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ABSTRACT

Pairing of Fermionic °Li Throughout the BEC-BCS
Crossover

by

Guthrie Bran Partridge

The pairing of fermionic particles is an essential ingredient of superconductivity
and of the superfluidity of 3He. While such phenomena are accurately described by
BCS theory in the limit of weak pairing strength, a complete understanding remains
elusive when pairing strength is increased, such as in high temperature superconduc-
tors. We create ultracold gases of trapped fermionic 5Li atoms, through which we
directly observe fermionic pairing. In our system, there are no impurities whatso-
ever, and parameters such as the number and temperature of the trapped atoms are
precisely and independently controlled. In addition, a Feshbach resonance enables
the continuous tuning of interaction strength and sign between the paired atoms.
This control allows us to observe the smooth crossover of a molecular Bose Einstein
condensate (MBEC) to a superfluid of weakly interacting Cooper pairs. With these
tools, we have performed several fundamental measurements of pairing in fermionic
systems.

We use optical molecular spectroscopy to precisely measure the closed-channel
contribution to the many body state of paired °Li atoms within a broad Feshbach
resonance. The magnitude of this contribution is small, and supports the concept of
universality for the description of broad Feshbach resonances. Moreover, the dynamics

of the excitation provide clear evidence for pairing across the BEC-BCS crossover,



iii

and for the first time, into the weakly interacting BCS regime.

We also prepare a polarized Fermi gas with unequal numbers of two spin states
of 6Li atoms. The real-space densities of the polarized, strongly-interacting, two-
component Fermi gas reveal two low temperature regimes. At the lowest temper-
atures, the gas separates into a phase with a uniformly paired superfluid core sur-
rounded by a shell of normal, unpaired atoms. This phase separation is accompanied
by a spatial deformation of the core. At higher temperatures, the uniformly paired
core persists, though it does not deform. This temperature dependence is consistent
with a tri-critical point in the phase diagram. These measurements of pairing in a
polarized Fermi gas are relevant to predictions of exotic phases of quark matter and

magnetized superconductors.
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Chapter 1
Introduction

The research we conduct in our lab involves confining and cooling éollections of
atoms of lithium to very low temperatures, usually measured in the 10-100’s of nano-
kelvin (1 nano-kelvin = 1/1,000, 000,000 of a degree above absolute zero). At these
low temperatures, the atoms stop following the ordinary rules that we are all familiar
with from our everyday lives (unless your everyday life is in the lab). Instead, their
behavior is governed by the less familiar rules of quantum mechanics. At these low
temperatures, the atoms cease behaving like discrete particles, and instead can be
more accurately describes as waves. As the gas is cooled, these waves spread out
until at sufficiently low temperatures, the characteristic size of the atom, known as

the thermal de Broglie wavelength, Az, becomes comparable to the spacing between

9 h2 1/2
Ar = (mZBT> ~ o, (1.1)

where n is the density given by the number of atoms per volume N/V. When this

the atoms,

occurs, the gas reaches what is known as quantum degeneracy.

Now, with that in mind, a little background: The building blocks of matter come in
two varieties that are distinguished by the value of the quantum mechanical expression
for their intrinsic angular momentum, known as spin. Though spin is a quantum
mechanical entity, it may be thought of (loosely) as being analogous to the angular
momentum of a classical body, such as the Earth, spinning about its own axis. In
quantum mechanics, this spin is quantized into half-integer units which means that
particles may only have integer or half-integer total spin. Particles with integer spin
are known as bosons, and particles with half-integer spin are known as fermions. As
luck would have it, lithium atoms come in two varieties (isotopes), "Li, a boson, and

6Li, a fermion.
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Bosons Fermions

Figure 1.1 This diagram illustrates a primary difference between bosonic and fermionic
particles. The left side shows a harmonic potential which contains bosonic particles at zero
temperature. In this case, all the bosons fall to the lowest energy level (black lines) to
form a BEC. The right side shows the behavior of indistinguishable fermionic particles at
zero temperature. Since the fermions are identical, they are forbidden from occupying the
same state, and instead pile up, one per level due to the Pauli exclusion principle. The
energy of the highest occupied state is defined as the Fermi energy, ep, with associated
Fermi temperature Tr = ep/kp, where kg is the Boltzmann constant.

Under “normal” circumstances, these two types of lithium are very similar. When
the rules of quantum mechanics take over (i.e. quantum degeneracy is reached), how-
ever, the behaviors of these two types of matter diverge. Under such circumstances,
bosons are usually referred to as the more sociéble of the two, as they are perfectly
happy to crowd up into the same place at the same time. At very low temperatures,
these bosons undergo a transition to a state known as a Bose-Einstein condensate
(BEC) in which they all settle to the lowest energy possible in given system, as
shown in fig. 1.1. The fermions, on the other hand, are often labeled as antisocial.
This unfortunate reputation is a result of the fact that, at low temperatures, fermions

refuse to interact with other fermions with which they are identical, and will not even



occupy the same place at the same time. When identical fermions are confined and
cooled, the result is that they just stack up on each other, each one taking the next
available unoccupied state, also shown in fig. 1.1. This behavior is described by the

Pauli exclusion principle.

If we dig a little deeper, though, we find that it may not be completely fair to label
the fermions as antisocial. Instead, it may be more accurate to say that they are just
more particular about their partners. For example, at low temperatures, two non-
identical fermions are perfectly happy to pair together (in fact, this is the preferred
arrangement, since the paired state is at a lower energy than the unpaired). Moreover,
the result of this pairing is a boson, since the sum of the half-integer fermion spins is

an integer value.

While Bose-Einstein condensates in ultracold atomic gases have been around for a
while (since 1995) [1-4], corresponding systems of degenerate Fermi gases have been
slower in coming. (Note: this was not for lack of interest, but due instead to technical
hurdles which result from the “antisocial” fermionic behavior.) The first degenerate
Fermi gas arrived on the scene in 1999 [5], and subsequently in our lab in 2001 [6] (see
fig. 1.2). As promised, these observations showed the effects of quantum mechanics
on a macroscopic scale. In the latter case, it was verified that trapped fermionic ®Li
atoms would not occupy the same state and as a result piled up in the trap. The
resulting “Fermi pressure” that kept the atoms from falling to the center of the trap
is the same exact mechanism that prevents a neutron star from collapsing in on itself
due to gravity [7]. The difference was that this system was only a few feet away from
us, and we could therefore probe, measure, and otherwise characterize this previously
inconveniently located (outer space) state. The applicability of this trapped fermion
system to other, less accessible systems, gave an early indication of the power that

our model system would provide in the future.

The period of time since these events has seen the rapid growth of this field, both
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Figure 1.2 TImages taken of "Li and ®Li confined in a magnetic trap with decreasing
temperature (top to bottom). Images that are side-by-side coexisted in the same trap. The
top set of images are nearly indistinguishable since at higher temperatures, the gases of
bosons and fermions are governed by classical physics. As temperature is reduced however,
the gases become quantum degenerate. At this stage, the laws of quantum mechanics begin
to take over and the behavior of bosons and fermions becomes different. The boson clouds on
the left continue to shrink, whereas the fermion cloud size stabilizes. This stabilization is a
result of Fermi pressure resulting from the Pauli exclusion principle that forbids the fermions
from occupying the same trap energy level. An absolute temperature is determined from the
bosons, since their distribution continues to change with the lowering of the temperature.
The temperature of the fermions is referenced to T, the Fermi temperature, described in
the caption of the previous figure (1.1). (Figure reprinted from ref. [6])

in experiment and theory, such that systems are now being investigated which go
beyond atomic physics, and are contributing to the knowledge many other fields. In
fact, the current experiments have progressed to the point that they are actually
blurring the dividing line between bosonic and fermionic behavior. This feat is ac-
complished by continuously tuning the coupling strength between paired fermions.
With strong coupling, the pair’s behavior is bosonic, while for weak coupling, the
fermionic behavior emerges.

The time since the first observation of Fermi degeneracy roughly corresponds to

the time I have been in grad-school (coincidentally). This thesis will serve to tell the



story of the evolution of this field through the perspective of the experiments we have

done in our own lab.

1.1 BEC and BCS

The 20% century has witnessed the emergence of the parallel phenomena of su-
perconductivity and Bose-Einstein condensation (BEC). In 1911, Kamerlingh-Onnes
discovered that at sufficiently low temperatures, the electrical resistance of mercury
vanished, and it became what is known as a superconductor [8], so called because
charge carrying electrons are free to move about without dissipation of energy. Sim-
ilar systems are also possible where the free particles, such as atoms of ®He, are
uncharged. In either case, the substance can be generally referred to as a superfluid.
It was not until 1957 that a full understanding of the mechanisms responsible for this
phenomenon emerged [9]. This understanding came in the form of the BCS theory,
so named for its inventors, Bardeen, Cooper and Schrieffer.

BEC’s, on the other hand, made their entrance in reverse fashion, with the theory
preceding the observation. In 1924-25, Einstein generalized a quantum theory, pro-
posed by S. Bose to describe black body radiation [10], to massive particles [11]. The
result of this theory was the prediction that at sufficiently low temperatures, a gas of
bosonic particles would undergo a phase transition marked by the “condensation” of
a macroscopic number of particles into the lowest energy ground state of the system.
It was not until 1995 that BEC was experimentally observed in systems of dilute,

trapped ultracold gases of alkali atoms, as mentioned earlier [1-4].

1.1.1 Role of Interactions

Due to the relationship between fermions and bosons discussed earlier, the two
phenomena described above, BCS superconductivity and BEC, are not independent of
one another either, and are in fact inextricably linked. In BCS theory, weakly bound

pairs of electrons, called Cooper pairs, are formed. Since these pairs are comprised



of two fermions, they are themselves bosons. It is the Bose-Einstein condensation of
these pairs which results in superconductivity. Whereas BCS superfluids are com-
posed of very weakly paired fermionic particles, BEC’s are formed from bosons which
are deeply bound composites of fermions. For example, "Li, a bosonic atom, is formed
from 3 protons, 4 neutrons and 3 electrons, all of which are fermions, whose half inte-
ger spins add to give an integer total value. In this case, since the fermions are very
deeply bound (compared to the Fermi energy), the atom as a whole acts as a boson.
As the binding energy of the composite fermions is reduced, however, there is a point
where their fermionic character begins to come through. Figure 1.3, taken from ref.
[12] exemplifies this behavior. In the weakly paired regime, labeled BCS, the chemical
potential is equal to the Fermi energy. This is a characteristic of a non-interacting
Fermi gas at 7' = 0, and is a result of the fact that when an additional fermion is
added, the only place to put it is at the Fermi surface, since all the other states
(trap levels, for a trapped gas) are occupied. As the pairing strength is increased, it
begins to take less energy to add the particle, due to the energy gained from pairing.
Finally, the interactions take over and the chemical potential goes below zero. It
is at this point, where the remnant Fermi surface is lost, that the system becomes
bosonic (labeled BEC). Within the in-between region (labeled PG for “pseudo-gap”,
also called unitarity, or strongly interacting) the ground state is known as resonance
superfluidity. Figure 1.4 also illustrates this progression from a BCS superfluid to

BEC with increasing coupling strength.

It has been shown that BCS theory can be used to describe this entire system for
arbitrary coupling strength, as long as the chemical potential is self consistently com-
puted [13,14]. As coupling strength increases, however, the precision of the predic-
tions made with BCS theory decrease. As the theoretical capabilities for the strongly
interacting region are limited, it becomes highly desirable to have an experimental

system which is capable of exploring this region. This need is made more urgent by
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Figure 1.3 (Reprinted from ref. [12].) This plot shows the typical 7' = 0 chemical
potential versus pair coupling strength for a paired Fermi gas in the BCS to the BEC
regimes. For sufficiently weak coupling, the chemical potential equals the Fermi energy.
This is generally called the BCS regime. As the coupling is increased, yu decreases and
crosses below zero, at which point the system passes into the BEC regime. In between
these extremes (0 < g < EF), pair formation occurs at a temperature above the critical
temperature for superfluidity, though the character of the system remains fermionic. This
region is known as the pseudogap (PG), or crossover region. The coupling is normalized
by U, which is the critical value of the potential for forming a two particle bound state in
vacuum.
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Figure 1.4  These illustrations represent the BCS (left), crossover (middle) and BEC
(right) regimes. The red circles are fermionic atoms, and the small arrows show the atoms’
internal spin states. Two distinct spin states are needed in such systems, since identical
fermions are forbidden from interacting at low temperatures by the Pauli exclusion principle.
In the BCS limit, pairing is weak, and specific pairing partners are not well defined. As
coupling is increased, the pairs become increasingly more robust and better defined.

the ongoing lack of understanding of high T, superconductivity, which is thought to

operate in this regime.

1.2 Experiments

The gray area between the BEC and BCS limits is in fact where cold atom ex-
periments, having already proven their worth through the creation of BEC’s and
degenerate Fermi gases, may once again enter the picture. An ideal system would
be one of ultracold trapped fermionic atoms with tunable interactions. In this way,
an atomic system could be set up as a clean model which could replicate the physics
described the above.

As luck would have it (again), atomic physics has just the tool for the job of
tuning interactions, known as a Feshbach resonance. In addition to a more detailed
explanation in Chapter 3, a general introduction will be presented here (see also ref.

[15]). A Feshbach resonance arises when the energy of a pair of colliding atoms (the



open channel) is tuned near that of a bound molecular state (the closed channel).
Even though energy and momentum conservation do not allow the two colliding
atoms to form a bound molecule, the proximity of the molecular state modifies their
interaction, since they may temporarily “sample” the bound state. The result of this
phenomena is to modify the s-wave scattering length, a, which determines the sign
and strength of interatomic interactions in ultracold systems. For a < 0, attractions
are attractive, while for a > 0, they are repulsive. Tuning may be accomplished when
the open and closed channels have different magnetic moments, since their relative
energies may then be tuned via the Zeeman shift associated with an external magnetic

field. The field dependent scattering length a(B) can be parameterized by

a(B) = as, (1 _ BA_BBO> , (1.2)

where ap, is the background scattering length, By is the resonance center field, and

AB is its width [16].

1.2.1 Prior Experiments

In our first work with a Feshbach resonance, we did not use fermionic atoms, but
instead created a large stable BEC of bosonic "Li atoms with repulsive interactions.
When the scattering length was subsequently tuned to a small negative value, we
observed the condensate to collapse into a train of solitons [17], as shown in fig. 1.5.
Each soliton in fig. 1.5 is actually a small BEC which is held together by the attractive
interactions of the atoms. This self-attraction prevents the solitons from spreading
out in time, and allows them to maintain their small size, even as they propagate
back and forth in the trap. This behavior provides a straightforward example of the
effect of the Feshbach resonance.

The next experiment kicked off our studies of pairing of fermions. For this work
we created bound molecules out of two fermionic atoms of °Li [18]. This was achieved

by creating a mixture of two interacting spin states of 5Li and ramping across a
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Figure 1.5 Creation of matter wave solitons of Li. This experiment exemplifies the
tunability of interatomic interactions using a Feshbach resonance. A large BEC of bosonic
"Li is created at a magnetic field where the s-wave scattering length (y-axis) has been tuned
to be large and positive. When the magnetic field (x-axis) is subsequently swept to a lower
field where the scattering length is small and negative, the condensate collapses into a train
of bright solitons. The solitons maintain their shape due to the attractive interactions
between atoms. (See ref. [17].)

narrow Feshbach resonance. This sweep resulted in an adiabatic transfer of atoms to
molecules, due to the avoided crossing of the molecular and atomic levels from which
the resonance originates. This process is illustrated in fig. 1.6. While this experiment
did not yet utilize tunable interactions, it showed that pairing of fermionic atoms
could be achieved through the use of a Feshbach resonance. This established the
versatility of the trapped atom system and its ability to change between bosons and

fermions.

This brings us up to the current experiments which will be presented in this thesis.
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Figure 1.6 We have formed Molecules of fermionic ®Li by a magnetic field sweep across
a narrow Feshbach resonance. Since the resonance is formed by the avoided crossing of a
molecular bound state with the atomic continuum, atoms may be transferred to molecules
via adiabatic rapid passage. We measured a 50% transfer efficiency for this process [18].
Since the sweep is large compared to the width of the resonance, the molecules formed are
much more deeply bound than the dressed molecules discussed in later chapters. Despite
this, the molecules are surprisingly long lived, as they were measured to persist for up to 1
second.

These experiments will probe the BEC-BCS crossover by combining both the tuning
of interactions, as in the soliton experiment, and the pairing of fermionic atoms, as

in the molecular sweep experiment.

1.3 Outline

As with our research, the next step in this thesis, following the theoretical motiva-
tion, is the experimental apparatus and its implementation. I will begin, in Chapter
2, by giving an overview of the experimental apparatus and procedures used to per-
form the experiments. In addition, this chapter will detail the components of the
apparatus that are new, or have been significantly improved since the last documen-

tation was done, primarily in my Masters thesis [19] (2003), and in the Masters [20]
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(2002) and Ph.D theses [21] (2004) of my predecessor, Kevin Strecker. This chapter
will include a detailed look at the optical trap which will include the setup, as well as
an in-depth characterization of the potential it forms. Beyond Chapter 2, there are
other experimental and theoretical details which are more relevant to one experiment

or another, and are generally located in the early parts of subsequent chapters.

In Chapter 3, we will finally get to some results. I will present a quantitative
measurement of the make-up of pairs of fermionic atoms from the BEC to the BCS
regimes, including the region in between, where interactions become very strong. This
strongly interacting regime is of particular interest, since it is not well understood
theoretically, yet may hold the key to understanding high T, superconductors. Our
measurement also shows that the strongly interacting atoms in a Feshbach resonance
should exhibit the same universal behavior common to all strongly interacting Fermi

systems, from nuclear, to condensed matter, to astrophysics.

This universal behavior is utilized in the following chapter as well, where we
measure the universal many body parameter for a strongly interacting Fermi gas.
From this point, Chapter 4 goes on to detail more experiments which were performed
using paired atoms. In this case, however, we create a mismatch in the numbers of
the two atomic spin states required for pairing. Such an imbalance is interesting from
the point of view of many fields of physics, from magnetized superconductors, to cold
dense quark matter, and neutron stars. In addition, the imbalance allows for us to
study the interface which connects the regions of a gas that is part superfluid and

part normal.

At the end, I have included several appendices that are used to document pro-
cedural and experimental details that are of of importance, but which may have

otherwise cluttered up the main chapters.
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1.3.1 The Purpose of This Work

If you are still reading the introduction, then perhaps you are planning on reading
the thesis in order, from front to back. That is fine, as this work is meant to tell the
story of the time I have worked in the Hulet lab, from my point of view. Having read
this document, the reader should have a fairly good understanding of what has been
keeping me so busy for the last “several” years. So, if these things sound appealing,
then keep reading.

Of course, the primary purpose of this writing is to document the work that I
have done, including the historical and scientific motivation and ramifications. This
document will also serve to record the techniques and procedures that I have either
developed or adopted in order to achieve the goals of our research. This aspect will
be most useful to my fellow lab-mates, or possibly other experimentalists following
similar endeavors. If you are one of these people, then you are probably not reading
this section.

When reading a document such as this, it is sometimes easy to forget that the
results presented were all obtained through experimentation. I attribute this phe-
nomenon to the fact that most of the content of this thesis is composed of things that
worked, while the actual evolution of ideas to their final state, through both failures
and successes, is unavoidably condensed when it is written down. (If something really
didn’t work, I'll write that down too, so that others may learn from my mistakes.)

All the experimental results I present were conceived in order to answer questions
about the physical world. In the previous sections, I have already given a basic idea as
to the general area of this physical world that we will be investigating, namely a better
understanding of the mechanisms behind pairing of fermions, and the applicability of

our cold atom experiments to many other diverse systems.



Chapter 2
The Apparatus

The major aspect of cold atom systems that makes them versatile in modeling
and characterizing so many diverse systems is the tunability and control which they
allow. Among the possibilities are control of temperature, number, density, dimen-
sionality, and interactions. In order to take advantage of the versatility offered by
these systems, we have constructed an apparatus through which we are capable of

creating, containing, tuning, and measuring gases of ultracold atoms.

2.1 Overview

The substance whose atoms we cool and trap is elemental lithium, an alkali metal.
Among the many reasons for choosing to work with lithium is the natural abundance
of both stable bosonic “Li and fermionic ®Li isotopes. Having bosons and fermions
at our disposal allows for many different avenues of investigation, and since both
isotopes have similar transition wavelengths, the same laser trapping technology and
techniques may be used for both. Moreover, there are many Feshbach resonances at

experimentally accessible fields for both isotopes.

Many of the procedures and much of the apparatus have been previously described
in our papers and in various theses [6, 17-25]. Figure 2.1 shows the major components
of the apparatus. We begin with a recirculating oven packed with equal amounts of
®Li and "Li. When the oven is heated to ~400 °C, a thermal beam escapes through
a small opening directed into a Zeeman slower. The slowed thermal beam of atoms
is then loaded into a dual magneto optical trap (MOT) that traps both %Li and "Li
(fig. 2.2).
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Figure 2.1 The apparatus. Lithium is emitted from the oven and slowed by a Zeeman
slower to load a dual species MOT. From there, a magnetic trap is loaded and evaporatively
cooled. Finally the atoms are transferred to an optical trap and imaged by absorption.

2.1.1 Dual MOT and Magnetic Trap

The dual MOT is presented in greater detail in my Master’s thesis [19], however
key points are discussed here as well.

The transition used to trap °Li ("Li) is the *Sy F=3 (F=2)— ZP% F=3 (F=3).
In spectroscopic notation, these are the D2 transitions. From the level diagram (fig.
2.3), it is apparent that the transitions in the upper manifold are only separated by
a frequency on order of the natural linewidth. This allows the atoms to de-excite
to the F=1 (F=1) state. The frequency of the D2 transition of an atom in this
state is approximately 230 MHz (800 MHz) detuned from the trapping laser. Since
this detuning corresponds to 39 v (137 ), where v = (27)5.87 MHz is the natural
linewidth of the 2s - 2p transition in lithium [27], the atom will no longer be addressed
by the laser, and therefore will no longer be trapped. While this is a concern in any
MOT, the close spacing of the excited states increases the probability of sending the
atom to the lower, untrapped state. As a result it is necessary to include a separate

repumping frequency in each of the six MOT beams to drive the atoms out of the lower



16

O-+

Figure 2.2 A magneto-optical trap (MOT): Circularly polarized laser beams converge

on the zero of a field produced by coils in an anti-Helmholtz configuration. We create
spatially overlapped MOT’s of both fermionic ®Li and bosonic "Li.
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Figure 2.3  Energy level diagram for lithium, showing hyperfine structure. For the "Li,
D2 transitions are used for both trapping and repumping, while for SLi, the D2 transition is
used for trapping, and the D1 is used for repumping. The dotted line shows the frequency of
the 6Li D1 repump and the nearly resonant transition in “Li. This coincident frequency is a
result of the closeness of the isotope shift (IS) and the fine structure splitting (FS). Energy
splittings are not to scale. (For lithium spectroscopic measurements, see, for example, [26]
and references.)
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Figure 2.4 Ground state level splitting as a function of magnetic field for both lithium
isotopes. Although any upward sloping, i.e. low field seeking, level may be magnetically
trapped, spin exchange losses necessitate spin polarization into the topmost levels (F' = 2,
mp=2 for "Li, and F = 3/2, mp = 3/2 for ®Li). Note that it is common practice in the
literature and in this thesis to refer to the levels of ®Li by numbers 1 - 6, counting from the
bottom. (|1} = F =1/2, mp =1/2,|2) = F = 1/2, mp = -1/2 etc.

state [21]. The simplest way to implement repumping is to modulate the trapping
beams at a frequency near the splitting of the ground state. This can be achieved by
using an an acousto-optic modulator (AOM) or electro-optic modulator (EOM), as
in the "Li MOT [20, 21], |

Difficulty arises since a there is a near overlap of this °Li repumping frequency (F
= 1, D2) with that of a D1 transition of "Li. This coincidental overlap results in loss
of "Li from the MOT when the ®Li D2 repump is on. To circumvent this difficulty, we
repump on the D1 transition of 6Linwhich is far detuned from any “Li lines as shown
in fig. 2.3. Since this frequency is ~10 GHz detuned from the Li D2 trapping light,
it necessitates another laser system, also documented in my Master’s thesis [19].

Once both isotopes have been loaded into the dual MOT (Ng ~ 10%, Ny ~ 10%0),
they are optically pumped to the highest ground state hyperfine levels, shown in

fig. 2.4. These states are selected because they can be magnetically trapped and are
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Figure 2.5 Atoms are confined in the magnetic trap which is comprised of 3 coil sets.
The small circular curvature coils create a curved field with a central minimum in the long
axial direction. The larger circular [anti-|bias coils produce a flat field which nearly cancels
the curvature field at the center of the coils so that the center of the trap is at nearly
zero field. The four 'D’ shaped quadrupole coils produce a radial field gradient to provide
confinement in that direction [28].

resistent to spin exchange collisions. After optical pumping, the atoms are transferred
to an loffe-Pritchard type magnetic trap, as shown in fig. 2.5 [21]. Once in the
magnetic trap, both isotopes are cooled via dual forced RF evaporation [19]. The
bosonic "Li is necessary to mediate the rethermalizing collisions among the fermionic
®Li, which is quantum mechanically forbidden from interacting via s-wave collisions
due to symmetry.

For the experiments presented in this thesis, only the fermionic 8Li is used, and
so the evaporation trajectory is set to remove all the "Li. After a cooling cycle of
approximately 55 seconds, a highly degenerate (T/Tr ~ 0.1, N ~ 107) cloud of ®Li is
produced.

This cooled cloud is then transferred to an all optical trap, since it provides much
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more flexibility than a magnetic trap. The various optical trapping schemes we have

used are described in the following section.

2.2 Optical Trap(s)

The tunability of interactions between trapped atoms is achieved through a mag-
netic Feshbach resonance, as described in Chapter 1. To use a magnetic Feshbach
resonance, it is necessary to have control over the magnitude of the magnetic field
that the atoms are subjected to. If the atoms are trapped by magnetic fields in a
magnetic trap, this tunability is effectively ruled out. Moreover, many of the atomic
spin (hyperfine) states of interest (such as those of ®Li used for the experiments pre-
sented in this thesis) are high-field seekers and therefore can not be magnetically
trapped in the first place. To work around these restrictions, and thereby realize the
full potential of the trapped atom system, we have integrated an all optical trap to
contain the atoms, regardless of their internal state or the background magnetic fields

which we apply.

Optical traps work off the principle of the ac-Stark shift, where the internal en-
ergies of the atomic levels are shifted by an off-resonant light field. In particular,
the time averaged electric field induces an electric dipole moment d in the atom that
interacts with the field to produce an energy shift. This can be understood through
the dressed atom picture, in which the entire atom-light system is considered as one
[29-31]. In the presence of the atoms and the light, dressed states, so called because
the bare atomic states are “dressed” by the light field, become the relevant eigenstates
of the system. If the coupling between the light and the atom is neglected (d = 0),
the dressed states are |i,n), where ¢ = g, e and refers to the ground and excited in-
ternal state of the atom, connected by the transition energy fiwg, and n is the photon
number which changes the energy by units of the photon energy fw;. These levels

are split by the detuning energy, AA, where A = wy — wp, and are shown on the left
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of parts (a) and (b) of fig. 2.6.

With the addition of coupling between the atoms and light (d # 0), the energy
splitting of the dressed states becomes iw, where ) is the Rabi frequency
of the transition, which can be written in terms of the laser intensity, /, and the
saturation intensity as Q = (I /I,;)*/? The shifted states are a linear superposition
of the dressed states |g,n + 1) and |e,n), and are labeled |1,7n) and |2,n). These are
shown on the right of parts (a) and (b) of fig. 2.6.

If the intensity of the light field varies with position, then the gradient of the
resulting position dependent energy shift leads to a dipole force which may be used
to create a potential for trapping the atoms. This force is given for an atom at rest
in ref. [30] as ,

By = ~V["Rlog (14 5 57)] 2.1
where € is now spatially dependent. The relevant e — g transition in lithium is the
2S to 2P transition, with wavelength A = 671 nm and saturation intensity I, = 5.1
mW /cm?. From eq. 2.1, we see that the direction of this force depends on the sign
of the detuning of the trapping laser. Figure 2.7 (taken from [30]) shows the origin
of this dependence.

From 2.1, we also see that the potential seen by the atoms is given by

RA Q(r)?
(since F = —VU). For our implementation, %XL: << 1, since the trapping laser

(A = 1064 — 1080 nm) is very far detuned from the atomic transition (A = 671 nm).

As such, we may take the first term of the expansion of the log term in Eqns. 2.1 and
2.2

Q(r)? Q(r)?
log(1+ A2 ) = 5 A2 (2.3)
Now we may rewrite eq. 2.2 as
. hﬂ(r)2 _ h(I/Isat)*y2
Ulr) = A= YN (2.4)
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Figure 2.6 Energy levels in the dressed atom picture, shown for A > 0 (a) and A < 0
(b). The energy structure of dressed states of bare atoms and photons have a repeating
periodic structure of manifolds separated by units of energy given by the laser frequency
Fwr,. Within each manifold are two dressed states, the separation of which depends on the
laser interaction strength with the atom. For no laser-atom coupling (left of the dashed
gray lines) the states are split by the detuning energy AA. With the addition of coupling
(right of the dashed gray lines), the splitting is increased to (A2 +02)1/2, where  depends
on the (position dependent) intensity of the laser. This intensity dependent energy shift
produces a force on the atoms (eq. 2.1) which can be used to confine them. Additionally,
the sign of A determines whether or not the atoms are attracted to, or repulsed from, the
laser beam. (see fig. 2.7)
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Figure 2.7 This diagram, taken from ref. [30], is useful for understanding the effect that
the sign of the detuning, A (here written d), has on the dipole force. These two diagrams
show the same energy levels as the top half of the previous figure. The bulge in the middle
represents the energy shift caused by the intensity profile of a laser beam. In each case, the
|1,n) and |2,n) states are linear superposition of |g,n + 1) and |e,n). The average force
that the atom experiences is the force resulting from the shift of both levels |1,7) and |2, n},
weighted by the relative amplitudes of the basis states |g,n + 1) and |e,n). Since the laser
is far from resonance, the ground state will be more populated on average, and the shift of
the level that connects to the |g,n + 1) as  — 0 will dominate. For the case of § > 0, the
|1,n) level is more populated (signified by larger dot), and so the average force tends to be
repulsive (shown by small arrow), while for § < 0, the |2, n) is the dominant level, and leads
to an attractive force.
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From this expression for the potential eq. 2.4, and given the geometry of a trapping
beam, one may calculate the peak trap depth, typically on the order of 10’s - 100’s
of uK for our implementation, as well as find the oscillation frequency of an atom
confined in the trapping potential. These values will be computed specifically for the
current trap configuration, once the optical setup and resulting beam intensity profile
is presented. For now, it is sufficient to say that a single focussed red-detuned (A < 0)
beam can be used to form a potential that provides confinement in three dimensions.
The distribution of the trapping potential is given by the intensity distribution of a

gaussian beam

I(r, 2) = Tye™ " /w2 (2.5)
and eq. 2.4:
101 —2r2 Jw(z)? I 2
U(r, 2y = e el (2.6)

where the beam waist is given by
w(z) = wo(1 + (2/R1)?)'?, (2.7)

and Ry = (mw?2)/()) is the Rayleigh length, and w, is the beam waist at the focus.

A trap formed from such a beam has a cylindrical symmetry, with tight confine-
ment in the radial () direction, perpendicular to the beam propagation, and weaker
confinement in the remaining axial (£) direction (along the beam propagation axis)
which arises due to the changing waist (eq. 2.7). Such a potential results in a cigar
shaped trapped cloud, as shown in fig. 2.8.

For the experiments covered in this thesis, we have constructed such an optical
trap from a red-detuned (A < 0) laser, though in the past, we have also utilized blue
detuned (A > 0) light as well. I will briefly document the evolution of our traps in

the following section.
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Figure 2.8 This absorption image shows the general geometry of an optical trap formed
from a single focussed red-detuned beam. The elongated shape of such a potential is evident
from the distribution of the trapped atom cloud. This trap is formed from a 1080 nm beam
focussed to ~26 pum, and will be characterized later in the chapter. In this image, there are
~3 million ®Li atoms with a temperature of ~6 uK confined in the trap with a trap depth
of 105 uK.

2.2.1 A Brief History of Our Optical Traps

Through the course of the past several years, we have actually constructed several
versions of optical traps in an effort to maximize the performance and repeatability
attainable in these traps.

The first optical trap used on our experiment used an infrared Nd:YAG laser
(CrystaLaser IRCL-1W-1064nm) with an output of approximately 1 Watt at a wave-
length A = 1064 nm. It was formed by focusing this laser to a ~40 pum beam waist
[21]. This beam waist was chosen to minimize the heating of the atom gas upon trans-
fer, by simulating, as closly as possible, the radial potential created by the magnetic
trap, from which the optical trap was loaded. While in the radial direction, this trap
provided adequate confinement, in the axial direction, the potential was much flatter
than that of the magnetic trap. As a result, atoms transferred to this trap were not
well confined in the axial direction. To prevent this from happening, optical endcaps
were formed from blue detuned light sheets (532 nm), from which the atoms were re-
pelled. This trap was utilized for two separate experiments: the production of atomic
solitons from bosonic "Li atoms in a Feshbach resonance [17], and later the creation
of long-lived deeply bound molecules of 5Li, by a sweep through a narrow Feshbach
resonance [18]. Both these experiments, as well as the speciﬁc‘s of the optical trap are
presented in the thesis of Kevin Strecker [21].

While this trap proved adequate for these purposes, in the end, several limitations
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led to the need for improvement. First, the overlap of the red-detuned beam and the
blue-detuned endcaps was sensitive, and large amounts of time was spent aligning
these beams relative to each other and to the atoms. In addition, even under optimal
conditions, this trap only provided on the order of 10 K of confinement, and therefore
required transfer of a very cold pre-cooled atomic sample. This requirement resulted in
degradation of repeatability, due to shot to shot or day to day performance of the rest
of the apparatus. Finally, since this trap was cylindrical in shape (e.g. can shaped) the
axial distribution of the atom cloud was independent of temperature, and therefore
temperature determination of the sample required fitting of radial distributions, which
were small and subject to optical resolution limitations. (On the other hand, this flat
distribution also has interesting implications for experiments, and may have facilitated
the formation of soliton trains [17], as opposed to single solitons as seen at ENS [32]).
In the end, however, the difficulties outweighed the advantages and this trap was

changed.

The next iteration of the optical trap involved the use of more brute force —i.e, the
addition of a 20 W fiber laser (IPG Photonics YLR-20-LP) with wavelength A = 1080
nm. With this laser, it was possible to produce a potential that was much deeper
than could be realized with the 1 W Nd:YAG laser. The idea of this trap was to
replace the axial confinement of the blue-detuned endcaps with a perpendicular red-
detuned beam, as well as to fortify the potential formed in the radial direction with
more power. This implementation is known as a crossed dipole trap. The potential
of our crossed dipole trap was formed from an axial beam with waist of ~ 50 um at
~3 W (for radial confinement) and a crossed beam of ~ 250 um at ~15 W for axial
confinement. This effectiveness of this trap was again compromised by the necessity
of precise alignment between the two beams. Maintaining this alignment proved
difficult as well, due to thermally driven drift of optical components (especially the

switching AOM’s). In the future, if other crossed beam traps are attempted, it may
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be advisable to fiber couple the beams after the AOM’s. This trap also suffered from
an, at the time, undiagnosed problem with heating due to mechanical vibrations in
the laser mount [21].

The heating associated with this laser led us to temporarily return to the 1 W
laser which had been used previously. For this implementation, however, a smaller
beam waist of ~ 23um was created. The optical setup of this trap is shown in fig. 2.9.
The small beamwaist provides increased confinement in the axial direction, and so
allows for the elimination of a secondary beam. This trap was used for the molecular
probe experiment described in Chapter 3 of this thesis. This trap still suffered from

a low trap depth which resulted in inconsistent performance on a day to day basis.

2.2.2 Current Optical Trap

The final (current) implementation of the optical trap combines the best of the
previous iterations, and is improved by the lessons learned, such as it is better to
transfer more atoms to the trap at the expense of heating them due to mis-matched
frequencies. Moreover, once the vibration problem was discovered [21], we were free
to use the 20 W fiber laser to create the optical trap. This trap is used for the
experiments presented in Chapter 4, and is the best performing and most thoroughly

characterized of the group.

Optical Setup

This trap is again formed by focussing the laser to a small beam waist, and
so provides both radial and axial confinement with the use of a single beam. We
have previously experienced heating due to vibrations from turbo-molecular pumps
mounted on the apparatus, so to minimize heating due to these vibrations, this trap is
built on a weighted platform that is isolated from the main optical table by vibration
damping rubber. Mounting the trap table in this way has completely eliminated any

measurable heating of the atoms.
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Figure 2.9 This optical trap setup was used to create a Bose-Einstein condensate of
dressed molecules in a Feshbach resonance, and was utilized for the experiments measuring
the bound molecular fraction of fermionic pairs presented in Chapter 3. The trap is designed
around a 1 W, 1064 nm, Nd:YAG laser (CrystaLaser IRCL-1W-1064nm). A half wave plate
and a polarizing beam splitter cube is used to limit the power going to the rest of the
optics during initial alignment. The trap is formed from the first order of an AOM (Crystal
Technology Model 3110-197). The optical power directed to the atoms is controlled by
varying the RF drive power. The beam is expanded from a waist of ~0.9 mm to 7.2 mm
by a lens pair, and then focussed onto the atoms by a 500 mm lens mounted on a 3-axis
translator. The translator may be shifted to fine-tune the position of the focussed beam
to overlap with the atoms. The waist at the atoms, given by w, = (fA)/(ww;) where f =
500 mm is the focussing lens, A = 1064 nm, and w; = 7.2 mm, is 23.5 pm. This waist was
confirmed by radial frequency measurements such as those presented later in the chapter.
We have found that in order to achieve the small beam waists required to form an effective
1 beam potential, it is necessary to use high quality achromatic doublet lenses and large
optics that ensure that no clipping of the beam occurs. A dichroic beamsplitter (transmits
IR, reflects visible: CVI LWP series) is used to direct the beam along the same axis as the
axial MOT and optical pumping beams.
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Since we are focussing the beam down to a relatively small waist, minute imper-
fections in the optical setup can lead to significant distortions of the focus of the
beam. In order to achieve a clean and symmetric beam at the focus, it is necessary
to use high quality doublet lenses and large optics that eliminate the possibility of
distortion or clipping of the beams. In addition all optics are mounted on short, thick
(1”) posts for stability. To achieve a clean focus, it is also necessary for the beam to
pass exactly through the center of the lenses at normal incidence. As such, the lenses
are mounted on mirror mounts that allow for tilt control. The optical setup is shown

in fig. 2.10.

Even with all the precautions taken in the setup to ensure a clean focus, it is still
necessary to directly verify the quality of the focussed laser beam. This is done by
imaging the beam directly onto a CCD camera at and around the position of the
focus. Figures 2.11, 2.12, and 2.13 show examples of such images of the trapping
beam. The first two (figures 2.11, and 2.12) show commonly encountered distortions
of the beam that require attention. At this time, small adjustments to the optical
setup are made to produce the desired focus which should be symmetric at the focus,
as well as on either side. The third image (fig. 2.13) shows an image of the beam after
the optics have been adjusted to give a nice focussed spot. The gaussian fit to a cut
of the third image is shown in fig. 2.14. The waist extracted from the fit is 26.0 +0.5
pum. These measurements also provide a useful way to determine the 2 position of the

focus for subsequent overlap with the position of the magnetically trapped atoms.

In addition, plotting the extracted beam waist w(z) versus focus position, z, allows
us to characterize the quality of the beam. Specifically, we may extract the gaussian
beam quality factor, M2, where M? is defined as the ratio of the actual focussed
beam waist and the ideal waist, given by the divergence angle of the beam far from

the focus [33]. With the inclusion of the M? parameter, the z dependence of the
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Figure 2.10 This optical trap setup is currently in use on the apparatus, and was used
for the experiments described in Chapter 4. A careful characterization of the trapping
potential is also provided in this chapter. This trap is improved from the previous version
by the inclusion of a fiber laser (IPG Photonics YLR-20-LP) capable of outputting 2 - 20
Watts at 1080 nm. This laser allows for significantly increased trap depth. The output of
the laser fiber is collimated at a beam waist of 2.25 mm, which is too large for the AOM
(Crystal Technology Model 3110-197), so the beam waist is reduced a factor of four by
a lens pair. A half wave plate and polarizing beam splitting cube are used to limit the
optical power during the initial setup. We also find that the relative intensity stability of
the laser is improved at running powers above 5 W, so the waveplate and cube are also used
to dump excess power during normal operations, since the operating power in the trap is
typically < 5 W, as described in the text. The first order of the AOM used to control trap
power is expanded by another lens pair to a waist of 6.5 mm, which is the waist required
to achieve the final trap focus of 26 um using a 500 mm lens (again, mounted on a three
axis translator). As before, all lenses are high quality doublets, and a dichroic beamsplitter
(reflects IR, transmits visible: CVI SWP series) is used to direct the beam along the same
axis as the axial MOT and optical pumping beams.
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Figure 2.11 This image of the optical trapping beam was acquired prior to final align-
ment by direct exposure of an Electrim (EDC-1000N) CCD camera. Such images are used
to fine tune the alignment of the optical setups, such as those shown in figs. 2.9 and 2.10
(this is of the latter). This image was taken before the focus (~1 mm ) of the beam and
shows an elongation in the horizontal direction that is a typical result of lens centration and
tilt errors. The distortion of the beam continues through the focus, as is seen in the next
fig. 2.12. For these images, the x and y axis labels refer to pixels, which are 7.4 ym square.
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Figure 2.12 This image was taken nearer to the focus of the beam than that in fig.
2.11. The aspect ratio of the beam has now switched, since the dimension with the larger
waist initially, now focusses to a smaller waist. The alignment errors that cause distortions
such as these are small, however a trapping potential with this shape would prove difficult
to accurately characterize. Additionally, the spatial distribution of the trapped atoms are
particularly important in the experiments on imbalanced spin mixture presented in Chapter
4, so a more uniform and symmetric potential is required.
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Figure 2.13 This is an image taken at the focus of the optical trap after optimization
of the alignments of the optical components shown in fig. 2.10 using images such as those
of the previous two figures as feedback. This focus is characterized by a symmetric round
shape, both at the focus and in the far fleld. The waist of this beam is determined by a fit
to a gaussian such as that shown in fig. 2.14.
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Figure 2.14 The blue line is a cut along one axis of the image in the previous figure
(2.13). The red dashed line is the fit used to find the waist of the beam, which gives 26.0
+0.5 ym. The fitted waist versus focus position is used to determine the M? parameter, as
in fig. 2.15. Such fits are done in multiple directions along the images to verify a symmetric

beam.
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beam waist is given by

w(z) = wg (1 + <qu?)2) 1/2, (2.8)

where M? = 1 corresponds to an ideal focus. Were it an ideal gaussian beam, the
Rayleigh length, Ry, would be (7w?/\) = 1.97 mm, for waist w, = 26.0 um, and
A = 1080 nm. The effective Ry, of a the “real” beam is reduced by a factor of M?,
since the divergence angle is larger than for the ideal case [33]. Figure 2.15 shows
this measurement made for the current optical trap. From this plot, it is determined
that the beam is nearly ideal, with M2 < 1.17. This measurement places an upper
limit on the value of M? because the measured waist at the focus approaches the
resolution limit of the camera (~7 pm pixel size) used, and so it is possible that the
measured minimum waist (26 pm) is an overestimate. (We will soon see, however,

that measurements of the radial trapping frequencies confirm this value.)

Calculated Trap Frequencies

A parameter that is commonly used to describe trapping potentials is the harmonic
oscillation frequency(s) v; of an atom in the trap. The frequency of the trap is
dependent upon which atom (isotope), as ¥ & m~'/2, where m is the atomic mass.
Additionally, since the potential is not harmonic in shape, but instead gaussian, the
harmonic frequencies represent an approximation for small atom excursions from the
center of the trap.

To calculate the frequencies of the trap, we set the potential given by eq. 2.4 equal

to the harmonic oscillator energy,

R(I(r;) /L)y 1
U(T’i)z ((i/A t)7 :_5 1212,

where 7; is the radial (r) or axial (z) dimension, and w; is (27)u;.
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Figure 2.15 This plot of measured beam waist versus position along the beam prop-
agation direction is used to find the M? parameter and minimum waist w, of the optical
trap beam. The solid line is a fit to eq. 2.8 and gives M? = 1.17 + 0.04, and w, = 26
+1 pum . The dotted line shows a fit only including the points farther from the focus with
the constraint M2 = 1. Though an M? value can not be used to completely characterize a
given beam, its fit value near 1 along with the inspection of the images of the beam show
that the quality of the focus used for this optical trap is high. (By performing this analysis
on multiple axes of the beam we have also ruled out any measurable astigmatism.)
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The peak radial frequency is determined by setting z = 0, so that w(z) = w,. This
gives I(r,z =0) = Ioe~2*/%; Expanding this expression for small r, and combining

with eq. 2.9 gives

A(L,(1 - %))/Isat)72 1

—0) = — D22
Ulr,z =0) = N = gmuwpr. (2.10)
This can be rearranged such that the radial frequency is given by
_ 0 B g
Wy = wo(mIAUs) . (2.11)

For a gaussian beam, the peak intensity can be written in terms of the optical
power, P, and the beam waist as I, = (2P)/(ww?). Inserting this into eq. 2.11 gives

the radial frequency in terms of the measurable quantities, power and beam waist:

2Ph?

=9 = |{———
W = A (7rm|A|w§Is

)12, (2.12)

In a similar fashion, the axial frequency of an ideal beam can be calculated by
U(r =0,z) = gmw?z?. This gives, for small z,

ki,
2m|A|I

W, = 21y, = i( )2 = (2.13)
Ry

Wo
V2R,
Now, to plug in some numbers: for a power of 1 W, and w, = 26.0 um at 1080

nm, the predicted frequencies for °Li are
wy = (27)3.06 KHz and w, = (27)28.6 Hz. (2.14)

Radial Frequency Measurement

The frequencies calculated from the characterization of the trapping beam should
be relatively accurate, however, it is still a good idea to measure the frequencies
directly, since our data analysis depends so critically on knowing these frequencies.
Measuring the actual frequencies will also provide a check for the value of the beam

waist w, obtained by the direct measurements detailed earlier.
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The technique for the measurement of the radial trapping frequency, v,, utilizes
the heating that occurs in the trapped gas when the radial trap position oscillates
with a frequency equal to v, . This measurement consists of modulating the position
of the trap with a sinusoid of various frequencies, and monitoring the fraction of the
gas that remains after some time. Modulation is accomplished by inputting a sine
wave function into the FM input of the synthesizer that sets the frequency of the
optical trap turn-on AOM*. Variations in the drive frequency of this AOM result in
spatial variations in the radial position of the focus.

When the trap is shaken in the radial direction, energy is imparted at at rate
given by O’Hara [34]

(B) = SmutSa(w) (2.15)

where Sx is the one sided power spectrum of the position fluctuations. (This is the
same heating mechanism that has been problematic on our experiment in the past
[21].)

Since, in this case, we are driving the trap with a pure frequency, we expect to
observe maximum heating (via loss of atoms from the trap) when the drive frequency
coincides with the trap frequency®. That is, S; = 0 for Wspaking # wr and so S; > 0
when the trap is shaken at the trap frequency. Figure 2.16 shows a loss spectrum for
Li taken by modulating the position of the trap at various frequencies at a power of
1.00 W. At this power, we predict a radial frequency from eq. 2.12 of 2840 Hz. This
value agrees well with the position of the resonance.

We have also performed such measurements for different trap powers. Figure 2.17
shows the central loss frequencies versus the square root of the power. The linear
relation verifies the correct dependence of the frequency on power, and confirms the

prediction of eq. 2.12. Confirming this dependence also enables us to predict the

*Normally this AOM is controlled by a VCO, but for this measurement a synthesizer is used
due to its more predictable modulation behavior.
*We will for now neglect the effects of the anharmonic aspect of the confinement.
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Figure 2.16 The data points correspond to the number of atoms left in the trap after its
pointing is modulated at various frequencies for 75 ms. Since the peak heating rate occurs
when the trap is modulated at the radial trapping frequency, the frequency of peak loss
corresponds to v.. The dotted green line corresponds to v, = 2840 £250 Hz which is the
radial frequency for “Li calculated from eq. 2.12, given a beam waist of 26 0.5 ym and an
optical power in the trap of 1.0 £0.1 W. The asymmetry in the resonance shape results from
the gaussian shape of the potential, since atoms sample parts of the trap that are far from
the center of the potential, particularly as they are heated. Since, at large r, the gaussian
potential is less steep than the corresponding harmonic approximation, this effect tends to
weight the distribution towards the low frequency side. For the experiments presented in
Chapter 4, it is possible for the Fermi energy of the trapped gas to be comparable to the
trap depth (up to ~75 %). In this case, an effective frequency, corresponding to the center
of the resonance (not the peak) obtained from a fit to a symmetric lorentzian function, was
used as a first approximation.
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radial frequency for any trap depth by measuring the trapping power.

Axial Potential Characterization

The above procedure for measuring the radial waist depends on the strong (4th
power) dependence of the heating rate on the trapping frequency (eq. 2.15). Since
the axial frequency is predicted to be more than 100 times smaller than the radial
frequency (eq. 2.13), this method is no longer practical, since the time required to
impart enough heat to cause a signal loss is prohibitively long (as it is, the radial
frequency measurements take 50 - 100 ms). In addition, it is more difficult experi-
mentally to modulate the axial position of the focus of the beam. For these reasons,
we have adopted another technique for measuring the axial frequency.

The axial frequency is measured by imparting a kick* to a cloud of atoms and
imaging at a later time. In order to most accurately represent the conditions that the
majority of our data is taken under, this measurement is typically done in the high
magnetic bias field using an evaporatively cooled gas of paired ®Li atoms (discussed
in the next section). By repeating and varying the delay time, the axial position of
the cloud may be mapped out as a function of time. By fitting a sinusoid to these
oscillations, the trapping frequency can be directly measured.

Figure 2.18 shows such an oscillation, taken at a trap power of 13.8 mW. At
this trap depth, the axial frequency, predicted from eq. 2.13 is v, = 3.36 Hz. The
fit to the data, on the other hand, gives v, = 7.470(7) Hz. After some amount of
contemplation, we have realized that the discrepancy arises because the “flat” bias
field which is applied to access the Feshbach resonance is not completely flat, and

in reality, the curvature in this field contributes to the axial potential. Now, in

*The “kick” is provided by quickly turning on a gradient magnetic field midway through the
evaporation trajectory to shift the axial position of the trap . This works because, as we shall
see shortly, there is a magnetic component to the axial confinement that is offset from the
optical potential. By varying the trap depth at which the gradient field turns on (thereby
centering the two potentials), we may adjust the initial displacement from the trap center.
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Figure 2.17 The data points correspond to frequencies obtained from resonance plots
such as in fig. 2.16 taken at different trap depths. The frequencies are plotted versus the
square root of the optical power. The linear fit is consistent with the dependence predicted
by eq. 2.12.
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order to completely understand the axial potential, it is necessary to characterize this
contribution.

By measuring the axial frequency at various trap depths and magnetic fields, the
magnetic plus optical potential can be determined. Figure 2.19 shows a schematic
showing the axial potential formed from the optical trap as well as a potential formed
from magnetic field curvature. Since the centers of these two potentials do not overlap
at the same position, a gradient field from a single coil is also applied which serves to
move the minimum of the magnetic potential. The optical and magnetic potentials
are overlapped at each field by adjusting the strength of the gradient field.

The model which we utilize for this system is a magnetic field with quadratic
curvature plus the optical potential. In such a case, the axial frequency would be

written as
Ve, = (Vg(opt) + aB)l/za (216)

where v, (o) is the frequency associated with the optical contribution, B is the bias
magnetic field, and « is a proportionality constant to be determined. This may be

re-arranged so that
(Vz/VZ(opt))2 -1= a(B/l/zz(opt))' (2.17)

Figure 2.20 shows a plot of (v,/V,(opy)* — 1 versus B/v2,, extracted for oscilla-

opt)
tions, such as that shown in fig. 2.18, taken at magnetic fields ranging from 650 - 920
G. From the slope of this graph, the constant o = 0.051 Hz?/G is extracted. For all
points, the model predicts the measured frequency to within 1-2%.

Since the magnetic field provides a confining potential for the atoms in states |1)
and |2), which are high field seekers, we can conclude that there is a magnetic field
maximum in the axial direction. There can be no global magnetic field maxima in
free space, so the field must spatially be a saddle point. Such a field is anti-confining

in the radial direction, though the contribution is negligible compared to the optical

radial potential that ranges from a few hundred Hz at the lowest trap depths to a
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Figure 2.18 The data points show the measured axial position of an evaporatively
cooled cloud of 8Li versus time, after it has been kicked using a transient magnetic field
gradient (see text). (Each point is a separate experimental run.) The red line is a fit to a
sinusoid, and gives an oscillation frequency of 7.470(7) Hz. This value is significantly higher
than that predicted from the previous analysis of the optical potential (3.36 Hz). This
discrepancy is due to additional confinement provided by curvature in the applied magnetic
bias field, as discussed in the text. This plot was taken at 834 G, with a trap power of 13.8
mW which corresponds to a trap depth of 0.6 uK.
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Figure 2.19 Shown are the various contributions to the axial potential. The red curve
is the optical potential given by eq. 2.6 (U(r = 0,z)). The curved dotted green line is the
harmonic contribution from the magnetic field curvature, which does not overlap with the
optical potential. The straight black dotted line is the field gradient created from a single
coil that is used to move the center position of the harmonic component. Since the coil is
far from the center of the trap, the gradient appears linear on this scale. The solid blue
line is the sum of the gradient with the magnetic curvature. The gradient field is changed
for each high field value so that the harmonic magnetic component is overlapped with the
optical potential.
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calculated from eq. 2.16 for a known trap depth and bias field. The linear dependence of
the data in this plot lends confidence to the model shown in the previous fig. 2.19 and
underlying eq. 2.16.

Figure 2.20  This is a plot of (v, /v, (gpt))® — 1 versus B/Z/2(
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couple of kHz at full trap depth. This field curvature results from slight imperfections

in the spacing of the coils used to create the bias field.

Optimal Trap Loading

The transfer of atoms from the magnetic trap to the optical trap is a crucial step
in the sequence of events which comprise an experimental run. Atoms are loaded into
the optical trap at the end of the magnetic trap evaporation cycle. In the past, when
the magnetic and optical traps were well mode matched (i.e. they provided similar
trapping frequencies), the transfer took place quickly, with the optical trap ramping
up as the magnetic trap turned off in an attempt to make the transfer adiabatic.
With this scheme, however, any misalignment of the potentials would cause heating,

and furthermore, the transfer efficiency was sensitive to timing variations.

With the current trap, the turn-on is accomplished by slowly ramping on the
optical potential over a few hundred milliseconds while the magnetic trap is still on.
Since the optical trap provides significantly higher radial trapping frequency than the
magnetic trap, the extra squeezing due to the magnetic trap is negligible and so little
extra heating is caused by having both on at the same time. Since both traps are on
for an extended time, the atoms have a chance to find the optical potential, and so the
transfer efficiency achieved with this method is less sensitive to the precise overlap of
the optical an magnetic potentials. Similarly, the relatively long time scales involved
reduce the susceptibility to inconsistencies resulting from timing variances.

For the current experiments, the trap is loaded from the magnetic trap with
N ~ 107 fermionic °Li atoms. These atoms have been cooled to a degeneracy of
T/Tp ~ 0.1, where Tr is the Fermi temperature in the magnetic trap, given by
Tr = h@(6N)Y3 ~ 7 uK, where the mean frequency is @ = (w?w,)*/® with magnetic
trap frequencies w, = 790 Hz and w, = 79 Hz [21].

Though atoms can be transferred to the trap at higher temperatures, when the gas
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is further evaporatively cooled in the optical trap at the Feshbach resonance, highly
degenerate clouds are not achieved. We find that it is most efficient to do the maxi-
mum amount of cooling possible in the magnetic trap prior to transfer. Additionally,
due to off resonant scattering, running the laser at full power results in shorter life-
time and further negates any possible benefit. We have experimentally determined
the optimal power for the optical trap by measuring the number of atoms remaining
in the trap at some time after transfer as a function of power. Figure 2.21 shows that
as power is initially increased, the number in the optical trap also increases. This is
not unexpected, since the the transfer heating scales as the ratio of mean frequen-
cies of the two traps, Tfina = Tinitial (@ final/@initiar), Where the frequency increases as
the square root of the trap depth, Uy, which is proportional to optical power. The
result is that the ratio of Uy to the temperature will increase with increasing power
(as Uol/ %). As Uj is further increased, the number of atoms transferred is seen to
plateau. This point corresponds to the transfer of the maximum number of atoms to
the optical trap*. Further increase in the optical trap depth beyond this point only
results in unnecessary heating. This power, at the cusp of the drop-off, corresponds
to the point of best trade-off between transfer efficiency and heating. Given these
results, the trap is typically run at a power of 2.4 W, safely away from the dropoff.
This power gives Uy = 110 uK.

2.3 High Field

After the optical trap is loaded, a bias magnetic field of up to 1000 G is created
using the bias coils of the magnetic trap [21] (note: this is the field that contributes
to the axial trapping potential). Once at the selected high field, the atoms may be
transferred from the F' = 3/2,mp = 3/2 (|6) state) to the F = 1/2,mp = 1/2 (|1)

state) using a linear RF sweep. For a 40 ms sweep spanning 4 MHz, centered on the

*For a cloud of 0.5 - 1x107 8Li atoms, cooled to T' ~ 0.1TF in the magnetic trap, we observe
the peak transfer efficiency to be around 50%.
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Figure 2.21 This plot shows the loading of the optical trap versus maximum optical
trap power, and is used to determine the optimal power.
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transition frequency (1-3 GHz, field dependent), nearly all the population may be
transferred (> 95%) via rapid adiabatic passage. Such transfers rely on coherence in
the system, as will be described in more depth in the next section. We have found
that if the inverse sweep time is too slow compared to the axial trapping frequency,
coherence is lost and a complete transfer can not occur. Therefore, since the sweep
time is limited, the transfer efficiency is ultimately limited by the coupling of the
RF power into the chamber. In the current configuration, a piece of conductive
copper tape attached to the inner surface of the re-entrant coil form serves as the
antenna [21]. We have also experimented with loop antennas mounted on the re-
entrant imaging system, but, in addition to perturbing up the imaging system, these
designs have proven not to be as effective. For future use, we have also procured
a commercially built tuned dipole antenna (RA Mayes, p/n: PD2450, 2450 MHz),
which should be a much more efficient radiator at the frequencies of interest. In the
current configuration of the apparatus, there is no effective location for placement of
this antenna. However, the next time a coil form is extracted from the apparatus,
the coil mounting plate will be modified so that the antenna can be placed inside the

re-entrant flange, just behind the coil form.

Any small improvement in the |6) — |1) transfer efficiency is beneficial, since
any atoms left in the |6) state lead to loss via three body inelastic collisions later in
the experiment, when a spin mixture of states |1) and |2) (F = 1/2,mp = £1/2) is
created. Such three-body losses have been observed in bosonic gases near Feshbach
resonances [35-37], but are suppressed in two component fermionic gases due to the
fact that two of any three bodies are identical fermions, and are therefore forbidden
from interacting [38-40]. When a third unique particle is introduced, however, this
suppression is lost. This effect is also shown in Chapter 4, where a third state’s

population leads to a measured loss of the other two.
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2.3.1 Spin Mixture

Pairing phenomena such as superfluidity requires interactions between fermions.
To get interactions between ultracold fermionic atoms, two unique fermionic states
are required, since the Pauli exclusion principle forbids s-wave interactions between
identical fermions. We create a spin mixture of states |1) and |2) by driving RF tran-
sitions between them. Since these states interact via the broad Feshbach resonance
that was introduced in the previous chapter, the spin mixture is typically created at
a bias field of 650 - 820 G. In the experiment, this means that from the time the
fermionic ®Li atoms are loaded into the optical trap until the time the spin mixture

is created, there are no interactions.

When the spin mixture is created, the gas should rapidly gain interactions and
thermalize. Note, however, that interactions rely on an incoherent mixture of spin
states rather than a coherent superposition of the two spin states. In the latter
case, the gas remains non-interacting because each fermionic atom is in the same
superposition state, as we have previously observed [19]. We previously demonstrated
this coherence in the system by driving coherent Rabi oscillations between the two spin
states, as shown in fig. 2.22. These oscillations were observed to persist for several
seconds without decay. The onset of coherence can also be detected by monitoring
the population of the gas, since interactions facilitate evaporation from the trap and

thereby reduce the number. This effect is shown in fig. 2.23.

We believe that the coherence previously observed in this system was a result of
an extremely flat bias magnetic field, whereas in their current configuration, our coils
produce a slight curvature in addition to the bias field. As the atoms traverse the
trapping region (and collide) in the inhomogeneous field, they become irreversibly
mixed and therefore become incoherent. Using the current coil set, we are no longer
able to observe any signs of coherence on the time scale of the states |1) and |2)

mixture pulse.
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Figure 2.22 Rabi Oscillations driven between the two lowest hyperfine levels of 6Li at
530 G, where a = 0. Oscillations were also observed at fields where the predicted interactions
were non-zero. This indicates a suppression of the interactions through coherence. In either
case, oscillations were observed for > 10 seconds, with no sign of damping.
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Figure 2.23 The population in the optical trap as a function of time for various pure
states and spin mixtures. The pure states give a background lifetime for the trap, since
they have no interactions. If the gas were to interact, it would seek a thermal equilibrium
through evaporation, which in turn would show up as a loss of atoms. Indeed, the gas which
has been incoherently prepared shows a much shorter lifetime, indicating the appearance of
interactions. (The mixtures are shown as 50%, since there is half the number in each state.)
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For the experiments presented in the next two chapters, it is crucial to have good
control over the spin mixture, and in particular to have the ability to create an exactly
even mixture (though we will intentionally create mismatched mixtures as well). An
even mixture may be created in a number of different ways: one could sweep a weak
RF pulse across resonance so that only half of the population is transferred, or one
may pulse on a fixed RF frequency and drive a 7/2 pulse. While both these methods
could work, their performance depends crucially on the RF coupling strength as well
as exact knowledge of the transition frequency (particularly in the latter case). In
practice, it is difficult to control such parameters to the precision necessary to ensure
an exactly even mixture. In addition, inevitable fluctuations in the measurement of
the atom number will further complicate the situation and add to the uncertainty.
Instead of using these techniques, we have developed an alternate method that reduces
the sensitivity to experimental parameters, and ensures an exactly even mixture can

be made.

Our method incorporates many RF sweeps across the transition frequency, each
one transferring a relatively small fraction of the population. The effect of many
such ramps is to cause the populations of the two states to converge. With this
implementation, the final spin mixture is insensitive to the efficiency of each ramp,
and since the ramps may be relatively weak, the sweep can be broad so that the exact
transition frequency is not crucial. Figure 2.24 shows the effect of many weak ramps
on the populations of the two states. From the fig., it is evident that an even mixture

is created after 100 ramps, even for single sweep efficiencies of a few percent.

2.3.2 Optical Trap Evaporation Trajectories

Once a spin mixture is created, it must be further cooled in order to perform ex-
periments in the quantum degenerate regime. The gas is cooled by forced evaporation

from the optical trap and is accomplished by reducing the trap depth (laser power)
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Figure 2.24 These curves show the populations of two spin states of °Li (F = 1/2,
mp = =£1/2) in the optical trap. During the mixture preparation, a sequence of 100
frequency sweeps, centered on energy separation ~76 MHz of the two states, transfers
atoms from one state to the other. The three curves for each spin state correspond to the
transfer efficiency of a single sweep. Using this method, it is possible to create an even
mixture from an initially pure mp = +1/2 state, using sweeps with efficiencies as low as
3%. The 100 sweeps are applied in a saw tooth structure (two sweeps/cycle) over a period
of one second to ensure ample time for decoherence of the mixture.
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Figure 2.25 The power in the optical trap is controlled by varying the RF power to
an AOM (see figs. 2.9, and 2.10). The RF power is controlled by a voltage controlled
attenuator (Minicircuits ZMAS-1, which is technically a current based device). The control
voltage is provided by the sum of two arbitrary waveform generators (Agilent 33120A). One
provides the trap turn-on waveform, and the other provides the evaporation waveform. The
final trap depth is fine-tuned by adjusting the amplitude of the evaporation waveform.

in a controlled way.

After experimentation with many different optical trap trajectories, we have de-
termined that an exponential trajectory in time gives the best results (so far). This
is not necessarily the optimized trajectory for cooling a strongly interacting Fermi
gas [41], however, by increasing the evaporation time, we are able to achieve very
effective cooling. Since the optical trap evaporation is on the order of one second out
of a ~65 second cycle, a slow trajectory does not significantly affect our data output

rate, nor are non-evaporative losses significant over this time.

The trap laser intensity is controlled by sending a control voltage to a variable RF
attenuator that sets the diffracted power from the switching AOM (fig. 2.25). We
use a programmable arbitrary waveform generator to send the voltage waveform. The
response of the variable attenuator and AOM used to control the trap depth is not
linear with input voltage, so if an exponential voltage waveform is used, the optical
intensity will not vary exponentially. Instead, to precisely control the evaporation

trajectory, it is necessary to characterize the response of the attenuator and AOM.
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Figure 2.26 shows the relative power in the trap versus control voltage. The voltage
is negative because it is added to another separate waveform that is used to turn the

trap on. This turn-on function is fit to an empirically determined function given by
I = exp[—(exp[-k(V — Vo)])], (2.18)

where [ is the intensity and V is the voltage applied to the variable attenuator, and
the fit constants are £k = 10.364 and V, = —0.739. Rearranging this function and

writing it as voltage in terms of intensity gives
V =—(n(=in(1))/k) +V,. (2.19)

Now, by simply plugging in the desired intensity sequence, we get the required voltage
input. Figure 2.27 shows a demonstration where a linear optical trajectory is created,
and fig. 2.28 shows the waveform used for an exponential evaporation.

Finally, fig. 2.29 shows the measured temperature of a spin mixture versus the
optical trap depth as it is cooled by the exponential trajectory. This evaporation
results in an ultracold two component Fermi gas which means we are finally ready to

do some experiments.
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Figure 2.26 This is a convolution of the response of the variable attenuator and the
AOM. The data points are measurements of the optical trap power as a function of the
control voltage sent to the variable attenuator that controls the RF drive power of the
trap AOM (see figs. 2.25 and 2.10). The measured points are fit to the function given by
eq. 2.18. This gives an analytical expression for the turn on response of the trap so that
arbitrary intensity trajectories can be created.
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Figure 2.27 This plot shows the control voltage necessary to create linear evaporation
trajectory. This trajectory is used on the experiment to verify that the process for creating
trajectories is working.
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Figure 2.28 This is an exponential trajectory that is used for the experiments in this
thesis.
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Figure 2.29 This plot shows the fitted temperatures of a strongly interacting spin mix-
tures of Li, measured after halting the evaporation trajectory at various trap depths. Since
accurate temperature determination in fermionic gases becomes difficult for low tempera-
tures, this data was taken deep in the BEC regime (695 G, kra ~ 0.15) so as to minimize
the fermionic character of the gas. When this trajectory reaches a trap depth of ~ 0.5 - 1%
a molecular BEC is formed, as seen in the next chapter. It is worth noting that this relative
trap depth for condensation appears to be somewhat constant across different traps.



Chapter 3
Molecular Probe of Pairing

Pairing in fermionic systems underlies the phenomena of superfluid 3He and su-
perconductivity. In such systems, the interactions between the pairing particles deter-
mines the character of the pairs and of the final superfluid or superconducting state.
The major advance that has recently enabled experimenters using ultracold atoms
access to these exotic systems is the Feshbach resonance, which allows the interac-
tions between pairs of atoms to be tuned by application of a magnetic field. Such
resonances allow for the creation of paired superfluid gases of fermionic atoms. In
this chapter, I will describe a quantitative measurement of the composition of these
pairs, formed in a Feshbach resonance. In addition, this measurement is extended to
quantify pairing in the weakly interacting BCS superfluid regime for the first time in

an ultracold trapped Fermi gas.

3.1 Molecules, Pairs and a Feshbach Resonance

Feshbach resonances occur when the energy of a pair of colliding atoms is tuned
near that of a bound state of a molecular potential of the two atoms, as shown in fig.
3.1 [15]. If only two atoms are present, the effect of being near resonance with a bound
state modifies their interaction and affects the s-wave scattering length. Energy and
momentum conservation, however, prevent the pair from actually forming a bound
molecular state, even when the bound state energy is lower than that of the free atoms.
The addition of a third colliding atom, however, provides a mechanism for the excess
energy to be removed from the system, thereby allowing two of the colliding atoms to
fall into a bound molecular state. Within the resonance, this bound state is actually
a quantum mixture of both the free atom state (also called the open channel) and the

bound molecular state (the closed channel) that results from the avoided crossing of
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Figure 3.1 A Feshbach resonance arises when the energy of the free atoms is tuned near
that of a bound molecular state via a magnetic field. In the case shown, the detuning, A,
is positive since the bound state energy is above that of the atoms. This case corresponds
to the BCS regime, where bound state molecules are energetically unstable. According to
two-body theory, it is only when the molecular energy is lower than the atomic energy that
bound molecules are possible.
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these states [15]. Pairs which occupy this hybrid crossover state, the so-called dressed
molecules, are composed of two fermionic atoms, and are therefore bosonic in nature.
This results in markedly different behavior from the constituent fermionic atoms. It
is possible, for example, to form a Bose-Einstein condensate of dressed molecules even

though the underlying constituent atoms are fermionic.

For resonances that are broad compared to the Fermi energy, the closed channel
character of the dressed molecules is predicted to be small throughout an experimen-
tally relevant region about the resonance [42—45]. If this is the case, the resonance
may be well-described by a single-channel model where the physics is universal, such
that the macroscopic properties of the gas are independent of the microscopic physics
that underlie the two-body interactions. An accurate and quantitative experimental
determination of the composition and molecular character of the composition of the
pairs in a broad Feshbach resonance will confirm the universality in the description
of pairing in atomic gases. This confirmation will thereby establish the relevance of
paired atomic gases to other systems, most notably high-temperature superconduc-

tors.

3.1.1 SLi Feshbach Resonances

In ®Li there are two resonances between the F' = 1/2, Mp = +1/2 Zeeman sub-
levels which are particularly interesting, shown in fig. 3.2 [46,47]. For the magnetic
fields of interest (B > 600 G) these states are nearly electronically spin polarized,

but differ in their nuclear spin projections.

Though these two resonances are inherently intertwined, slight differences in the
mechanisms responsible for their appearance lead to surprisingly different characters.
The first resonance, located at around 543 G is narrow, spanning less that 0.2 G.
We previously generated bound molecules via an adiabatic magnetic field sweep over

this resonance as described in [18]. Whereas the resonance at 543 G is distinguished
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Figure 3.2 This plot shows the results of a coupled-channel calculation of the s-wave
scattering length between the F = 1/2,mp = +1/2 levels of °Li. Two Feshbach resonances
are apparent: a narrow resonance near 543 G and a broad resonance centered at 834 G.
The broad resonance is the focus of the current experiment, though the mechanisms that
give rise to both are described in the text.
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by its narrow extent, the one at 834 G is exceptional for its broad extent, spanning
hundreds of Gauss. Figure 3.3 shows the energy of the bound and free atom states
versus magnetic field strength. The total spin of the atom pair is given by S = & + 55,
where 3; are the electronic spins of the atoms, |§;| = 1/2. This gives S = 0 or 1 for the
pair. S = 0 corresponds to a singlet, which does not tune with magnetic field (due to
electronic spin), and S = 1 is a triplet whose energy tunes as g;ugB, where g, ~ 2
is the Landé g-factor, up is the Bohr magneton, and B is the magnetic field. For
sufficiently high fields, where ppB > Apgp, the hyperfine splitting, the atomic states
have S ~ 1, since they are nearly spin polarized. In addition, the singlet (S = 0)
molecular state X7, v = 38, actually consists of two different channels with differing
nuclear spin, / = 0 and 2. These states give rise to the broad and narrow resonances,
respectively [48]. As these two states are approached by the tuned triplet (S = 1)
state of the atoms, their behavior diverges. The large variation in width between
these two resonances derives from the way in which the associated singlet molecular
channels cross the triplet atomic state. The singlet state with I = 2 passes through
the triplet atomic state at ~ 540G with little perturbation. This crossing is the origin
of the narrow resonance. The I = 0 singlet state, on the other hand, strongly couples
to the triplet atomic level via a virtual bound state of the free atoms [45,49]. As a
result of this coupling, the states undergoes an avoided crossing which extends up
to the position of the broad resonance at 834 G before finally converging. This is
not visible on the scale of fig. 3.3, though by zooming in, the gradual nature of the
crossing that leads to the extremely broad resonance is apparent, as shown in fig. 3.4.
It is this dressed state of singlet molecules (also called “bare” molecules) and atoms

which we will probe using the experiment presented in this chapter.
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Figure 3.3 This plot shows the magnetic field dependence of the singlet molecular state,
12;}', v = 38, and free atomic states, relative to the atomic state energy. (The atomic state
is actually tuning, since it is a spin triplet, and the singlet molecular state does not tune.)
The ~1.6 GHz molecular binding energy is evident at B = 0 [50]. From this plot, the
crossing that is the origin of the resonance at 543 G is also evident, though the origin of
the broad resonance at 834 G can not be discerned on this scale. (see fig. 3.4)
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Figure 3.4 A close-up view of the level crossings responsible for the narrow and broad
Feshbach resonances, as shown in fig. 3.3. An extended avoided crossing between the I =
0 molecular state and the atomic state leads to the extreme width of the 834 G resonance.
The mixed atomic/molecular state is labeled dressed molecules. The relative contributions
of the bare molecular and atomic states to the dressed molecules is the focus of this chapter.
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3.2 The Experiment

In some of our previous experiments using cold atoms and Feshbach resonances,
the resonance has been used to tune the interatomic interactions, without much regard
or need for the underlying details that result in the modification of the interactions
(for example, creating matter wave solitons [17]). The current experiment, on the
other hand, works to address the inner workings of the Feshbach resonance, with
the goal of developing an accurate picture of the mechanisms at play. As we shall
see, such experiments also have the potential to establish the relevance of ultracold
atoms in Feshbach resonances to other diverse areas of physics through the concept
of universality.In the experiment reported here, a laser is used to project the dressed
molecules/atoms onto an excited singlet molecular state. The crux of this measure-
ment is that AS = 0 in the optical transition so that the bare molecular (singlet)
portion of the dressed wavefunction is driven to the excited state. By starting with an
evaporatively cooled gas on the BEC side of the resonance, followed by an adiabatic
change in the magnetic field, a nearly zero temperature gas can be probed throughout
the BEC-BCS crossover by measuring the rate of the molecular excitation due to the
laser. This enables a direct measurement of the closed channel molecular fraction,
and for the first time in an atomic gas, provides clear evidence for the presence of
pair correlations in the weakly interacting BCS regime where, by two-body theory,

bound molecules are not expected to exist [22].

3.2.1 The Setup

Many of the methods used for this experiment have been previously described in
Chapter 2 and in the other theses and papers [6,18-22]. The optical trap is formed
from a 1 W Nd:YAG laser at 1064 nm, as described in the previous chapter. In this
implementation, the optical trap, at full laser intensity, has a trap depth of 25 uK and

radial and axial frequencies of v, = 2270 Hz and v, = 21 Hz, respectively. Curvature
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Figure 3.5 Schematic of relevant energy levels taken into consideration for calculation
of bound-bound molecular transition frequency (not to scale).
in the magnetic bias field modifies the axial frequency such that v, = /v2 + AB,
where X = .029(3) Hz?/G.

In addition, we have set up a laser system designed to drive a bound-bound

molecular transition, which I shall now describe.

Characterization of Bound-Bound Molecular Transition

In order to drive the bound-bound molecular transition, we must first determine
the frequency of the transition. The transition frequency is that of the atomic ®Li
D1, 2512 — 2Py, transition, modified by the binding energies of the molecular
states, as shown in fig. 3.5. We excite from the least bound vibrational level of the

X'S} (v = 38) state, which is bound by 1.57709 GHz (calc.)[50], to the A'S} (N =
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1)(v' = 68) level, which is bound by 1504.375(85) GHz [51]. The wavenumber of the
6Li D1 transition at zero field is 14903.296792(23) cm™! [52]. This gives a frequency
of vp1 = 4.467895977(7) x 104 Hz for the atomic transition. To find the frequency
of the bound-bound transition, we subtract the binding energy of the excited state,
and add the binding energy of the ground state to that of the atomic transition. This

gives

vpp = 4.467895977(7) x 10 — 1504.375(85) x 10° + 1.58 x 10°Hz

(3.1)
= 4.45286803(85) x 10™Hz,

where the uncertainty comes primarily from the binding energy of the v’ = 68 bound
state. The frequency of the probe laser is set by use of a Michelson wavemeter that
references a stabilized He-Ne laser. On our apparatus, we use the D1 atomic transition
to provide the repump beams in our 5Li MOT [19], and so it is straightforward to
calibrate our wavemeter to the D1 atomic transition. For this transition, referenced
to a saturated absorption heat pipe signal, the wavemeter reads 0.943364(1) (This
number is the ratio of the HeNe wavelength, ~633 nm, to that of the 6Li D1, ~671
nm). Using this calibration, we predict a wavemeter reading of 0.940190(1) for the
bound-bound transition, where the uncertainty corresponds to the resolution of the
wavemeter. The actual transition was found to be within the uncertainty of this
prediction. Additionally, depending on magnetic field, small corrections are necessary
because for this experiment we actually drive a transition from the dressed state of the
singlet molecular ground state and triplet atomic state, as described in the previous

section. The measurement of the field dependence will be presented in the following

section.

The measurement of the closed channel molecular fraction depends on the ability
to relate an observed molecular excitation rate to the applied laser intensity. To do

this, we must calculate the effective Rabi frequency as a function of intensity. The
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on-resonance Rabi frequency for the molecular transition is given by
Q= (Pr=es(S = 0)fdm - EL|thy=35(S = 0)), (3.2)

where d;l is the molecular transition dipole, EL is the laser field of the molecular
probe, ¥, —es(S = 0) and ¥,—35(S = 0) are the excited and ground state molecular
wavefunctions [22,53]. In order to quantify €, we will write it in terms of the

corresponding atomic Rabi frequency,
Q, = d—:z . El. (3.3)
Combining and rearranging expressions 3.2 and 3.3 gives
dm - L

Qm = <77Z)1;’=68(S = O)|wv:38(5 = 0)> d_. E7 Qa. (34)
a " L

The ratio of the molecular to atomic transition dipole moments %%L involves two
different considerations. The first arises because the binding energy of the v/ = 68
energy level is greater than that of the fine splitting and hyperfine interactions [51].
This causes the electronic and nuclear spins to decouple from the probe light, which
results in the dipole moment of the molecule A aligning along the internuclear axis
[53]. Since the internuclear axis is randomly oriented in space, d?n is reduced by a
factor of \/m from that of the atomic transition. Moreover, the molecular transition
dipole moment also depends on the excited state decay rate. Since the molecule has
more decay channels available than a single atom, the decay rate ,, is correspondingly
larger than that of the excited state atom +, by a factor of two. The effect of this is
to increases the effective molecular dipole transition element by a factor of v/2.

The square of the remaining term, [(¥y=6s(S = 0)|¥y=33(S = 0))|?, is the Frank-
Condon overlap between the ground and excited molecular states, and has a computed

value of 0.077 [54]. Finally, the atomic Rabi frequency may be written as Q, =
Yar/ 1/ Lsat, Where v, = (27)5.86 MHz is the atomic linewidth, I, = 5.1 mW/cm?
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is the atomic saturation intensity, and [ is the photoassociation laser intensity. We

may now plug these values into the expression for the molecular Rabi frequency, eq.

3.4
Qp, = 27 - 0.588 MHz - 1/ I(mw/cm?). (3.5)

Photo-Association Laser System

The optical frequency of the bound-bound molecular transition differs from that
of the atomic transition by ~2 nm, which necessitates the use of another laser, tuned
specifically to this transition. Additionally, since the molecular transition is far from
the atomic transition, there is no reference frequency available from the heat pipe
that is used for the optical frequency reference for driving atomic transitions. For
this reason, we utilize another scheme to accurately reference and control the resonant

frequency of the molecular probe laser.

The system begins with a single mode external cavity diode laser, such as those
discussed in my Master’s thesis [19], with an output of 5 mW at ~673 nm. As shown
in fig. 3.6, this laser is stabilized by locking it to a reference Fabry-Perot cavity.
The output of this laser is directed through an 80 MHz switching AOM (Crystal
Technology, p/n: 3080-151) that is used to pulse on the probe for a controlled duration
into a single mode optical fiber that takes a portion of the light to the apparatus table
and directs it to the atoms as shown in fig. 3.7. The beam waist, w,, is measured to
be 0.107 cm at the atoms.

For the current experiment, this setup delivers approximately 0.4 mW of optical
power to the atoms. This corresponds to a peak intensity of I, = (2P)/(rw?) ~ 20
mW /cm? at the center of the beam, and a molecular Rabi frequency of ~ (27)2.6
MHz. Since the extent of the cooled atom cloud in the trap (axial waist ~200 ym) is
significantly smaller than w,, the peak intensity is a good approximation to the actual

intensity the atoms experience. In addition, since the molecular probe beam is fired
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Figure 3.6 Optical system for generating molecular probe light. The extended cavity
diode laser (ECDL) is locked to a Fabry-Perot reference cavity. The frequency of the laser
is tuned by providing a feed-forward signal to the cavity. The output of the laser is pulsed
into a fiber leading to the apparatus table by a switching acousto-optic modulator (AOM).
A shutter prevents leakage light. Reference is achieved by overlapping the ECDL with a
reference beam, locked to a heat pipe and superimposed in an optical spectrum analyzer.
A tunable electro-optic modulator (EOM) gives the reference laser a movable frequency
sideband with which the probe laser can be overlapped (see appendix C).
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Figure 3.7 Probe combination optics. The output of the molecular probe fiber and the
atomic probe fiber are combined on the apparatus table and directed towards the trap. The
molecular probe drives the bound-bound transition, and subsequently the remaining atom

number is measured using the atomic probe. The loss signal is normalized by repeating the
measurement with the molecular probe laser blocked.
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along the imaging axis, we capture an image of the beam that is used for each shot.
Since the duration of the probe pulse is known, we can measure the intensity from
the pixel counts on the CCD, once we have calibrated the response of our camera
and imaging system.* This measurement, specific to each shot, allows us to account
for shot to shot intensity fluctuations as well as for spatial abnormalities in the beam
profile. We therefore are able to make a good measurement of the intensity of the

probe each time it is used.

The molecular probe frequency is initially (coarsely: ~500 MHz) set around the
predicted value by using a Michelson wavemeter at the frequency calculated in the
previous section. From this point, the exact frequency is found by monitoring trap
loss for long (1-2 s), probe pulses as a function of frequency.* This is most effective
at low temperatures in the BEC regime (e.g. 754 G), since the entire trap may be
emptied by even a relatively short, weak (or off resonant) pulse. When a trap loss is
observed, the resonant frequency is narrowed down by decreasing the sweep width.
Once the transition is initially found, it is fairly straightforward to return to the given

frequency using the reference system that is described below.

Frequency reference is achieved by overlapping the molecular probe laser with a
reference laser and comparing both in the same optical spectrum analyzer. Specifi-
cally, the straight through (zeroth order) of the probe pulse AOM is overlapped on
a beamsplitter with a weak beam from the Coherent dye laser used for the "Li por-
tion of the apparatus. The dye laser is locked to a heat pipe, and provides a stable
day to day reference point when both lasers are coupled into a 300 MHz spectrum
analyzer (via an optical fiber, used to minimize variations due to pointing differences

between the lasers). Before this overlap, the dye laser has passed through a tunable

*Qur calibration procedure consists of correlating the total number of counts accumulated on
the CCD array to an optical pulse of known power and duration, focussed entirely onto the
array. Details are provided in Ramsey Kamar’s Masters Thesis [55].

*These pulses may be swept as well to increase the searched frequency space. We used sweeps
of several hundred MHz over the course of a second or two.
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electro-optic modulator (EOM) (see appendix C) that adds sidebands to the frequency
spectrum. Tunability of the resonance frequency of the EOM allows the driving RF
frequency to be changed such that a sideband of the dye laser is overlapped with
the peak of the probe laser. The tunability of the EOM is sufficient to cover a free
spectral range of the spectrum analyzer, so that a reference may be created for any
wavelength. This configuration allows for repeatable control of the probe frequency
on the scale of a MHz, which is small compared to the linewidth of the molecular
transition, v = (27)11.7 MHz. Using this system, it is possible to measure the reso-
nance frequency of the transition, as shown in fig. 3.8. Additionally, we have mapped
out the magnetic field dependence of this transition so that we may effectively and
consistently drive it on resonance. We find that the transition tunes with a slope
very nearly equal to 2up, as shown in fig. 3.9. This field dependence emphasizes
the strong triplet atomic character of the dressed atoms, though it is important to
note that the transition strength is greatly enhanced by the small contribution of the

bound molecular state.

3.2.2 Starting Point: Molecular Bose-Einstein Condensate

The first step in conducting a measurement of the bare molecular fraction of pairs
in the Feshbach resonance is to create a Bose-Einstein condensate of the dressed
molecules on the BEC (a, > 0) side of the resonance, as has also been observed by
other groups [56-59]. This step is accomplished by preparing an equal incoherent
50/50 spin mixture of the two lowest hyperfine states of SLi in the optical trap at a
bias field of 754 G. At this field, the broad Feshbach resonance induces the s-wave
scattering length to be a ~ 3680 a,. The atomic scattering length a is determined
from a coupled channels calculation [46], where we have adjusted our triplet potential
slightly to shift the location of the Feshbach resonance from 837 G to the measured
location of 834 G [47]. As outlined earlier, by evaporatively cooling the gas, dressed
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Figure 3.8 A typical molecular resonance, this one taken at 695 G with a probe duration
of 100 us. The signal is the number remaining after a probe pulse, normalized to shots taken
with the probe beam blocked. The frequency shown is the drive frequency of the tunable
EOM used to create the the sideband of the reference laser. The measured width of ~13
MHz is consistent with expected width of 7., /(27) = 11.7 MHz. Similar resonances were
taken at several magnetic fields to produce the plot shown in fig. 3.9.
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Figure 3.9 Measured transition resonance frequency for dressed molecules versus mag-
netic field. Since the transition is from a state that consists of small singlet and large triplet
contributions, the resonant frequency shifts with field. This behavior reflects the fact that
the transition is being driven not from bare molecules, but from dressed molecules that
have a significant atomic contribution. From fig. 3.4, it is evident that beyond the 534
G resonance, the dressed molecular state closely follows that of the triplet atoms. This is
verified by the slope of the transition frequency, which is very close to 2up, the approxi-
mate slope at which the atomic energy tunes. Below 534 G, the transition frequency is that
calculated earlier in eq. 3.8. The frequency for each field is extracted from a lorentzian fit
to a resonance such as that shown in fig. 3.8. The dotted lines mark free spectral ranges of
the spectrum analyzer used to measure the frequency.
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molecules are formed by three-body recombination, and the large scattering length*

allows efficient rethermalization and cooling.

For the current experiment, the optical trap evaporation is accomplished by re-
ducing the light intensity in an approximately exponential trajectory in 750 ms. The
details of the optical trap trajectories are provided in the previous chapter. Once
the trap intensity reaches its final value, the magnetic field may be ramped to a dif-
ferent value such that the entire BEC-BCS crossover may be explored. In addition,
adiabatic (isentropic) field sweeps from low (BEC) to high (towards BCS) fields are
predicted to result in additional cooling (see fig. 3.10) [62-64]. We verify adiabaticity
by ramping from 754 G to a field above the Feshbach resonance and back. In such a

process, we detect no heating upon returning to the original field [65].

The bottom half of fig. 3.11 shows an axial cut of the column density of an
in-situ absorption image of a nearly pure molecular BEC prepared by the methods
described above at a field of 754 G, and subsequently imaged after ramping down
to 695 G, where @ ~ 1510 a,. This field, which is deep in the BEC regime (kpa ~
0.15), is chosen because the smaller scattering length and more deeply bound dressed
molecules make the bosonic behavior of the gas, such as a spatially well defined
condensate, more obvious. At higher fields, the bosonic nature of the gas is washed
out as fermionic attributes become increasingly dominant. Due to the weakly bound
nature of the dressed molecules (as shown in fig. 3.4), the atomic probe may be used
to to simultaneously dissociate and probe the molecules. The lack of any detectible
thermal component in this profile (condensed number fraction Ny/N > 0.90) places

an upper limit of T/T, < 0.5, where T is the temperature and T, is the critical

*The molecular (dimer-dimer) scattering length, a,,, is related to the atomic scattering length,
a, though the precise relation is still a point of contention. BCS theory gives a,, = 2a, though
this result is generally regarded as incorrect. A better relation, a,, = 0.6a, is given by Petrov
et al. [40] when the size of the pairs is small compared to their separation. Astrakharchik
et. al [60] obtain the same result through a Monte Carlo simulation. In addition Stajic et al.
[61] find an interaction dependent ratio of am,/a from a many body theory.
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Figure 3.10 Adapted from [63]: “Entropy per atom as a function of T for different
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sweep between 1/krpa = 1 and unitarity. For comparison, we also plot S for an ideal Bose

gas (dashed line).” Magnetic field sweeps in the current experiment originate from 754 G
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temperature for condensation, since

M- <%)q (3.6)

with ¢ = D/a = 3 since D = 3 is the dimensionality, and o = 1 for a harmonic trap
(66, 67].

The final trap depth after evaporation for the bottom panel of fig. 3.11is U, = 0.27
uK, which corresponds to ~1% of the initial trap depth. This low final trap depth
is necessary to produce a pure condensate, with no detectible thermal fraction, since
if the trajectory is stopped at a higher value, uncondensed molecules remain. The
top panel of fig. 3.11 shows the resulting distribution if the trajectory is stopped
at U, = 0.5 puK. In this shot, a component of thermal, uncondensed molecules is

distinguishable from the condensed core.

3.2.3 Measuring the Bare Molecular Fraction: Picking out the Pairs

Once a molecular BEC has been created, as above, we may finally get down
to making a measurement. As alluded to earlier, the dressed molecules that exist
within the Feshbach resonance are a superposition state composed of free atoms and
deeply bound bare molecules. In more specific terms, the wavefunction of the dressed
molecules can be expressed as a superposition of the v = 38 singlet molecules and

free atom pairs in the triplet channel [15]:

[Up) = 2% |hu=3s(S = 0)) + (1 — 2)/%|6a(S = 1)), (3.7)

where Z can be identified as the singlet, closed-channel, amplitude of the dressed
molecules. It is this quantity, Z, which we wish to measure.

For a given measurement, the magnetic field is set to a value between 600 - 920
G. The lower end of this field range is dictated by the decreasing lifetime of the
dressed molecules as the field is moved farther into the BEC limit. In this case, the

lifetime of the dressed molecules becomes shorter due to collisional relaxation as the
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Figure 3.11 In-situ absorption image profiles showing a molecular BEC. These images
were recorded at a field of 695 G after evaporation at 754 G. For the top panel, the optical
trap depth was lowered to 0.5 pK. The solid line is a fit to a Gaussian (dotted line) plus
Thomas-Fermi distribution which distinguishes the condensate from residual thermal mole-
cules. For the bottom panel, the trap depth is reduced to 0.27 uK, producing an essentially
pure molecular condensate with the number of molecules, N = 46,000. We estimate that
the condensate fraction is >90%, implying T'/T,. < 0.5, where T, is the critical temperature
for BEC at 695 G. The solid line is a Thomas-Fermi distribution.
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molecules acquire more bosonic character [40]. The upper limit is determined by a
combination of the capability of our magnetic coils, and the diminishing returns in
terms of scattering length versus field (see fig. 3.2), since at this field, the scattering
length is not strongly field dependent. This field range is sufficient, however, to span
the entire crossover, starting from the BEC limit and pushing beyond the strongly
interacting regime, into the BCS limit.

A diagram of the measurement scheme is shown in fig. 3.12. The molecular probe
laser is pulsed on for a given period of time, during which it drives the pairs to the
excited molecular state at a rate, I'. Once the pairs are in the excited state, they
quickly decay at a rate v, = (27)11.7 MHz, which is twice the atomic decay rate, as
discussed earlier. The decay of the excited state molecule results in a gain of kinetic
energy that is sufficient to cause the paired atoms to be lost from the trap. This loss

rate may be expressed as

I'= Zﬂfn/’)’ma (3'8)

where (Q,, is the on-resonance, intensity dependent, molecular Rabi frequency given by
eq. 3.5 [22]. After the molecular probe pulse, the magnetic field is ramped back to 754
G in order to eliminate possible systematic uncertainties associated with probing at
different fields. This loss is measured for a given field and pulse length by comparing
the number of atoms remaining after the molecular pulse with a cloud for which the
pulse is not fired. This measurement is repeated many times for each of several probe
durations at each field. From these loss curves, rates are extracted, as described in

the following section.

3.2.4 Molecular Loss Rate, BEC Side

Figure 3.13 shows typical loss curves, which are plots of normalized number versus
molecular probe duration. The two data sets correspond to two different tempera-

tures: one for a BEC (open circles), and one for a thermal gas at T/Tr ~ 0.75
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Figure 3.12 This diagram shows the generalized scheme for measuring the bare molecu-
lar contribution Z of dressed molecules, as in eq. 3.7, around the broad Feshbach resonance.
A bias magnetic field is used to tune the X 12;‘, v = 38 bound state (closed channel) near
the free atom threshold energy (open channel), to set a detuning A(B). A probe laser drives
transitions from the dressed state to the excited molecular state, A'Z], v = 68 at a rate
Qum, given in the text. Once excited, the molecules decay at rate v >> Q,, and are lost
from the trap. The loss rate from the trap, I, is measured. Z is calculated for each A(B)
by rearranging eq. 3.8 such that Z = (yT')/Q2,.
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Figure 3.13 Loss of signal vs molecular probe duration at 695 G. The open circles
correspond to a gas evaporatively cooled to a nearly pure molecular BEC, while the closed
circles correspond to full trap depth, where T/Tr ~ 0.75. The dashed lines are fits to
exponentials, with a leftover fraction of 25% in the high temperature case. The time axis
for the BEC data was scaled to account for differences in molecular probe laser intensity
between the BEC data (30 mW/cm?) and the high temperature data (15 mW/cm?). We
have verified that the loss rate depends linearly on intensity. The error bars represent the
statistical standard deviation from the mean of ~10 independent measurements.
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(closed circles), obtained without optical trap evaporation. This plot is taken at a
magnetic field of 695 G, which is well into the BEC regime, since a ~ 1510 a, and
kra ~ 0.15 << 1. As expected in the case of the BEC, the entire trap can be
depleted for sufficiently long probe duration. An exponential fit to this data gives
the value for the loss rate, I', from which, the numerical value of Z is computed
by using eq. 3.8, along with the measured probe intensity. It turns out that the
bare molecular contribution is quite small, as the measured value of Z from this rate
is 0.0018(6). For the higher temperature data, the loss is initially exponential, but
25% of the initial number remain after a long probe duration. The remainder can
be understood as thermally dissociated atoms that are only weakly affected by the
probe, since they have a relatively small singlet character and excitation occurs only

by two-body photoassociation.

Beyond the numerical result gained above, a more subtle understanding of the
system may be gleaned from this result. That is, this excitation rate at the lowest
temperature tells us that the observed process is a single body process, given the
exponential loss curve. This means that even though we are driving a process with
two atoms, these two atoms are behaving as a single particle, i.e. a bound molecule
(despite the very small Z). In the present case, this is not all that surprising, since
bound molecules are energetically stable on the BEC side of the Feshbach resonance,
due to their lower energy relative to free atoms (see again fig. 3.4). As we shall soon
see, however, this single body loss rate will become very telling as this measurement

is extended to the BCS side of the resonance.

3.2.5 Molecular Loss Rate, BCS Side

Figure 3.14 shows the loss of signal vs. probe duration on the BCS side of the
resonance at 865 G, where a ~ —15600 a,, for gases prepared at the same low

and high temperatures as in the previous graph (fig. 3.13). At this field, the gas
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Figure 3.14 Same as for Fig. 3.13, except at 865 G. The dashed line in the case of the
full trap depth data (closed circles) is a fit to a “two-fluid” model where one component
decays via a rapid one-body loss process and the other via a slower non-linear two-body
loss process. Approximately 75% of the gas is lost by the initial fast process.
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is in the strongly interacting regime where kr|a| > 1. This plot again shows the
exponential dependence on probe duration that indicates a one-body loss process.
This is surprising in this case, since, according to two-body physics, there are no bound
states above the resonance at 834 G, and probe-induced loss would arise exclusively
from two-body photoassociation.

At full trap depth, where the temperature is higher, the decay consists of two
parts: an initial exponential decay, followed by a much slower two-body process. As
the temperature of the cloud is T' ~ 0.75 TF, this initial fast decay may indicate the
presence of uncondensed paired fermions [12] or finite-lifetime molecules. The slower
(two-body) process is ascribed to free-bound photoassociation of free atoms, which is
supported by the fact that the extracted two-body rate coefficient, Ky = 4.9(3.3) x
10710 (ecm® s7!)/(W cm™2), is reasonably consistent with the calculated value of
9.8(2.6) x 10710 (cm?3 s71)/(W cm™2) obtained using the expression for K given in

ref. [53], where the uncertainties arise mainly from the temperature determination.

3.2.6 Paired Fraction: Molecules and Beyond

Figure 3.15 shows the values of Z extracted from loss rates taken at fields between
600 and 920 G. For fields below the resonance, our results are well modeled by a
coupled channels calculation, shown as the curve in fig. 3.15. The quantity obtained

from the coupled channels calculation is

|(wr=68(S = 0)[1,(B))/ (Yw=ss(S = 0)|v)(B = 0)) /%, (3.9)

which represents an exact two-body theory in free space. An analytic expression for
Z on the BEC side of the resonance has been given in ref. [68] and is also in good
agreement with our result.

Since the size of the dressed molecules diverges at resonance, two-body theory
predicts that the overlap with the excited molecules vanishes and Z goes to zero as

the resonance is approached. Furthermore, there is no longer an energetically stable



89

10° +—F——r——1———

10™

Z o-.
10™

10°

107

|
|
|
]
]
|
!
(
|
|
|
|
|
o
1@
T
|
|
(
(
!
|
[
1
! o
|
|
]

t
I
I
i
{
i
1
L

10-7 ! I ! 1 ' I ! I | ! : ] ' | ! I
600 650 700 750 800 850 900 950
Magnetic Field (G)

Figure 3.15 Z vs. B. The closed circles represent the value of Z extracted from
measured values of I'. The uncertainty in Z is approximately equal to the size of the closed
circles, and is due mainly to uncertainty in the probe laser intensity. The dotted curve
shows a comparison with results obtained from a coupled channels calculation that only
takes two-body physics into account. The vertical dashed lines represent the boundaries
of the strongly-interacting regime, kr|a| > 1, where kr is evaluated using typical values of
N at the low and high field extremes. Although shot-to-shot variations in N are 30%, the
average value of N at each field is between 13,000 and 90,000 due to day to day variations.
Tr is between 200 and 600 nK due to differences in N as well as the trap frequencies. For
all the data, T < T,, and for the points above 850 G, T' < 0.5 T,, where T, refers to the
critical temperature at 695 G.
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bound state above the resonance, since it has been tuned above the threshold energy of
the atomic state. Accordingly, this theory predicts that Z should be zero at and above
the resonance. Despite this prediction, however, the measured quantity continues
smoothly through resonance, and while the two-body theory fails for fields above
resonance, the data compares favorably with more detailed theoretical calculations

which span the entire range of interactions and include many body [69, 70] and mean

field effects [71].

While two-body (multi-channel) theory does not capture the essential physics
above resonance, it is possible to gain intuition by moving to a single channel model.
This approach is considered since the magnitude of Z is small, and the Feshbach
resonance is broad (compared to the Fermi energy). Under these circumstances, the
physics of the crossover should be well described by a single channel model [45]. In
this approach, we note that the loss rate [ is proportional to the local pair correlation
function Gy(r,r) = <w1(r)w$(r)z/3¢(r)z/)¢(r)), where ¢+ and ¢, are the fermionic field
operators for atoms in different internal states. In the mean-field approximation G,
may be factorized as Gy(r,r) = n?(r) + @I(T)ﬂ(r))(Q/AJT(T)Q)J,(T)), where the first term
is the Hartree term with atom density n(r) = n+(r) = n(r). This term is linked to the
slow two-body photoassociation observed in the high temperature data of fig. 3.14.
The second term is non-zero only for correlated pairs and is proportional to |A[?, the
square of the order parameter. In the BCS limit, |A|? o« e2e™™/ (7o) whereas in the
BEC limit, |A[?  €%/(kra) [72], which is simply proportional to n(r), and produces

a rapid one-body loss.

Figure 3.16 shows a plot of the data and the functional form of |A|2 versus (krpa)~!.
From this figure it is evident that the data has the correct dependance on (kra)~!
on the BEC and BCS sides of the resonance, and smoothly links both through the
crossover region. Note that non-condensed pairs [12] will give rise to a similar factor-

ization of G5 but it is not expected to have the same dependence on kra.
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3.3 Conclusions

By driving a transition to an electronically excited molecular singlet level, we have
measured the paired component of spin mixture of interacting fermionic atoms from
the BEC to the BCS limits, as well as in between. This method provides a very
accurate measurement of a very small quantity, since although the closed-channel
fraction is finite and measurable, its magnitude above resonance is sufficiently small,
<1075, that the expectation of the number of closed-channel molecules is less than
one (since our trap typically contains ~10° atoms). The quantitative nature of this
measurement can be used to refine theoretical models of the Feshbach resonance and

the associated crossover.

Remarkably, we also find that the pairing amplitude is continuous across the
resonance and extends into the weakly interacting BCS regime, where two body
physics predicts no such molecular contribution. By adopting a single channel model,
we are able to associate the measured loss rate with pair correlations through the

order parameter. We find the proper dependence on interaction strength, kra, for

both the BEC and BCS regimes.

This experiment represents a decomposition of the pair wavefunction, and reveals
that the singlet closed channel component of the pairs is extremely small, less that
1073, in the strongly interacting regime. In this regime, the strongly interacting gas
may be considered universal, since the scattering length diverges and the physics of
the Fermi gas is determined only by the Fermi energy, Er, and the temperature,
T /Tr [73-75]. Moreover, it has been shown that the characteristics and behavior of
the gas in the strongly coupled regime, where |kra| > 1, are accurately described by
a single channel model that considers only the open, scattering (fermionic) channel,
[45]. Confirmation of this idea strongly supports the contention that spin mixtures
of fermionic atoms in a broad Feshbach resonance may be used as a model system for

other crossover fermionic systems, such as high 7, superconductors.
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We will continue to utilize, as well as verify, this universality in the next chapter
where we extend our studies of pairing to characterize phases that result when there

are not even numbers of atoms in each state to pair.



Chapter 4
Polarized Fermi Gases

In order to study pairing of fermionic %Li, we have up to this point required a
uniform spin mixture of the two spin states needed to access the Feshbach resonance.
In this chapter I will present experiments designed to probe the behavior of such a

system when the populations of the two spin states are unequal.

4.1 Polarized Fermionic Systems

Pairing in fermionic systems is the key to superconductivity and superfluidity. In
an evenly paired superconductor or superfluid, the BCS pairs are formed near the
(spherical) Fermi surfaces by particles with equal and opposite momenta, such that
Cj = EFT + EM = 0, where @ is the net pair momentum and hAkps | are the momenta
of the two constituent fermionic particles.

While the pairing is facilitated in balanced systems, where there is an overlap
between the Fermi surfaces of the two constituents, it is interesting to consider the
case in which the two Fermi surfaces do not overlap entirely, as shown in fig. 4.1.
This situation may occur when different particles have different masses, such as in
cold dense matter at the core of neutron stars [76]. A mismatch may also result from
a mismatch of populations of two pairing states. In such instances, it would seem as if
superfluidity may not be possible, due to the lack of overlap between particles which
are needed to form pairs. Indeed in the BCS limit, pairing and superconductivity
break down when the difference in the chemical potentials approaches that of the
pairing gap [77]

A S 1 — pho. (4.1)

This is known as the Clogston limit, where u; are the chemical potentials of the two

states, and A is the gap, which is small in the weakly interacting BCS regime.
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Hi = H2 M1 # Ho
Figure 4.1 When the chemical potentials of two interacting Fermion species overlap,
pairing may result. Imbalanced chemical potentials can be caused by differences in mass or
number of the two species, and can eliminate the pairing and superfluidity if the difference
is too large.

Despite this apparent limit, there are several proposed mechanisms which may
allow for a system to remain at least partially superfluid under imbalanced condi-
tions, especially when interaction strength is increased. These proposed mechanisms
boil down to different ways for a portion of the system to remain paired while ac-
commodating the excess unpaired particles in some way. They can be classified by
the symmetry of the resulting Fermi surfaces for the so called majority (larger) and
minority (smaller) Fermi surfaces, and are illustrated in fig. 4.2.

The first imbalanced superfluid is known as the Sarma (or breached pair) phase [78,
79]. This phase is also sometimes referred to as a polarized or magnetized superfluid.
In the Sarma phase, pairing occurs at the location of the minority Fermi surface,
leaving a shell (in k-space) of leftover unpaired majority particles. This pairing results
in both rotational and translational symmetries being preserved, as in the BCS case.
In real space, the pairs and the excess unpaired particles co-exist.

The next mechanism for imbalance accommodation is the deformed Fermi surface
(DFS). A DFS state occurs when the Fermi surfaces of the minority and majority

states deform in order to maximize their overlap [80,81]. To first order, the surfaces
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(k-space)
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Figure 4.2 Shown are representative Fermi surfaces for a two component mixture. The
top row corresponds to the case of a balanced mixture, in which the two Fermi surfaces
overlap. In such a situation, pairing and superfluidity may occur. For weak interactions, in
the BCS limit (shown) pairs form near the edge of the Fermi surfaces. For sufficiently strong
interactions, nearly the entire system may pair. The remainder of the rows shows possible
outcomes that may result from an imbalance in the Fermi energies of the two species. In
the second row (Sarma), pairing is relocated to a shell at the edge of the minority Fermi
surface. Outside this shell, there are unpaired majority atoms. The third row shows the
DFS state, where the Fermi surfaces of the majority and minority have deformed so that
some overlap is possible. Pairing occurs where they meet. The fourth row shows the FFLO
state, where the minority component has shifted relative to the majority so that the Fermi
surfaces can be closer. Since the momentum of the two paired constituents are not equal in
magnitude, the pairs have nonzero momentum. Finally, in the last row, a phase separation

in real space is shown. In this case, the uniformly paired superfluid core separates from the
normal unpaired shell.
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deform from spherical to become ellipsoidal, with opposite major axes. In the region
of overlap, where the deformed surfaces meet, there may be pairing and subsequently,
superfluidity. In the DFS state, pairs are still formed from particles with equal and
opposite momenta (Q = ¢; + g = 0), so they have zero net momentum and transla-
tional symmetry. However, this phase is characterized by the breaking of rotational

symmetry in momentum space because of the angular dependence of the pairing.

Another proposed mechanism to allow imbalanced pairing is the Fulde-Ferrell-
Larken-Ovchinnikov (FFLO) state [82,83]. In this phase, the Fermi surfaces of the
minority and majority states offset from each other in momentum space in order to
maximize their overlap. This offset results in pairing between particles with unequal
magnitudes of momentum, ¢; # —¢3, and pairs which have a net non-zero momentum
@ = q1 + ¢ # 0. This state is characterized by the breaking of rotational and
translational symmetry.

In addition to the momentum distributions of the majority and minority changing
to accommodate an imbalance, the real space distributions may also be modified.
One such possibility is for a phase separation to occur between uniformly paired
region(s) and the remaining unpaired majority particles [84-88]. In this case, the
paired superfluid fraction is effectively isolated from the normal, unpaired phase,
and in this way, remains balanced. As we shall see, in many situations (such as in
our experiments) a result of this separation is that the other phases above may be
preempted, since the effects of the imbalance is effectively negated when the phases

separate.

4.2 Experiments

Only recently has there been experimental activity regarding imbalanced superflu-
ids and superconductors. In the field of solid state physics, a newly discovered heavy

fermion superconductor, CeColns, with a quasi-2D electronic structure has allowed
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for a series of experiments aimed at searching the phase space of a superconductor
in a magnetic field [89-93]. Evidence for an inhomogeneous superconducting state
may indicate the stabilization of the FFLO phase under certain conditions, though

alternate explanations have also been suggested [94].

Our field of ultracold atomic gases has also recently begun a push to explore the
possibilities which may exist for trapped ultracold imbalanced Fermi gases. Shortly
on the heels of the demonstration of pairing [22,95-97], and superfluidity [98-100]
in a two-state spin mixture of fermionic atoms, our own experiments [23,24] and ex-
periments conducted in Wolfgang Ketterle’s lab at MIT [101-103] have demonstrated

that the tools at the disposal of an atomic physicist are well suited for this endeavor.

For these experiments, we have developed a system for creating and probing a
polarized gas of trapped ultracold fermionic ®Li atoms. By utilizing the controllability
and tunability inherent in such a system, we are able to explore many facets of this
problem that have previously not been experimentally accessible. Though much of
the apparatus used for this experiment is described in previous chapters, there are
several additions and modifications specific to creating and probing a polarized gas

that must be described.

4.2.1 Experimental Process

In the previous chapters, a spin mixture of two types of interacting fermionic
atoms was needed to allow for pairing to take place. For the experiments presented
so far, we have used an even mixture of two hyperfine states of ®Li to meet this
requirement. In this way, we have seen that it is possible to create superfluid states
with paired atoms. In much the same way, we may also study a superfluid with

mismatched Fermi surfaces by varying the relative populations of the two spin states.

As in the previous chapter, an ultracold gas of ®Li is transferred from a magnetic

trap to an optical trap. The optical trap used for these experiments is formed from
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a single focussed infrared laser beam at 1080 nm. At transfer, the trap depth is set
to approximately 110 K, and produces trapping frequencies of 4.8 KHz radially and
45 Hz axially. The details and characterization of this trap are given in Chapter 2.

As before, upon transfer to the optical trap, a bias magnetic field is ramped to
a magnetic field within the broad Feshbach resonance. This field is typically either
834 G, the center of the resonance [47,104], or 754 G, on the BEC side. At this field,
the atoms are transferred from state [6) (F = 3/2, mp = 3/2) to state |1) (F = 1/2,
mr = 1/2) by a single RF sweep.

It is at this point in the process where the spin mixture of states |1) and [2)
(F =1/2, mp = £1/2) is created that the experiments in this chapter diverge from

those described previously.

4.2.2 Uneven Spin Mixture

The most obvious experimental change for these experiments is that we now wish
to have a spin mixture that consists of unequal numbers of each state, |1) and |2). As
previously described in Chapter 2, we create an even spin mixture by a succession of
RF frequency ramps that transfer the gas, initially in state |1), to an even mixture of
|1) and |2). After creating this mixture, strong Feshbach mediated s-wave interactions
allow for efficient evaporation in the optical trap. At first impression, we believed that
it would be relatively straightforward to modify this procedure to create an uneven
mixture, and in the end, this proved to be more or less true. However, through the
course of developing this procedure, we have experimented with several pathways for

creating ultracold unequal spin mixtures.

Constraints

The methods we have available for creating a cold, uneven mixture are subject
to two constraints, the first of which is obvious, and the second of which we have

identified through experimentation. First, it is necessary to have both spin states
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present in the trap during the evaporative cooling cycle. Otherwise, there will be
no interactions (identical fermions) and therefore no rethermalization and no cooling
may take place. Second, at the lowest temperatures (after evaporation), when states
|1) and |2) are paired, any manipulation of either state will perturb the other through
their binding or pairing energy. As such, if one atom of the pair is manipulated or
removed, the other member of the pair may be heated. For this reason, the spin
mixture preparation should take place before the gas is paired. The overall result is
that some sort of spin mixture must be prepared prior to evaporation to comply with
the first constraint, but the mixture cannot be even, since manipulation of the spin

populations after cooling tends to result in loss.

Methods

One method for creating an imbalanced spin mixture is to drive atoms from state
|2) to state |3) using RF frequency ramps tuned to the transition frequency (~80
MHz), as shown in fig. 4.3. Once a |2) atom is converted to a |3), it immediately (on
the time scale of the RF sweeps) partakes in a three body collision with an atom each
of states |1) and |2), since the third body negates the suppression of these collisions
that applies when only two fermionic species are present. This collision results in
the loss of all three atoms from the trap. Figure 4.4 shows the population of the
three states as a function of weak RF ramps. Since state |2) atoms are lost faster
than those of state |1), an imbalance may be achieved. In the end, though this
method successfully produced a polarized gas, it also resulted in an unacceptable loss
in total number, so was not pursued further. Along a similar vein, it is also possible
to selectively remove atoms of either state via an optical pulse tuned to a transition
specific to one state or the other. In this case there are no three body losses to contend

with, though this method is again based on removing atoms and so is not optimal.

Instead of starting with an even mixture and making it uneven, as above, we now
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Figure 4.3 An imbalanced spin mixture can be created by driving atoms in an even
mixture from state |2) to state |3) by driving weak ramps tuned to the transition frequency
of ~80 MHz. When this is done within the Feshbach resonance where interactions are
strong, three-body loss removes the state |3) atoms as they are converted. This process also
removes one each of the |1) and |2) atoms. Though this process will create an imbalance,
it does so at the cost of lost atoms as shown in fig. (4.4).
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Population

Number of ramps

Figure 4.4  This graph shows the result of driving the transitions described in the
previous fig. (4.3). The blue (red) data points are the relative population of state |1) (|2)).
The black points are the polarization P. The solid lines are the result of a simulation for
which 2% of the |2) atoms are transferred to state |3) per ramp. Subsequently, each |3)
atom removes two atoms, one of each state |1) and |2).



103

simply stop short of creating an even mixture. The method which proved to be most
reliable consisted of reducing the RF power in the multiple ramps used to drive the
transition between states |1) and |2), described in Chapter 2. This method was chosen
primarily because it produced polarized samples with relatively large majority atom
number, and also provided a way to create unpolarized samples as well. In addition,
this method allowed for a quick turnaround if a different polarization was desired,
since it only necessitated changing a single parameter of the control program.

When using the above method, there is some variation in the final polarization
at the end of evaporation for a given mixture ramp RF power.* The variance in
prepared P for a given setting is effected by experimental quantities such as atom
number, final trap depth and intended polarization range. In general, the scatter in
P increases with increasing P. Typically, there is a scatter of §P/P ~ 0.1 - 0.2 for the
range of 0.1 < P < 0.8, with less scatter at lower P and more at the highest values.
Variations in polarization arise partly because the optical trap evaporative cooling
is quite sensitive to small variations initial conditions, though for the experiments
presented in this work, this behavior is not necessarily a limitation, since a distribution
of polarizations is desired. Changing the RF power between a few settings which
coarsely set the final polarization range of the samples, convolved with shot-to-shot

fluctuations, produces a uniform distribution of polarizations.

4.2.3 Rapid Dual Probing

Since our control over the final polarization of the gas is coarse, it is necessary to
accurately measure the polarization which is actually produced. With this in mind,
and to most accurately characterize the in-situ distributions of each state, we have
constructed an optical probing system that is capable of independently imaging both

states |1) and |2) in rapid succession. From these images, numbers N; and N,, may

*Intentionally prepared even mixtures are the exception, since they are reliably produced
(6P/P = 0), as previously described in Chapter 2.
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be obtained. To quantify the mismatch, we also define the polarization P = %;—xil

The function of the dual probe is to rapidly switch the SLi probe laser between the
two frequencies needed to probe states |1) and |2). In addition, an acquisition system
has been developed that is capable of receiving and recording the rapidly produced
images of states |1) and |2). Figure 4.5 shows the optical layout of the two-species
probe setup (the “dual probe”). The frequency switching is accomplished through
the use of an AOM tuned to the frequency difference between the two optical probing
transitions (~77 MHz).

An acquisition is typically obtained by tuning the probe laser to the proper fre-
quency for probing state |2) during the magnetic trap evaporation, which lasts ap-
proximately one minute. After the final polarization state is prepared in the optical
trap, the probe sequence fires once to probe state |2). In quick succession, the dual
probe system switches the probe frequency and the probe fires again to probe state
|1) (see fig. 4.6). For most of the work presented in this chapter, the delay time
between pulses is 27 us, though some of the earlier data was taken with a delay of
215 us* [23]. As a test for systematic uncertainties arising from the probe order, these
experiments have been confirmed by repetition with the opposite probe order.

In order to acquire images at a such rapid repetition rates, it is necessary to
utilize a specialized CCD camera with the ability to acquire in a mode known as
fast kinetics, where the CCD array itself is used as temporary storage memory. This
application consists of masking off most of the array so that no light may reach it,
thereby leaving a small strip along the top exposedT. After the first absorption image

has been exposed on the top of the array, it is transferred down onto the masked

*The limiting factor for the probe repetition rate is the parallel shift rate of the CCD camera.
The rate for the later data was improved by upgrading our camera. (Andor iXon DV887,
parallel shift rate ~0.5 us/row.)

TFor this data, the exposed region is typically 40-48 rows, out of 512 total. The masking of
the array is accomplished by placing a razor blade at the image plane of the imaging system.
The camera itself un-modified. The shift speed of the new camera (see previous footnote) of
0.5 us/row, plus a 3-5 ps exposure, sets the ~27 us repetition rate.
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| dual | (from probe laser)
AOM |*

Figure 4.5 The optical probes for both states |1) and |2) are produced from a single
beam by this optical setup. To probe both states, a beam tuned to the probing transition
of state |2), enters the “dual” AOM. If the AOM is off, the light (solid line) passes through
and is directed to the “probe” AOM which pulses it on for the specified probe duration,
typically 3 - 5 us. The pulsed beam is coupled into a single mode optical fiber that takes the
light to the atoms, as described in Chapter 2. After the first state (|2)) is probed, the dual
AOM is pulsed on by a pulse delay circuit so that its first blue sideband is shifted by the
drive frequency ~77 MHz, the difference in the probe frequencies of the two states. The first
order of the dual AOM is also directed into the probe AOM via a beamsplitter, and is pulsed
on in the same manner. When the dual AOM is pulsed on, the undefracted beam is reduced
to ~10% of its initial power. Moreover, the remaining light is not well coupled through the
fiber due to its poor spatial mode (and possibly to transient polarization effects). When the
system is properly aligned, leakage of the undefracted beam in the second probe is < 1%
after the fiber.
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G )
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——————————————
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Figure 4.6 The timing diagram of a probe sequence is shown. The probe AOM is shown
as black lines and the dual AOM as gray rectangles. The “atoms” shots are the absorption
probes, and the “no-atoms” shots are identical images taken after the optical trap is cleared
of atoms, and are used for image processing. To reverse the state probe order, the pulse of
the dual AOM is shifted to the first shot. The data in this chapter was taken with a 27 us
delay between probe shots, except for the data in figs. 4.32 and 4.33, which had a 215 us
delay. Probe durations were 3-5 us.
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Figure 4.7 These data show the resonance curves for probing states |1) (left) and |2)
(right). The scale of the Y-axis is the measured number, assuming on resonance probing,
A = 0. The error bars are the standard error of 6 measurements. The frequency is that of
the detuning of the probe laser from a laser referenced to a heat pipe (see text/footnotes).
The red lines are fit to a lorentzian distribution. For state |1) (|2)), the fit gives a central
frequency of 980.2 £ 0.4 (979.8 & 0.4) MHz, with a width of 6.5 £ 1.5 (6.2 £ 1.4) MHz,
consistent with the linewidth of the transition I' = 5.9 MHz. Both resonances are centered
on the same frequency since the dual AOM frequency shift is not included in the plot.

portion of the array, and another image is exposed.

Figure 4.7 shows a measurement of the absorption signal versus detuning taken
using this dual probe setup. For these resonances, the offset of the probe laser is set by
monitoring a beat note formed by overlapping the probe laser with a reference beam
on a photodiode.* Both resonances fit to the same central frequency because the
laser setpoint is held constant while the dual probe AOM accounts for the frequency
difference between the two states. Resonances such as these are used to determine
the precise probing frequency, and in addition, verify that both states can be rapidly
probed using this method.

When the number of atoms in the first state is measured, those atoms are heated

*The reference laser is locked to the ®Li D2 crossover feature, though the absolute frequency
of the beatnote is modified since both beams pass through various AOM’s before being over-
lapped on the photodiode.
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Figure 4.8 Column densities of states |2) (top) and |1) (bottom) in a molecular BEC
probed at 754 G with a delay between probes of 215 us (P = 0). The top image is first
shot probed, and the bottom is the second. The significant radial expansion in the bottom
image is the result of the energy imparted to the atoms through the binding energy by the
removal of the first state probed. This image pair represents the worst case, with long delay
time and relatively tightly bound pairs.

due to the scattering of photons from the probe beam. If the atoms that are probed
are paired with those in the other, unprobed, spin state, energy is coupled between
the two via the binding energy. It follows that the more deeply bound the pair,
the greater the heating. The effect of this heating can be seen in figs. 4.8 and 4.9,
which show the first and second states probed for delay times of 215 us and 27 us,
respectively. In these images the radial extent of the second state probed is larger,
due to expansion during the interval between probes. (The extent of the expansion
is not appreciable on the scale of the axial size of the cloud, so it manifests itself as
a radial broadening.) In order to accentuate the heating effect, these images were
taken in the BEC regime (754 G), where the pairs are bound by ~3.5 uK. Pairs at
unitarity, in the center of the resonance (834 G), are much more weakly coupled, and
so the associated heating is also much less. In fact, for the same probe delay as in

fig. 4.9 (27 us) there is nearly no detectable radial expansion.

In addition to the radial broadening associated with breaking of pairs that occurs
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Figure 4.9 Same as the previous fig. (4.8), except with delay between probes reduced
to 27 us (again in the BEC regime at 754 G). The radial expansion is significantly improved.
Images taken at the center of the resonance (834 G), such as the rest of the data in this
chapter, exhibit nearly no expansion due to the weakly bound nature of the pairs.

between probes, we have found that excessive probe intensity or duration results in
heating of the atoms that manifests as radial broadening during the probe pulse. This
broadening is linked to the number of scattered photons, and so depends on probe

intensity, detuning and duration. The number of photons scattered from the probe

is given by

Sor
Nicatterea =1+ Pee tprobe = 1+ 250 + (2A/F)2 : tprobea (4-2)

where pe is the excited state population, I' is the natural linewidth, A is the detuning
from resonance, and sq = I /I, is the saturation parameter, with saturation intensity
Ia: = 5.1 mW/cm? for the lithium principle transition. The data presented in this
chapter were obtained on resonance at typical intensities of I ~ 0.05 - 0.1 I, for

probe durations, .o, of 3 - 5 us, giving 5 - 15 scattered photons.

4.3 Results

4.3.1 Universal Many Body Parameter, 5, in an Unpolarized Gas at Uni-
tarity

Before continuing on to the imbalanced systems, it will be useful to describe the

measured characteristics of the strongly interacting evenly paired gas at unitarity. In



110

doing so, we again confirm pairing in the gas and establish a starting point for the
later experiments involving imbalanced spin mixtures.

We showed in Chapter 3 that the bare, singlet molecular contribution to the
pairing wave function was small within the strongly interacting regime of the broad
Feshbach resonance in %Li, centered at 834 G. This measurement confirms the ex-
pected result for the case that the Fermi energy is much smaller than the energy
width of the resonance [42-45], and supports the concept of universality for a spin
mixture in a broad Feshbach resonance.

In the following, we will show that this universal behavior can also be observed
through the effects of interatomic interactions. We will see that for sufficiently strong
interactions, the the behavior of the system does not depend on the underlying micro-
scopic details of the interaction. Instead, the interaction strength reaches a maximum
value which is determined only by the fermionic character of the gas, and in this way,
the system is said to be universal, since this limiting behavior is common to all
strongly interacting Fermi systems.

To start, we will consider the equation of state of a non-interacting Fermi gas in

a potential [103],
p=¢€p(r)+U(r), (4.3)

where p is the global chemical potential, €x(r) = A?k%(r)/2m is the local Fermi
Energy, with local Fermi wave vector kp(r), and U(r) is the trapping potential.
With the addition of interactions, the chemical potential is modified by the mean

field energy, so that
p*=ep(r) +U(r) + Upy, (4.4)

where p* is the global chemical potential modified by interactions, Ups o aessn(r) is
the mean field energy with effective atomic scattering length a.r; and density n(r).
For weak interactions, a.ff = as, the s-wave scattering length. As a, is increased,

however, such as in the Feshbach resonance where a; — oo, it is not physical for the
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interaction strength to also become infinite. Instead, a.ss, reaches a limit that is set by
the inter-particle separation, which in a Fermi gas is given by the inverse of the Fermi
wave vector, kp'. This limit is the means by which the universality of the system
arises, since when the scattering length between particles exceeds their separation, the
interactions no longer depend on the microscopic details of the scattering potential.

In addition, the density is also proportional to the Fermi wave vector, n(r) o k¥(r)
[105], which allows the interaction energy term to be written as Upyp o< aeppn(r) o
k%(r). Since this term shares the same dependence on kr(r) as the local Fermi energy

er(r), we may combine terms so that 4.4 becomes
p' =1+ Bler(r) + U(r), (4.5)

where 3 is a dimensionless constant which relates the interaction energy and the local
Fermi energy.
To make better sense of expression, we will substitute an effective particle mass

m* = m/(1 + B) and rewrite eq. 4.5 as
p=ep(r) +U(r), (4.6)

where the local Fermi energy now includes the effective mass €} (r) = A2k%(r)/2m*.
We now see that eq. 4.6 for a unitary gas is simply that of a non-interacting gas (eq.
4.3) with the substitution of the effective mass, m — m*.

Now, for a harmonically trapped non-interacting Fermi gas,
p=er=ho(6N)"/?, (4.7)

where ey is the Fermi energy at the center of the trap, IV is the atom number and
@ = (wawyw,)/? is the geometric mean trapping frequency. Since the oscillation
frequency in the trap is proportional to the inverse of the square root of the mass,

@ o 4/1/m, we may write eq. 4.7 for the interacting case,

p = € = k" (6N)Y3 = ep(m/m*)Y/2. (4.8)
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Using the definition of the effective mass, we now write for strongly interacting

fermions in a harmonic trap in the unitarity limit,
€n = er(1+8)", (4.9)

[65,106,107]. We now write eq. 4.9,

e =€er(l+ B>

1 1
Smwl R = SmwlRpp(1+ 8)Y? (4.10)
R
zZ_ 1 1/4
R (1+5)

in terms of the axial Thomas-Fermi radius calculated for a non-interacting Fermi

9 1/2
Rrr = ( 6F> , (4.11)

2
mw?

distribution,

and the axial radius in the strongly interacting limit, R,.

Since 8 < 0 [73], its effect is to reduce the chemical potential, which in turn results
in a reduction in size of the trapped gas [108] as shown in fig. 4.10. By comparing
the measured (smaller) axial size, R,, of a gas to that predicted for a non-interacting

Fermi gas, Rrr, 8 can be determined from rearranging 4.10 to give
8= (R./Rrr)* - 1. (4.12)

To obtain R,, we first integrate the column density images along the remaining
radial direction, and then fit the integrated profile to a non-interacting integrated
Thomas-Fermi distribution,

2 52
n(z) = A(1 - —}?) 2, (4.13)
z
where both A and R, are adjustable fitting parameters.

Figure 4.11 shows an integrated axial profile for a gas with temperature " < 0.17p,

prepared at unitarity within the resonance, along with the fit used to determine R,,
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Figure 4.10 On the left is a schematic of a 7" = 0 non-interacting Fermi gas in a
harmonic trap. On the right is the same with unitarity limited interactions. The effect of

the interactions is to lower the Fermi energy er by the factor of v/1 + 8 as in eq. 4.9. Due
to the dependence R, 6};/2, the size of the gas is reduced by (1 + 8)/4 (eq. 4.10). A

measurement of R, can therefore be used to find 5.

and the predicted Thomas-Fermi profile of a non-interacting Fermi gas. Figure 4.12
shows results of measurements of R/Rrr. Using Eq.(4.12) and the measured value

R/Rrr = 0.825 + 0.02, we determine
8 =—0.54 £ 0.05, (4.14)

where the uncertainty is derived from the systematic uncertainties of the measured
parameters (see appendix A).

This value for § agrees well with that of theoretical prediction (5 = —0.545)
[107], numerical Monte Carlo simulations (§ = —0.58 + 0.01) [60, 86, 109] and other
experimental measurements using %Li [59, 65, 108, 110] and *°K [111]. Not surprisingly,
our measurement does not agree well with that predicted by BCS mean-field theory,
8 = -0.41 [107).

The agreement with the last measurement using °K (8 = —0.5475%) is partic-

—0.12
ularly revealing, since it provides further evidence that trapped alkali gases within
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Figure 4.11 Black jagged line is an integrated axial profile of state |1) taken at 834 G
with an unpolarized mixture. The red curve is a fit to a 7 = 0 Thomas-Fermi distribution,
given in the text by eq. 4.13, and the green dashed line is the theoretical integrated axial

5/2
T = 0 T-F profile for a non-interacting gas, given by n(z) = 573@; - (1 - Rz; ) / . The
TF

ratio of the measured waist to the non-interacting waist is used to measure .
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Figure 4.12 Sample of measurements of ratio of measured axial waist, R,, to non-
interacting waist, Rrr taken at 834 G with an unpolarized spin mixture.

broad Feshbach resonances are controlled by universal physical properties that are
independent of the microscopic details of the system (such as the type of atom, in

this case).

4.3.2 Phase Separation

We have now shown, both through the direct measurement of pairs, and through
the observation of the universal interaction energy, that the evaporatively cooled gas
is paired when there are equal numbers of the majority and minority atoms, |1) and
|2). In addition, several experiments have shown that such a gas is in fact superfluid
[98-100]. We will now investigate the behavior of such a a gas when the mixture of
the constituent states is imbalanced.

When a spin polarized gas is evaporatively cooled to degeneracy and imaged, the
resultant column density distributions indicate that something unusual is occurring.

Figure 4.13 shows in-situ absorption images, acquired as described previously, of a
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(c) (f)

Figure 4.13  In-situ absorption images of a polarized Fermi gas. The top image of
each sequence corresponds to the column density of majority state (|1)), the middle to the
minority state (|2)), and the bottom to the difference of the two (|1) - |2)). In these images,
the spatial distribution of the minority component corresponds to that of the evenly paired
core, while that of the difference corresponds to the excess, unpaired majority atoms. The
polarizations are (a), P =0, (b), P =0.18, (c), P =0.37, (d), P = 0.60, (e), P = 0.79, and
(f), P =0.95. In each sequence, state |2) was imaged first, followed by state |1). The field
of view for these images is 1654 pym by 81 um. The displayed aspect ratio was reduced by
a factor of 4.4 for clarity. Note that the apparent inversion of aspect ratio of the minority
state in (f) is a result of this scaling.
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spin polarized gas of ®Li. For each polarization, three images are shown: the top
image is of the majority spin state; the middle is the minority; and the bottom is
the difference of the two. In these images, the spatial distribution of the minority
component corresponds to that of the evenly paired core, while that of the difference
corresponds to the excess, unpaired majority atoms. The first images correspond
to an even spin mixture. As expected, the images of the two states are the same,
and the difference image is blank. This case correspond to a completely paired gas.
With increasing polarization, however, the distributions of the majority and minority
become increasingly different. Despite this, a central uniformly paired region persists
up to the highest values of polarization, as evidenced by the complete subtraction
of the two states. A similar experiment at MIT has shown that while it is evenly
paired, the core is also superfluid [101]. As I will show in the following sections, our

measurements also show that the gas is superfluid.

These images suggest that in order to accommodate the mismatched populations,
the excess majority atoms have been expelled from a uniformly paired core. It appears
that in this way, through a phase separation, that the superfluid state is able to
accommodate the excess unpaired atoms. Alternately, such a phase separation may
be explained in the BEC regime [112] where atoms and paired molecules are thought
to have strong repulsive interactions [40]. This may be ruled out however, since as
a result the pair-pair interactions would also be repulsive [40], in contrast to the
negative interactions observed through the measurement of 3. Instead, we attribute
the redistribution as a result of the energy cost of including an unpaired atom into
the paired core [84-88]. This interpretation will be more quantitatively tested in the

coming sections.
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Figure 4.14 The atomic probe (propagating left to right) integrates the atomic density
distribution as it passes through it, and the shadow of the cloud is recorded onto a CCD
array. Due to cylindrical symmetry of the cloud, the resultant column density can be
transformed to reconstruct the true density distribution via an inverse Abel transformation
[113].

4.3.3 Uniform Central Pairing

The difference images in fig. 4.13, show a central hole, which we ascribe to a
uniformly paired region. However, since the 2-dimensional images represent an inte-
gration along the radial direction of the true 3-dimensional density distribution of the
atoms, as shown in fig. 4.14, the contribution to the column density of excess majority
atoms in a radial shell can not be differentiated from that of paired majority atoms in
the trap center. Though it is apparent from the images shown in fig 4.13 that there
is very little accumulation of excess unpaired majority atoms in the radial direction
(thereby minimizing this effect), a quantitative determination of the true polarization
at the center of the gas can not be precisely measured by simple inspection of the
2-dimensional images. Instead, we must reconstruct the true 3-dimensional density

distribution from these images in order to measure the true central polarization.

Cylindrical symmetry of the trap allows the use of an inverse Abel transformation
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Figure 4.15 Center-line axial cut of the reconstructed 3D densities. The black lines
correspond to state |1), the red to state |2), and the green to their difference, for P = 0.35
and N; = 175 k. The signal to noise was improved by reflecting and averaging the column
density images about both the » = 0 and the z = 0 planes before reconstruction. These

profiles show even pairing in the center of the trap, and sharp boundaries between regions
of completely paired and unpaired atoms.

[113] for reconstruction of the true 3-dimensional atomic density distribution of the
minority and majority states from their 2-dimensional projections obtained through
absorption imaging. A cut along the long axis of the density distribution, n(r = 0, z),
that results from this transformation is shown in fig 4.15. From this 3-dimensional
reconstruction, the true atomic density at the center of the trap, n(r = 0,z = 0),
is obtained for each state. In the case that a uniformly paired core exists, both
the central densities will be equal, while the ratio of central densities of two non-
interacting gases is given by (i“_L—If,)l/ ? * Shown in fig 4.16 are the measured ratios of

central densities for clouds of varying P. These measurements show that the ratio of

*
nm_ MN/Vi _ N/R}
D) - Nz/Vg - Nz/Rg (4.15)

where the Thomas-Fermi radius R o« T}/ ? x N8, so

N, /N2 N\ 172
mo_ NN —( 1) . (4.16)

n2 - ]\[2/]\[21/2 - E
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Figure 4.16  Ratio of the central densities vs. polarization for polarized gases prepared
at T < 0.05. The dotted lines correspond to [(14P)/(1—P)]'/2, the expected central density
ratio for a harmonically confined, non-interacting gas at 7' = 0. The solid line indicates equal
central densities. The increase in n;(0,0)/n2(0,0) for P > 0.9 may be explained by slightly
higher temperatures for these data that are the result of reduced efficiency in evaporative
cooling at very high P. This inefficiency arises due to the decreasing rethermalization
efficiency associated with the diminishing population of state |2).
ni(r =0,z =0)/nz(r =0, 2 = 0) remains constant and equal to unity for all but the
highest polarizations. This result is consistent with the predicted behavior of a phase
separated gas [114].

From fig. 4.16, we verify that the pairing in the center of the trap is indeed
complete, as was suggestéd by the in-situ images. This uniformly paired core is a

necessary, but not sufficient, condition for phase separation, however, since a polarized

With Ny /N, = (1+ P)/(1 - P),

ni  [(1+P\Y?
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superfluid state that possesses a uniformly paired core without phase separation has
also been predicted (see for example [115]).* Such a polarized superfluid exhibits
a gradual change in local polarization in the transition region from the uniformly
paired core to the unpaired shell, while for the case of phase separation, the boundary
between phases is expected to correspond to a first order transition characterized by
a sudden jump in local polarization. In order to differentiate between these cases, it
is necessary to further characterize the gas, and in particular the boundary between
the paired core and the excess unpaired atoms. Along these lines, fig. 4.15 shows that
the change from fully paired to fully polarized is quite sudden, with no appreciable
transition region. This behavior suggests that a phase separation, characterized by a
first order transition between phases, has occurred. This interpretation will be further

strengthened in the following sections.

4.3.4 Deformations and Aspect Ratio

In addition to the persistence of a uniformly paired core with sharp boundaries,
several other phenomena are hinted at by a simple inspection of the images shown
in fig. 4.13. It is clear, for example, that while the axial size of the minority state
decreases with increasing P, the radial size remains nearly constant, and matches that
of the majority. This behavior is also evidenced through the preferential accumulation
of the excess majority atoms at large axial extent, and their relative deficit in the
radial direction. In order to quantify this deformation, we measure the aspect ratio
(AR) of the density distribution of each component, defined as the axial size divided
by the radial size, and plot it versus polarization, P.

The radial size of the component clouds is determined by fitting the column density

to a non interacting Thomas-Fermi distribution (for fermions) A(1— ;—22)2, where both

*However, as previously mentioned, the evenly paired core at high P strongly suggest phase
separation [114].
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A and R are adjustable fitting parameters.* While this functional form provides a
good fit and a useful measure of the radial size for the majority and minority states,
the same is not true for the axial dimension. Shown in fig. 4.17 is the Thomas-Fermi
fit applied to the axial distributions of the minority and majority. From the poor
fits, it is clear that this function is not optimal for finding the axial size of the gas.
This also indicates that the pairing induced deformation more strongly affects the
gas in the axial direction. To more accurately represent the data in this case, it is
advantageous to determine the axial sizes of the deformed profiles through an edge
finding routine that extrapolates the profiles and determines the axial extent at which
the distributions go to zero. These fits are also shown in fig. 4.17.

Figure 4.18 shows the AR of the minority and majority clouds as a function of P.
From this plot we can see that while the AR of the majority remains nearly constant
(and equal to that of the trapping potential), that of the minority steadily decreases
with increasing P, and continues for all P. In fact, over the entire polarization range,
the AR of the minority distribution decreases by an order of magnitude.

This deformation also manifests through the difference of the integrated axial
profiles. Figure 4.19 shows the integrated axial distributions for both the minority
and majority states, as well as their difference. From this figure, it is evident that
the spatial deformations in the profiles of the minority and majority states lead to
the observed double peaked structure of the difference profile. While, in general,
this deformation is not a criterion for phase separation, for all our measurements,
we observe that the deformations and characteristic double peaked profiles always
accompany phase separation, as identified by the central density ratios and sharp
boundaries.

Despite providing a useful signature for phase separation, the observed deforma-

*The functional form of the T-F distribution for fermions is determined from the integral of
the 3-dimensional density distribution of the atoms, which has an exponent equal to 3/2. The
single integration to get column density increases the exponent to 2, and a second integration
gives 5/2 power. See also appendix B.
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Figure 4.17 Integrated axial distributions for the majority (|1), top) and minority (]2),
bottom) states in a phase separated polarized cloud with P = 0.43 and Ny = 1.35x10°. The
T = 0 T-F fits (red) no longer provide a good fit, due to deformation of both the minority
and majority. To find the extent of the clouds, an edge finding algorithm is used instead
(green line).
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Figure 4.18  Aspect ratio vs. polarization. The ratio of the axial to the radial di-
mensions, R,/R,, is shown for state |1) by the black circles and for state |2) by the red
crosses. The radii R, for both states are determined by fitting the column density profiles
to zero-temperature, fermionic Thomas-Fermi distributions. The axial distributions are dis-
tinctly non-Thomas-Fermi-like, so R, is found by a simple linear extrapolation of the column
density to zero. An aspect ratio of 36 is the expected value for a non-interacting gas with an-
harmonic corrections, in reasonable agreement with the observations. The uncertainty in P
is 0.04, which is the standard deviation of polarization measurements deliberately prepared
as P = 0. There are shot to shot variations in N; and a small systematic variation towards
larger N; at smaller P. For P < 0.40, N1 = 170 k £ 40 k, and for P > 0.40, N; = 135 k £ 25
k, where the uncertainty is the standard deviation of the measurements. The corresponding
average Fermi temperature is Tr ~ 430 nK, where we define Tr = hi(w?w,)'/3(6N1)'/3 /kp.
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Figure 4.19 The integrated axial density distributions of the majority (|1), black) and
minority (|2), red) of a phase separated imbalanced gas (P = 0.50, N1 = 1.46x10%) are
shown on the left along with their difference (green) on the right. Deformations of the
integrated profiles leads to the central dip evident in their difference. The central bulge in
the state |1) profile is indicative of strong attraction between atoms in the core region.

tions are still unexpected. In fact, they are practically forbidden, since they indicate
a violation of the local density approximation (LDA) [116]. Simply speaking, the
LDA is a tool used to adapt calculations for systems such as these in such a way as to

incorporate the effects of a trapping potential. The LDA works by relating a spatially
dependent chemical potential x(7) to the trapping potential Uy.qp(7), as in

(F) = to = Utnap(7). (4.18)

(This is essentially the Thomas-Fermi approximation.) As such, the boundaries of
trapped atom clouds should follow the trap equipotential surfaces, which are ellipsoids
in harmonic traps.

Following our initial observation [23], the expected density distributions for a
phase separation in a harmonic trap were calculated under the assumption of the
LDA [117-121]. It was pointed out that the difference of the integrated axial profiles
of a gas with a uniformly paired core should be flat-topped [116, 122], such as is shown
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in fig. 4.20, whereas we observe the double peaked difference distributions (fig. 4.19).

The LDA is generally valid for fermions when there are no size scales smaller that
the inverse Fermi momentum , kz' [123]. The smallest dimension of our clouds is
the radial size, typically 10 - 20 um, which is much larger than the typical value of
kz! ~ 0.3 pym [24], so the violation is surprising.

In addition to providing a signature for phase separation, the deformations also
provides a signature of a violation of the LDA. While these two seem to go hand in
hand in our experiments, no LDA violations were observed in a similar experiment
which also utilized in-situ imaging of an imbalanced Fermi gas [103]. We will re-
turn to this point later, after discussing some possible mechanisms for explaining the

deformations.

4.3.5 Mechanisms for Deformation

Here we will compare possible causes for the unexpected spatial deformation of

the imbalanced gas in our experiment.*

Role of Anharmonicities in the Optical Trap

The calculated axial density profiles shown in fig. 4.20 assume a harmonic trapping
potential and the LDA. As presented in Chapter 2, the trap used for these experiments
is formed from a focussed laser beam with a gaussian intensity profile that forms
a corresponding gaussian potential. Since the observed density profiles (fig. 4.19)
deviate from those predicted to occur in a harmonic trap under the LDA, we must
rule out the non-harmonic aspect of the trap as the cause of the deformations in order
to confirm a violation of the LDA.

As previously described, the optical trap potential is augmented with a magnetic

saddle point that provides additional confinement in the axial direction. The overall

*Imambekov et al. have investigated such deformations in the BEC limit [124], though since
we are currently working in the strongly interacting regime, this work is only mentioned here.
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Figure 4.20 Calculation of T = 0 doubly-integrated T-F density distributions of a
polarized Fermi gas with a uniformly paired core (P = 0.45), consistent with the LDA
in a harmonic trap. Shown are the majority (black) and minority (red) states, as well as
their difference (green dashed). The doubly integrated shell of unpaired atoms leads to a
flat-topped difference distribution, whereas our data exhibits a sharp dip (see fig. 4.19).
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potential has the form

Ulr,2) = Lm0, (1 - Yo o5 419
(T',Z) 2msz + 4 ’LUZ(Z)e ) ( ‘ )

where wp = (27) 6.5 Hz (at 834 G), w, = 26 um, w(z) = w, (1 + (z/zo)2)1/2, 2, =
Ry/M? = 1.68 mm, with Ry = 1.97 mm, M? = 1.17, and peak trapdepth, U, =
U(r = z = 0), defined in Chapter 2 (2.2.2). Also in Chapter 2, we calculated
this trap’s oscillation frequencies from a harmonic approximation to the gaussian
potential. While this approximation is valid for small excursions of the atoms from
the center of the trap, larger excursions lead the necessity for inclusion of additional
terms in the approximation. Since the size of a trapped Fermi gas is determined by
its Fermi energy, rather than by its temperature, such a gas can having a relatively
large extent, even at low temperatures. This may be the case in our experiments, so
to quantify the effect of the extended size of the trapped gas, we expand U from eq.
4.19 in terms of r% and 2z%.

M 2, 2 2174
U(r,z)z(%mw%-l—UT)z?—i-( U)(I—T——TZM)?*Q. (4.20)

2 2 2
0 Wy Wo %o

In the case of the low optical trap intensities used for these experiments, the dominant

contribution to the axial potential is the harmonic magnetic confinement, since

1 2
EmwB

U M*
%

For this reason, we omit factors of z* in the expansion.

~ 2.4. (4.21)

For these experiments, the radial and axial sizes (radii) are typically R, < 18um,
and R, < 600um. These numbers give an upper limit for the relative strength of
the quartic, r*, term to the quadratic r? term of (R,/w,)?> ~ 0.48, which is not
insignificant. In addition, the 22r? cross term modifies the radial harmonic frequency
with axial position, z, and vice versa. In the first case, the the radial confinement is

reduced at maximum z = R, by a factor with a relative strength of 2(R,/z,)2M* ~
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0.25 of the quadratic term. In the second case, the optical component of the axial

confinement is actually inverted at maximum r = R,, since 4(R%/w?) > 1.

This expansion indicates that the non-harmonic terms are not necessarily neg-
ligible, so we will now further characterize the effects of the anharmonicities by a
simulation of the trapped gas in the full potential U(r,z) given in eq. 4.19 (not
the expansion). To model the two spin components, two atomic distributions are
generated in the 3-dimensional potential, U(r,z). The density distribution of the
majority gas is determined from the LDA by eq. 4.18, and so takes the same form as
the potential. The minority density distribution is set equal to the majority density
within some equipotential surface, and set to zero elsewhere. This situation models a
phase separated two component gas that consists of a uniformly paired core and an

unpaired, single component, shell.

Figures 4.21 and 4.22 show the integrated axial and radial distributions of the
simulated density distributions under the conditions of the the data in this chapter.
These profiles differ from that shown for the case of a harmonic trap in such a way
that the difference profile of the axial (radial) integrated density has a peak (dip).
These features can be understood as a result of the extra majority atoms that spread
into the weaker gaussian “wings” of the radial potential and add to the integrated
axial profile. This occurs to a lesser extent for the minority atoms, which are lower
in the potential and therefore more harmonically confined. This spilling over of the
majority state in the radial direction is mediated by the nearly harmonic confinement

that remains in the axial direction.

To further characterize the effects upon the density distributions of the filling
of the non-harmonic portions of the trap, we now increase filling to the maximum
possible. Figures 4.23 and 4.24 again show integrated axial and radial distributions,

though in this case, the chemical potential of the atoms is set to completely fill the
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Figure 4.21 Calculation of T = 0 doubly-integrated T-F density distributions of a
polarized Fermi gas with a uniformly paired core, consistent with the LDA in the trap
described by eq. 4.19. Shown are the majority (black) and minority (red) states, as well
as their difference (green dashed). In this case, trapping parameters and atom numbers are
representative of the data presented in this chapter: U, ~ 0.5 uK, Ny = 170k, P = 0.5,
p1 /U, = 0.77, phermonic /U7, = 0.85, M? = 1.17, and B = 834 G. y; and phormonic are the
true and calculated chemical potentials for the majority state. (See text and footnote.)
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Figure 4.22  Same as previous figure (4.21), radial direction.
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Figure 4.23 Same as fig. 4.21, except with completely filled potential (u; = U,).
Again, trapping parameters are representative of the data presented in this chapter, but
number is increased: U, ~ 0.5 uK, Ny = 440k, P = 0.5, u1/U, = 1.0, pparmonic /[ = 1,17,
M? =1.17, and B = 834 G.
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Figure 4.24 Same as previous figure (4.23), radial direction.
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trap, u1 = U, where u; is the chemical potential of the majority (|1)) state.* These
distributions are similar to those shown previously, save for their increased size and

the enhanced peak/dip of the their difference.

Finally, we will calculate the effects that the gaussian beam propagation parameter
M? has on the density distributions. While, in Chapter 2, we measured this parameter
to be M? < 1.17 for our trap (M? = 1 for an ideal beam), it is still instructive to
investigate the sensitivity of the density distributions to this parameter. M? enters
into the potential through the 22 coefficient (as M*), where, by decreasing the effective
Rayleigh length, z,, of the trapping beam (see eq.’s 4.19, and 4.20), an increased M?
increases the steepness of the axial potential. In addition, M? determines the strength
of the r22? cross term in eq. 4.20 (again, as M*). Figures 4.25 and 4.26 show that by
sufficiently increasing M? (in this case, M? = 5), a small dip in the axial distribution
can be realized under the (remaining) conditions of these experiments. Even given this
extremely large M? value that overestimates its effects by a factor of 1.172/5% ~ 18,
the predicted profiles do not closely resemble those of the data. For the case of no
magnetic contribution to the potential, this dip may arise at lower values of M?,
though it is accompanied by a significant deviation (from ellipsoidal) of the majority

state’s density distribution.

From this study, we may conclude that although some deviation from the predicted
profiles for a harmonic trap should be expected, these deviations, and in particular,
the bulge in the axial difference profile in fig. 4.21, are actually contrary to those
observed in the data. In addition, the magnitude of the these deviations, even with

exaggerated anharmonicities, are slight compared to those observed.

*Note that p; is the actual chemical potential of the majority state and not that calcu-
lated using the atom number and approximated harmonic frequencies (ufermonic = ¢p =
h@(6N1)1/3). Such a calculation can give a quantity that is actually greater than the trap
depth, as in figs. 4.23 and 4.24.
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Figure 4.25 Same as fig. 4.21, except with M? = 5. U, ~ 0.5 uK, Ny = 172k, P = 0.5,
p1/U, = 0.875, phermenic /7 = 1.12, M? = 5, and B = 834 G.
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Figure 4.26 Same as previous figure (4.25), radial direction.
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Surface Tension

Surface tension is a familiar phenomenon that arises in many situations. For
example, it is the mechanism responsible for the beading of water on a waxed surface,
and the formation of the meniscus at the top of a liquid filled beaker. This tension
also gives the a water bug the ability to walk on water without breaking through
the surface. In these situations, surface tension occurs at the boundary of a liquid
with another solid, liquid or gas (or vacuum). In these instances, surface tension
arises because of the affinity that the molecules in the liquid have for one another
compared to that for the surface they are interfacing with. In the cases for which
there are attractive interactions between particles in a liquid (as is the case for water
molecules), the particles in the interior of the system feel attractive forces in all
directions, such that these forces cancel. Surface tension arises when particles at the
edge of the system only feel attraction from one side (the inside), since they are not
attracted to the other substance, be it a liquid, solid or vacuum. In such an instance,
the resulting lowest energy state of the system is that with minimum surface area.
This is, for example, why a falling droplet of water becomes a sphere: the shape of

minimum surface area for a given volume.

It has been proposed by DeSilva and Mueller that, in a similar fashion as the
examples above, surface tension exists between the superfluid core and the normal
unpaired majority atoms [125]. Furthermore, it is predicted that in a high aspect
ratio trapping potential such as ours, this surface tension may lead to deformations
such as those observed in the experiments. In this case, the deformations provide
a means to minimize the surface area of the interface between the superfluid paired
phase and the unpaired normal phase.

Figure 4.27 shows axial difference profiles predicted by a calculation that takes into
account the effects of surface tension. Also shown in this figure are our experimental

profiles, which agree well with the calculation. This work also predicts that the effects
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Figure 4.27 (Adapted from reference [125].) Axial density difference profiles of zero
temperature harmonically trapped unitary Fermi gas in units of 10° cm™'. (a), (b), and
(c) represent polarization P = 0.14, 0.53, and 0.72, respectively. The gray points are our
experimental data {23]. The dashed line shows the predicted zero surface tension density
difference, while the solid line model includes surface tension between phases.
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Figure 4.28 The minority (|2)) column density of a phase separated gas with Ny =
0.39x10%, and P = 0.72. The spatial distribution, which corresponds to that of the paired
core, is noticeably non-ellipsoidal. This deformation is attributed to the surface interaction
energy between the superfluid paired core and the normal unpaired majority atoms. A for-
malism has been developed to facilitate analysis of such misshapen clouds, and is described
in the text.

of surface tension will have less of an effect on the spatial distribution as the aspect
ratio of the trap is lowered. This may also be the first clue as to why no deformations
were reported in a similar experiment performed at MIT, as their trap has a lower
aspect ratio, ~5.6 [103], compared to ours, ~35 [24]. On the other hand, more recent
work [126] has indicated that the surface tension effects, though small, should still be

measurable in their case.

Figure 4.28 shows an absorption image of the minority state from a polarized gas.
Aside from having a reduced aspect ratio, as already discussed, the cloud appears
non-elliptical and exhibits a somewhat cylindrical shape which is abruptly capped off
at the ends.

Motivated in part by this observation, Stoof and Haque have developed a method
for analyzing data such as ours through an extension of the LDA which allows for a
directional dependence of the local Fermi surface [126]. Using this anisotropic for-
malization allows for clouds with arbitrary, non-ellipsoidal geometries to be explicitly
represented (figs. 4.29 and 4.30). In the context of surface tension, this has allowed
for an analysis of the details of the distortion and the surface that causes it.

In the unitarity limit, the surface energy involves just one universal constant, 7,

[125,126]. By using the value of the universal surface energy constant 7, determined
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Figure 4.29 (Adapted from [126]) Generalized shapes used to describe the deformed
core surface. Boundaries are defined by (r/R)Y +(2/Z)" = 1, where v = 2 gives an ellipsoid,
and v = oo gives a cylinder. Shown are profiles for v = 2, 4, and 9.

from the deformation of our data, the expected deformations in similar systems can
be predicted as a function of atom number and trap aspect ratio, as shown in fig.
4.31. Curiously, the authors of ref. [126] find that given experimental parameters
reported by Shin et al. [103], surface tension resulting from a phase separation should
have produced small, though measurable, deviations from the LDA (deformations),

however none were reported.

4.4 Critical Polarization

In our first experiments on imbalanced Fermi gases, we found that phase sep-
aration, and the accompanying deformations, were only present beyond a critical
polarization, P, = 0.1 [23]. This result is in contrast to the later data, where the gas
is observed to phase separate for any non-zero value of polarization [24]. The onset of
the critical polarization is shown in fig. 4.32, where the axial profiles of the minority
and majority states, as well as their difference at varying degrees of polarization are

shown. Part a) in this figure are profiles of an even spin mixture, and fit well to the
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(Adapted from [126]) Fits to majority, minority and difference axial density
distributions, taken from our data, using deformed core shapes, as shown in fig. 4.29. (a)
shows the fit for v = 2, and (b) shows v = 8. In the fits of (a), the sharp features of the
density distributions are missed, whereas in (b) they are overemphasized. The authors of
ref. [126] find that values of v between 3 and 6 best reproduce the data. (Note that these
fits also include the effects of surface tension.)
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Figure 4.31 (Adapted from [126]) This plot shows the expected magnitude of deforma-
tion due to surface tension effects for different trapping geometries and atom number ranges
for a fixed polarization P = 0.49. This calculation uses the universal (at unitarity) surface
tension constant determined from our data. The green spots show the regions where the
two groups working in this field operate. (Rice trap, this work; MIT trap, refs. [101-103].)

non-interacting Thomas-Fermi distributions, also shown. Part b) corresponds to a
polarized gas that has a polarization less than P,. The profiles of this polarized gas
fit well to to the Thomas-Fermi distributions as well, where the increasing polarization
leads to a larger amplitude for the majority. As a result, for this polarization, taking
the difference of the two profiles leads to a monotonic profile with a central maximum,
and not the twin peaked structure that indicates deformation. As the polarization is
increased beyond P,, however, the twin peaked distribution abruptly appears, as is
shown in part c). We should also note that the onset of the deformations may also be
discerned from the distinctly non-Thomas-Fermi-like distribution that the minority
assumes, as evidenced by the poor fit. Above the critical polarization, the wings
of the distribution become truncated and sharply go to zero, while the central peak
height is enhanced. As higher polarizations are attained, the height of the integrated

minority distribution begins to shrink, though the deformations remain.
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Figure 4.32  Axial density profiles at 830 G. For the curves on the left, the blue (red)
data correspond to state |1)(]2)), while the green curves on the right show the difference
distributions, |1) —|2) . The axial density measurements are absolute and without separate
normalization for the two states. The solid lines on the left curves are fits to a Thomas-
Fermi distribution for fermions, as described in the text, where the fitted parameters are
A and R. (A) P = 0.01, Ny = 6.4 x 10% (B) P = 0.09, N; = 1.0 x 10%; (C) P = 0.14,
N; = 8.6 x 10%; (D) P = 0.53, N; = 6.8 x 10*. The state |2) distributions reflect the
distribution of pairs, while the difference distributions show the unpaired atoms. Phase
separation is evident in (C) and (D).
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In fig. 4.32 the axial size of the gas for the minority state is seen to decrease once
the critical polarization is past. We may better quantify this effect by plotting the
fit Thomas-Fermi radius, normalized by the radius calculated for a non-interacting
Fermi gas with given number and trap frequencies, as a function of P. (Note that
while the Thomas-Fermi profiles do not provide a great fit for the axial distributions

of polarized gases, they still provide a reasonable estimate of the cloud size.)

From the plot shown in fig. 4.33, we see that at low polarization, the axial
sizes of both the majority and minority species are reduced from that expected for
a noninteracting Fermi gas. Recall that this reduced axial size (of evenly paired
shots) was used previously in Sec. 4.3.1 to determine the universal interaction energy
constant 8. At a polarization of around 0.1, corresponding to P., the normalized
axial sizes of the minority and majority suddenly diverge. While the majority size
approaches that of a non-interacting Fermi gas, that of the minority steadily decreases

up to the highest measured polarizations.

The seeming inconsistency associated with the presence [23] and subsequent ab-
sence [24] of a critical polarization, may in fact offer a clue as the the bigger picture
of what is going on with this system. As we shall see shortly, the sudden transition
from the polarized homogeneous gas to the deformed, phase separated gas is consis-
tent with crossing a phase boundary between a polarized superfluid (i.e. Sarma or

breached pair), and a phase-separated gas 78,79, 127] at non-zero temperature.

4.5 Temperature Dependence

Since the above behavior suggests the possibility of a temperature dependent
phase diagram, we must adopt a method to measure the temperatures of the gases

that we create.
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Figure 4.33 R/Rrrp vs. P. The ratio of the measured axial radius to that of a non-
interacting Thomas-Fermi distribution are shown as blue open circles for state |1), and red
crosses for state |2). The data combine 92 independent shots. The dashed line corresponds
to the estimated critical polarization, P, = 0.09, for the phase transition from coexisting
to separated phases. The images are of sufficient quality that the assignment of phase
separation is ambiguous in only two of the shots represented in this figure. Our contention
for a phase transition at P, is based on statistical evidence: none of the 31 shots deliberately
prepared as P = 0 and only one with a measured P < 0.07 are phase separated, while all
but two shots with P > 0.11 are. The width of this transition region is consistent with
our statistical uncertainty in the measurement of P. Although fluctuations in absolute
probe detuning lead to 15% uncertainty in total number, the difference in the two probe
frequencies is precisely controlled, resulting in lower uncertainty in P. We estimate the
uncertainty in a single measurement of P to be 5%, which is the standard deviation of
measurements of P for distributions prepared as P = 0. Also from these distributions, we
find no significant systematic shift in detection of relative number. The uncertainty in the
ratio R/Rrr is estimated to be 2.5%, due mainly to the uncertainty in measuring v,. The
uncertainty in R/RrrF for state |2) grows with increasing P due to greater uncertainty in
the fitted value of R with decreasing N,.
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4.5.1 Temperature determination

In many situations, the temperature of a trapped atomic gas can be determined
from a measurement of the size of the gas and knowledge of the confining potential.
In general, for a thermal gas in a curved (i.e. not box shaped) potential, higher
temperatures lead to larger atom clouds, since the kinetic energy associated with the
temperature allow the atoms to sample more of the potential. By their very nature,
however, highly degenerate trapped Fermi gases are difficult to accurately characterize
in terms of temperature. This is due to the fact that when a gas of identical fermions
is cooled, Fermi statistics require the atoms only fall to the lowest unoccupied level.
This characteristic means that as temperature is decreased, the spatial distribution of

the Fermi gas is determined more by the Fermi energy, and less by the temperature.

This stabilization of size by the “Fermi pressure” is exemplified in fig. 4.34 [6], the
first such observation in a trapped gas of fermionic atoms. For this data, the temper-
ature of the Fermi gas was determined from that of a coexisting Bose gas of “Li. This
technique was used since the sizes of trapped bosonic gases are typically much more
dependent on temperature than comparable gases of fermions (unless interatomic in-
teractions are very strong, which they are not in this case). Unfortunately, it is not
possible to use such a technique for the current experiments since the introduction
of a third species, such as a gas of bosonic "Li, to the spin mixture within the Fes-
hbach resonance results in a three-body loss (see fig. 4.4). Instead, we estimate the

temperature of our samples using a couple of independent methods.

The first method that is used to estimate the temperature of our fermionic atoms
requires turning them into bosons. This is done to take advantage of the more striking
dependence on temperature the bosonic particles exhibit. In the BCS limit, as well
as in the crossover, the fermionic nature of the atoms dominates their behavior, and
no obvious signatures appear when the pairs condense (at least in the case of an even

mixture [102]). By virtue of the broad Feshbach resonance, we may continuously tune
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Figure 4.34 Demonstration of Fermi pressure: At higher temperatures, the size of the
gas behaves classically (black dashed line), however, at lower temperatures, Fermi degen-
eracy prevents the size of the gas from continuing to shrink. Plotted is the square of the
1/e axial radius, r, of the %Li clouds versus T/Tr. The radius is normalized by the Fermi
radius. The solid line is the prediction for an ideal Fermi gas, whereas the dashed line is
calculated assuming classical statistics. Several representative error bars are shown. These
result from the uncertainties in number, temperature and measured radius. (Figure taken
from ref. [6].)
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our pairs of atoms from weakly bound Cooper pairs to deeply bound bosonic molecules
as was exemplified in Chapter 3. When the interactions are tuned to the BEC regime,
the bosonic nature of the pairs becomes appreciable. As such, the spatial distribution
can be observed to progress from that of a classical gas at higher temperatures, to
the bimodal distribution of a partially condensed gas at lower temperatures. At this
stage, the temperature may still be determined by a fit to the thermal portion of the
cloud.

In addition, as already discussed in Chapter 3, T/T'c may be estimated from the

measured condensate fraction No/N since

No T\*
~=1- (T) : (4.22)

with ¢ = D/a = 3 since D = 3 is the dimensionality, and o = 1 for a harmonic trap
(66, 67].

At the lowest temperatures, a nearly pure condensate emerges, and no measurable
non-condensed fraction remains. As done in Chapter 3, we can place a lower limit on
the condensate fraction of ~ 0.9 which gives T/T, < 0.5. This measurement, when

made in the BEC limit, gives an upper limit on the temperature of 7' < 0.26 Tp,

TEF < (%) (%) =05 <%) =0.26 (4.23)

At unitarity (1/kpa = 0), the temperature would be estimated to be T < 0.15

since

Tr, since T,/Tp =~ 0.3 [12,128-131]. The temperature of a pure molecular BEC
observed at 754 G (1/kra ~ 1.5), near the field limit where the condensate is still
distinguishable from thermal atoms, should fall somewhere within these limits. In
addition, as discussed in Chapter 3 (3.2.2), adiabatic sweeps from BEC to unitarity
result in additional cooling.

While the above method sets a constraint for the upper limit of the temperature, it

becomes insensitive at lower temperatures since no visible thermal fraction remains,
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and the condensate distribution is no longer affected by temperature. In order to
measure lower temperatures, a new method must be adopted. Ideally, such a method
would allow for a determination of the temperature directly from the data of interest,
taken at arbitrary interaction, and not rely on a calibration taken at a different field,
such as above. At a minimum, this would reduce the chances of a systematic error in
temperature determination due to effects of ramping the magnetic field. Analysis in
the unitary regime of strong interactions, however, further complicates the prospects
of directly determining temperature. This is due to in part to the complex make-
up of such a gases at finite temperatures (condensed pairs + non-condensed pairs +
unpaired atoms [132]), combined with the lingering insensitivity of the distribution
of the gas to temperature variations.

Despite these difficulties, it is still possible to determine an effective temperature
by fitting a profile of the trapped gas to a finite temperature Thomas-Fermi distri-
bution. Our method is comparable to that previously developed in a collaboration
between the Levin and Thomas groups [110,132]. Details regarding the specifics of
our fitting analysis are provided in Appendix B.

The result of this method is a dimensionless effective temperature parameter, T,
which at a minimum, allows us to compare the temperatures of our various data.
In addition, T has been calibrated to the actual temperature, T/Tr [110]. This

calibration is approximately given by

T — (4.24)
T TeyT+ B '
where 5 = —0.54 is the universal many body parameter we measured in sec. 4.3.1.

A more refined calibration is given in Appendix B.
4.5.2 Temperature Results

As discussed earlier, the polarized (P # 0) shots do not fit well to Thomas-Fermi

distributions. To circumvent this effect, fits to the non-interacting wings of polar-
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ized gases (in time of flight) have been used to find temperatures [102]. It has been
pointed out, however, that the expansion dynamics of a partially paired gas may
add uncertainty to the results obtained by this method [115] since the strongly inter-
acting superfluid core should expand hydrodynamically, whereas the non-interacting
unpaired atoms should expand ballistically.

Even though our data is taken in-situ (in the trap), and so should not be suscep-
tible to this effect, fitting the wings of the distributions has still proven problematic.
Difficulties arise because the deformations of the core also affect the unpaired atoms,
since they tend to pile up against the hard wall potential formed by the uniformly
paired core. As a result, we assign the temperature for a given data set by fitting
temperatures to shots which have been intentionally prepared as unpolarized (P = 0).

We find that the fit temperature of the data that exhibits P, [23] is T ~ 0.1, while
the data that exhibits phase separation at any non-zero polarization [24] is found to

have a significantly lower temperature of T < 0.05.

4.6 Raise the Temperature

The temperature dependent behavior of the polarized gas, specifically the pres-
ence or absence of a critical polarization, hints at a more rich system than initially
anticipated. In order to further characterize this system, we have also produced data
with fit temperatures T ~ 0.2 by intentionally halting the optical trap evaporation
at a higher final trap depth.

Figure 4.35 shows column density images, along with integrated axial densities and
their difference, for both the lower (I' < 0.05) and higher (T ~ 0.2) temperature data.
While the difference axial profile of the colder data shows the double peaked structure
that indicates deformations, such features are absent in the warmer data, which shows
the flat-topped difference profile predicted under the LDA. It is immediately evident

from these images that the deformations present in the colder data are significantly
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Figure 4.35 In-situ absorption images and integrated profiles. To the left are absorption
images, while the plots to the right are the corresponding axial density distributions. (a),(b):
P =0.50, N1 = 146 k, with T' < 0.05; (c),(d): P =0.45, Ny = 374 k, with T ~ 0.2.



152

Y [
70 - X 5
L °§°Qg§68 X X [+ 6 .

2 @ ax 5% u'd 8o o
o 60- 9§§%§g§< :égg(;zsjgig %ng 7
e) . 5 ;
S 0, x X -
B 40 i
()] J J
& 30- )
< . .
20+ -
10- -
o
00 02 04 06 08 1.0

P

Figure 4.36  Measured aspect ratio R,/R, of states |1) (black circles) and |2) (red
crosses), extracted from data taken at higher temperature (T' ~ 0.2). Both the axial and
radial sizes are measured by fitting column density profiles to zero-temperature, fermionic
Thomas-Fermi distributions. In contrast to the colder data shown in fig. 4.18 (f < 0.05),
the aspect ratios of the two states are equal for all measured P. The constant aspect ratio
shows the absence of deformations in the data taken at higher temperature. The measured
values are in good agreement with that predicted from the ratio of the radial to the axial
frequencies v, /v, = 62.

reduced, if not completely gone in the higher temperature data. In fact, a plot of
aspect ratio versus P shows that the shapes of both the majority and minority clouds

remain the same (fig. 4.36).

Despite the lack of deformations, a reconstruction of the true 3-dimensional atomic
density distributions reveals that even up to moderate polarizations, a uniformly
paired core remains for the higher temperature data. Figure 4.37 shows that the
central densities of the majority and minority remain equal up to a polarization
of P ~ 0.6 — 0.7. Beyond this point, the core becomes polarized. This behavior
contrasts with that of the lower temperature spin mixtures, where the core remaines

evenly paired up to a polarization of P ~ 0.9 (fig. 4.16), but is in better agreement
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Figure 4.37  Ratio of the central densities vs. polarization for polarized gases prepared
at T =~ 0.2, with average N1 = 500 k. The dotted lines correspond to [(1 + P)/(1 — P)]'/2,
the expected central density ratio for a harmonically confined, non-interacting gas at T' = 0.
The solid line indicates equal central densities.
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with the results reported by Shin et al. who found that uniform pairing ceased at
P ~ 0.75 [103].

In addition, the reconstructed density profiles show that there is a region of grad-
ually increasing polarization between the unpolarized central region and the unpaired
atoms. This partially polarized region is strikingly different from the sharp transition
region observed in the colder, deformed gases. This difference is also apparent in the

integrated profiles shown in fig. 4.35.

4.7 The Big(ger) Picture

Hopefully now, with the additional clues gleaned by characterizing the behavior
of the polarized Fermi gas at various temperatures, we may begin to form a unifying
picture of the underlying system.

Here is what we know so far:

At the lowest temperatures (T < 0.05), we see LDA violating deformations which
are likely a result of surface tension, even central pairing for nearly all P, and sharp
phase boundaries between paired and unpaired regions.

At slightly higher temperatures (T’ ~ 0.1), the phase separated clouds maintain
the above characteristics, but a critical polarization develops, below which a homo-
geneous polarized gas exists.

At even higher temperatures (f ~ 0.2), the deformations disappear, as do the
sharp boundaries. These are replaced by LDA conforming distributions, with gradual
boundaries and an extended partially polarized region. Despite this, even central
densities persist for some range of P.

At this stage, we are getting close to being able to figure out what exactly is
going on with this very rich system. What is missing from all this is a model which
incorporates all these inputs and formulates a self consistent picture. Fortunately,

several theoretical studies have been undertaken for the imbalanced Fermi gas system
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81,114, 115,119, 133-136]

4.7.1 Phase Diagrams

Several of the theoretical works mentioned above include phase diagrams that
share many of the same characteristics. Specifically, the diagrams proposed by Parish
[134] for the homogenous case, and those of Gubbels [115] and Chien [114] for the
trapped case, are composed of the same three phases, connected by a tri-critical point.
At lower temperature, below the tri-critical point, a phase separated state is stable.
As temperature is raised toward the tri-critical point, a polarized superfluid becomes
stable for low polarizations, and a normal state appears for higher polarizations.
For these temperatures below the tri-critical point, the phase transition from the
phase separated state to the normal state is of first order. When the tri-critical
temperature ié surpassed, the phase separated state is no longer stable, and what
remains is a polarized superfluid, at low P and a normal gas at higher 7. In this

case, the boundary between these two phases becomes second order.

Figure 4.38, where we have added lines to illustrate the approximate location of
our data, illustrates how the structure of these phase diagrams captures the overall
observed properties. The blue (long-dashed) line corresponds to the date taken at
the lowest temperatures T < 0.05. We see that this line enters directly into the phase
separated regime for any non-zero P as long as the temperature is sufficiently low,
just as the data exhibits phase separation for arbitrarily low values of P. In addition,
this phase separated state is maintained for nearly the full range of polarization,
a prediction that is also consistent with the experimental data. There is further
agreement with this diagram when the order of the phase transition from the phase
separated state to the normal state is considered. Since this temperature is below the
tri-critical point, there is a predicted first order transition between these two phases.

Indeed, the sharp boundaries between the unpolarized superfluid core and the normal
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Figure 4.38 Phase Diagram of a polarized Fermi gas at unitarity, adapted from Gubbels
et. al to illustrate the proposed placement of the data. The phase diagrams of Parish and
[134] and Chien [114] show the same basic structure. For temperatures below the tri-critical
point, three phases are stable, depending on polarization. At low P and T # 0, a Sarma
(or breached pair, or polarized superfluid) phase, is optimal, while at higher P (or lower
T) phase separation is preferred. At high P, except for at the very lowest temperatures,
the phase separation breaks down and the gas becomes normal via a first order transition.
Above the tricritical point, the gas goes directly from the Sarma phase to normal via a
second order transition. Lines have been added (by us) to show the temperature regimes of
interest that are consistent with our observations. The blue (long-dashed) line corresponds
to the lowest temperature data, which shows phase separation as soon as P # 0, and
remains phase separated for nearly all P. The orange line (dashed) shows intermediate
temperature, where the gas is initially in the homogeneously paired Sarma phase, and
undergoes a transition to phase separated at P ~ 0.1. Finally, the red (short-dashed) line
represents the highest temperature data, where the gas is in the Sarma phase until going
normal via a second order transition. The temperature scale shown may not be absolute
since fluctuations (un-condensed pairs), which are not included in this calculation, will tend
to bring down the absolute temperatures [115]. (Note that these fluctuations are included
in other work [114].)
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atoms exhibited in the data reflects this first order transition. The deformations also
indicate a first order transition, since the surface tension that underlies them requires
a first order interface to provide direct contact between the superfluid and normal

components.

The orange (dashed) line, drawn at a higher temperature, though still below the
tri-critical point, corresponds to our data prepared at T ~ 0.1. These data are
characterized by the existence of a critical polarization, below which the gas does not
exhibit deformations or phase separation. If we follow the line shown in the figure,
we see that critical polarization observed for phase separation in the data [23] is
consistent with passing across the boundary between a polarized superfluid, at low
P, and a phase separated state at higher P. The persistence of deformations in this
data also indicate the continued presence of a first order transition to the normal

state, and further confirm the placement of this data below the tri-critical point.

The red (short-dashed) line, drawn above the tri-critical point, represents the
highest temperature data, prepared at T ~ 0.2. This data is never in the phase
separated region, and instead goes directly to the polarized superfluid state at non-
zero P. Such a state is characterized by the continuous reduction in local polarization
from a uniformly paired core (at lower values of P). This smooth transition, along
with the lack of deformation inducing surface tension, reflects the second order nature
of the superfluid to normal boundary. The loss of a uniformly paired core occurs in
the data at a polarization of P ~ 0.5 — 0.7. This is consistent with crossing the
boundary to a normal state at a temperature dependent value of P, since the onset
of the polarized core has been linked to the disappearance of superfluidity by the

observation of the quenching of vortices in such a polarized gas [101].
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Current State of Affairs

From the start, this project with imbalanced spin mixtures has not been without
some confusion and controversy. This is partly because the initial observations of our
group [23] and the Ketterle group at MIT [101] (both published in the same issue of
Science) were somewhat contradictory. Moreover, our observations were not all ex-
plainable by the current theories (i.e. the critical polarization, P,, and deformations).
As the work of both groups has progressed, and as theories have caught up (surface
tension, non-zero temperature phases), however, some of the inconsistencies between
the experiments have become explainable.

By looking at our data in the context of the above phase diagrams, we seem to
have arrived at a consistent picture of what is going on. The last sticking point is that
while this interpretation works well for our data, some features of the MIT results
[101-103], such as lack of observed surface tension and loss of even central pairing
at P =~ 0.7, make the placement of their data less straightforward in this context.
Furthermore, direct comparisons of the results of the two experiments are compli-
cated by the different trap aspect ratios and different methods used for temperature
determination. It has been suggested that the MIT data may be above the tri-critical
point, and therefore in the Sarma phase [115, 126], though the reported temperatures
for the work at MIT are comparable to the coldest temperatures we report, so this

interpretation remains uncertain.



Chapter 5

Conclusions

In this thesis, I have presented the work that I have engaged in during my time
in the lab. While the specific progression of research was not explicitly planned from
the beginning, it happens that the sequence of experiments here fit together quite
well. As a new student in the lab, I was fortunate to have the opportunity to work
with Andrew and Kevin on the Fermi pressure experiment [6] which helped to get the
ball rolling, both for our apparatus, and to some extent, for the broader field. The
next experiment, the observation of matter wave solitons [17] may seem like a bit of
a diversion from the apparently Fermi-heavy research plan we have followed, but in
fact this experiment served as an introduction (at least for me) to the potential that
magnetic Feshbach resonances offered. Likewise, the formation of bosonic molecules
of fermionic 8Li atoms by an adiabatic sweep across the narrow Feshbach resonance
[18] got us going on the current studies of fermionic pairing. The long lifetime we
measured for the molecules suggested that it would be possible to use such resonances
in ways that were not possible for bosonic species, where the Feshbach resonances lead

to rapid loss of atoms by enhancing inelastic loss processes [137].

After this sequence of experiments, I became the lead student on our apparatus. I
used this opportunity to put to use the lessons learned from the previous experiments
by continuing the push into uncharted territory. The first experiment performed un-
der my watch was the molecular probe measurement [22]. This work provided the
first quantitative characterization of the pairs formed in a degenerate spin mixture
of fermions throughout the broad Feshbach resonance, and provided the first evi-
dence of pairing in the BCS regime. The small magnitude measured for the closed
channel fraction in the resonance established the universality of the broad resonance

toward other fermionic systems, and therein helped set the framework for our future
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experiments.

The final chapter of my research as a student (and of my thesis) was the study of
imbalanced superfluid states formed from uneven spin mixtures. In addition to com-
bining all our previous knowledge and experience in areas such as pairing, molecular
BEC’s, and experimental techniques, this work challenged us to learn and charac-
terize a new and unique system for which we had little intuition about at the onset.
Through countless data sets, as well as through valuable collaboration and input from

theorists, however, we have begun to form an understanding of this rich system.

5.0.2 Outlook

The study of degenerate Fermi gases represents a recent addition to a young
and fast moving field. As a result, experiments in this field progress rapidly, and
are governed by a mix of theory and the constant feedback of the latest results.
There is a always an underlying (and not unjustified) feeling that if we don’t get our
experiments done as quickly as possible, someone else will do them for us. This kind
of environment is beneficial for the field in that the competitive atmosphere drives
progress, however, the downside is that in order to be competitive, one is often forced
to focus on a singular goal, such that on occasion, interesting side roads must be

bypassed and saved for later.

Nearly every aspect of the work I have undertaken here has presented opportunities
for further study. In choosing our particular path, we have had to decide which
of these opportunities to follow, and which to make note of, and then move on.
It would have been interesting, for example to study collisions between the matter
wave solitons. The molecule sweep experiment also presented a couple of questions,
such as whether the 50% conversion efficiency is fundamental in origin, or simply
a coincidence. The long lifetime of the deeply bound molecules also suggests that

something interesting is occurring, since the lifetime of molecules prepared in the
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broad resonance do not have long lifetimes outside of the resonance.

Given the sensitivity of the molecular probe for characterizing the atom pairs, it
would be advantageous to extend this technique towards other measurements. For
example, by driving a molecular transition quickly compared to the pair formation
rate, one could measure the paired fraction of a superfluid gas. This measurement
would potentially contribute to the understanding of pre-formed pairs in the strongly
interacting regime; a system that is believed to play a role in high 7, superconductors.

The work with imbalanced mixtures, which at the start was thought to be a
relatively straightforward extension of our previous work, has revealed a much richer
system than previously expected. There are several possibilities as to the direction
this research should take next. It would be informative to fill in the phase diagram at
unitarity, or to investigate further the role of the geometry of the trapping potential,
for example. The addition of varied interaction strength adds yet another parameter
to the phase space of this system to be studied. This is all possible even without
mention of an optical lattice, which would further increase the possibilities in all
these systems.

With all this being said, the appeal of this field for me is that we don’t yet know
what the next big discovery will be, or what future experiments have in store. All we
really have to do set up the experiments according to our best understanding, and

remember to expect the unexpected.



Appendix A
Estimation of Uncertainty in Measurement of [

Since the value 8 (see Sec. 4.3.1) depends strongly upon the measured quantity
R,/Rrr, it is necessary to account for all the mechanisms that contribute to the
uncertainty in measuring this quantity. In this way, we may also identify the leading
contributors to the uncertainty and focus specifically on improving their measure-
ments. We will primarily focus on systematic uncertainties, since due to the large
number of measurements used to determine 3, the contribution of statistical uncer-
tainties is greatly reduced, and in the end will be inferred through the scatter of these

measurements.

A.0.3 Measured Radius, R,

R, is determined by a two-parameter fit to the integrated column density, and
is subject to fitting and magnification uncertainties. Uncertainties in fitting due to
image noise are statistical in nature, and tend to average out for large data sets. Our
imaging magnification is directly measured by relating a known displacement of the
optical trap to the measured displacement of atoms imaged in the trap (this procedure
is documented in Ramsey Kamar’s Masters thesis [55]). From this measurement,
we obtain a magnification M = 3.94, with (6M/M) = (0.04/3.94) ~ 1%, so the

systematic uncertainty of measured R, (from the magnification) is (%) = 1%.

A.0.4 Calculated Radius, Rrr

The Thomas-Fermi radius for a non-interacting fermi gas is given by

2
Rrr = (=5)'", (A1)

where m is the atomic mass, w, is the axial trap frequency, ex = Aw(6N)Y/3, with

mean frequency @ = (w,w?)/?, where w, is the radial frequency. The fractional
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uncertainty for Rrp is

5RTF _ l&'dr 2 E 6wz 2 _1_@_2
Clory = 3y + By LG (a2)

Wy Wy

The radial frequency for this optical trap was measured by modulation of the radial
position of the trap beam. Modulation at frequencies which correspond to trapping
frequencies result in resonant heating, and a measurable loss from the trap. At an
optical power (at the atoms) of 1.00 W, the radial frequency for "Li was measured
to be w,/2m = 2860 + 40 Hz . The radial frequency for a given shot is calculated by

measuring the power, P, in the optical trap and scaling the measured frequency:

w, =2 (7/6) " 2860(1%0-)1/ 2 (A.3)

where the (7/6)'/2 term accounts for the ratio of masses of 6Li and "Li. System-
atic uncertainties in power cancel, since the measurement is relative, and so the
only remaining systematic uncertainty is that of the measured frequency. This gives
(%) = 40/2860 = 1.4%.

The axial frequency of oscillation could, in principle, be calculated given w, and the
geometry of the optical trap beam. However, due to a contribution from curvature
in the magnetic bias field, the axial frequency is modified. As a result, a direct
measurement of w, is necessary. This is accomplished by “kicking” the atomic cloud
with a transient magnetic field and observing the subsequent oscillations. For the
trap depth at which the this particular data was obtained, the measured frequency
is w,/27 = 7.18 £ 0.1 Hz, so (=) = 1.4%.

Atom number, N, is obtained by summing the optical density of the cloud. N is

given by
_ 2[2 Io —OD(m,z) l2 A 2
N = _CZ:’:EW(I —e )+ 0_—0(1 + 4(?) )E:,.0D(z, 2), (A.4)

where [ is the pixel size, I, is the probe intensity, I, is saturation intensity, A is
the probe detuning from resonance, o, is the peak absorption cross section, I' is the

natural line width and OD is the measured optical density.
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The uncertainty of the number J N is dominated by the uncertainty in N from
§A, which is denoted as dNa, and the uncertainty in N from 61y, which is denoted

as 0 Ny,. These can be estimated as follows:

ON 2

ONs = 500 = (; OD(z, z))a—08]A|6A, (A.5)
and, ,

§Np, = (%510 =T d(1-e ). (A.6)

Since we nominally probe at A = 0, and JNa from Eq.(A.5) depends linearly on
A, we vary A in Eq.(A.4) by its systematic uncertainty A = 0.5 MHz = 0.085 T.
Changing A by this amount in the number counting results in a change in N of 1.7%,

so (28A) = 1.7%. The typical systematic uncertainty of N from I is (J—NJIl) = 4.5%.

N
In addition, the pixel size £ has the uncertainty (%7) = 1% due to the uncertainty of the
magnification M. With this contribution included, the overall systematic uncertainty

in the number,

= i R (R A
is 5.2%.
From the uncertainties of N, w,, and w,, the uncertainty of calculated Thomas-
Fermi radius Rrr, is calculated from Eq.(A.2) to be 1.52%.
With the uncertainties of R, and Rrp, the systematic uncertainty of the measure-
ment of R,/Rrr, given by
e G = =

2z

is 1.82%. The statistical uncertainty of R,/Rrr, taken from the standard error of all
measurements, is 0.4%, and is added to the calculated systematic uncertainty. This
gives an overall uncertainty in R,/Rrp

6(R./Rrr)

= 0.023 A9
R./Rrr (4.9)



165

From Eq.(4.12), the uncertainty of measured 3

Wl—%%%ﬁ) — 4(R./Rrp)’, (A.10)
SO
55 = 4(R./Rer) (R /Rrs) = A(Ro/Res) St (a1
Given the measured value R,/Rrr = 0.825, and ﬂ}i“/—gffz = (0.023 from A.9,

58 =4 x 0.825% x 0.023 = 0.043. (A.12)



Appendix B
Temperature Determination of Strongly
interacting Fermi Gas

The first step in our approach for obtaining the temperature of the strongly in-
teracting paired Fermi gas will be to forget that it is interacting, and proceed to fit
the profile to that of a non-interacting finite temperature Thomas-Fermi profile. We
will address the interactions later. The presumption built in to this approach is that
the profile of a strongly interacting Fermi gas has the same functional form as that
of a non-interacting gas. While this fact is not obvious, given the general uncertainty
as to the composition of these gases which may have regions of condensed and un-
condensed pairs, as well as unpaired atoms, depending on temperature, our data,
along with that of other similar experiments [23, 108, 110] have shown this to be the
case. Theoretical analysis suggests that it is the uncondensed pairs that “fill in” the
distribution and wash out the bimodality [132] that would otherwise be present in a
partially condensed gas.

To get a real space Thomas-Fermi density distribution, we integrate the phase

space density distribution [105]

1 1
w Fap = B ) B.1
S (B

where 7 and 7 are the position and momentum coordinates, Z = e*/*8T" is the fugacity,
and H(F,p) = £+ "”‘T“’z(:zr2 + 1%+ \2?) is the hamiltonian for a particle in a harmonic
potential, and 7" is an effective temperature which will be calibrated once interactions
are included, over momentum, to give
3/2 2 2
M@=—(mgr>/<%>MmPZJ%ﬁl (B.2)
where p? = 22 + 3% + A\2* = r? + A\2? and Li, is the Poly-Logarithmic function of

order n.



167

This density is integrated over one radial direction to give the column density,

k T’ 2 — mwz T 2z2
n(z,2) = —m(—B—)—Liz[—Ze B (@ N (B.3)

2 hBw,

Another integral over the remaining radial direction produces the axial density,

m 1/2 k T’)5/2 ) _mwzz2
n(%) = - (%> (;—W—ng,/g[—Ze 2%pT | (B.4)

When fitting data, we most commonly fit the z = 0 cut of the column density
distributions, since this happens to be less computationally demanding (due to the
integer subscript in Liy), however, we also fit integrated axial profiles and have not
observed any systematic differences.

For fitting column density, we multiply the top and bottom of expression B.3 by

n(Z = 0,7 = 0) so that we may write it in terms of the peak value,

mw2
Liy[—Ze st X))

n(Z,7) =n(@=0,Z=0) 7]

(B.5)

This function B.5 is then fit to the data using Mathematica, which has built in
Poly-Logarithm capabilities. Before fitting, we set x = 0 and rearrange some of the

terms to facilitate fitting, such that

mw2z2 mw2z2 7! 22 2
- - (T —2oin(Z —z
e 2kBT — o 2kgT’ (N(T )) —e B2 %) = 7 ® (B6)

where R% = % Now B.5 is written

Lipoz(%),

n(#,9) = n(@ = 0,7 = )=y

(B.7)

For each distribution, the fit to the data outputs the amplitude, n(Z = 0,2 = 0),
the Thomas-Fermi radius, R,, and the fugacity, Z (and a center coordinate). From
Z, we can find the temperature, since

Z — 6%; = T/ — /J’(T,)
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where p(T") = 3mw?R2. (See the figures at the end of the section for example fits.)
This temperature may be divided by the ideal Fermi temperature, Tr = h—a’i%]Z;L/a
to give a more general, dimensionless temperature parameter T=T /TF.
Now we must consider the effects of interactions. To first order, this measured
effective temperature T can be scaled to get the actual temperature by

T/1+B8= 2 (B.9)

T Tr

where 8 = —0.54 is the universal interaction energy parameter measured in Chapter
4. Model-dependent corrections to this approximation have been performed on J.
Thomas’ °Li experiment at Duke by applying such a fitting routine to theoretical
profiles generated for a known temperature (such as those predicted in ref. [132]). In
this way, it is possible to establish a one to one correspondence between actual and
fitted temperature [110]. The result of their calibration is shown in fig. B.1. A power
law fit to this data yields [138]

_ T\ 149 _
TV1+5=138 <T_) , for T < 0.42. (B.10)
F

For lower temperature data, T < 0.42, it may be preferable to use this expression, as

opposed to eq. B.9, to predict the “true” temperature.
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Figure B.1 Figure reprinted from ref. [138]. This plot shows the true temperature,
T /Tr, plotted versus the measured empirical temperature T, scaled by /1 + 3, as measured
by the Duke group in the strongly interacting regime. The diagonal line represents the
approximation made in eq. B.9, and the points are the measured calibration, approximated
by eq. B.10. The deviation from the straight line is thought to arise from systematic fitting
effects due to the emergence of condensed pairs.
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Figure B.2  Axial cut along z = 0 of the column density distribution (points, cm~2), fit
to the finite temperature T-F distribution given by eq. B.7 (line). For this shot, N = 165
k, T' = 1.5x10"8 K, T = T'/Tr = 0.035. This measured temperature gives T/Tr = 0.055
by eq. B.10. (x axis in meters)

B.1 Example Fits

Here I will show typical data which we have fit according to the procedure outlined
above. Figure B.2 shows the finite T fit to an evenly paired, unpolarized cloud

representative of the coldest data (column density).

Figure B.3 shows both the best fit finite and 7' = 0 functions for the data in the
previous figure (B.2). It is clear that at such low temperatures there is very little
difference between these two profiles. For this reason, this method can only establish

an upper limit for the temperature of the coldest data (i.e T < 0.05).

Figure B.4 shows the finite temperature fit to a slightly less degenerate cloud
(column density), and fig. B.5 shows the finite and T' = 0 fitting functions that
are generated by the fit to the (less cold) data in fig. (B.4). Though the difference
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Figure B.3 Finite T (green) and T = 0 (red) fermionic Thomas Fermi distributions fit
to data in the previous figure (B.2). The effects of finite T' are barely perceptible in the

o~

wings of the distributions at such low temperatures (7" = 0.035).



172

() x ‘ L : ‘ L o % A
~0, 0%475-0.0005-0.00025 0.00025 0.0005 0.000%5
-2.5.10° " ‘

Figure B.4 Axial cut along z = 0 of the column density distribution (points, cm~2), fit
to the finite temperature T-F distribution given by eq. B.7 (line). For this shot, N = 335
k, 7' = 82x1078 K, T = T'/Tr = 0.11. This measured temperature gives T/Tr = 0.12
by eq. B.10. (x axis in meters)
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Figure B.5 Finite T (green) and T = 0 (red) fermionic Thomas Fermi distributions
fit to data in the previous figure (B.4). The effects of finite 7 are now becoming more
perceptible in the wings of the distributions. The small change in shape is enough to
distinguish between clouds of differing temperatures. (7' = 0.11).

between the profiles is still subtle, it is sufficient to provide a reasonable estimate of

the temperature.



Appendix C
Tunable Standing wave EOM

The frequency of the molecular probe laser used in Chapter 3 is monitored by the
position of its peak in an optical spectrum analyzer, relative to that of a reference
laser that is a locked to an atomic saturated absorption signal. The reference laser is
modulated to produce sidebands, the positions of which in the spectrum analyzer can
be tuned by varying the frequency of modulation. In this way, the sideband can be
placed at the desired spectral position for the molecular probe, and the two features
can be overlapped. This situation allows for maximized accuracy in maintaining
the frequency of the probe laser (6v < 1 MHz). In addition, frequency tuning of
the laser can be accomplished by tuning the frequency of modulation. This allows
relative frequency shifts to be measured via a microwave counter, so that they are not
dependent upon knowledge of the free spectral range (FSR) of the spectrum analyzer
cavity.

We have designed a tunable electro-optic modulator (EOM) to add the sideband to
the reference laser. This design consists of a resonant toroidal cavity with rectangular
cross section. The height of the cavity, and thereby its resonant frequency, is tuned
by a threaded movable ring (see fig. C.1). A LiTaOj electro-optical crystal is placed
within the cavity. When the laser is sent through the crystal, its phase is modulated
by the frequency of the electric field in the crystal, and, equivalently, sidebands appear

in its frequency spectrum [139]. The resonant frequency is given by

1 1

D=5\ T

(C.1)

where C is the total capacitance and L(h) is the cavity inductance as a function of

cavity height, h. The inductance of a toroid with rectangular cross section is given
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Figure C.1 Tunable EOM. A threaded ring travels up and down on threaded center
post (108 threads/in) to adjust the resonant frequency. The LiTaO3 crystal measures: d =
3.5 mm, w = 2.5 mm, and L = 25 mm (MTI Corporation, “optical grade”, (Y) oriented
cut, AR coated ends). Also, a = 0.0125 m, b = 0.0205 m, and 0.01 < A < 0.100 m. A static
antenna is used in this instance, though efficiency may be further increased through the
addition of a tunable antenna. Material: OFHC copper (electroplated). The overall height
measurement is given in inches.
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pen () (2). e

where p = u, is the permeability of free space, h is the (tunable) height of the cavity,

by

and a (b) is the inner (outer) radius of the cavity (see for example, [140]).
The capacitance is calculated for the crystal and the gap above the central post,

and is given (for the case that the crystal length, L, equals the diameter of the post,

2a.) by
a? 2wle
C = €0 (W—d > (1 + a > y (C3)

where €y is the permittivity of free space, Ae = (¢/ — €y)/€p, where € = 47¢; is the

dielectric constant of LiTaOs, a is the post radius, which in this case is also half the
crystal length, w is the crystal width, and d is the crystal height, equal to the gap
between the lid and the post. For our crystal, eq. C.3 gives C = 8.51 pF.

Figure C.2 shows a plot of the resonant frequency, 14, given by eq. C.1, versus
cavity height, 10 < h < 100 mm, for the entire tunable range.

We achieved typical modulation efficiencies, defined as the ratio of the power in
each of the first order sidebands to the input power, of ~ 25% for frequencies in the
range of 550 - 1200 MHz, using 3 W of RF drive power. At higher frequencies, the
modulation diminished since the RF drive power was reduced due to the frequency
range of the amplifier used. This range was more than sufficient for our purposes,

however, as it easily spanned the 300 MHz FSR of the spectrum analyzer.
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Figure C.2 The calculated tunability of the resonance frequency of the EOM (eq. C.2),

for the design shown in fig. C.1.



Appendix D
Experimental Benchmarks

In the following table I have included benchmarks for basic operation of the ap-
paratus. I have tried to include real numbers where possible, however some of the
measurements are expressed in “lab” units specific to this apparatus. The “mini-
mum” column represents the threshold at which some types of data, such as trap
calibrations or probing resonances, which do not require extremely cold samples, may
be produced. These levels will most likely not suffice for taking data such as in
Chapter 4, where highly degenerate samples are needed. For this type of data, the
apparatus should be very near the “ideal” settings. While it is not possible to include
every possible sub-system in such a table, a measured deficit in one of the following
parameters should help to narrow down the source of many problems, thereby facili-
tating more detailed troubleshooting. Moreover, many of the benchmarks of crucial
sub-systems are somewhat subjective, such as fine tuning MOT and optical pumping
beam alignment. In order to effectively adjust these “unmeasurable” parameters, it
is necessary to have all the “measurables” listed below where they should be.

I have also included an updated summary table of the various diode lasers used

for trapping ®Li, as well as some other random notes, at the end.
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More Notes on Table D.1

e The MOT fluorescence levels refer to the voltage of the photodiode mounted on
the apparatus (w/ maximized alignment), and are given for either isotope alone. The
addition of the ®Li to the “Li MOT reduces the overall fluorescence by ~10%. The
presence of the "Li reduces the ®Li fluorescence by ~30 - 50%. Measure the latter by
blocking the "Li MOT light and quickly measuring the remaining 8Li fluorescence.

e "Li magnetic trap fluorescence levels refer to the sumped fluorescence acquired
on the ANDOR camera (use lifetime.pgm), while runniné; the apparatus in fluores-
cence imaging mode, EMACKFR (see also ref. [21]). (Use this imaging method to
take background lifetimes as well.)

Conditions:

The imaging system should be zoomed out completely.

Fluorescence pulse is 100 us (g3 = 100), with ~110 mW total power in MOT beams.
Detuning is ~40 MHz. (fdetune = 0.44)

e Y “signal” refers to the integrated image for phase contrast with the phase spot
(P.C.) or absorption (abs.) images taken with the Andor CCD using processing in
the script “fast_40_iXon_-062006_40by512.pgm”.*

*The image processing in this script is fairly simple, since it is used mainly for real-time
monitoring of the experiment. For the phase contrast image,
Imagepc. = ((A— NA)/NA)- 100, where A and NA are “atoms” (trap populated) and “no-
atoms” (trap empty) shots with reference shots subtracted and N A probe intensity normalized
to that of A (the -100 is an historic relic).
For the absorption image: Image,ss. = In(NA/A).
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Other Notes

e In many instances of poor apparatus performance, the trouble is often due to
one of the following (assuming adequate pressure/background lifetime):
1. Poor optical pumping (especially “Li, power, power balance and/or alignment).
2. Problems with the 7Li heatpipe lock (i.e. not sweeping correctly due to improper
alignment or gain settings).
3. MOT beam alignment (“perfectly” overlapped alignment doesn’t work well).
So, when in doubt, these parameters should probably be checked first.

e The SLi magnetic trap evaporation performance is more sensitive to the back-
ground pressure lifetime and the magnetic trap field minimum. If the "Li seems to
be working fine (mag. trap signal), while the ®Li is not, try increasing the bias field

(B, > 1.5 G) or checking lifetime.
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