for one-dimensional gases with a potential depth of the optical
lattice of V, = 25 E, which corresponds te, = 27 x 69kHz. In figure6.Sa the magnetic
field is detuned t0.57 G below the Feshbach resonance, & e 0. This spectrum exhibits two
resonances: one corresponds to [th&/2) — |—5/2) transition for free atoms at = 0, the
other atd > 0 corresponds to dissociated molecules. The constituent atoms of the dimers are
observed in thé-9/2) and|—5/2) states. At this magnetic field, the molecules are not detected
by our state-selective imaging procedure unless they are dissociated by an rf pulse. This is due
to the fact that they are transformed into deeply bound molecules during the switch-off of the
magnetic field. This explains the rise of the total atom number on the molecule dissociation
peak.

6.4 Observation of confinement induced molecules

In figurel6.Sb the magnetic field is chosé€md5 G above the resonance, i.e< 0. Again, the
appearance of a second peak in thé/2) atom number at > 0 demonstrates the existence

of a bound state in our 1D geometry. These bound states are confinement induced since no
molecules exist without confinement above the Feshbach resonance. They are only stabilised
by the presence of the confining potential. Ramping down the lattice before detection dissoci-
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Figure 6.9: Radio-frequency spectroscopy of a one-dimensional gas at the magnetic fields
201.5 G (a) and203.1 G (b, c) with respective scattering lengths- 103 a (a) and—1.2-103 aq

(b, c). The atom number in the respective spin states is plotted versus the detuning of the applied
rf pulse in a) and b). The solid lines are single or double Lorentzian fits. c¢) shows the width
of the|—9/2) atom cloud along the 1D tube direction affems time-of-flight, obtained from

a fit [DeM994 to the atomic density distribution. The horizontal line marks the average width
for an off-resonant rf pulse, the increase at the molecule dissociation threshold is fitted using a
linear function. The decrease in width at higher detunings is due to a diminishing dissociation
efficiency.

ates the dimers and therefore all atoms should be detected in the image, and the total particle
number is expected to remain constant. This is reflected in our data, where® atom
number decreases upon dissociation while|th&/2) atom number increases. Incidentally, if

the molecules are not dissociated by radio-frequency but by the lattice ramp-down, the total
particle number is not absolutely constant but slightly reduced. The reason for this could be
that a small fraction of molecules possibly forms again during the switch-off of the magnetic
field.

To find out the exact binding energy it is not correct to take the difference between the
molecular and the atomic peak position. The molecular peak position represents the detuning at
which most molecules are dissociated. Its position depends on the exact Franck-Condon overlap
between the bound state and the free atomic fragments and is therefore not the dissociation
threshold. Instead, the binding energy is inferred from the kinetic energy of the dissociated
fragments. The rf pulse not only breaks the pairs if the detusiegceeds the binding energy
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Ey, but also imparts the kinetic energyF = hd — Ey, to the fragments. In the 1D tubes only the
kinetic energy along the tube axis increases because motion in the other direction is impossible
for AEF < hw,. The position at which the kinetic energy starts to rises is the dissociation
threshold. The cloud width shown in figuéeCc is extracted from the momentum distribution
obtained from time-of-flight images. We find the binding energy by identifying the threshold
position at which the cloud width exceeds that of a cloud without dissociation. The latter is
determined by the Fermi statistics of the trapped atoms and the interaction|efitf& with
the|—7/2) atoms close to the Feshbach resonance. The decrease @ts due to the particle
transfer into thel—5/2) state and an accordingly weaker interaction energy. Owing to this
complication and to possible collisional shiftddr0z, Gup0Jj we estimate the systematic error

of our binding energy measurements in all data sets tlxéiz.
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Figure 6.10: 1D and 3D molecules. Confinement induced molecules in the 1D geometry exist
for both signs of the scattering length. The solid lines show the theoretical prediction of the
binding energy with no free parameters (see text). In the 3D case we observed no bound states
at magnetic fields above the Feshbach resonance (vertical dashed line). The error bars reflect
the uncertainty in determining the position of the dissociation threshold.

We investigate the dependence of the binding energy of the 1D dimers on the magnetic field
(figure’6.10), and we observe bound states for every examined magnetic field strength. The
dimers at magnetic fields above the Feshbach resonance are induced by the confinement of the
lattice. They are elongated, with the most weakly bound dimers having a calculated aspect
ratio of up tol,/a, ~ 2.5. The data are in good agreement with the theoretical expectation
calculated from equatior6(7) (solid black line) with no free parameters. For this calculation
we compute the effective harmonic oscillator lengthand the ground state energy, by
minimising the energy of a Gaussian trial wavefunction in a single well of the lattice to account
for the anharmonicity of the potential. To calculate the scattering length we use a width of
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the Feshbach resonance®f = 7.8 G [Reg03lp and the background scattering lengtly =
174 ag [Reg03&h

For a comparison with the situation in free space we create molecules in a crossed beam
optical dipole trap without an optical lattice, where confinement effects are not relevant. The
binding energy in 3D is measured with the same rf spectroscopy technique as for the 1D gas
and we find molecules only for scattering lengths- 0. The binding energy (solid blue) is
calculated according to equatidh §. The difference between the theory and the measured data
for more deeply bound molecules is probably due to limitations of this single channel theory. A
multi-channel calculation should be able to determine the binding energy more accurately.

binding energy Ey [kHZ]

0 10 20 30

lattice depth Vj [E/]

Figure 6.11: Changing the confinement. The spectra are taken very close to the Feshbach reso-
nance at a magnetic field & = 202.0 G. The binding energy is measured by rf spectroscopy.
For 1V, > 30 E; no increase in kinetic energy can be detected and we use the rising edge in the
|—5/2) atom number in the spectrum to determine the binding energy. The error bars reflect the
uncertainty in determining the position of the dissociation threshold. The solid line shows the

theoretically expected valug, = 0.6 fuw..

Exactly on the Feshbach resonance at which the scattering length diverges, the binding en-
ergy takes the universal forfiy, =~ 0.6 iw,. and is solely dependent on the external confinement.
We vary the potential depth of the optical lattice and thereby the transverse confinement, and
measure the binding energy. We find good agreement of our data with the theoretical prediction
(see figureb.11). For a very low depth of the optical lattice the measured data deviate from the
1D theory because the gas is not one-dimensional anymore.
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6.5 Conclusion

To sum up, in the experiment described above we realised an interacting 1D Fermi gas in a
two-dimensional optical lattice. Using a Feshbach resonance we created molecules and mea-
sured their binding energy. We found two-particle bound states for both signs of the scattering
length, which in the case of negative scattering length are stabilised only by the tight transverse
confinement. The binding energy measurements are in good agreement with theory describing
two-particle physics. The strongly interacting 1D Fermi gas realises an atomic Luttinger liquid,
and fascinating many-body phenomena are predicted in this syReo03 Ast04, Gia04.

Especially intriguing is the BCS-BEC crossover, which is exactly solvable in one dimension
[Tok04, Fuc04. For magnetic fields significantly below the confinement induced resonance
the interaction strength is repulsive and the molecules are bosonic in character. The ground
state is characterised by a molecular Bose-Einstein condensate. It is transformed to a Tonks-
Girardeau gas on the confinement induced resonance. The interaction strength diverges, and
the pairs behave like hard core bosons or equivalently like noninteracting fermions. Going to
magnetic fields above the resonance, the attractive interaction strength diminishes and a weakly
interacting Fermi gas results, featuring a BCS-like phase.

Another interesting feature of Luttinger liquids is the separation of “spin” and “charge” ex-
citations, which in our context translate into excitations of the total density and into the density
difference between the two spin states, respectively. Recent proposals show that it may be ex-
perimentally feasible to observe the different velocities of the spin and charge waves in our
experimental setufRec03Kol05].

The confinement induced resonance has yet to be observed. We have already tried to de-
tect the corresponding mean-field shift by rf spectroscopy, but did not achieve the necessary
resolution due to residual magnetic field fluctuations.
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7 p-Wave interactions in low-
dimensional Fermi gases

Ultracold fermionic atoms constitute a well-controllable many-body quantum system which
provides access to fundamental concepts in physics. Using optical lattices, the atomic motion
and the dimensionality of the trapping geometry can be controlled. Yet, it is the collisional
interaction between atoms which opens up the path towards the physical richness of the strongly
correlated regimeHof02, Rig03 Jak05K6h054d. While thes-wave scattering examined in the

last chapter is isotropig-wave interactions are particularly intriguing due to their anisotropic
character. They are expected to give rise to fascinating phenomena gualaas superfluidity

[HoOE, Che05/Gur05 Isk05 and the mapping of strongly interacting one-dimensional fermions

to noninteracting boson&a04/Che99 .

In contrast to the previous chapter, we turn to the study of spin-polarised fermions, whose
spatial wavefunction must be anti-symmetric under the exchange of two particles. This allows
for collisions with odd partial waves only, with thewave (¢=1) interaction having the lowest
centrifugal barrier. The suppression of the collisional cross section at ultralow energies can be
overcome by exploiting a-wave Feshbach resonané&g03¢Zha04'Sch0%. The strong con-
finement available with the use of optical lattices allows us to realise one- and two-dimensional
systems and restrict the asymptotic scattering states of atomic collisions. Examining the reso-
nant behaviour of the atom losses as a function of magnetic field, we observe distinct structures
depending on the dimensionality and the symmetry of the system.

Parts of this chapter are published @&Un0.
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7.1 p-Wave Feshbach resonance

In low energy scattering, nonzero angular momentum gives rise to a attractive potential with
a centrifugal barrier which is much higher than the incident collision energy. Again, a closed
channel exists, which can couple to the open channel through spin-spin interaction. In contrast
to the s-wave Feshbach resonances discussed in se6tiprthe incoming atom must tunnel
through the barrier in order to feel a perturbation by a closed channel bound state, which is
necessarily short range (see figlitd). A p-wave Feshbach resonance exists at the magnetic
field where the energy of a closed channel molecular state/withi coincides with the energy

of two atoms with relative angular momentua- 1. The scattering cross section is resonantly
enhanced. If the collision energy is nonzero, a higher magnetic field is needed to tune the closed
channel bound state in resonance. Due to the centrifugal bamiave Feshbach resonances

are very narrow and energy dependent. For thermal gases, this implies a broadening and a shift
of the resonance with increasing temperature.

TVQ_/(r)
[T

R 4

Figure 7.1: Effective interaction potentials farwave scattering with the centrifugal barrier.

7.1.1 Multiplet structure

In “°K a p-wave Feshbach resonance has been located for two atoms |#ythe-7/2) state
[Reg03¢;/Tic04]. At low temperatures it is split into two components, depending on the projec-
tion of the orbital angular momentum, on the magnetic field axis. This splitting is caused by
the magnetic dipole-dipole interaction of the two valence electidid4]

Hgg = —a’ ; (7.1)

where « is the hyperfine structure constamtthe interatomic separation, the unit vector
along the interatomic axis ansl the spin of the valence electron of atom The spins in
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the |9/2, —7/2) state are nearly parallel to the magnetic field. The dipole-dipole interaction is
attractive if they are lined up head to tail, whereas it is repulsive if they lie side by side. In order
to see the origin of the multiplet structure it is illuminating to look at the relative motion of the
atoms in the closed channel bound state as a classical orbit with relative angular momentum
¢ =1 (see figurer.2).

a) 4 b)

Figure 7.2: The electron spins describing classical orbits with|{a)| = 1 and (b)m, = 0.

For |m,| = 1 the spins follow an orbit in the plane perpendicular to the magnetic field
leading to repulsive mutual interaction. Conversely, fgr = 0, the interaction alternates
between attraction and repulsion, with the attraction dominating on average. Therefore the state
with |m,| = 1 is at a higher energy and consequently resonant at lower field than the one with
my = 0.

7.1.2 Scattering properties

In a similar fashion to characterisation of th@vave scattering by the scattering lengththe
p-wave scattering is parameterised by the scattering volume

Vo(k=0):=—lim M.

lim e (7.2)

Herek is the collision wavevector ang,(k) the phase shift introduced by the scattering poten-

tial (see also sectioB.1). The scattering volumg,(0) is magnetic field dependent and diverges

on the Feshbach resonance. Furthermore, its energy dependence can be accounted for using an
effective range expansion of the forfi¢04]

Vp(k) = (Vp(0) ™ +ck*) 7, (7.3)

where the effective range coefficienaind the scattering volume are functions of the magnetic
field. For“’K their dependence is tabulated iid04]. The scattering volume is closely related
to the three-body recombination rakg close to a Feshbach resonance, which is the quantity
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we study experimentally. For small scattering volurfiés for example, the recombination rate
is found to depend ol, as K3 o< |V,|*/3 [Sun03.

When the atoms are confined to one-dimensional motion, the scattering resonance is shifted,
similar to the case of the confinement induced resonancewave scattering (see equation
(6.6)). The exact valué/;f”t of the scattering volume at which the geometric resonance occurs
depends on the collision ener@y[Gra04:

V;)crit(E) B 13 E -1
@ [1%(_5’5_2%)} ' 7

r

In general the shift is towards higher magnetic field.

7.2 Geometric suppression of collisions

The experiments reported in this chapter are performed with a spin-polarised Fermi gas in an
optical lattice. The collisional properties in the vicinity ofavave Feshbach resonance are in-
vestigated by studying the resonant atom losses. Depending on the dimensionality and symme-
try of the system, distinct structures are observed. For a three-dimensional gas a double-peaked
structure appears, as has previously been reported by Tiekradr [TicO4]. It is caused by

the magnetic dipole-dipole interaction discussed in secidnl. This characteristic survives

when the dimensionality is reduced to two dimensions but appears shifted in magnetic field. For
one-dimensional geometries only a single shifted resonance peak is observed. All resonantly
enhanced losses vanish when the spin-polarised gas is loaded into the lowest band of a three-
dimensional optical lattice, in which each site can be regarded as a “zero-dimensional quantum
dot”.

These observations can be qualitatively explained by considering the symmetry of the colli-
sions, as illustrated in Fig.2 The external magnetic field orients the polarisation of the atoms
and may be chosen as the quantisation axis. In order to describe the atom-atom scattering with
p-wave symmetry, the angular part of the corresponding asymptotic relative wavefunctions can
be expressed in terms of spherical harmonics. Alignment of the scattering state parallel to the
quantisation axis corresponds to the spherical harmbaic,,,—, and alignment in the plane
perpendicular to the quantisation axis corresponds to superpositions of the spherical harmon-
icS Yo—1.m,—+1. In the two- and three-dimensional configurations both collisional channels are
present, giving rise to the observed doublet feature (see7H@ and b). In one dimension,
with the spin aligned orthogonal or parallel to the atomic motion, eithefrthe= 1 (see Fig.
7.4c) or them, = 0 (see Fig.7.4d) collisional channel is contributing, leading to a single peak.

In zero dimensions — as realised in a three-dimensional optical latpe&ave collisions and
the corresponding losses are absent (see/Hg).
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Figure 7.3: Spin-alignment dependent interactions in 1D and 2D. a) Depending on the projec-
tion of the angular momentum on the magnetic field, the angular part of the asymptotic scatter-
ing states is directed either along thaxis form, = 0 (red) or perpendicular to it fgim,| = 1

(blue). In the two-dimensional configuration of b) all projections of the angular momentum in
the p-wave collision are present. ¢) and d) show a one-dimensional spin-polarised Fermi gas
with the spins aligned orthogonal and parallel to the extension of the gas, respectively. In c)
only the|m,| = 1 projection of thep-wave contributes to the scattering, in d) only the = 0
projection

One- and two-dimensional fermionic quantum systems have been realised in semiconduc-
tor nanostructuredHow66 Fow8Z and recently with noninteractindMod03 and interacting
[Joc03lh)Mor05] atomic gases in optical lattices. In these systems the strong confinement modi-
fies the scattering properties of the particles: it stabilises molecular states and shifts the position
of Feshbach resonances. This has been predicted forO9¢ Ber03 and two-dimensional
systemsPet00aWou0d interacting vias-wave scattering, and confinement induced molecules
have been observed in a 1D gd&dr05]. Similarly, for spin-polarised fermions in one dimen-
sion a confinement induced shift pfwave Feshbach resonances is predicta@04.

7.2.1 Preparation of a spin-polarised 1D Fermi gas
The experimental procedure used to produce a degenerate Fermi gas has been described in detail

in chaptei3.6.2 In brief, fermionic*’K atoms are sympathetically cooled by thermal contact
with bosonic®”Rb atoms, the latter being subjected to forced microwave evaporation. The potas-
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Figure 7.4: Loss measurements of thewave Feshbach resonance. a) Atoms are held in
a crossed-beam optical dipole trap. b) Two-dimensional Fermi gas 25 F,.). c) One-
dimensional Fermi gas with the motion confined orthogonal to direction of the magnetic field
(V, =V, = 25 E,). d) One-dimensional Fermi gas with the motion confined parallel to the
direction of the magnetic field{ = V,, = 25 E,). e) Fermi gas in a three-dimensional optical
lattice (V;; = V,, = V., = 25 E,) The solid lines are Lorentzian fits to the data from which we
extract the position and the width of the resonance.

sium atoms are then transferred from the magnetic trap into an optical dipole trap consisting of
two intersecting laser beams along the horizontandy-directions.. In the optical trap we pre-

pare the atoms inthé" = 9/2, mp = —7/2) spin state at a magnetic bias field of 232.9 G using
two radio frequency (rf) sweeps. To remove residual atoms infhe 9/2, mp = —9/2) state

we change the magnetic field within 100 ms to a value of 201.7 G, close tevilage Feshbach
resonance betwedi’ = 9/2, mp = —9/2) and|F = 9/2,mp = —7/2) [Lof02, Mor05],
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7.2. GEOMETRIC SUPPRESSION OF COLLISIONS

where we encounter inelastic losses resulting in a pure spin-polarised Fermi gas. Subsequently
we increase the magnetic field within 100 ms to 203.7 G. Then we evaporate atoms by lower-
ing the optical trapping potential for 2.5s to a final valuerdf, in each of the two beams.

The preparation of the gas is completed by rapidlyl(ms) decreasing the magnetic field to
194.4 G, which is below the-wave Feshbach resonance. We have calibrated the magnetic
field by rf spectroscopy between Zeeman levels with an accuracy better than 100 mG, and we
estimate the reproducibility of our magnetic fields to be better than 50 mG.

7.2.2 Three-dimensional Fermi gas

For comparison with the low-dimensional situations we first studyptivMave Feshbach reso-
nance in the crossed-beam optical trap where motion in all three dimensions is possible. We
sweep the magnetic field from its initial value of 194.4 G linearly to its final value in the vicinity

of the Feshbach resonance within 1 ms. At this value the atoms are subject to inelastic losses
[Reg03§. After a hold time of 6.4 ms we switch off both the magnetic field and the optical
trap and let the atomic cloud expand ballistically for 7 ms before taking an absorption image.
From the image we extract the remaining number of atoms. In these data (ségl&jgve ob-

serve the doublet structure of thevave Feshbach resonance. The decay constant of the atom
number close to the Feshbach resonance is on the order of 1 ms, which is comparable to the
settling time of the magnetic field. Therefore we encounter a systematic shift of the magnetic
field strength on the order of +0.1 G due to the direction of the magnetic field ramp. We have
observed the opposite systematic shift when reversing the direction of the final sweep.

7.2.3 Two-dimensional Fermi gas

In a next step, we additionally apply a single optical standing wave along the verizas.

The standing wave with a potential depthcreates a stack of two-dimensional Fermi gases in

the horizontal:-y-plane as shown in figuré.3b. The lattice laser intensity is increased using

an exponential ramp with a time constant of 10 ms and a duration of 20 ms. The magnetic field

is aligned along the horizontataxis. In the two-dimensional Fermi gas we have studied the
p-wave Feshbach resonance analogous to the method described above, only the release process
of the atoms is slightly altered: within 1 ms before the simultaneous switch-off of the magnetic
and the optical potentials, we lower the lattice intensityyio= 5 E,. to reduce the kinetic

energy. This results in a more isotropic expansion which allows to determine the atom number
more precisely.

For the two-dimensional gas we observe a similar doublet structure of the Feshbach res-
onance but shifted towards higher magnetic field values with respect to the position without
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7. P-WAVE INTERACTIONS IN LOW-DIMENSIONAL FERMI GASES

strong confinement (see Fig.4b). The centrifugal barrier in a p-wave collision leads to a pro-
nounced energy dependence of the scattering volume. In the confined gas the collision energy
is modified by the motional ground state energy and the larger Fermi energy of the gas due to
the confinement. Moreover, a confinement induced shift of the resonance could be envisaged,
similar to what has been studied femave interactions in two dimensionB¢t00aWou0d.

We experimentally find that the shift of the resonance feature depends on the strength of
the optical lattice. In Fig7.5we compare the measured shift with a model in which we set the
collision energy of the particles to be the sum of the Fermi energy and the ground state energy.
We numerically calculate the Fermi energy for the noninteracting gas using a tight-binding
model for the direction of the lattice laser and a harmonic oscillator potential in the transverse
directions, corresponding to the experimental configuration. Using the parametrisation of the
Feshbach resonance accordingTi@4], we obtain the shifted position of the resonance for a
given lattice depth. For thien| = 1 branch of the resonance we find good agreement of the data
with the theory whereas for the = 0 branch the observed shift is larger than predicted by our
model. There may be an additional confinement induced shift op-tlvave resonance which
depends on the quantum numberin the collision process@ra04, however no quantitative
theory is available.
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Figure 7.5: Shift of the Feshbach resonance position when tuning the gas from three to two
dimensions. Open symbols indicate the position ofithe- 0 branch, solid symbols then| =

1 branch of the resonance. The error bars denote the statistical error of 3 measurements. The
solid lines show a calculation of the expected positions (see text).

7.2.4 One-dimensional Fermi gas

Reducing the dimensionality further, we study the effect of the alignment of the electronic spins
on thep-wave interaction in a one-dimensional quantum gas. All spins are lined up either
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7.2. GEOMETRIC SUPPRESSION OF COLLISIONS

orthogonal (see Figr.3c) or parallel (Fig/7.2d) to the orientation of the gas. We prepare
one-dimensional Fermi gases by superimposing a second standing wave laser field onto the
two-dimensional quantum gaséddr05]. Either thex- or they-direction of the optical dipole

trap is slowly turned off and replaced by an optical lattice along the same direction and having
the same beam geometry.

We now consider the orthogonal configuration where only collisions Wwith = 1 are
possible, and correspondingly we observe only this branch of the Feshbach resonance (see Fig.
7.4c). To study the suppression of the= 0 branch quantitatively we create a two-dimensional
optical lattice along the- and thez-direction withV, = 25 E,. and adjustabl&,. We measure
the peak loss on thew = 0 and the|m| = 1 resonance position, respectively. In Fig6a
we plot the ratio of the peak loss versus the tunneling matrix element alongdirection,

i. e. between the tubes of the optical lattice. Without tunneling the one-dimensional gases are
well isolated from each other and losses onsthe- 0 branch are completely suppressed. For
larger tunneling rates hopping of atoms between the tubes is possible and the system is not
kinematically one-dimensional anymore. Therefore collisions inthe- 0 branch become
possible which give rise to losses. The measurement directly verifies the suppressed tunneling
between neighbouring lattice tubes and proves that the gases in the individual lattice tubes
are kinematically one-dimensional. This method is complementary to the measurement of the
collective oscillations in a one-dimensional gas (see chdmed Mor03]). Orienting the one-
dimensional quantum gases parallel to the magnetic field axis, we obserme-thebranch of

the Feshbach resonance only (see Fidd).

For the one-dimensional Fermi gases we observe a further shift of the resonance position
and a broadening of the loss feature as compared to the higher-dimensional configurations. A
confinement induced shift of thewave resonance in one dimension for the= 0 branch has
been predicted in addition to the increased ground state and Fermi energy (see edudition (
and [Gra04). We numerically calculated the ground state and the Fermi energy for our trapping
geometry and particle number and included the confinement induced shift according to equation
(7.4). A comparison of the resulting shift with the experimental data is shown in/Egdp. We
note, however, that the confinement induced shift is relatively small as compared to the shift due
to the increased collision energy. The increasing width of the loss feature is expected because
the width of the Feshbach resonance also depends on the energy of the particles involved in the
collision processTic04]. It appears that for the 1D data the= 0 resonance is wider than the
|m| = 1 resonance which could indicate that the Fermi gas is less cold in the former situation.

By using three orthogonal standing waves, we prepare a band-insulating state in a 3D optical
lattice [K6h05d where the atoms are localised in the potential wells with at most one atom per
lattice site. In this "zero-dimensional” situation alwave scattering is completely inhibited
(see Fig7.4e).
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Figure 7.6: a) Suppression of collisional losses in the= 0 partial wave depending on the
tunneling matrix element between the one-dimensional quantum gases. The error bars are de-
termined from the fit to the loss peaks of two measurements. b) Shift of the Feshbach resonance
position when tuning the gas from two to one dimensions. Open symbols indicate the position
of them = 0 branch in they-z-lattice (see Fig7.3d), the solid symbols then| = 1 branch

of the resonance in the-z-lattice (see Fig7.3c). The solid lines show a calculation of the
expected positions (see text).

In conclusion, we have studied spin-polarised interacting Fermi gases in low dimensions
using ap-wave Feshbach resonance. We demonstrate that in reduced dimensions the direction
of spin-alignment significantly influences the scattering properties of the particles. Moreover,
we find a confinement induced shift of the resonance position and observe good agreement
with a theoretical model. Strongly interacting low-dimensional Fermi gases offer a wealth
of fascinating many-body phenomena. For one-dimensional systems the mapping of strongly
interacting fermions to noninteracting bosons may be stu@i&e99 Gra04 which resembles
the inverse of the Tonks-Girardeau limit for strongly interacting bos@u60]. The prospect
of p-wave superfluidity And61] appears very intriguing in cold atomic gas#toD%, [Che0j
and especially in two-dimensional systems exotic phases are pred@ied Isk05] where
the spin-alignment is essential.

96



8 Fermionic atoms in a
three-dimensional lattice

The exploration of quantum degenerate gases of fermionic atoms is driven by the ambition
to get deeper insight into long-standing problems of quantum many-body physics, such as high
temperature superconductivity. Very recently, the cross-over regime between a strongly inter-
acting two-component Fermi gas and a molecular Bose-Einstein condensate has been studied
in harmonic trapsReg04 Bar04 Zwi04, KinO4e, Bou04 Zwi05]. These experiments mark a
milestone towards the understanding of superfluidity of fermionic atoms. However, the analogy
to an electron gas in a solid is limited since there the electrons experience a periodic lattice
potential. The lattice structure is in fact a key ingredient for most models describing quantum
many-body phenomena in materials. It has been suggested that strongly interacting fermionic
atoms in optical lattices could be employed for studies of high-Tc-superconductiot@?),
Mott-insulating phase$lig03, Bose condensation of fermionic particle-hole pelread04, or
interacting spin system$&han04.

Here we report on an experiment bridging the gap between current ultracold atom systems
and fundamental concepts in condensed matter physics. A quantum degenerate Fermi gas of
atoms is prepared in the crystal structure of a three-dimensional optical lattice potential created
by three crossed standing laser waves. The unique control over all relevant parameters in this
system allows us to carry out experiments which are not feasible with solid state systems. Direct
imaging of the Fermi surface of the atoms in the lattice is demonstrated. Due to the confining
potential gradual filling of the lattice transforms the system from a normal state into a band
insulator. Using a Feshbach resonance the interactions between atoms in two different spin
states are increased and induce a dynamical coupling between the lowest energy bands.

Conceptually, this chapter differs from the previous ones. It does not deal with a one-
dimensional gas, but rather brings into focus the aspect that ultracold gases in optical lattices
can serve as a model laboratory in which to simulate solid state systems. It is meant to broaden
the scope of this thesis and point out capabilities of our setup which will be important for the
future direction of research.

Parts of this chapter are published Kdh054.
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8. FERMIONIC ATOMS IN A THREE-DIMENSIONAL LATTICE

8.1 Imaging the Fermi-surface

It was conceived by D. Jaksch et alak9§ that ultracold atoms exposed to the periodic poten-

tial of an optical lattice are an almost ideal realisation of a Hubbard model (see also $etjtion

This model is elementary to describe the quantum physics of many electrons in a solid. It takes
into account a single band of a static lattice potential and assumes the interactions to be purely
local [Hub63. Ultracold atoms in an optical lattice give a very direct access to the underlying
physics. The fundamental parameters include the tunnel coupling between adjacent lattice sites,
the atom-atom interactions and the dimensionality of the system. Previous experiments with
far-detuned three-dimensional optical latticBeP99 Gre02, 'St604 were always carried out

with bosonic atoms, and experiments with fermions were restricted to a single standing wave
[Mod09d. In the latter situation many atoms can reside in each standing wave minimum but
formation of a band insulator is prevented by the weak transverse confinement. The observed
inhibition of transportlPez04 is due to localised states and therefore differs qualitatively from

the band insulator which we create in the three dimensional optical lattice.

The precise experimental procedure to produce a quantum degenerate spin mixture of fermi-
onic atoms in a two-dimensional optical lattice is described in chi&€g In brief, we use
bosonic®”Rb to sympathetically cool a spin-polarised gas of fermidfiic atoms to quantum
degeneracy. The potassium atoms are then transferred from the magnetic trap into an optical di-
pole trap where we prepare a spin mixture With+4)% in each of the ' = 9/2, mp = —9/2)
and|F = 9/2,mr = —7/2) spin states. After further evaporative cooling in the optical trap,
we reach temperatures between= 0.2 T+ and0.25 T¢ with 5 x 10* to 2 x 10° particles, respec-
tively. The spin mixture is then transferred into a three-dimensional optical lattice as described
in chapter3.6.2 This process takes place at a magnetic fieldof 210 G, so that the-wave
scattering length between the two states vanishes. The magnetic field strength is calibrated by
radio-frequency spectroscopy between different Zeeman levefKofand the uncertainty is
below 0.1 G.

The potential created by the optical lattice results in a simple cubic crystal structure and
the Gaussian intensity profiles of the lattice beams give rise to an additional confining potential
which varies with the laser intensity. As a result, the sharp edges characterisifigiedis-
tribution function for the quasi momentum in the homogeneous Zest€/’k] are expected to be
rounded off. A quantitative picture can be obtained by considering a tight-binding Hamiltonian
to describe noninteracting fermions in an optical lattice with an additional harmonic confine-
ment [Rig04]. At T' = 0 the inhomogeneous system is characterised by the total atom number
N and by the characteristic lengthover which the potential shift due to the harmonic con-
finement equals the tunnel coupling matrix eleméntOne finds(, = \/2.J/mw2, with the
frequencies of the external harmonic confinement givea bit = z, y, z). The density distri-
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Figure 8.1: Observing the Fermi surface. Time-of-flight images obtained after adiabatically
ramping down the optical lattice. The characteristic density increases from left to reht. (
3500 atoms per spin states and a potential depth of the optical lattic&,0f Images )-(€)

were obtained with 15000 atoms per spin state. The potential depths of the optical lattices were
5F, (b),6 E, (c),8 E, (d) and12 F, (e). The images show the optical density (OD) integrated
along the vertically oriented z-axis after 6 ms of ballistic expansion.

bution scaled by, and the momentum distribution of the atoms in the lattice only depend on
the characteristic densipy. = Ci\éjz whered = \/2 is the lattice spacingRig0d. For a three-
dimensional lattice witl20 x 20 x 20 sites we have numerically calculated the characteristic
density for the onset of a band insulator todye~ 60. For this value op. the occupation num-

ber at the center of the trap is larger than 0.99. It has recently been pointed out that a fermionic
band insulator in an optical lattice with confining potential constitutes a high fidelity quantum

register Miv04].

In the experiment we probe the population within the first Brillouin zones by ramping down
the optical lattice slowly enough for the atoms to stay adiabatically in the lowest band whilst
guasimomentum is approximately conserv€ad01l). We lower the lattice potential to zero
over a timescale of 1 ms. After 1 ms we switch off the homogeneous magnetic field and al-
low for 6 ms of ballistic expansion before we take an absorption image of the expanded atom
cloud. The momentum distribution obtained from these time-of-flight images, shown in Fig.
8.1, reproduces the quasimomentum distributions of the atoms inside the lattice. With increas-
ing characteristic density the initially circular shape of the Fermi surface develops extensions
pointing towards the Bragg planes and finally transforms into a square shape completely filling
the first Brillouin zone deeply in the band insulator. In F&2 the experimental data for mo-
mentum distributions along the line with quasimomentyn= 0 are compared to the results of
numerical simulations using the same characteristic densities.

When imaging the cloud along the x-direction we find a homogeneous filling of the band in
the vertical (z-) direction, probably due to the change in the harmonic confinement while loading
the lattice combined with the presence of gravity. This asymmetry between the horizontal x-,
y-, and the vertical z-directions vanishes when the gas approaches the band insulating regime.
We have examined the level of adiabaticity of our loading scheme into the optical lattice by
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Figure 8.2: Analysis of the density distributions. The dots are cuts through the measured den-
sity distribution for quasi momentui), = 0 after adiabatically ramping down the optical lat-
tice. (@) Normal state withp, = 14.5, (b) band insulator wittp. = 137, (c) band insulator with
pe = 2500. We have numerically calculated the momentum distribution function of fermions in
the lowest band of a three-dimensional lattice withx 20 x 20 sites and characteristic lengths
Ce/d =32, (,/d=26,(/d=25(@and @) and(,/d = 1, {,/d = 0.8, {;/d = 0.8 (C),
assuming zero temperature (solid lines). Experimental date) af¢ averaged over 5 images.
Imperfect adiabaticity during the switch-off of the optical lattice may cause the rounding-off of
the experimental data at the edge of the Brillouin zoné)ratd €). The calculated momentum
distribution function is scaled to match the experimental data using identical scale factors for
all graphs.

transferring the atoms from the band insulator back into the crossed beam dipole trap. There we
find a temperature of 0.35- when the initial temperature prior to loading into the lattice was
0.27%.

8.2 Interaction-induced coupling between bands

We investigate the interacting regime in the lattice starting from a noninteracting gas deep in
a band insulator wit, = 12 E, andV,, = V, = 18 E,. A short radio-frequency pulse is
applied to transfer all atoms from the' = 9/2, mp = —7/2) into the|F' = 9/2, mp = —5/2)

state, with the atoms in thé" = 9/2, mp = —9/2) remaining unaffected (see figu8e3a).

The scattering length of the resulting mixture diverges at a Feshbach resonance loéated at
224.21 G [Reg034

We ramp the magnetic field with an inverse sweep rate @isl/® to different final values
around the Feshbach resonance (see&H). The sweep across the Feshbach resonance goes
from the side of repulsive interactions towards the side of attractive interactions. When using
this direction of the sweep there is no adiabatic conversion to molecules. After turning off the
optical lattice adiabatically and switching off the magnetic field we measure the momentum
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Figure 8.3: Interaction-induced transition between Bloch bands). Experimental method:

two Feshbach resonances between|the = —9/2) and|mr = —7/2) states (red) and the

lmp = —9/2) and|mp = —5/2) states (blue) are exploited, whefe= 9/2 always. The

first resonance allows loading at zero scattering length, while the second is needed to sweep the
across a resonance from left to righh) Momentum distribution for a final magnetic field of

B = 233 G. Arrows indicate the atoms in the higher bands.Hraction of atoms transferred

into higher bands by a sweep across the resonance (filled symbols). The line shows a sigmoidal
fit to the data. The open symbols show a repetition of the experiment with the atoms prepared
in the spin state§F' = 9/2, mp = —9/2) and|F = 9/2, mp = —7/2) where the scattering
length is not sensitive to the magnetic field. The magnetic field uncertainty is dominated by
eddy currents induced by the rapid field ramp which cause the field to lag behind its asymptotic
value. The error bar represents the deviation of the magnetic field from the asymptotic value
100us after starting to ramp down the optical lattice, calibrated by rf spectroscopy between
Zeeman levels. The vertical error bars show the statistical error of 4 repetitive measurements.

distribution. To see the effect of the interactions we determine the fraction of atoms transferred
into higher bands. For final magnetic field values well above the Feshbach resonance we observe
a significant increase in the number of atoms in higher bands along the weak axis of the lattice,
demonstrating an interaction-induced coupling between the lowest bands.

Since thes-wave interaction is changed on a time scale short compared to the tunneling
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time between adjacent potential minima, we may regard the band insulator as an array of har-
monic potential wells. It has been shown that increasingsthv@ve scattering length for two
particles in a harmonic oscillator shifts the energy of the two-particle state upwards until the
next oscillator level is reache®s9¢. In our case this leads to a population of higher energy
bands. The fraction of atoms transferred is limited by the number of doubly occupied lattice
sites. Only about 40% of the atoms reside on doubly occupied sites, as has been determined by
a study of molecule formation in the lattic8tp05. Moreover, the relatively fast tunneling in
higher bands might lead to collisions and decay of the atoms in higher bands.

In addition, we observe a shift of the position of the Feshbach resonance from its value
in free space to larger values of the magnetic field (see &ign), which has been predicted
for tightly confined atoms in an optical latticE¢d04. This mechanism for a confinement
induced resonance is related to the phenomenon predicted for one-dimensional quantum gases
[OIs9§ which has as yet escaped experimental observation. For a quantitative description of
this strongly interacting Fermi gas on a lattice a multi-band Hubbard model is appropriate. Very
recently, studies of this model, which include the effect of the Feshbach resonance, have been
published Car05 Die0%, Dic05]. In particular, Diener et al.Die0% calculate the number of
particles that should be transferred into the next band, yielding 50% at T=0. However, only the
40% of atoms residing in doubly occupied sites are expected to be experience the interaction.
The resulting theoretically predicted fraction of 20% is compatible with our measurements.

In conclusion we have created a fermionic many-particle quantum system on a lattice. We
have demonstrated the dynamical control over the parameters of the system such as filling and
interactions which is not feasible in solid state systems. For the noninteracting regime we find
good agreement between our measurements and a theoretical model. The strongly interact-
ing case poses challenges for the present theoretical understanding of many-particle fermionic
systems on optical lattices.
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O Conclusions and outlook

Optical lattices have put a new perspective on the research with ultracold quantum gases. They
open up the path to low-dimensional systems and enable us to study solid state phenomena in a
very pure model system. The experiments described in the thesis mark essential milestones on
this path: the first one-dimensional Bose gas is created and characterised by means of measuring
its collective oscillations. By applying an optical lattice along the axis of the one-dimensional
gases, the strongly interacting regime is entered and the transition to a Mott insulator observed,
a paradigm of strong correlations.

We have also realised the first one-dimensional atomic Fermi gas and useubae Fesh-
bach resonance to study the formation of confinement induced molecules. These bound states
are a unique feature of low-dimensional systems and have no counterpart in the unconfined
case. The effect of the confinement on the scattering properties was investigatedpssiagea
Feshbach resonance, which is particularly exciting due to its anisotropic character. We observed
that collisions with a particular projection of the angular moment on the quantisation axis are
completely suppressed in one dimension.

One-dimensional systems have some very intriguing properties. Their interaction strength
increases with decreasing density and the clear distinction between bosonic and fermionic quan-
tum statistics vanishes for strong interactions. Strongly interacting Bose gases acquire fermionic
properties/Gir60] with the wavefunction given by that of noninteracting fermiohs= |V /|,
whereas spin-polarised Fermi gases which interact strongly-wiave interactions map to non-
interacting Bose gase€he99/Gra04. While the bosonic Tonks gas has been recently realised
[Par04 Kin04L], the fermionic counterpart has yet to be observed. Moreover, studies of two
and three-body correlation functionSéan03 Khe0d will shed new light on peculiar properties
of the bosonic Tonks gas.

Both the one-dimensional Bose gas as well as the one-dimensional Fermi gas are exam-
ples of Luttinger liquids. This model describes the low energy behaviour of one-dimensional
guantum liquids universallyHal81] and features a variety of fascinating phenomena. Probably
the most exciting prediction of the Luttinger liquid theory is the phenomenon of spin-charge
separation. It is a feature unique to interacting Fermi gases in one dimension and manifests
itself in the complete separation of the dynamics of spin and charge density waves. Analytical
[Rec03 and numerical studiekbl05] suggest that it should be feasible to observe the differ-
ent velocities and behaviour of spin and charge density waves, which may be created by a local
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perturbation such as a focused laser beam.

Feshbach resonances offer the opportunity to form weakly bound molecules in a one-dimen-
sional gas. The transformation of weakly bound fermionic pairs to bosonic molecules, which is
demonstrated in this thesis, has a profound influence on the many-body physics. When changing
the interaction strength and molecular binding energy, the ground state of the gas is expected
to undergo a BEC-BCS crossover. The BEC-BCS crossover has been an important issue in
many-body physics for a long time and has regained a lot of attention recently because it can
be studied in detail in cold atomic gases. The one-dimensional case is of particular interest as
exactly solvable models exigElic04 Tok04], in contrast to the three-dimensional case. Using
the methods described in chap@athis crossover should be observable in our setup, provided
that the temperature can be reduced further.

It is also conceivable to simultaneously trap fermionic and bosonic atoms in the same lattice
and study Bose-Fermi mixtures in one dimension. Depending on the interspecies interaction
strength and the density difference, the ground state of the system may display charge-density
waves,p-wave pairing of fermionic polarons or phase separaif©@az03 MatO4]. Even more
exotic phases might be observed when interspecies Feshbach resonances, which have already
been observed in loss measuremehte(4, Sta04, are used to create dipolar molecules.

Yet the setup described in this thesis is not limited to one-dimensional systems, as demon-
strated in the experiments presented in chét8y loading a Fermi gas into a three-dimensional
lattice, a system is realised capable of simulating the Fermi-Hubbard model in two and three
dimensions as well as in one. The Fermi-Hubbard model still poses many open questions on
the theoretical side and has received renewed attention in recent years due to its relevance for
the theory of high temperature superconductors. The repulsive case covers the Mott metal-
insulator transition, the antiferromagnetic phase and d-wave superfluidity in two dimensional
systems. The attractive case describes the BEC to BCS crossover of s-wave superfluidity. De-
tailed proposals discussing the realisation and observation of these phases in optical lattices
have been published recently (sé®f02, Rig04, Liu05, Wer0%5 Tre0%).

When a Feshbach resonance is present, the model describing the atoms in the lattice has
to include the conversion of fermionic atoms into bosonic molecules. The regime of Fermi-
Bose conversion is not accessible in standard condensed matter systems and only recently the
first steps to understand this mixed world of fermions and bosons have been undertaken the-
oretically [DieQ%, /Car05 Dic05]. New and exciting phenomena such as the transition from a
fermionic band insulator to a Bose superfluid are to be expected.

The experiments demonstrate that the research in quantum gases has crossed the threshold to
a new field with a unique range of possibilities. The two key technologies are optical lattices and
Feshbach resonances, which are combined here for the first time. They enable the simulation of
many-body Hamiltonians with an intrinsically pure system with the added benefit of direct and
“in situ” control of dimensionality, interaction strength and filling.
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A

Atomic properties

A.1 ®Rb data
Mass 86.9091835(27) u [NISOH
Natural abundance 27.83(2)% [NIS0Y
Nuclear spin/ 3/2 [NISOE

Nuclearg;-factor

-0.0009951414(10ri77]

Landég ;-factor for D transitions

2.00233113(20)4ri77]

Hyperfine ground state splittings

+6.83468261090429(9) GHz [Biz99]

Vacuum Wavelength p; (52512 — 52 Py 2)
Natural line widthl" ,; (FWHM)

794.9788509(8) nm [Ste0]
21 X 5.746(8) MHz [Ste0]

Vacuum Wavelength ps (52512 — 5% Ps)2)
Natural line widthl" p, (FWHM)

780.241209686(13) nm [Ste0]
21 x 6.065(9) MHz [Ste0]

Saturation intensitysy F =2 — ' =3 1.669 mW/cm?
(c*-polarized light,Ds-line)

Resonant cross sectiog £ =2 — F' =3 2.907 - 10~ cm?
(c*-polarized light,D,-line)

Saturation intensitysy F =2 — F' =3 3.576 mW/cny
(isotropically polarized lightD,-line)

Resonant cross sectiog F' =2 — F' =3 1.356 - 10~ cn??

(isotropically polarized lightD,-line)

Scattering lengtlas (singlet)
Scattering length (triplet)

90(1) ao [ROb9Y
106(4) ao [ROb9Y

van der Waals coefficiertty

4691(23) abam.c? [Der9q

Table A.1: Properties of'Rb.
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A2

106

10K data

Mass

39.96399867(29) u [NISOH]

Natural abundance

0.0117(1)% [NISOg]

Nuclear spin/

4 [NISO0H

Nuclearg;-factor

+0.000176490(34)Ari77]

Landég -factor for D transitions

2.00229421(24)Ar77]

Hyperfine ground state splittings

—1.285790(7) GHz [Ari77]

Vacuum Wavelength p, (42512 — 4% P /»)
Natural line widthl"p; (FWHM)

770.1098 nm [Wil97]
27 x 6.0 MHz [Wil97]

Vacuum Wavelength po (42512 — 4% Py )5)
Natural line widthl" p, (FWHM)

766.7017 nm [Wil97]
27 x 6.09 MHz [Gol0Z]

Saturation intensitys, F' = 9/2 — F' = 11/2 1.670 mW/cm?
(o*-polarized light,D,-line)

Resonant cross sectiong F' = 9/2 — F' = 11/2 2.807 - 10~ cn?
(c*-polarized light,D,-line)

Saturation intensitys, F' = 9/2 — F' = 11/2 4.175 mW/cn?
(isotropically polarized lightD,-line)

Resonant cross sectiog /' =9/2 — ' = 11/2 1.123- 107 cn¥

(isotropically polarized lightD,-line)

Scattering lengtlas (singlet)
Scattering lengtla (triplet)

104 a, [Tic04]
174 aq [Tic04]

van der Waals coefficierts

3927 aSa’’m.c? [Tic04)

Table A.2: Properties ofK.




A.2. 0K DATA

e [ = 52 (545 MH)

—F =7/2(306 M)

—F =3(43M) 1002VHz P =3(85M)
2p_ = 35MHz 2p —=92(23M) 2P F=2(51M
312 F'=2(6.7 MHz) 12 12 F =10-85M
F=1(-160M 171vH =168
F =092 MHE F =086 M
L F = 11/2 (457 MHD)
7657017 rm — F =7/2862 M)
F =208 M)
T 1552MHz —F =2(114M)
2 2
2P1/z 566MHz I31/2 P1,2 < Iﬁ4*l\/Hz
l F =190 M)
F=1(348MH)
L F =92(690 M)
77Q108nMm
e F =7/2 (5887 MHy)
F=2(173.1 M)
ZS 7] 125.6 MHz
112 - - - Yy = E. - — — 71—
12858VHz f
461.1VHz %S, : 2253z F=2 (1400 MHp)
2
F=1(2886MHD) S, 254.(%|\/HZ
F=1(3%.0Mb)
L F = 9/2(-607.1 MHy)
3K, | = %, 93.2581% K, | = 4, 0.0117% 4K, | = 3%, 6.7302%

Figure A.1: The level structure of the potassium isotopek, 4°K and 'K, adapted from
[Wil97]. The levels of*?K without the hyperfine splitting form the reference points for the
frequencies given in the brackets.
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A.3 Physical constants

In this thesis, the following physical constants are used:

108

Speed of light c
Planck constant h
Fine-structure constant «
Electric constant €0
Elementary charge e
Electron mass Me

Atomic mass constant «
Boltzmann constant kg

Bohr radius ag
Bohr magneton 1B
Nuclear magneton LN
Electrong-factor Je

299792458 ms™!
6.6260693(11) - 10734 Js
7.297352568(24) - 1073
8.854187817 - 1072 Fm!
1.60217653(14) - 10712 C
9.1093826(16) - 1073t kg
1.66053886(28) - 10~%" kg
1.3806505(24) - 1072 JK !
0.5291772108(18) - 1071m
9.27400949(80
5.05078343(43) - 10727311
2.0023193043718(75)

S107#3T7!

Table A.3: Physical constants from CODATACIODO0Z].
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