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Abstract

In this thesis, we demonstrate the feasibility of single site resolution in a two dimensional

optical lattice with submicron lattice spacing, suitable for studying condensed matter Hamil-

tonians in the strong interacting regime. With the combination of magnetic and optical ma-

nipulation of atoms, we show how to reproducibly generate two dimensional Bose Einstein

Condensates of 87Rb situated at the focus of our ”Quantum Gas Microscope”, allowing us

to utilise the high numerical aperture for both lattice generation and single atom detection.

We then give preliminary evidence of superfluid to mott insulator transition in this setup.
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Chapter 1

Introduction

1.1 Optical Lattice As A Tool For Condensed Matter

The achievement of Bose Einstein Condensation [36, 37, 38] (BEC) and degenerate

Fermi gas [39, 40, 41] using ultra-cold dilute gases has ushered in a new era of exciting

research in recent years. Not only has it expanded the frontier of our understanding in

atomic and molecular physics, but also merged these fields with that of condensed matter

physics, where ultra-cold atomic experiments could achieve what was previously thought

impossible with real solids.

The initial experiments on these weakly interacting gases focussed mainly on phe-

nomenons related to the existence of a macroscopic wavefunction for the many body system.

It was realised earlier on, that just like superfluidity, Bose Einstein condensates could be

described by a single macroscopic wavefunction (also known as order parameter) which de-

scribes all the particles within the condensate. However, unlike the original motivator of

superfluidity, 4He, for which this description is only phenomenological due to the strong

interactions which creates uncondensed atoms from condensed ones, dilute gas BEC on the

other hand, are so weakly interacting to be essentially pure condensates at sufficiently low

1



2 Chapter 1: Introduction

temperatures. The behaviour of the ensemble is adequately described by the time evolution

of the macroscopic/condensate wavefunction where interaction appears only as an additional

potential dependent on the local density of atoms [51]. Therefore, in dilute gases the zeroth

order solution to the many body problem reduces effectively to a single particle problem.

Small fluctuations around this mean value are well described by the Bogoliubov theory

which decomposes excitations into non-interacting quasi-particle modes. The validity of

these description for dilute gases has been verified quantitatively by several experiments.

To reach into the realm of condensed matter physics, one needs to make the dilute

gas strongly interacting such that a description in terms of independent quasi-particles is

no longer adequate. Two methods have emerged so far for accomplishing this task, (i) the

use of Feshbach resonance to change the scattering length of the atoms and (ii) placing

the condensate into a periodic potential created by light, also known as an optical lattice.

For bosons, the use of Feshbach resonance creates extraneous losses in condensate fraction

due to three body loss [61, 62], so it’s not a feasible route towards strong interaction. In

this thesis, we describe our path for reaching correlated many-body systems using 87Rb

condensates in an optical lattice.

Atoms in optical lattices achieves strong interaction by changing the relative mag-

nitudes of the interaction energy and the kinetic energy. At low lattice depth, the atoms

favour delocalisation over the entire lattice, since the resultant reduction in kinetic energy

is more than sufficient to compensate for the increase in interaction energy incurred from

having multiple atoms per lattice site 1. The situation is reversed as the lattice depth is

increased. Tunneling becomes prohibitively expensive in comparison to the energy cost

of having multiple atoms per lattice site. The dominant energy scale is then set by the

1
Unlike electrons, interaction between neutral atoms is very short ranged, so that two atoms only interact

when they happen to occupy the same lattice site
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interaction energy, thus reaching the regime of strongly interacting.

It was not long, before the community started to recognise the advantages of the

optical lattice system over the traditional model system for studying condensed matter -

that of real solids. In essence, atoms tunneling in the optical lattice is entirely analogous to

electrons tunneling within the periodic potential due to the nuclei of a crystalline material

[63]. Indeed, many of the theoretical models that were first motivated by real solids, such

as the Hubbard model for describing transition from conducting to insulating phases in

metals, have now found parallel realisations using atoms in optical lattice [26].

But there are several advantages to the neutral atoms in lattice toolbox not possible

with real solids. First, the energy scales of the optical lattice system is much lower (in the

Hz range) than in real solids (in the thousands of THz range), which means that dynamics

occurs on a slow enough time scale to allow observation in real time. With the advent

of high spatial resolution, such as that described in this thesis, one could observe single

atom time evolution within the lattice, analogous to observing a single electron’s dynamic

in a solid. Secondly, the optical lattice system affords a much cleaner and controllable

system than real solids where defect free and arbitrary lattice potentials could be created

and manipulated dynamically. Coupled with single site addressability, known initial states

could be prepared either by direct manipulation of the atoms in the lattice or by projective

measurements [68].

A spectacular demonstration of some of the above features was the observation

of Bloch oscillations using cold cesium atoms in a one dimensional optical lattice [23].

Although it was first theoretical predicted in 1929 [66, 67], Bloch oscillations were not

observable in natural crystals until 1993, due to the presence of lattice defects [65] 2. The

2
Electron scattering time off lattice defects were much shorter than the Bloch oscillation period, prevent-

ing their observation until the invention of semiconductor superlattices whose large lattice spacing allows

for much shorter Bloch periods so that Bloch oscillations to be observed from THz emission of electrons
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optical lattice system is thus an implementation of a ”quantum simulator” that was first

purposed by Richard Feynman [49, 50] where one may realise model Hamiltonians from

condensed matter theory in a much cleaner and controlled way.

1.2 Single Site Resolution

In this thesis, we concentrate on combining the recent achievement of optical

single site resolution [48] with the use of optical lattice potential to study the behaviours

of strongly correlated many body systems. Even though the current state of technology

for generating and controlling atoms in optical lattices is rather advanced, most detection

methods to date, still relies on absorption imaging typically applied after time of flight

in order to reduce the optical density of the cloud to below saturation 3. Although in-

situ detection techniques such as phase contrast imaging exists, there is usually insufficient

spatial resolution to detect features on the scale of a few lattice sites which is particularly

pertinent for experiments involving inhomogeneous systems where multiple phases of matter

coexists in the ensemble but are separated spatially. Catering to the growing need for a

versatile, high resolution imaging method, several groups have recently approached the

problem with different techniques. One method, with the highest spatial resolution to date

(about 150 nm) was achieved using the same principles as a scanning electron microscope

[69].

In this experiment, we accomplish high resolution in-situ detection via fluorescence

imaging using a high numerical aperture microscope for the atoms in the lattice, similar to

that demonstrate in [70] for a 5µm lattice spacing. Our imaging system, or quantum gas

microscope utilises the concept of solid immersion microscopy [20] : by placing the atoms

3
Absorption imaging of in-situ cesium atoms in a two dimensional optical lattice was recently carried out

with 3 µm spatial resolution in [15]
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very close to a glass surface with refractive index greater than 1, we can increase the numer-

ical aperture without having to increase the physical size of our lenses to impossible values.

We then integrate the optical lattice with the microscope system by using it as a part of the

imaging system which projects the optical lattice pattern imprinted on a transmission phase

hologram, onto the location of the atoms. The high numerical aperture of the microscope

allows us to image the lattice with great demagnification, creating optical lattices with small

lattice spacing that is a pre-requisite for studying many body physics in optical lattices. At

the same time, the lattice projection method allows us to conveniently produce patterned

potentials for the atoms simply by changing the graphics on the transmission hologram.

With the advent of computer controlled holograms such as a spatial light modulator, it is

even possible to produce dynamically varying lattice potentials.

This thesis describes in details, the setup of the second generation of the quantum

gas microscope which allows us to perform experiments with more reproducibility than

the first generation of the apparatus. With a simple cubic lattice, we study the Bose

Hubbard hamiltonian [13] with our optical lattice system, and present the first evidence of

the superfluid to mott insulator transition in our experiment directly observed in-situ using

the quantum gas microscope.

1.3 Overview

• The second chapter review theory of weakly interacting Bose gas and the phenomenon

of Bose Einstein condensation as well as interaction of atoms with light fields which

gives us the ability to create optical lattice potentials.

• The third chapter describes the details of the quantum gas microscope and the pro-
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cedures that we use to detect atoms on a single lattice site.

• In the fourth chapter, the details of the two dimensional optical trap for the atoms

is presented. This part of the experiment generated atomic ensemble in a suitable

configuration for use with the high resolution imaging and projection of the optical

lattice potential.

• The fifth chapter presents theoretical treatment of atoms in optical lattice and the

Bose Hubbard hamiltonian which we simulate with our apparatus.

• The sixth chapter presents experimental evidence of the superfluid to mott insulator

transition in our lattice.



Chapter 2

Basic Condensate Physics

This chapter briefly summarise the theoretical concepts of Bose Einstein Conden-

sation (BEC), in particular, the case of a two dimensional BEC in a harmonic trap that

is of relevance to our experiment. We also outline the principles behind the optical dipole

force which is the main mechanism by which we manipulate the atoms.

2.1 Condensation Phenomenon

The concept of Bose Einstein Condensation (BEC) was first purposed by Bose

and Einstein in 1924 [9]. One can think of BEC as occurring when the thermal de Broglie

wavelength characterizing the extent of each atom’s wavepacket

λdB =

�
h2

2πmkBT
(2.1)

becomes on order of the interatomic distance. Equation (2.1) clearly indicates that this oc-

curs at very low temperatures. When this occurs, the indistinguishability of the bosons then

lead to a phase transition where a macroscopic occupation of the lowest energy quantum

state is obtained. The atoms in the ground state form the so called ”condensate”.

7
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The temperature required to reach condensation for a gas of non interacting bosons

in a harmonic trap can be derived as follows : the occupation of each quantum state i with

energy �i is given by the Bose Einstein distribution, which in the grand canonical formalism

is

ni =
1

eβ(�i−µ) − 1
β =

1
kBT

where µ is the chemical potential, the normalization condition then requires that

N =
�

i

1
eβ(�i−µ) − 1

(2.2)

we can compute the sum (2.2) by turning it into an integral which includes all the terms

except the population in the ground i = 0 state. For an isotropic three dimensional harmonic

trap with frequency ω this gives

N =
1

(βh̄ω)2
g3

�
e
β(µ− 3

2 h̄ω)
�

+ Nc (2.3)

where Nc is the population in the ground state and g3 is the Riemann zeta function. Since

g3(η) ≤ 1.202 for η < 1 we see that a macroscopic population in the ground state occurs at

the condensation temperature of

Tc =
�

N

1.202

�
h̄ω

kB
(2.4)

Note that for realistic cases kBTc > h̄ω so the condensation phenomenon is not simply just a

freezing out of all excited modes due to the lack of thermal energy. It is a consequence of the

particles’ indistinguishability which enhances the probability for macroscopic occupation of

the ground state when the number of available states becomes comparable to the number

of particles.

Real atoms of course do in fact interact with each other. For rubidium 87 that we

work with, although inter-atomic interaction is relative weak however, their effect can not
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be neglected in describing the behaviour of the BEC. The interaction between two atoms

at low energies can be described by a short ranged contact interaction of the form

Uint =
4πh̄

2
a

m
δ(r− r

�) = U0 δ(r− r
�) (2.5)

where r and r
� are the co-ordinates of the two particles in the system and a is the s wave

scattering length that characterise the behaviour of the scattered wavefunction at large

separations. Only the l = 0 collision is of relevance at low energies since higher angular

momentum collisions has a centrifugal barrier l(l + 1)/r which the incident particles must

overcome. In the condensed state, all bosons are in the same single particle state φ(r) 1,

we can therefore write the wavefunction for the N particle system as

Ψ(r1, r2, · · · , rN) = ΠN
i=1φ(ri)

�
|φ(r)|2 d

3
r = 1 (2.6)

We can calculate the mean energy of the system �Ψ|Ĥ|Ψ� with respect to the Hamiltonian

Ĥ =
N�

i=1

�
pi

2

2m
+ Vtrap(ri)

�

+ U0

�

i<j

δ(ri − rj) (2.7)

where Vtrap(r) is an external trapping potential

�Ĥ� = N

� �

−
h̄

2

2m
φ
∗
∇

2
φ + Vtrap|φ|

2

�

d
3
r +

N(N − 1)
2

U0

�
|φ|

4
d

3
r (2.8)

After minimizing (2.8) with respect to φ subjected to the normalisation constraint we derive

the equation of motion for the single particle wavefunction. It is customary to use a dif-

ferent normalization from (2.6) and define the condensate wavefunction as ψ =
√

Nφ with
�
|ψ(r)|2d3

r = N . The equation of motion for the condensate wavefunction (also called

Gross Pitaevskii equation) is [51, 52]

−
h̄

2

2m
∇

2
ψ + Vtrap(r)ψ + U0|ψ|

2
ψ = µψ (2.9)

1
This is not exactly true since for interacting particles, one of the effects of interaction is to create two

correlated but uncondensed atoms out of two condensed atoms. This effect is called quantum depletion and

is usually of order 4% or less in
87

Rb.
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2.2 Two Dimensional Condensate

Of particular relevance to our experiment is the case of a two dimensional con-

densates. It is a long proven fact that condensation does not exist in a uniform 2D gas at

finite temperatures due to the proliferation of long wavelength thermal fluctuations (this

was encapsulated by the Mermin Wagner theorem) [32, 33]. However, the presence of a

finite size confinement restrict the maximal wavelength of thermal fluctuations allowed and

condensation will appear again. We can follow the same reasoning as used in the previous

section to derive the condensation temperature of a two dimensional harmonically trapped

gas of isotropic frequency ω

Tc =
h̄ω

πkB

√
6N (2.10)

with condensate fraction
Nc

N
= 1−

�
T

Tc

�2

(2.11)

To reach an effectively two dimensional regime, it is necessary to suppress dynamics

in the third direction. We achieve this by restricting the tight direction to only zero point

oscillations. This occurs when the chemical potential and thermal energy is less than the

harmonic oscillator energy of the removed axis h̄ωz

µ, kBT < h̄ωz

When this is accomplished, we can take the ansatz for the condensate wavefunction as the

product of a two dimensional condensate wavefunction and a harmonic oscillator ground

state wavefunction in the frozen z direction

ψ(r) = Φ(x, y)
�

mωz

πh̄

�1/4

e
−mωz

2h̄
z2

(2.12)

We can substitute the ansatz (2.12) into equation (2.9) to derive the two dimen-

sional version of the Gross Pitaevskii equation. In the experimentally relevant regime of
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|1>

|2>

Figure 2.1: Two level atoms driven by a classical laser field of frequency ωL. The bare atom
has resonance frequency of ω12.

lz =
�

h/mωz > a where atomic collisions is still three dimensional, the result is

�

−
h̄

2

2m

�
∂

2

∂x2
+

∂
2

∂y2

�

+
m

2
(ω2

xx
2 + ω

2
yy

2) + U0

�
mωz

2πh̄
|Φ|2

�

Φ =
�

µ−
h̄ωz

2

�
Φ (2.13)

where we have substituted the case of a harmonic trapping in the remaining two dimensions.

In the limit of a large condensate, the kinetic energy term is negligible except near

the boundary of the cloud, the transverse density is therefore given by the Thomas Fermi

profile [34]

n(x, y) =



 Nmωxωy

πU0

�
mωz

2πh̄




1/2 �

1−
x

2

R2
x
−

y
2

R2
y

�

(2.14)

with the Thomas Fermi radii

Rx =




4NU0ωy

�
mωz

2πh̄

πmω3
x




1/4

Ry =




4NU0ωx

�
mωz

2πh̄

πmω3
y




1/4

(2.15)

2.3 Atom Light Interaction

In this section we discuss the important interaction between light and atoms which

allows us to manipulate and optically confine the atoms.
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2.3.1 Steady State Solution To Optical Bloch Equation

Let us first consider the interaction of a single stationary two level atom driven by

a classical monochromatic light field. The atom light interaction is given by the Hamiltonian

Hint = −d̂ · Ê = −d(σ+ + σ−) · (ELe
−iωLt + E

∗
Le

iωLt) (2.16)

where d is the real dipole moment for the atom and EL is the amplitude of the driving

electric field. The raising and lowering operator for the two level atoms are σ+ = |2��1|,

σ− = |1��2|.

In the rotating wave approximation, we retain only energy conserving terms in

(2.16) and move to the frame evolving at the driving field’s frequency ωL. The net Hamil-

tonian for the driven atom system is

Htot = h̄δσee − h̄(Ω σ+ + Ω∗
σ−) (2.17)

with δ = ω12 − ωL is the detuning of the laser from the atom’s resonance frequency and

Ω = d · EL/h̄ the Rabi frequency characterizing the strength of the atom light interaction.

The master equation of the system (which includes the decay of the excited atomic state

due to the interaction with a vacuum reservoir)

dρA

dt
=

1
ih̄

[Htot, ρ] + γ(σ−ρσ+ −
1
2
σ+σ−ρ−

1
2
ρσ+σ−) = 0 (2.18)

allows us to compute the steady state solution of the density matrix for the atom. The

coherence of the two level atom is characterised by the off diagonal elements of the density

matrix

ρ21 =
iΩ

γ/2 + iδ

�
γ

γ + 2R

�
(2.19)

and the excited state population as

ρ22 =
R

γ + 2R
(2.20)
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with the optical pumping rate

R =
γ|Ω|2

γ2/4 + δ2

2.3.2 Moving Atom in a Light Field

In the next step, let us consider the interaction of a moving atom of momentum

p with a light field. Description of the atomic states must now account for the atom’s

motional degrees of freedom so that our Hamiltonian for the atom light interaction is

Htot = −h̄Ω(r)
�
|2,p + h̄k��1,p| dp− h̄Ω∗(r)

�
|1,p��2,p + h̄k| dp (2.21)

since each photon absorption event must necessitate a momentum change by an amount

equal to the momentum of a single photon h̄k.

Note that now, owing to the contribution from the kinetic energy of the atom, the

resonance frequency for the transition |1,p� → |2,p+ h̄k� is shifted from the bare resonance

of a stationary atom to

h̄ωres = h̄ω21 + h̄k · v +
h̄

2
k

2

2m
(2.22)

The first term on the right hand side is the bare resonance energy for a stationary atom.

The second is energy shift due to doppler effect, whilst the third term is the recoil energy

which is generally much smaller (300 nK) than the others and is only of relevance at very low

temperatures. The doppler term features importantly in the initial steps of laser cooling.

By using a light that is of lower frequency than the atom’s resonance, we can bring it into

resonance with the atoms that satisfies k · v < 0. Allowing the atoms to preferentially

absorb photons moving opposite to the atom’s motion.

The interaction with the light field induces a force on the atom given by

�F� =
1
ih̄
�[p,Htot]� = h̄∇(Ωρ12) + h̄∇(Ω∗

ρ21)
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Writing Ω = |Ω|eiφ and using the steady state solution for the atomic coherences above

�F� = h̄(∇|Ω|2)
δ

γ2

4 + δ2

�
γ

γ + 2R

�
+ h̄|Ω|2 (∇φ)

γ

γ2

4 + δ2

γ

γ + 2R
(2.23)

We see that the force contains two contributions : the first term, occurs due to a gradient

in the intensity of the light field and dominates for large detunings when very little atomic

excitation is created. We can interpret this as arising from the spatially varying AC stark

shift of the ground state due to the light field. The second term, characterise the dissipa-

tive force due to photon absorption which dominates at low detunings. Since upon each

absorption event, the atom receives a momentum kick of h̄k, and subsequent spontaneous

emission event occurs in all directions so therefore impart zero momentum transfer onto the

atoms on average. Therefore each spontaneous emission event delivers a momentum kick of

h̄k to the atoms.

2.3.3 Interaction With Real Atoms

In this work, we are mainly concerned with the force arising from the conservative

interaction of (2.23) as it provides the least amount of disturbance to the atoms. In the

limit of large detuning δ � γ, Ω we can write this term as the gradient of a dipole potential

V = −
h̄|Ω|2 δ

δ2 + γ2

4

which is in fact the AC stark shift of the ground state in the presence of the light field.

Heuristically, the oscillating electric field of the light induces an oscillating dipole moment

in the atom which then interact with the light field to produce this energy shift. For real

atoms, like 87Rb, with many sub-levels, the light’s interaction with each transition must be

accounted for. But for detunings larger than the hyperfine splitting of the excited state we

can simplify the interaction to that of the two D lines [53]

Vdipole(r) =
πc

2
γ

2ω
3
0

�
2 + PgF mF

∆2,F
+

1− PgF mF

∆1,F

�

I(r) (2.24)
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Here P = ±1, 0 for σ± and linearly polarized light respectively. gF , mF are the magnetic

quantum numbers of the relevant ground states and ∆2,F , ∆1,F are the detunings of the

laser light from the D1 and D2 transitions respectively.

2.4 Gaussian Beam Dipole Trap

From equation (2.24), we see that it is possible to generate trapping potentials

for the atoms using spatially varying intensity in the light field. A simple application of

this is the confinement produced by a red detuned beam with a Gaussian profile I(x, y) =

I0e
−2(x2+y2)/w2 where w is the waist of the beam and the light is traveling along the z axis.

For red detuning (∆2,F , ∆1,F < 0)) the atoms are attracted towards intensity maximums.

Hence by simply shining this Gaussian beam onto the atoms, one can create a confining

potential in the x,y plane with atoms trapped at the center of the Gaussian profile. If the

extent of the cloud is much smaller than the waist of the beam, we can Taylor expand to

second order about the trap location to get

VGauss(r) =
πc

2
γ

2ω
3
0

�
2 + PgF mF

∆2,F
+

1−PgF mF

∆1,F

�

I0

�

1−
2(x2 + y

2)
w2

�

so the gaussian beam produces a harmonic confinement in the x,y plane with trapping

frequency proportional to
�

I0/w2



Chapter 3

Single Atom Imaging

This chapter explains the principles behind our imaging system and elucidate how

we operate it to achieve high spatial resolution detection of atoms.

3.1 Imaging System

The center piece of the experiment, or the microscope part of the ”Quantum

Gas Microscope”, is a specially designed imaging system, optimized for near diffraction

limited resolution at 780nm. The schematics of the imaging system is shown in Figure

3.1, which consists of three parts. A custom made microscope objective positioned outside

of the vacuum chamber, a plane parallel glass plate corresponding to the top face of the

glass cell and a hemispherical surface inside the vacuum chamber. In order to achieve

diffraction limited resolution, all three elements must be positioned relative to each other

in pre-optimized positions. It is for this reason, that the mechanical mounting of both the

objective and the hemisphere is designed in such a way that their orientation and position

is completely defined by the top surface of the glass cell.

The first piece to be assembled, is the hemisphere shown in Figure 3.2. The

16
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 quantum gas trapped below surface

Figure 3.1: Schematics of the imaging system. A custom made objective sits outside of the
vacuum chamber and forms a high resolution microscope together with the plane parallel
glass plate of the glass cell surface and the hemispherical surface positioned inside the
vacuum chamber

Figure 3.2: Photograph of hemisphere inside the glass cell. The hemisphere is optically
contacted to a super-polished substrate surface that is held inside a stainless steel holder.
The holder contains three prongs that pushes again the glass cell and define the position of
the hemisphere relative to the glass cell surface.
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hemispherical surface has 8 facets positioned at equal angular spacing. Their purpose is to

prevent direct retro-reflection of beams incident on the center of the hemisphere which can

otherwise lead to unwanted disturbances to the formed dipole potentials. The hemisphere

is completed by optical contacting to a superpolished substrate which ensures that the glass

surface facing the atoms is flat to within 1 angstrom, so that the atoms do not experience

any potential disturbances due to surface effects. The entire construction is then clamped

within a stainless steel holder with three prongs that pushes against the glass cell surface to

position the tip of the hemisphere at a distance of 1.6mm below the inside of the glass cell.

We then position the microscope objective (outside of the vacuum chamber) such that its

optical axis coincide with the hemisphere center and is orthogonal to the glass cell surface.

This was accomplished using a fizeau interferometer. We image the interference pattern of

a large beam that traverses the imaging system twice upon reflecting from the flat surface

of the hemisphere 1, with a reference wavefront obtained by reflection from a high quality

glass surface . As shown in Figure 3.3, the interference patterns give us the capability to

diagnose misalignments due to tilt, decentering or defocusing of the objective relative to

the remaining pieces as they each give rise to distinctive wavefront aberrations. We then

secure the objective to the glass cell via epoxy while monitoring the interferogram as the

glue dries to prevent significant position shift as the epoxy cures.

In order to utilise the high spatial resolution, we must position the atoms close to

the hemispherical surface. That this is necessary could be understood from the diagram

shown in Figure 3.4. The presence of a nearby medium with refractive index greater than

one, effectively increases the cone angle of light emanating from the object plane that will

be able to pass through the aperture stop but only for objects close to the glass surface.

1
The microscope focuses a collimated beam to the back surface of the hemisphere and we use the reflection

from that surface as a proxy for the wavefront at the focus as it is not directly accessible to us.
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a b

Figure 3.3: a. Fizeau interferogram of perfectly aligned objective showing the reflection
from the flat surface has the wavefront of a plane wave. b. Interferogram of misaligned
objective, the slight curvature in the fringes shows that the reflected wavefront deviates
from a plane wave, most likely due to tilt of the objective optical axis with respect to the
hemisphere center.

This is a commonly known technique of solid immersion microscopy [20] 2. In the first

version of our apparatus design, we operate with the atomic cloud at a distance of 1.5 µm

below the glass surface. Subsequent investigation led us to abandon this configuration due

to its close proximity to the glass surface and we now operate with the atoms positioned

approximately 10 µm below the surface.

As well as placing the atoms close to the surface, we also compress the cloud greatly

along the line of sight of the objective such that there is no relevant dynamics occurring

along this axis. This is advantageous for two reasons. One, as this axis is invisible to the

microscope, we would have to install imaging along another axis in order to reconstruct the

2
An alternative explanation is that the wavelength of light is reduced by a factor of n equal to the

refractive index of the dense material, hence the Rayleigh criteria gives a smaller resolution than in air by

a factor of n
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to camera
ray path in
absence of
hemisphere

ray path in
absence of
hemisphere

objective

Figure 3.4: Schematics depicting the enhancement of numerical aperture in solid immersion
microscopy. In the absence of the nearby hemisphere, the large angled emission from the
atoms would not be collected by the objective (shown in dashed red line). In the presence
of the hemisphere, these rays undergo refraction at the hemisphere which redirects them
into the objective (solid red line)

dynamics in this third dimension 3. Secondly, the objective has a finite depth of focus of

1.2 µm therefore images will be obscured by any signals outside of the diffraction limited

region. It is for these reasons that we construct a two dimensional optical trap for the atoms

just below the surface as described in Chapter 4.

Note that although much care was taken to ensure that the objective is positioned

correctly for aberration free wavefront, this need not in fact be necessary, since after gluing,

any aberration is likely to be static. Provided that the exact wavefront at the focus could

be reconstructed, the aberrations could in principle be fully corrected for by the insertion

of an appropriately manufactured phase plate with the conjugated phase distortion, hence

restoring the high resolution.

Wavefront reconstruction is generally difficult however, especially when we could

3
This is not necessary for systems contains certain symmetry where it is possible to reconstruct the

full image from a projected image, for example the use of inverse Abel transform for axially symmetric

condensate in [35]
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Figure 3.5: Projections optics for pinning lattice. Two orthogonally oriented 1D lattices
are combined on a polarizing beam splitter cube and sent through the remaining 4f imaging
system including the microscope objective to form a square lattice at the atoms.

not access directly the other side of the imaging system. Since aberrations due to misalign-

ment of the objective are likely to be random in nature and could not be computed from

first principle, this method of reaching diffraction limit is unlikely to be successful.

Nevertheless, phase conjugation was still useful for us, in circumstances where the

aberration arose from a known cause and could be computed. Such was the case when

it became necessary for us to move the atom trap further away from the superpolished

surface. In order to maintain diffraction limited imaging with the atoms 10 µm away, the

imaging process was simulated using the ray tracing program Oslo, from which the wavefront

aberration could be computed and the appropriate phase conjugation plate manufactured.
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3.2 Imaging Procedure

Once the imaging system is set up, we may use it to take high quality fluorescence

images of the atoms. The imaging process consists of the following sequence of events (see

Figure 3.6) in the order which they occur :

1. The atoms are first localized for the duration of the imaging process. We do this by

imposing a deep square lattice potential in the plane of the atoms with depth of up

to 340 µK. We generate the square lattice pattern by shining 795 nm light 50 GHz

to the blue of the rubidium D1 line, on two static transmission phase holograms with

orthogonally oriented line patterns as shown in Figure 3.5. We then combine the two

patterns on a polarizing beam splitter cube to form a square lattice. This pattern is

then projected onto the atoms using two 4f imaging systems with the microscope as

the last ”lens”. The resultant lattice pattern has a lattice spacing of 620 nm after a

factor of 0.031 in magnification. Because the lattice pattern is merely an image of the

hologram pattern, the structure (i.e. lattice spacing) is independent of the wavelength

of light used. Therefore we can use the same imaging path both for projecting far

detuned lattice patterns (for doing many body experiment) as well as near resonant

ones here as in the pinning lattice. We also impose a deep potential in the vertical

direction (about 1 mK) by using the same laser and creating a lattice in the vertical

direction similar to the way vertical confinement for our two dimensional quantum

gas was made (see section 4.4 ).

2. After the pinning lattice has reached full power, all previous confinement of the atoms,

optical and magnetic are switched off. We also switch on currents through three large

coils made using ribbon cables that nulls the magnetic field at the location of the

atoms, which is necessary for the next step of the experiment.
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3. Two molasses beams with co-propagating repump, 80 MHz to the red of the imaging

transition F = 2,mF = 2 → F
� = 3,m

�
F = 3� are switched on. These serves two

purposes: one, the polarization of the molasses are adjusted to give rise to polar-

ization gradient cooling effects [54]. Here polarizations of the pinning lattice beams

are important to allow effective operation of the molasses beam, since any nonlin-

ear polarization of the beam effectively generates a vector light shift which mimics

a magnetic field. The lattice beams has been carefully aligned to attain as close to

linear polarization as possible. The second purpose of the molasses beams are to cause

the atoms to scatter 780nm photons which are then collected by the microscope and

constitute fluorescence signal of the atoms.

4. After waiting 50 ms for the transients of the molasses to disappear, the camera shutter

opens and collect signal for typically 1s. Figure 3.7 shows a typical image of atoms

released from the two dimensional surface trap.

A histogram of our images always shows two peaks corresponding to the absence and pres-

ence of an atom. We believe the absence of other peaks signifying site occupation greater

than one is due to the occurrence of light assisted exothermic molecule formation between

two closely spaced atoms which occurs in multiply occupied sites [55]. This removes all sites

occupied by even number of atoms and reduce sites with odd occupation to a single atom.

So our detection mechanism measures only parity of atom number per site.

3.3 Image Analysis

The fluorescence images of the atom allows us to directly measure the point spread

function of our imaging system (or response to an impulse, here being the point object of

an atom). This was done by taking several pictures with very sparse atom distribution. We
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Figure 3.6: Sequence of events for fluorescence imaging of atoms.
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Figure 3.7: Fluorescence image of atoms released from surface trap 10 µm away from the
surface.
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Figure 3.8: Point spread function of imaging system.
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visually identify the locations of isolated atoms in each image, then overlap the peaks of each

single atom intensity profile in order to compute an averaged intensity profile of a single

atom. The resultant pattern is then fitted with a two dimensional gaussian. Figure 3.8

shows the result of the point spread function computed this way from fluorescence images

of atoms at about 10 µm below the surface. Knowing the magnification of the imaging

system, the FWHM of the point spread function are 0.593 x 0.605 µm in the horizontal and

vertical directions respectively.

The second type of analysis frequently performed on these images is to identify

the location of the atoms in the image. Typically this was done by obtaining, prior to each

experiment run, the point spread function as described above, and the lattice geometry by

Fourier transform of some densely populated images. We then determine the location of

atoms in each image by determining the least square multiple of the point spread function

for the data at each lattice site. Fit values above a predetermined threshold indicate the

presence of an atom.

For the sake of expediency, we also implement a faster algorithm using built in

functions within Matlab’s Image Processing Toolbox. By examining sparsely populated

images, we identify the appropriate structuring elements characterizing the intensity profile

of a single atom. This here serves the analogous purpose as the point spread function above

and need only be determined once for a fixed camera focusing. We then perform morpho-

logical opening using this structuring element to probe the image we wish to examine. After

subtracting this from the original image and performing a gamma correction, we obtain a

high contrast version of the fluorescence image from which the location of the atoms could

be easily obtained by searching for local maximums in intensity whose average neighbor-

hood values exceed a threshold hold level that was determined by tests with images where

manual identification was feasible. This allowed us to determine the atom number, center
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and radii of cloud in less than 5s per typical image.



Chapter 4

Optical Surface Trap

In this chapter, we explain in detail, the setup of how we produce a two dimensional

condensate in the experiment suitable for performing optical lattice experiments with the

quantum gas microscope. Our current setup is a revised version of an older configuration

[56] which suffers from surface effects due to adsorbed rubidium atoms on the superpolished

substrate. We circumvent this problem by moving the atoms further away from the glass

surface.

4.1 Old Apparatus Setup

The main components of our old setup is shown in Figure 4.1 [57]. We start the

experiment by producing an almost pure condensate of Rubidium 87 in the F = 1 mF = 1

hyperfine state in a magnetic trap of cigar geometry. In order to produce a two dimensional

condensate close to the glass surface, we loosen the confinement in the transverse directions

(orthogonal to gravity) by changing the magnetic field configuration to a spherical one and

move the center of the magnetic trap 1.6mm into the glass surface. This squeezes the atoms

against a repulsive potential at the surface formed by a blue detuned evanescent wave, thus

29
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Figure 4.1: Schematics of our old surface trap setup. The magnetic field center is used
to move the atoms towards the surface where they encounter a 765 nm evanescent wave
incident from the curved side of the hemisphere and creates an exponentially decaying
repelling potential that prevents the atoms from falling into the surface. The same laser is
also used to power the axial lattice incident from the bottom of the hemisphere that creates
a 1D lattice orthogonal to the glass surface. In the final stage, the atoms are loaded from
the evanescent-magnetic combined trap to a single well of the axial lattice closest to the
glass surface as shown on the right.

greatly increasing the vertical trap frequency, typically to about 800 Hz.

To further increase the vertical confinement, in order to reach deeper into the two

dimensional regime, in the second stage we load the atoms into the first well closest to

the glass surface of a vertical lattice potential produced by a blue detuned vertical standing

wave. This one dimensional lattice is formed by the interference of a grazing incidence beam

with its reflection from the flat surface of the hemisphere, with the angle of incidence tuned

to give a lattice spacing of 1.5 µm. At this stage, we have a two dimensional condensate

1.5 µm below the superpolished substrate that forms the starting point of all subsequent

experiments.

Although this configuration allowed us to utilise the high resolution of the mi-

croscope, there were severe limitations due to the close proximity to the glass surface. In

detail, we encountered the following technical difficulties :

• There is a slow leakage of atoms out of the evanescent wave trap towards the glass
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Figure 4.2: Potential barrier from evanescent wave and Casimir Polder effect with the
surface (blue curve), and the same potential added to electric field due to 10 million adsorbed
rubidium atoms on the surface (red). The potential barrier to the surface is almost non
existent after including the effects of the adsorbed atoms.

surface. When enough adsorbed rubidium atoms had accumulated at the surface, it

created an attractive potential 1 that reduced the barrier to the surface created by the

evanescent wave. One can estimate its effect roughly by using the measured electric

field from adsorbed rubidium atoms on a glass surface obtained in [71]. We assume

the distance dependence of the electric field is consistent with that of a point charge,

as would be expected for atoms consistently deposited at the same location on the

glass surface. Figure 4.2 shows the resultant potential barrier from the surface for 10

million adsorbed atoms on the surface in comparison to no adsorbed atoms, it is clear

that the barrier due to the evanescent wave is rapidly washed away by the adsorbed

atoms, making it extremely easy for atoms to tunnel to the surface. Note that the

cycle rapidly becomes a run away process as adsorbed atoms leads to reduced barrier

which then encourages even more atoms to get stuck to the surface. As a consequence

1
Adsorbed atoms onto the surface changes its electronic structure leading to the valence electron residing

partially inside the surface therefore creating a weak dipole. The effect is dependent on the work function

of the surface and is not as severe for glass as it is for metallic surfaces.
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we were not able to load the evanescent wave trap using the same location on the

surface for longer than about three months.

• The surface impurity impedes our ability to precisely control the repulsive potential

that keeps the atoms away from the surface, therefore we lack good control of atom

number and temperature in the 2D trap. We also have no reliable method to repro-

ducibly produce the small atom numbers (approximately 2000) needed to load the

subsequent two dimensional optical lattice with one atom per lattice site.

• Impurities on the surface also cause an-isotropic expansion in the plane and sometimes

even pin atoms to local spots. An example of this is shown in Figure 4.3 where the

condensate is allowed to undergo free transverse expansion for 2 seconds within the

axial lattice before fluorescence imaging. A significant number of atoms remained

pinned to this location. This occurred despite of the fact that the atoms experienced

a force parallel to the plane of the surface due to the tilt of the hemisphere axis with

respect to gravity (about 0.6o). One can use this to estimate roughly the sideways

gradient in the plane due to the adsorbed atoms. In units of an equivalent magnetic

field gradient, this translated to a gradient of 0.36 G/cm. The susceptibility to surface

contaminants was a great impediment to our abilities to produce controlled known

potentials for the atoms which is necessary when comparing to theory in optical lattice

experiments.

It was for these reasons that we decided to modify our surface trap configuration.

Our changes were implemented with two major objective :

• To reduce the effect of surface impurities, we will implement the two dimensional trap

for the condensate at a distance of 10µm away from the glass surface. We deemed

this distance to be large enough to provide immunity against surface impurities and
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Figure 4.3: Fluorescence images of atoms after expansion in axial lattice for 2s. Signal
shows atoms pinned by surface impurities.

adsorbed rubidium atoms whilst still allowing us to utilise the enhanced numerical

aperture afforded by being close to the glass surface. We achieve this by replacing the

evanescent wave trap with a vertical lattice of lattice spacing 10 µm and loading into

the first well of this lattice after condensation in the cigar trap.

• RF evaporation does not allow us to reproducibly make small condensates as once the

RF frequency gets below the chemical potential of the condensate we become suscep-

tible to fluctuations in the magnetic field trap bottom (not actively stabilized). We

therefore decided to control the atom number via optical means for which the stabil-

ity is mainly determined by fluctuations in beam power (which is actively stabilised).

Our final configuration utilizes a ”dimple” trap, or a red detuned dipole beam of small

trap volume, which we use to reduce our atom number beyond the stable operating

point of RF evaporation without exuberant increase in temperature or loss in stabil-
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ity. We then subsequently put the atoms into a large volume red dipole trap prior

to loading into the optical lattice. This trap has a low trap depth (on order of nK)

which we use to limit the temperature of the cloud. The powers in both beams are

actively stabilized via the setup described in Appendix A. With the combination of

both methods we can consistently produced condensates of approximately 1000 atoms

with about 4 % fluctuation in atom number.

In the remainder of this chapter we will describe in detail, the setup and char-

acteristics of our improved trapping scheme which will take us closer to working on many

body physics.

4.2 The 10µm Lattice

In this section, we describe the 10µm lattice (also referred to as the big lattice) that

is used as a bridge between the end of the usual BEC production and the two dimensional

optical trap where we will eventually carry out the experiments with optical lattices.

The big lattice consists of a vertical lattice formed from the interference of an

incident beam on the flat side of the hemisphere with its reflection (see Figure 4.4) from

the glass surface. The light source for the lattice is the output of a titanium sapphire

femtosecond laser (Coherent Mira). In order to transport the light from the laser table to

the experiment table via single mode fiber without excessive spectral broadening due to

nonlinear effects, we broaden the time width of the pulse as described in appendix B with

a pair of matched gratings. The resultant light at the fiber output has an autocorrelation

full width half maximum of 153µm and center wavelength of 757.4nm.

In order to generate a lattice spacing of about 10µm, the incident beam must

impinge upon the surface at a very shallow angle of about 2o to the glass surface. At this
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9.75 micron

Figure 4.4: Geometry of the big lattice beam. The incident beam from the left side interfere
with the reflection from the surface to form a one dimensional lattice in the vertical direction.
We load the atoms into the first well of this lattice.

small angle, a circular incident beam would result in a highly elliptical cross section in the

transverse plane, therefore we shape the incident beam to an aspect ratio of 2.6 : 1 with

cylindrical lenses as shown in Figure 4.5. A higher aspect ratio of 28.7:1 would be required

to generate a truly circular cross section at the atoms, but such a high aspect ratio would

necessitate that one axis of the beam having a very small waist and hence a very short

Rayleigh length. The rapid divergence would likely lead to clipping upon entering the glass

cell. In any case, at the point of loading into the big lattice, the transverse confinement is

still dominated by the magnetic trap, therefore the precise geometry of the big lattice beam

is not so important.

In Figure 4.5, we illustrate the sequence of optical elements used to generate and

image the big lattice beam onto the atoms. A motorized mirror is placed at the object

plane of the two lens imaging system whose image point is at the atoms. When rightly

focussed, this allows us to change the beam’s angle of incidence via rotation of this mirror

with minimal shift in beam position. A 30mm thick plane parallel glass plate is used to

change the beam position in the object plane and allows us to center the beam onto the

atoms.
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Figure 4.5: Optics setup for the 10µm lattice. The two lenses in the lattice beam imaging
system image the beam position and angle in the object plane (equal to location of the
motorized mirror) onto the atoms. The atom absorption imaging system in the upper right
hand corner is used to align the lattice beam to the correct location with respect to the
atoms
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Figure 4.6: Absorption image of the atoms using 780 imaging light passing through the
same fiber as the big lattice beam

To position the beam onto the atoms, we pass 780nm imaging light through the

same fiber as the big lattice and use it for absorption imaging via the imaging system

shown in the upper right hand corner of Figure 4.5. When correctly placed, we see two

symmetrically placed images of the atom cloud (the atom’s shadow and its reflection in the

glass surface) as shown in Figure 4.6.

In order to measure approximately the lattice spacing of the big lattice, we move

the atoms by shifting the minimum of the cigar trap to varying vertical distances below the

surface then ramp up the big lattice to full power over 200ms. After holding the atoms in

the lattice for 10ms, we do absorption imaging after 10ms time of flight and use a gaussian

fit to find the center position of the cloud. The vertical position of the cloud (see Figure

4.7) shows plateaus corresponding to loading into the first, second and third well of the big

lattice. This way, we deduce the lattice spacing is approximately 9.75µm.

In order to load the atoms into the big lattice without significant heating or loss,

it is necessary to circumvent the high density which results as an increase in the vertical

trap frequency from the 140 Hz in the cigar configuration to the 0.9 kHz in the big lattice.

To achieve this, we loosen the transverse confinement by converting from a cigar trap to

a spherical configuration at the point when the big lattice power is sufficient to prevent
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Figure 4.7: Measurement of approximate lattice spacing. The cigar trap center is moved
to varying distances below the surface by changing the voltage supplied to a push coil (a
higher voltage is closer to the surface). After pushing to desired location, the big lattice
is ramped up to full power in 200ms. The atoms are imaged after 10ms hold time in the
lattice and 10ms time of flight. We use a gaussian fit to deduce the center of the cloud for
each distance. The four lines represents the same experiment taken on different days over a
space of one week which shows that our loading distance remains roughly stable over time.
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sagging due to gravity. After full conversion to a spherical trap, the big lattice is then

ramped up to maximum power. Our optimized parameters gives a loading efficiency of 78

% into the big lattice with a vertical confinement of 0.95 kHz as measured from parametric

heating.

4.3 Dimple Trap

The next stage in the surface trap sequence is the loading of atoms into the red

detuned dimple trap. As mentioned previously, the use of the dimple allowed us to reach

lower atom numbers and also freed us from the necessity of a magnetic trap (this would be

important for experiment involving atoms in differing magnetic states). In this section, we

describe the rationale behind its use and how it was implemented.

Previous works on the dimple trap has concentrated on its ability to increase phase

space density by modifying the geometry of the trapping potential. The fact that this is

possible could be seen readily from thermodynamic relations. Let us consider an ensemble

of N thermal atoms subject to a spatially varying trapping potential of the form U(r) where

the potential minimum at rmin satisfies U(rmin) = 0. The atoms will distribute themselves

in a spatial pattern given by the Boltzmann distribution, where the spatial density is

n(r) = npeak e
− U(r)

kB T d
3
r

and the normalisation condition

N = npeak

�
e
− U(r)

kB T d
3
r (4.1)

From equation (4.1), we see that one may define an effective volume for the cloud as

V =
�

e
− U(r)

kB T d
3
r (4.2)
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such that npeak = N/V .

The Hamiltonian for the ensemble H =
�N

i=1
p2

i

2m + U(ri) allows us to write the

partition function as

ZN =
1

h3NN !

�
e
− H

kB T d
3
pi d

3
ri (4.3)

=
1

λ
3
dBN !

��
e
− U(r)

kB T d
3
r

�N

=
Z

N
1

N !
(4.4)

with the thermal de Broglie wavelength λdB =
�

h
2πmkBT and the single particle partition

function

Z1 =
1

λ
3
dB

�
e
− U(r)

kBT d
3
r

The entropy per particle in the cloud is related to the partition function via

S

N
=

1
N

∂

∂T
(kBT log ZN ) (4.5)

= kB

�5
2

+
T

V

∂V

∂T
− log(npeakλ

3
dB)

�
(4.6)

= kB

�5
2

+ γ − log(npeakλ
3
dB)

�
(4.7)

where we assume that V has a the functional dependence on temperature as V ∝ T
γ .

From equation (4.6) we see that in an adiabatic operation that conserves the total

number of particles (hence constant entropy per particle) one has the possibility of greatly

increasing the phase space density npeakλ
3
dB by changing the parameter γ. But this could

not be accomplished simply by a change in the strength of the potential (U(r) → KU(r))

as this corresponds only to a scaling of the temperature so that the volume changes as

V ∝ (T/K)γ without a change in the γ parameter. However γ could be modified by a

change in the functional form of the trapping potential. In Figure 4.8, we illustrate some

sample potentials with their respective γ. Realisation of increasing the phase space density

this way was first achieved by Pinkse et. al. [1] with spin polarized atomic hydrogen where

a deformation of the magnetic trap from harmonic to nearly linear gave rise to an increase
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Figure 4.8: γ for some simple trapping potentials in two dimensions.

in phase space density by a factor of 2. It was also utilised in later experiments on all

optical production of Bose Einstein condensation [4].

A more general type of deformation is illustrated in Figure 4.8, the two box po-

tential. This was first implemented by Stamper-Kurn et. al. in [3] and later in [2]. Such

a configuration is easier to achieve experimentally as it could be accomplished by simply

superimposing two potentials of different depths and sizes. In the case of [3], this was

accomplished by a tightly focussed optical trap combined with a large volume magnetic

trap. In the Cs experiment of [2], this was done using two different sized dipole traps. Our

approach uses a combination of the above two methods.

We extend the original idea of [3] by considering an extension of the ”two-box”

model illustrated in Figure 4.9. N particles are originally confined in a box potential of

volume V0 = V1 + V2 with initial temperature T0, density n0 and phase space density Γ0.

The potential within a subvolume V2 of the box is then lowered adiabatically by an amount

U to form a ”dimple” so that the peak density in the dimple exceeds that of the reservoir

by an amount e
U/kBT and the ensemble equilibrates to a higher temperature T2 with phase

space density Γ2 within V2.
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step 1 step 2
step 3 step 4

U

Figure 4.9: Sequence for cooling using the dimple trap with the two box model. An ensemble
of N atoms is initially held in a box potential of volume V . In step 2, a dimple trap of
volume V2 and depth U is superimposed on top of the box potential. In step 3, the reservoir
atoms in volume V1 are released leaving the remaining atoms to equilibrate in V2. In step
4, the box is adiabatically expanded back to volume V0

The application of equation (4.6) to equate the entropy per particle in steps 1 and

2 shows that the phase space density in V2 will exceed the original phase space density by

an amount

log
�Γ2

Γ0

�
=

U
kBT2

1 + V2
V1

e

U

kBT2

(4.8)

For V2 � V1 and e
U/kBT2 � V1/V2 (potential not so deep as to encompass all the atoms)

one can obtain an almost arbitrarily large increase in phase space density Γ2 = Γ0e
U/kBT2

and give rise to condensation of atoms in V2 as shown in [3]. But note that condensation

was a local phenomenon here, as the dimple perturbs the eigenstates only locally. As shown

in [3], the atoms in the reservoir remains thermal.

Next we consider utilising the local increase in phase space density in the following

ways as shown in steps 3 and 4 of Figure 4.9. In step 3, we remove the reservoir atoms in

a one step ”evaporation” process and allow the atoms in the dimple to equilibrate after-

wards. By computing the average energy per particle before and after the evaporation, the
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equilibrium temperature in step 3 is [5, 6]

T3 = T2

1 + V2
V1

e

U

kBT2

1 + V2
V1

e

U

kBT2 + 2U
3kBT2

(4.9)

By letting the reservoir atoms escape carrying above the average kinetic energy per atom,

the remaining smaller number of atoms equilibrate to a lower temperature. Note that one

can also use this method to lower the atom number in a way that is more deterministic

than RF evaporation since the final number of atoms retained depend only on the initial

density (which is weakly dependent on the total atom number) and the properties of the

dimple beam. The proportion of atoms retained is

p =
V2
V1

e

U

kBT2

1 + V2
V1

e

U

kBT2

(4.10)

In step 4, we expand V2 adiabatically back to the original size V0. Since phase

space density is conserved and the density of atom is reduced by a factor of V0/V2, the final

temperature of the atom is

T4 = T3

�
V2

V1 + V2

�(2/3)

In Figures 4.10 and 4.11, we show the final temperature and proportion of atoms

remaining as a function of the dimple depth for various volumes and initial temperatures.

Both final temperature and atom number are approximately linear functions of the dimple

depth (proportional to dimple power here) in this region (this will not be true in the param-

eter regimes of very high phase space density, or very low temperatures since the density

in the dimple becomes constrained by three-body losses [7]) and that for a lower initial

temperature, it becomes progressively harder to cool and still retain atoms since very low

dimple depth are required and atom number declines more quickly with decreasing dimple

depth at lower temperature. Note that although V2 � V1 is optimal for reaching lower tem-

peratures, it also retains much less atoms which will be more susceptible to residue heating

such as from spontaneous scattering from the dimple trap light, an effect not included here.
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Figure 4.10: Final temperature of dimple cooling (a) and proportion of atoms retained (b)
as a function of dimple depth for various initial temperatures of the cloud as labeled on the
graphs. V2/V1 = 0.5

Instead of expanding the dimple, one can also perform further evaporation in the

dimple by lowing the depth as was done in [8]. Evaporation in the dimple can be very

efficient for species with low inelastic decay rate, due to the high density which encourages

thermalization.

4.3.1 Dimple Trap Setup

The dimple trap in our experiment serves two main purposes

1. Reproducibly make controllable small atom number clouds.

2. Prevent atom loss or shaking during magnetic field shut off.

We did not focus on the cooling aspect of the dimple as there are further stages subsequent

to loading the dimple that would lead to temperature increase, although it is likely that

some variant of the above mechanism is in operation. In future experiments, it may be

possible to utilise the cooling properties of the dimple as well as the above two.

We create the dimple beam using a superluminescent diode module (Superlum

S840-B-I-20) as a seed for a tapered amplifier (Eagleyard 850nm, 500mW). The output of
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Figure 4.11: Final temperature of dimple cooling (a) and proportion of atoms retained (b)
as a function of the dimple depth for various V2/V1 as labeled on the graphs.

the amplifier is shared between two dipole traps, the dimple and the red-dipole that is used in

the final stages of the experiment. After filtering out residue 780nm light (Semrock 808 long

pass filter), up to 5mW of light can be delivered to the experiment table centered at 824nm

with correlation length of 63 µm. We combine the dimple beam path with the fluorescence

imaging beam path via a dichroic beamsplitter (Semrock LM01-659-25) as shown in Figure

4.12. To position the beam onto the atoms, we first image the atoms using the Andor

camera, then position the reflection of the dimple beam from the superpolished substrate

to the same location on the camera. This provides us with only a rough positioning of the

beam since the imaging system, focussed on the atom using 780nm light has non negligible

focal shift at 840nm. We can also use this to estimate the dimple beam size at the atoms as

7.78 µm 2/e
2 waist. A more precise alignment is achieved by looking at fluorescence images

of atoms in the dimple and ensuring the atoms are in the same position prior to and after

loading into the dimple trap.

To load the atoms into the dimple, we ramp up the dimple power to desired values

over 200ms as soon as the big lattice reaches full power. The resultant combined potential

is shown in Figure 4.13. On completion of the ramp, we reduce the current in all magnetic
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Figure 4.12: Optics setup for dimple beam

field coils in 200 ms before shutting them off completely. At this point, the reservoir atoms

not held by the dimple are no longer confined in the transverse direction so will drift out of

the region. We typically wait for 100 ms before releasing the atoms from the dimple into a

large volume dipole trap in order to ensure that no reservoir atoms remain to the next stage

of the sequence. The magnetic fields turn off here prevents us from using arbitrarily low

dimple depth since a reasonable large confinement is required to protect the atoms from the

violence during the field turn off. This also limits our ability in using the dimple as a tool

to reach lower temperature. In order to test whether the dimple satisfies our criteria, we

perform fluorescence imaging on the atoms after all the reservoir atoms has been removed.

In Figure 4.14, we show the number of atoms retained as a function of the dimple power

with the error bar indicating atom number fluctuation calculated over 10 runs. As expected

from our previous argument, the atom number is approximately a linear function of the

dimple power. Note that the fluctuation in atom number is about 3 % on average (with
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Figure 4.13: Combined potential of the dimple beam plus magnetic field

the exception of 6 % at the lowest dimple power where the atoms probably feel the effect

of the field shut off) which is better than our usual 10 % fluctuation in atom number in the

cigar trap. We can understand this from equation (4.10). The atom number depends only

on the initial density and the geometric properties of the dimple, its width and depth, both

are close to being static quantities. Since the peak density in the center of the condensate

depends on atom number as N
2/5, we also have a 60 % reduction in fluctuation. For this

low atom number, it is almost impossible to achieve such stability with RF evaporation

alone.

4.4 Axial Lattice

While the atoms are in the dimple, we execute an exchange of the vertical con-

finement by replacing the big lattice with a vertical lattice of greater confinement. The

necessity of doing this, stems from the fact that the interaction energy of the atoms in a

two dimensional optical lattice is proportional to
√

ωz where ωz is the frequency in the
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Figure 4.14: Atom number in dimple for varying dimple voltages measured using fluores-
cence imaging, averaged over 10 repeats. The error bar indicate fluctuation in atom number.
A measurement at higher atoms numbers could not be obtained as the cloud size becomes
bigger than the effective molasses region.
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frozen out vertical direction (see equation (2.13) ). It is therefore advantageous for reaching

strongly interacting to have as high vertical frequency as possible.

Like the big lattice, the axial lattice is also formed by interference of an incident

beam on the flat side of the hemisphere with its reflection from the surface. Here we adjust

the angle of incidence to 14.5o from the surface in order to give a lattice spacing of 1.5 µm.

We shape the beam to an aspect ratio of 4 : 1 in order to avoid a highly elliptical cross

section at the atoms.

The light source for the axial lattice consist of an amplified spontaneous emission

source (Exalos) seeding a tapered amplifier (Eagleyard 765nm, 1.5 W). After filtering out

resonant light at 780nm, up to 200 mW of laser power is usable in the experiment with a

center wavelength of 756nm and coherence length of 324 µm.

The axial lattice ramps up as soon as all the reservoir atoms not held by the

dimple have exited the region. Once reaching full power, the potential due to the big lattice

becomes relatively unimportant and can be ramped to 0 rather quickly. After this point,

the atoms are held only by optical potentials. Parametric heating measurements here reveal

the trap frequencies in the vertical direction reaches 7.1 kHz maximum.

A priori, the location of the atoms in the big lattice need not coincide with the

minimum of the axial lattice. The consequence of this being that fluorescence images reveal

atoms trapped in the ”not in focus planes” of the axial lattice. The motorized mirror in

Figure 4.5 allows us to remedy this problem by tuning the big lattice spacing slightly until

the big lattice and axial lattice sites coincide. We detect this through a minimum number

of background atoms seen in fluorescence images.
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4.5 Red dipole

After the atoms are in the axial lattice and the big lattice has been turned off, we

execute the very last step of our two dimensional trap formation, by releasing the atoms

from the small dimple trap into a large volume red dipole trap. The red dipole is powered

by the same light source as the dimple beam. Using the optics setup as shown in Figure

4.15, we center the beam onto the atoms in the same way as for the dimple. Since this

beam has a rather large waist of 86 µm, it is not crucial to position the beam waist exactly

onto the atoms. We therefore secure all elements in the beam path to fixed positions which

should help with beam stability.

As soon as the big lattice has been turned off, we ramp on the red dipole to its

final value over 200 ms to a depth of 42 nK. A low trap depth is deliberately chosen here

to provide a temperature shield and allow the hot atoms to escape the cloud. The atoms

are then released from the dimple to the dipole trap by reducing the dimple power to 0.

We sometimes hold the atoms in this configuration for 6 - 8 seconds to allow

the hot atoms produced from the ramp sequences to escape the weak transverse potential.

Figure 4.16 shows an example of the fluorescence image of atoms in the all optical trap

with frequencies 8 Hz x 7.5 Hz (from red dipole) x 3.4 kHz (from axial lattice) and a 1/e

lifetime of 15s. A measurement of the condensate fraction averaged over 10 pictures gives

a temperature of 2.6 nK with 1058 atoms. The experimental sequence from the end of RF

evaporation in the cigar trap to the end of the all optical surface trap which we use to take

the image 4.16 is shown in Figure 4.17.

Although we have used a spatially coherent light from a single mode fiber to

make the red dipole beam, it is also possible to do this with the output from a multimode

fiber. Since the input light is of short correlation length (temporally incoherent), when
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Figure 4.15: Optics setup for the red dipole beam. The beam is combined with the imaging
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Figure 4.16: Fluorescence image of atoms in the optical trap. The solid ellipse shows the
boundary of the Thomas Fermi profile from which the condensate fraction was determined.
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the path difference of the various fiber modes exceeds the coherence length, the output is

free of speckle patterns. The use of such beam has two advantages over spatially coherent

light. One, the potential is less susceptible to local perturbations in the beam path since

such disturbances are unable to produce long range modulations by interference with the

remainder of the beam. This is particularly helpful when the size of the beam needs to be

very large (such as the beams that forms the two dimensional optical lattice), as spatially

coherent beams in such instances often suffer from inhomogeneous profile due to dust or

scratches on optical elements in the beam path. Secondly, beam profile from multimode

fibers can differ from Gaussian depending on the distribution of the fiber modes, This could

be changed by the in-coupling condition into the fiber or by applying force on a segment of

the fiber (this changes the local cross section and allow the different fiber modes to mix).

We can use this property to generate different confinement geometry for the atoms.

Working with spatially incoherent light can be rather troublesome however, as

most beams diverges very fast unless it is large already. Because of this, distances between

consecutive optical elements must be kept short and large sized optics must be used to

prevent unwanted beam clipping. Note that unlike a spatially coherent beam from a single

mode fiber, any unintended apertures here can change the beam profile and power signifi-

cantly since there are a significant number of spatial modes with extent far from the beam

center.

To test the feasibility of incoherent light, we take the single mode fiber output

previously used for the red dipole and butt couple it to a multimode fiber. The multimode

fiber used here is a 105 µm core diameter, 100 m long step index fiber. We purchase the

fiber without a jacket so as to allow mode scrambling by applying pressure to the fiber.

The fiber tip is then imaged by a succession of four lenses onto the atoms.

Again we examine the beam profile at the atoms by looking at the reflection from



54 Chapter 4: Optical Surface Trap

250 300 350 400 450 500 550 600 650 700

200

300

400

500

600

700

250 300 350 400 450 500 550 600 650 700

300

400

500

600

700

b

a

Figure 4.18: Atoms in dipole trap made with a. spatially incoherent light and b. spatially
coherent light.

the superpolished substrate. In Figure 4.19, the beam shows a rather large gaussian profile

with some small corrugations that arose from residue spatial coherent of the beam and

its large size. Significant care was taken here to ensure that beam clipping is kept to a

minimum. The fluorescence images of the atoms (see Figure 4.18 ) in this dipole trap and

one made with a spatially coherent light exhibit no major differences.

By applying pressure to the fiber and aperturing the beam afterwards, it is also

possible to obtain a more flat topped profile as shown in Figure 4.19. The power loss in

this process is quite significant therefore we did not have enough power to make a dipole
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Figure 4.19: a. Reflection from superpolished surface of spatially incoherent dipole beam.
b. After mode scrambling, the beam profile become flat topped.

trap using this geometry.

As a check to see if this configuration satisfied our original motivation, we have

verified that the atoms in this 2D trap expanded freely within the axial lattice and no

atoms were pinned due to adsorbed atoms on the glass surface. 2 After almost one year in

operation, we have yet to detect any evidence of this trap suffering from surface effects.

The end of the red dipole ramp is also the starting time for our experiments in two

dimensional optical lattice. The following chapters are devoted to the details of our lattice

beam set up and the experiments we are able to realise.

2
The expansion within the axial lattice is still anisotropic due to the corrugations in the profile of the

axial lattice beam which is unrelated to the problem of adsorbed atoms on the glass surface
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Theory of Atoms In Optical Lattice

In this chapter, we introduce the theoretical concepts related to neutral bosons

in optical lattice potentials and how they can be used for simulating the Bose Hubbard

Hamiltonian. Previously considered a toy model in condensed matter theory, the Bose

Hubbard Hamiltonian has been studied extensively by cold atom experimentalists in recent

years. This has yielded several interesting insights into the nature of its quantum phase

transition.

5.1 Single Particle In Lattice Potential

We start by considering the dynamics of one neutral particle subjected to the

periodic potential of a blue detuned one dimensional lattice in the x direction. The single

particle Hamiltonian applicable to us is

H = −
h̄

2

2m
∇

2 +
VL(y, z)

2
(1− cos(2kx)) (5.1)

The second term of (5.1) denotes the periodic potential created by the interference of the

two light beams that forms the lattice. The lattice wave vector k is related to the lattice

56



Chapter 5: Theory of Atoms In Optical Lattice 57

spacing aL via k = π/aL and defines the characteristic energy scale of the lattice, the recoil

energy ER = h̄2k2

2m to which we measure all other energy scales with respect to. Here we

assume counter propagating beams parallel to the x axis, so the transverse profile of the

beam occurs in the (y,z) plane. In general, due to the Gaussian intensity profile of the

beam, there is a slow variation in the lattice depth as one moves away from the center of

the beam. However for distances close to the center of the Gauss beam, we can treat the

lattice depth as approximately constant, given by its value at the beam center and account

for the effect of the Gaussian profile by the addition of a slowly varying parabolic potential.

Let us first consider the solution of (5.1) with a spatially constant lattice depth.

According to Bloch’s theorem [11], the eigenstates of (5.1) with a constant VL can be chosen

to be of the form

ψnq(x) = e
iqx

unq(x) (5.2)

where the function unq(x) has the same periodicity as the lattice. The indices n,q of the

Bloch wavefunction (5.2) denotes the band index and Bloch wavevector respectively where

the wavevector is restricted to within the first Brillouin zone q ∈ [−k, k) only. The eigen-

values of (5.2), �nq shown in Figure 5.1 gives the energy bands of the atoms in the lattice

and characterise the energy of single particle dynamics in the potential.

The Bloch wavefunction provides an adequate description of the atoms in the lat-

tice at low lattice depths when the atomic wavefunction is spread over many lattice sites.

Furthermore, we carry out our experiment by loading a stationary condensate into a station-

ary lattice, thereby populating primarily the lowest n = 0 energy band and quasimomentum

q = 0.

To account for the Guassian profile of the lattice beams, we first observe that for a

red detuned lattice where the lattice sites corresponds to location of maximal light intensity,

the primary effect of the beam profile is to provide a spatially varying energy offset (stark
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Figure 5.1: Energy of the first two bloch bands in units of recoil energy (ER = 1.48 kHz)
for one dimension lattice of spacing 620nm. Horizontal axis is quasi-momentum in units
of lattice reciprocal wavevector and vertical axis shows band energy in units of ER. The
lattice depths are a) 1 ER, b) 5 ER, c) 10 ER and d) 20ER. Notice that the gap between
the bands at q = 0 is bounded below by about 4 ER, which is not true for q=k at the edge
of the Brillouin zone. The band width becomes increasing flat as the lattice depth increases
signifying the much reduced tunnel coupling between the lattice sites.

shift) to each lattice site owing to the different local light intensity. The secondary effect of

the intensity profile is to modify the local lattice depth, causing the atomic wavefunction

and hence the band energy to change in space. Although this contribution is also present

for a red detuned lattice, its effect is considerably less than the variation in local AC stark

shift. For a blue detuned lattice however, the former effect is almost absent since the lattice

sites correspond to intensity minimum. Therefore, the consequence of the beam profile is

to cause the atoms to experience reduced lattice depth further away from the center of the

beam, hence the eigen energy of the atomic wavefunction will vary in space. To calculate

this effect we note that the intensity variation occurs on the scale of a beam waist (about

145 µm for us) which is much greater than the lattice spacing of 620 nm. Thus over the

distance scale of a few lattice sites, the lattice depth can be considered as approximately

constant, we can therefore perform a local density approximation : that is, for low lattice
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Figure 5.2: Energy of condensate in the n = 0, q =0 state across the lattice beam with
Gaussian waist of 145 µm, calculated in the local density approximation (red) and the
parabolic approximation using the curvature at the beam center (blue) as described in the
text.

depths (in the superfluid regime) the atoms are in the Bloch state n = 0 = q whose energy

at any point in space is simply the band energy calculated for a homogeneous system at the

locally prevailing lattice depth. The resultant spatial variation is shown in Figure 5.2 from

which we can extract the parabolic approximation valid near the beam center. This allows

us to write an approximation to the full Hamiltonian (5.1) as

H = −
h̄

2

2m
∇

2 +
VL

2
(1− cos(2kx))−

1
2
m(ω2

y y
2 + ω

2
z z

2) (5.3)

where VL is the lattice depth at the beam center and the overall deconfinement from the

lattice beams is given by

mω
2
y =

�����
∂

2

∂y2
�n=0,q=0

�
VLe

− 2y
2

w2

������ (5.4)

where w is the lattice beam waist.

When the lattice is sufficiently deep to localize the atoms, the Bloch function is

no longer a good description of the atom’s wavefunction. Instead, we switch to a different

basis wavefunction, describing atoms partially localized to a single lattice site. Such a basis
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Figure 5.3: Wannier function at various lattice depth. Horizontal axis shows distance in
units of lattice spacing (620nm). The lattice depths are a) 1 ER, b) 5 ER, c) 10 ER and d)
20 ER. The recoil energy is ER = 1.48 kHz

function (called Wannnier function) can be constructed from the Bloch states as

w0(x−R) =
1
√
N

�

q

e
−iqR

ψn=0,q(x)

where N is a normalisation constant and the sum is over all quasimomentums in the first

Brillouin zone. Note that the Wannier function shows increase localization at greater lattice

depth but nevertheless has small penetration into adjacent lattice sites.

With this new set of basis, valid for deep lattices we can return to examine the

consequence of a spatially varying lattice intensity for deep lattices. The local density

approximation still applies, except we must now calculate the energy not in the n = q = 0

Bloch state but with respect to the Wannier state. Figure 5.4 shows the resultant energy

variation across the lattice beam together with the parabolic approximation calculated using

the Bloch band energy, equation (5.4). Although not exact, we see that the curvature from

the band structure calculation continues to be good at deeper lattice depths. We may have

expected this result following the observation that the mean energy in the Wannier state is
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Figure 5.4: Energy expectation of the Wannier state with a Gaussian intensity profile (red)
with center lattice depth of 15ER. The blue curve shows the parabolic approximation using
the trap frequency calculate from equation (5.4) with the same lattice depth.

simply the average Bloch energy within the lowest band.

�w0|H(VL)|w0� =
1

Nlat

�

q

�n=0,q(VL)

As the lattice depth increases, the band becomes flatter so that asymptotically we have

lim
VL→∞

1
Nlat

�

q

�n=0,q(VL) = �n=0,q=0(VL)

hence we recover the same expression as in (5.4). We fit equation (5.4) to a sixth order

polynomial plus a square root in VL/ER, this function is then used during the experiment

for adjusting the overall external confinement during the lattice ramp up.

5.2 Two Dimensional Optical Lattice

For the simple cubic lattice in two dimensions, which we use in our experiment,

the lattice potential is

ULat(x, y) =
V

x
L

2
(1− cos(2kx)) +

V
y
L

2
(1− cos(2ky))
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Figure 5.5: Lowest energy band of two dimensional simple cubic lattice within the first
Brillouin zone at lattice depth of 3 ER.

since the two orthogonal axes are decoupled, the dynamics therefore reduces to two in-

dependent one dimensional lattices. The first Brillouin zone of the lattice is a square in

quasimomentum space and Figure 5.5 shows the energy of the lowest band in the two di-

mensional first Brillouin zone which is simply the sum of the Bloch energies in the two

axes

�n,(qx,qy) = �n,qx + �n,qy

The two dimensional Bloch function and Wannier functions are simply products of the

corresponding functions in each directions

w0(x, y) = w0(x)w0(y) ψn,qx,qy
(x, y) = ψn,qx

(x)ψn,qy
(y)

5.3 Bose Hubbard Model

Much of the driving force behind the recent surge of research into optical lattices

stem from the pioneering work of D. Jaksch et. al. [12] when they showed that neutral

bosons in optical lattice realises the Bose Hubbard Hamiltonian. In this section we show
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how this is possible and give estimation of the Bose Hubbard parameters realisable with

our system.

Let us first examine how the cold atoms in optical lattice system could be trans-

formed into the Bose Hubbard Hamiltonian. In second quantisation, the Hamiltonian for a

weakly interacting bose gas in a two dimensional lattice is

H =
�

Ψ̂†(r)
�

−
h̄

2

2m
∇

2 + ULat(r) +
1
2
mω

2
r
2

�

Ψ̂(r) d
3
r+

1
2

4πh̄
2
a

m

�
mωz

2πh̄

�
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) d

3
r

(5.5)

where the parabolic confinement on top of the lattice potential in our experiment arises

from the combined effect of an auxiliary red detuned dipole trap and the blue detuned

lattice beams.
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Figure 5.6: Comparison of onsite (left) and nearest neighbour (right) interaction energy for
various lattice depth showing that we are justified in ignoring the next nearest neighbour
contribution. Parameters calculated for a two dimensional simple cubic lattice with 7.1 kHz
trap frequency in the frozen out direction.

Within the tight binding approximation and occupation of only the lowest band,

we can expand the field operator as a sum over all the lattice sites using the Wannier
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for various lattice depth. The nearest neighbour tuneling dominates. Parameters calculated
for a simple cubic lattice with 7.1 kHz trap frequency in the frozen out direction

functions as the basis

Ψ̂(x) =
�

i

w0(r− ri) b̂i (5.6)

where b̂i is the annihilation operator for the lattice site i and w0(r − ri) is the Wannier

function characterising the wavefunction of an atom localised at lattice site i. Substituting

(5.6) into (5.5) we obtain the many body Hamiltonian as

Ĥ = −
�

i,j

Jij b̂
†
i b̂j +

1
2

�

i,j,k,l

Uijkl b̂
†
i b̂

†
j b̂k b̂l +

�

i

�i b̂
†
i b̂i − µ

�

i

b̂
†
i b̂i (5.7)

the chemical potential µ occurs in the grand canonical ensemble to ensure normalisation to

the correct total atom number, and �i is the energy offset at lattice site i due to an external

parabolic confinement.

The two Bose Hubbard parameters can be calculated from the Wannier function

as

Jij = −
�

w
∗
0(r− ri)

�

−
h̄

2
∇2

2m
+ ULat(r)

�

w0(r− rj)d3
r (5.8)

which characterise the kinetic energy term inducing hopping from lattice sites i to lattice

site j. And the interaction term that characterise the repulsion between atoms close to each
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other

Uijkl =
4πh̄

2
a

m

�
mωz

2πh̄

�
w
∗
0(r− ri)w

∗
0(r− rj)w0(r− rk)w0(r− rl) d

3
r (5.9)

In accordance with the tight binding approximation, we may keep only the dom-

inant nearest neighbour hopping terms in (5.8) corresponding to i and j being nearest

neighbours, and the onsite interaction term in (5.9) corresponding to i = j = k = l. Figures

5.6 and 5.7 shows that our approximation is well justified since the next order terms are

indeed much smaller. This then leads to a simplified Bose Hubbard Hamiltonian [13]

ĤBH = −J

�

�i,j�
b̂
†
i b̂j +

U

2
�

i

b̂
†
i b̂

†
i b̂i b̂i +

�

i

�i b̂
†
i b̂i − µ

�

i

b̂
†
i b̂i (5.10)

with

J = J10 = −
�

w
∗
0(r− ri)

�

−
h̄

2
∇2

2m
+ ULat(r)

�

w0(r− rj) d
3
r

U = U0000 =
4πh̄

2
a

m

�
mωz

2πh̄

�
|ω0(r)|4 d

3
r (5.11)

The ground state of the many body Hamiltonian at a fixed µ is determined by the relative

magnitude of U and J. Their ratio is shown in Figure 5.8 together with the value that marks

the quantum phase transition into the n = 1 mott insulator state.
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Figure 5.8: Plot of U/J for various lattice depth (red). The blue line marks the lattice
depth for transition from superfluid to n = 1 mott insulator in a homogeneous system.
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It is useful here to obtain some approximation expressions for U and J that cap-

tures their qualitative dependent on the lattice depth within the tight binding approxima-

tion. The probability for an atom localized at site 0 to tunnel to the adjacent lattice site

a distance aL away could be calculated using the WKB approximation for transmission

through a deep barrier

J = e
−2

�
2m

h̄2

�
aL

0

√
ULat(x�)−Edx�

≈ e
−2

�
2m

h̄2

�
aL

0
VL sin(πx

�
aL

)dx�

= e
−4

�
VL

ER

a more precise calculation as shown in [25], gives that

J

ER
≈

�
8
π

�
VL

ER

�3/4

e
−2

�
VL

ER

The approximate behaviour of U can be captured by noting that the Wannier function

within a lattice site is well approximated by the lowest energy harmonic oscillator state

within each well. Substituting this for the Wannier function in (5.9) gives

U

ER
≈ 4a

�
mωz

2πh̄

�
VL

ER
(5.12)

so we see that for deep lattices, the tunneling decreases exponentially with the lattice depth

while the interaction increases only polynomially.

5.4 Superfluid to Mott Insulator Transition

It was shown in [13] that the Bose Hubbard Hamiltonian undergoes a zero tem-

perature phase transition when the ratio of U/J exceeds a critical value 1. We can see this

might be the case heuristically, by considering the two extremal cases for a homogeneous

system (�i = 0 in equation (5.9) ). In the limit of J � U , the eigenstates of (5.9) tends to

integer number of atoms n0 = [µ/U ] on each lattice site with no phase correlations between

1
This transition also occurs at finite temperatures up to 0.2 U [29]



Chapter 5: Theory of Atoms In Optical Lattice 67

the lattice sites (since there is very little hopping between them). As U is the dominant

energy scale in this regime, there are expensive energy costs to having more than n0 atoms

per site which discourages fluctuations in site occupation. This state is usually referred to

as the Mott insulator state and is characterised by the features of reduced atom number

fluctuation on lattice sites, absence of phase correlation between lattice site, and zero com-

pressibility. In the opposite extreme, when U � J , tunneling is prevalent throughout the

entire lattice and every site maintains a fixed phase relation relative to the other lattice

sites. This state is termed the superfluid and is characterised by the existence of long range

phase coherence across the lattice.

The phase diagram of (5.9) for a homogeneous system can be calculated in the

mean field approximation [14]. The result shows lobe like regions (Figure 5.9) in phase

space where the ground state of the system is a Mott insulator with integer number of

atoms per lattice sites. For a square lattice in two dimensions, the mean field prediction

gives transition from superfluid to Mott insulator of one atom per site as occurring first at

U/J = 23.8 which is different from the actual transition at U/J = 16 confirmed by recent

experiments [17, 16, 15] and by Monte Carlo simulations [21].

5.5 Inhomogeneous System - Mott Insulator Shells

In the presence of an external harmonic confinement, one can have a co-existence

of superfluid and mott insulator states. We consider the experimentally relevant case when

the external confinement is slowly varying such that the local density approximation is

applicable.

In the superfluid phase, zJ � U , we expect the wavefunction of each atom to

be delocalized over the whole cloud (just as in the case of a Bose Einstein Condensate)
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Figure 5.9: Phase diagram of the Bose Hubbard hamiltonian for a two dimensional homo-
geneous system simple cubic lattice calculated using mean field. The lobe like regions is
where the system ground state is a mott insulator. Here we attempt to account for the in-
adequacy of the mean field theory by adjusting the number of nearest neighbours parameter
to match the superfluid to n = 1 Mott insulator transition point to the value determined
from experiments. The resultant phase diagram match closely with Monte Carlo simulation
in location of the lobe tips in parameter space but is unable to capture the asymmetry
between the upper and lower branch of the lobes. In an inhomogeneous system, as in the
presence of an external harmonic trap the local chemical potential sweep through various
values as shown by the vertical arrow in the phase diagram which leads to the occurrence
of mott insulator shells.

so that the overall density profile should resemble that of a harmonically confined BEC

with modification to account for the increase in interaction strength due to the presence

of the lattice. We apply the mean field approach here and replace the operators in (5.10)

with complex numbers b̂i → ψi such that the occupation of site i is given by ni = |ψi|
2.

Substituting for �i = 1/2mω
2
totr

2
i as for a harmonic potential, we obtain the following

equation for the energy of the system

�ĤBH� = −J

�

<i,j>

ψ
∗
i ψj +

U

2
�

i

|ψi|
4 +

1
2
mω

2
tot

�

i

r
2
i |ψi|

2 + µ

�

i

|ψi|
2 (5.13)
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in the limit of a large cloud, we can apply the Thomas Fermi approximation and neglect

the kinetic energy term proportional to J . After minimizing with respect to ψi we obtain

its equation of motion

U |ψi|
2
ψi +

1
2
mωtotr

2
i ψi = µψi

so that the density profile is

n(ri) = max
�
µ−

1
2mω

2
totr

2
i

U
, 0

�

= npeak max
�

1−
r
2
i

R2
, 0

�

(5.14)

where the Thomas Fermi radii is

R
2 =

�
4NUa

2
L

πmω
2
tot

(5.15)

for a total of N atoms in the cloud.

In the Mott insulator regime, the situation is more complicated. Since the local

chemical potential (µi = µ − �i) sweeps through various values in the phase diagram as

shown in Figure 5.9. This leads to the presence of a Mott insulator shell structures. We

can obtain some estimates for the size of the shell structure in the following ways : for J

= 0, the transition from n → n− 1 Mott insulator state occurs at the radius Rn such that

µ − 1/2mω
2
totR

2
n = (n − 1)U . The constant chemical potential µ at the center of the trap

is chosen in such a way that the total atom number is correct. For a circularly symmetric

geometry, each successive Mott insulator region contributes an extra 1 particle per lattice

site so that

N =
[ µ

U
]�

n=1

πR
2
n

a
2
L

=
2πU

ma
2
Lω

2
tot

�
µ

U

�
µ

U

�
+

1
2

�
µ

U

� �
1−

�
µ

U

���
(5.16)

For a given set of experimental parameters, we solve equation (5.16) for µ graphically.

At finite but small tunneling, we assume that the value of µ calculated for the

zero tunneling case persists and use the mean field phase diagram of Figure 5.9 to solve for

the local chemical potentials at the upper and lower boundary of each Mott lobe. As an

improvement over just mean field calculation, we adjust the number of nearest neighbour
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Figure 5.10: Theoretical region of Mott insulator shells calculated for initial confinement
ωtot = 17Hz with final lattice depth of 22 ER and 1800 atoms in total

parameter in the mean field model such that the tip of the lobes matches the lobe location

from the more precise quantum Monte Carlo calculations, resulting in the effective number

of nearest neighbours z = 2.9. Although this fails to capture the asymmetry between

the upper and lower branches of each Mott lobe, the discrepancy appears small at low

tunneling values. An example of the calculated Mott insulator regions is shown in Figure

5.10, calculated for realisable parameters in our experiment. Notice that the size of the

superfluid region in between the Mott shells have a spatial extent on order of a few lattice

spacing, which preclude them from direct observation except for experiments using high

resolution imaging systems. The presence of Mott insulator shells has been verified in

previous experiments using spin changing collisions [18] and atom number induced shift to

atomic clock resonance frequency [19].



Chapter 6

Experiments With Optical Lattice

In this chapter, we describe our setup for generating the optical lattice potential

which is unlike the method utilised by most other groups. Our technique affords us many

possibilities for extending the current repertoire of optical lattice experiments, such as the

study of dynamical and arbitrary lattice potentials.

We then describe how the atoms are loaded into the lattice in order to maintain

the system in the ground state of the many body Hamiltonian. Our procedure allows us to

see signatures of superfluid to mott insulator phase transition in the time of flight images of

atoms released from the optical lattice. Finally we briefly outline some in-situ observation

of mott insulator shells in our experiment which is only possible through the use of high

resolution imaging system.

6.1 Optical Lattice Generation

Most optical lattice experiments to date generate the lattice potential by interfering

independent pairs of counter-propagating beams. Because of the proximity of our atoms

location to the hemispherical surface, generating the lattice pattern this way is rather

71
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cumbersome. However the high numerical aperture microscope offers a convenient solution

to overcome this problem : it is possible to image the lattice pattern from a transmission

hologram or mask onto the atoms. We achieve this using the same set of optics as was used

to generate the lattice that pins the atoms during imaging (see section 3.2).

The possibility of imaging the light potential is not new [58, 59, 60]. This method

of lattice generation affords us several flexibilities not possible with interfering separate

generated beams. Because the light pattern is imaged onto the atoms, one simply has

to manufacture a new mask pattern in order to generate different potential landscapes

which need not even be periodic 1. Secondly because the lattice pattern is imaged onto the

atoms, the lattice structure is independent of the wavelength or light used to illuminate

the hologram. This allows us to use the same optics setup to generate lattice potentials

near resonance and far detuned wavelength which is the crucial ingredient that allows our

imaging procedure to work. Thirdly, we can easily generate time varying potentials by

using computer controlled hologram patterns such as a spatial light modulator, which is

useful for studying the dynamical behaviour within the Bose Hubbard model. Note that

the high numerical aperture is necessary for generating lattices suitable for Bose Hubbard

type experiments since it is crucial to have lattices with small lattice spacing in order to get

a significant tunneling parameter (recall from section 5.3, tunneling decreases exponentially

with the lattice spacing). The high numerical aperture allows us to image the pattern onto

the atoms with a significant demagnification.

We use two custom manufactured static phase patterns, as shown in Figure 6.1

that is deposited onto a glass substrate via photolithography. A beam passing through the

line pattern would generate the corresponding diffraction orders. The diffraction orders

from the two orthogonal line patterns are then combined on a polarization beam splitter

1
Interfering beams necessarily generate periodic or semi periodic patterns
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Figure 6.1: Schematics of setup to generate two dimensional optical lattice. Two oppositely
polarized beams pass through orthogonally oriented transmission holograms. The holograms
each contains lines with alternating phase shift of 0 and π with periodicity of 40 µm. After
passing through the hologram, each beam splits into several diffraction order in the Fourier
plane, the ±1 orders are isolated and combined on a polarizing beam splitter cube. The
four beams continue traveling down the imaging path and are combined by the microscope
objective to interfere at the plane of the atoms to form a simple cubic lattice pattern.
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cube. We then isolate the +1 and -1 orders which are combined to interfere at the location

of the atoms using two stages of 4f imaging system with the microscope as the very last lens.

Our choices of lenses, gives us a demagnification of 0.031, resulting in a lattice spacing of

620nm. Four slits are positioned just before the last Fourier plane outside of the objective.

Their purposes are to remove high frequency components in the beams spatial structure,

leaving behind a cleaner slowly varying Gaussian beam profile. The high frequency noise

often arise from imperfection or dust particles in the beam path. Note the slits can only

remove imperfections that occurs before it, so it is not able to correct for corrugations in

the profile due to dusts in the objective itself.

The light source for the two dimensional lattice derive from a femtosecond laser

centered at 757nm with full width half maximum of 5nm. The laser output was stretched

out in time as described in Appendix B to avoid excessive spectral broadening when passing

through a single mode fiber. The use of broadband light source allows us to mitigate the

effects of stray reflection from glass surfaces situated close to the atom’s location in the

experiment, which is important for creating known and smooth lattice potentials.

To roughly focus the lattice beams to the right location, we first focus the Ixon

camera shown in Figure 6.2 to the plane of the atoms using the fluorescence signal of the

atoms in the two dimensional trap. We then overlay the reflection of the lattice beam from

the flat surface of the hemisphere to be at the same location on the camera as the location

of the atoms. This gives us only a rough positioning of the lattice beams due to the non-

negligible focal shift from 780 nm (atom’s fluorescence wavelength) to 757 nm (optical lattice

wavelength). However we can get close enough for the lattice beam coverage to encompass

the entire atomic cloud. A more precise alignment was then performed using the atoms

by looking at the direction of atom outflow when the lattice deconfinement overcomes the

red dipole confinement. The optimal position minimizes the gradient experienced by the
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Figure 6.2: Schematics of setup for creating two dimensional optical lattice and fluorescence
imaging of the atoms.

atoms, or the directional flow of the atom leakage.

After positioning the atoms in the correct location, we calibrate the lattice depth

by pulsing the lattice beams onto the atoms for a variable period of time tpulse [22, 31]. For

tpulse much shorter than the inverse recoil frequency of the atoms, the atoms will not have

enough time to redistribute themselves in response to the light field, the BEC wavefunction

thus evolve according to the stark shift provided by the lattice beams

|ψBEC� → |ψBEC�e
− i

h̄

�
t
pulse

0

VL

2 (1−cos(2kx)) dx (6.1)

= |ψBEC� e
−

iVLt
pulse

2h̄

∞�

n=−∞
i
n
Jn

�
VLtpulse

2h̄

�
e
in2kx (6.2)

we see that the BEC is split into plane waves separated by twice the lattice wavevector

2k and the population in each diffraction order n is given by |Jn(VLtpulse

2h̄ )|2. We calibrate

the lattice depth VL at a fixed lattice power by finding the corresponding pulse time that

minimizes the zeroth order.
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6.2 Adiabatic Loading Into Optical Lattice

We want to load the atoms into the optical lattice in such a way that the wave-

function of the condensate remains in the many body ground state at all times. In order to

accomplish this, the time over which the lattice ramps up must be adiabatic with respect

to two time scales.

The first adiabatic criteria, requires that the ramp be slow enough such that the

atoms remain in the lowest energy n=0 band. From the general adiabatic condition, we

therefore require [22, 23]

|�n, q|
d

dt
|0, q�| �

|En,q − E0,q|

h̄
(6.3)

We need only consider the contribution from the n = 1 band, since it is the one closest in

energy to the n = 0 band which we wish to populate. Furthermore, only q = 0 need be

considered as we work with condensates that are loaded into a stationary lattice from rest,

so populating mostly the q = 0 state with a spread δq � k in quasi-momentum given by

the inverse of the condensate size prior to loading which is much less than the size of the

Brillouin zone. For this special case, equation (6.3) simplifies to

|�1, 0|
d

dt
|0, 0�| =

V̇L

2
�1, 0| cos(2kx)|0, 0�

E1,0 −E0,0
�

|E1,0 − E0,0|

h̄
(6.4)

Fortunately |E1,0−E0,0| remains nonzero even at low lattice depth and is bounded below by

4ER while �1, 0| cos(2kx)|0, 0� is bounded above by 1/
√

2. We can therefore simplify (6.4)

to

V̇L

ER
�

32
√

2ER

h̄
(6.5)

Equation (6.5) implies that the characteristic time scale for lattice ramp to be adiabatic

with respect to band structure is on order of 1/ER which for our lattice structure, requires

the ramp time to be longer than 675 µs.
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The second adiabatic criteria requires the condensate to stay in the many body

Hamiltonian’s ground state which demands a much longer time scale [24]. For atoms in

optical lattice, there are three relevant time scales to consider : the energy associated with

the ”external confinement” of frequency ωtot which in our case arise from a combination of

an auxiliary red detuned (see section 4.5) dipole beam plus an overall deconfinement from

the blue detuned lattice beams, the onsite repulsive energy U and the tunneling time in

the lattice J. The effects of changing U and ωtot during the lattice ramp up is to modify

the equilibrium Thomas Fermi size of the condensate which necessitate atom redistribution

during the ramp in order to remain in the many body ground state. In order to counteract

this effect, we compute numerically the increase in U and lattice deconfinement as a result

of the increase in lattice depth using the expression (5.9) and (5.4) from the tight binding

approximation. We then increase the red dipole frequency during the ramp in such a way

that U/ω
2
tot remains constant throughout the ramp. From section 5.4, this then ensures

that the Thomas Fermi radii for the condensate in the superfluid regime remains constant

during the lattice ramp up. We test this by imaging the condensate afterwards with the

lattice ramped slowly in this way to various superfluid lattice depths.

The longest time scale requires adiabaticity with respect to the tunneling time in

the lattice. The general adiabatic theorem suggests the criteria [24]

max
�
h̄|J̇ |

J2

�

� 1 (6.6)

We can roughly estimate the time scale required by using the analytical estimate of [25]

J

ER
≈

�
8
π

�
VL

ER

�3/4

e
−2

�
VL

ER (6.7)

and our lattice ramp form

VL(t) = V
F
L 10α(t/τramp−1)

α = 6.26
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with V
F
L the final lattice depth, the condition (6.6) then requires that

τramp � α log(10)

�
V

F
L

ER

h̄

J
(6.8)

To get an estimate of the time required for the ramp, we use the tunneling and lattice depth

at the superfluid to mott insulator transition point since redistribution of atoms to the new

equilibrium size will be strongly suppressed in the mott insulator regime. With a lattice

depth of V
F
L = 12ER the time required is τramp � 536 ms.

The adiabatic criterium place a lower bound on the time for lattice ramp, an upper

bound also exists since too slow ramp leads to heating of the atoms during the loading

process. It is unclear whether the source of the heating is due to spontaneous emission from

the atoms (there are some evidence that this is the cause for a red detuned lattice, see [24])

since in a blue detuned lattice, the atoms experience little of the light’s intensity. There

may also be technical source to the heating due to beam position fluctuation or intensity

fluctuation.

6.3 Superfluid to Mott Insulator Transition

To recap, the experimental sequence consists of the following steps, illustrated in

Figure 6.3

1. MOT loading, molasses cooling and transport of atoms from the MOT chamber to

the science chamber. After end of transport, 24s of RF evaporation takes place ending

in the production of a Bose Einstein Condensate of atoms in a cigar shaped magnetic

trap.

2. The center of the magnetic trap is shifted upwards towards the hemisphere while the

intensity of the 10 µm spacing lattice is increased. At the end of this step most of the

atoms are loaded into the 10 µm lattice.
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Figure 6.3: Sequence of events for optical lattice experiment.
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3. The small volume red detuned dimple beam turns on after which all magnetic fields

are switched off completely for 100 ms to allow the atoms not held in the dimple to

escape the region. After the wait time, magnetic fields which null the gradient due to

gravity are turned on. 2

4. The atoms are transferred from the 10 µm lattice to the 1.5 µm vertical lattice (axial

lattice).

5. The atoms are release from the small dimple into the large volume red dipole trap. At

this point we have a two dimensional condensate of about 2000 atoms with vertical

trap frequency of 7.1 kHz provided by the axial lattice and transverse confinement of

20 Hz provided by the red dipole.

6. The two dimensional optical lattice ramps on, at the same time the red dipole power

is also increased to keep the Thomas Fermi radius of the trap constant during the

ramp. Then experiment is performed.

7. When imaging is ready to be performed, we turn on the near resonant pinning lattice,

molasses beams, and magnetic fields nulling current. After waiting 50 ms for the

atoms to equilibrate in this configuration, the camera is exposed for 1s to collect

fluorescence from the atoms.

Our first experiment is to look for evidence of superfluid to mott insulator tran-

sition. One of the most commonly used signatures is via loss of coherence as one crosses

the transition point [26, 28, 27]. After a long time of flight (neglecting the effects of inter-

action during expansion), the atomic density distribution nTOF (r) is related to the in-situ

2
The plane of the atoms is defined by the hemisphere whose center axis is tilted by about 0.6 degrees

from the direction of gravity
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wavefunction via

nTOF (r) ∝

����
�

ψ(r�) e
i mr

h̄t
·r�

d
2
r
�
����
2

=
�

k

�

j

�b̂
†
k b̂j� e

i mr
h̄t

·(rj−rk)
����w̃

�
mr

h̄t

�����
2

(6.9)

The qualitative behaviours in the two regimes is encapsulated in the sum

S =
�

k

�

j

�b̂
†
k b̂j� e

i mr
h̄t

·(rj−rk) (6.10)

in the case of the superfluid, the two site coherence is simply a constant �b̂†k b̂j� = α so that S

exhibits peaks at positions corresponding to the reciprocal lattice vector mr
h̄t ·aL = 2π owing

to the periodicity of the lattice structure. In the case of the Mott insulator, the correlation

tends to a delta function �b̂†k b̂j� = nkδkj so that S reduces to a constant and nTOF (r) is

structureless except for the broad envelope corresponding to the Fourier transform of the

Wannier function.

In figure 6.4, we show the time of flight images of atoms released from the optical

lattice at various lattice depths. The secondary peaks corresponding to the reciprocal

lattice vectors could clearly be seen at lattice depths below 12− 14ER which closely match

the theoretical transition point of 12ER. This demonstrates that the different lattice sites

maintain phase coherence with each other. Beyond 14ER, the system enters a Mott insulator

state and only an unstructured broad envelope corresponding to the atoms’ wavefunction

(Wannier function) is seen, demonstrating the loss of global phase coherence as we cross

the transition.

6.4 Outlook - Future Experiments

Further demonstration of the superfluid to mott insulator transition could be at-

tained by looking at the change in atom number statistics as the transition point is crossed.
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Figure 6.4: Fluorescence images of atoms released from the lattice. The lattice is ramped
up exponentially over 400ms to the final depth as labeled above each picture, and held in
lattice for 20 ms before releasing the horizontal confinement allowing the atoms to expand
in the plane for 9ms prior to imaging. The right peak in the superfluid images has lower
signal owing to the weaker molasses beam intensity in that region. The superfluid to mott
insulator transition point occurs at 12ER lattice depth.
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As mentioned in section 5.4, the superfluid state is characterised by a coherent state number

statistics at each site, hence we expect a poissonian distribution for the site occupation

Pr(ni = s) = e
−ni

(ni)s

s!

where ni is the mean occupation of site i. As our detection method gives only parity of

atom number, we expect to measure a mean atom number of e
−ni sinh(ni) < 0.5 per lattice

site in the superfluid state. In the mott insulator state, the suppression of tunneling lead

to a Fock state of atom number per lattice site, so that our measured mean atom number

is

if ni ∈ odd → 1

if ni ∈ even → 0

Hence a measured occupation per site greater than 0.5 would indicate a non poissonian

atom number distribution, implying the existence of a Mott insulator state. Figure 6.5

shows the average atom number per site over 100 images taken deep in the Mott insulator

regime. Notice the annulus like region of high occupation interspersed by rings of low

occupation. The spatial distribution resembles structures as one would expect from Mott

insulator shells. We believe the non circularly symmetric structure arise primarily due to

corrugations in the lattice beam profile after passing through the dusty objective.
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Figure 6.5: Average site occupation over 100 experiment runs. The red regions with high
occupation is indicative of non-poissonian number statistics pointing to the existence of
Mott insulator state.



Bibliography

[1] P. W. Pinkse, A. Mosk, M. Weidmuller, M. W. Reynolds, T. W. Hijmans, and J. T.
Walraven Phys. Rev. Lett., 78:990, 1997.

[2] M. Hammes, D. Rychtarik, H. -C. Nagerl, and R. Grimm Phys. Rev. A, 66:051401,
2002.

[3] D. M. Stamper-Kurn, H. -J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W.
Ketterle Phys. Rev. Lett., 81:2194, 1998.

[4] T. Kinoshita, T. Wenger and D. S. Weiss Phys. Rev. A, 71:011602(R) 2005.

[5] H. F. Hess Phys. Rev. B, 34:3476, 1986.

[6] K. B. Davies, M. O. Mewes, and W. Ketterle Appl. Phys. B, 60:155, 1995.

[7] Z. Ma, C. J. Foot, and S. L. Cornish J. Phys. B, 37:3187, 2004.

[8] T. Weber, J. Herbig, M. Mark, H-C Nagerl, and R. Grimm Science, 299:232, 2003.

[9] Bose Zeitschrift Fur Physik, 26:178, 1924

[10] I. Walmsely, L. Waxer, and C. Dorrer Review of Scientific Instruments, 72:1, 2001

[11] Neil. W. Ashcroft and N. D. Mermin Solid State Physics, 1976

[12] D. Jatsch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller Phys. Rev. Lett.,
81:3108, 1998

[13] M. P. A. Fisher, P. Weichman, G. Grinstein, and D. S. Fisher Phys. Rev. B, 40:546,
1989

[14] Subir Sachdev Quantum Phase Transition, 2001

[15] Nathan Gemelke, Xibo Zhang, Chen-Lung Hung and Cheng Chin Nature, 460:995,
2009

[16] I. B. Spielman, , W. D. Phillips and J. V. Porto Phys. Rev. Lett.,100:120402, 2008

[17] I. B. Spielman, , W. D. Phillips and J. V. Porto Phys. Rev. Lett.,98:080404, 2007

85



86 Bibliography

[18] S. Foelling, A. Widera, T. Muller, F. Gerbier and I. Bloch Phys. Rev. Lett.,97:060403,
2006

[19] G. Campbell, J. Mun, M. Boyd, P. Medley, A. Leanhardt, L. Marcassa, D. E. Pritchard,
and W. Ketterle Science, 313:649, 2006

[20] S. M. Mansfield and G. S. Kino Appl. Phys. Lett., 57:2615, 1990

[21] N. Teichmann, Dennis Hinrichs, M. Holthaus and A. Eckardt Phys. Rev. B,79:100503,
(2009)

[22] J. Hecker Denschlag, J. E. Simsarian, H. Haffner, C. McKenzie, A. Browaeys, D.
Cho, K. Helmerson, S. L. Rolston, and W. D. Phillips J. Phys. B: At. Mol. Opt.
Phy.,35:3095, (2002)

[23] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin and C. Salomon Phys. Rev. Lett.,76:4508,
(1996)

[24] T. Gericke, F. Gerbier, A. Widera, S. Folling, O. Mandel, and I. Bloch arXiv:cond-
mat:0603590, (2006)

[25] W. Zwerger J. Opt. B, 5:S9, (2003)

[26] M. Greiner, O. Mandel, T. Esslinger, T. W. Hnsch, I. Bloch Nature, 415:39, (2002)

[27] F. Gerbier, A. Widera, S. Flling, O. Mandel, T. Gericke, and I. Bloch Phy. Rev. Lett.,
95:050404, (2005)

[28] K. Xu, Y. Liu, J. R. Abo-Shaeer, T. Mukaiyama, J. K. Chin, D. E. Miller, and W.
Ketterle Phys. Rev. A, 72:043604, (2005)

[29] F. Gerbier Phys. Rev. Lett., 99:120405, (2007)

[30] D. van Oosten, P. van der Straten, and H. T. C. Stoof Phys. Rev. A, 63:053601, (2001)

[31] G. Campbell Ph. D. Thesis, (2008)

[32] P. C. Hohenberg Phys. Rev., 158:383, (1967)

[33] N. D. Mermin and H. Wagner Phys. Rev. Lett., 17:1133, (1966)

[34] C. J. Pethick and H. Smith Bose Einstein Condensation in Diulte Gases, Cambridge
University Press (2008)

[35] Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle Phys. Rev. Lett., 99:090403,
(2007)

[36] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell
Science, 269:198, (1995)

[37] C. C. Bradley, C. A. Sackett, J. J. Follet and R. G. Hulet Phys. Rev. Lett., 75:1687,
(1995)



Bibliography 87

[38] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Drute, D. S. Durfee, D. M. Kurn
and W. Ketterle Phys. Rev. Lett., 75:3969 (1995)

[39] B. DeMarco and D. D. Jin Science, 285:1703, (1999)

[40] F. Schreck, K. L. Khaykovich, G. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and
C. Salomon Phys. Rev. Lett., 87:080403, (2001)

[41] A. Truscott, K. Strecker, W. McAlexander, G. Patridge, and R. Hulet Science,
291:2570, (2001)

[42] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin Phys. Rev. Lett.,
89:220407, (2002)

[43] B. Paredes, and J. I. Cirac Phys. Rev. Lett., 90:150402, (2003)

[44] T. Kinoshita, T. Wenger, and D. Weiss Science, 305:1125, (2004)

[45] M. Greiner, I. Bloch, O. Mandel, T. W. Hansch and T. Esslinger Apply. Phys., B73:769,
(2001)

[46] M. Kohl, H. Moritz, T. Stoferle, K. Gunter, and T. Esslinger Phys. Rev. Lett.,
94:080403, (2004)

[47] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A.
Smerzi, and M. Inguscio Science, 293:843, (2001)

[48] W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner Nature, 462:74, (2009)

[49] R. P. Feynman Opt. News, 11:11, (1985)

[50] R. P. Feynman Found. Phys., 16:507, (1986)

[51] G. Baym and C. J. Pethick Phys. Rev. Lett., 76:6, (1996)

[52] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari Rev. Mod. Phys., 71:463,
(1999)

[53] R. Grimm, M. Weidmuller and Y. B. Ovchinikov Adv. At. Mol. Opt. Phys., 42: 95,
(1999)

[54] J. Dalibard and C. Cohen-Tannoudji J. Opt. Soc. Am. B, 2:1707, (1985)

[55] M. T. DePue, C. McCormick, S. L. Winoto, S. Oliver, and D. S. Weiss Phys. Rev.
Lett., 82:2262, (1999)

[56] J. I. Gillen Quantum gas microscope, Ph.D. Thesis, Harvard University (2009)

[57] J. I. Gillen, W. S. Bakr, A. Peng, P. Unterwaditzer, S. Flling, and M. Greiner Phys.
Rev. A, 80:021602, (2009)



88 Bibliography

[58] A. Klinger, S. Degenkolb, N. Gemelke, K. Brickman Soderberg, C. Chin arXiv:quant-
ph, 0909.2475 (2009)

[59] R. Newell, J. Sebby, and T. G. Walker Opt. Lett., 28:1266, (2003)

[60] S. Bergamini, B. Darquie, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier J.
Opt. Soc. Am. B, 21:1889, (2004)

[61] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman Phys.
Rev. Lett., 85:1795, (2000)

[62] P. O. Fedichev, M. W. Reynold, and G. V. Shlyapnikov Phys. Rev. Lett., 77:2921,
(1996)

[63] M. Greiner and S. Foelling Nature, 453:736, (2008)

[64] I. Bloch Nature Physics, 1:23, (2005)

[65] C. Waschke, H. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Khler Phys. Rev. Lett.,
70:3319, (1993)

[66] F. Bloch Z. Phys., 52:555, (1929)

[67] C. Zener Proc. R. Soc. London A, 145:523, (1934)

[68] P. Wurtz, T. Langen, T. Gericke, A. Koglbauer, and H. Ott Phys. Rev. Lett.,
103:080404, (2009)

[69] T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott Nature Physics, 4:949, (2008)

[70] K. Nelson, X. Li, and D. Weiss Nature Physics, 3:556, (2007)

[71] J. M. McGuirk, D. M. Harber, J. M. Obrecht, and E. A. Cornell Phys. Rev. A,
69:062905, (2004)



Appendix A

Intensity Stabilisation

For all the dipole traps and lattice beams used in the experiment, it is important

to actively stabilise the intensity, as residue fluctuations leads to time varying modulations

and can lead to heating of atoms. For the red dimple and red dipole beams it is especially

important as we use the light power to control the atom number and temperature in the

2D trap.

In order to lock the laser powers over the range of a few orders of magnitudes, we

extract a small portion of the beam after the fiber output on the experiment table and direct

it to a logarithmic photodiode. For this, we use a silicon photodiode (BPX65) connected

to a logarithmic amplifier (Analog Devices AD8304) with modifications to give a slope of

500 mV per decade. That is the photodiode output voltage is VLOG = 0.5 log10 Pin/P0

where P0 = 1.8 × 10−7 mW. The use of a logarithmic photodiode allows us to lock the

intensity over a range of five orders of magnitude in laser power. The output voltage of

the photodiode is then fed into the input signal port of a specially designed PI loop, whose

output actuates an exponential amplifier (Analog Devices ADL 5330) that controls the RF

power driving an acousto-optic modulator (AOM). The first order of the AOM is used for
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Figure A.1: Schematic of the laser intensity locking schematic. The laser power is controlled
via RF power to an acousto optic modulator (AOM) on the laser table. A portion of the
laser light at the experiment table is tapped off with a beam sampler and directed to a
logarithmic photodiode whose output is directed to a homemade PI circuitry. The output
of the lock circuitry is used to actuate an AOM driver incorporating an exponential amplifier
in order to lock the laser intensity to computer specified values.

the experiment. The schematic of the setup is depicted in Figure A.1.

The main protagonist of the stabilisation setup is the specially designed PI circuitry

whose schematic is illustrated in Figure A.2. The circuit consists of four major blocks where

the output of each block is given as the input to the next block. In the order in which they

are implemented, they are P, I, rectifier which prevents the output voltage from being

negative and upper limit restriction that ensures the out voltage is less than the 7V limit

of the exponential amplifier. The appropriate P,I values is determined by the system’s

response function which was measured separately.

We find that the servo loop is able to lock to control signals all the way up to 5

kHz in modulation. In locking to a square pulse of frequency 1 kHz, the servoed intensity
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Figure A.2: Schematic of circuitry used to stabilise intensity of laser beam to computer
specified set point.
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has a rise time of 28 µs and fall time of 26 µs. A measurement of the residue noise on

the servoed light using an independent photodiode shows the rms intensity noise is 0.04 %

mostly above 10 kHz in frequency.



Appendix B

Pulsed Laser

Due to the large number of glass surfaces in our experiment close to the vicinity

of the atoms, we are very susceptible to the intensity modulations due to interference with

uncontrolled reflected beams. The way we have chose to overcome this problem is to use

light of short coherence length of broadband light. The idea is that any reflection that leaves

from the atoms and return, provided it has traveled a distance longer than the coherence

length of the laser, will no longer bear sufficient pahse correlation relative to the light at

the atoms to be able to interfere with it.

All the dipole traps in our experiment are made using broadband light. One

of our sources of broadband light for the experiment is a titanium sapphire femto/pico

second pulsed laser (Coherent Mira pumped by a Verdi). The ultra-fast laser technology

is an active field of research, its uses includes but are not limited to biomedical imaging,

micromachining, femtochemistry and frequency combs that are used to spectroscopy and

clock. There are several different methods of generating trains of short pulses but all of

them relies on the combination of two elements :

• A medium in the laser cavity that promotes the gain of pulsed output. Usually this
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utilises the high peak energy feature of the pulses or a frequency synchronisation to

the repetition rate.

• Dispersion compensation within the cavity. This is essential since the different fre-

quency components in the pulse must maintain a constant and well defined phase

relative to each other for a pulse to remain the same shape during propagation. For

most materials, this can be very difficult as dispersive effects upon reflection, refrac-

tion, interference or diffraction would lead to pulse broadening.

Our laser operates via a Kerr lensing effect. The large peak energy of the pulses

causes the titanium sapphire crystal to act like a lens and leads to focusing of the beam. A

slit is placed near the focus position so that only a focussed beam can pass. In this way, the

formation of pulses is encouraged. Dispersion compensation is achieved via a pair of prisms

which when placed in the right orientation relative to each other gives rise to anomalous

dispersion to compensate for the normal dispersion due to all other optical elements in the

laser cavity and hence maintain the pulse shape. We operate our laser in the femtosecond

mode where the transform limited output has a time width of about τp = 150 fs and a

repetition rate of 75.4 MHz (determined by the physical length of the laser cavity). As with

most Ti-Sapph lasers, the output intensity profile is of the form I(t) = I0sech
2(1.76t/τp).

Because the peak energy of the pulse is so high (about 90 kW) when focussed

down to a small area, the large intensity can give rise to nonlinear effects in materials. Such

is the case when we attempted to transport the output light via a single mode fiber (mode

diameter 5µm), the self phase modulation (i.e. dependence of refractive index on intensity)

lead to the generation of many frequencies. As a result, the spectrum at the output of the

fiber becomes very broad as shown in Figure B.1. In order to circumvent this problem, we
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Figure B.1: Spectrum of pulsed laser after passing though 24m long single mode fiber. The
spectral width is significantly increased due to the self phase modulation that occurs inside
the fiber

reduce the peak power of the pulses by stretching it out in time. Although this happens

naturally due to dispersion when light travel through materials, the physical size required

to stretch the pulse sufficiently is simply too large to be practical, we therefore utilizes a

technology commonly in pulse compression.

Consider the arrangements shown in Figure B.2 [10]. The output from the laser is

incident upon a grating of line spacing d at angle γ to the grating normal. The first order

diffraction travels at angle α(λ) to the normal and is dependent on the wavelength. Upon

hitting the second grating we see that red light has traveled a longer path than blue light.

An identical second grating G2 collimates the beam so that all frequencies are traveling

parallel to each other. The roof prism reflect the beam back in the same direction but

displaced vertically below so that in total the pulse traverses the gratings 4 times and exits

the stretched with almost the same profile as initially but now the frequencies have a greater

phase difference with respect to each other.

The amount of phase shift due to distance traveled after the first grating is a
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Figure B.2: Schematics of pulse stretcher setup. A gratings G1 with 1800 lines per mm
separates the difference frequency components spatially by causing them to travel at dif-
ferent angles. A second identical grating G2 that is positioned parallel to G1 causes the
frequencies to be laterally displaced with respect to each other but traveling parallel. A
roof prism retro-reflect the beam while displacing it vertically down. The beam then pass
through the two gratings one more time to exit the stretched below the incident beam.

function of frequency ω

φ(ω) =
ω

c

L

cos α(ω)
(B.1)

where L is the distance between the gratings measured along their normals. The group

delay dispersion (characterising the change in group velocity per frequency of light) is given

by the curvature of B.1 evaluated at the center frequency ωc, φ
��(ωc). The amount of pulse

stretching after four passes is then

τ =
4∆ω φ

��(ωc)
ωc

= 4
λcL∆λ

cd2 cos3 α(λc)
(B.2)

where ∆λ is the width of the incident pulse.

For our stretcher design, we calculate the final pulse width to be 94 ps. One can

compare this to the pulse width of the same input after traveling 24m through synthetic

fused silica, 15ps. We see that the stretched design using gratings is indeed far more efficient

than using materials alone. As shown in Figure B.4, the output spectrum of the laser is
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Figure B.3: Stretcher for pulsed laser. The red lines show the path of the laser beam in
the stretcher. The return path of the beam is vertically displaced below the incident beam
path. G1, G2 are the two gratings used (volume phase hologram gratings from Wasatch
Photonics). RP is the roof prism for retro reflecting the beam

significantly improved.
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Figure B.4: Spectrum of pulsed laser light at the experiment table


