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This thesis covers most of my work in the field of ultracold atoms loaded in
optical lattices. It makes a route through the physics of cold atoms in periodic
potentials starting from the simple noninteracting system and going into the many-
body physics that describes the strongly correlated Mott insulator regime. Even
though this thesis is a theoretical work all the chapters are linked either with
experiments already done or with ongoing experimental efforts.

This thesis can be divided into four different parts. The first part comprises
chapters 1 to 3. In these chapters, after a brief introduction to the field of optical
lattices I review the fundamental aspects pertaining to the physics of systems in
periodic potentials.

The second part deals with the superfluid weakly interacting regime where
standard mean field techniques can be applied. This is covered in chapters 4 and
5. Specifically, chapter 4 introduces the discrete nonlinear Schrödinger equation
(DNLSE) and uses it to model some experiments. In chapter 5 I go one step
further and include the small quantum fluctuations neglected in the DNLSE by
studying quadratic approximations of the Bose-Hubbard Hamiltonian.

Chapters 6 to 8 can be grouped as the third part of the thesis. In them I
adopt an effective action formalism, the so called two particle irreducible effective
action (2PI) together with the closed time path (CTP) formalism to study far-
from-equilibrium dynamics. The many-body techniques discussed in these chap-
ters systematically include higher order quantum corrections, not included in the
quadratic approximations of the Hamiltonian, which we show are crucial for a



correct description of the quantum dynamics outside the very weakly interacting
regime.

Finally, chapter 9 to 11 are devoted to study the Mott insulator phase. In
these chapters using perturbation theory I study the Mott insulator ground state
and its excitation spectrum, the response of the system to Bragg spectroscopy, and
propose a mechanism to correct for the residual quantum coherences inherent to
the Mott insulator ground state. Even though small these are not ideal for the use
of neutral atoms in optical lattice as a tool for quantum computation.
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Chapter 1

Introduction

Bose Einstein condensation (BEC) in bosonic gases was predicted by Einstein in
1925 [1] based on the quantum statistics ideas developed by Bose for photons [2].
The basic idea of BEC is that below a critical temperature a macroscopic number
of particles occupy the lowest energy state: as the temperature, T, is decreased the
de-Broglie wave length, which scales like T−1/2, increases and at the critical point it
becomes comparable to the inter-particle mean separation. At this point the wave
functions of the particles are sufficiently smeared out so that there is always some
overlap and a Bose Einstein condensate is formed. Although Einstein’s prediction
applied to a gas of noninteracting atoms, London suggested that, BEC could be
the mechanism underlying the phenomenon of superfluidity in 4He [3], despite the
strong interactions in this system. Further evidence for this point of view came
from neutron scattering experiments [4].

Experimental efforts to create a BEC in dilute gases date back to the 1980’s
[5]. The first experiments concentrated on using atomic Hydrogen but mainly the
large rates of inelastic collision prevented these experiments from succeeding. It
was not until 1995, using the advances made in laser cooling techniques[9], that
BEC in dilute alkali atomic gases was achieved. The first series of experiments were
done with Rubidium [6], sodium [7] and lithium [8] vapors. In these experiments
atoms are typically collected in a magneto-optical trap (MOT) and compressed
and cooled to micro-Kelvin temperatures using laser cooling techniques. They are
then transferred to a magnetic trap where evaporative cooling allows the system
to be cooled to nano-Kelvin temperatures. At a critical phase space density BEC
takes place. In such a condensate a macroscopic number of atoms, generally up to
106, collectively occupy the lowest energy state.

The experimental realization of BEC in alkali gases opened unique opportu-
nities for exploring quantum phenomena on a macroscopic scale. In contrast to
experiments with liquid helium, where the strong interactions between particles
wash out the effects due to the BEC, the relatively weak two-particle interaction
in dilute alkali atoms allows these systems to be used as a theoretical and experi-
mental arena to study coherent matter wave properties. Theoretically, the weakly
interacting regime has the advantage that all the atoms can be described by a
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single macroscopic wave function. This allows a very intuitive understanding of
the system based on the so called Gross-Pitaevskii equation (GPE) [10]. Experi-
mentally, the macroscopic wave packet can be probed by interference experiments,
where by turning off the trapping fields the atoms are allowed to expand and the
wave packets to interfere with each other.

The GPE assumes that all the atoms are in the condensate and neglects com-
pletely quantum correlations. In the weakly interacting regime, a description be-
yond the simplest mean field theory can be made by treating the small quantum
fluctuations as perturbations. This treatment was proposed by Bogoliubov in 1947
[11]. The fluctuations lead to a small depletion of the condensate mode since other
excited states different from the condensate get populated. Since in most of the
experiments with dilute gases the condensate depletion is at most 3%, the GPE
together with Bogoliubov analysis have been in general very successful describing
these experiments. Much theoretical and experiment work has been done studying
condensate properties such as condensate collective excitations, phonon modes,
sound velocity and superfluid flow phenomena [12]-[19].

However, weakly interacting dilute gases described by a mean field picture
are the simplest many body systems one can possible found. In order to be in the
weakly interacting regime, the ratio between the interaction energy of uncorrelated
atoms at a given density, Eint, and the quantum kinetic energy needed to correlate
particles by localizing them within a distance of order of the mean inter-particle
distance, Ekin, must be small. For three dimensional systems Eint ∼ n4π~2as

m (as is
the scattering length, which fully characterizes the low energy scattering processes,
n is the mean particle density and m is the atomic mass) and Ekin ∼ ~2

2mn2/3.
Thus, the ratio between these two energies is proportional to n1/3as. In dilute
alkali vapors this ratio is generally of order 0.02. To enter the strongly correlated
regime, an obvious way to proceed is either to raise the density or to raise the
scattering length. It is indeed possible to tune the scattering length to large values
by using a Feshbach resonance. This has recently been realized for example in 85 Rb
where the scattering length was tuned over several orders of magnitude [20, 21].
The problem of this approach is, however, that the lifetime of the condensate
strongly decreases due to three-body losses [22]. An entirely different way to reach
the strongly correlated regime is by using optical lattices. By increasing the depth
of the optical lattice the ratio between kinetic energy and potential energy can be
changed without affecting the density or the scattering length. The beauty of this
approach is that the lattice depth can be used as an experimental knob to change
the kinetic to interaction energy ratio allowing us to reach different many-body
regimes.

• Optical lattices

Optical lattices are periodic Stark shift potentials created by the interference
of two or more laser beams. They have been widely used in atomic physics in
the context of atom diffraction [23, 24] with applications to atom optics and atom
interferometry [25]. They have also been used as a way to trap and cool atoms. The
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first experiment where atoms were cooled to the micro-kelvin regime in a multi-
dimensional optical lattice was carried out by Hemmerich et al. [26]-[28] followed
by Grynberg et al. [29]. There have been various attempts to cool atoms directly
in an optical lattice. Among them we can mention Raman cooling techniques, by
which atoms have recently been partially cooled to the ground sate with filling
factors of order one [30, 31, 32]. However, one of the most successful techniques
to load ultracold atoms in the ground state, with almost no discernible thermal
component, is by first forming a Bose Einsten condensate in a weak magnetic trap
and then adiabatically turning on the lattice by slowly ramping up the intensity
of the laser beams.

Atom dynamics in optical lattices is closely related to electron dynamics in
solid state crystals, but optical lattice have favorable attributes such as the absence
of defects and the high degree of experimental control [33, 34]. When ultracold
bosonic atoms are loaded in shallow lattices, the system is in the weakly interacting
regime and most of the atoms are Bose condensed. Combined with BEC, the
ultimate source of coherent atom , optical lattices provide a way of exploring
a quantum system analogous to electrons in crystals but with complete control
over the lattice and the atoms. Beautiful experiments have been done in this
regime and have provided an elegant demonstration of band structure [35, 36,
37], Bragg scattering and Bloch oscillations [38], as well as coherent matter wave
interferometry [39, 40], superfluidity [41] and quantum chaos [42].

There has also been spectacular recent experimental progress in the strongly
correlated regime. It was first realized by Jaksch et al. [43], that a BEC loaded in
a lattice potential is a nearly perfect experimental realization of the Bose-Hubbard
Hamiltonian, which describes bosons with local repulsive interactions in a periodic
potential. M.P.A. Fisher et al. [44] predicted that a system modeled by the
Bose-Hubbard Hamiltonian exhibits a quantum phase transition from a superfluid
to an insulator state (superfluid-Mott insulator transition) as the interactions are
increased. In fact, the Mott insulator transition in a 3D lattice starting from a BEC
has experimentally observed by M. Greiner and coworkers [46]. Moreover, in recent
years there have been many impressive experiments which have demonstrated the
loss of quantum coherence as the system approaches the strongly correlated regime,
for example by measuring number squeezing [45] or by studying the collapse and
revival of coherence in a matter wave field [47].

One of the most important potential applications of the Mott insulator tran-
sition is to use it as a mean to initialize a quantum computer register. Deep in
the Mott insulator regime the kinetic energy is very small with respect to the in-
teraction energy and it is energetically favorable for the atoms to remain localized
without tunneling. The negligible number fluctuations makes it possible to prepare
the fiducial state with exactly one atom per site needed to initialize a quantum
computer register [43, 48, 50]. Besides the possibility of high fidelity initialization,
the easy scalability, low noise and high experimental control make ultracold neu-
tral atoms loaded in an optical lattice one of the most attractive candidates for
implementations of quantum computation.
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The overall goal of this thesis is to study equilibrium and non equilibrium prop-
erties of cold bosons loaded in optical lattices starting from the superfluid regime,
where mean field techniques can be applied, and going into the rich and complex
strongly correlated regime where the standard GPE and Bogoliubov treatments
fail to describe the system and a more general framework is required. Most of the
work is done in the context of ongoing experimental efforts, especially the ones
trying to achieve lattice based quantum information processing.

• Overview

In chapter 2, I start by reviewing the theory of optical potentials, the single
particle band structure and the tight binding approximation. In chapter 3, I go
one step further and consider the many-body properties of the system by intro-
ducing the Bose-Hubbard Hamiltonian. I give a review of the generic issues that
characterize the superfluid to Mott insulator transition.

In chapter 4, I describe the equilibrium properties of lattice systems in the
superfluid regime, where a mean field treatment is valid. I study the mean field
Discrete Nonlinear Schrödinger equation (DNLSE), and use it to model two exper-
iments done by the laser-cooling and trapping group at NIST. In the first one, an
optical lattice was moved and the average displacement of the atoms was used as
a means to probe the band structure of the system. In the second experiment,to
which I refer as the patterned loading experiment [33],the atoms were loaded into
every third site of an optical lattice, with the aim of having large enough spatial
separation to address individual atoms. This patterned loading method may be
a useful technique for the implementation of lattice based quantum computing
proposals.

The DNLSE completely neglects quantum fluctuations. However, if the sys-
tem is weakly interacting, the small quantum corrections can be included by using
the Bogoliubov approximation. In the Bogoliubov approximation the complicated
many-body quartic Hamiltonian is reduced to a quadratic one, which can be diago-
nalized exactly. Using the Bogoliubov approximation, in chapter 5 I study different
standard quadratic approximations in two different lattice systems, a translation-
ally invariant one with periodic boundary conditions which in general allows ana-
lytic solutions, and a system closer to real experimental situations where, besides
the lattice potential, there is a superimposed harmonic confinement potential. I
discuss the Bogoliubov de Genes equations (BdG), the Hartree-Fock-Bogoliubov
(HFB) approximation and the HFB-Popov approximation. To test the validity of
the different approximations and their departure from the exact solution as the
interactions are increased I compare them with the exact numerical diagonaliza-
tion of the Bose-Hubbard Hamiltonian. Because of the exponential scaling of the
dimensionality of the Hilbert space with respect to system size, the exact solu-
tion (for a system with N atoms and M wells the number of states scales like
(N + M − 1!)/(N !M !)), the numerical comparisons are restricted to systems with
a moderate number of atoms and wells.

In chapter 5, I also report on our idea of using the superfluid fraction to study
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the approach to the Mott insulator transition. By deriving an expression for
the superfluid density based on the rigidity of the system under phase variations
we were able to explore the connection between the quantum depletion of the
condensate and the quasi-momentum distribution on one hand and the superfluid
fraction on the other.

At the end of the chapter, I present my attempt to approach the strongly
correlated regime by using the improved Popov approximation [52, 53, 55]. The
idea presented here is to upgrade the bare potential, which is the one that explicitly
appears in the many-body Hamiltonian, to the many-body scattering matrix. By
upgrading the bare potential, we are properly taking into account the effect of the
surrounding atoms in the properties of binary collisions.

In chapter 6 and 7, motivated by the patterned loading experiment, we adopt
a functional effective action approach capable of dealing with non equilibrium
situations that require a treatment beyond mean field theory. Even though a de-
scription of the dynamics of the patterned loading system using the DNLSE was
derived in chapter 4, it is shown by comparisons with the exact quantal solution
calculated by time propagating the initial configuration with the Bose-Hubbard
Hamiltonian that a mean field solution is valid only for short times and in the very
weakly interacting regime. To deal with the dynamics far from equilibrium, we
adopt a closed time path (CTP) [56] functional-integral formalism together with
a two-particle irreducible (2PI) [57] effective action approach and derive equations
of motion. We retain terms of up to second-order in the interaction strength when
solving these equations. Under the 2PI-CTP scheme we consider three different
approximations : a) the time dependent Hartree-Fock-Bogoliubov (HFB) approx-
imation, b) the next-to-leading order 1/N expansion and c) a full second-order
perturbative expansion in the interaction strength. We derive mathematical ex-
pressions for the equations of motion in chapter 6 and apply them to the particular
case of the patterned loaded lattice in chapter 7. We use this system to illustrate
many basic issues in nonequilibrium quantum field theory, such as non-local and
non-Markovian effects, pertaining to the dynamics of quantum correlation and
fluctuations. We show that because the second-order 2PI approximations include
multi-particle scattering in a systematic way, they are able to capture damping
effects exhibited in the exact solution, which a collisionless approach fails to pro-
duce. While the second-order approximations show a clear improvement over the
HFB approximation, they fail at late times, when interaction effects are significant.

The 2PI effective action formalism provides a useful framework where the mean
field and the correlation functions are treated on the same self-consistent footing.
However, it yields dynamical equation of motion that are non local in time and
hard to estimate analytically. The idea in chapter 8 is to simplify the 2PI equations
and to obtain near equilibrium solutions where, kinetic theories that describe ex-
citations in systems close to thermal equilibrium are valid. In particular, we show
in this chapter how the full second-order 2PI equations are in agreement with cur-
rent kinetic theories [15],[58]-[62] and reproduce in equilibrium the higher order
perturbative corrections well known in the literature since Beliaev’s work [63].
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In chapter 9, I jump into the Mott insulator phase and I study the physical
properties of the system deep in the Mott insulator regime, which is the other
regime where an analytic treatment based on perturbation theory is possible. A
perturbative analysis should be applicable to study current experiments [64] that
reach the strong Mott regime. I derive expressions for the excitation spectrum of
the Mott state for both homogeneous and trapped systems and compare them with
the solutions obtained by exact diagonalization of the Bose-Hubbard Hamiltonian.
The main purpose of this chapter is to understand the many-body properties of
the Mott insulator ground state and the nature of its many-body excitations which
will be crucially important as more elaborate experiments with optical lattices in
the strongly correlated regime are undertaken.

One key piece of evidence for the Mott insulator phase transition is the loss of
global phase coherence of the matter wavefunction when the lattice depth increases
beyond a critical value [46]. However, there are many possible sources of phase
decoherence in these systems. It is known that substantial decoherence can be
induced by quantum or thermal depletion of the condensate during the loading
process, so loss of coherence is not a proof that the system resides in the Mott
insulator ground state. Indeed, for this reason, in the experiments by Greiner et
al. [46] a potential gradient was applied to the lattice to show the presence of
a gap in the excitation spectrum. In chapter 10, we show that another common
experimental technique, Bragg spectroscopy [65, 66], not only can identify the
excitation gap that opens up in the Mott regime, but also can be used to map
out the excitation spectrum and to determine the temperature of the system when
it is deep in the Mott regime. Specifically, we study the total momentum and
total energy deposited in the system by the Bragg perturbation calculated under
a linear response analysis and obtain analytical solutions in the superfluid and
deep Mott insulator regimes. We test the accuracy of the approximations and
their deviation from the full quantal behavior as usual by comparing them with
numerical solutions obtained by diagonalizing the Bose-Hubbard Hamiltonian for
a moderate number of atoms and wells.

All of the proposals for quantum computation which utilize a lattice-type ar-
chitecture have the Mott insulator transition as the initialization scheme to load
exactly one atom per lattice site. Such architecture requires a lattice commensu-
rately filled with atoms, which does not correspond exactly to the ground Mott
insulator state. The ground state has a remaining coherence proportional to the
tunneling matrix element. This degrades the initialization of the quantum com-
puter register and can introduce errors during error correction. I finish this thesis
with chapter 11, where I report on our proposal to solve this problem by using the
spatial inhomogeneity created by a quadratic magnetic trapping potential together
with a continuous measurement procedure which projects out the components of
the wave function with more than one atom in any well.
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Chapter 2

Optical lattices

Optical lattices are periodic potentials created by light-matter interactions. When
an atom interacts with an electromagnetic field, the energy of its internal states
depends on the light intensity. Therefore, a spatially dependent intensity induces
a spatially dependent potential energy. If such a modulation is obtained by the
interference of several laser beams, the resultant optical potential felt by the atoms
will have different potential wells separated by a distance of the order of the laser
wavelength. The depths of the optical potential wells that can be obtained in an
experiment are in the microKelvin range. Nevertheless, atoms can be trapped in
this potentials when cooled at low temperatures, by laser and evaporative cooling
techniques.

Cold atoms interacting with a spatially modulated optical potential resemble
in many respects electrons in ion-lattice potential of a solid crystals . However,
optical lattices have several advantages with respect to solid state systems. They
can be made to be largely free from defects, such defects for example prevented the
observation of Bloch oscillations in crystalline solids. Optical lattices also can be
controlled very easily by changing the laser field properties. For example the lattice
depth can be changed by modifying the laser intensity, the lattice can be moved
by changing the polarization of the light or chirping the laser frequency and the
lattice geometry can be modified by changing the laser configuration. Moreover,
in contrast to solids, where the lattice spacings are generally of order of Angstrom
units, the lattice constants in optical lattices are typically three order of magnitude
larger.

The idea of this chapter is to introduce the basic theory of optical lattices and
to review the single particle properties of atoms loaded in such periodic potentials.

2.1 Basic theory of optical lattices

Neutral atoms interact with light in both dissipative and conservative ways.
The conservative interaction comes from the interaction of the light field with
the induced dipole moment of the atom which causes a shift in the potential
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energy called ac-Stark shift. On the other hand, the dissipation comes due to the
absorption of photons followed by spontaneous emission. Because of conservation
of momentum, the net effect is a dissipative force on the atoms caused by the
momentum transfer to the atom by the absorbed and spontaneously emitted
photons. Laser cooling techniques make use of this light forces.

For large detunings spontaneous emission processes can be neglected and the
energy shift can be used to create a conservative trapping potential. This is the
physics that describes optical lattices.

2.1.1 AC Stark Shift

Consider a two level atom, with internal ground state |g〉 and excited state |e〉
and energy difference ~ωo in a lossless cavity of volume V , interacting with a
monochromatic electromagnetic field with frequency ω = 2πν as schematically
shown in Fig.2.1. Assume also that the experiment is performed within a time
smaller than the spontaneous emission rate so that spontaneous emission can be
neglected.

Figure 2.1: AC Stark shift induced by atom-light interaction. The laser frequency
is ω = 2πν which is detuned from the atomic resonance by Λ

The uncoupled Hamiltonian describing the atoms and the electromagnetic field
is given by

Ĥo = ~ωo |e〉 〈e|+ ~ω(â†â + 1/2), (2.1)

where â is the photon annihilation operator. If the detuning of the laser from
the atomic transition, ∆ = ω − ωo, is small |∆| ¿ ωo, then the state with the
atom in the ground state and N photons in the field, |0〉 ≡ |g,N〉 has similar
energy to the state with the atom in an excited state and N − 1 photons |1〉 ≡
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|e,N − 1〉 , E1 − E0 = −~∆. The effect of the interactions is to couple these
states. Under the dipole approximation which assumes that the spatial variation
of the electromagnetic field is small compared with the atomic wave function, the
coupling Hamiltonian denoted as ĤI in the interaction picture is given by:

ĤI = −~d · ~E (2.2)

=
(|e〉 〈g| eiωot + |g〉 〈e| e−iωot

) (
~Ω∗(~x)

2
â†eiωt +

~Ω(~x)
2

âe−iωt

)
.

Here Ω(x) is the Rabi frequency given by ~Ω(~x) = −2
√
~ω〈N〉
2∈V u(~x)~ε · ~d, with ~ε the

unit polarization vector of the field, ~d the dipole moment of the atom and u(~x)
the field mode evaluated at the atomic position x,(for plane waves, for example
u(~x) = e−i~k·~x). In the rotating wave approximation, valid in the limit |∆| ¿ ωo, the
type of processes with a rapidly oscillating phase, exp(±i(ωo + ω)t), are neglected
and only the near resonant frequency processes are considered. The interaction
Hamiltonian is then reduced to

ĤI ≈
(
~Ω(~x)

2
|e〉 〈g| âei∆t +

~Ω∗(~x)
2

|e〉 〈g| â†e−i∆t

)
. (2.3)

Physically, the resonant process correspond to either the excitation of the atom
along with the emission of a photon or the relaxation of the atom with the absorb-
tion of a photon. In the previous line we also assume a large number of photons
and neglect the variation in the coupling constant due to ∆N, i.e N ' N − 1.

If the detuning is large compared to the Rabi frequency, |∆| À Ω, the effect
of the interactions on the states, |0〉 and |1〉, can be determined with second order
perturbation theory. In this case, the energy shift E

(2)
0,1 is given by

E
(2)
0,1 = ±| 〈1| Ĥint |0〉 |2

~∆
= ±~ |Ω(~x)|2

4∆
, (2.4)

with the plus and minus sign for the |0〉 and |1〉 states respectively. This energy
shift is the so called ac-Stark shift. Since the atoms are practically always in the
ground state, the energy of the atoms is changed according to the stark shift
~ |Ω(~x)|2

4∆ , which defines the optical potential.
Furthermore, if instead of interacting with a monochromatic electromagnetic

field, the atoms are illuminated with superimposed counter-propagating laser beams,
the beams interfere and the interference pattern results in a periodic landscape po-
tential or optical lattice.

2.1.2 Dissipative interaction

In the above discussion we implicitly assumed that the excited state has an infinite
lifetime. However, in reality it will decay by spontaneous emission of photons. This
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effect can be taken into account phenomenologically by attributing to the excited
state an energy with both real an imaginary parts. If the excited state has a life
time 1/Γe corresponding to a e-folding time for the occupation probability of the
state, the corresponding life time for the amplitude will be twice this time. The
energy of the perturbed ground state becomes a complex quantity which we can
write as

E
(2)
0 =

~
4

|Ω(~x)|2
∆− iΓe/2

= V (~x) + iγsc(~x), (2.5)

V (~x) = ~
|Ω(~x)|2∆
4∆2 − Γ2

e

≈ ~ |Ω(~x)|2
4∆

, (2.6)

γsc(~x) =
~
2
|Ω(~x)|2Γe

4∆2 − Γ2
e

≈ ~ |Ω(~x)|2Γe

8∆2
. (2.7)

The real part of the energy corresponds to the optical potential whereas the imag-
inary part represents the the rate of loss of atoms from the ground state. The sign
of the optical potential seen by the atoms depends on the sign of the detuning.
For blue detuning , ∆ > 0, the sign is positive resulting in a repulsive potential,
and the potential minima correspond to the points with zero light intensity. On
the other hand, in a red detuned light field, ∆ < 0, the potential is attractive
and the minima correspond to the places with maximum light intensity. Because
the effective spontaneous emission rate of the atoms increases with the light inten-
sity, the spontaneous emission in a red detuned optical lattice will always be more
significant than in a blue detuned one.

The proper detuning for an optical lattice depends on the available laser power
I (|Ω|2 ∝ I) and the maximum dissipative scattering rate that can be tolerated.
On one hand, with small detuning it is possible to create larger trap depths for a
given laser intensity since the optical potential scales as V ∼ I/∆. On the other,
the inelastic scattering rate is inversely proportional to the detuning squared and
scales like Γe/∆ V . Therefore, the laser detuning should be chosen as large as
possible within the available laser power in order to minimize inelastic scattering
processes and create a conservative potential.

2.1.3 Lattice geometry

The simplest possible lattice is a one dimensional(1D) lattice lattice. It can be
created by retroreflecting a laser beam, such that a standing wave interference
pattern is created. This results in a Rabi frequency Ω(x) = 2Ωo sin(kx) which
yields a periodic trapping potential given by

Vlat(x) = Vo sin2(kx) =
~Ω2

o

∆
sin2(kx), (2.8)

where k = 2π/λ is the absolute value of the wave vector of the laser light and Vo

is four times times the depth of a single laser beam without retro-reflection, due
to the constructive interference of the lasers.
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Periodic potentials in higher dimensions can be created by superimposing more
laser beams. To create a two dimensional lattice potential for example, two or-
thogonal sets of counter propagating laser beams can be used. In this case the
lattice potential has the form

Vlat(x, y) = Vo

(
cos2(ky) + cos2(kx) + 2ε1 · ε2 cosφ cos(ky) cos(kx)

)
. (2.9)

Here k is the magnitude of the wave vector of the lattice light, ε1 and ε2 are
polarization vectors of the counter propagating set and φ is relative phase between
them. If the polarization vectors are not orthogonal and the laser frequencies are
the same, they interfere and the potential is changed depending on the relative
phase of the two beams. This leads to a variation of the geometry of the lattice
in a chequerboard like pattern. A simple square lattice with one atomic basis
can be created by choosing orthogonal polarizations between the standing waves.
In this case the interference term vanishes and the resulting potential is just the
sum of two superimposed 1D lattice potentials. Even if the polarization of the two
pair of beams is the same, they can be made independent by detuning the common
frequency of one pair of beams from that the other. Typically a negligible frequency
difference compared with the optical frequency is required to achieve independence,
thus even in this case to a good approximation the wave vectors can be considered
equal.

A more general class of two 2D lattices can be created from the interference
of three laser beams [34, 33] which in general yields non separable lattices. Such
lattices can provide tighter on-site confinement, better control over the number
of nearest neighbors and significantly reduced tunneling between sites compared
with the counter propagating four beam square lattice. In Fig. 3 we show a
variety of possible 2D optical lattice geometries that can be made by three and four
interfering laser beams. Similarly a 3D lattice can be created by the interference
of at least 6 orthogonal sets of counter propagating laser beams.

2.2 Single particle physics

In this section for simplicity we are going to restrict the analysis to a one dimen-
sional lattice. Generalization to higher dimensions can be done straightforwardly,
especially if the lattice geometry is separable. The main purpose of this section is
to review the basic aspects that describe the behavior of noninteracting particle
subject to a periodic potential.

2.2.1 Bloch functions

One of the most important characteristics of a periodic potential is the emergence
of a band structure. Consider a one dimensional particle described by the Hamil-
tonian H = p̂2

2m + Vlat(x), where Vlatx) = Vlat(x + a). Bloch’s theorem [67, 68]
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Figure 2.2: Optical lattice potential.(a)-(e) potentials for different configurations of
3 beams, (f) potential for the 4 counter-propagating laser beam configuration (The
two pair of light fields are made independent by detuning the common frequency of
one pair of beams from the other. ER is the atomic recoil energy, ER = ~2k2/2m.
This figure is a courtesy of P. Blair Blakie [34] )

states that the eigenstates φ
(n)
q (x) can be chosen to have the form of a plane wave

times a function with the periodicity of the potential:

φ(n)
q (x) = eiqxu(n)

q (x), (2.10)

u(n)
q (x + a) = u(n)

q (x). (2.11)

Using this ansatz into the Schrödinger equation, Hφ
(n)
q (x) = E

(n)
q φ

(n)
q (x), yields

an equation for u
(n)
q (x) given by:

[
(p̂+~q)2

2m
+ Vlat(x)

]
u(n)

q (x) = E(n)
q u(n)

q (x) (2.12)

Bloch’s theorem introduces a wave vector q. The quantity q should be viewed as
a quantum number characteristic of the translational symmetry of the periodic
potential, just as the momentum is a quantum number characteristic of the full
translational symmetry of the free space. Even though it is not the same, it turns
out that ~q plays the same fundamental role in the dynamics in a periodic potential
as the momentum does in the absence of the lattice. To emphasize this similarity



2.2 Single particle physics 15

~q is called the quasimomentum or crystal momentum . In general the wave vector
q is confined to the first Brilloiun zone, i.e. −π/a < q ≤ π/a.

The index n appears in Bloch’s theorem because for a given q there are many
solutions to the Schrödinger equation. Eq. (2.12) can be seen as a set of eigenvalue
problems in a fixed interval, 0 < x < a, one eigenvalue problem for each q. There-
fore, each of them, on general grounds has an infinite family of solutions with a
discretely spaced spectrum of modes labelled by the band index n. On the other
hand, because the wave vector q appears only as a parameter in Eq. (2.12), for an
infinite lattice, the energy levels for a fixed n has to vary continuously as q varies.
The description of energy levels in a periodic potentials in terms of a family of
continuous functions E

(n)
q each with the periodicity of a reciprocal lattice vector,

2π/a, is referred to as the band structure.
In the simple case of a sinusoidal potential, which is the one used in experi-

ments, Vlat(x) = V0 sin2(kx), the band structure can be solved analytically. In this
case the Schrödinger Equation is given by

− d2

dy2
φ(n)

q (y) +
V0

4ER
(2− 2 cos(2y))φ(n)

q (y) =
E

(n)
q

ER
φ(n)

q (y) (2.13)

where ER = ~2k2/2m is the atomic recoil energy and y = kx. For convenience,
lattice depths are generally specified in recoil units. Equation (2.13) is just the
Mathieu equation ([69])

d2y

dx2
+ (a + 2s cos(2x))y = 0. (2.14)

.
Solutions of the Mathieu equation are generally written in the Floquet form eiνxP (x)
where ν is known as the characteristic exponent and a = a(ν, s) is the characteris-
tic parameter which is a complicated function of s and ν. In the lattice language
ν correspond to the quasimomentum , s = V0/4ER and a = E

(n)
q /ER − V0/2ER.

Fig. 2.3 shows the band structure of a sinusoidal potential for different po-
tential depths. For V0 = 0, the particles are free so the spectrum is quadratic
in q. As the potential is increased the band structure appears. For small V0 the
discontinuity occurs only at the edge of the first Brillouin zone qa ±π and the gap
is proportional to V0/2. As the depth increases, the band gap increases and the
band width decreases. For very deep lattices the spectrum is almost degenerate in
q and exhibits a dependence on n similar to the one of a particle in a fixed finite
interval(determined by the period of the potential).

In the absence of a lattice the eigenfunctions of the free system are plane waves.
As the lattice depth is increased the barrier height between adjacent lattices sites
increases and the eigenstates of the system tend to get localized at each lattice
site (regions around the potential minima). In Fig. 2.4 the probability density of
the Bloch wave function φ

(n=0)
q=0 is plotted for different lattice depths. It can be

observed how the amplitude of the wave function in between adjacent lattice sites
decreases with increasinglattice depth.
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Figure 2.3: Band structure of an optical lattice

2.2.2 Wannier orbitals

Wannier orbitals are a set of orthonormal wave functions that fully describe par-
ticles in a band and are localized at the lattice sites. They are defined as:

wn(x− xi) =
1√
M

∑
q

e−iqxiφ(n)
q (x), (2.15)

where the sum is over the first Brillouin zone, M is the total number of lattice sites
and xi is the position of the ith lattice site. Wannier orbitals are thus a unitary
transformation of the Bloch functions and are formally an equivalent representation
to describe the periodic system. They constitute a more appropriate representation
as the lattice depth is increased and particles get localized at individual lattices
sites. The actual form of a Wannier function may be seen if we assume the
periodic function u

(n)
q (x) in equation 2.10 to be approximately the same for all

Bloch states in a band. Under this approximation the Wannier function centered
at the origin can be shown to be

wn(x) ≈ u(n)(x)
sin(kx)

kx
. (2.16)

This looks like u(n)(x) at the site center, but spread out with oscillations of
gradually decreasing amplitude. The oscillations are needed to ensure orhogonality
between Wannier functions. In Fig. 2.5 we show the Wannier orbital centered at
the origin site for each of the lattice configurations shown in Fig.2.2. The lattice
depth in this pictures in deep enough that the Wannier orbitals are well localized.
To observe the small oscillatory tails at the neighboring sites, the plots use a
log-scale for the density color map.
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Figure 2.4: Probability density of the Bloch wave function φ
(n=1)
q=0 for different

lattice depths. It can be observed the localization of the wave function increases
with the lattice increases.

2.2.3 Tight-binding approximation

The tight-binding approximation deals with the case in which the overlap between
Wannier orbitals at different sites is enough to require corrections to the picture
of isolated particles but not too much as to render the picture of localized wave
functions completely irrelevant. Sometimes a very good approximation is only to
take into account overlap between nearest neighbor orbitals. This tight-binding
model is commonly used to solve the problem of a particle in a periodic potential
when also an external potential is applied and it is going to be fundamental when
considering particle interactions.

By expanding the wave function in Wannier orbitals,

ψ(x, t) =
∑

n,i

z
(n)
i (t)wn(x− xi), (2.17)

and using it in the Schrödinger equation that describes a particle moving in the
potential of a 1D lattice plus a perturbative external potential V (x), we get the
following equations of motion

−i~
∂

∂t
z
(n)
i =

∑

jn′
−J

(n′)
ij δnn′z

(n′)
j (t) + V

(n,n′)
ij z

(n′)
j (t), (2.18)

with

J
(n)
ij = −

∫
dxw∗n(x− xi)Hown(x− xj)dx, (2.19)

V
(n,n′)
ij = −

∫
dxw∗n(x− xi)U(x)wn′(x− xj)dx. (2.20)
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If we assume that the external perturbation is not strong enough or sharp enough
to induce interband transitions, we may represent the moving particle quite satis-
factory by using Wannier functions of only the first band. Moreover, if the lattice
is deep enough such that tunneling to next to nearest neighbors can be ignored,
and the external perturbation is a slowly varying function such that it can be as-
sumed constant inside each individual lattice site, i.e. V

(n,n′)
ij = V (xi)δjiδn,n′ , the

equations of motion reduce to

−i~
∂

∂t
zi(t) = −J (zi+1(t) + zi−1(t)) + V (xi)zi(t) + εozi(t), (2.21)

with

J = −
∫

dxw∗0(xi)How0(x− xi+1)dx, (2.22)

εo =
∫

dxw∗0(x)How0(x)dx (2.23)

where J is the tunneling matrix element between nearest neighboring lattice sites,
εo is the unperturbed on site energy shift and and zi the first band coefficients
zi(t) = z

(0)
i (t). Eq. (2.21) is known as the discrete Schrödinger equation (DSE) or

tight-binding Schrödinger equation.
For deep lattices the localized Wannier orbitals can be approximated by a

Gaussian function. However, because the Gaussian ansatz neglects the small
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oscillations characteristic in the tail of the Wannier function, the tunneling matrix
element J is then underestimated by almost an order of magnitude. For the special
case of a sinusoidal potential Vlat(x) = Vo sin2(kx) for which Mathieu functions are
the exact solutions an analytic expression for J can be obtained by using tabulated
Mathieu functions in Eq. (2.22) and fitting the data. The best fit we get is:

J/ER = α
(
Ṽo

)β
e−γ

√
Ṽo (2.24)

with α =1.39666, β =1.051 and γ =2.12104 and Ṽo = Vo/ER.

2.2.4 Semiclassical dynamics

Formalism

Solving Eq. (2.21) is presumably not possible for arbitrary V (xi). However, we get
general insight to the nature of solutions by an application of the correspondence
principle. It is well known that wave-packet solutions of the Schrödinger equation
behave like classical particles obeying the equations of motion derived from the
same classical Hamiltonian. The classical Hamilton equations are

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (2.25)

Using the correspondence principle and the resemblance of the crystal momentum
or quasimomentum to real momentum, the semiclassical equations of a wave packet
in the first band of a lattice can be written as ([67], [68])

ẋ = v(0)(q) =
1
~

dE
(0)
q

dq
, ~q̇ = −dV (x)

dx
. (2.26)

The semiclassical equations of motion describe how the position and wave
vector of a particle evolve in the presence of an external potential entirely in terms
of the band structure of the lattice. If we compare the acceleration predicted by
the model with the conventional newtonian equation, mẍ = −dV (x)/dx, we can
associate an effective mass induced by the presence of the lattice, m∗. This is given
by

1
m∗ =

1
~2

d2

dq2
E(0)

q . (2.27)

Translationally invariant lattice

If no external potential is applied, V (x) = 0, plane waves are the solutions of DSE:
zj(t) = f

(q)
j e−it(Eq+εo)/~, f

(q)
j = 1√

M
eiqaj with M is the total number of lattice

sites. If also periodic boundary conditions are assumed, the quasimomentum q
is restricted to be an integer multiple of 2π

Ma . The lowest energy band dispersion
relation in this case is given by

Eq = −2J cos(qa). (2.28)
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From the above equation it is possible to see the connection between J and the
band width

J =
(
Eq=π

a
−Eq=0

)
/4. (2.29)

Linear external potential and Bloch oscillations

If V (x) is assumed to be a linear potential, V (x) = Jξ
a x, it can be shown (see

for example [70],[71],[72]), that in this case the energy spectrum of Eq. (2.21) is
discrete and evenly spaced

(Es −E0) = Jξs s = 0, 1, 2, 3 . . . . (2.30)

The corresponding eigenfunctions are spatially localized and the amplitudes zj(t)
given by :

zj(t) = f
(s)
j e−iEst/~, (2.31)

f
(s)
j = Js−j(−2/ξ) s = 0, 1, 2, 3, . . . . (2.32)

With Js the sth order Bessel function of the first kind. Because the quantities f
(s)
j

are just displaced Bessel functions, the sth eigenstate of the system tends to be
exponentially localized around the sth site as ξ is increased. The localization is
almost complete when ξ = 4, i.e. when the potential energy drop over a lattice
period is equal to the zero field band width. The localization can be observed in
Fig.2.6 where the ground state amplitudes f

(0)
i are plotted for different values of

ξ.
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Figure 2.6: Ground state amplitudes f
(0)
i as a function of the lattice site i for

different values of ξ

An insight on the dynamics of a particle in this linear potential is obtained by
calculating the time dependent probability of finding it at the site j at time t ,
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|zj(t)|2, if it was in the state localized at the origin at time zero zj(0) = δ0j . After
some algebra it can be shown to be given by

Pj = |zj(t)|2 = J2
j

(
4 sin(ξτ/2)

ξ

)
, (2.33)

with τ = tJ/~. The dynamical evolution of Pj 6=0, for a given j consists of an initial
period of growth until a maximum is reached followed by an oscillatory decay. The
sequence is repeated again backwards until a time τ= 2π/ξ at which Pj 6=0 vanishes
and a new cycle starts.

In Fig. 2.7, the diffusion of a square wave packet occupying at t = 0 the central
20 sites is plotted. It can be seen that the center of mass of the wave function
accelerates and then returns to its initial position after a period τ= 2π/ξ.
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Figure 2.7: Diffusion of a square wave packet in the presence of a linear poten-
tial.The parameters for the plot are ξ = 0.1.

A simplified picture of the dynamics of a wave packet in this linear potential can
also be obtained if we use the semiclassical model. If we assume a packet initially
centered at x(t = 0) = 0, with average initial quasimomentum q(t = 0) = qo,
the semiclassical model predicts periodic oscillations of the center of mass with
frequency ξ and amplitude 2/ξ.

x(t) =
2
ξ
(1− cos(ξτ + qoa)). (2.34)
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This periodic motion, known as Bloch oscillations, has been observed in systems
of cold atoms [73] and Bose-Einstein condensates in optical lattices [38, 36]. On
the other hand, if the external potential is strong enough to cause interband tran-
sitions, the tight-binding model does not apply anymore. In this case the atoms
may gain enough energy from the external field to tunnel out through the energy
gap into a second band when they reach the Brillioun zone boundary. This phe-
nomenon is known as of Landau-Zener tunneling and it also has been observed in
experiments [40].

Harmonic potential

A case of experimental interest is when, besides the periodic potential, the system
is subject to a harmonic confinement, V (x) = 1

2mω2
T a2(x/a)2 ≡ Ω(x/a)2, with ωT

the trapping frequency (note that Ω is unrelated to the Rabi frequency discussed
in section 2.1). The energy spectrum in this case is determined by the equation

Esf
(s)
i = −J(f (s)

i+1 + f
(s)
i−1) + Ωi2f

(s)
i . (2.35)

It is possible to show that the solutions f
(s)
i of Eq. 2.35 are the Fourier coeffi-

cients of the periodic Mathiue function with period π and the eigenvalues are the
characteristic value of these periodic Mathiue functions [69]. The symmetric and
antisymmetric solutions and eigenvalues are given respectively by

f
(s=2r)
i =

1
π

∫ 2π

0
ce2r

(
x,

4J

Ω

)
cos(2ix)dx r = 0, 1, 2..., (2.36)

f
(s=2r+1)
i =

1
π

∫ 2π

0
se2r

(
x,

4J

Ω

)
sin(2ix)dx,

Es=2r =
Ω
4

a2r

(
4J

Ω

)
Es=2r+1 =

Ω
4

b2r

(
4J

Ω

)
, (2.37)

with ce2r(x, 4J/Ω) and se2r(x, 4J/Ω) the even and odd periodic solution (with
period π) of the Mathieu equation with characteristic parameter a2r(4J/Ω) and
b2r(4J/Ω) respectively. The eigenvalues Es are complicated functions of 4J

Ω and
therefore we are only going to consider expressions for certain limits:

• Case J À Ω: This is the case where most experiments have been developed,
for example for a 5 ER lattice the parameter q = 4J

Ω varies between 1.7x104

for a magnetic trap of 9 Hz to 35 for a trap of 200 Hz. In this regime the
excitation spectrum is given by:

Es = −2J +
√

4ΩJ(s +
1
2
)− Ω

(
(2s + 1)2 + 1

32

)
(2.38)

−Ω

√
Ω
J

(
(2s + 1)3 + 3(2s + 1)

210

)
+ . . .
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which to a first approximation is just the harmonic potential found if no
lattice were present but with an effective frequency ω∗ and effective mass m∗

given by

~ω∗ =
√

4ΩJ = ~ωt

√
m

m∗ , (2.39)

m∗ =
~2

2Ja2
, (2.40)

It is worth it to emphasize that this result was derived under the tight-
binding approximation and therefore it is not valid for very shallow lattices.
The harmonic character of the spectrum can be easily checked if we take the
continuous limit of Eq. (2.35). The differential equation obtained is just the
harmonic oscillator equation,

(Es + 2J)f (s)(x) = − ~2

2m∗
∂f (s)(x)

∂x2
+

1
2
m∗ω∗2x2f (s)(x). (2.41)

The average width of the wave function is just aho=
√

}
m∗ω∗ .

• Case J ¿ Ω: The single particle spectrum in this case is given by

Es=2n ≈ Es=2n−1

=
Ω
4

(
(2n)2 +

(
4J

Ω

)2 1
((2n)2 − 1)

+ O

(
4J

Ω

)4

+ ..

)
n ≥ 3,

E4 ≈ E3 =
Ω
4

(
16 +

(
4J

Ω

)2 1
30

+ ..

)
,

E2 =
Ω
4

(
4 +

(
4J

Ω

)2 5
12

+ ..

)
, (2.42)

E1 =
Ω
4

(
4−

(
4J

Ω

)2 1
12

+ ..

)
,

E0 =
Ω
4

(
−

(
4J

Ω

)2 1
2

+ ...

)
.

It can be appreciated that the spectrum is nearly twofold degenerate and it goes
like Ωn2 to first order in (J/Ω) . In this regime then, the trapping potential is
what mostly determines the energy spacing. In Fig. 2.8 the spectrum is shown for
different values of 4J

Ω .
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Chapter 3

The Bose-Hubbard
Hamiltonian and the superfluid
to Mott insulator transition

In chapter 2 we studied the physics of non interacting particles in a periodic system.
In this chapter we go one step ahead and describe the basic properties of a bosonic
many body system with repulsive interactions in a periodic lattice potential.

The simplest non trivial model that describes interacting bosons in a periodic
potential is the Bose Hubbard Hamiltonian. It includes the main physics that
describe strongly interacting bosons, which is the competition between kinetic and
interaction energy. This model has been used to describe many different systems
in solid state physics, like short correlation length superconductors, Josephson ar-
rays, critical behavior of 4 He and, recently, cold atoms in optical lattices [43]. It
has been studied analytically with many different techniques such as mean field
approximations [74, 75, 77], renormalization group theories [44] and strong cou-
pling expansions [78]. Numerically most of the studies are based on quantum
Monte Carlo methods and density matrix renormalization techniques [79]. The
Bose Hubbard Hamiltonian predicts a quantum phase transition from a superfluid
to a Mott insulator state. This transition has been observed experimentally in
atoms confined in a 3D optical lattice [46]. In this chapter we start by review-
ing the basic properties of the Bose Hubbard Hamiltonian and outline the most
important aspects that characterize the superfluid to Mott insulator transition.

3.1 Bose-Hubbard Hamiltonian

We begin the analysis by considering the second quantized Hamiltonian that de-
scribes interacting bosonic atoms in an external trapping potential plus lattice. In
the grand canonical ensemble it is given by:
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Ĥ =
∫

dxΦ̂†(x)
(
− ~

2

2m
∇2 + Vlat(x)

)
Φ̂(x) + (V (x)− µ)Φ̂†(x)Φ̂(x) (3.1)

+
1
2

∫
dxdx′Φ̂†(x)Φ̂†(x′)Vat(x− x′)Φ̂(x)Φ̂(x′),

where Φ̂†(x) is the bosonic field operator which creates an atom at the position
x, Vlat(x) is the periodic lattice potential, V (x) denotes any additional slowly-
varying external potential that might be present (such as a magnetic trap), µ is
the chemical potential and acts as a lagrange multiplier to fix the mean number
of atoms in the grand canonical ensemble and Vat(x) is the interatomic scattering
potential, which is in general a complicated function. However, since for cold gases
the thermal de Broglie wavelength is much larger than the effective extension of the
interaction potential, the only relevant scattering process is the s-wave scattering,
and the actual inter-particle potential plays a minor role. Therefore, to a good
approximation, the interatomic potential can be replaced by an effective contact
interaction:

Vat(x) ≈ 4πas~2

m
δ(x), (3.2)

with as is the scattering length and m the mass of an atom. In this thesis we
are going to assume that the scattering length is positive so the interactions are
repulsive.

Similar to the noninteracting situation, where we used Wannier orbitals to ex-
pand the single particle wave function, it is convenient to expand the field operator
in a Wannier orbital basis. If the chemical potential of the system is less than the
single particle excitation energy to the second band, only the first band has to be
considered and the field operator can be written as:

Φ̂(x) =
∑

n

ânw0(x− xn), (3.3)

where w0(x) is the Wannier orbital of the lowest vibrational band localized at the
origin, and ân is the annihilation operator at site n which obeys bosonic canonical
commutation relations. The sum is taken over the total number of lattice sites.
If Eq. (3.3) is inserted in Ĥ and only tunneling between nearest neighbors is
considered, we obtain the Bose Hubbard Hamiltonian

ĤBH = −J
∑

<n,m>

â†nâm +
1
2
U

∑
n

â†nâ†nanan +
∑

n

(Vn − µ)â†nân, (3.4)

with
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J = −
∫

dxw∗0(x− xn)
(

p̂2

2m
+ Vlat(x)

)
w0(x + xn+1), (3.5)

U =
4πas~2

m

∫
dx |w0(x)|4 , (3.6)

Vn = V (xn). (3.7)

The first term in the Hamiltonian proportional to J is a measure of the kinetic
energy of the system. J is the hopping matrix element between nearest neighbors
(see also 2.24). Here the notation < n,m > restricts the sum to nearest-neighbors
sites. Next-to-nearest neighbor tunneling amplitudes are typically two orders of
magnitude smaller than nearest-neighbor tunneling amplitudes, and to a good
approximation they can be neglected.

The second term determines the interaction energy of the system. The param-
eter U measures the strength of the repulsion of two atoms at lattice site n.The
integral (3.6) is not as sensitive as Eq. (3.5) to the oscillatory tails characteristic
of the Wannier orbitals, and a Gaussian approximation can be used to estimate
it [43]. Under the Gaussian approximation, the ground state wave function cen-
tered at the origin of a separable sinusoidal lattice, with lattice depth Vj0 in the

jth direction, has the form w0(0) ∼ ∏
j exp−

(
xj√
2ahoj

)2
, with ahoj =

√
~

mωhoj
and

ωhoj =
√

4ErVj0

~2 . Using this ansatz in the integral (3.6) yields an onsite interaction
given by

U =
~as√
2π

ωho

aho
, (3.8)

with the bar indicating the geometric mean. To guarantee the validity of the one
band approximation, the mean interaction energy per particle UN must be smaller
than the energy gap to the first vibrational excitation, i.e. UN < ~ωho. N is the
mean number of atoms. This inequality is readily satisfied in practice.

The third term in the Hamiltonian takes into account the energy offset at site
n due to a slowly varying external potential V (x).

The realization of the Bose-Hubbard Hamiltonian using optical lattices has the
advantage that the interaction matrix element U and the tunneling matrix element
J can be controlled by adjusting the intensity of the laser beams. As the intensity
of the lattice is increased the tunneling rate decreases exponentially and the onside
interaction increases as a power law, V

d/4
0 , (d is the dimensionality of the lattice).

3.2 Superfluid-Mott insulator transition

At zero temperature the physics described by the Bose-Hubbard Hamiltonian can
be divided into two different regimes. One is the interaction dominated regime
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when J is much smaller than U , and the system is in the Mott insulator phase.
The other is the kinetic energy dominated regime, where tunneling overwhelms the
repulsion and the system exhibits superfluid properties. The onset of superfluidity
is a consequence of the competition between the kinetic energy, which tries to
delocalize the particles, and the interaction energy, which tries to localize them
and make the number fluctuations small.

In the superfluid regime, the kinetic energy term dominates the Hamiltonian.
In this regime, quantum correlations can be neglected and the system can be
described by a macroscopic wave function since the many body state is almost
a product over identical single particle wave functions. There is a macroscopic
well-defined phase and the system is a superfluid. Because atoms are delocalized
over the lattice with equal relative phases between adjacent sites, they exhibit an
interference pattern when the lattice is turned off, as expected from an array of
phase coherent matter wave sources. As interaction increases the average kinetic
energy required for an atom to hop from one site to the next becomes insufficient
to overcome the potential energy cost. Atoms tend to get localized at individual
lattice sites and number fluctuations are reduced. In the Mott insulator phase
the ground state of the system instead consists of localized atomic wave functions
with a fixed number of atoms per site. The lowest lying excitations that conserve
particle number are particle-hole excitations (adding plus removing a particle from
the system). This phase is characterized by the existence of an energy gap. The
gap is determined by the energy necessary to create one particle-hole pair.

The phase diagram [44],[74]-[76] that describes the Mott insulator transition
of a translational invariant system with Vn = 0 exhibits lobe-like Mott insulating
phases in the J-µ plane, see Fig. 3.1. Each Mott lobe is characterized by having
a fixed integer density. Inside these lobes the compressibility, ∂ρ/∂µ with ρ the
average density of the system, vanishes. The physics behind this diagram can be
understood as follows: If we start at some point in the Mott insulating phase and
increase µ keeping J fixed, there is going to be a point at which the kinetic energy
of adding an extra particle and letting it hop around will balance the interaction
energy cost. With an extra particle free to move around the lattice phase coherence
is recovered and the system enters the superfluid regime. Similarly, by decreasing
µ from a point in the Mott phase, at some point eventually it will be energetically
favorable to remove one particle from the system. The extra mobile hole will induce
also phase coherence and the system will condense in a superfluid state. Since the
kinetic energy of the system increases with J the width of the lobes decreases with
J . The distance in the µ direction at fixed J between the upper and lower part of
the lobe is the energy gap. At J = 0 the gap is just equal to U . Also at J = 0 the
intersection points between the lobes with density ρ = n and the ones with density
ρ = n + 1 are degenerate. Because there is no energy barrier to the addition of
an extra particle at these degenerated points the system remain superfluid. Mott
insulator phases occur only at integer densities; non-integer density contours lie
entirely in the superfluid phase because there is always an extra particle that can
hop without energy cost.
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The phase diagram includes two different types of phase transition. One type
takes place at any generic point of the phase boundary, and it is driven by the
energy cost to add or subtract small numbers of particles to the incompressible
Mott state as explained above. On the other hand, the other type only occurs
at fixed integer density and takes place at the tip of the lobes. This transition is
driven at fixed density by decreasing U/J and enabling the bosons to overcome the
on site repulsion. The two kinds of phase transition belong to different universality
classes. In the generic one, the parameter equivalent to the reduced temperature
δ = T − Tc for finite temperature transitions that measures the distance from the
transition is δ ∼ µ − µc, with µc the chemical potential at the phase boundary.
For the special fixed density on the other hand one must take δ ∼ (J/U)− (J/U)c.
As shown in ([44]) provided δ ∼ µ − µc, the compressibility has a singular part
scaling near the transition as δ−α, α > 0. This scaling does not apply at the
special fixed density Mott-Superfluid transition for which δ ∼ (J/U) − (J/U)c

and differentiation with respect to delta becomes inequivalent to differentiation
with respect to the chemical potential. Most of the features of the phase diagram
discussed above can be verified by simple calculations done using a mean field
approximation. The solution of the mean field model [74]- [76] predicts that the
critical value at the tip of the Mott lobe depends on the density and dimensionality
of the lattice as

(U/J)c = t
(
2n + 1 +

√
(2n + 1)2 − 1

)
, (3.9)

where n is the integer density of the lobe, t the number of nearest neighbors,
t = 2d, with d the dimensionality of the system. The parabolic phase boundary of
the lobes in the plane µ vs (J/U) vs is given by

µ/J =
1
2

(
(2n− 1)− Jt/U ±+

√
(Jt/U)2 − 2(Jt/U)(2n + 1) + 1

)
.(3.10)

Up to this point we have discussed the basic aspects of the superfluid-Mott
insulator transition in a translationally invariant system. The situation is funda-
mentally different for a inhomogeneous system with a fixed total number of atoms
and external confinement. This is the case realized in experiments, where besides
the lattice there is a harmonic trap that collects the atoms at the center. In this
case the density of atoms is not fixed since the atoms can redistribute over the
lattice and change the local filling factor.

To deal with the inhomogeneous case, it is possible to define an effective local
chemical potential, µn = µ−Vn, at each lattice site n [43]. If the change in the mean
number of atoms between neighboring sites is small, the system can be treated
locally as an homogeneous system. Because in the inhomogeneous case, the local
chemical potential is fixed by the density, as the ratio U/J is changed the system
can locally cross the boundary between the superfluid and Mott insulator phases.
Therefore even for the situation when the local density was not commensurate at
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Figure 3.1: Zero-temperature phase diagram. The vertical lines indicate critical
values for different filling factors

the beginning, as the ratio U/J is changed a local phase transition can take place.
For the inhomogeneous case, the gradient in the local chemical potential leads to
a shell structure with Mott insulator regions and superfluid regions in between.
In [79], the authors used quantum Monte Carlo simulations to study the ground
state of the one dimensional Bose Hubbard model in a trap. They found that
Mott phases exist in extended domains above a threshold interaction strength,
even without the commensurate filling required in the translationally invariant
case.
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Mean field theory

In this chapter we introduce the mean field Discrete Nonlinear Schrödinger equa-
tions and use it first to investigate the behavior of a BEC adiabatically loaded into
an optical lattice moving at constant velocity, and second to model the dynamical
evolution of a BEC initially loaded into every third site of an optical lattice.

4.1 Discrete nonlinear Schrödinger equation (DNLSE)

In the weakly interacting regime, quantum fluctuations can be neglected to a good
approximation. In this regime most of the atoms occupy the same condensate
wave function. The macroscopic occupation of a single mode implies that the
commutator of the annihilation and creation operators that create and destroy a
particle in the condensate mode can be neglected with respect to the total number
of atoms in the mode. Therefore, to a good approximation the field operator can
be replaced by a c-number,

Φ̂(x) → ϕ(x). (4.1)

This procedure can be interpreted as giving to the field operator a non zero average,
〈Φ̂(x)〉 = ϕ(x), and thus a well defined phase to system. Because the original
Hamiltonian is invariant under global phase transformation, this definition of BEC
corresponds to an spontaneous symmetry breaking [11, 12, 80]. The function ϕ(x)
is a classical field having the meaning of an order parameter and is often called
the ”condensate wave function”. It characterizes the off-diagonal long range order
present in the one particle density matrix [81].

lim
|x′−x|→∞

〈Φ̂†(x′)Φ̂(x)〉 = ϕ∗(x′)ϕ(x). (4.2)

Strictly speaking, neither the concept of broken symmetry, nor the one of off-
diagonal long range order can be applied to finite size systems with well defined
number of particles. However the condensate wave function can still be determined
by diagonalization of the one particle density matrix. The eigenstate with larger
eigenvalue corresponds to ϕ(x).
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If we use the approximation (4.1) in the many-body Hamiltonian (3.1) we get
a classical Hamiltonian given by:

H =
∫

dxϕ†(x)
(
− ~

2

2m
∇2 + Vlat(x)

)
ϕ(x) + (V (x)− µ)ϕ†(x)ϕ(x) (4.3)

+
1
2

4πas~2

m

∫
dxϕ†(x)ϕ†(x)ϕ(x)ϕ(x),

The time dependent equations of motion for the condensate wave function can be
obtained from the variational principle by minimizing the quantity i~ ∂

∂t − Ĥ. The
minimization yields

i~
∂ϕ(x)

∂t
=

(
− ~

2

2m
∇2 + Vlat(x) + V (x) +

4πas~2

m
|ϕ(x)|2

)
ϕ(x) (4.4)

This equation is known as the Gross-Pitaevskii equation (GPE). It was derived by
independently by Gross and Pitaevskii [10].

If the chemical potential is small compared to the vibrational level spacing
and the lattice depth is deep enough that a tight binding picture is valid, the
condensate order parameter can be expanded in a Wannier basis keeping only the
lowest band orbitals:

ϕ(x, t) =
∑

n

zn(t)w0(x− xn). (4.5)

Using this ansatz in Eq. (4.4), the Gross-Pitaevskii equation reduces to the
discrete nonlinear Schroedinger equation (DNLSE), where the zn amplitudes sat-
isfy:

i~
∂zn

∂t
= −J

∑
<n,m>

zm + (Vn + UN |zn|2)zn, (4.6)

where < n,m > restricts the sum over nearest neighbors, the parameters J and U
are the ones defined in Eq. (3.5) and (3.6) and N is the total number of particles.
The normalization condition for the amplitudes is given by:

∑
n

|zn|2 = 1. (4.7)

Notice the DNLSE can also be derived by assuming the field operators present in
the Bose-Hubbard Hamiltonian to be c-numbers,i.e. ân = zn(t). This assumption
leads to a tight-binding classical Hamiltonian, which can be minimized using the
variational principle.

H = −J
∑

<n,m>

z∗nzm +
∑

n

(
Vn|zn|2 +

U

2
|zn|4

)
. (4.8)
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The DNLSE is similar to its linear counterpart, the DSE or tight-binding
Schrödinger equation (see 2.21), but with an extra cubic term, which takes into
account mean field interaction effects. To see the modification that the nonlinear
term introduces in the dispersion relation, we consider a one dimensional optical
lattice with M sites and periodic boundary conditions.

In the translational invariant case with no other external potential present,
Vn = 0, the solutions of the DNLSE that are similar to those of the noninteracting
case are, zn =

√
no exp(−inq) exp (−iEqt/~), with no = N/M the condensate

density. Using this plane wave ansatz in the DNLSE we get a dispersion relation
given by:

Eq = −2J cos(qa) + Uno (4.9)

In the tight-binding approximation, mean field interactions do not modify the
shape of the lowest band: it has still a cosine dependence with bandwith equal to
4J . The only difference with respect to the single particle case is an energy shift
in the dispersion relation which takes into account the average mean field energy
Uno.

It is important to mention though, that outside the range of validity of a
tight-binding model, nonlinear effects does not necessarily change the dispersion
relation in a simple way, especially at the edge of the Brillouin zone. It has been
shown in the literature [82, 83] that if the chemical potential is bigger than the
gap vibrational excitation energy to higher bands, the lowest band becomes triple
valued near the Brilloiun zone edge and a loop appears at this point. This loop
reflects the existence of new solutions, which only exist when the tight-binding
approximation is not valid. These new solutions have a non zero velocity at the
edge of the Brillouin zone, as opposed to the linear case. The nonzero velocity
carried by the Bloch waves is a manifestation of the superfluidity of the system.
For free particles the flow is stopped completely by Bragg scattering from the
periodic potential, but if interactions are strong enough the superfluid flow can no
longer be stopped.

4.2 Dragging experiment

In this section we investigate an experiment done at NIST where a Bose-Einstein
condensate was prepared in a harmonic trap and adiabatically loaded into a one
dimensional optical lattice moving at constant velocity Ref. [37]. We first study the
dynamics in a translationally invariant lattice using a simple single particle picture,
and show how the center-of-mass motion of the condensate can be used as a probe
of the lattice band structure. Then we discuss the effects of the trapping potential
and interaction effects on the dynamics. When mean field effects are included,
they cause the effective mass of the Bloch state to depend on time, influencing
the condensate dynamics in the lattice. As a consequence, characteristic nonlinear
effects such as solitons, self focusing effects and dynamical stabilities might be
observed.
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4.2.1 Experiment

In the experiment, a condensate prepared in the ground state of a harmonic trap
is loaded in an optical lattice, which is moved at constant velocity. The loading
of the condensate in the optical lattice is done by turning on the lattice, linearly
in time, up to some maximum height. The important part of this turning on is
that it is done sufficiently slow to be adiabatic with respect to band excitations.
After the maximum is reached, at t = tr, the lattice depth is held constant for a
fixed period of time and the system is allowed to expand in the lattice. Finally at
t = tf the condensate density distribution along the lattice axis is imaged. The
temporal dependence of the optical lattice depth is shown in Fig. 4.1. In the figure,
experimental results obtained for the final condensate density for different lattice
depths are also shown. The general observation is that the deeper the lattice, the
greater the response of the condensate to the lattice motion. In this experiment,
the condensate has a very narrow momentum spread compared to the lattice recoil
momentum.

Figure 4.1: Condensate density in the x-direction at the observation time tf . Light
colors areas indicate regions of high condensate density. The dashed line indicates
the final location of a co-moving point with the optical lattice.
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4.2.2 Linear free particle model

In this section to a first approximation we are going to neglect interactions and
apply a single particle picture to understand the dynamics.

Because the momentum spread of the condensate is very narrow compared with
the lattice recoil momentum at t = 0, the initial wave function can be approximated
by a plane wave with zero momentum. This wave function, in the lattice frame,
which is moving with velocity vlatt with respect to the lab frame, has the form
ϕ(x′) = e−ikox′ , with vlatt = ~ko/m (we used primes to denote the coordinates
and wave functions in the moving frame). As t increases, the optical potential is
ramped up, the wave function evolves, but due to the fact that the Hamiltonian
is invariant under translation, the quasimomentum is conserved (at least in this
linear model with no other potential than the lattice) during the ramping time and
the average quasimomentum at the end of the loading should remain −ko. From
tr to tf the lattice depth is held constant. During this period of time the average
velocity of the atom, as seen in the lattice frame, is:

v =
1
~

dE
(n)
q

dq

∣∣∣
q=−ko

, (4.10)

with E
(n)
q the nth band Bloch-like atomic dispersion relation evaluated at the final

lattice depth. Transforming back to the lab frame, Eq. (4.10) implies that in the
lab frame, during tr to tf , the average velocity of the atoms is given by:

vatom =
~ko

m
+

1
~

dE
(n)
q

dq

∣∣∣
q=−ko

. (4.11)

Because x(tf ) is the observable of the experiment, we can calculate it as

δx = 〈x(tf )〉 − 〈x(tr)〉 ≈ vatom(tf − tr). (4.12)

Therefore, by measuring the average position of the atoms for a fixed tf − ti
the experiment measures the atom’s velocity, which is a determined by the band
structure of the lattice.

In Fig. 4.2 we plot the atom’s average velocity in the lab frame vs. the lattice
velocity. The velocity in Eq.(4.11) is calculated using the Bloch dispersion relation
for a three recoil lattice. The tight-binding results (dotted) are also shown. Even
though the tight-binding velocities do not exactly match the velocities calculated
using the Bloch dispersion relation, we can say that for a three recoil lattice the
tight-binding approximation is fair.

We emphasize the following points:

• Because the initial quasimomentum is determined by the lattice velocity,
vlat = ~ko/m, to move the lattice at different speeds corresponds to loading
the condensate at a different Bloch state. How much the atoms are dragged
depends on the derivative of the dispersion relation evaluated at the loaded
quasimonentum.
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Figure 4.2: Atom’s average velocity in the lab frame vs. lattice velocity. Line: re-
sults from the Bloch dispersion relation, dots: tight-binding approximation results.
vB = ~π/am.

• At zero lattice depth the dispersion relation is quadratic, 1
~

dE
(n)
q

dq

∣∣∣
q=−ko

=

~ko/m and therefore Eq. (4.11) predicts no dragging. As the lattice depth
increases the dispersion relation desviates more from free-particle behavior
and dragging ensues. This is consistent with the experimental results shown
in Fig. 4.1.

• For small lattice velocities (|koa| ¿ 1, a the lattice constant) the atoms are
almost stationary because then the dispersion relation is more free-particle
like. On the other hand, as ko approaches the k of the Brillouin zone edge,
ko = −qB, the atoms are dragged the most. At this point, as opposed to the
free free system, Bloch waves carry zero velocity, i.e dE

(n)
q /dq|q=−qB = 0.

4.2.3 Effect of the magnetic confinement

In the experiment a harmonic confinement was present in addition to the lattice
potential. To model the effect of the magnetic trap on the atoms dynamics we
used a semiclassical model (see chapter 2). The semiclassical model is a very good
approximation whenever it is unnecessary to specify the position of the atom on a
scale comparable with the spread of the wave packet. The validity of the semiclas-
sical model requires that the external potential varies slowly over the dimension of
the wave packet and ignores the possibility of inter band transitions. In the exper-
iment, the strength of the harmonic trap is less than one percent of the potential
depth and we expect the semiclassical model to be valid. Following this model,
in the lattice frame, the time evolution of the average position and wave vector of
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the atoms are given by Eq. (2.26):

ẋ = v(n)(q) =
1
~

dE
(n)
q

dq
, ~q̇ = −mω2(x + vlatt), (4.13)

with ω the magnetic trapping frequency. The initial conditions are k(0) = −ko
and x(0) = 0. We solved these equations of motion, using the analytic dispersion
relation for a sinusoidal lattice in terms of Mathieu functions. We used the pa-
rameters V0 = 3ER and 1/2mω2/ER = 0.000025. The results are shown in Fig.
4.3.
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Figure 4.3: Atom’s average velocity in the lab frame vs. lattice velocity in the
presence of a magnetic trap. vB = ~π/am.

We observe in the plot that when atoms are loaded in the first band, for a
range of lattice velocities below half the Brillouin velocity (vlatt . vB/2 with
vB = ~π/am), the motion of the atoms with and without trap is almost the same.
For larger velocities, as long as the atoms remain in the first band, trapped atoms
move faster than the un-trapped ones. However, if the lattice velocities exceeds
the Brillouin velocity, vB, the opposite behavior is observed and for an interval of
velocities, vB < vlatt . 3vB/2, trapped atoms slow down compared with the ones
in the homogeneous lattice.

This behavior can be understood as follows: Because of the trap, the atoms feel
a force opposite to the direction of motion. The force not only increases with time
but also with the lattice velocity (see Eq. (4.13)). The average quasimomentum of
the system evolves in the presence of the force, and if at time t = 0 the atoms are
loaded with quasimomentum q(0) = −ko, then at tf the final quasimomentum is
q(tf ) = −ko + ∆(ko, tf ). Here ∆(ko, tf ) is a negative quantity because the force is
a restoring force. Therefore, the final velocity of the atoms in the trap , is less or
greater than the velocity of the atoms without the external trap depending on the



38 Chapter 4 Mean field theory

sign of the effective mass (sign of the curvature of the dispersion relation) evaluated
at the final momentum. If the effective mass is positive, d2Eq

dq2 > 0, (0 < q < π/2a,
π/a < q < 3π/2a,...), the group velocity is an increasing function of q and the
velocity of the trapped atoms is less than the untrapped atoms’ velocity. On the
other hand, when the effective mass is negative,(π/2a < q < π/a,...), the group
velocity is a decreasing function of q and the trapped atoms speed up with respect
to the untrapped ones. The more pronounced difference between trapped and un-
trapped atom velocities observed in the second band with respect to the first one,
is not only because ∆ increases with the lattice velocity but also because of the
discontinuous change of the band structure when crossing the Brillouin zone edge.
Besides the sign difference in the curvature the second band has a larger band
width than the first one.

4.2.4 Interaction effects

To model the effect of the interatomic interactions on the dynamics we used the
tight-binding variational method proposed in Ref. ([84, 85]). In these reference
the authors assume a Gaussian profile wave packet

zn(t) = 4

√
2

γ2π
e[−(n−ξ)2/γ2+ik(n−ξ)+iδ(n−ξ)2/2], (4.14)

and used ξ, γ, k, δ as variational parameters. The equations of motion they found
are:

k̇ = −∂V

∂ξ
, (4.15)

ξ̇ = 2J sin(k)e−η, (4.16)

δ̇ = 2J cos(k)e−η

(
4
γ4
− δ2

)
+

2NU√
πγ3

− 4
γ

∂V

∂γ
, (4.17)

γ̇ = 2J cos(k)e−ηγδ, (4.18)

with η =
(

1
2γ2 − δ2γ2

8

)
, V =

√
2/γ2π

∫
dxV (x) exp[−2(x − ξ)2/γ2] and the time

scaled as t → tEr/~. Notice that the variable k is just the average quasimomentum
of the wave packet. We can also associate an inverse effective mass given by
m∗−1 = 2J cos(k)e−η.

We numerically integrated the equations of motion assuming no other external
trapping potential besides the lattice, V = 0. In this case the Hamiltonian is
invariant under translations and we expect conservation of the quasimomentum.
This is seen in the above equations, because if V = 0 then dk/dt = 0. The
parameters were chosen according to the experiment: γ(0) = 10, δ(0) = 0 and
NU = 2ER. The bandwidth J , was found using Mathieu functions assuming a
3ER lattice. We plot Fig. 4.4 vatom vs vlatt evaluated at t = 50. The curve found
is plotted in

When mean field effects are included, the dynamics of the system becomes
very rich. Depending on the the initial quasimomentum and width of the packet,
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Figure 4.4: Velocity of the atoms predicted by the variational model in the case
when interactions are taken into account (dotted line). The single particle case is
shown in red. The parameters used were γ(0) = 10, δ(0) = 0 and NU = 2ER.

a variety of dynamical regimes can be observed. Physically, the different regimes
can be understood by realizing that the nonlinear term makes the effective mass
time dependent. The effective mass, m∗ = eη/(2J cos k), not only depends on the
initial quasimomentum but also on the width of the wave packet, and when the
nonlinearity is present η is no longer constant. The different dynamical behaviors
include effects such as self-trapping, diffusion, and for special cases solitons or
breathers [84].

The self-focusing is a genuine nonlinear effect, characterized by a diverging
effective mass. In particular the self-trapped wave packet cannot translate along
the array. The final value for γf , for a packet in the self-focusing regime predicted
by the variational model is,

γf =
UNγo

UN − 4J
√

πcos(k)γo
, (4.19)

With γo = γ(0) the initial width of the packet, which is assumed big compared to
one.

The diffusive regime, on the other hand, is characterized by the unbounded
growth of the width of the packet. This is the behavior expected in regular linear
quantum mechanics. The model predicts that the transition between the two
regimes occurs, again assuming γo À 1, at

(UN)c = 4J
√

πcos(k)γo |k| < π/2

(UN)c =
2J
√

π|cos(k)|
γo

|k| > π/2 (4.20)
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Using a potential depth of 3ER and γo = 10, the predicted dynamical phase
diagram as a function of UN vs vlat is shown in Fig. 4.5. It can be seen that for
UN = 2ER, the self-focusing regime is expected for lattice velocities greater than
vlat = 0.4vB. At vlat = 0.5vB the noninteracting effective mass becomes negative.
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Diffusion Self -Focusing

Figure 4.5: Phase diagram UN vs vlatt for Vo = 3Er and γo = 10.

Consistently, in Fig. 4.4 we see that for lattice velocities approximately greater
than vlat = 0.4vB, the velocity of the interacting system becomes greater than the
noninteracting one, and approximately at vlat = 0.7vB the velocity of the atoms is
just the velocity of the lattice so, the atoms stop moving in the lattice frame. This
regime is a self-trapping regime and nonlinear effects tend to localize the atoms
in the lattice frame. On the other hand, for vlatt . 0.4vB the dynamics of the
system is similar to the non interacting case. To appreciate the different behaviors
exhibited by the system below and above vB/2 we plot in Figs. 4.6 and 4.7, the
evolution of the wave packet, for two different initial velocities. For vlatt = −0.7vB

the wave packet localizes, whereas for vlatt = −0.15vB the wave packet diffuses.

4.3 Dynamics of a period-three pattern-loaded Bose-
Einstein condensate in an optical lattice

In this section we discuss the dynamics of a Bose-Einstein condensate initially
loaded into every third site of a one dimensional optical lattice, motivated by
the recent experimental realization of this system by the NIST group [33]. A
condensate loaded in this way is not an eigenstate of the final period-a lattice, and
the condensate will continue to evolve in the final system. Outside the strongly



4.3 Dynamics of a period-three pattern-loaded Bose-Einstein
condensate in an optical lattice 41

-30 0 30
n

0

0.5

1

Èz
nH

tL
È2

t=30

-30 0 30
n

0
0.5

1
1.5

Èz
nH

tL
È2

t=40

-30 0 30
n

0
0.5

1
1.5

2

Èz
nH

tL
È2

t=50

-30 0 30
n

0

0.5
Èz

nH
tL
È2

t=0

-30 0 30
n

0

0.5

Èz
nH

tL
È2

t=10

-30 0 30
n

0

0.5

Èz
nH

tL
È2

t=20

Figure 4.6: Localization of the wave packet in the self-focusing regime vlatt =
−0.7vB. Notice the change in the vertical scale in the last row
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Figure 4.7: Evolution of the wave packet in the diffusive regime vlatt = −0.15vB.

correlated regime, the GPE equation is expected to give a good description of
the condensate dynamics. In our system we assume the lattice is sufficiently deep
that a tight-binding description is applicable, and the DNLSE is valid. For the
periodic initial condition of equal wavefunction amplitude at every third site and
zero at all others, symmetry arguments can be used to reduce the wavefunction
evolution to a two mode problem (analogous to a double well system with an energy
offset) for which an analytic solution of the dynamics can be given. We show
that for large ratios of the interatomic interaction strength to tunneling energy
the condensate evolves with self-maintained population imbalance, whereby the
condensate population tends to remain localized in the initially occupied lattice
sites. A similar phenomenon has been studied in double-well systems [87, 88, 89,
90, 91]. We show that the momentum distribution of an interacting condensate
changes in time in a manner which can be related to the spatial tunneling of
condensate, and would be a suitable experimental observable.
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Under the influence of an external force a Bloch state will exhibit Bloch oscil-
lations, as described in chapter 2. To illustrate how a linear potential affects the
motion of a pattern loaded condensate we find analytic solutions for the noninter-
acting case with periodic initial conditions and show how the dynamics for this
system can be interpreted in terms of the interference of three Bloch states of the
lowest band undergoing Bloch in unison. We present numerical results for more
general (non-periodic) initial conditions and consider characteristic properties of
the momentum distribution.

4.3.1 Experiment

Figure 4.8: Patterned loading experiment.

In the experiment, a combination of two independently controlled lattices was
used to load the condensate into every third site of a single lattice. Briefly the
procedure consists, as shown in Fig. 4.8, of loading a condensate into the ground
band of lattice with periodicity 3a, so that the condensate is well localized in the
potential minima of this lattice. A second lattice of periodicity a which is parallel
to the first lattice, is then ramped up so that the superimposed light potentials
form a super-lattice of period 3a. For the ideal case both lattice potentials are
inphase, and the addition of the second lattice will not shift the locations of the
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potential minima from those of the first lattice alone, and the condensate will
remain localized at these positions. Finally, by removing the first period-3a lattice
on a time scale long compared to band excitations, but short compared to the
characteristic time of transport within the lattice, the condensate will be left in
every third site of the period-a lattice.

4.3.2 Case of no external potential

The major interest of this section is in the tunneling properties of the condensate in
the lattice, and in the noninteracting case the time scale for tunneling is determined
by the hopping matrix element J . For this reason it is convenient to define a new
dimensionless scale of time τ = Jt/~, and dimensionless energy En = Vn/J and
coupling constant Λ = NU/J . In terms of these new variables the tight-binding
evolution equation (4.6) takes the form

i
∂zn

∂τ
= −(zn−1 + zn+1) + (En + Λ|zn|2)zn, (4.21)

• The case of periodic initial conditions: reduction to a two mode system

We treat first a model case in which no external potential is present, (En =
0), and in which the initial occupancies of each third site are the same, and in
which the condensate initially has a uniform phase. At τ = 0, the amplitudes
zn(τ) are given by

z3n(0) =
√

ρ, (4.22)
z3n+1(0) = z3n+2(0) = 0, (4.23)

where ρ = 3/M with M the total number of lattice sites. Nρ represents
the initial number of atoms per occupied site. This initial condition is ho-
mogeneous in the sense that each occupied site has the same amplitude and
phase along the length of the lattice. For an infinite lattice, or one with peri-
odic boundary conditions, the amplitudes for all initially occupied sites (z3n)
evolve identically in time, and the amplitudes for the initially unoccupied
sites satisfy z3n+1(τ) = z3n+2(τ) for all τ and all n. This allows us to reduce
the full set of equations (4.21) to a set of two coupled equations

i
∂z0

∂τ
= −2z1 + Λ|z0|2z0, (4.24)

i
∂z1

∂τ
= −(z1 + z0) + Λ|z1|2z1, (4.25)

where z3n ≡ z0 and z3n+1 = z3n+2 ≡ z1 for all n. The normalization condi-
tion is

|z0|2 + 2|z1|2 = ρ. (4.26)
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The Hamiltonian function, H, of this system is (from Eq. 4.8)

H =
J

ρ

(
− 2(z∗0z1 + z0z

∗
1)− 2|z1|2 +

Λ
2
|z0|4

+Λ|z1|4
)

(4.27)

=
JΛρ

2
.

By writing z0=ψ0
√

ρ and z1=ψ1

√
ρ/2, we can transform Eqs. (4.24)-(4.25)

to the form

i
∂

∂τ

(
ψ0

ψ1

)
=

(
γ|ψ0|2 −√2
−√2 γ |ψ1|2√

2
− 1

)(
ψ0

ψ1

)
, (4.28)

where γ = Λρ is the ratio of on-site repulsion to tunneling energies, and the
normalization condition (4.26) is now |ψ0|2 + |ψ1|2 = 1. The factor of

√
2

difference in the definition of ψ0 and ψ1 arises because ψ1 represents the am-
plitude of the two initially unoccupied sites. With this factor incorporated,
the matrix appearing in Eq. (4.28) is explicitly Hermitian. We note that
this equation of motion is identical to that for a condensate in a double well
trap in the two mode approximation [92, 93].

We note in passing that a similar reduction, to a system of [m/2] + 1 equa-
tions, exists for lattice systems that are loaded such that only every m-th
site is initially occupied.

• Solution of the equations of motion

It is convenient to write the lattice site amplitudes appearing in Eqs. (4.24)
and (4.25) as z0=feiθ0

√
ρ and z1= geiθ1

√
ρ, where f, g, and θ are real. By

introducing the phase difference φ = θ0 − θ1, Eqs. (4.24), (4.25) and (4.27)
can be recast as

.
f = 2g sinφ, (4.29)
.
g = −f sinφ, (4.30)
γ

2
= −4fg cosφ +

γ

2
(
f4 + 2g4

)− 2g2, (4.31)

The analytic solutions of Eqs. (4.29)-(4.31), found using a procedure similar
to that presented by Raghavan et al. [87], can be expressed in terms of
Weierstrassian elliptic functions ℘(τ ; g2, g3) [69]. The analytic solutions are

f(τ) =

√
1− 24

12℘(τ ; g2, g3) + (9 + 2γ + γ2)
, (4.32)

g(τ) =

√
1− f(t)2

2
, (4.33)
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where the parameters g2 and g3 are given by

g2 =
(
81− 14γ2 + 4γ3 + γ4

)
/12, (4.34)

g3 =
(
729 + 243γ2 − 46γ3 − 15γ4 + γ6

)
/216. (4.35)

The solutions f(τ) and g(τ) are oscillatory functions whose amplitudes and
common period, T (γ), are determined by the parameter γ (see Figs. 4.9
and 4.10). It is useful to qualitatively divide this behavior into two regimes,
separated by γ = 2. Analysis of Eqs. (4.29) - (4.31) shows that f(τ0) = g(τ0)
for some value of τ0 when γ ≤ 2, and for γ > 2, f(τ) > g(τ) for all τ .

Tunneling dominated regime

For γ . 2, we find that the oscillation period is essentially constant (see Fig.
(4.9).

γ (J)

T
 (

h
/J
)

Figure 4.9: Oscillation period (in units of ~/J) as a function of the interaction
strength γ.

In this case the role of interactions is relatively small, and the behavior can be
approximately understood by taking γ = 0, in which case the matrix of Eq.
(4.28) is constant in time. The equations of motion in this case are equivalent
to those of a two-state Rabi problem [94], where the two levels are coupled
by a Rabi frequency of strength

√
2, which is detuned from resonance by

−1. This system will undergo Rabi oscillations whereby atoms periodically
tunnel from the initially occupied site into the two neighboring sites. Because
the coupling is detuned from resonance the transfer of populations between
wells is incomplete, with |ψ1|2 attaining a maximum value of 8/9. The Rabi
model predicts that the cycling frequency between the levels is equal to the
difference between the eigenvalues of the matrix of matrix of Eq. (4.28),
which gives the period of oscillation as TRabi = 2π/3 in units of ~/J (see Fig.
4.9).

Interaction dominated regime
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The effect of interactions on the mean-field dynamics is to cause the energies
of the initially occupied sites to shift relative to those of the unoccupied sites.
As γ increases and this energy shift increases relative to the strength of cou-
pling between sites, the tunneling between sites occurs at a higher frequency,
but with reduced amplitude. The population of the initially occupied sites
becomes self trapped by the purely repulsive pair interaction, which in the
context of a double well system has been called “macroscopic quantum self
trapping” [93]. This is demonstrated quantitatively in Fig. 4.10 where we
plot the minimum value of f2 occurring during the oscillation as a function
of γ. In contrast to the tunneling dominated regime, where tunneling peri-
odically populates all sites equally, the condensate tends to be localized on
the initially occupied sites in the interaction-dominated regime.

( 
 )

γ (J)

Figure 4.10: Minimum value of f2 during an oscillation period as a function of γ.
As γ increases the population imbalance between wells increases (see text).

• Momentum space dynamics

Typically the spacing between individual wells in an optical lattice is too
small to resolve the localized density distributions of atoms in neighboring
sites using standard imaging techniques.

The momentum distribution is a more convenient observable which approx-
imately corresponds to the expanded spatial distribution of the released
condensate. Here we calculate the momentum dynamics of the condensate
loaded into every third site of an optical lattice, and show how this relates
to the evolution of the spatial amplitudes given in Eqs. (4.32) and (4.33).

In the tight-binding approximation the condensate order parameter ϕ(x, τ)
(4.4) is expressed as a sum over the lattice sites . Because of the periodicity of
the system, the momentum space wavefunction, which we denote as ϕ̃(k, τ),
is expressible as the Fourier series

ϕ̃(k, τ) =
∑
m

zm(τ)e−ikamχ(k), (4.36)
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where
χ(k) =

1√
2π

∫ ∞

−∞
e−ikxw0(x)dx. (4.37)

To compute the momentum distribution, we invoke the identity
∑M−1

n=0 eikna =
Mδk,2πm/a, where M is the number of lattice sites, and m an integer. Since
there are only two independent amplitudes in the set {zm}, we find that

ϕ̃(k, τ) =
√

3/ρcm(τ)χmδk,qm/3,

χm = χ(qm/3), (4.38)

cm(τ) =
√

1
3ρ

(
z0 + z1e

−iqm/3 + z2e
−i2qm/3

)
,

where q is the reciprocal lattice vector q = 2π/a. The momentum distri-
bution of the system has very sharp peaks of relative amplitude |cm|2 at
momentum k = qm/3, arising from the 3-lattice site spatial periodicity of
the condensate wavefunction. In addition, χm describes a slowly varying en-
velope determined by the localization of the Wannier states at each lattice
site.

Using the analytic solutions for f and g, and Eq. (4.31), we obtain only two
independent Fourier amplitudes

|c3n(τ)|2 =
1
3

(
1 +

γ

4
(3f2 + 1)(f2 − 1)

)
, (4.39)

|c3n+1(τ)|2 =
1
3

(
1− γ

8
(3f2 + 1)(f2 − 1)

)
(4.40)

= |c3n+2(τ)|2. (4.41)

In the reduced zone scheme, where we only consider momenta in the range
k ∈ [−q/2, q/2], the momentum wavefunction then consists of three peaks
corresponding to Bloch states of quasimomenta 0,±q/3. The identical be-
havior of |c3n+1|2 and |c3n+2|2 means that the ±q/3 peaks always have the
same intensity. If interactions between the atoms are ignored (i.e. γ = 0),
the momentum components are constant in time (see Eqs. (4.39) and (4.40)),
even though tunneling occurs between the lattice sites. However, when in-
teractions are considered, the momentum intensities explicitly depend on the
occupations of each site and will vary in time when tunneling occurs. The
magnitude of the time variation of the |cn|2 is proportional to γ, but will
reduce for sufficiently large values of γ, where the self-trapping effect causes
the tunneling between lattice sites to stop (i.e. f2 ≈ 1 at all times). In Fig.
4.11 we show the maximum contrast between the intensity of the Fourier
peaks, defined as ∆max ≡ (|c1|2 − |c0|2)max, where the value is maximized
by evaluating the |cn|2 at the time when f takes its minimum value (we
note that f(τ) is given by Eq. (4.32)). We note that the maximum contrast
occurs for γ ≈ 3.9; in this case, the zero quasimomentum component c0(τ)
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vanishes once during each period of oscillation T (γ). For values of γ greater
than 3.9 the contrast between the intensities starts to decrease due to the
reduction in tunneling caused by the nonlinearity- induced self-trapping.
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Figure 4.11: Maximum contrast of the Fourier components as a function of γ. The
maximum contrast is defined as ∆max ≡ (|c1|2−|c0|2)max with the maximum value
occurring when f2 is at its minima.

• Application to an inhomogeneous condensate

Here we wish to consider the dynamics for an inhomogeneous condensate,
applicable to a condensate initially prepared in a harmonic trap. For the pat-
tern loaded condensate, we use inhomogeneous to refer to the overall spatial
envelope of the period three initial condition. The previous homogeneous
theory we have presented is expected to accurately describe inhomogeneous
cases when the initial pattern of population in every third site extends over
many lattice sites i.e. M À 1 so that mean-field energy associated with
each triplet of sites U(n) = Λ

2

∑3
i=1 |z3n+i|4 varies slowly across the system.

Taking a particular example we choose a Gaussian envelope to the periodic
arrangement of atoms into every third site, so that the initial state is

z3n+1(0) = z3n+2(0) = 0, (4.42)

z3n(0) = 3
[

2
πM2

]1/4

exp(−(9n/M)2). (4.43)

For the simulations shown here, the parameters used were N = 105, M = 76,
U = 2.11 × 10−5ER and J = 0.075 ER; these correspond to a condensate
of 105 atoms of 87Rb produced in a magnetic trap with axial and radial fre-
quencies of 9 and 12 Hz respectively, and loaded into a lattice with a depth of
4.5ER, with ER = 2.2kHz. These parameters are typical of the experimental
regime, but also lie in a range in which the homogeneous model is expected to
give a fair description. The total number of occupied wells and the strength
of the on site interatomic interaction were calculated by preserving the value
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of the chemical potential of the system upon reduction to one spatial dimen-
sion and by assuming that each of the localized orbitals in the tight-binding
description are Gaussian. The hopping rate J was estimated by using Math-
ieu functions. In Fig. 4.12 we show the evolution of the population of the
central wells (normalized to one) compared with the homogeneous model

with γ taken to be the local mean field energy γeff = Λ
√

2
π (9/M).

Fig. 4.12 shows the results of numerical integration of the equations of motion
and the approximate analytical solution given by the quasi-homogeneous
model described above. We see that the numerical and analytical results
agree well at short times, but differ more as time progresses due to the
different mean-field seen by different wells.

Figure 4.12: Comparison between the population evolution of the central three
wells for the inhomogeneous condensate and the homogeneous model. Inhomoge-
neous condensate: stars for the initially populated well and boxes for the initially
empty wells. Homogeneous model: dashed line represents the initially populated
wells, and the solid line represented the initially unpopulated wells. We used γeff

as the local mean field energy (see text). The parameters used for the simulation
were J = 0.075ER and γeff = 2.64.

To understand the disagreement as time evolves, we show in Fig. 4.13 the
numerical Fourier spectrum for the inhomogeneous case evaluated at several
different times. The variation of the intensities of the peaks, which, as shown
below, is related to the spatial tunneling between lattice sites in the presence
of the mean field, can be seen in the plot. Initially all occupied sites are in
phase and the three distinctive momentum peaks have a narrow width deter-
mined by the intrinsic momentum uncertainty of the condensate envelope.
That is the reason why the homogeneous model fits very well. However, as
time progresses the mean field variation across the lattice causes the tun-
neling rates to vary with position and leads to momentum peak broadening.
This effect eventually causes the homogeneous model to become an inaccu-
rate description of the inhomogeneous system.

We note that momentum space signature for spatially tunneling in the in-
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Figure 4.13: Momentum distribution of the inhomogeneous condensate evaluated
at various times for the same parameters as used in Fig.4.12.

teracting system is still present in the inhomogeneous case. This is shown in
Fig. 4.14, where we plot the evolution of the quantities |c3n(τ)|2, |c3n+1(τ)|2,
|c3n+2(τ)|2 (calculated from the numerical simulation by partitioning the
numerical Fourier spectrum in three equal non overlapping sections, each
centered around the respective peak and adding the square of the norm of
the Fourier components within each section) vs. the ones calculated with the
homogeneous model, but using an averaged value γave ≡ Λ

∑
n |zn|4 instead

of γ = Λρ. It can be observed that the predictions of the simple model are
in very good agreement with the numerical results when the three peaks of
the spectrum are well defined. For longer times, the width of the Fourier
peaks increases, until a point when they split. At this point the quantities
|c3n(τ)|2, |c3n+1(τ)|2, |c3n+2(τ)|2 are not meaningful anymore. Because the
parameters used for the numerical calculations were chosen to be experimen-
tally achievable, and as shown in the plots the model predictions are fair at
least for one period of oscillation, we conclude that the Fourier distribution
can be used as a signature of the mean-field quantum tunneling inhibition.
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Figure 4.14: Evolution of momentum peak populations. Upper curves: population
of the q = ±2π/3 momentum states. Lower curves: population of the q = 0
momentum state. Inhomogeneous condensate (dotted), homogeneous result (solid
line), where the comparison is made by replacing γ by an average mean field energy
γave ≡ Λ

∑
n |zn|4 = 1.85. Parameters are the same as in Fig. 4.12.

4.3.3 Dynamics with a constant external force

• Homogeneous three state model

In this section we consider the dynamics of a periodically loaded condensate
in the presence of a linear external potential, corresponding to a uniform force
parallel to the lattice. In what follows we assume that the force is sufficiently
weak that band excitations due to Landau-Zener tunneling are negligible, so
that a tight-binding picture of the lowest band is sufficient to describe the
dynamics. In this case the evolution equation differs from what we considered
in the previous section by the term En in Eq. (4.21) taking the form En =
nξ, where ξ is the potential difference between lattice sites (in units of the
hopping matrix element J). Taking the initial conditions (4.22)-(4.23), and
transforming the Wannier amplitudes as z3n+j(τ) = Ψ̃3n+j(τ)e−i3nξτ (j =
0, 1, 2), we obtain the evolution equations

i
∂Ψ̃3n

∂τ
= −(Ψ̃3n−1e

i3ξτ + Ψ̃3n+1)

+Λ|Ψ̃3n|2Ψ̃3n, (4.44)

i
∂Ψ̃3n+1

∂τ
= −(Ψ̃3n+2 + Ψ̃3n) + ξΨ̃3n+1

+Λ|Ψ̃3n+1|2Ψ̃3n+1, (4.45)

i
∂Ψ̃3n+2

∂τ
= −(Ψ̃3n+1 + Ψ̃3n+3e

−i3ξτ ) + 2ξΨ̃3n+1

+Λ|Ψ̃3n+1|2Ψ̃3n+1. (4.46)

Assuming periodic boundary conditions, the periodicity of the initial condi-
tions and equations of evolution allow considerable simplification from the
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full set of M coupled equations. In particular, these assumptions mean that
every third Wannier amplitude evolves identically (i.e. Ψ̃n = Ψ̃n+3) and so
the evolution of the system can hence be reduced to the three independent
equations

i
∂Ψ̃0

∂τ
= −(Ψ̃2e

i3ξτ + Ψ̃1) + Λ|Ψ̃0|2Ψ̃0, (4.47)

i
∂Ψ̃1

∂τ
= −(Ψ̃2 + Ψ̃0) + ξΨ̃1 + Λ|Ψ̃1|2Ψ̃1, (4.48)

i
∂Ψ̃2

∂τ
= −(Ψ̃1 + Ψ̃0e

−i3ξτ ) + 2ξΨ̃2

+Λ|Ψ̃2|2Ψ̃2, (4.49)

where the new amplitudes map onto the original set according to Ψ̃0 ↔
{Ψ̃3n}, Ψ̃1 ↔ {Ψ̃3n+1}, and Ψ̃2 ↔ {Ψ̃3n+2}, and obey the normalization
condition

2∑

j=0

|Ψ̃j |2 =
3
M

. (4.50)

The equations of motion (4.47)-(4.49) are more difficult to treat analytically
than the case considered in the last section due to the presence of a linear
potential. In this section we derive an analytic solution for a noninteracting
condensate (i.e. Λ=0), which provides valuable insight into the complicated
tunneling dynamics the system exhibits in the absence of nonlinearity, yet
should furnish a good description for dilute condensates satisfying γ ¿ 1.
For the nonlinear regime we present numerical results to illustrate the typical
behavior.

• Analytic solution for linear dynamics

Defining the vector x(t) = (Ψ̃0(τ), Ψ̃1(τ), Ψ̃2(τ)), and using the transforma-
tion y(τ) = P (τ)x(τ), where P (τ) is the unitary matrix

P (τ) =




1 1 1
e−iξτ e−i(ξτ− 2π

3
) e−i(ξτ+ 2π

3
)

e−i2ξτ e−i(2ξτ+ 2π
3

) e−i(2ξτ− 2π
3

)


 , (4.51)

the linear version of Eqs. (4.47)-(4.49) can be decoupled, directly yielding
the solutions

Ψ̃n(τ) =
e−inξτ

√
3M

(
e−i∆0(τ) + ei( 2nπ

3
−∆1(τ))

+e−i( 2nπ
3

+∆2(τ))
)
, (4.52)



4.3 Dynamics of a period-three pattern-loaded Bose-Einstein
condensate in an optical lattice 53

where we have defined the phase terms

∆n(τ) = −2
ξ

[
sin(ξτ − 2nπ

3
) + sin(

2nπ

3
)
]

, (4.53)

for n = 0, 1, 2.

These solutions for the spatial amplitudes Ψ̃i(τ) can be most easily under-
stood by considering a Bloch state decomposition of the condensate wave-
function. The nature of our system allows us to construct an analytic form
for the initial wavefunction. Because the system has a three lattice site period
and is assumed to be in the lowest band, the wavefunction can be expressed
as a superposition of three Bloch waves (of the lowest band) which are sym-
metrically spaced in quasimomentum. Assuming the condensate initially has
a total crystal momentum of zero, at this time the wavefunction must be of
the form

ϕ(x, 0) = α0φ0(x) + α+φq/3(x) + α−φ−q/3(x), (4.54)

where φk(x) is a Bloch state with quasimomentum k, and the α are complex
constants determined by the lattice depth, with |α+| = |α−|.
The action of an external force on a Bloch state causes it to linearly change
its quasimomentum in time according to

k(τ) = − ξ

a
τ + k(0). (4.55)

The periodicity of the Bloch dispersion relation in k, and hence of the group
velocity of the Bloch wave, gives rise to the well-known phenomenon of Bloch
oscillations (see chapter 2). For the case we are considering here, the system
consists of three Bloch states whose quasimomenta will translate in unison
under the action of the external force. During this evolution each state
accumulates phase at a rate determined by the instantaneous Bloch energy,
i.e.

∆n(τ) =
∫ τ

0
E(kn(s))ds, (4.56)

where kn(τ) = −ξτ/a+kn(0) is the quasimomentum of Bloch state n at time
t. In the tight-binding approximation the dispersion relation for the Bloch
states has the analytic form

E(k) = −2 cos(ka), (4.57)

for which ∆n(τ) can be evaluated, and yields the results given in Eqs. (4.53)).
The wavefunction evolution in the Bloch basis is

ϕ(x, τ) = α0φ− ξ
a
t
(x)e−i∆0(τ) + α+φ− ξ

a
t+ q

3
(x)e−i∆1(τ)

+α−φ− ξ
a
t− q

3
(x)e−i∆2(τ). (4.58)
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From this solution we can obtain solutions for the evolution of the spatial
amplitudes Eqs. (4.52). To do this we expand the Bloch states in terms of
Wannier functions according to, φk(x) =

∑
n eiknaw0(x−na) (see chapter 2)

and make use of Eq. (4.5). Note: we take all α = ρ
3 as determined by the

initial conditions, Eqs.(4.22) and (4.23).

Bloch Oscillations
The evolution of the spatial amplitudes, and in particular the population
in each well is then determined by the interference of the Bloch phases
∆n. These functions are all periodic in time with period τB = 2π/ξ (in
units of τ = tJ/~). This is the normal Bloch oscillation period, and
gives the time scale over which the quasimomenta of the Bloch states
increases by exactly one reciprocal lattice vector.

Small ξ solution - Non classical transport
To understand the dynamics, we first start by considering the case when
ξ is small. For this case, the population in the wells is given by

|Ψ̃0(τ)|2 =
1

3M

(
5 + 4 cos(3τ) + ξ2h(τ)

)
(4.59)

|Ψ̃1(τ)|2 =
1

3M

(
(2 + 3ξ)[1− cos(3τ)− ξ2

2
h(τ)]

)
(4.60)

|Ψ̃2(τ)|2 =
1

3M

(
(2− 3ξ)[1− cos(3τ)− ξ2

2
h(τ)]

)
(4.61)

where

h(τ) =
τ3

2
(6τ + 3τ cos(3τ)− 4 sin(3τ)) . (4.62)

The above solution shows that when the force is applied, the degeneracy
in the population of the wells represented by Ψ̃1 and Ψ̃2 is lifted. For
ξ > 0, atoms in Ψ̃0 start to tunnel to Ψ̃1 more rapidly than to Ψ̃2. This
should be compared with the results in the absence of the force, where
Ψ̃1 and Ψ̃2 behave identically. Thus, in this weak limit, the effect of a
linear potential is to enhance the tunneling from the initial populated
3n wells to their 3n + 1 neighbors ones, making the system closer to
resonance, in the sense of Eq. (4.28), where the resonance condition
results in the initially populated wells becoming empty at some later
time. It is interesting to note that the system exhibits ”nonclassical”
dynamics whereby the atoms start to tunnel in the direction opposite
the direction of the force (this statement applies even when the external
field is not weak).

Resonances
In Fig. 4.15 we show the temporal evolution of the spatial amplitudes Ψ̃i

for a range of values of ξ. For certain choices of ξ the initially occupied
Ψ̃0 amplitude periodically disappears - we refer to these as resonances.
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Figure 4.15: Evolution of the normalized population for different values of ξ. One
Bloch period is shown in the plots except ξ = 0 where the period is infinite. Solid
line: |Ψ̃3n|2, dotted line: |Ψ̃3n+1|2, dash-dot line: |Ψ̃3n+2|2. The ”nonclassical”
motion can be seen where the 3n+1-well populations initially increase more rapidly
that the populations of the 3n+2-wells. It can also be seen in the plots that
ξ = ξres

max/2 and ξ = ξres
max are resonant values.

By requiring Ψ̃0 = 0 in Eq. (4.52) we obtain the following conditions
on the phases for these resonances

∆1(τ)−∆0(τ) = ±
(π

3
+ 2πs

)
, (4.63)

∆2(τ)−∆1(τ) = ±
(π

3
+ 2πm

)
, (4.64)

where s and m are integers and the same sign choice on the right hand
side must be made for both equations. When these conditions are satis-
fied the population is not shared between the adjacent sites, but prefer-
entially tunnels to one of the neighbors. In particular, the +sign choice
in Eqs. (4.63) and (4.64) gives the phase condition for complete tunnel-
ing into Ψ̃1. Similarly the −sign case gives the condition for complete
tunneling into Ψ̃2. Solving for the values of ξ for which Eqs. (4.63) and
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Figure 4.16: The spectrum of values of external force, ordered in decreasing mag-
nitude, for which a population resonance occurs i.e. the values of ξ for which Ψ̃0

periodically disappears.

(4.64) hold, one obtains the spectrum

ξres
n=(s,m) = ±6

√
3

π

(1 + 3s)
(1 + 3s)2 + 3(s + 2m + 1)2

, (4.65)

which is shown in Fig. 4.16. For large |s| or |m| the resonant values of
ξ are close together, and become spaced further apart as the magnitude
of s decreases.
In the absence of an applied force (i.e. ξ = 0) the phase terms are
time-independent with ∆0 = −2, ∆1 = −1 and ∆2 = −1 so that the
resonance conditions can never be achieved. When the external force
is applied the phases oscillate at a rate that increases with ξ and an
amplitude that decreases with ξ. The largest value of ξ for which a res-
onance can be found is ξres

max ≡ 6
√

3/2π, since for values of ξ greater than
this the amplitudes of the phase oscillations ∆i are so small that they
cannot satisfy the condition for population resonance. In the regime
ξ > ξres

max, |Ψ̃0| exhibits only one (nonzero) minima per Bloch period
and the dynamics of the system is dominated by the Bloch oscillations.

Large Force Limit
For ξ > ξres

max the system exhibits a population imbalance as the Bloch
oscillation suppresses the ability of the system to tunnel between sites.
In the limit ξ À ξres

max the population in the wells is described by rapid,
small amplitude oscillations around its initial value,

|Ψ̃0(τ)|2 −→ 3
M

(
1− 8

ξ2
sin2

(
ξτ

2

))
, (4.66)

|Ψ̃1(τ)|2 −→ 12
M

1
ξ2

sin2

(
ξτ

2

)
, (4.67)

|Ψ̃2(τ)|2 −→ 12
M

1
ξ2

sin2

(
ξτ

2

)
. (4.68)
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The case of ξ = 3ξres
max depicted in Fig.4.15 shows an approach to this

behavior.

• Numerical results for the non-linear case

 (h/J)

 (h/J)

Figure 4.17: Effects of interactions on generalized Bloch oscillations for the pattern
loaded system. Evolution of |Ψ̃n|2 for various interaction strengths. Upper plot:
ξ = 2ξres

max. Lower plot: ξ = 2ξres
max/7.

Because of the difficulty of solving analytically the equations of motion the
nonlinear equations were solved numerically. Although the dynamics in this
situation is considerably more complicated than in the linear case, the reso-
nance picture still gives us useful guidance concerning the expected behavior.
In general, there exist critical values of ξ and Λ above which no resonances oc-
cur. Furthermore, nonlinearity tends to destroy the periodicity of the Bloch
oscillations that is present in the noninteracting case. For example, in Fig.
4.17, we see that for ξ = 2ξres

max, the introduction of interactions brings the
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system into resonance, but that for large interaction strength, nonresonant
behavior is restored. For ξ = 2ξres

max/7, on the other hand, the introduction
of interactions eventually draws the system out of resonance.

Concerning the momentum distribution, similarly to the untilted case, inter-
atomic interactions induce time variation of the momentum intensities. The
contrast between momentum components vanishes at Λ = 0. As Λ increases,
the contrast increases to a maximum value, then eventually decreases towards
zero when macroscopic imbalance is achieved, analogous to what is seen in
Fig. 4.11 for the untilted case. Because the external field together with the
nonlinearity breaks down the periodicity of time evolution, the dynamics of
the momentum distribution is quite complex.

To compare the predictions of the homogeneous model in the presence of a
linear external potential to a more realistic case, we again solved numerically
the discrete nonlinear Schrödinger equation for a condensate loaded into
every third lattice site but, instead of being homogeneous, initially with a
Gaussian profile. Very good agreement between the model and the numerical
results was found for short times and modest mean-field energies, if, as in the
untilted case, we use an effective mean field energy. In Figs. 4.18 and 4.19
we present a comparison between the evolution of the normalized population
at the central wells found numerically and the prediction of the model for the
parameters: NU = 4.8ER, M = 290, J = 0.075 ER and ξ = 2. For longer
times, the model predictions start to disagree with numerical simulation due
to the spread of the three Fourier peaks. We observe that the dynamics are
much more sensitive to inhomogeneous effects in the presence of an external
force, and for the more inhomogeneous initial state used in Figs. (4.12 -
4.14) (which extends over M = 76 sites), the inhomogeneous result much
more rapidly departs from the homogeneous prediction than the example
presented here.
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Figure 4.18: Comparison between the evolution of a inhomogeneous condensate
with the homogeneous result. Inhomogeneous condensate: |Ψ̃0|2 (boxes), |Ψ̃1|2
(stars), and |Ψ̃2|2 (diamonds). Homogeneous case: |Ψ̃3n|2 (dash-dot line), |Ψ̃3n+1|2
(solid line), and |Ψ̃3n+2|2 (dotted line), where we have taken γ as the local mean
field energy. The parameters used were J = 0.075ER, ξ = 2 and γeff = 1.59

Figure 4.19: Evolution of the momentum peak populations. q = 0 (dashed line,
squares), q = −2π/3 (dash-dot line, stars), q = 2π/3 (solid line, diamonds). Inho-
mogeneous condensate (dotted curves), homogeneous model (lines) using the same
parameters as those in Fig. 4.18, but replacing γ by an average value γave = 1.11
for the homogeneous model.
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Chapter 5

Quadratic approximations

As discussed in chapter 3, the Bose-Hubbard Hamiltonian is an appropriate model,
when the loading process produces atoms in the lowest vibrational state of each
well, with a chemical potential smaller than the energy gap to the first vibrationally
excited state. The quartic form of the Hamiltonian makes it very difficult to deal
with it in all the different regimes. The aim of this chapter is to rewrite it so that
a systematic approach can be developed in the weakly interacting regime, when
a condensate is present. The basic idea, which was first proposed by Bogoliubov
in 1947 [11], is to treat the field operator as a c-number plus a fluctuating term.
The c-number describes the condensate or the coherent part of the matter field.
In the weakly interacting regime, quantum fluctuations are small, and therefore
the dominant terms in the Hamiltonian are quadratic in the fluctuating field. The
non-quadratic terms should be of higher order and can be treated perturbatively.

In this chapter, we apply the Bogoliubov approximation to the Bose- Hub-
bard Hamiltonian and derive the correspondent Bogoliubov-de Genes(BdG) equa-
tions as developed in Refs. [77, 95]. We also deal with the higher order terms
by considering different approximations. Among them we discuss the Hartree-
Fock-Bogoliubov (HFB) approximation, the HFB-Popov approximation and the
improved Popov approximation where the bare potential is upgraded to the many-
body scattering matrix. All of these approximate approaches are valid only in
the weakly interacting regime when quantum fluctuations are small. They will
fail to give a good description as interactions become important and the system
approaches the Mott insulator transition. To test the validity of the approxima-
tions we compared them with numerical solutions obtained by diagonalizing the
Bose-Hubbard Hamiltonian.

In this chapter we also derive an explicit expression for the superfluid density
based on the rigidity of the system under phase variations. We show how the
superfluid fraction can be thought of as a natural order parameter to describe the
superfluid to Mott insulator transition.

Because we are interested in the quantum effects caused by interactions that
drive the quantum phase transition instead of thermal quantum fluctuations, the
analysis in the present chapter is going to be restricted to the zero temperature
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case.

5.1 The characteristic Hamiltonian

In the very weakly interacting regime, to a good approximation, the creation and
annihilation operators on each site can be replaced by a c-number(see chapter
4). To include the small quantum fluctuations in the description of the system
we assume that the field operator can be written in terms of a c-number plus a
fluctuation operator:

ân = zn + ϕ̂n. (5.1)

Replacing this expression for ân in the Bose-Hubbard Hamiltonian Eq. (3.4)
leads to :

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (5.2)

with

H0 = −J
∑

<n,m>

z∗nzm +
∑
n

[
(Vn − µ)|zn|2 +

U

2
|zn|4

]
, (5.3)

Ĥ1 = −J
∑

<n,m>

ϕ̂nz∗m +
∑

n

(
Vn − µ + U |zn|2

)
z∗nϕ̂n + h.c., (5.4)

Ĥ2 = −J
∑

<n,m>

ϕ̂†nϕ̂m +
∑

n

(Vn − µ)ϕ̂†nϕ̂n +

U

2

∑
n

(
ϕ̂2†

n z2
n + ϕ̂2

nz2∗
n + (ϕ̂†nϕ̂n + ϕ̂nϕ̂†n)|zn|2

)
, (5.5)

Ĥ3 = U
∑

n

ϕ̂†nϕ̂†nϕ̂nzn + h.c., (5.6)

Ĥ4 =
U

2

∑
n

ϕ̂†nϕ̂†nϕ̂nϕ̂n. (5.7)

Where < n,m > restricts the sum over m to nearest neighbors and h.c. stands
for the hermitian conjugate. The terms of the Hamiltonian have been grouped
in equations according to the number of non condensate operators which they
contain.

5.2 Bogoliubov-de Gennes (BdG) equations

In this section we neglect higher order terms and focus only on the quadratic
Hamiltonian. The first step in the diagonalization is the minimization of the energy
functional H0 . This requires the condensate amplitudes zn to be a stationary
solution of the DNLSE (4.6), which in turn means that the linear Hamiltonian Ĥ1

vanishes. For the time independent situation the DNLSE can be written as

µzn = −J
∑

<m,n>

zm + (Vn + U |zn|2)zn (5.8)
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The Hamiltonian H0 gives a description which includes only the contribution from
the condensate. The quadratic Hamiltonian H2 allows the leading order effects of
the non condensate to be taken into account. By including second order terms in
the Hamiltonian two classes of interactions are included besides the condensate-
condensate ones: a) Interactions between one excited atom and one condensate
atom leading to transitions of the form |0j〉 → |0i〉 (direct and exchange excita-
tions)and b) interactions between two condensate atoms which cause the atoms to
be excited to non condensate states |00〉 → |ij〉 (pair excitations). Schematically
they are shown in fig.5.1.

Figure 5.1: Scattering processes included in the quadratic hamiltonian: a) Direct
and exchange excitations, b) Pair excitations

The quadratic Hamiltonian can be diagonalized by finding a basis of so-called
quasiparticle states which do not interact which each other. Mathematically this
involves a linear canonical transformation of the single-particle creation and annihi-
lation operators â†n and ân into quasiparticle operators α̂†s, α̂s. The transformation
is known as Bogoliubov transformation and is given by

ϕ̂n =
∑

s6=0

(
us

nα̂s − v∗sn α̂†s
)

. (5.9)

In general the spectrum of fluctuations includes a zero mode. This mode is the
Goldstone boson associated with the breaking of global phase invariance by the
condensate. The zero mode is essentially non perturbative and it introduces an
artificial infrared divergence in low dimensional models. For this reason quadratic
approximations are actually improved if the contribution from this mode is ne-
glected all together [96]. A different way to deal with the zero mode has been
proposed by Castin and Dum [98], Gardiner [97] and Morgan [16]. Here the the-
ory is written in terms of operators which exchange particles between zero and
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nonzero modes, conserving the total particle number, and one further operator
which changes total particle number. As shown by [16] both the latter and the
former approaches lead to the same physical predictions, so for simplicity we are
going to ignore zero mode fluctuations and restrict the fluctuation operators to act
only on the excited states.

The Bogoliubov transformation Eq. (5.9) is required to be canonical, which
means that it preserves the commutation relations and leads to bosonic quasipar-
ticles. To satisfy this, the amplitudes {us

n, vs
n} are constrained by the conditions:

∑
n

(
u∗sn us′

n − v∗sn vs′
n

)
= δss′, (5.10)

∑
n

(
us

nvs′
n − v∗sn u∗s′n

)
= 0. (5.11)

The necessary and sufficient conditions that the quasiparticle amplitudes have to
fulfill to diagonalize the Hamiltonian are provided by the so called Bogoliubov-de
Gennes (BdG) equations

( L M
M∗ L

)(
us

vs

)
= ωB

s

(
us

−vs

)
+ cs

(
z
−z∗

)
, (5.12)

with us = (us
1, u

s
2, ...) , vs = (vs

1, v
s
2, ...) and z = (z1, z2, ...). The matrices L and

M are given by

Lnm = −J
∑

<n,l>

δnlδlm + δnm(2U |zn|2 + Vn − µ) (5.13)

Mnm = −Uz2
i δnm. (5.14)

with δnl the Kronecker delta which is one if n = l and zero otherwise. The param-
eters cs ensure that the solutions with ωB

s 6= 0 are orthogonal to the condensate
[16]. These parameters are given by

cs = U

∑
n |zn|2(z∗nus

n − znvs
n)∑

n |zn|2 (5.15)

The BdG equations without the cs parameters have the same quasiparticle energies
as Eq.(5.12), nevertheless the solutions are orthogonal to the condensate only in
the general sense, i.e.

∑
n(z∗nus

n − znvs
n) = 0. Each of the terms,

∑
n z∗nus

nand∑
n znvs

n are not necessarily zero. To obtain the desired orthogonal modes one
way to proceed is to solve the BdG equations setting the cs to zero and then
to remove from the solutions their projection onto the condensate. If the BdG
equations are satisfied, the quadratic Hamiltonian takes the form

Ĥ2 =
∑

s 6=0

[
ωB

s α̂†sα̂s +
1
2

(
ωB

s − Lss

)]
. (5.16)
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If the Hamiltonian Ĥ2, is positive definite, which is the case when the condensate
amplitudes correspond to a stable state of the system, the eigenvalues of the system
are real. The solutions ωB

s come in pairs with positive and negative energies, if
ωB

s is a solution for the amplitudes (us,vs) then −ωB
s is also a solution for the

amplitudes (vs∗,us∗). There is always a solution with ωB
s = 0 and in this case the

amplitudes must be proportional to the condensate (v0,u0) ∝ (z, z). We explicitly
exclude the zero mode solution to guarantee that the excitations are orthogonal
to the condensate.

To have a complete description of the quadratic Hamiltonian, we define the one
body density fluctuation matrix, ρnm and the anomalous average matrix, mnm as:

ρnm = 〈â†nâm〉 − 〈â†n〉〈âm〉 = 〈ϕ̂†nϕ̂m〉, (5.17)
mnm = 〈ânâm〉 − 〈ân〉〈âm〉 = 〈ϕ̂nϕ̂m〉. (5.18)

The averages denotes an ordinary quantum expectation value. At zero tempera-
ture, the average is over the ground quasiparticle state given by α̂s|0〉 = 0 and the
ρnm and mnm can be written in terms of quasiparticle amplitudes as:

ρnm =
∑

s6=0

vs∗
n vs

m, (5.19)

mnm = −
∑

s6=0

us
nvs∗

m . (5.20)

Physically, the quantity ρnn represents the non -condensate population (or deple-
tion) at position n or depletion at position n. If the average number of atoms is
N , the depletion and condensate atoms are related by the equation:

N =
∑

n

〈
â†nân

〉
=

∑
n

(|zn|2 + ρnn

)
. (5.21)

The interpretation to the physical meaning of the anomalous term is postponed to
section 5.7.2.

5.3 Higher order terms

In the preceding section we described the diagonalization of the Hamiltonian con-
taining only terms up to quadratic order in the field operators. We now want
to go beyond this approximation and consider the corrections introduced by the
cubic and quartic terms. Taking into account higher order terms we are mainly
introducing many-body effects on the scattering.
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5.3.1 Hartree-Fock-Bogoliubov equations

Third and quartic terms in the Hamiltonian can be included by treating them
in a self-consistent mean field approximation, which relies upon the factorization
approximation: products of many operators are approximated by paring the oper-
ators in all possible ways and replacing these pairs by their expectation value [15].
Using the factorization approximation, one can reduce third and quartic products
of fluctuation field operators to:

ϕ†nϕnϕn → 2ρnnϕn + 2mnnϕ†n, (5.22)
ϕ†nϕ†nϕnϕn → 4ρnnϕ†nϕn + mnnϕ†nϕ†n + m∗

nnϕnϕn − (2ρ2
nn + |mnn|2).(5.23)

Eq.(5.23) is justified by Wick’s theorem [51], which gives 〈ϕ†nϕ†nϕnϕn〉 = 2ρ2
nn +

|mnn|2, while Eq.(5.22) is justified by analogy [16].
Therefore, using Eq.(5.23) and Eq.(5.22) in Ĥ3 and Ĥ4 ( Eqs. (5.6) and (5.7)) one
can reduce them to quadratic forms in terms of the functions ρnm and mnm. The
c-number term in Eq.(5.23) introduces also a energy shift in H0 :

∆Ĥ0 =
U

2
(2ρ2

nn + |mnn|2) (5.24)

Ĥ3 = U
∑

n

(2ρnnϕ̂n + mnnϕ̂†n)zn + h.c., (5.25)

Ĥ4 =
U

2

∑
n

(2ρnnϕ̂†nϕ̂n + mnnϕ̂nϕ̂n) + h.c.. (5.26)

The corrections from higher order terms yield a modified quadratic Hamiltonian
which can be also diagonalized. The diagonalization leads to the following equa-
tions

µHFBzn = −J
∑

<m,n>

zm + (Vn + U |zn|2 + 2Uρnn + Umnn)zn, (5.27)

( LHFB MHFB

M∗HFB L∗HFB

)(
us

vs

)
= ωHFB

s

(
us

−vs

)
+

(
cHFB−
s z

−cHFB+

s z∗

)
, (5.28)

LHFB
nm = −J

∑

<n,l>

δnlδlm + δnm(2U |zn|2 + Vn − µHFB + 2Uρnn), (5.29)

MHFB
nm = −(Uz2

i + Umnn)δnm, (5.30)

cHFB∓
s =

U
∑

n |zn|2(z∗nus
n − znvs

n)∓ U
∑

n (m∗
nnznus

n −mnnz∗nvs
n)∑

n |zn|2 .(5.31)

The parameters cHFB∓
s are there again to enforce the orthogonality of the quasi-

particle modes with the condensate [16].
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The above set of equations (5.27) to (5.30) are known as Hartree-Fock-Bogoliubov
(HFB) equations. Even though they take into account higher order corrections,
they have the problem that violate the Hugenholtz and Pines theorem [99] which
states that the energy spectrum of a Bose gas is gapless, i.e, there exists an exci-
tation with an energy which tends to zero as the momentum tends to zero.

5.3.2 HFB-Popov approximation

One way to solve the gap problem is to set the anomalous term m̃nn to zero
in HFB equations. This procedure is known as HFB-Popov approximation. The
HFB-Popov equations were first introduced by Popov [52], and they are considered
to be a better approximation than the HFB equations because they yield a gapless
spectrum.

The HFB-Popov equations have the form:

µP zn = −J
∑

<m,n>

zm + (Vn + U |zn|2 + 2Uρnn)zn, (5.32)

( LP MP

M∗P L∗P
)(

us

vs

)
= ωP

s

(
us

−vs

)
+ cs

(
z
−z∗

)
, (5.33)

LP
nm = −J

∑

<n,l>

δnlδlm + δnm(2U |zn|2 + Vn − µP + 2Uρnn), (5.34)

MP
nm = −(Uz2

i )δnm, (5.35)

cs = U

∑
n |zn|2(z∗nus

n − znvs
n)∑

n |zn|2 . (5.36)

5.4 The Bose-Hubbard model and superfluidity

The concept of superfluidity is closely related to the existence of a condensate in the
interacting many-body system. Formally, the one-body density matrix ρ(1) (~x, ~x′)
has to have exactly one macroscopic eigenvalue which defines the number of par-
ticles in the condensate; the corresponding eigenvector describes the condensate
wave function φ0 (~x) = eiΘ(~x) |φ0 (~x)|. A spatially varying condensate phase, Θ (~x),
is associated with a velocity field for the condensate by

~v0 (~x) =
~
m

~∇Θ(~x) . (5.37)

This irrotational velocity field is identified with the velocity of the superfluid flow,
~vs (~x) ≡ ~v0 (~x) ([100],[101]) and enables us to derive an expression for the superfluid
fraction, fs. Consider a system with a finite linear dimension, L, in the ~e1–direction
and a ground–state energy, E0, calculated with periodic boundary conditions. Now
we impose a linear phase variation, Θ (~x) = θx1/L with a total twist angle θ over
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the length of the system in the ~e1–direction. The resulting ground–state energy,
Eθ will depend on the phase twist. For very small twist angles, θ ¿ π, the energy
difference, Eθ − E0, can be attributed to the kinetic energy, Ts, of the superflow
generated by the phase gradient. Thus,

Eθ −E0 = Ts =
1
2
mNfs~v

2
s , (5.38)

where m is the mass of a single particle and N is the total number of particles so
that mNfs is the total mass of the superfluid component. Replacing the superfluid
velocity, ~vs with the phase gradient according to Eq. (5.37) leads to a fundamental
relation for the superfluid fraction.

fs =
2m

~2

L2

N

Eθ −E0

θ2
=

1
N

Eθ −E0

J (∆θ)2
. (5.39)

where the second equality applies to a one dimensional lattice system on which a
linear phase variation has been imposed. Here the distance between sites is a, the
phase variation over this distance is ∆θ, and the number of sites is M . In this
case, J ≡ ~2/(2ma2).

Technically the phase variation can be imposed through so-called twisted bound-
ary conditions [102]. In the context of the discrete Bose-Hubbard model it is,
however, more convenient to map the phase variation by means of a unitary trans-
formation onto the Hamiltonian [103]. For simplicity we are going to focus in a
one dimensional lattice. The resulting “twisted” Hamiltonian in this case

Ĥθ =
M∑

n=1

n̂nVn − J
M∑

n=1

(e−i∆θâ†n+1ân + ei∆θâ†nân+1) +
U

2

M∑

n=1

n̂n(n̂n − 1) . (5.40)

exhibits additional phase factors e±i∆θ — the so-called Peierls phase factors — in
the hopping term [104, 105]. These phase factors show that the twist is equivalent
to the imposition of an acceleration on the lattice for a finite time. It is interest-
ing to note that the present experiments enable us to make a specific connection
between the formal and operational aspects of the system.

We calculate the change in energy Eθ−E0 under the assumption that the phase
change ∆θ is small so that we can write:

e−i∆θ ' 1− i∆θ − 1
2
(∆θ)2 . (5.41)

Using this expansion the twisted Hamiltonian (5.40) takes the following form:

Ĥθ ' Ĥ0 + ∆θĴ − 1
2
(∆θ)2T̂ = Ĥ0 + Ĥpert , (5.42)

where we retain terms up to second order in ∆θ. The current operator Ĵ (Note that
the physical current is given by this expression multiplied by 1

~) and the hopping
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operator T̂ are given by:

Ĵ = iJ
M∑

n=1

(â†n+1ân − â†nân+1) (5.43)

T̂ = −J
M∑

n=1

(â†n+1ân + â†nân+1) . (5.44)

The change in the energy Eθ − E0 due to the imposed phase twist can now be
evaluated in second order perturbation theory

Eθ −E0 = ∆E(1) + ∆E(2) . (5.45)

The first order contribution to the energy change is proportional to the expectation
value of the hopping operator

∆E(1) = 〈Ψ0|Ĥpert|Ψ0〉 = −1
2
(∆θ)2〈Ψ0|T̂ |Ψ0〉 . (5.46)

Here |Ψ0〉 is the ground state of the original Bose-Hubbard Hamiltonian (4.27).
The second order term is related to the matrix elements of the current operator
involving the excited states |Ψν〉 (ν = 1, 2, ...) of the original Hamiltonian

∆E(2) = −
∑

ν 6=0

|〈Ψν |Ĥpert|Ψ0〉|2
Eν − E0

= −(∆θ)2
∑

ν 6=0

|〈Ψν |Ĵ |Ψ0〉|2
Eν − E0

. (5.47)

Thus we obtain for the energy change up to second order in ∆θ

Eθ −E0 = (∆θ)2
(
− 1

2
〈Ψ0|T̂ |Ψ0〉 −

∑

ν 6=0

|〈Ψν |Ĵ |Ψ0〉|2
Eν −E0

)
= M(∆θ)2D,

D ≡ 1
M

(
− 1

2
〈Ψ0|T̂ |Ψ0〉 −

∑

ν 6=0

|〈Ψν |Ĵ |Ψ0〉|2
Eν − E0

)
. (5.48)

The quantity D, defined above, is formally equivalent to the Drude weight used
to specify the DC conductivity of charged fermionic systems [106]. The superfluid
fraction is then given by the contribution of both the first and second order term:

fs = f (1)
s − f (2)

s ,

f (1)
s ≡ − 1

2NJ

(
〈Ψ0|T̂ |Ψ0〉

)
, (5.49)

f (2)
s ≡ 1

NJ

( ∑

ν 6=0

|〈Ψν |Ĵ |Ψ0〉|2
Eν −E0

)
.

Here N is the number of atoms in the lattice. In general both the first and the
second order term contribute. For a translationally invariant lattice the second
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term vanishes (as is going to be shown latter) if one uses a quadratic approximation.
However, in exact calculations the second order term plays a role.

We can further understand this approach to the superfluid density by calcu-
lating the flow that is produced by the application of the phase twist. To do this
we work out the expectation value of the current operator expressed in terms of
the twisted variables:

Ĵθ = iJ
M∑

n=1

(e−i∆θâ†n+1ân − ei∆θâ†nân+1) . (5.50)

We expand this to find the lowest order contributions, i.e.:

Ĵθ ' Ĵ + J∆θ
M∑

n=1

(â†n+1ân + â†mân+1) = Ĵ − T̂∆θ . (5.51)

We use first order perturbation theory on the wave function to obtain the following
expression:

〈Ψ(∆θ)|Ĵθ|Ψ(∆θ)〉 = 2∆θ
(
− 1

2
〈Ψ0|T̂ |Ψ0〉 −

∑

ν 6=0

|〈Ψν |Ĵ |Ψ0〉|2
Eν − E0

)
(5.52)

= 2NJfs∆θ. (5.53)

Thus, the physical current, Js, Eq. (5.53) multiplied by 1
~ , can be expressed as:

Js =
1
~
〈Ψ(∆θ)|Ĵθ|Ψ(∆θ)〉 = Nfs∆θ

~
m∗a2

. (5.54)

This is the total flux, js, and we need to divide by M to get the flux density, i.e.

js =
1
~M

〈Ψ(∆θ)| Ĵθ |Ψ(∆θ)〉 =
(
~∆θ

m∗a

)(
Nfs

aM

)

= vsns . (5.55)

So we see that the Drude formulation of the superfluid fraction (5.49) gives an
intuitively satisfying expression for the amount of flowing superfluid.

5.5 Expectation values

Using the quadratic approximations we can evaluate expectation values of mean-
ingful physical quantities. Useful quantities as the system approach the Mott
insulator state are the number fluctuations and the quasimomentum distribution.

The number fluctuations at the site xi are given in the Bogoliubov approxima-
tion by

∆nn =
√
〈â†nânâ†nân〉 − 〈â†nân〉

2

= |zn|2
∑

s

|us
n − vs∗

n |2. (5.56)
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The quasimomentum distribution of the atoms released from the lattice is im-
portant because it is one of the most easily accessible quantities in the experiments.
The quasimomentum distribution function nq is defined as [103]

nq =
1
M

∑
n,m

eiq·(xn−xm)〈a†nam〉

=
1
M




∣∣∣∣∣
∑

n

zneiq·xn

∣∣∣∣∣
2

+
∑
n,m

ρnmeiq·(xn−xm)


 , (5.57)

where the quasimomentum q can assume discrete values which are integer multiples
of 2π

aiMi
, where ai and Mi are the lattice spacing and number of lattice sites in the

i direction and M =
∏

i Mi is the total number of lattice sites.
Neglecting interaction effects during the expansion, the quasimomentum dis-

tribution represents the Fourier transform of the original spatial distribution in
the lattice. In the superfluid regime because of the phase coherence of the system,
when it is released from the lattice the gas shows a nice interference pattern. As
the interactions are increased phase coherence is lost, and instead of interference
peaks a incoherent background is observed.

For a one dimensional optical lattice, the superfluid fraction in terms of quasi-
particles amplitudes and energies can be written as:

fs = f (1)
s − f (2)

s , (5.58)

f (1)
s =

M∑

n=1

f (1)
sn =

1
2N

M∑

n=1

[
(zn+1z

∗
n + z∗n+1zn) +

∑
s

(vs
nvs∗

n+1 + vs∗
n vs

n+1)
]
, (5.59)

f (2)
s =

J

N

(∑
s

∣∣ ∑
n

(
us

n + vs
n

)
(zn+1 − zn−1)

∣∣2
ωs

)
+ (5.60)

J

N


∑

s,s′

∣∣ ∑
n

(
us

n+1v
s′
n − us

nvs′
n+1

)∣∣2
ωs + ωs′

+ δss′

∣∣∑
n(us

n+1v
s
n − us

nvs
n+1)

∣∣2
2ωs


 .

5.6 Applications

5.6.1 Translationally invariant lattice

To understand many-body effects included in the quadratic approximations we
start by studying the case where no external confinement is present, Vn = 0.
We assume a d dimensional separable square optical lattice with equal tunneling
matrix element J in all directions and periodic boundary conditions. M is the
total number of wells.

Due to the translational symmetry of the system the condensate amplitudes
are constant over the lattice, zn =

√
no. Also, the quasiparticle modes have a

plane wave character and therefore can be related to quasimomentum modes :

uq
n =

1√
M

eiq·xnuq, vq
n =

1√
M

eiq·xnuq. (5.61)
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Here the vector q denotes the quasimomentum whose components assume discrete
values which are integer multiples of 2π

a d√M
with a is the lattice spacing. The

amplitudes uq and uq must satisfy the condition |uq|2 − |vq|2 = 1 and can all be
chosen to be real and to depend only on the modulus of the wave vector (uq = u−q,
vq = v−q).
The translationally invariant case has the advantage that the quasi-particle modes
are always orthogonal to the condensate and therefore the parameters cs are always
zero.

• Bogoliubov-de Gennes (BdG) equations and HFB- Popov approximation

In the simplest quadratic approximation the DNLSE reduces to

µ = −tJ + noU, (5.62)

where t is the number of nearest neighbors t = 2d.

The BdG equations in the translationally invariant case become the following
2× 2 eigenvalue problem

( Lqq −Mq−q

Mq−q −Lqq

)(
uq

vq

)
= ωq

(
uq

vq

)
, (5.63)

with
Lqq = εq + noU, Mq−q = noU. (5.64)

Here we have introduced the definition εk = 4J
∑d

i=1 sin2(kia
2 ).

The quasiparticle energies ωq and modes are found by diagonalizing Eq.(5.64):

ω2
q = L2

qq −M2
q−q = εq

2 + 2Unoεq, (5.65)

u2
q =

Lqq + ωq

2ωq
=

εq + noU + ωq

2ωq
, (5.66)

v2
q =

Lqq − ωq

2ωq
=

εq + noU − ωq

2ωq
, (5.67)

uqvq = −Mq−q

2ωq
=

noU

2ωq
(5.68)

and
n = no +

1
M

∑

q6=0

v2
q, (5.69)

with n the total density, n = N/M . The constrain that fixes the number of
particles can be written as
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no = n− 1
M

∑

q6=0

(
εq + Uno

2ωq
− 1

2

)
. (5.70)

In the homogeneous case, due to the cancellation of the ρnn. terms in the
quasiparticle equations (5.34), the HFB-Popov approximation leads to the
same quasiparticle energy spectrum and amplitudes than the BdG equations.
The only difference is in the chemical potential which has an extra term
2Uρnn

µ(P ) = −tJ + Uno + 2Uρnn. (5.71)

As opposed to the free particle system, where the single particle energy
dominates at high momenta (it grows as q2), the single particle excitations
in the presence of the lattice are always bounded by 4Jd. Therefore, in the
regime Uno/J > 1 the interaction term dominates for all quasimomentum
and so ωq ∼

√
2Unoεq. On the other hand, in the weakly interacting regime,

the most important contribution to the depletion comes from the low-lying
modes. For these modes is also true that ωq ∼

√
2Unoεq. Thus, to a good

approximation the condensate fraction can be written as:

no ≈ g −
√

Uno

J
α, (5.72)

with

α = α(d,M) ≡ 1
M

∑

q6=0

√
J

2
√

2εq
, (5.73)

g =
{

n + M−1
2M Un/J & 1

n Un/J ¿ 1
. (5.74)

In Eq.(5.74) the term M−1
2M is a finite size effect term which is important to

keep for low density systems. α is a dimensionless quantity which depends
only on the dimensionality of the system. In the thermodynamics limit,
M →∞ the sum can be replaced by an integral and we find

α(1,∞) → 1
2
√

2π
ln(cot(qo))

∣∣∣
qo→0

, (5.75)

α(2,∞) = 0.227293, (5.76)
α(3,∞) = 0.160287. (5.77)

(5.78)
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The infrared divergence in the one dimensional thermodynamic limit is a
consequence of the importance of long wave length correlations in low di-
mensional systems. For finite one dimensional systems however α(1,M) has
a finite value.

Because Eqs.(5.65)-(5.66) are completely determined if no is known, by solv-
ing Eq.(5.72) we obtain all necessary information. The solution of the alge-
braic equation is:

no ≈ g +
α2U

2J
−

√
g
α2U

J
+

α4U2

4J2
. (5.79)

Eq.(5.79) tells us that for very weak interactions almost all the atoms are in
the condensate. As interaction increases the condensate fraction decreases,
but under the BdG (and HFB-Popov) approximation it only vanishes when
U/J → ∞. The BdG (and HFB-Popov) equations therefore do not predict
any superfluid to Mott insulator phase transition.

The calculated quasiparticle amplitudes can be used to get analytic expres-
sions for the number fluctuations, the momentum distribution and superfluid
fraction. If we restrict our attention to the one dimensional system we have

∆nn = no

∑
q

εq

ωq
−−−−→
M→∞

2
π

no arctan(
2J

noU
), (5.80)

nq = noδq,0 +
1
M
|vq|2δq,k, (5.81)

= noδq,0 +
1
M

(
εq + Uno

2ωk
− 1

2

)
δq,k, (5.82)

fs = f (1)
s − f (2)

s , (5.83)

f (1)
s =

M

N

[
no +

1
M

∑
q

|vq|2 cos(qa)
]
, (5.84)

f (2)
s = 0. (5.85)

Eq. (5.80) has been studied in Ref. [95] to produce results for squeezing.
There the authors show that Eq. (5.80) is consistent with those of other
approaches previously reported in the literature [107, 108, 109, 110].

It is important to emphasize that due to the translational invariance of the
lattice [see Eq. (5.60)], the second order term vanishes in the Bogoliubov
limit.

The expression for the superfluid fraction gives a direct insight into the be-
havior of the system as atoms are pushed out of the condensate due to
interactions. In Eq. (5.84) the sum involving the Bogoliubov amplitudes vq

characterizes the difference between the condensate fraction, which is given



5.6 Applications 75

by the first term, and the superfluid fraction. For weak interactions and small
depletion, the depletion of the condensate has initially little effect on super-
fluidity. As interactions are increased the depleted population spreads into
the central part of the band, (where the cos(qa) term has a negative sign)
and the superfluid fraction is reduced. Finally for even larger interaction
strengths, the population in the upper quarter of the band again produces
a positive contribution to the superflow and the contribution from the sum
decreases. In a sense the interactions are playing a role akin to Fermi exclu-
sion ”pressure” in the case of electron flow in a band. This, however can lead
to perfect filling and cancellation of the flow. In the case of our Bogoliubov
description we can only see reduction of the flow, not a perfect switching off
of the superfluid. This happens in the Mott insulator state, which cannot be
described by the Bogoliubov approximation.
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Figure 5.2: Comparisons of the exact solution and BdG (and HFB-Popov) solu-
tions as a function of Veff = U/J , for a system with M = 3 and filling factors
n = 5 and 5.33. Left: number fluctuations (Exact: solid line, BdG(and HFB-
Popov): dotted line), middle: condensate fraction (Exact: solid line, BdG(and
HFB-Popov): dotted line,analytic (5.79:red line ), right: superfluid fraction fs

(Exact: solid line, BdG(and HFB-Popov): dotted line). The exact second order
term (dashed line) of the superfluid fraction, f

(2)
s is also shown in these plots.

The vertical line shown in the plots is an estimation of V crit
eff when the system is

commensurate

In Figs. 5.2 and 5.3 we compare the number fluctuations per lattice site,
the condensate fraction and the total and second order superfluid fraction
determined from the exact solution of the Bose-Hubbard Hamiltonian to the
solution obtained from the BdG (and HFB-Popov) equations as a function
of the ratio Veff = U/J . The systems used for the comparisons are one
dimensional lattices with three wells, M = 3, and commensurate filling fac-
tors n = 5 and 5.33 and n = 50 and 50.33. We were restricted to consider
only three wells due to computational limitations. The size of the matrix
needed in the exact solution for N atoms and M wells scales as (N+M−1)!

N !(M−1)! .
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Figure 5.3: Comparisons of the exact solution and BdG(and HFB-Popov) solu-
tions as a function of Veff = U/J , for a system with M = 3 and filling factors
n = 50 and 50.33. Left: number fluctuations (Exact: solid line, BdG(and HFB-
Popov): dotted line), middle: condensate fraction (Exact: solid line, BdG(and
HFB-Popov): dotted line, analytic Eq.(5.79): red line ), right: superfluid fraction
fs (Exact: solid line, BdG(and HFB-Popov): dotted line). The exact second order
term (dashed line) of the superfluid fraction, f

(2)
s is also shown in these plots. In

this case the agreement is much better.

However, if the approximate approach works well for these small systems we
expect it to provide a good description of the larger systems prepared in the
laboratory.

Because the second order term of the superfluid fraction (second term of
Eq.(5.49) vanishes in the quadratic approximations (see Eq. (5.60)), we
only expect them to give a good description of the superfluid fraction in the
region where the second order term is extremely small, provided it predicts
accurately the first order term. This is exactly what is observed in the
plots. When the second order term starts to grow, typically above 0.5V crit

eff

( with V crit
eff = (U/J)c, see Eq.(3.9)), the BdG (and HFB-Popov) equations

starts to fail. An estimate of V crit
eff is shown by a vertical line in some of

the figures. With increasing filling factor the critical value is shifted towards
larger values of the interaction strength, and the region in which the BdG
(and HFB-Popov) equations are accurate gets larger. It is interesting to
note that the number fluctuations predicted by the theory are accurate in
a greater range than the other physical quantities shown. Its predictions
of squeezing agree very well with the exact solutions right up to the point
where the number fluctuations become less than unity.

In the plots for the condensate fraction we also show the analytic approxima-
tion given by Eq.(5.79). It can be observed that the analytic solution agrees
well with the numerical solution of the BdG( and HFB-Popov) equations.

For the cases with non-commensurate fillings the agreement is significantly
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better for all quantities. This is not surprising because when the filling is
not commensurate there is always a superfluid fraction present and the Mott
transition doesn’t occur. As can be seen in the plots for these cases the
second order term is always very small.

• HFB equantions

In the translationally invariant case the HFB Hamiltonian leads to the fol-
lowing equations:

( Lqq −Mq−q

Mq−q −Lqq

)(
uq

vq

)
= ωq

(
uq

vq

)
, (5.86)

with
Lqq = εq + noU − Um̃, Mq−q = noU + Um̃. (5.87)

The diagonalization of them yields

µ = −tJ + Uno + 2Uñ + Um̃, (5.88)

vq
2 = uq

2 − 1 =
Lqq − 2ωq

2ωq
=

εq + noU − Um̃− ωq

2ωq
, (5.89)

uqvq =
Mq−q

2ωq
=

noU + Um̃

2ωq
, (5.90)

ωq
2 = εq

2 + 2U(no + m̃)εq − 4U2nom̃, (5.91)

with

ñ ≡ 1
M

∑

q6=0

v2
q, (5.92)

m̃ ≡ − 1
M

∑

q 6=0

vquq. (5.93)

From the above equation it can be seen that the quasiparticle energies pre-
dicted under the HFB approximation don’t approach zero as q goes to zero.
As discussed in the previous section, the most important contribution to the
depletion of the condensate in the BdG equations comes from the low ly-
ing modes, because of the ωq

−1 dependence. The finite value of ωq has in
the HFB approximation as q goes to zero explains why the HFB equations
are always going to predict smaller condensate depletion than the gapless
approximation.

In Fig. 5.4 we compare the condensate fraction predicted by the HFB equa-
tions with the condensate fraction obtained from the BdG equations, for a
system with M = 3 and filling factor n = 10. It can be seen that the con-
densate fraction is always higher in the HFB solutions and remains constant
at higher values of U/J which is not physically correct.
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Figure 5.4: Comparisons of the condensate fraction given by the BdG solutions
and the HFB equations as a function of Veff = U/J , for a system with M = 3 and
filling factor n = 10.

5.6.2 One-dimensional harmonic trap plus lattice

In this section we consider the experimentally relevant case when there is an ex-
ternal harmonic magnetic confinement in addition to the lattice potential. For
simplicity we focus our attention on the one dimensional case. We consider the two
most relevant approximations which are the BdG equations and the HFB-Popov
approximation. Firstly we study the BdG equations in the weakly interacting
regime and get some insight on the solutions by deriving analytic results using
the so called Thomas-Fermi approximation [12]. Secondly we study the HFB-
Popov approximation and use it to explore the limits of validity of the quadratic
approximations as the interactions are increased.

• BdG equations

In the presence of the harmonic trap the BdG equations take the form:
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ωB
s us

n + cszn = −J(us
n+1 + us

n−1) + (2U |zn|2 − µ + Ωn2)us
n

−Uz2
nvs

n, (5.94)
−ωB

s vs
n − csz

∗
n = −J(vs

n+1 + vs
n−1) + (2U |zn|2 − µ + Ωn2)vs

n

−Uz∗2n us
n, (5.95)

µzn = −J(zn+1 + zn−1) + (U |zn|2 + Ωn2)zn, (5.96)

N =
∑
n

(|zn|2 + ñn), (5.97)

ñn =
∑

s

|vs
n|2, (5.98)

cs = U

∑
n |zn|2(z∗nus

n − znvs
n)∑

n |zn|2 . (5.99)

In the parameter regime where U/J ¿ 1, but the number of atoms is large

enough such that NU/Jaho À 1, where aho=
√

}
m∗ω∗ (See Eq. (2.39)) the

Bogoliubov approximation takes a rather simple analytic form. The effect
of increasing the ratio NU/Jaho is to push the atoms outwards, flattening
the central density and increasing the width of the condensate wavefunction.
The quantum pressure, which is proportional to the kinetic energy, takes a
significant contribution only near the edges of the wavefunction, and to a
good approximation it can be neglected. This is the so-called Thomas-Fermi
approximation (TF). This approximation has been very useful to derive an-
alytic expressions in magnetic confined condensates without the lattice and
proved to be in agreement with experimental measurements [12, 18, 19].

Under the Thomas-Fermi approximation one gets a condensate density profile
of the form of an inverted parabola which vanishes at the turning points
RTF =

√
µ/Ω:

|zn|2 =
{ µ−Ωn2

U n < RTF

0 n > RTF
(5.100)

The chemical potential is determined by fixing the total number of particles.
To first order it is possible to neglect the depletion of the condensate and
assume that

∑ |zn|2 = N . Changing the sum to an integral it can be solved
for µ to get

µ = ΩR2
TF ,

RTF ≈
(

3
4

NU

Ω

)1/3

. (5.101)
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To solve for the excitation spectrum we use the Thomas-Fermi condensate
amplitude, Eq.(5.100) into Eqs.(5.94)and (5.95) [18, 111] and use the param-
eter J as an expansion parameter in these equations. We define the variables
F q

n = uq
n + vq

n and Gs
n = us

n − vs
n. For simplicity we are going to set the con-

stants cs to zero and ignore the orthogonality constraint at the beginning.
We correct this at the end by removing from the modes their projection onto
the condensate. To first order in J we get the following set of equations:

2R2
TF Ω

(
1− n2

R2
TF

)
Gs

n = ωB
s F s

n, (5.102)

−J





F s
n+1 + F s

n−1 − F s
n




√
1− (n+1)2

R2
TF

+
√

1− (n−1)2

R2
TF√

1− n2

R2
TF








= ωB
s Gs

n. (5.103)

These two equations can be combined to get a simple equation of the form

{√
1− (n + 1)2

R2
TF

√
1− n2

R2
TF

(
F̃ s

n+1 − F̃ s
n

)
(5.104)

−
√

1− (n− 1)2

R2
TF

√
1− n2

R2
TF

(
F̃ s

n−1 − F̃ s
n

)}
= 2

(
ωB

s

ω∗

)2

F̃ s
n,

with F̃ s
n = F s

n/
√

1− n2

R2
TF

.

The above equation is just the discretized form of the Legendre equation,
∂
∂x

(
(1− x2) ∂

∂xPn

)
+ n(n + 1)Pn = 0. Therefore the solutions of Eq. (5.104)

are approximately given by :

ωB
s = ~ω∗

√
s(s + 1)

2
, (5.105)

F s
n =

√
ΩRTF (2s + 1)

ωB
s

√
1− n2

R2
TF

Ps

(
n

RTF

)
, (5.106)

Gs
n =

√
ωB

s (2s + 1)
4ΩR3

TF

1√
1− n2

R2
TF

Ps

(
n

RTF

)
. (5.107)

The larger the size of the condensate the closer are the approximate solutions,
Eq.(5.107), to the exact solutions of Eqs. (5.104).
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Finally, to make the solutions orthogonal to the condensate we have to re-
move their projection onto the condensate mode:

us
n → us

n − cszn/ωB
s , (5.108)

vs
n → vs

n − csz
∗
n/ωB

s . (5.109)

If we calculate the constants cs using Eq. (5.99), and orthogonality properties
of the Legendre polynomial we find that the only mode that needs to be
corrected is the quadrupole mode, s = 2:

cs =

√
4~ω∗R5Ω2

15U
δs,2. (5.110)

From Eqs. (5.110) it follows that the desired F and G amplitudes orthogonal
to the condensate are thus given by

F s
n → F s

n − 2cszn/ωB
s , (5.111)

Gs
n → Gs

n. (5.112)

Once solved for the quasiparticle amplitudes, it is possible to calculate the
depletion of the condensate, Ñ =

∑
n,s |vs

n|2. It is important to point out

that the term
(
1− n2

R2
TF

)−1/2
in the G amplitudes makes the sum divergent.

The divergence however is nonphysical and only indicates the failure of the
TF approximation near RTF . To perform the sum, we have to exclude the

contribution from the boundary layer of thickness d =
(

a4
ho

2RTF

)1/3
where the

TF approximation starts failing [111]. Finally, to fix the number of particles
to N it is necessary to renormalize the condensate wave function and the
chemical potential. This is done by renormalizing the Thomas Fermi radius
and replacing N by N − Ñ in Eq.(5.101).

In Fig. 5.5 we plot the condensate density profile found by numerically solv-
ing the BdG equations and compare it with the TF condensate solution.
The TF approximation reproduces the numerical solution very accurately
except at the edges where the kinetic energy can not be ignored with re-
spect to the potential energy. In the same plot we also show the condensate
depletion which is small for the chosen parameters. A small condensate de-
pletion guarantees the validity of the quadratic approximation to describe
the many-body system.

In Fig. 5.6 we show comparisons between the quasiparticle energies found
numerically, the TF quasiparticle and excitation spectra of the noninteract-
ing system (see Eq. (2.37)). It can be seen in the plot that only the lowest
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Figure 5.5: Comparisons of the condensate wave function found by numerically
solving the BdG equations with the Thomas-Fermi solution. The parameters used
were U/J = 0.2, Ω/J = 9.5 × 10−4 and N = 100. The depletion is also shown in
the plot.

lying modes are well described by the TF approximation. Higher excitation
energies are closer to the noninteracting ones. In the regime where Ω < J
and the system’s size is large enough that discretization effects, neglected
in Eqs. (5.105), are not important, the first quasiparticle excitation energy
coincide with the first noninteracting excitation energy . This first excita-
tion is known as the dipole mode and describes the oscillatory motion of the
center of mass when the system is displaced. The dipole quasiparticle am-
plitudes (us=1

n , vs=1
n ), calculated by numerically solving the BdG equations

are shown in Fig. 5.7. In the same graphic the quasiparticle amplitudes
for the s = 2, 3, 4 excitation modes are also depicted. The s = 2 mode is
known as the quadrupole mode and is related to the breathing of the conden-
sate when shaken. Higher order modes describe more complicated collective
excitations. In general, quasiparticle excitations other than the dipole are
affected by interactions and they have different energy than the noninter-
acting excitations. As shown in Fig. 5.6 TF quasiparticle energies lie below
their noninteracting conterparts.

To test the accuracy with which the TF approximation describes the quasi-
particle amplitudes, in Fig. 5.8 we compare the product F s

nGs
n as a function

of the lattice site n using the TF approximation results (Eqs. (5.112) and
(5.111)) to the product found by numerically solving the BdG equations.
We observe good agreement between the two solutions except near the TF
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Figure 5.6: Comparisons of the quasiparticle spectrum found by numerically solv-
ing the BdG equations(BdG) with the Thomas-Fermi solution (TF) and the nonin-
teracting energies (Free). The parameters used were U/J = 0.2, Ω/J = 9.5×10−4

and N = 100.

radius. This behavior is consistent with the fact that near the edge of the
atomic cloud, the kinetic energy becomes comparable to the potential energy
and therefore the TF approximation breaks down.

• HFB-Popov approximation

In the translationally invariant system, both the BdG and the HFB-Popov
approximations give the same quasiparticle amplitudes and energies. How-
ever, when the harmonic confinement is present this is no longer the case.
The HFB-Popov approximation shifts the quasiparticle energies depending
on the spatial variation of the non condensate density in the region of the con-
densate. In this section we investigate the limits of validity of the HFB-Popov
approximation as the parameter U/J is increased. We use the HFB-Popov
approximation instead of the BdG approximation because of the relevant
role of the noncondensate atoms into the condensate as the system is driven
to the Mott insulator transition.

In the presence of an harmonic confinement the HFB-Popov equations take
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Figure 5.7: Low-lying quasiparticle amplitudes found by numerically solving the
BdG equations. The parameters used were U/J = 0.2, Ω/J = 9.5 × 10−4 and
N = 100.

the form:

ωsu
s
n + cszn = −J(us

n+1 + us
n−1) + (2U(|zn|2 + ñn)− µ + Ωn2)us

n

−Uz2
nvs

n, (5.113)
−ωsv

s
n − csz

∗
n = −J(vs

n+1 + vs
n−1) + (2U(|zn|2 + ñn)− µ + Ωn2)vs

n

−Uz∗2n us
n, (5.114)

µzn = −J(zn+1 + zn−1) +
(
U(|zn|2 + 2ñn) + Ωn2

)
zn, (5.115)

ñn =
∑

s

|vs
n|2, (5.116)

N =
∑

n

(|zn|2 + ñn), (5.117)

cs = U

∑
n |zn|2(z∗nus

n − znvs
n)∑

n |zn|2 . (5.118)

The HFB-Popov are nonlinear equations and therefore it is more complicated
to get analytic approximations. Instead, we solved the HFB-Popov equations
numerically by an iterative procedure, similar to the one followed in Ref. [19].
Each cycle of the iteration consists of two steps. In the first step we solve
Eq. (5.115) subject to the constraint Eq. (5.117) by using the ñn obtained
in the previous cycle. This generates new values for the zn. In the second
step we solve for {us

n, vs
n} in Eqs. (5.113) using the ñn from the previous

cycle and the newly generated zn. The {us
n, vs

n} are used then to update ñn.
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Figure 5.8: Comparisons between the product F s
nGs

n calculated from the Thomas-
Fermi approximation and the exact numerical solution of the BdG equations. The
parameters used were U/J = 0.2, Ω/J = 9.5× 10−4 and N = 100.

Because the HFB-Popov is gapless, it is possible to keep the orthogonality
of the excitations to the condensate by solving Eqs. (5.113) with the cs set
to zero but removing in each cycle the projection of the calculated {us

n, vs
n}

amplitudes onto the condensate. Convergence is reached when the change in∑
n |ñn|2 from one cycle to the next is smaller than a specified tolerance.

The parameters chosen for the numerical calculations were Ω = 0.0015ER,
with ER the one photon recoil energy, which for the case of a rubidium
condensate corresponds to a trap frequency of approximately 90 Hz. We
used a total number of 1000 atoms, N = 1000, and set UN = 1.0ER. J
was varied to achieve a range of Veff = U/J between 0.01 and 312. The
range was chosen based on a local mean field approach [77], which for our
parameters estimates the transition region between Veff ≈ 640 (at the
center where the local filling factor is approximately 80) and Veff ≈ 12 (at
the wings).

The results of the numerical calculations are summarized in Figs. (5.9-5.13).
In Fig. 5.9 we plot the evolution of the density profile (black boxes), the con-
densate population (triangles) and the on-site depletion (empty diamonds)
as Veff is increased. In the plots we also show, for comparison purposes, the
ground state density profile for J = 0 (empty boxes). This has the advan-
tage that it can be calculated exactly from the Hamiltonian. In general we
observe the reduction of the condensate population and thus the increment
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Figure 5.9: Condensate density (triangles), total density (filled boxes) and local
depletion (empty diamonds) as a function of the lattice site i for different values
of Veff..The site indices i are chosen such that i = 0 corresponds to the center of
the trap. Although these quantities are defined only at the discrete lattice sites
we join them to help visualization. The empty boxes represent the exact solution
for the case J=0.

of the depletion with increasing interaction strength. When the system is in
the superfluid regime, most of the atoms are in the condensate, but as J is
decreased the depletion of the condensate becomes very important.

For the chosen parameters, the density profile has a parabolic shape reflecting
the confining potential. By comparing the evolution of the density as J is
decreased with the exact solution at J = 0, we can crudely estimate the
validity of the HFB-Popov calculations. The density evolves from a Gaussian
type (see plots for Veff = 0.01 and 0.09) with smooth edges towards a
Thomas-Fermi profile with sharp edges adjusting its shape to the J = 0
profile. We can appreciate that around Veff = 3 both profiles are almost
equal. For lower values of J the HFB-Popov density starts to differ from
the J = 0 limit, even though the system is closer to the J = 0 limit. We
can say that beyond this point higher order correlations, neglected by the
theory, begin to be important. The departure of the HFB-Popov density
profile from the J = 0 one as J is decreased begins at the edges (see the
panels corresponding to Veff = 11 and 100). This is expected if we consider
the on-site depletion. For such values of Veff the local depletion in the wings
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corresponds to a considerable percentage of the condensate populations, and
thus the validity of the HFB-Popov assumptions starts to be dubious. The
homogeneous results shown in the previous sections corroborate our present
statements for the confined system. For the smallest filling factor (see Fig.
5.2) the differences between the homogeneous HFB-Popov calculations and
the exact solutions become important for values of Veff greater than 20.
For higher values of Veff , see plot for Veff = 312, the HFB-Popov density
predictions differs from the J = 0 solution even at the central wells. At
this point the failure of the method is clear and a fully quantal method is
required.
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Figure 5.10: Quasiparticle spectrum predicted by the HFB-Popov theory for dif-
ferent values of Veff : Empty diamonds (Veff = 0.01), stars (Veff = 0.09), crosses
(Veff = 3), filled diamonds (Veff = 11), empty boxes (Veff = 100) and pentagons
(Veff = 312). The letter q labels the quasiparticle energies in increasing order.
The quasiparticle energies are in recoil units.

The HFB-Popov quasiparticle spectrum is shown in Fig. 5.10. It can be ob-
served how the lower energy eigenvalues evolve from a linear non degenerated
spectrum to an almost degenerated one as J is decreased. It is worth men-
tioning that the small energy difference between the ground and first excited
states for high values of Veff makes the numerical solution very unstable in
the sense that it is very easy to jump to an excited state when solving for the
condensate wave function. The decrement in the energy spacing predicted by
the HFB-Popov theory as the system approaches the transition is very useful
to keep in mind for the experimental realization of the Mott transition. As
the optical lattice depth is ramped up the adiabaticity criteria is harder to
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fulfill.
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Figure 5.11: Number fluctuations in the self consistent HFB-Popov approach as
a function of lattice site for Veff = 0.01 (boxes), Veff = 0.09 (crosses), Veff = 3
(circles),Veff = 11 (triangles), Veff = 100 (stars) and Veff = 312 (diamonds). The
maximum value reached by the profile decreases as Veff is increased. The empty
boxes shown for each of the curves correspond to the number fluctuations predicted
by the homogeneous HFB-Popov model using a local density approximation.

In Fig. 5.11 we plot the results for the number fluctuations found numerically
using the inhomogeneous HFB-Popov approach. The number fluctuations
profile reflects the condensate profile. We also show the number fluctua-
tions evaluated by using a local density approximation (empty boxes). The
latter was calculated by substituting in the number fluctuations expression
(Eq. (5.56)) the {uq, vq} amplitudes found for the homogeneous system (Eqs.
(5.66) and (5.67)), but replacing the condensate density in each lattice site
by the one found numerically for the trapped system (see Fig. 5.9). The
complete agreement between the two approaches justifies the validity of the
local density approximation for the estimations of local quantities in con-
fined systems. Based on this agreement and the results for the homogeneous
system shown in the previous section, we expect that the inhomogeneous
HFB-Popov results for squeezing also agree with the exact solutions right up
to the transition.

In Fig. 5.12 we present the quasimomentum distribution for the same param-
eters used in the previous plots. The distribution for the two lowest values
of Veff corresponds to the one that characterizes an uncorrelated superfluid
phase with a narrow peak at small quasimomenta. As the hopping rate is
decreased we observe that the sharpness of the central peak decreases and
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Figure 5.12: Quasimomentum distribution as a function of qa, a the lattice spacing,
q the quasimomentum, for different values of Veff .

the distribution extends towards large quasi-momenta. It is interesting to
note the appearance of a small peak between q = 0.5 and 1 which is most
noticeable for the Veff = 3 case. This agrees with numerical solutions of
the Bose-Hubbard Hamiltonian using Monte Carlo simulations [112]. We
attribute the origin of the small peak to the depletion of the condensate at
the wings. For the parameters when the small peak is present, the most
important contribution to the quasimomentum distribution still comes from
the condensate atoms. The step function like shape of the condensate profile
causes an oscillatory | sin(x)/x| shape of the quasimomentum distribution.
As the lattice depth is increased the hopping becomes energetically costly,
the long-range order starts to decrease and the Fourier spectrum becomes
broader.

In Fig. 5.13 we plot the first order on site superfluid fraction f
(1)
sn which was

defined in Eq.(5.60). The curves corresponding to Veff = 0.01 − 11, which
are in the regime where the HFB-Popov is expected to be valid, depict
how as Veff is increased the superfluid profile decreases faster at the wings
and at the center but no major change is observed in the middle section.
The evolution of the on-site superfluidity as the interaction strength is in-
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Figure 5.13: First order on-site superfluid fraction as a function of the lattice site i
for different values of Veff ..The site indices i are chosen such that i = 0 corresponds
to the center of the trap. Filled boxes: Veff . =0.01, empty boxes: Veff . = 0.09,
empty diamonds: Veff . = 3, stars: Veff . = 11, crosses: Veff . = 100 and triangles:
Veff . = 312.

creased, exhibiting a domain localized decrement instead of a global one, is
in agreement with the development of uncompressible regions surrounded
by superfluid rings predicted for trapped systems [79] as the transition is
approached.

The Mott transition is a quantum phase transition and as for all critical phe-
nomena, its behavior depends strongly on the dimensionality of the system.
In the present analysis, due to computational limitations, we considered one
dimensional systems. Experimentally, the Mott transition has been achieved
[46] in a 3 dimensional lattice with filling factors between 1 and 3. Even
though the HFB-Popov approach fails to describe the strong coupling regime
for the one dimensional systems we considered, we showed how the method
is incredibly powerful in describing most of its characteristic features as they
are driven from the superfluid regime towards the transition. We expect
the HFB-Popov method to give a better description of the transition as the
dimensionality of the system is increased and therefore to be a good model
in an experimental situation.

As shown in previous studies [44], [79] the Mott transition in a d-dimensional
homogeneous system has two different critical behaviors: one (d+1) XY- like,
for systems with fixed integer density as the interaction strength is changed,
and one mean field-like exhibited when the transition is induced by changing
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the density. Different from the homogeneous case where the Mott transition
is characterized by the global offset of the superfluidity, for confined systems,
commensuration is only well defined locally. The inhomogeneity introduced
by the confining potential allows the existence of extended Mott domains
(above a critical interaction strength) surrounded by superfluid ones [79],
thus the total superfluid fraction doesn’t vanishes in the Mott regime. This
issue, together with the fact that the finite length scale introduced by the trap
suppresses the long wave fluctuations which are responsible for destroying the
mean field [16]1, make us believe the critical behavior in confined systems to
be more mean-field like. Because the critical dimension for the latter type
of transition is two [44], [79], we expect that for trapped systems in d = 3,
the range of validity of the HFB-Popov extends closer to the transition.

5.7 Improved HFB-Popov approximation

The corrections to the quadratic Hamiltonian from higher order terms have essen-
tially two major effects. Firstly, they include the effect of the interactions between
condensate and noncondensate atoms on the behavior of the condensate. Secondly,
they take into account the effect of the surrounding atoms on the nature of the
interatomic collisions. We mentioned previously that although the HFB treatment
should represent an advance over the BdG theory it is not useful in practice be-
cause it is not gapless. In the first part of this section we show, how, by taking
into account the anomalous average m̃ (Eq. (5.18)) we actually upgrade the bare
interaction potential U to the many body scattering matrix which gives a better
description of interparticle collisions. The problem with the HFB equations is that
not all the interactions are upgraded and the diagonal elements still contain bare
interaction terms. The different treatment of the off diagonal and diagonal terms
is caused by the factorization approximation on which the HFB approximation is
based. The factorization is appropriate for the quartic term in the Hamiltonian
(as it is justified by Wick’s theorem [16]) but not for the cubic terms.

To solve the problem the first approximation that one might think of is to
upgrade by hand the bare interactions in the diagonal terms and replace them
by the many-body scattering matrix. This procedure is known as the improved
Popov approximation [53, 16]. In this section, we discuss the improved Popov
approximation and apply it to a translationally invariant system. We explicitly
show that the improved Popov approximation gives a better description of the
many-body physics as the Mott insulator transition is approached in comparison
with the regular HFB-Popov approximation.

1One obvious consequence of this is that BEC is possible in one and two dimensions in a trap
whereas in the homogeneous, thermodynamic limit it can not occur in fewer than three dimensions
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5.7.1 The two-body and many-body scattering matrices

The two-body scattering matrix, T2b, describes the scattering of two particles in
vacuum. It is defined as a function of a complex parameter z by the Lippmann-
Schwinger equation:[51]

T2b(z) = V + V
1

z − Ĥsp
T2b(z), (5.119)

Here V is the interatomic potential and Ĥsp is the single particle Hamiltonian.
Although T2b is defined for a general complex parameter z, this is physically in-
terpreted as the energy of the scattering process. Inserting a complete set of
eigenstates in Eq. (5.119) one obtains:

T2b(z) = V +
∑
pq

V |pq〉 1
z − (εp + εq)

〈pq|T2b(z), (5.120)

where εp and εq are single particle energies (eigenvalues of Ĥsp), and the kets |pq〉
are the corresponding two particle eigenstates and describe the intermediate states
in the collision of two atoms. A diagrammatic representation of T2b is shown in
Fig. 5.14. Because of the ladder shape of the diagrams included in the scattering
matrix, they are usually referred as ladder diagrams.

Figure 5.14: Diagrammatic representation of the two-body T2b scattering matrix.
In this figure |kl〉 designates the initial states, |ij〉 the final states and |np〉 a set
of intermediate states

T2b describes the interaction between two particles in vacuum. In the inter-
acting Bose system, binary collisions do not occur in vacuum but in the presence
of other atoms. To describe their influence on the scattering the concept of the
many-body scattering matrix is introduced. The many-body scattering matrix,
Tmb, plays the same role as its two-body counterpart, but describes scattering
occurring in many-body systems. For a bosonic gas there are two major effects
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which need to be accounted for as compared to scattering in vacuum. First of all,
the relevant states which enter in the matrix elements should be many-body states
rather than single particle ones. Second, Tmb should account for Bose enhance-
ment of a scattering process. Various forms for the Tmb have been been proposed
in the literature [16, 53, 54, 113] depending upon the approximations made. The
one that we are going to use is a simplest generalization of the two-body matrix
given by [16, 113]:

Tmb(z) = V +
∑
pq

V |pq〉 1 + np + nq

z − (ωp + ωq)
〈pq|Tmb(z), (5.121)

where z is again a complex parameter, ωp and ωq are quasiparticle energies, nq

and np are thermal quasiparticle occupation factors which vanish at T = 0, and
|pq〉 correspond to single-particle wave functions. The full quasiparticle character
of the intermediate states is not taken into account in this simple definition. A
more general many-body scattering matrix which includes the full quasiparticle
wave functions has been discussed by Bijlsma and Stoof [53]. However this simpler
Tmb matrix is the one that naturally appears in the many-body theory, at least at
lowest order.

At this point it is important to highlight that the zero energy of the many-body
scattering matrix is not the same as the zero energy in its two-body counterpart.
Because the two-body matrix is written in terms of single particle energies, in
this case the z is measured relative to the energy of a stationary particle. In the
many-body case Tmb is defined in terms of quasiparticle energies and therefore z
is measured with respect to the condensate chemical potential. In the dilute gas
limit, where the inter-particle distance is large compared with the s-wave scattering
length, the ladder diagrams included in the Tmb give the largest contribution to
the modification of the bare potential due to interactions.

5.7.2 The anomalous average and the many-body scattering ma-
trix

In this section we are going to follow [16, 53] to show how by including the anoma-
lous average the many-body scattering matrix is introduced into the theory. For
interpretation purposes we are going to restrict the analysis to the translationally
invariant system.

The anomalous average m̃ is defined in terms of the quasiparticle amplitudes
uq and vq according to Eq.(5.93). The product uqvq, on the other hand, is related
to the off diagonal matrix elements, see Eq.(5.90). If we combine the two equations
we get an expression for the off diagonal matrix element Mq−q given by

Mq−q

no
= U +

U

M

∑
p

1
−(ωp + ω−p)

Mq−q

no
. (5.122)

To make the connection with the many-body scattering matrix, let us take the
inner product of Eq. (5.121), with the states 〈q− q| and |00〉 and evaluate it at



94 Chapter 5 Quadratic approximations

z = 0. At zero temperature, the thermal occupation factors vanish, nq = 0 and we
get:

〈q− q|Tmb(0)|00〉 = 〈q− q|V |00〉+
∑

pk

〈q− q|V |pk〉 1
−(ωp + ωk)

〈pk|Tmb(0)|00〉.

(5.123)
The quantity 〈k1k2|V |k3k4〉 is the momentum representation of the two-body

interaction potential V . In the Bose-Hubbard Hamiltonian we assume a contact
potential with amplitude U which yields a potential in the momentum represen-
tation given by

〈k1k2|V |k3k4〉 =
U

M
δk1+k2,k3+k4 . (5.124)

Using Eq. (5.124) into (Eq. 5.123) we obtain

Tmb = U +
1
M

∑
p

U
1

−(ωp + ω−p)
Tmb, (5.125)

with

〈p− p|Tmb(0)|00〉 ≡ 1
M
Tmb. (5.126)

Eqs. (5.125) and (5.122) imply that Mq−q = noTmb, and therefore that by includ-
ing the anomalous average in the equations, the off diagonal matrix element given
by Uno in the BdG equations is upgraded to Tmbno in the HFB equations.

The many-body scattering matrix also appears in the DNLSE since Eq. (5.89)
contains m̃:

µ = −tJ + Uno + 2Uñ + Um̃ = −tJ + Tmbno + 2Uñ. (5.127)

Finally, to conclude this section we just rewrite the HFB equations in terms of
Tmb obtaining:

(
εq + no(2U − Tmb) −noTmb

noTmb −εq − no(2U − Tmb)

)(
uq

vq

)
= ωq

(
uq

vq

)
. (5.128)

This allow us to explicitly see the different treatment that the theory gives to the
diagonal and off diagonal terms: The bare potential is completely upgraded to
Tmb in the off diagonal terms but is not in the diagonal ones, and in the chemical
potential.
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5.7.3 Improved Popov approximation

The appearance of a gap in the HFB equations is because of the different treatment
of the off diagonal and diagonal terms. We will show in chapter 8 that as we
go beyond the quadratic approximation of the Hamiltonian and include higher
order corrections we start to incorporate the many-body scattering in the diagonal
terms. However, a naive way to correct for the gap problem in the HFB equations
is simple to upgrade by hand the interactions in the diagonal terms and replace
them by the many-body scattering matrix. This way to proceed is known as the
improved Popov approximation [16, 53]. The matrix we have to diagonalize under
the improved Popov approximation is:

(
εq + noTmb −noTmb

noTmb −(εq + noTmb)

)(
uq

vq

)
= ωq

(
uq

vq

)
(5.129)

µ = −tJ + Tmbno + 2T̃mbñ (5.130)

Eqs. (5.129) and (5.130) together with Eq. (5.125) and Eq. (5.69) form a closed
set of equations. They are exactly the same than the HFB-Popov equations if
U is replaced by Tmb. The reason why there are two different coupling constant
in the equation for the chemical potential Tmb and T̃mb, is because they describe
two different scattering processes. The second term in the right hand side of Eq.
(5.130) describes the scattering between two atoms in the condensate colliding at
zero momentum, 〈q− q|Tmb(0)|00〉, and that is why the coupling constant is Tmb

(see Eq. 5.126). On the other hand, the third term describes the collision between
one condensate atom and one atom out of the condensate and the coupling constant
in this case should be evaluated at different energy T̃mb ∝

∑
p〈p0|Tmb(ωp)|0p〉.

The extra difficulty that the improved Popov equations have compare with the
HFB-Popov equations is that Tmb depends on the quasiparticle energies and all
equations must be solved in a self consistent way. To get simple analytic expressions
we start by analyzing limiting regimes.

• Case noTmb > J

In this regime the quasiparticle energy can be approximated by ωq v
√

2noTmbεq.
Using this approximation in the expression for the many-body scattering ma-
trix we obtain

Tmb =
U

1 +
√

U2α2

noJTmb

, (5.131)

with α defined in Eq. (5.73). Solving the algebraic equation we get two
possible solutions

Tmb = U ± U2

2Jno

(
α2 +

√
α4 +

4Jnoα2

U

)
. (5.132)
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Because we want the root which increases as U increases we choose the
solution with positive sign.

• Case noTmb < J

In general one can show that the condition noTmb < J is only satisfied if the
quantity Tmb/J is small. This also implies that the parameter U/J must be
small. In this regime, therefore, we can perturbativelly expand Eq.( 5.131 )
in powers of U/J to get:

Tmb v U

(
1 + O

(
U

J

))
. (5.133)

The fact that Eq. (5.134) has the correct asymptotic behavior in the limit noTmb <
J (it approaches to U as U goes to zero) even though it was derived under the
assumption noTmb > J , allow us to extend the validity of Eq. (5.132) to all regimes.
Therefore, to a good approximation, we get a general formula for Tmb given by:

Tmb = U +
U2

2Jno

(
α2 +

√
α4 +

4Jnoα2

U

)
. (5.134)

We have checked numerically that in fact, Eq. (5.134) is a very good approximation
of Tmb in all regimes.
Having an analytic expression for Tmb, we can solve for the condensate density to
get:

no = n− 1
M

∑

q 6=0

εq + Uno

2ωq
+

1
2
,

≈ g − α

√
Tmb

J
no. (5.135)

In the above equation we used the same approximations that lead to Eq.(5.72),
which was explicitly showed to be good in Figs. 5.2 and 5.3 and the definition of
g given in Eq. (5.74).

If we solve Eq. (5.135), we finally obtain an analytic expression for no

no ≈ g − α

√
Ug

J
. (5.136)

Surprisingly, the expression for the condensate density that we get after including
the many-body scattering matrix is exactly the same, as the one we get if in the
BdG equations for the condensate, Eq. (5.72), we replace no by g in the right
hand side. Except for the term M−1

2M , this corresponds to the lowest order solution
we can get of Eq. (5.72), where instead of solving self consistently the algebraic
equation we replace no by n. The term M−1

2M is very small at high densities when
n + 1/2 ≈ n, regime where in fact we only expect a mean field treatment to be
valid and it might be interpreted as a finite size effect. Hereafter we are going
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to refer to the non self consistent solution of the BdG equations as the test field
approximation.

Finally, if we use the expression for the condensate density Eq. ( 5.136) in Eq.
(5.134), and assume again that n + 1/2 ≈ n, after some algebraic manipulations
the final result we get is

noTmb = Un. (5.137)

For us this a striking result. The net effect of including the many-body scat-
tering matrix in the theory reduces to replacing Uno in the BdG equations with
Un. This result is hard to understand because what it implies is that the lowest
order approximation beyond the simple DNLSE, is the one that reproduces the
best the exact solution as the interactions in the system are increased.
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Figure 5.15: Comparisons of the condensate fraction predicted from the exact
diagonalization of the BHH (red), the improved Popov approximation (yellow), the
BdG (and HFB-Popov) equations (blue) and the test field approximation (green)
as a function of Veff = U/J , for a system with M = 3 and filling factors n = 5
and 5.33.

To check the improvement that we get by including the many-body scattering
matrix in the theory, in Figs 5.15 and 5.16 we show comparisons of the condensate
fraction, fc = no/n, as a function of U/J calculated from the exact diagonalization
of the many-body Hamiltonian (red) with the improved Popov(yellow) and the
regular BdG (and HFB-Popov)(blue) approximations. We also plot the test field
approximation results (green). In the plots we used a one dimensional lattice with
M = 3 and densities n = 5 and n = 5.33 in Fig. 5.15 and n = 50 and n = 50.33
in Fig. 5.16.

It is clear in the plots that the improved Popov is a better approximation
than the regular BdG (and HFB-Popov) approximation. In particular in the non
commensurate, high density case the agreement between the improved Popov and
the exact solution is very good. It also can be seen in the plots how the improved
Popov reduces to the simple test field approximation. The small differences seen
in the low density case disappear as the density is increased. To corroborate the
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Figure 5.16: Comparisons of the condensate fraction predicted from the exact
diagonalization of the BHH (red), the improved Popov approximation (yellow), the
BdG (and HFB-Popov) equations (blue) and the test field approximation (green)
as a function of Veff = U/J , for a system with M = 3 and filling factors n = 50
and 50.33.

validity of Eq. (5.137), we plot in Fig. 5.17 Tmbfc, calculated from Eqs. (5.136)
and (5.134), vs U . The curves just overlap in the high density regime n = 50 and
in the low density case n = 5 the disagreement is very small.
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Figure 5.17: Comparisons between no/nTmb = fcTmb and U as a function of U for
a system with M = 3 and filling factors n = 5 and 50.

Phase Transition

One of the signatures of the entrance to the Mott insulator phase is a zero conden-
sate density. As we mentioned below, the BdG (and HFB-Popov) approximation
does not predict the Mott insulator transition because the condensate density only
vanishes in the limit when U/J → ∞. On the other hand, the improved Popov
approximation, does predict the existence of a critical value , V c

eff = (U/J)c, at
which the condensate density vanishes:
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V c
eff =

n + M−1
2M

α2
−−→
nÀ1

n

α2
. (5.138)

If we compare the above expression with the equation of the critical point calcu-
lated from a mean field model starting in the Mott insulator phase (see chapter 3)
given by, V c

eff = t
(
(2n + 1) +

(√
(2n + 1)2 − 1

))
, we see that in the high density

limit, the only regime where mean field theories are expected to be valid, both
equations describe a critical point which scales linear with n and with a propor-
tionality constant which depends only on the dimensionality of the system. In the
improved Popov approximation the proportionality constant is 1/α2, in the mean
field theory starting from the Mott phase it is 8t (remember t is the number of
nearest neighbors). For a one dimensional lattice in the thermodynamic limit the
improved Popov approximation has the infrared divergency problem, α →∞ and
the critical point approaches zero. However, this is consistent with the calculations
done in Ref. [44] where the authors showed using renormalization group techniques
that the upper critical dimension for the transition at constant integer density is
dc = 2.

Nevertheless, the phase transition predicted by the improved Popov approxi-
mation does not have a clear connection to the real Mott insulator phase transition.
A specific problem is the fact that the improved Popov approximation does not dis-
tinguish between commensurate and incommensurate fillings. This distinction is
crucial to reproduce the characteristic superfluid to Mott insulator phase diagram.
Furthermore, there is not clear signature that the system becomes incompress-
ible in the Mott phase, and no gap in the excitation spectrum opens up as the
transition is reached.

5.8 Conclusions

In summary, in this chapter we have developed quadratic approximations for de-
scribing the approach of a superfluid system towards the Mott insulator transition.
We have shown that this method can be used to predict the relevant physical quan-
tities over a useful range. However, the quadratic approximations are developed
assuming small fluctuations and therefore as soon as quantum correlations become
important it is clear that a fully quantal method is required.
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Chapter 6

The two particle irreducible
effective action (2PI) and the
closed time path (CTP)
formalism

In the last section we focused our attention on quadratic approximations of the
many body Hamiltonian and we used them to describe equilibrium properties of
ultra cold atoms loaded in optical lattices. In this chapter extend our analysis to
non equilibrium systems. The description of the evolution of condensates far from
equilibrium has gained considerable importance in matter-wave physics, motivated
by recent experimental achievements such as the colliding and collapsing conden-
sates [20, 21, 115, 114], collapses and revivals of the coherent matter field [47]
and the NIST patterned loading experiment described in chapter 4. To date most
theoretical descriptions of nonequilibrium dynamics of BEC’s have been based on
the time dependent Gross-Pitaevskii equation, coupled with extended kinetic theo-
ries that describe excitations in dilute weakly interacting systems close to thermal
equilibrium ([15],[58]-[62],[116]). However, experiments such as those mentioned
above have been able to achieve regimes where the standard mean field description
is inapplicable, so new methods are required.

To treat far-from-equilibrium dynamics, in this chapter we adopt a closed time
path (CTP) [56] functional-integral formalism together with a two-particle irre-
ducible (2PI) [57] effective action approach. We retain terms of up to second-order
in the interaction strength when solving these equations. This method has been
generalized for and applied to the establishment of a quantum kinetic field the-
ory [117, 118, 119] with applications to problems in gravitation and cosmology
[120, 121], particles and fields [122, 123], BEC [54, 125] and condensed matter sys-
tems [124] as well as addressing the issues of thermalization and quantum phase
transitions [126, 127, 128].

In this chapter we consider under the 2PI-CTP scheme different approxima-
tions: the Hartree-Fock-Bogoliubov (HFB) approximation, the next-to-leading
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order 1/N expansion of the 2PI effective action up to second-order in the in-
teraction strength and a second-order perturbative expansion in the interaction
strength. In chapter 7 we apply the 2PI-CTP approximations derived here to de-
scribe the the patterned loading experiment [33] previously discussed in chapter
4.

6.1 2PI effective action Γ(z, G)

Figure 6.1: Two-loop (upper row) and three-loop diagrams (lower row) contribut-
ing to the effective action. Explicitly, the diagram a) is what we call the double-
bubble , b) the setting-sun and c) the basketball.

The first requirement for the study of nonequilibrium processes is a general
initial-value formulation depicting the dynamics of interacting quantum fields. The
CTP or Schwinger-Keldysh effective action formalism [56] serves this purpose. The
second requirement is to describe the evolution of the correlation functions and
the mean field on an equal footing. The two particle irreducible (2PI) formalism
[57] where the correlation functions appear also as independent variables, serves
this purpose. By requiring the generalized (master) CTP effective action [118] to
be stationary with respect to variations of the correlation functions we obtain an
infinite set of coupled (Schwinger-Dyson) equations for the correlation functions
which is a quantum analog of the BBGKY hierarchy. The 2PI effective action
produces two such functions in this hierarchy. In this section we shall focus on the
2PI formalism, and then upgrade it to the CTP version in the next section.

Our starting point is the one dimensional Bose-Hubbard Hamiltonian (see chap-
ter 3).

Ĥ = −J
∑

i

(â†i âi+1 + â†i+1 âi ) +
1
2
U

∑

i

â†i â†i âi âi +
∑

i

Viâ
†
i âi (6.1)



6.1 2PI effective action Γ(z, G) 103

where âi and â†i are the bosonic operators that annihilate and create an atom
on the site i. Here, the parameter U denotes the strength of the on-site repulsion
of two atoms on the site i; the parameter Vi denotes the energy offset of each
lattice site due to an additional slowly- varying external potential that might be
present (such as a magnetic trap), and J denotes the hopping rate between adjacent
sites. Because the next-to-nearest neighbor amplitudes are typically two orders of
magnitude smaller, tunneling to next-to-nearest neighbor sites can be neglected.
The Bose -Hubbard Hamiltonian should be an appropriate model when the loading
process produces atoms in the lowest vibrational state of each well, with a chemical
potential smaller than the distance of the first vibrationally excited state.

Hereafter we consider for simplicity only a homogeneous lattice with periodic
boundary conditions and no other external potential (Vi = 0). Once the equations
of motion are derived, it is straightforward to generalize them to higher dimensions
or to include additional external potentials. As usual, we denote the total number
of atoms by N and the number of lattice sites by M .

The classical action associated with the Bose-Hubbard Hamiltonian (6.1), is
given in terms of the complex fields ai and a∗i by

S[a∗i , ai] =
∫

dt
∑

i

i~a∗i (t)∂tai(t)

+
∫

dt
∑

i

J
(
a∗i (t)ai+1(t) + ai(t)a∗i+1(t)

)
(6.2)

−
∫

dt
∑

i

U

2
a∗i (t)a

∗
i (t)ai(t)ai(t).

To simplify our notation we introduce aa
i (a = 1, 2) defined by

ai = a1
i , a∗i = a2

i . (6.3)

In terms of these fields the classical action takes the form

S[a] =
∫

dt
∑

i

1
2
haba

a
i (t)~∂ta

b
i(t (6.4)

+
∫

dt
∑

i

(
Jσaba

a
i+1(t)a

b
i(t)−

U

4N (σaba
a
i (t)a

b
i(t))

2

)
,

where N is the number of fields,which is two in this case, and summation over
repeated field indices a, b = (1, 2) is implied and hab and σab are matrices defined
as

hab = i

(
0 −1
1 0

)
, σab =

(
0 1
1 0

)
. (6.5)

In terms of the familiar Pauli matrices, σab = σx and hab = −σy.
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After second quantization the fields aa
i are promoted to operators. We denote

the expectation value of the field operator, i.e. the mean field, by za
i (t) and the

expectation value of the composite field by Gab
ij (t, t′). Physically, |za

i (t)|2 is the
condensate population and the composite fields determine the fluctuations around
the mean field:

za
i (t) = 〈aa

i (t)〉 , (6.6)

Gab
ij (t, t′) =

〈
TCaa

i (t)a
b
i(t

′)
〉
− 〈aa

i (t)〉
〈
ab

i(t
′)
〉

. (6.7)

The brackets denote the expectation value with respect to the density matrix and
TC denotes time ordering along a contour C in the complex plane.

All correlation functions of the quantum theory can be obtained from the effec-
tive action Γ[z,G], the two particle irreducible generating functional for Green’s
functions parameterized by za

i (t) and the composite field Gab
ij (t, t′). To get an

expression for the effective action we first define the functional Z[J,K] [57] as

Z[J,K] = eiW [J,K]/~ (6.8)

=
∏
a

∫
Daa exp





i

~


S[a] +

∫
dt

∑

i

Jia(t)aa
i (t) +

1
2

∫
dtdt′

∑

ij

aa
i (t)a

b
j(t

′)Kijab(t, t′)






 ,

where we have introduced the following index lowering convention

Xa = σabX
b. (6.9)

The functional integral (6.8) is a sum over classical histories of the field aa
i in the

presence of the local source Jia and the non local source Kijab. The coherent
state measure is included in Da. The addition of the two-particle source term is
what characterizes the 2PI formalism.

We define Γ[z, G] as the double Legendre transform of W [J,K] such that

δW [J,K]
δJia(t)

= za
i (t), (6.10)

δW [J,K]
δKijab(t, t′)

=
1
2
[za

i (t)zb
i (t

′) + Gab
ij (t, t′)]. (6.11)

Expressing J and K in terms of z and G yields

Γ[z,G] = W [J,K]−
∫

dt
∑

i

Jia(t)za
i (t)− 1

2

∫
dtdt′

∑

ij

za
i (t)zb

j(t
′)Kijab(t, t′)

−1
2

∫
dtdt′

∑

ij

Gab
ij (t, t′)Kijab(t, t′). (6.12)
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From this equation the following identity can be derived:

δΓ[z, G]
δza

i (t)
= −Jia(t)−

∫
dt′

∑

j

(Kijad(t, t′))zd
j (t′), (6.13)

δΓ[z,G]
δGab

ij (t, t′)
= −1

2
Kijab(t, t′). (6.14)

In order to get an expression for Γ[z, G] notice that by using Eq.(6.8) for W [J,K]
and placing it in Eq.(6.12) for Γ[z, G], it can be written as

exp
(

i

~
Γ[z, G]

)
=

∏
a

∫
Daa exp

{
i

~

(
S[a] +

∫
dti Jia(t) [aa

i (t)− za
i (t)] (6.15)

+
1
2

∫
dtidt′j

(
aa

i (t)Kijab(t, t
′)ab

j(t
′)− za

i (t)Kijab(t, t
′)zb

j(t
′)
)
− 1

2
TrGK

)}

=
∏
a

∫
Daa exp

{
i

~

(
S[a]−

∫
dti

δΓ[z, G]
δza

i (t)
[aa

i (t)− za
i (t)]

−
∫

dtidt′j [aa
i (t)− za

i (t)]
δΓ[z,G]

δGab
ij (t, t′)

[
ab

i(t
′)− zb

i (t
′)
]

+ TrG
δΓ[z,G]

δG

)}
,

where Tr means taking the trace. For simplicity we have denoted
∫

dt
∑

i by
∫

dti.
Defining the fluctuation field, ϕa

i = aa
i − za

i , we have

Γ[z, G]− TrG
δΓ[z, G]

δG
= −i~ ln

∏
a

∫
Dϕa exp

(
i

~
S[z, G; ϕ]

)
, (6.16)

S[z,G;ϕ] = S[z + ϕ]−
∫

dti
δΓ[z, G]
δza

i (t)
ϕa

i (t)−
∫

dtidt′j ϕa
i (t)

δΓ[z, G]
δGab

ij (t, t′)
ϕb

i(t
′). (6.17)

By introducing the classical inverse propagator iD−1(z) given by

iDijab(t, t′) −1 =
δS[z]

δza
i (t)δzb

j(t′)
(6.18)

= (δijhab∂t + J(δi+1j + δi−1j)σab) δ(t− t′)

−U

N (2zia(t)zib(t) + σabz
c
i (t)zic(t)) δijδ(t− t′),

the solution of the functional integro-differential equation (6.16) can be expressed
as
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Γ[z, G] = S[z] +
i

2
Tr lnG−1 +

i

2
TrD−1(z)G + Γ2[z,G] + const. (6.19)

The quantity Γ2[z, G] is conveniently described in terms of the diagrams
generated by the interaction terms in S[z + ϕ] which are of cubic and higher
orders in ϕ

Sint[z + ϕ] = − U

4N
∫

dti(ϕib(t)ϕb
i(t))

2

−U

N
∫

dtiϕ
a
i (t)zia(t)ϕb

i(t)ϕib(t). (6.20)

It consists of all two-particle irreducible vacuum graphs (the diagrams repre-
senting these interactions do not become disconnected by cutting two propagator
lines) in the theory with propagators set equal to G and vertices determined by
the interaction terms in S[z + ϕ] .

Since physical processes correspond to vanishing sources J and K, the dynam-
ical equations of motion for the mean field and the propagators are found by using
the expression (6.19) in equations (6.13) and (6.14) , and setting the right hand
side equal to zero. This procedure leads to the following equations:

hab~∂tz
b
i (t) = −J(zi+1a(t) + zi−1a(t)) (6.21)

+
U

N (zid(t)zd
i (t) + G c

ii c(t, t))zia(t)

+
U

N ((Giiad(t, t) + Giida(t, t))zd
i (t)

−δΓ2[z, G]
δza

i (t)
,

and

G−1
ijab(t, t

′) = Dijab(t, t′)−1 − Σijab(t, t′), (6.22)

Σijab(t, t′) ≡ 2i
δΓ2[z, G]
δGab

ij (t, t′)
. (6.23)

Equation (6.22) can be rewritten as a partial differential equation suitable for
initial value problems by convolution with G. This differential equation reads
explicitly

ha
c~∂tG

cb
ij (t, t′) = −J(Gab

i+1j(t, t
′) + Gab

i−1j(t, t
′)) +

U

N (zid(t)zd
i (t))Gab

ij (t, t′) + (6.24)

2U

N za
i (t)Gcb

ij (t, t
′)zic(t) + i

∫
dt′′kΣ

a
ikc(t, t

′′)Gcb
kj(t

′′, t′) + iδabδijδ(t− t′).

The evolution of za and Gab is determined by Eqs. (6.22) and (6.24) once Γ2[z,G]
is specified.
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6.2 Perturbative expansion of Γ2(z, G) and approxima-
tion schemes

The diagrammatic expansion of Γ2 is illustrated in Fig. 6.1, where two and
three-loop vacuum diagrams are shown. The dots where four lines meet represent
interaction vertices. The expression corresponding to each vacuum diagram
should be multiplied by a factor (−i)l(i)s−2 where l is the number of solid lines
and s the number of loops the diagram contains.

The action Γ including the full diagrammatic series for Γ2 gives the full dy-
namics. It is of course not feasible to obtain an exact expression for Γ2 in a closed
form. Various approximations for the full 2PI effective action can be obtained
by truncating the diagrammatic expansion for Γ2. Which approximation is most
appropriate depends on the physical problem under consideration.

6.2.1 The standard approaches

1. Mean-field approximation:

If, in Eq. (6.19), we discard all terms to the right of S[z], we recover the
DNLSE. This gives us the usual mean-field description, in which the system
remains a pure condensate.

2. One-loop Approximation:

The next approximation consists of discarding Γ2 altogether. This yields
the so-called one-loop approximation. The one-loop approximation has an
equation for the fluctuations identical to the BdG equations (See chapter 5),
however the equation of motion for the condensate does include the deple-
tion and anomalous terms. The presence of this terms is necessary for the
time dependent evolution because they guarantee the conservation of particle
number and energy. The unequal treatment of the condensate and fluctu-
ations present in this approximation introduces limitations and makes this
approach not very attractive for studying the non equilibrium dynamics.

3. Time-dependent Hartree-Fock-Bogoliubov (HFB) approximation:

A truncation of Γ2 retaining only the first order diagram in U, i.e., keeping
only the double-bubble diagram, Fig. 6.1, yields equations of motion for z and
G which correspond to the time dependent Hartree-Fock-Bogoliubov (HFB)
approximation. This approximation violates Goldstone’s theorem, but con-
serves energy and particle number [132, 15, 133]. It is important to point out
that between all the quadratic approximations discussed in chapter 5 only
the HFB approximation is suitable for describing non equilibrium dynamics
because it is the only one that obeys conservation laws. The HFB equations
can also be obtained by using cumulant expansions up to the second-order
[136] in which all cumulants containing three or four field operators are
neglected. The HFB approximation neglects multiple scattering. It can be
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interpreted as an expansion in terms of Ut/J, (where t is the time of evo-
lution) and is good for the description of short time dynamics or weak
interaction strengths. It will be described in more detail in section 6.4.

6.2.2 Higher order expansions

We make a few remarks on the general properties of higher order expansions and
then specialize to two approximations.

• 2PI and Ladder Diagrams

Since the work of Beliaev [63] and Popov [52] it is well known in the literature
that including higher order terms in a diagrammatic expansion corresponds
to renormalizing the bare interaction potential to the four-point vertex (see
for example Ref. [53, 54]), thus accounting for the repeated scattering of the
bosons. In particular, in chapter 5 we explicitly showed how by including
the anomalous average in the equations the bare potential was upgraded in
the off diagonal elements to the many body scattering matrix. In chapter
8 we will also show that by taking into account the two-loop contribution
of the 2PI effective action, the bare potential in the diagonal terms is also
upgraded to the many body scattering matrix up to second-order in the lad-
der expansion. The two-loop contribution includes diagrams topologically
identical to those found by Beliaev, but with the exact propagator instead
of the one-loop propagator. In the dilute gas limit, where the inter-particle
distance is large compared with the s-wave scattering length, the ladder di-
agrams give the largest contribution to the four-point vertex. To lowest
order in the diluteness parameter, the T-matrix can be approximated by a
constant proportional to the scattering length (the pseudopotential approx-
imation). However this approximation is only valid in the weak interaction
limit and neglects all momentum dependencies which appears in the problem
as higher order terms. In that sense the 2PI effective action approach allows
us to go beyond the weakly interacting limit in a systematic way and to treat
collisions more accurately.

• Nonlocal Dissipation and Non-Markovian Dynamics

Higher order terms lead to nonlocal equations and dissipation. The presence
of nonlocal terms in the equations of motion is a consequence of the fact
that the 2PI effective action really corresponds to a further approximation
of the master effective equation [118]. Though strict dissipation can never
be observed in an energy conserving closed system, characteristic features of
dissipative systems like exponential damping of correlations can be exhibited
once interactions are properly taken into account.

Non-Markovian dynamics is a generic feature of the 2PI formalism which
yields integro-differential equations of motion. This makes numerical so-
lution difficult, but is a necessary price to pay for a fuller account of the
quantum dynamics. Many well acknowledged approaches to the quantum
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kinetics of such systems adopt either explicitly or implicitly a Markovian
approximation [62]. The Markovian approximation assumes that only the
current configuration of the system, but not its history, determines its future
evolution. Markovian approximations are made if one assumes instantaneous
interactions, or in the kinetic theory context that the time scales between
the duration of binary collisions τ0 and the inverse collision rate τc are well-
separated. In the low kinetic energy, weakly interacting regime the time
between collisions (or mean free path) is long compared to the reaction time
(or scattering length): τc >> τ0. The long separation between collisions and
the presence of intermediate weak fluctuations, allow for a rapid decay of
the temporal and spatial correlations created between collision partners,
which one can use to justify the Markovian approximation. However,non-
Markovian dynamics needs to be confronted squarely in systems such as the
patterned loaded lattice, in which the lattice which confines the atoms to the
bottom of the wells with enhanced interaction effects, accompanied by the
low dimensionality of the system and far-from-equilibrium initial conditions.
That is the rationale for our adoption of the CTP 2PI scheme. Now, for the
specifics:

1. Second-order expansion:

A truncation retaining diagrams of second-order in U consists of the double-
bubble, the setting-sun and the basketball (see Fig.6.1). By including the
setting-sun and the basketball in the approximations we are taking into ac-
count two particle scattering processes [121, 119]. Second-order terms lead
to integro- differential equations which depend on the time history of the
system.

2. Large-N approximation

The 1/N expansion is a controlled non-perturbative approximation scheme
which can be used to study non-equilibrium quantum field dynamics in
the regime of strong interactions[127, 126]. In the large N approach the
field is modelled by N fields and the quantum field generating functional
is expanded in powers of 1/N . In this sense the method is a controlled
expansion in a small parameter, but unlike perturbation theory in the cou-
pling constant, which corresponds to an expansion around the vacuum, the
large N expansion corresponds to an expansion of the theory about a strong
quasiclassical field.

6.2.3 Zero mode fluctuactions

In chapter 5 we neglected zero mode fluctuations due to the non perturbative
character of the zero mode. In the linearized theory, this approach introduces an
artificial infrared divergence in low dimensional models thus the theory is actually
improved if the contribution from this mode is neglected all together [96]. However,
from a physical point of view the zero mode exists and is quantum in nature. There
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are both fundamental and practical reasons why isolating and subtracting the zero
mode is not as compelling in the dynamical evolution we want to describe in this
chapter. Firstly, because the 2PI formalism goes beyond the linearized approxi-
mation, the zero mode does not have the impact it has in the linearized formalism
and it is not clear that subtracting it necessarily leads to a better approximation.
Secondly, the initial state that we are going to assume for our analysis is a coherent
state rather than a proper state of the total particle number as will be described
in chapter 7. Moreover, as the total particle number is not very high, quantum
fluctuations in the total particle number are real, and non-negligible. Discarding
these fluctuations would spoil the integrity of the formalism. Therefore, in this
chapter we shall not attempt to isolate the contributions from the zero mode. A
full non-perturbative treatment in the future is certainly desirable.

6.3 CTP formalism

In order to describe the nonequilibrium dynamics we will now specify the contour
of integration in Eqs. (6.22) and (6.24) to be the Schwinger-Keldysh contour [56]
along the real-time axis or closed time path (CTP) contour. The Schwinger-
Keldysh formalism is a powerful method for deriving real and causal evolution
equations for the expectation values of quantum operators for nonequilibrium
fields. The basic idea of the CTP formalism relies on the fact that a diagonal
matrix element of a system at a given time, t = 0, can be expressed as a product
of transition matrix elements from t = 0 to t′ and the time-reverse (complex
conjugate) matrix element from t′ to 0 by inserting a complete set of states into this
matrix element at the later time t′. Since each term in the product is a transition
matrix element of the usual or time reversed kind, the standard path integral
representation for each one can be introduced. However, to get the generating
functional we seek, we have to require that the forward time evolution takes place
in the presence of a source J+ but the reversed time evolution takes place in the
presence of a different source J−, otherwise all the dependence on the source drops
out.

The doubling of sources, the fields and integration contours suggest introduc-
ing a 2 x 2 matrix notation. This notation has been discussed extensively in the
literature [117, 119]. However we are going to follow Refs. [126] and [127] and
introduce the CTP formalism in our equation of motion by using the composition
rule for transition amplitudes along the time contour in the complex plane. This
way is cleaner notationally and has the advantage that all the functional formal-
ism of the previous section may be taken with the only difference of path ordering
according to the complex time contour Cctp in the time integrations.

The two-point functions are decomposed as

Gab
ij (t, t′) = θctp(t, t′)Gab>

ij (t, t′) + θctp(t′, t)Gab<
ij (t, t′), (6.25)

where
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~Gab>
ij (t, t′) =

〈
ϕa

i (t)ϕ
b
j(t

′)
〉

, (6.26)

~Gab<
ij (t, t′) =

〈
ϕb

i(t
′)ϕa

j (t)
〉

, (6.27)

with ϕi being the fluctuation field defined prior Eq. (17) and θctp(t− t′) being the
CTP complex contour ordered theta function defined by

θctp(t, t′) =





θ(t, t′) for t and t′ both on C+

θ(t′, t) for t and t′ both on C−

1 for t on C− and t′ on C+

0 for t on C+ and t′ on C−
. (6.28)

With these definitions the matrix indices are not required. When integrating over
the second half C−, we have to multiply by a negative sign to take into account
the opposite direction of integration.

To show explicitly that the prescription for the CTP integration explained
above does lead to a well-posed initial value problem with causal equations, let us
explicitly consider the integral in Eq. (6.24). The integrand has the CTP ordered
form

Σ(t, t′′)G(t′′, t′) = (6.29)
θctp(t, t′′)θctp(t′′, t′)Σ>(t, t′′)G>(t′′, t′) + θctp(t, t′′)θctp(t′, t′′)Σ>(t, t′′)G<(t′′, t′)
θctp(t′′, t)θctp(t′′, t′)Σ<(t, t′′)G>(t′′, t′) + θctp(t′′, t)θctp(t′, t′′)Σ<(t, t′′)G<(t′′, t′),

where we have omitted the indices because they are not relevant for the discussion.
Using the rule for CTP contour integration we get

∫
dt′′Σ(t, t′′)G(t′′, t′) =

∫ t

0
dt′′

[
θ(t′′, t′)Σ>(t, t′′)G>(t′′, t′) + θ(t′, t′′)Σ>(t, t′′)G<(t′′, t′)

]

+
∫ ∞

t
dt′′

[
θ(t′′, t′)Σ<(t, t′′)G>(t′′, t′) + θ(t′, t′′)Σ<(t, t′′)G<(t′′, t′)

]

−
∫ ∞

0
dt′′Σ<(t, t′′)G>(t′′, t′). (6.30)

If t > t′, we have

∫
dt′′Σ(t, t′′)G(t′′, t′) =

∫ t

0
dt′′(Σ>(t, t′′)− Σ<(t, t′′))G>(t′′, t′)

−
∫ t′

0
dt′′Σ>(t, t′′)(G>(t′′, t′)−G<(t′′, t′)). (6.31)



112
Chapter 6 The two particle irreducible effective action (2PI) and the

closed time path (CTP) formalism

On the other hand, if t < t′

∫
dt′′Σ(t, t′′)G(t′′, t′) =

∫ t

0
dt′′(Σ>(t, t′′)− Σ<(t, t′′))G<(t′′, t′)

−
∫ t′

0
dt′′Σ<(t, t′′)(G>(t′′, t′)−G<(t′′, t′)). (6.32)

The above equations are explicitly causal.
It is convenient to express the evolution equations in terms of two independent
two-point functions which can be associated to the expectation values of the
commutator and the anti-commutator of the fields. We define, following Ref. [127]
the functions

G
(F )ab
ij (t, t′) =

1
2

(
Gab>

ij (t, t′) + Gab<
ij (t, t′)

)
(6.33)

G
(ρ)ab
ij (t, t′) = i

(
Gab>

ij (t, t′)−Gab<
ij (t, t′)

)
, (6.34)

where the (F ) functions are usually called statistical propagators and the (ρ) are
called spectral functions [137]. With these definitions Eq.(6.24) can be rewritten
as:

ha
c~∂tG

(F )cb
ij (t, t′) = −J

(
G

(F )ab
i+1j (t, t′) + G

(F )ab
i−1j (t, t′)

)
+

U

N
(
zic(t)zc

i (t))G
(F )ab
ij (t, t′)

)
+

2U

N
(
za
i (t)G(F )cb

ij (t, t′)zic(t)
)

+
∫ t

0
dt′′kΣ

(ρ)ac
ik (t, t′′)G(F ) b

kj c (t′′, t′)

−
∫ t′

0
dt′′kΣ

(F )ac
ik (t, t′′)G(ρ)b

kjc (t′′, t′), (6.35)

ha
c~∂tG

(ρ)cb
ij (t, t′) = −J

(
G

(ρ)ab
i+1j (t, t′) + G

(ρ)ab
i−1j (t, t′)

)
+

U

N
(
zic(t)zc

i (t))G
(ρ)ab
ij (t, t′

)
+

2U

N
(
za
i (t)G(ρ)cb

ij (t, t′)zic(t)
)

+
∫ t

t′
dt′′kΣ

(ρ)ac
ik (t, t′′)G(ρ)b

kjc (t′′, t′).(6.36)

In particular, we define the normal, ρ, and anomalous, m, spectral and statistical
functions as

G
21(F )
ij (t, t′) ≡ ρ

(F )
ij (t, t′) =

1
2

〈
ϕ†i (t)ϕj(t′) + ϕj(t′)ϕ

†
i (t)

〉
, (6.37)

G
21(ρ)
ij (t, t′) ≡ ρ

(ρ)
ij (t, t′) = i

〈
ϕ†i (t)ϕj(t′)− ϕj(t′)ϕ

†
i (t)

〉
, (6.38)

G
11(F )
ij (t, t′) ≡ m

(F )
ij (t, t′) =

1
2

〈
ϕi(t)ϕj(t′) + ϕj(t′)ϕi(t)

〉
, (6.39)

G
11(ρ)
ij (t, t′) ≡ m

(ρ)
ij (t, t′) = i

〈
ϕi(t)ϕj(t′)− ϕj(t′)ϕi(t)

〉
. (6.40)
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With these relations in place, we now proceed to derive the time evolution
equations for the mean field and the two-point functions from the 2PI-CTP effec-
tive action for the Bose-Hubbard model under the three approximations described
before.

6.4 HFB approximation

6.4.1 Equations of motion

The HFB equations include the leading order contribution of Γ2. They describe
the coupled dynamics of condensate and non-condensate atoms which arise from
the most important scattering processes which are direct, exchange and pair ex-
citations. The basic damping mechanisms present in the HFB approximation are
Landau and Beliaev damping associated with the decay of an elementary exci-
tation into a pair of excitations in the presence of condensate atoms[133, 134].
However, these kinds of damping 1 found in the HFB approximation (due to phase
mixing, as in the Vlasov equation citeBalescu) are different in nature from the
collisional dissipation (as in the Boltzmann equation) responsible for thermaliza-
tion processes. Multiple scattering processes are neglected in this approximation.
We expect the HFB equations to give a good description of the dynamics in the
collisionless regime when interparticle collisions play a minor role.

The leading order contribution of Γ2 is represented by the double-bubble
diagram. Its contribution to Γ2 is z independent and has an analytic expression
of the form

Γ(1)
2 [G] = (6.41)

− U

4N
∫

dti

(
G a

iia(t, t)G
b
iib(t, t) + 2Giiab(t, t)Gab

ii (t, t)
)

,

the factor of two arises because the direct and exchange terms are identical.
Using the first order expression for Γ2 in Eqs. (6.22) and (6.24) yields the

following equations of motion.

ha
b~∂tz

b
i (t) = ζz

HFB, (6.42)

ζz
HFB ≡ −J

(
za
i+1(t) + za

i−1(t)
)

+
U

N
(
zid(t)zd

i (t) + G d
ii d(t, t)

)
za
i (t)

+
2U

N
(
zib(t)Gab

ii (t, t)
)

, (6.43)

1we make a distinction between the meaning of the words ‘damping’ and ‘dissipation’, the
former referring simply to the phenomenological decay of some function, the latter with theoretical
meaning, e.g., in the Boltzmann sense.
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ha
c~∂tG

cb
ij (t, t′) = ζG

HFB, (6.44)

ζG
HFB ≡ −J(Gab

i+1j(t, t
′) + Gab

i−1j(t, t
′)) +

U

N (zid(t)zd
i (t) + G d

ii d(t, t))G
ab
ij (t, t′)

+
2U

N (za
i (t)zic(t)Gcb

ij (t, t′) + G a
ii d(t, t)G

db
ij (t, t′)) + iδabδijδC(t− t′).

In terms of the spectral and statistical functions, Eqs. (6.37) to (6.40), and
setting N = 2, the above equations take the form

i~∂tzi(t) = −J(zi+1(t) + zi−1(t)) + U(|zi(t)|2 + 2ρ
(F )
ii (t, t))zi(t)

+Um
(F )
ii (t, t)z∗i (t), (6.45)

−i~
∂

∂t
ρ
(F )
ij (t, t′) = Lik(t)ρ

(F )
kj (t, t′) +M∗

ik(t)m
(F )
kj (t, t′), (6.46)

−i~
∂

∂t
ρ
(ρ)
ij (t, t′) = Lik(t)ρ

(ρ)
kj (t, t′) +M∗

ik(t)m
(ρ)
kj (t, t′), (6.47)

i~
∂

∂t
m

(F )
ij (t, t′) = Lik(t)m

(F )
kj (t, t′) +Mik(t)ρ

(F )
kj (t, t′), (6.48)

i~
∂

∂t
m

(ρ)
ij (t, t′) = Lik(t)m

(ρ)
kj (t, t′) +Mik(t)ρ

(ρ)
kj (t, t′), (6.49)

with

Lij(t) = −J(δi+1j + δi−1j) + 2Uδij

(
|zi(t)|2 + ρ

(F )
ii (t, t)

)
, (6.50)

Mij(t) = Uδij

(
zi(t)2 + m

(F )
ii (t, t)

)
. (6.51)

The time dependent HFB equations are a closed set of self-consistent equations
that describe the coupled dynamics of the condensate and non-condensate compo-
nents of a Bose gas. It can be checked that they preserve important conservation
laws such as the number of particles and energy. The conservation properties of
the HFB equations can also be understood by the fact that these equations can
also be derived using Gaussian variational methods [15]. These methods always
yield a classical Hamiltonian dynamics which guarantees probability conservation.
Because they are local in time they can be decoupled by a mode decomposition.

6.4.2 Mode expansion of the HFB equations

To decouple the HFB equations we apply the well known Bogoliubov transforma-
tion to the fluctuation field (see chapter 5)

ϕj(t) =
∑

q

[
uq

i (t)α̂q − v∗qi (t)α̂†q
]
, (6.52)
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where (α̂q, α̂
†
q) are time independent creation and annihilation quasiparticle oper-

ators and all the time dependence is absorbed in the amplitudes {uq
i (t), v

∗q
i (t)}.

To ensure that the quasiparticle transformation is canonical, the amplitudes must
fulfill the relations

∑

i

[
uq

i (t)u
∗k
i (t)− vq

i (t)v
∗k
i (t)

]
= δqk, (6.53)

∑

i

[
uq

i (t)v
k
i (t)− vq

i (t)u
k
i (t)

]
= 0. (6.54)

In the zero temperature limit, where the quasiparticle occupation number vanishes,〈
α̂†qα̂k

〉
= 0, the statistical and spectral functions take the form

ρ
(F )
ij (t, t′) =

1
2

∑
q

(
vq
i (t)v

∗q
j (t′) + uq

j(t
′)u∗qi (t)

)
, (6.55)

ρ
(ρ)
ij (t, t′) = i

∑
q

(
vq
i (t)v

∗q
j (t′)− uq

j(t
′)u∗qi (t)

)
, (6.56)

m
(F )
ij (t, t′) = −1

2

∑
q

(
uq

i (t)v
∗q
j (t′) + uq

j(t
′)v∗qi (t)

)
, (6.57)

m
(ρ)
ij (t, t′) = −i

∑
q

(
uq

i (t)v
∗q
j (t′)− uq

j(t
′)v∗qi (t)

)
. (6.58)

Notice that at equal time and position due to Eqs.(6.53) and (6.54), ρ
(F )
ii (t, t)

and m
(F )
ii (t, t) satisfy

ρ
(F )
ii (t, t) =

∑
q

|vq
i (t)|2 +

1
2

(6.59)

m
(F )
ii (t, t) = −

∑
q

uq
i (t)v

∗q
i (t). (6.60)

Replacing Eqs. (6.59)-(6.60) into Eqs. (6.45)-(6.49) and using the constraints
(6.53) -(6.54) we recover the standard time dependent equations for the quasipar-
ticle amplitudes

i~
∂

∂
zi(t) (6.61)

= −J(zi+1(t) + zi−1(t)) + U(|zi(t)|2 + 2ρ
(F )
ii (t, t))zi(t) + Um

(F )
ii (t, t)z∗i (t),
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i~
∂

∂t
uq

i (t) (6.62)

= −J(uq
i+1(t) + uq

i−1(t)) + 2U(|zi(t)|2 + ρ
(F )
ii (t, t))uq

i (t)− U(m(F )
ii (t, t) + zi(t)

2)vq
i (t),

−i~
∂

∂t
vq
i (t) = (6.63)

−J(vq
i+1(t) + vq

i−1(t))) + 2U(|zi(t)|2 + ρ
(F )
ii (t, t))vq

i (t)− U(m∗(F )
ii (t, t) + zi(t)∗2)u

q
i (t).

If we compare Eqs. (6.61)-(6.63) with their time independent version, Eqs. (5.27)
to (5.87), we notice that the equations are identical as they should be if we replace
i~ ∂

∂tu
q
i → ωHFBuq

i , i~ ∂
∂tv

q
i → ωHFBvq

i and i~∂tzi → µHFBzi. The factor of 1/2
difference between ρ

(F )
ii and ρii (see Eq. (5.19)) just leads to a trivial renormaliza-

tion of the chemical potential. In the time dependent equations we have included
the zero mode fluctuations, which were neglected in Eqs. (5.27) to (5.87). Hence
we do not need the cHFB±

s variables, which simply keep the orthogonality between
of the condensate and the excitations. Eqs. (6.61) -(6.63) correspond to a set of
M(2M + 1) coupled ordinary differential equations, where M is the total number
of lattice sites. They can be solved using standard time propagation algorithms.
Once the time dependent quasiparticle amplitudes are calculated we can derive the
dynamics of physical observables constructed from them as a function of time,
such as the average number of particles in a well ni(t), etc.

6.5 Second-order expansion

6.5.1 Equations of motion

Full second-order

The second-order contribution to Γ2 is described in terms of the setting-sun Fig. 6.1b
and the basketball Fig. 6.1c diagrams. The basketball diagram is independent of
the mean-field and is constructed with only quartic vertices. The setting-sun
diagram depends on z and contains only three-point vertices. The second-order
Γ(2)

2 effective action can be written as

Γ(2)
2 [z, G] = (6.64)

i

(
U

N
)2 ∫

dtidtjzib(t)zjb′(t′)×
(
Gbb′

ij (t, t′)Gijdd′(t, t′)Gdd′
ij (t, t′) + 2Gbd′

ij (t, t′)Gijdd′(t, t′)Gdb′
ij (t, t′)

)
+

i

(
U

2N
)2 ∫

dtidt′j
(
Gijbb′(t, t′)Gbb′

ij (t, t′)Gijdd′(t, t
′)Gdd′

ij (t, t′)+

2Gijbb′(t, t
′)Gbd′

ij (t, t′)Gijdd′(t, t
′)Gdb′

ij (t, t′)
)

.
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To simplify the notation, let us introduce the following definitions [127]:

Πij(t, t′) = −1
2
Gijab(t, t′)Gab

ij (t, t′), (6.65)

Ξijab(t, t
′) = −D(t, t′)Gijab(t, t

′), (6.66)

D(t, t′) = zib(t)zja(t′)Gba
ij (t, t′)−Πij(t, t

′), (6.67)

Λ b
ij a(t, t

′) = −Gcb
ij (t, t

′)Gijca(t, t
′), (6.68)

Λ b
ij a(t, t

′) = −G bc
ij (t, t′)Gijac(t, t

′), (6.69)

Θac
ij (t, t′) = −(zid(t)zjb(t′) + Gijdb(t, t′))Gab

ij (t, t′)Gdc
ij (t, t′) + Ξac

ij (t, t′).(6.70)

With the above definitions we find from Eqs. (6.22) and (6.24) the following
equations of motion:

ha
b~∂tz

b
i (t) = ζz

HFB + (6.71)

i

(
2U

N
)2 ∫

dt′j zjb(t′)
(
Πij(t, t′)Gba

ji (t′, t) + Λ b
ij c(t, t

′)Gac
ij (t, t′)

)
,

ha
c~∂tG

cb
ij (t, t′) = ζG

HFB + (6.72)

i

(
2U

N
)2

za
i (t)

∫
dt′′kzkc(t′′)

(
Πik(t, t′′)Gcb

kj(t
′′, t′) + Λ c

ik d(t, t
′′)Gdb

kj(t
′′, t′)

)

+i

(
2U

N
)2 ∫

dt′′
(
Θ a

ik d(t, t
′′) + Λca

ik (t, t′′)zic(t)zkd(t′′)
)
Gdb

kj (t′′, t′),

where ζz
HFB and ζG

HFB are defined in Eqs. (6.43) and (6.45).

To get explicit expressions of the equations of motion in terms of ρ(F,ρ) and
m(F,ρ) we introduce the functions

Ω(F )
ij [f ,g] = f (F )

ij (ti, tj)g
(F )
ij (ti, tj)− 1

4

(
f (ρ)
ij (ti, tj)g

(ρ)
ij (ti, tj)

)
, (6.73)

Ω(ρ)
ij [f ,g] = f (F )

ij (ti, tj)g
(ρ)
ij (ti, tj) + f (ρ)

ij (t, t′)g(F )
ij (ti, tj). (6.74)

Using the spectral and statistical functions and setting the number of fieldsN equal
to 2, the equations of motion derived under the full second-order approximation
can be written as:
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i~∂tizi = −J(zi+1(ti) + zi−1(ti)) + U(|zi|2 + 2ρ
(F )
ii )zi + Um

(F )
ii z∗i (6.75)

−2U2
∑

k

∫ ti

0
dtk

(
zkΩ

(ρ)
ik [ρ, ρ∗] + zkΩ

(ρ)
ik [m,m∗] + z∗kΩ(ρ)

ik [m, ρ]
)

ρ
(F )
ki

−2U2
∑

k

∫ ti

0

(
z∗kΩ(ρ)

ik [ρ, ρ∗] + z∗kΩ(ρ)
ik [m,m∗] + zkΩ

(ρ)
ik [m∗, ρ∗]

)
m

(F )
ki

+2U2
∑

k

∫ ti

0
dtk

(
zkΩ

(F )
ik [ρ, ρ∗] + zkΩ

(F )
ik [m, m∗] + z∗kΩ(F )

ik [m, ρ]
)

ρ
(ρ)
ki

+2U2
∑

k

∫ ti

0

(
z∗kΩ(F )

ik [ρ, ρ∗] + z∗kΩ(F )
ik [m,m∗] + zkΩ

(F )
ik [m∗, ρ∗]

)
m

(ρ)
ki ,

−i~∂tiρ
(F )
ij = (6.76)

−J(ρ(F )
i+1j(ti, tj) + ρ

(F )
i−1j(ti, tj)) + 2U(|zi|2 + ρ

(F )
ii )ρ(F )

ij + U(m∗(F )
ii + z∗2i )m(F )

ij

−2U2
∑

k

∫ ti

0
dtk

(
ziz

∗
kΩ(ρ)

ik [ρ, ρ] + 2zizkΩ
(ρ)
ik [ρ, m∗] + 2z∗i z∗kΩ(ρ)

ik [m, ρ]
)

ρ
(F )
kj

−2U2
∑

k

∫ ti

0
dtk

(
Ω(ρ)

ik [ρ, ∆] + 2z∗i zk

(
Ω(ρ)

ik [ρ, ρ∗] + Ω(ρ)
ik [m,m∗]

))
ρ
(F )
kj

−2U2
∑

k

∫ ti

0
dtk

(
2ziz

∗
kΩ(ρ)

ik [m∗, ρ] + zizkΩ
(ρ)
ik [m∗,m∗] + 2z∗i zkΩ

(ρ)
ik [ρ∗,m∗]

)
m

(F )
kj

−2U2
∑

k

∫ ti

0
dtk

(
Ω(ρ)

ik [m∗,Υ] + z∗i z∗k
(
2Ω(ρ)

ik [ρ, ρ∗] + 2Ω(ρ)
ik [m, m∗]

))
m

(F )
kj

+2U2
∑

k

∫ tj

0
dtk

(
ziz

∗
kΩ(F )

ik [ρ, ρ] + 2zizkΩ
(F )
ik [ρ,m∗] + 2z∗i z∗kΩ(F )

ik [m, ρ]
)

ρ
(ρ)
kj

+2U2
∑

k

∫ tj

0
dtk

(
Ω(F )

ik [ρ,∆] + 2z∗i zk

(
Ω(F )

ik [ρ, ρ∗] + Ω(F )
ik [m,m∗]

))
ρ
(ρ)
kj

+2U2
∑

k

∫ tj

0
dtk

(
2ziz

∗
kΩ(F )

ik [m∗, ρ] + zizkΩ
(F )
ik [m∗,m∗] + 2z∗i zkΩ

(F )
ik [ρ∗, m∗]

)
m

(ρ)
kj

+2U2
∑

k

∫ tj

0
dtk

(
Ω(F )

ik [m∗,Υ] + 2z∗i z∗k
(
Ω(F )

ik [ρ, ρ∗] + Ω(F )
ik [m,m∗]

))
m

(F )
kj ,
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−i~∂tiρ
(ρ)
ij = (6.77)

−J(ρ(ρ)
i+1j(ti, tj) + ρ

(ρ)
i−1j(ti, tj)) + 2U(|zi|2 + ρ

(F )
ii )ρ(ρ)

ij + U(m∗(F )
ii + z∗2i )m(ρ)

ij

−2U2
∑

k

∫ ti

tj

dtk

(
ziz

∗
kΩ(ρ)

ik [ρ, ρ] + 2zizkΩ
(ρ)
ik [ρ, m∗] + 2z∗i z∗kΩ(ρ)

ik [m, ρ]
)

ρ
(ρ)
kj

−2U2
∑

k

∫ ti

tj

dtk

(
Ω(ρ)

ik [ρ, ∆] + 2z∗i zk

(
Ω(ρ)

ik [ρ, ρ∗] + Ω(ρ)
ik [m,m∗]

))
ρ
(ρ)
kj

−2U2
∑

k

∫ ti

tj

dtk

(
2ziz

∗
kΩ(ρ)

ik [m∗, ρ] + zizkΩ
(ρ)
ik [m∗,m∗] + 2z∗i zkΩ

(ρ)
ik [ρ∗,m∗]

)
m

(ρ)
kj

−2U2
∑

k

∫ ti

tj

dtk

(
Ω(ρ)

ik [m∗,Υ] + 2z∗i z∗k
(
Ω(ρ)

ik [ρ, ρ∗] + Ω(ρ)
ik [m,m∗]

))
m

(ρ)
kj ,

i~∂tim
(F )
ij = (6.78)

−J(m(F )
i+1j(ti, tj) + m

(F )
i−1j(ti, tj)) + 2U(|zi|2 + ρ

(F )
ii )m(F )

ij + U(m(F )
ii + z2

i )ρ(F )
ij

−2U2
∑

k

∫ ti

0
dtk

(
2z∗i zkΩ

(ρ)
ik [m, ρ∗] + z∗i z∗kΩ(ρ)

ik [m,m] + 2ziz
∗
kΩ(ρ)

ik [ρ,m]
)

ρ
(F )
kj

−2U2
∑

k

∫ ti

0
dtk

(
Ω(ρ)

ik [m,Υ] + 2zizk

(
Ω(ρ)

ik [ρ, ρ∗] + Ω(ρ)
ik [m,m∗]

))
ρ
(F )
kj

−2U2
∑

k

∫ ti

0
dtk

(
z∗i zkΩ

(ρ)
ik [ρ∗, ρ∗] + 2z∗i z∗kΩ(ρ)

ik [ρ∗,m] + 2zizkΩ
(ρ)
ik [m∗, ρ∗]

)
m

(F )
kj

−2U2
∑

k

∫ ti

0
dtk

(
Ω(ρ)

ik [ρ∗, ∆] + 2ziz
∗
k

(
Ω(ρ)

ik [ρ, ρ∗] + Ω(ρ)
ik [m,m∗]

))
m

(F )
kj

+2U2
∑

k

∫ tj

0
dtk

(
2z∗i zkΩ

(F )
ik [m, ρ∗] + z∗i z∗kΩ(F )

ik [m,m] + 2ziz
∗
kΩ(F )

ik [ρ,m]
)

ρ
(ρ)
kj

+2U2
∑

k

∫ tj

0
dtk

(
Ω(F )

ik [m,Υ] + 2zizk

(
Ω(F )

ik [ρ, ρ∗] + Ω(F )
ik [m,m∗]

))
ρ
(ρ)
kj

+2U2
∑

k

∫ tj

0
dtk

(
z∗i zkΩ

(F )
ik [ρ∗, ρ∗] + 2z∗i z∗kΩ(F )

ik [ρ∗, m] + 2zizkΩ
(F )
ik [m∗, ρ∗]

)
m

(ρ)
kj

+2U2
∑

k

∫ tj

0
dtk

(
Ω(F )

ik [ρ∗, ∆] + 2ziz
∗
k

(
Ω(F )

ik [ρ, ρ∗] + Ω(F )
ik [m,m∗]

))
m

(ρ)
kj ,
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i~∂tim
(ρ)
ij = (6.79)

−J(m(ρ)
i+1j(ti, tj) + m

(ρ)
i−1j(ti, tj)) + 2U(|zi|2 + ρ

(F )
ii )m(ρ)

ij + U(m(F )
ii + z2

i )ρ(ρ)
ij

+2U2
∑

k

∫ ti

tj

dtk

(
2z∗i zkΩ

(ρ)
ik [m, ρ∗] + z∗i z∗kΩ(ρ)

ik [m,m] + 2ziz
∗
kΩ(ρ)

ik [ρ,m]
)

ρ
(ρ)
kj

+2U2
∑

k

∫ ti

tj

dtk

(
Ω(ρ)

ik [m,Υ] + zizk

(
2Ω(ρ)

ik [ρ, ρ∗] + 2Ω(ρ)
ik [m,m∗]

))
ρ
(ρ)
kj

+2U2
∑

k

∫ ti

tj

dtk

(
z∗i zkΩ

(ρ)
ik [ρ∗, ρ∗] + 2z∗i z∗kΩ(ρ)

ik [ρ∗,m] + 2zizkΩ
(ρ)
ik [m∗, ρ∗]

)
m

(ρ)
kj

+2U2
∑

k

∫ ti

tj

dtk

(
Ω(ρ)

ik [ρ∗, ∆] + 2ziz
∗
k

(
Ω(ρ)

ik [ρ, ρ∗] + Ω(ρ)
ik [m,m∗]

))
m

(ρ)
kj ,

with

∆(F,ρ)
ij = Ω(F,ρ)

ij [ρ, ρ∗] + 2Ω(F,ρ)
ij [m, m∗] , (6.80)

Υ(F,ρ)
ij = 2Ω(F,ρ)

ij [ρ, ρ∗] + Ω(F,ρ)
ij [m, m∗] . (6.81)

In the above equations we adopted the notation zk meaning zk(tk) for the
condensate and mkj and ρkj meaning mkj(tk, tj) and ρkj(tk, tj) respectively for
the two point functions. These notation is also going to be used in the equations
for the 1/N expansion.

2PI-1/N expansion

The 2PI effective action is a singlet under O(N ) rotations. It can be shown that
all graphs contained in an O(N ) expansion can be built from the irreducible
invariants[127]: z2, T r(Gn) and Tr(zzGn) , with n < N . The factors of N in
a single graph contributing to the same 1/N expansion then have two origins: a
factor of N from each irreducible invariant and a factor of 1/N from each vertex.
The leading order large N approximation scales proportional to N , the next to
leading order (NLO) contributions are of order 1 and so on. At leading order only
the first term of Eq. (6.42) contributes. At the next to leading order level, if we
truncate up to second-order in the coupling strength, the double-bubble is totally
included but only certain parts of the setting-sun and basketball diagrams are: the
first term in both of the integrals of Eq. (6.64),

Γ(2)1/N
2 [z,G] = i

(
U

N
)2 ∫

dtidtjzib(t)zjb′(t′)
(
Gbb′

ij (t, t′)Gijdd′(t, t′)Gdd′
ij (t, t′)

)
+

i

(
U

2N
)2 ∫

dtidt′j
(
Gijbb′(t, t′)Gbb′

ij (t, t′)Gijdd′(t, t
′)Gdd′

ij (t, t′)
)

. (6.82)
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The equations of motion under this approximation are the ones obtained for the
full second-order expansion but with Λ = Λ = 0, and Θ = Ξ.

In terms of the spectral and statistical functions the equation of motion can
be written as:

i~∂tizi = −J(zi+1(ti) + zi−1(ti)) + U(|zi|2 + 2ρ
(F )
ii )zi + Um

(F )
ii z∗i (6.83)
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(F )
ij = (6.84)
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−i~∂tiρ
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with

Π(F,ρ)
ij = Ω(F,ρ)

ij [ρ, ρ∗] + Ω(F,ρ)
ij [m,m∗] . (6.88)

We end this section by emphasizing that the only approximation introduced
in the derivation of the equations of motion presented here is the truncation up
to second-order in the interaction strength. These equations depict the nonlin-
ear and non-Markovian quantum dynamics, which we consider as the primary
distinguishing features of this work. It supersedes what the second-order kinetic
theories currently presented can do, their going beyond the HFB approximation
notwithstanding. For example Ref. [62] presents a kinetic theory approach that
includes binary interactions to second-order in the interaction potential but uses
the Markovian approximation. In Ref. [61] the authors gave a non-Markovian gen-
eralization to the quantum kinetic theory derived by Walser et. al.[58] by including
memory effects. However in that work symmetry breaking fields, z and anomalous
fluctuations, m, are neglected.

6.5.2 Conservation laws

For a closed (isolated) system the mean total number of particles N and energy
are conserved quantities as they are the constants of motion for the dynamical
equations.

Particle number conservation is a consequence of the invariance of the Hamil-
tonian under a global phase change. The mean total number of particles is given
by

〈
N̂

〉
=

∑

i

〈
â†i âi

〉
=

∑

i

(
|zi|2 + ρ

(F )
ii − 1

2

)
(6.89)

= N.
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The kinetic equation for N is then

d

dt

〈
N̂(t)

〉
=

∑

i

2Re
(

zi(t)
∂

∂t
z∗i (t)

)
(6.90)

+ lim
t→t′

(
∂

∂t
ρ
(F )
ii (t, t′) +

∂

∂t′
ρ
∗(F )
ii (t′, t)

)

= 0.

All three approximations we have considered, namely, HFB, 1/N expansion
and full second-order expansion, conserve the particle number. This can be shown
by plugging in the kinetic equation of

〈
N̂(t)

〉
(Eq. 6.90) the equation of mo-

tion for the mean field and the normal statistical propagator Eqs. (45),(46),
Eqs.(6.76),(6.77) and Eqs (6.85),(6.86)), and cancelling terms. It is important
to note that even though total population is always conserved there is always a
transfer of population between condensate and non condensate atoms.

While number conservation can be proved explicitly, to prove total energy
conservation is not obvious as the Hamiltonian cannot be represented as a linear
combination of the relevant operators. It is clear that the exact solution of a
closed system is unitary in time and hence disallows any dissipation. However,
the introduction of approximation schemes that truncate the infinite hierarchy of
correlation functions at some finite order with causal boundary conditions may
introduce dissipation [118].

To discuss energy conservation we can use the phi-derivable criteria [138] which
states that nonequilibrium approximations in which the self energy Σ is of the
form δΦ/δG, with Φ a functional of G, conserve particle number, energy and
momentum. All the approximations we consider in this paper are phi derivable
and thus they obey energy, particle number and momentum conservation laws.
For HFB, Φ = Γ(1)

2 , for the full second-order expansion, Φ = Γ(1)
2 + Γ(2)

2 and for
the second-order next to leading order 1/N expansion, Φ = Γ(1)

2 + Γ(2)1/N
2 . See

Eqs. (6.23), (6.42), (6.64) and (6.82). For a detailed discussion of the complete
next to leading order 1/N expansion see Refs. [126, 127] and references therein.

6.6 Conclusions

In summary, we have presented a new approach for the description of the nonequi-
librium dynamics of a Bose-Einstein condensate and fluctuations in a closed quan-
tum field system. The formalism allows one to go beyond the well known HFB
approximation and to incorporate the nonlinear and non-Markovian aspects of the
quantum dynamics as manifest in the dissipation and fluctuations phenomena.
The 2PI effective action formalism provides a useful framework, where the mean
field and the correlation functions are treated on the same footing self-consistently
and which respects conservations of particle number and energy. The CTP for-
malism ensures that the dynamical equations of motion are also causal. In their
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current form the scattering terms are nonlocal in time and thus hard to estimate
analytically, and their calculation is numerically demanding. However, this sys-
tematic approach can be used as a quantitative means to obtain solutions in differ-
ent regimes and make comparisons with kinetic theory results where a Markovian
approximation is assumed. We postpone these discussions to chapter 8.
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Chapter 7

Nonequilibrium dynamics of a
patterned loaded optical
lattice: Beyond the mean field
approximation

In this chapter the two-particle irreducible (2PI) closed-time-path (CTP) effective
action formalism derived in chapter 6 is used to describe the nonequilibrium dy-
namics of a Bose Einstein condensate (BEC) selectively loaded into every third
site of a one-dimensional optical lattice.

In chapter 4 we used a mean field approach to describe the dynamics of this
system. However, we show here that even in the case when the kinetic energy
is comparable to the interaction energy, interatomic collisions play a crucial role
in determining the quantum dynamics of the system, and therefore a mean field
approach is only accurate for short times. This result is demonstrated by com-
parison between the mean field solutions and the exact numerical time evolution
of the initial state using the Bose Hubbard Hamiltonian for systems with small
numbers of atoms (N ∼ 10) and lattice sites (M = 2 or 3). The exact numerical
solution is also used to test the validity of the various methods derived under the
2PI-CTP approximation.

We show that because the second-order 2PI approximations include multi-
particle scattering in a systematic way, they are able to capture damping effects
exhibited in the exact solution, which the mean field and the HFB approxima-
tions fail to reproduce. However, our numerical results also show that all of the
approximations fail at late times, when interaction effects become significant.

7.1 Mean field dynamics

In this section we review the basic features of the mean field results obtained in
chapter 4, in order to provide the context for the subsequent discussion of the
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dynamics in the 2PI-CTP formalism.

7.1.1 Dynamical evolution

By making the mean field ansatz in the Bose-Hubbard Hamiltonian, we replace
the field operator âi by a c-number zi(t). The amplitudes zi(t) satisfy the DNLSE
(Eq. (4.6)).

In section 4.3.2, we treated a model case in which the initial occupancies of each
third site are the same, and in which the condensate initially has a uniform phase.
Thus at τ = 0, (τ ≡ tJ

~ ), the amplitudes zi(τ) are given by z3i(0) =
√

3/M,
z3i+1(0) = z3i+2(0) = 0, where M is the total number of lattice sites. For an
infinite lattice, or one with periodic boundary conditions, the amplitudes for all
initially occupied sites z3i(τ) = z0(τ) evolve identically in time, and the amplitudes
for the initially unoccupied sites satisfy z3i+1(τ) = z3i+2(τ) = for all τ . This allows
us to reduce the full set of equations to a set of two coupled equations for z0(τ)
and z1(τ).

The solutions |z0(τ)| and |z1(τ)| are oscillatory functions whose amplitudes
and common period, T (γ), are determined by the parameter γ ≡ 3NU

MJ = 3λ. The
mean field dynamical behavior can be qualitatively divided into two regimes:

The tunneling dominated regime (γ < 1): In this regime the oscillation
period is essentially constant, the role of interactions is relatively small, and the
equations of motion are equivalent to those of a two-state Rabi problem. This
system will undergo Rabi oscillations whereby atoms periodically tunnel from the
initially occupied site into the two neighboring sites. For γ = 0 the period of
oscillation is 2π

3 .

Interaction dominated regime: The effect of interactions on the mean field
dynamics is to cause the energies of the initially occupied sites to shift relative to
those of the unoccupied sites. As γ increases the tunneling between sites occurs
at a higher frequency, but with reduced amplitude. The population of the ini-
tially occupied sites becomes effectively self-trapped by the purely repulsive pair
interaction.

7.1.2 Comparisons with the exact solution

To check the validity of the mean field approximation, we made comparisons with
the exact many body solution for N = 6 atoms and M = 3 wells. We use a
modest number of atoms and lattice sites for the comparisons, due to the fact that
the Hilbert space needed for the calculations increases rapidly with the number of
atoms and wells.
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Exact solution

For the exact solution we used an initial state given by

|ϕ(0)〉 = (e−N/2e
√

Nâ†o |0〉)⊗ |0〉 ⊗ |0〉 . (7.1)

The initial state represents a coherent state with an average of N atoms in the
initially populated well and zero atoms in the others. We chose this state because
in the experiment the loading of the atoms was done slow enough with respect to
band excitations but fast with respect to many body excitations that at time t = 0
most of the atoms in the initially populated wells were condensed.

The fully quantal solution was found by evolving the initial state in time with
the Bose-Hubbard Hamiltonian, so that |ϕ(t)〉 = e−

i
~ Ĥt|ϕ(0)〉. To do the numerical

calculations we partitioned the Hilbert space in subspaces with a fixed number
of atoms and propagated independently the projections of the initial state on the
respective subspaces. A subspace with Nn number of atoms and M wells is spanned
by (Nn+M−1)!

Nn!(M−1)! states. This procedure could be done because the Hamiltonian

commutes with the number operator
∑

i âi
†âi, and therefore during the dynamics

the different subspaces never get mixed. The number of subspaces used for the
numerical evolution were such that no change in plots of the dynamical observables
was detected by adding another subspace. Generally for N atoms in the initial
state, this condition was achieved by including the subspaces between N − 4

√
N

and N + 4
√

N atoms.

Numerical comparisons

In Fig. 7.1 we plot the average population per well
〈
â†i (t)âi (t)

〉
and the conden-

sate population per well |〈âi (t)〉|2 and compare them with the mean field predic-
tions, i.e. |zi(t)|2, for three different values of γ. The salient features observed in
these comparisons are:

1. Weakly interacting regime (γ = 0.2):

In this regime the DNLSE gives a good description of the early time dy-
namics. We observe in Fig. 7.1 that the total population per well predicted
by the mean field solution agrees with the exact solution and also that the
condensate population remains large for the time under consideration. We
expect the semiclassical approach to be valid for time scales less than the
inverse energy level spacing. In Ref. [129] the authors show the validity of
the semiclassical approach when τ < τcl ∼ N

Mγ in the case of two lattice sites.
This time scale is in good agreement with the numerical results shown in in
Fig.7.1. After τcl quantum effects become important.

2. Intermediate regime (γ = 2):

Quantum fluctuations lead to a non-trivial modulation of the classical oscil-
lations. In this regime the ratio between interaction and kinetic energy is
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small enough to allow the atoms to tunnel but not too small to make in-
teraction effects negligible. Mean field results are accurate only for a short
time. In this regime, the exact solution exhibits damped oscillations of the
atomic population. Quantum scattering effects are crucial, even for rather
early times.

To understand the dynamics in the weak and intermediate regimes, we have
to focus on the coherent properties of the system. Even though interactions
can be strong, the ground state is indeed superfluid. If we look at the initial
coherence of the system, determined by

〈
â†i (0)âj(0)

〉
i6=j

, it can be seen to

be zero due to the patterned loading. However, this is no longer the case
for t > 0 , and non-zero correlations are developed in the dynamics. The
dynamical restoration of the phase coherence which tends to distribute atoms
uniformly among the lattice sites and to damp the oscillations characterizes
the dynamics in the superfluid regime. In Ref. [129], the authors show, not
for a patterned loaded initial state but for an initial Mott state also with zero
initial phase coherence, how the phase coherence is restored dynamically.

3. Strongly correlated regime (γ = 12):

The system exhibits macroscopic quantum self-trapping of the population.
Qualitatively, both the mean field and the exact solutions agree, in the sense
that both predict self-trapping of atoms in the initially populated wells, due
to interactions. However, the fast decrease of the condensate population and
its subsequent revivals (as found in the exact solutions) give us an idea of the
importance of correlation effects beyond mean field. For a uniform loaded
lattice, the collapse and revivals of the condensate in this strong interacting
regime and the importance of quantum effects have been experimentally
observed[47].

Even though there is minimal initial coherence between adjacent sites due
to the patterned loading procedure we are still preparing the system in a
superfluid state in the initially populated well. At time t = 0 we have a
condensate fraction of order one. However, the ground state of the system is
not superfluid. It is expected then that, after some time, the phase is going
to randomize and this will lead to the collapse of the condensate population.
After the collapse, the system will remain for a while with zero condensate
population. However, it can not remain zero forever because we are dealing
with a closed quantum system, with finite recurrence time. Therefore at
some time trev we expect the condensate to revive again. The collapses and
revivals of the condensate population in the strong interacting regime can
be easily estimated by considering the energy spectrum. In this regime the
energy eigenstates of the system are almost number (Fock) states and the
energy spectrum is almost quadratic, En ≈ n(n−1)U/2. The dynamics of the
system is described by the interference of the different n-particle Fock states
that span the coherent state of the initially populated well. At integer values
of trev = (U/h)−1, the phase factors add to an integer value of 2π, leading
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to a revival of the initial state. This time scale agrees with the one estimated
in Ref.[130] for a more general situation. That reference, also shows how the
collapse time, tcoll, depends on the variance of the initial atomic distribution;
it is given by: tcoll ∼ trev/(2πσ). If the initial state is a coherent state, the
initial distribution is Poissonian and tcoll is given by tcoll ∼ ~/(

√
NU). For

the parameters used in the strongly correlated regime, γ = 12 and N = 6,
we observe that the estimated collapses and revival times are in agreement
with what is shown in Fig. 7.1.

7.2 2PI-CTP approximations

It was shown in the previous section that to describe the dynamics of the patterned
loaded optical lattice, approximations beyond the standard mean field theory are
required. In this section we proceed to test the validity of the different 2PI-CTP
approximations derived in chapter 6, explicitly, the time dependent HFB approxi-
mation, the full second-order approximation and the 1/N expansion up to second-
order in the interaction strength. Because in all these approximations we use
U/J as an expansion parameter we will focus our calculations on the intermediate
regime, where the ratio U/J is small enough that truncation up to second-order
makes sense but not too small so that interaction effects still have to be taken into
account.

We start by describing the initial conditions chosen for the numerical calcula-
tions, then we outline the numerical algorithms used, and finally we discuss the
results.

7.2.1 Initial conditions and parameters

To model the patterned loading, the initial conditions assumed for the numerical
solutions were zi(0) = Nδi0, ρ

(F )
ij (0, 0) = 1

2δij , ρ
(ρ)
ij (0, 0) = −iδij and m

(F )
ij (0, 0)) =

m
(ρ)
ij (0, 0) = 0. Here zi(t) are the condensate amplitudes and ρ

(F )
ij (ti, tj), ρ

(ρ)
ij (ti, tj),

m
(F )
ij (ti, tj) and m

(ρ)
ij (ti, tj) are the statistical and spectral normal and anomalous

propagators as defined in chapter 6. The initial conditions correspond to an initial
coherent state with N atoms in the initially populated well.

To study the kinetic energy dominated regime we chose for the simulations
three different sets of parameters:. The first set is chosen to be in the very weak
interacting regime, M = 3, N = 6, J = 1 and U/J = 1/30. With this choice we
wanted to show the validity of a mean field approach to describe this regime and
the corrections introduced by the higher order approximations. The second set of
parameters is M = 3, N = 8, J = 1 and U/J = 1/3. In this regime the kinetic
energy is big enough to allow tunneling but the effect of the interactions is crucial
in the dynamics.

At the mean field level (using the DNLSE) for a given number of wells, the only
relevant parameter for describing the dynamics of the system is the ratio UN/J .
This is not the case in the exact solution where both UN/J and N are important.
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The larger the initial population N , the larger the initial population in the coherent
matter field, and therefore we expect better agreement of the truncated theories
with the exact solution with larger N . To study the dependence of the dynamics
on the total number of atoms, the third set of parameters in our solutions is chosen
to be M = 2, J = 1/2 and NU/J was fixed to 4, but the number of atoms was
changed from 20 to 80. To increase the number of atoms in the exact calculations
we had to reduce the number of wells to two due to the fact that the dimension of
the Hilbert space scales exponentially with N and M .

7.2.2 Numerical algorithm for the approximate solution

The time evolution equations obtained in chapter 6 are nonlinear integro-differential
equations. Though the equations are very complicated, they can be solved on a
computer. The important point to note is that all equations are causal in time,
and all quantities at some later time tf can be obtained by integration over the
explicitly known functions for times t ≤ tf .

For the numerical solution we employed a time discretization t = nat, t′ = mat,
with n and m integers and took the advantage that, due to the presence of the
lattice, the spatial dimension is discrete (indices i and j). The discretized equations
for the time evolution of the matrices ρ

(F,ρ)
ijnm, m

(F,ρ)
ijnm and zin advance time stepwise

in the n-direction for fixed m. Due to the symmetries of the matrices only half of
the (n,m) matrices have to be computed and the values ρρ

ijnn = −i, mρ
ijnn = 0 are

fixed for all time due to the bosonic commutation relations. As initial conditions
one specifies ρ

(F,ρ)
ij00 , m

(F,ρ)
ij00 and zi0.

To ensure that the discretized equations retain the conservation properties
present in the continuous ones one has to be very careful in the evolution of the
diagonal terms of ρ

(F )
iinn and take the limit m → n in a proper way:

ρ
(F,ρ)
ijn+1n+1 − ρ

(F,ρ)
ijnn = (7.2)(

ρ
(F,ρ)
ijn+1n − ρ

(F,ρ)
ijnn

)
±

(
ρ
∗(F,ρ)
jin+1n − ρ

∗(F,ρ)
jinn

)
,

m
(F,ρ)
ijn+1n+1 −m

(F,ρ)
ijnn = (7.3)(

m
(F,ρ)
ijn+1n −m

(F,ρ)
ijnn

)
±

(
m

(F,ρ)
jin+1n −m

(F,ρ)
jinn

)
,

with the positive sign for the statistical propagators, (F )′s, and negative sign for
the spectral functions, (ρ)′s. We used the fourth order Runge-Kutta algorithm to
propagate the local part of the equations and a regular one step Euler method
to iterate the non local parts. For the integrals we used the standard trapezoidal
rule. Starting with n = 1, for the time step n + 1 one computes successively all
entries with m = 0......, n, n+1 from known functions evaluated at previous times.

The time step at was chosen small enough so that convergence was observed,
that is, further decreasing it did not change the results. The greater the parameter
UN/J , the smaller is the time step required. The main numerical limitation of
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the 2PI approximation is set by the time integrals, which make the numerical
calculations time and memory consuming. However, within a typical numerical
precision it was usually not necessary to keep all past values of the two point
functions in the memory. A characteristic time, after which the influence of the
early time in the late time behavior is negligible, is given by the inverse damping
rate. This time is described by the exponential damping of the two-point correlator
at time t with the initial time[127]. In our numerics we extended the length of the
employed time interval until the results did not depend on it. In general, it was less
than the inverse damping rate. We used for the calculations a single PII 400 MHz
workstation with 260 Mb of memory. For a typical run 1-2 days of computational
time were required.

7.2.3 Results and discussions

In Figs. 7.2 to 7.6 we show our numerical results. We focus our attention on the
evolution of the condensate population per well, |zi(t)|2, the total atomic popu-
lation per well, |zi|2 + ρ

(F )
ii (t, t) − 1

2 , the depletion per well or atoms out of the
condensate, ρ

(F )
ii (t, t) − 1

2 , and the total condensate population,
∑

i |zi(t)|2. The
total population is also explicitly shown in the figures to emphasize number con-
servation.

The quasi-momentum distribution of the atoms released from the lattice is
important because it is one of the most easily accessible quantities from an ex-
periment. (see sec.5.5) The quasi-momentum distribution function nk is defined
as

nk(t) =
1
M

∑

i,j

eik(i−j)
〈
a†i (t)aj(t)

〉
, (7.4)

where the quasi-momentum k can assume discrete values which are integral mul-
tiples of 2π

Ma , with M the total number of lattice sites and a the lattice spacing.
The basic features of the plots can be summarized as follows:

The very weakly interacting regime: In Fig. 7.2 the dynamics of the atomic
population per well resembles the Rabi oscillation phenomenon. Notice that even
though there are three wells, periodic boundary conditions enforce equal evolution
of the initially empty ones. In this regime damping effects remain very small for the
time depicted in the plots. The numerical simulations show a general agreement
between the different approaches and the exact solution. The effect of including
higher order terms in the equations of motion is to introduce small corrections
which improve the agreement with the exact dynamics. This shows up in the plots
of the condensate population and depletion, where the small differences can be
better appreciated. The second-order 1/N expansion gives an improvement over
the HFB and the complete second-order perturbative expansion almost matches
the exact solution perfectly. In the duration depicted in the plots of Fig. 7.2 the
total condensate constitutes an important fraction of the total population. Re-
garding the quasimomentum distribution, we observe that similarly to the spatial
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distribution where the initial configuration and periodic boundary conditions re-
duce the three well system to a double well one, they enforce equal evolution of
the ±2π

3 quasimomentum intensities. The k = 0 and ±2π
3 intensities oscillate with

the same frequency as the atomic population per well, both are also well described
by the approximations in consideration.

The intermediate regime: We can see the effect of the interactions in the
dynamics. They modulate the oscillations in the population per well and scatter
the atoms out of the condensate.

1. In Figs. 7.3 we plot the numerical solution for the parameters M = 3, N =
8, J = 1 and U/J = 1/3. In contrast to the case of the very weak interacting
regime, it is only at early times that any of these approximations is close to
the exact solution. Even though none of them are satisfactory after the first
oscillation the HFB approximation is the only one that fails to capture the
exponential decrease of the condensate population. This is expected, because
even though this approximation goes beyond mean field theory and takes
into account the most important scattering effects, it includes the effects
of collisions only indirectly through energy shifts, and breaks down outside
the collisionless regime where multiple-scattering effects are important. In
contrast, the exponential decay of the condensate is present in the second-
order approximations. Non local parts of the self-energy included in them
encode scattering effects responsible for damping. It is important to point out
that, even though we observe the collapse of the condensate population, the
total population is always conserved: as the condensate population decreases,
the noncondensate population increases.

2. Comparing the two second-order approaches we observe that the full second-
order expansion gives a better description of the dynamics than the 1/N
solution only in the regime when the perturbative solutions are close to the
exact dynamics. As soon as the third order terms start to be important the
large 1/N expansion gives a better qualitative description. This behavior is
better appreciated in figs. 7.4 to 7.6 as the number of atoms is increased (see
discussion below).

We observe as a general issue in this regime that, regardless of the fact that
the second-order solutions capture the damping effects, as soon as the con-
densate population decreases to a small percentage of the total population,
they depart from the exact dynamics: the second-order approaches predict
faster damping rates. The overdamping is more severe in the dynamics of
the population per well than in the condensate dynamics. The failure can be
understood under the following lines of reasoning. At zero temperature con-
densate atoms represent the most ”classical” form of a matter wave. When
they decay, the role of quantum correlations becomes more important. At
this point the higher order terms neglected in the second-order approxima-
tions are the ones that lead the dynamical behavior. Thus, to have a more
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accurate description of the dynamics after the coherent matter field has de-
cayed one needs a better treatment of correlations.

Damping effects are also quite noticeable in the quantum evolution of the
quasi-momentum intensities. Similarly to what happens to the spatial ob-
servables, the HFB approximation fails completely to capture the damping
effects present in the evolution of the Fourier intensities whereas the second-
order approaches overestimate them.

3. In Figs. 7.4 to 7.6 we explore the effect of the total number of atoms on the
dynamics. In the plots we show the numerical solutions found for a double
well system with fix ratio UN/J = 4 and three different values of N : N =
20, 40 and 80. We present the results obtained for the evolution of the atomic
population per well in Fig. 7.4, the condensate population per well and total
condensate population in Fig. 7.5 and the quasi-momentum intensities in
Fig. 7.6. To make the comparisons easier we scaled the numerical results
obtained for the three different values of N by dividing them by the total
number of atoms. In this way for all the cases we start with an atomic
population of magnitude one in the initially populated well.

In the exact dynamics we see that as the number of atoms is increased the
damping effects occur at slower rates. This feature can be noticed in the
quantum dynamics of all of the observables depicted in the plots 7.4 to 7.6.
The decrease of the damping rates as the number of atoms is increased is not
surprising because by changing the number of atoms we affect the quantum
coherence properties of the system. As discussed above the collapse time
of the condensate population is approximately given by tcoll ∼ trev

2π
√

N
. The

revival time is proportional to U−1 and varies with N for fixed UN/J as
trev ∝ N

J , thus tcoll ∝
√

N increases with N as observed in the numerical
calculations. Besides damping rates, the qualitative behavior of the exact
quantum dynamics is not much affected as the number of atoms is increased
for a fixed UN/J .

The improvement of the 2PI approximations as N is increased, as a result of
the increase in the initial number of coherent atoms is in fact observed in the
plots. Even though the problem of underdamping in the HFB approximation
and the overdamping in the second-order approaches are not cured, as the
number of atoms is increased, we do observe a better matching with the full
quantal solution. The 1/N expansion shows the fastest convergence. Perhaps
this issue can be more easily observed in the quasi-momentum distribution
plots, Fig. 7.6. The better agreement of the 1/N expansion relies on the fact
that even though the number of fields is only two in our calculations the 1/N
expansion is an expansion about a strong quasiclassical field configuration.
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7.3 Conclusions

In this work we have used the CTP functional formalism for 2PI Green’s func-
tions to describe the nonequilibrium dynamics of a condensate loaded in an optical
lattice on every third lattice site. We have carried out the analysis up to second-
order in the interaction strength.This approximation is introduced so as to make
the numerical solution manageable, but it is sufficient to account for dissipative
effects due to multiparticle scattering that are crucial even at early times. Our
formulation is capable of capturing the salient features of the system dynamics in
the regime under consideration, such as the decay of the condensate population
and the damping of the oscillations of the quasi-momentum and population per
well unaccounted for in the HFB approximation. However, at the point where
an important fraction of the condensate population has been scattered out, the
second-order approximations used here predict an overdamped dynamics. To im-
prove on this a better treatment of higher correlations is required. One might try
to include the full next to leading order large N expansion without the truncation
to second-order as done in Ref. [127] but it is not obvious that this will lead to the
required improvement. Alternatively, one may try to adopt a stochastic approach,
but the challenge will be shifted to the derivation of a noise term (which is likely
to be both colored and multiplicative) which contains the effects of these higher
correlations and the solution of the stochastic equations.

Even though, as is clear that the second-order 2PI approximations fail to cap-
ture the fully correlated dynamics in the system, it has been proved to work at
intermediate times when correlations are not negligible and standard mean field
techniques fail poorly. Because of their success in describing moderately correlated
regimes, the second-order approximations could become a useful tool for describing
other experimental situations.
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Figure 7.1: Comparisons between the exact and the DNLSE solutions for six atoms
and three wells. The time is given in units of ~/J . Top panel, strongly correlated
regime (γ = 12); middle panel, intermediate regime (γ = 2); bottom panel, weakly
interacting regime (γ = 0.2). The solid line is the DNLSE prediction for the
population per well: |z0(t)|2 and |z1,2(t)|2, the triangles are used to represent
the exact solution for the population per well calculated using the Bose Hubbard
Hamiltonian: 〈â†0â0〉, 〈â†1,2â1,2〉. The pentagons show the condensate population
per well calculated from the exact solution: |〈â0〉|2 and |〈â1,2〉|2. Due to the
symmetry of the initial periodic conditions the curves for the i = 1 and 2 wells are
the same in all depicted curves .
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Figure 7.2: Comparisons between the exact solution(solid line), the HFB approxi-
mation (boxes), the second-order large N approximation (pentagons) and the full
2PI second-order approximation(crosses) for the very weak interacting regime. The
parameters used were M = 3, N = 6, J = 1 and U/J = 1/30. The time is given
in units of ~/J . In the plots where the population, condensate and depletion per
well are depicted the top curves correspond to the initially populated well solutions
and the lower to the initially empty wells. Notice the different scale used in the
depletion plot. In the momentum distribution plot the upper curve corresponds
to the k = ±2π/3 intensities and the lower one to the k = 0 quasi-momentum
intensity.
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Figure 7.3: Comparisons for the case M = 3, N = 8, J = 1 and U/J = 1/3.
The time is given in units of ~/J . In the plots the abbreviation 1st is used for the
initially occupied well and 2nd for the initially empty wells. In the quasimomentum
plots k = 2π/a is the reciprocal lattice vector with a the lattice spacing.
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Figure 7.4: Comparison between the evolution of the atomic population per well
for M = 2, J = 1/2, NU/J = 4 and N = 20, 40 and 80. Time is in units of ~/J . In
the plots P1 stands for the fractional atomic population in the initially populated
wells and P2 for the population in the initially empty wells. The number of atoms
N is explicitly shown in each panel.
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Figure 7.5: Time evolution of the condensate population per well and the total
condensate population,for the same parameters as Fig. 7.4. Time is in units of
~/J . In the plots C1 stands for the fractional condensate population in the initially
populated well, C2 for the fractional condensate population in the initially empty
one and CT for the total condensate fraction.
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Figure 7.6: Dynamical evolution of the quasi-momentum intensities. The param-
eters used were M = 2, J = 1/2, NU/J = 4 and N = 20, 40 and 80. Time is
in units of ~/J . In the plots ko denotes the k = 0 quasi-momentum component
and k1 the k = π/a one (a the lattice spacing). The plots are scaled to set the
integrated quasi-momentum density to one for all N .



Chapter 8

From the 2PI-CTP
approximations to kinetic
theories and local equilibrium
solutions

In chapter 6 we used the CTP functional formalism for 2PI Green’s functions
to derive dynamical equations of motion. We have carried out the analysis up
to second-order in the interaction strength. In chapter 7 we used the formalism
to investigate the nonequilibrium dynamics of a condensate loaded on every third
site of an optical lattice. We showed that the formalism allowed us to go beyond
the HFB approximation and to incorporate the nonlinear and non-Markovian as-
pects of the quantum dynamics as manifested in the dissipation and fluctuation
phenomena.

However, in the present form the equations of motion are complicated nonlocal
nonlinear equations from which we can hardly get any physical information regard-
ing the system behavior except by numerical solution. Moreover, the numerical
solutions are complicated enough that application to real system with many lattice
sites are presently beyond the scope of standard computation capabilities. Never-
theless, when the perturbation induces disturbances in the system of wave length
longer than thermal wave lengths and frequencies much smaller than characteristic
particle energies then the system is in a regime where standard kinetic theories
give a good description of the dynamics. The purpose of this chapter is then to
simplify the complicated 2PI-CTP equations and show that they in fact reproduce,
in the slowly varying regime, standard kinetic theories and equilibrium solutions
for weakly interacting gases well known in the literature since the late 1950’s.



144
Chapter 8 From the 2PI-CTP approximations to kinetic theories and

local equilibrium solutions

8.1 Rewriting the 2PI-CTP second-order equations

In order to make the comparisons with standard approaches we will start by getting
rid of the matrix indices that were useful to derive the equations of motion but
which complicate the notation. We define the quantities

z(ti) ≡ za
i (t), (8.1)

G(ti, t′j) ≡ −iGij
a
b(t, t

′), (8.2)
H(ti, t′j) ≡ −iza

i (t)zjb(t
′), (8.3)

G>(ti, t′j) ≡ −iG>
ij

a

c
(t, t′), (8.4)

G<(ti, t′j) ≡ −iG<
ij

a

c
(t, t′) = −iG>

jic

a(t′, t). (8.5)

Here we used the notation introduced in Eqs. (6.26) and (6.27). With these defini-
tions we now explicitly separate the single particle, the HFB and the second-order
contributions in the equations of motion for the condensate and the propagators
(Eq. (6.22) and Eq. (6.24)).

∑

k

∫
dt′′

(
D−1

o (ti, t′′k)− SHFB(ti, t′′k)
)
z (t′′k) =

∑

k

∫
dt′′S(ti, t′′k)z(t

′′
k),(8.6)

∑

k

∫
dt′′

(
D−1

o (ti, t′′k)− ΣHFB(ti, t′′k)
)
G(t′′k, t

′
j) =

∑

k

∫
dt′′Σ(ti, t′′k)G(t′′k, t

′
j)

−δijδC(t− t′), (8.7)

where D−1
o (ti, t′j) is the inverse free particle propagator given by:

D−1
o (ti, t′j) ≡ (iδijσz∂t + J(δi+1j + δi−1j)− δijVi) δ(t− t′), (8.8)

with σ being the Pauli matrices:

σz =
(

1 0
0 −1

)
, σx =

(
0 1
1 0

)
. (8.9)

In D−1
o (ti, t′j) we have allowed the presence of an external potential Vi. The label

HFB stands for the HFB contribution. Using the definition (8.1)-(8.5) in Eqs.
(6.43) and (6.45) they can then be rewritten as:

ΣHFB(ti, t′j) ≡ (8.10)

i
U

N
(
Tr

(
H(ti, t′j) + G(ti, t′j)

)
I + 2

(
H(ti, t′j) + G(ti, t′j)

))
δ(t− t′)δij,,

SHFB(ti, t′j) ≡ i
U

N
(
Tr

(
H(ti, t′j)I + G(ti, t′j)

)
+ 2G(ti, t′j)

)
δ(t− t′)δij . (8.11)
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where I is the identity matrix. To evaluate the second-order contribution, we use
Eqs. (6.31) and (6.32) but instead of setting the initial time to zero we choose it to
be −∞ and in this way we recover the standard Kadanoff and Baym integration
contours [137]:

∑

k

∫ ∞

−∞
dt′′

(
D−1

o (ti, t′′k)− SHFB(ti, t′′k)
)
H(t′′k, t

′
j)−

∫ t

−∞
dt′′γ(ti, t′′k)H(t′′k, t

′
j)

= 0, (8.12)
∑

k

∫ ∞

−∞
dt′′H(ti, t′′k)

(
D−1

o (t′′k, t
′
j)− SHFB(t′′k, t

′
j)

)
+

∫ t

−∞
dt′′H(ti, t′′k)γ(t′′k, t

′
j)

= 0, (8.13)

∑

k

∫ ∞

−∞
dt′′

(
D−1

o (ti, t′′k)− ΣHFB(ti, t′′k)
)
G(≷)(t′′k, t

′
j) = (8.14)

∑

k

∫ t

−∞
dt′′Γ(ti, t′′k)G

(≷)(t′′k, t
′
j)−

∑

k

∫ t′

−∞
dt′′Σ(≷)(ti, t′′k)A(t′′k, t

′
j),

∑

k

∫ ∞

−∞
dt′′G(≷)(ti, t′′k)

(
D−1

o (t′′k, t
′
j)− ΣHFB(t′′k, t

′
j)

)
= (8.15)

∑

k

∫ t

−∞
dt′′A(ti, t′′k)Σ

(≷)(t′′k, t
′
j)−

∑

k

∫ t′

−∞
dt′′G(≷)(ti, t′′k)Γ(t′′k, t

′
j).

In the above equations, Eq. (8.15) is the hermitian conjugate of Eq. (8.14), Eq.
(8.13) is the hermitian conjugate of Eq. (8.12) and we have introduced the spectral
functions

γ(ti, t′j) ≡ (S>(ti, t′j)− S<(ti, t′j)), (8.16)
Γ(ti, t′′j ) ≡ (Σ>(ti, t′′j )− Σ<(ti, t′′j )), (8.17)
A(ti, t′′j ) ≡ (G>(ti, t′′j )−G<(ti, t′′j )). (8.18)

Notice that A(ti, t′′j ) is just the spectral function defined in Eq.(6.34) multiplied
by a minus sign, however, we adopted the notation γ, Γ and A to be consistent
with standard Kadanoff and Baym notation [137].

If we use the full second-order expansion, Eqs.(6.71 and 6.72), it can be shown
that the matrices S(≷) and Σ(≷) are given by

S(≷)(ti, t′j) ≡ −1
2

(
2U

N
)2 [

G(≷)(ti, t′j)Tr
(
G(≷)(ti, t′j)G

(≶)(t′j , ti)
)

+ 2G(≷)(ti, t′j)G
(≶)(t′j , ti)G

(≷)(ti, t′j)
]
, (8.19)



146
Chapter 8 From the 2PI-CTP approximations to kinetic theories and

local equilibrium solutions

Σ(≷)(ti, t′j) ≡ −1
2

(
2U

N
)2

× (8.20)
{

H(ti, t′j)Tr
(
G(≷)(ti, t′j)G

(≶)
ik (t′j , ti)

)
+ 2H(ti, t′j)G

(≶)(t′j , ti)G
(≷)(ti, t′j)

+2G(≷)(ti, t′j)
(
H(t′j , ti)G

(≷)(ti, t′j) + G(≶)(t′j , ti)H(ti, t′j) + G(≶)(t′j , ti)G
(≷)(ti, t′j)

)

G(≷)(ti, t′j)Tr
(
H(t′j , ti)G

(≷)(ti, t′j) + G(≶)(t′j , ti)H(ti, t′j) + G(≶)(t′j , ti)G
(≷)(ti, t′j)

)}
.

It is convenient to decompose the above equations in their matrix components.
To do that we introduce the definitions

G>(ti, t′j) = −i

(
ρ̃ij mij

m∗
ji ρji

)
, (8.21)

G<(ti, t′j) = −i

(
ρij mji

m∗
ij ρ̃ji

)
. (8.22)

Using Eqs. (8.21) and (8.22) into the self-energy equations we get

ΣHFB(ti, t′j) =
2U

N
(

2|zi|2 + ρii + ρ̃ii z2
i + mii

z∗2i + m∗
ii 2|zi|2 + ρii + ρ̃ii

)
δ(t− t′)δij ,(8.23)

SHFB(ti, t′j) =
2U

N
( |zi|2 + ρii + ρ̃ii mii

m∗
ii |zi|2 + ρii + ρ̃ii

)
δ(t− t′)δij , (8.24)

S>
11(ti, t

′
j) =

−i8U2

N 2
ρ̃ij(2mijm

∗
ji + ρ̃ijρji), (8.25)

S>
12(ti, t

′
j) =

−i8U2

N 2
mij(mijm

∗
ji + 2ρ̃ijρji), (8.26)

S<
11(ti, t

′
j) =

−i8U2

N 2
ρij(2mjim

∗
ij + ρ̃jiρij), (8.27)

S<
12(ti, t

′
j) =

−i8U2

N 2
mji(mijm

∗
ji + 2ρ̃jiρij), (8.28)
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Σ>
11(ti, t

′
j) =

−i8U2

N 2
(ρjiρ̃

2
ij + 2mij ρ̃ijmji

∗ + 2ρ̃ijmji
∗zizj + (8.29)

ρ̃2
ijzjzi

∗ + 2ρjiρ̃ijzizj
∗ + 2mijmji

∗zj
∗zi + 2mij ρ̃ijzi

∗zj
∗),

Σ>
12(ti, t

′
j) =

−i8U2

N 2
(2ρjimij ρ̃ij + 2ρjiρ̃ijzizj + mij

2mji
∗ + (8.30)

2mijzizjmji
∗ + 2mij ρ̃ijzjzi

∗ + 2ρjimijzizj
∗ + mij

2zi
∗zj

∗),

Σ<
11(ti, t

′
j) =

−i8U2

N 2
(ρij

2ρ̃ji + 2ρijmjimij
∗ + 2ρijzizjmij

∗ + ρ2
ijzjzi

∗ +

2ρij ρ̃jizizj
∗ + 2mjizimij

∗zj
∗ + 2ρijmjizi

∗zj
∗), (8.31)

Σ<
12(ti, t

′
j) =

−i8U2

N 2
(2ρijmjiρ̃ji + 2ρij ρ̃jizizj + mji

2mij
∗ + (8.32)

2mjizizjmij
∗ + 2ρijmjizjzi

∗ + 2mjiρ̃jizizj
∗ + mji

2zi
∗zj

∗),

and

S
(≷)
22 (ti, t′j) = S

(≷)
11 (ti, t′j) {ρij 7→ ρ̃ij} , (8.33)

S
(≷)
21 (ti, t′j) = S

(≷)
12 (ti, t′j) {mji 7→ mij

∗} , (8.34)

Σ(≷)
22 (ti, t′j) = Σ(≷)

11 (ti, t′j) {zi 7→ zj , ρij 7→ ρ̃ij} , (8.35)

Σ(≷)
21 (ti, t′j) = Σ(≷)

12 (ti, t′j) {zi 7→ zj
∗,mji 7→ mij

∗} . (8.36)

The above expressions for the self-energy exactly agree with the ones used in Refs.
[59, 60, 62]. In Refs. [59, 62] the authors used these equations as their starting
point before applying the Markovian approximation.

8.2 Boltzmann equations

From previous sections it can be observed that the equations of motion at second-
order are quite involved: they are nonlinear and nonlocal integro differential equa-
tions, not readily solvable in closed form. To progress further we need to introduce
approximations based on physical considerations. One of them is to recognize two
time scales in the system, one related to quantum processes (microscopic) which
determines the degree of quantum-mechanical entanglement of the system and one
related to the statistical and kinetic behavior (macroscopic) determined by the
range of the interactions among particles. In a classical point of view the two
different scales in the system can be understood as the time (or length) scale sep-
aration between the duration of a collision event (or scattering length) and the
inverse collision rate (or the mean free path). Close to equilibrium (when the ex-
ternal potential induces disturbances much longer than the lattice spacing and
frequencies much smaller than the characteristic particle energies) and in the
weakly interacting regime, we expect that a reasonable assumption would be to
consider the kinetic scale larger than the quantum one, which in a classical picture
corresponds to assume that be the time between collisions (or mean free path) is
long compared to the reaction time (or scattering length).
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Using this approximation it is possible to recast the quantum dynamics into the
much simpler forms of kinetic theory. In contrast to normal systems were there is
not a condensate, in condensed systems making the scale separation requires first
to do a gauge transformation which makes it easier to identify (and coarse-grain
away) the fast variations induced by the rapid change of the condensate phase.
Following Ref. [139] we introduce the gauge transformation

zi(t) = eiθi(t)
√

no(ti), (8.37)
G(≷)(ti, t′j) = eiθi(t)σzG̃(≷)(ti, t′j)e

−iθj(t
′)σz , (8.38)

where
√

no(ti) and θi(t) are real. In equilibrium, ∆θi ≡ (θi+1/2 − θi−1/2)/a is
related to the superfluid velocity and the time derivative of the phase to the
chemical potential. Extending these identifications to the nonequilibrium system
we define the chemical potential and superfluid velocity as

µi = −~∂tθi − ~2

4Ja2
vs
i
2 − Vi, (8.39)

~vs
i = 2J∆θia

2. (8.40)

After the gauge transformation the variables no, G̃ , vs and µ are expected to be
slowly varying functions of

R = (i + j)/2, T = (t + t′)/2, (8.41)

and peaked about the zeros of

r = (i− j), τ = (t− t′), (8.42)

necessary conditions to derive Boltzmann-type kinetic equations.
The equations of motion are invariant under the phase transformation if we

replace D−1
o by D̃−1

o :

D̃−1
o (ti, t′j) = (~δij(iσz∂t − ∂tθi)− δijVi+ (8.43)

J(eiσz∆θi+1/2δi+1j + e−iσz∆θi−1/2δi−1j)
)

δ(t− t′).

Since hereafter we will use the gauge-transformed functions exclusively, in the
following the tildes will be dropped to simplify the notation. To obtain the kinetic
equations we Fourier transform the functions G and no with respect to r and τ .
The Fourier transform reads

G(≷)(ti, t′j) = G(≷)

((
T +

τ

2

)
R+r/2

,
(
T − τ

2

)
R−r/2

)

≡ −i
1

2πM

∑
q

∫
dωe(iqr−iωτ)G(≷)(Rq; T, ω), (8.44)

H(ti, t′j) = H

((
T +

τ

2

)
R+r/2

,
(
T − τ

2

)
R−r/2

)

≡ −i
1

2πM

∑
q

∫
dωe(iqr−iωτ)H(Rq; T, ω), (8.45)
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Neglecting second-order variations of no(Rq;T, ω) we can approximate it as

H(Rq; T, ω) = 2πM (I + σx) no(R, T )δ(ω)δq0. (8.46)

In Eq.(8.46), the quantity no(R, T ) is just related to the condensate density of
atoms at the space time point (Ra, T ). In Eq.(8.44), the two-point function
G

(<)
11 (Rq; T, ω) corresponds to the well known Wigner distribution function [140]. It

can be interpreted as the density of noncondensed particles with quasimomentum q

and energy ~ω at the lattice site R and time T . On the other hand, G
(>)
11 (Rq; T, ω)

is essentially the density of states available to a particle that is added to the system
at (Ra, T ) with quasimomentum q and energy ~ω. As opposed to a normal system,
the presence of the condensate gives non zero values to the off diagonal terms of
the functions G

(≷)
12 (Rq; T, ω). We refer to them as the anomalous contributions to

the respective two point functions.
The generalized Boltzmann equations can be obtained as the Fourier transform

of the equations of motion for the case in which the variations in R and T are very
slow. In particular when the inverse propagator D−1

o and the self energies vary very
little as Ra is changed by a characteristic excitation wavelength or T is changed
by an inverse excitation energy. Following Ref.[139] and assuming a (q, ω, R, T )
dependence of the variables, which is not explicitly written for simplicity, we get
the following equations:

(
D−1

o −<S +
i

2
γ

)
H = − i

2
[
D−1

o ,H
]
+

i

2
[<S, H] +

1
4

[γ,H] , (8.47)

H

(
D−1

o −<S − i

2
γ

)
= − i

2
[
H, D−1

o

]
+

i

2
[H,<S]− 1

4
[H, γ] , (8.48)

(
D−1

o −<Σ +
i

2
Γ
)

G(≷) − Σ(≷)

(
<G +

i

2
A

)
= − i

2

[
D−1

o , G(≷)
]

+
i

2

[
<Σ, G(≷)

]
+

i

2

[
Σ(≷),<G

]
+

1
4

[
Γ, G(≷)

]
− 1

4

[
Σ(≷), A

]
, (8.49)

G(≷)

(
D−1

o −<Σ− i

2
Γ
)

−
(
<G− i

2
A

)
Σ(≷) = − i

2

[
G(≷), D−1

o

]
+

i

2

[
G(≷),<Σ

]
+

i

2

[
<G,Σ(≷)

]
− 1

4

[
G(≷), Γ

]
+

1
4

[
A, Σ(≷)

]
, (8.50)

with

D−1
o (Rq;T, ω) ≡ (σz (~ω − vs2J sin(qa)) + (2J cos(qa) + µR(T )) I) . (8.51)

Because all the quantities are slowly varying functions of R and T , in Eqs (8.47-
8.50) we approximated the discretized equation to continuous differential equa-
tions. The brackets denote the generalized Poisson brackets defined as:

[A,B] =
∂A

∂ω

∂B

∂T
− ∂A

∂T

∂B

∂ω
+ ∂RA∂qB − ∂qA∂RB. (8.52)
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In the equations we have also introduced the following functions:

<S(Rq; T, ω) = SHF (Rq; T, ω) + <SB(Rq;T, ω), (8.53)
<Σ(Rq; T, ω) = ΣHF (Rq; T, ω) + <ΣB(Rq;T, ω), (8.54)

<SB(Rq; T, ω) = P

∫
dω′

2π

γ(Rq; T, ω)
ω − ω′

, (8.55)

<ΣB(Rq; T, ω) = P

∫
dω′

2π

Γ(qR, ω′)
ω − ω′

, (8.56)

<G = P

∫
dω′

2π

A(Rq; T, ω)
ω − ω′

. (8.57)

with P denoting the Cauchy principal value and γ(Rq;T, ω), Γ(Rq; T, ω), SHF (Rq;T, ω),
ΣHF (Rq;T, ω) and A(Rq; T, ω) understood as Fourier transforms of the functions
γ(ti, t′j), Γ(ti, t′j), S

HF
(ti, t′j), ΣHF (ti, t′j) and A(ti, t′j) respectively.

If we define the statistical variables as:

F =
G> + G<

2
, (8.58)

Π =
Σ> + Σ<

2
. (8.59)

Eq. (8.49)and Eq. (8.50), can be rewritten in term of statistical and spectral
functions as:

(
D−1

o −<Σ +
i

2
Γ
)

F − Π
(
<G +

i

2
A

)
= (8.60)

− i

2

{[
D−1

o −<Σ +
i

2
Γ, F

]
−

[
Π,<G +

i

2
A

]}
,

F

(
D−1

o −<Σ− i

2
Γ
)

−
(
<G− i

2
A

)
Π = (8.61)

− i

2

{[
F, D−1

o −<Σ− i

2
Γ
]
−

[
<G− i

2
A,Π

]}
,

(
D−1

o −<Σ
)
A− Γ<G = − i

2
{[

D−1
o −<Σ, A

]− [Γ,<G]
}

, (8.62)

A
(
D−1

o −<Σ
)−<GΓ = − i

2
{[

A,D−1
o −<Σ

]− [<G,Γ]
}

. (8.63)

Eqs. (8.47), (8.48) and (8.60)- (8.63) are our passage to the Boltzmann equa-
tions. They describe the state of the gas at a given time. In contrast to the HFB
equations, they include collisional integrals to describe binary interactions.

To progress further we can introduce even more simplifications based on phys-
ical assumptions. The ordinary Boltzmann equation emerges from the approxima-
tion in which the self energies that appear on the left side of Eqs.(8.47), (8.48) and
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(8.60)- (8.63) are handled differently from those which appear on the right. These
two appearances of the self-energy play a different physical role in the descrip-
tion of the dynamics [137]. The self energies on the right hand side describe the
dynamical effects of collisions, i.e., how the collisions transfer particles from one
energy-momenta configuration to another. On the other hand, the self energies on
the left describe the quantum kinetic effects due to interactions, i.e. how inter-
action effects change the energy momentum dispersion relations from that of free
particles to a more complicated spectrum. Because these two effects are physically
so different, we can treat the left and the right hand sides in different ways.

In the derivation of the ordinary Boltzmann equations, one completely neglects
all the kinetic effects in the second-order self energies (the dependence on T and R
in the second-order self energy terms on the right hand side) and retain dynamical
effects (T and R dependence on the left hand side). In this way, we get the familiar
Boltzmann equations which describe the particles as free particles in between col-
lisions. This is a reasonable assumption in dilute weakly interacting gases in which
the duration of a collision is very short compared to the essentially interaction-free
dynamics between isolated collisions. Neglecting kinetic effects in the second-order
self energies, Eqs.(8.47), (8.48) and (8.60)-(8.63) can be approximated to

(
D−1

o −<S +
i

2
γ

)
H = − i

2
[
D−1

o − SHF ,H
]
, (8.64)

H

(
D−1

o −<S − i

2
γ

)
= − i

2
[
H, D−1

o − SHF
]
, (8.65)

(
D−1

o −<Σ +
i

2
Γ
)

F −Π
(
<G +

i

2
A

)
= − i

2
[
D−1

o − ΣHF , F
]
, (8.66)

(
D−1

o −<Σ
)
A− Γ<G = − i

2
[
D−1

o − ΣHF , A
]
, (8.67)

F

(
D−1

o −<Σ− i

2
Γ
)
−

(
<G− i

2
A

)
Π = − i

2
[
F, D−1

o − ΣHF
]
, (8.68)

A
(
D−1

o −<Σ
)−<GΓ = − i

2
[
A,D−1

o − ΣHF
]
. (8.69)

If we take the trace of the sum and the difference of each one of the above equations
with its hermitian conjugate, they can be simplified to :

Tr
{(

D−1
o −<S

)
H

}
= 0, (8.70)

Tr
{(

D−1
o −<Σ

)
F −Π<G

}
= 0, (8.71)

Tr
{(

D−1
o −<Σ

)
A− Γ<G

}
= 0, (8.72)

Tr
[
D−1

o − SHF ,H
]

= −Tr(γH), (8.73)

Tr
[
D−1

o − ΣHF , F
]

= −Tr(ΓF −ΠA). (8.74)

Tr
[
D−1

o − ΣHF , A
]

= 0 (8.75)
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Moreover, if we define the operator krM = M12 + M∗
21 and apply it again to

the sum and the difference of each one of the equations (8.60) to (8.63) with its
transpose we also get:

Re
(
kr

{(
D−1

o −<S
)
H

})
=

1
2
Im

(
kr

[
D−1

o − SHF,H
]
+ k(γH)

)
, (8.76)

Re
(
kr

{(
D−1

o −<Σ
)
F−Π<G

})
=

1
2
Im

(
kr

[
D−1

o − ΣHF, F
]
+ kr(ΓF−ΠA)

)
,(8.77)

Re
(
kr

{(
D−1

o −<Σ
)
A− Γ<G

})
=

1
2
Im

(
kr

[
D−1

o − ΣHF, A
])

, (8.78)

Im
(
kr

{(
D−1

o −<S
)
H

})
= −1

2
Re

(
kr

[
D−1

o − SHF,H
]
+ k(γH)

)
, (8.79)

Im
(
kr

{(
D−1

o −<Σ
)
F−Π<G

})
= −1

2
Re

(
kr

[
D−1

o − ΣHF, F
]
+ kr(ΓF−ΠA)

)
,(8.80)

Im
(
kr

{(
D−1

o −<Σ
)
A− Γ<G

})
= −1

2
Re

(
kr

[
D−1

o − ΣHF, A
])

, (8.81)

with Re and Im denoting the real and imaginary parts. To close this set of equa-
tions we need an equation of motion for the superfluid velocity which can be found
from the definitions Eq.(8.39) and Eq.(8.40) to be:

~
2Ja2

∂vs

∂T
= − ∂

∂R

(
(µ + V ) +

~
4Ja2

vs
2

)
. (8.82)

Eqs.(8.70-8.81) together with Eq.(8.82) form a closed set of equations that
describe the state of the gas at a given time. Equations (8.70-8.72) and (8.76-
8.78) are usually called gap equations. They describe the quantum properties of
the gas which is evolving according to the Boltmaznn equations (8.73-8.75) and
(8.79-8.81). Under the derived formalism the Boltzmann and gap equations form
a coupled set of equations which replaces the original dynamics. The equations
have to be solved self consistently for any analysis.

8.3 Equilibrium properties for a homogeneous system

In this section we will show how the nonequilibrium Boltzmann equations lead, in
a special case, to the linear equilibrium solutions discussed in chapter 5 upgraded
with second-order corrections in U not included in the quadratic approximations.
There are two situations in which we expect an equilibrium solution to come from
the Boltzmann equations. Firstly, when the system has never been disturbed it
remains in its equilibrium state. Secondly, when the system has had sufficient time
to relax after an applied perturbation.

At equilibrium, in the absence of any external potential, the functions G≷ and
H are completely independent of R and T . In this case the generalized Poisson
brakets terms are zero and Eqs.(8.72, 8.75) and (8.78, 8.75) imply that:

A
(
D−1

o −<Σ
)− (<G)Γ = 0. (8.83)
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Because <G(q, ω) is determined by A(q, ω) as indicated in Eq. (8.57), Eq. (8.83)
is satisfied when A(q, ω) is given by

A(q, ω) = i

{[
D−1

o −<S +
i

2
Γ
]−1

−
[
D−1

o −<S − i

2
Γ
]−1

}
, (8.84)

and the function <G(q, ω) given by

<G(q, ω) = P

∫
dω′

2π

A(q, ω′)
ω − ω′

=
1
2

{[
D−1

o −<S +
i

2
Γ
]−1

+
[
D−1

o −<S − i

2
Γ
]−1

}
. (8.85)

From Eqs.(8.73), (8.79),(8.74) and (8.80)) we also get that at equilibrium

γ = 0, (8.86)
ΓF −ΠA = 0. (8.87)

Eqs. (8.86) and (8.87) are just the mathematical statement of detailed balance.
They just represent the physical condition that at equilibrium the net rate of
change of the density of particles with momentum q and energy ω is zero. Since
it is always possible to write [137]

F (q, ω) =
(

nq(ω) +
1
2

)
A(q, ω), (8.88)

then Eq.(8.87) can only be satisfied if

Π(q, ω) =
(

nq(ω) +
1
2

)
Γ(q, ω), (8.89)

is satisfied. Detailed study of the structure of the self energy indicates that nq(ω)
is related to the Bose-Einstein distribution, nq(ω) = 1

eβ~ω−1
with β interpreted as

the local inverse temperature in energy units [137, 139].
Since H contains delta functions in momentum and energy at equilibrium, we get
from Eq. (8.70):

µ = −2J + <S11(0, 0) + <S12(0, 0). (8.90)

8.3.1 Quasiparticle formalism

In the non interacting case the diagonal terms of A(q, ω) are just delta functions
with peaks at values of ~ω that matches the possible energy difference which re-
sults from adding a single particle with quasimomentum q to the system. In the
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many body system the energy spectrum is sufficiently complex so that the diag-
onal elements of A(q, ω) are not delta functions but instead continuous functions
of ω. However, there are always sharp peaks in A. These sharp peaks represent
the coherent and long lived excitations, which behave like weakly interacting par-
ticles. These excitations are called quasiparticles. From Eq. (8.84) it is possible
to see that the quasiparticle decay rate is determined by Γ. The quasiparticle
approximation is obtained by considering Γ very small for small values of ω. This
assumption implies that D−1 ≡ D−1

o − <Σ − i
2Γ is essentially real with only an

infinitesimal imaginary part. The zeros of D−1 about which A is very sharply
peaked are identified with the quasiparticle energies ~ωq.
Using the assumption of a very small Γ, and the identity limε→0

1
ω−ω′+iε = P 1

ω−ω′−
iπδ(ω − ω′), it is possible to write the matrix components of D−1 as:

D−1(q, ω) = ~ω
(

1 0
0 −1

)
−

( Lqq(q, ω) Mq−q(q, ω)
M∗

q−q(q, ω) L∗qq(−q,−ω)

)
, (8.91)

with

Lqq(ω) = −2J cos qa− µ + ΣHFB
11 (q, ω) +

∫
dω′

2π

Γ11(q, ω′)
ω − ω′ + iε

, (8.92)

Mq−q(ω) = ΣHFB
12 (q, ω) +

∫
dω′

2π

Γ12(q, ω′)
ω − ω′ + iε

. (8.93)

The quasiparticle amplitudes uq and vq are the solutions to the eigenvalue problem
( Lqq(q, ωq) Mq−q(q, ωq)
M∗

q−q(q, ωq) L∗qq(−q,−ωq)

)(
uq

vq

)
= ~ωq

(
1 0
0 −1

)(
uq

vq

)
, (8.94)

and satisfy the normalization condition |uq|2−|vq|2 = 1. In the absence of vortices
it is always possible to find an ensemble in which the amplitudes (uq, vq) are
purely real and uq = u−q, vq = v−q. In terms of the quasiparticle amplitudes,
the matrix elements of the spectral function A, Eq.(8.84), are given by:

A11(q, ω) = −2Im

[
u2

q

ω − ωq + i0+
− v2

q

ω − ωq + i0−

]

= 2π
[
u2

qδ(ω − ωq)− v2
qδ(ω + ωq)

]
, (8.95)

A12(q, ω) = 2Im
[

uqvq

ω − ωq + i0+
− vquq

ω − ωq + i0−

]

= −2πuqvq [δ(ω − ωq)− δ(ω + ωq)] , (8.96)
A22(q, ω) = −A11(−q,−ω), (8.97)
A21(q, ω) = A∗12(q, ω). (8.98)

Finally, using the definitions of F and A, we can express the matrix compo-
nents: ρq(ω), ρ̃q(ω) and mq(ω) defined as the Fourier transform of ρij , ρ̃ij and mij

respectively (see Eqs. (8.21) and (8.22)) in terms of quasiparticle amplitudes:
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ρq(ω) = 2π
[
u2

qnq(ω)δ(ω − ωq) + v2
q (1 + nq(ω))δ(ω + ωq)

]
, (8.99)

ρ̃q(ω) = 2π
[
u2

q(1 + nq)(ω)δ(ω − ωq) + v2
qnq(ω)δ(ω + ωq)

]
, (8.100)

mq(ω) = 2πuqvq [nq(ω)δ(ω − ωq)− (1 + nq(ω))δ(ω + ωq)] . (8.101)

8.3.2 HFB approximation

Under the HFB approximation the matrix <Σ and <S are just given by ΣHFB

and SHFB. In terms of the quasiparticle amplitudes and setting N = 2, they can
be written as:

ΣHFB = U

(
2 (no + ñ) no + m̃
no + m̃ 2 (no + ñ)

)
, (8.102)

SHFB = U

(
no + 2ñ m̃

m̃ no + 2ñ

)
. (8.103)

with

ñ = =
1
M

∑
q

(1 + nq(ωq))v2
q + u2

qnq, (8.104)

m̃ =
1
M

∑
q

uqvq (2nq(ωq) + 1) . (8.105)

In the HFB approximation, Eq.(8.94) and Eq. ( 8.90) then yield:

( −2J cos(qa)− µ + 2U(no + ñ) U (no + m̃)
U (no + m̃) −2J cos(qa)− µ + 2U(no + ñ)

)(
uq

vq

)
= ~ωq

(
uq

−vq

)
,

(8.106)

µ = −2J + Uno + 2Uñ + Um̃. (8.107)

As a final step, to fix the total density to n, the constraint

n = no + ñ, (8.108)

has to be satisfied.
For a given density and temperature Eqs. (8.106)- (8.108) form a closed set

of equations. At zero temperature, they reduce to the HFB equations derived in
chapter 5 using the quadratic approximation.
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8.3.3 Second-order and Beliaev approximations

When second-order terms are taking into account the matrixes Lqq and Mq−q

become energy dependent. For simplicity we restrict the calculations to the zero
temperature case when nq = 0. In terms of the quasiparticle amplitudes the
contributions to the self-energy at second-order are given by

Mq−q(q, ω) = Uno + Um̃ +
2U2

M~
no

∑

k

(
2AkBq−k + 2CkAp + 2CkBq−k + 3CkCq−k

ω − ωk − ωq−k + iε

−2BkAq−k + 2CkAp + 2CkBq−k + 3CkCq−k

ω + ωk + ωq−k − iε

)
(8.109)

+
2U2

M2~
∑

k,p

(
2AkBpCq−k−p + CkCpCq−k−p

ω − ωk − ωp − ωq−k−p + iε
− 2BkApCq−k−p + CkCpCq−k−p

ω + ωk + ωp + ωq−k−p − iε

)
,

Lqq(q, ω) = −2J cos qa− µ + 2Uno + 2Uñ +
2U2no

~M
∑

k

(AkAq−k + 2AkBq−k + 4CkAq−k + 2CkCq−k

ω − ωk − ωq−k + iε

− BkBq−k + 2(BkAq−k) + 4CkBq−k + 2CkCq−k

ω + ωk + ωq−k − iε

)
(8.110)

+
2U2

~M2

∑

k,p

(AkApBq−k−p + 2AkCpCq−k−p

ω − ωk − ωp − ωq−k−p + iε

)
−

(BkBpAq−k−p + 2BkCpCq−k−p

ω + ωk + ωp + ωq−k−p − iε

)
,

µ = −2J + Uno + 2Uñ + Um̃ (8.111)

− 2U2

~M2

∑

k,p

(
2AkBpCk+p + 2BkApCk+p + 2CkCpCk+p

ωk + ωp + ωk+p

)

− 2U2

~M2

∑

k,p

(
2AkCpCk+p +AkApBk+p + 2BkCpCk+p + BkBpAk+p

ωk + ωp + ωk+p

)
,

where the quantities A, B and C are defined as

Ak = u2
k, Bk = v2

k, Ck = −ukvk. (8.112)

The inclusion of second-order terms modifies the structure of the HFB equa-
tions. The matrix that we need to diagonalize to find the quasiparticle energies
depends now on the quasiparticle mode in consideration. This means that a sep-
arate nonlinear problem must be solved for every quasiparticle state, whereas the
solution of the HFB equations yields the whole quasiparticle spectrum. The ma-
trix which is to be diagonalized also become intrinsically non-local and to solve
for a quasiparticle state with quasimomentum q we have to sum over all different
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quasimomenta. Finally, the diagonal elements are no longer equal as was always
the case in all the quadratic approximations considered in chapter 5.

If we omit the second-order terms containing no condensate amplitudes, the
equations that we get are the tight-binding version of the ones originally derived
by Beliaev [63]:

Mq−q(q, ω) = Uno + Um̃ +
2U2

~M
no

∑

k

(
2AkBq−k + 2CkAp + 2CkBq−k + 3CkCq−k

ω − ωk − ωq−k + iε

− 2BkAq−k + 2CkAp + 2CkBq−k + 3CkCq−k

ω + ωk + ωq−k − iε

)
, (8.113)

Lqq(q, ω) = 4J sin2(qa/2) + Uno − Um̃ + (8.114)
2U2no

~M
∑

k

(AkAq−k + 2AkBq−k + 4CkAq−k + 2CkCq−k

ω − ωk − ωq−k + iε

− BkBq−k + 2(BkAq−k) + 4CkBq−k + 2CkCq−k

ω + ωk + ωq−k − iε

)
, (8.115)

µ = −2J + Uno + 2Uñ + Um̃. (8.116)

As discussed in chapter 5, the HFB approximation has the problem that it is
not gapless. It was shown by Beliaev that when second-order Beliaev contributions
are included the gap problem disappears. The reason is that as m̃ introduces the
many-body scattering matrix in the off-diagonal terms, second-order corrections
introduce the many-body scattering matrix in the diagonal terms. This can be seen
by considering the second-order Beliaev corrections in the particle approximation,
uq → 1, vq → 0. In this case the second-order terms in Eq.(8.115) become

L(2)
qq (q, ω) = −2U2no

~M
∑

k

1
ω − ωk − ωq−k − iε

. (8.117)

Comparison with Eq. (5.121) shows that L(2)
qq (q, ω) is the second order contribution

to the many body scattering matrix.
When both HFB and second-order corrections are included the quasiparticle

energies not only are shifted with respect to the BdG quasiparticle energies but
they also become complex. The imaginary part that the quasiparticle energies
acquire comes from the poles of the second-order terms and it is associated with
a damping rate. The physical meaning is that when the energy denominator in
the second-order terms vanishes a real decay process is energetically allowed. The
damping mechanism in which a quasiparticle decay into two of lower energy is
known as Beliaev damping and was calculated by Beliaev in the case of a uniform
Bose superfluid [63].
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8.4 Conclusions

In summary, we showed in this chapter that the complicated non local non Marko-
vian second-order solutions derived under the 2PI-CTP formalism, actually reduce
to the standard kinetic theory solutions when the scale separation assumption is
made. We also showed that at equilibrium the full second-order 2PI equations re-
produce the second-order corrections to the self energy well known since Beliaev.



Chapter 9

Characterizing the Mott
Insulator Phase

Besides the superfluid regime, the other regime where analytic solutions become
relatively simple is the Mott insulator phase. Deep in the Mott insulator regime
the kinetic energy term in the Hamiltonian, which delocalizes the atoms, can be
treated as a perturbation. In this chapter we use perturbation theory to describe
the basic properties of the Mott phase. We study both a translationally invariant
system when no other external potential is present and the case when there is
an external harmonic confinement, as is the case in real experimental situations.
Specifically, the trapped system is studied assuming a parameter regime where
multi-occupancy in inhibited which is the relevant regime for the lattice based
quantum computation proposals.

9.1 Commensurate translationally invariant case

9.1.1 Perturbation theory

In this section we assume a commensurately filled one dimensional lattice with
integer filling factor N/M = g, periodic boundary conditions and a parameter
regime where U/J À (U/J)c with (U/J)c the critical point, so that we are deep
in the insulating phase. In this parameter regime, it is fair to consider the kinetic
term of Bose-Hubbard Hamiltonian as a perturbation:

Ĥ = Ĥ(0) + δĤ, (9.1)

Ĥ(0) =
1
2
U

∑
n

â†nâ†nânân, (9.2)

δĤ = −J
∑

n

(â†n ân+1 + â†n+1 ân ). (9.3)

The unperturbed Hamiltonian includes only the on-site interaction term, which
is diagonal in a number Fock state basis, and to zeroth order the ground state
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|Φ0〉 is the Fock state with g atoms in every lattice site. We refer to this state
as the target state |T 〉. The lowest lying excitations are described by the Fock
states, |Ψnm〉, that have g + 1 particles at site n, g − 1 particles at site m, and
exactly g particles in every other site. We call these states one particle-hole (1-ph)
excitations . There are M(M−1) 1-ph excitations and because of the translational
symmetry of the system they are degenerate at zeroth order. All of them have an
energy U above the ground state. This energy gap is one of the most important
characteristics of the Mott insulator phase.

∣∣∣Φ(0)
0

〉
≡ |T 〉 ≡ |g, g, ...., g, g〉 , (9.4)

∣∣∣Φ(0)
i

〉
≡ |Ψnm〉n 6=m i = 1, . . . , M(M − 1) (9.5)

=

∣∣∣∣∣∣
g, ..., g + 1︸ ︷︷ ︸

n

, ..., g − 1︸ ︷︷ ︸
m

, .., g

〉
.

The unperturbed energies are

E
(0)
0 =

U

2
Mg(g − 1), (9.6)

E
(0)
i = U + E

(0)
0 i = 1, . . . , M(M − 1). (9.7)

At first order the kinetic energy term mixes the target state with 1-ph excita-
tions with the particle and the hole at adjacent sites. The first order ground state
wave-function is

∣∣∣Φ(1)
0

〉
=

(
|T 〉+

J

U

√
2Mg(g + 1)|S〉

)
, (9.8)

with |S〉 the normalized translationally invariant state with a particle and hole at
adjacent sites:

|S〉 ≡
M∑

n=1

|Ψnn+1〉+ |Ψnn−1〉√
2M

. (9.9)

Notice the factor M that appears in the first order correction. It gives a restriction
on the validity of a perturbative treatment as the number of lattice sites increases.
In order for perturbation theory to be valid, the parameter Jg

U

√
M has to be small.

The first order correction to the ground state energy vanishes. The second order
correction is given by

E
(2)
0 = −2J2M

U
g(g + 1). (9.10)

Because of the degeneracy of the unperturbed states, in order to find first order
corrections to the M(M−1) low lying excited states we must diagonalize the kinetic
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energy Hamiltonian within the 1-ph subspace. If we span the eigenstates as a linear
combinations of 1-ph excitations,

∣∣∣Φ(1)
i

〉
=

M∑

n,m=1,m6=n

Ci
nm |Ψnm〉 , (9.11)

the necessary and sufficient conditions that the coefficients Ci
nm have to fulfill in

order to diagonalize the kinetic energy operator are given by the following equations

−(g + 1)(Ci
n+1m + Ci

n−1m)− g(Ci
nm+1 + Ci

nm−1) = ẼiC
i
nm, (9.12)

with E
(1)
i = U − JẼi. Besides Eq. (9.12), the amplitudes have to fulfill two other

equations:

Ci
nn = 0, (9.13)

Ci
n+Mm = Ci

nm+M = Ci
nm. (9.14)

Eq. (9.12) is analogous to the tight-binding Schrödinger equation of a two dimen-
sional square lattice in the x − y plane, with the x direction associated with the
position of the extra particle and the y direction with the position of the hole. The
different weights g + 1 and g can be understood in the 2D-lattice model as differ-
ent effective masses in the two directions. Eq. (9.14) imposes periodic boundary
conditions, whereas the constraint Ci

nn = 0 takes into account the requirement
that the extra particle and the hole at the same site annihilate each other. It can
be thought of as a hard wall in the x = y axis. The solutions are not straightfor-
ward due to the fact that the effective mass difference breaks the lattice symmetry
around the x = y axis and makes the hard wall constraint hard to fulfill.

We now describe a procedure for solving the eigenvalue equations and evalu-
ating limiting cases where it is possible to find analytic solutions. Without any
constraint, a general solution of Eq. (9.12) has the form

Cnm ∝ einzeimt, (9.15)

with
Ẽi = −2 ((g + 1) cos (z) + g cos (t)) . (9.16)

To satisfy the constraint Cnn = 0 we use the linear character of the problem and
look for a linear combination of solutions which have the same eigenvalue Ẽi but
which also fulfill the hard wall constraint. We look then for a general solution of
the form:

Cnm ∝ sin (r(n−m)) eimleins, (9.17)

and determine the free parameters, l, r, s by forcing the solution to satisfy Eq.
(9.12). This procedure leads to the following equation:

(g + 1) cos (r + s) + g cos (l − r) = (g + 1) cos (s− r) + g cos (l + r) . (9.18)
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Eq. (9.18) is satisfied if we choose s to be given by:

s = Arc sin
(

g
g + 1

sin l
)

. (9.19)

The tricky part is trying to satisfy also the periodic boundary conditions, Eq.(9.14),
because in general solutions of the form Eq. (9.17) are not necessarily compatible
with the periodic boundary conditions in the two variables n and m. However,
there are some limiting cases in which both conditions are satisfied. Such cases
are discussed in the remainder of the section.

• Case l = 0

If we choose l = 0 and use Eq. (9.19) and Eq. (9.17), we can find M − 1
solutions of Eq. (9.12) which satisfy all the boundary conditions and are
linearly independent. These are

Cr
nm =

{ √
2

M sin
(

πr
M |n−m|) , r odd√

2
M sin

(
2πr
M (n−m)

)
, r even

(9.20)

E(1)
r = U − 2J(2g + 1) cos

(πr

M

)
, r = 1, ..M − 1 (9.21)

Inside the 1-ph subspace all the translationally invariant states are spanned
by the states whose amplitudes Cr

nm are the r ∈ odd solutions of Eq. (9.20).
Because in the absence of an external confinement the many body Hamilto-
nian is translationally invariant, the ground state must also be and it is only
coupled through the Hamiltonian to the subspace spanned by these transla-
tionally invariant states. The dispersion relation, Eq. (9.21), agrees to first
order in J to the mean-field solution found in [77]. We want to point out
that this dispersion relation only describes the spectrum of M − 1 of the
M(M − 1) low tying excitations.

When l 6= 0 the derivation of analytic solutions is more elaborate. However,
in the limiting cases of high filling factor, g À 1, it is still easy to find an
analytic solution.

• Case g À 1

In this limiting situation s ≈ l, (see Eq.(9.19)) and the periodic boundary
conditions are satisfied if s, l and r are integer multiples of π

M . The eigen-
values and an orthonormal set of modes in the high filling factor regime can
be chosen to be:
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E
(1)
rR = U − 2J(2g + 1) cos

(πr

M

)
cos

(
πR

M

)
, (9.22)

Cr,R 6=0
nm =

{
2
M sin(πr

M |n−m|) sin(πR′
M (n + m) + αrR),

2
M sin(πr

M (n−m)) sin(πR′′
M (n + m) + βrR),

Cr,0
nm =

{ √
2

M sin
(

πr
M |n−m|) , r odd√

2
M sin

(
πr
M (n−m)

)
, r even

(9.23)

with r = 1, . . . M − 1 and R = 0, . . .M − 1. The notation R′ restricts
the values of R to the ones where R + r is an odd number and R′′ to the
values where R + r is even. The constants αrR = π(r − R + 1)/4 and
βrR = π(r + R − 1 + M)/4 guarantee the orthogonality of the eigenmodes.
In Fig. 9.1 we show a contour plot of the two dimensional 1-ph band.
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Figure 9.1: Contour plot of the two dimensional band of the 1-ph excitations to
fist order in perturbation theory. In the plot the brighter the color the higher the
energy. The labels are ky = 2π/MR and kx = 2π/MR.

To check the range of validity of our analytical solutions, in Fig.9.2 we plot
comparisons between the first order energy shifts calculated by the exact diago-
nalization of the Bose-Hubbard Hamiltonian but restricting the Hilbert space to
the 1-ph subspace and Eq. (9.22). We label the eigenvalues in ascending order.
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Figure 9.2: Comparisons between the first order corrections to the 1-ph excita-
tions calculated by diagonalizing the Bose-Hubbard Hamiltonian inside the 1-ph
subspace and the analytic solution Eq. (9.22). The number of sites used for the
plot was M = 11. Energies are in units of J.

The parameters used for the comparisons were M = 11 and filling factors g = 1
and 4. We notice that even though the analytic expression was calculated under
the high filling factor assumption, for values of g = 4, the agreement between
the two solutions is very good. For the case g = 1 the two spectra do not agree
perfectly, however, we can say that the analytic solution is fair even in this low
density regime.

In Fig. 9.2 we checked for the validity of the analytic solution Eq. (9.22) when
the Hilbert space is restricted to the 1-ph subspace. However, to restrict the low
lying excitations to the 1-ph excitations is only good as long as first order pertur-
bation theory is valid. This implies that the parameter Jg

U

√
M is small. In Fig.

9.3, we explore the range of validity of perturbation theory by plotting the spec-
trum for different values of U/J and filling factors. The solutions presented in the
plots are the eigenenergies found by the exact diagonalization of the Hamiltonian
(red), by diagonalization in the restricted 1-ph subspace (green) and the analytic
solution, Eq. (9.22) (blue).

We observe in the plots that for low filling factors (g = 1) the analytic solution
is not as good as it is for high filling factors in reproducing the 1-ph subspace
spectrum. Nevertheless, at low densities the validity of perturbation theory holds
for a larger range of U/J values. On the other hand, when the filling is high
the analytic solution gives a pretty good description of the 1-ph subspace but the
parameter U/J must be approximately g times higher than the unit filled case to
ensure that higher order corrections are negligible. The number of wells chosen for
the plots was small because of the exponentially scaling of the Hilbert space. As
the number of wells is increased, the ratio of U/J required for perturbation theory
to be valid becomes larger.

Using the perturbation theory results, it is possible to calculate expectation
values of physical observables that are relevant to the experiments. For example,
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Figure 9.3: Comparisons between the energy eigenvalues calculated by the exact
diagonalization of the Hamiltonian (red dots), the diagonalization of the Hamil-
tonian in the restricted 1-ph subspace (green triangles) and the analytic solution
(blue crosses), Eq. (9.22). The index n labels the eigenvalues in increasing order of
energy. The filling factor g, the number of wells M and the ratio U/J is indicated
in each plot. Energies are in units of J.

the quasimomentum distribution (Eq. (5.57)) to first order in perturbation theory
is given by:

nq = g +
4J

U
g(g + 1) cos(qa). (9.24)

Here q is the quasimomentum q = 2πj
aM , j = 0, 1, . . . M−1 and a the lattice spacing.

The interference pattern after ballistic expansion is closely related to the quasi-
momentum distribution [103]. In the superfluid regime the intensity of the prin-
cipal interference peak is proportional to the occupation number of the q = 0
quasimomentum component, which describes the number of particles in the con-
densate. The washing out of the interference peaks in the Mott phase is linked
to the redistribution of the population from the condensate to states with higher
quasimomenta. When the system is in the Mott insulator regime, instead of a
macroscopically occupied state, at zeroth order in J/U , the momentum distribu-
tion is flat and all the quasimomentum states of the lowest band are uniformly
occupied. This feature is indicated in Eq. (9.24). At first order in J/U , we
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take into account the nearest neighbors’ remaining coherence, always present in
the Mott ground state, which creates a small cosinusoidal modulation of the flat
quasimomentum background.

In Fig. 9.4, we plot the quasimomentum distribution as a function of U/J for a
unit filled lattice with six wells. The exact solution is depicted with solid lines and
the first order perturbative results with dots. The decrease of the zero momentum
population and the tendency towards a flat distribution for large U/J ratios is
observed in the plot.
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Figure 9.4: Quasimomentum distribution as a function of U/J for a unit filled lat-
tice with six wells (M = 6). The exact solutions are displayed with solid lines and
the first order perturbative results with dotted lines. Due to the lattice symmetry
n4π/3 = n2π/3 and n5π/3 = nπ/3.

Another characteristic feature of the Mott insulator phase is the reduction
of the number fluctuations. The first non vanishing number fluctuations (see
Eq. (5.56)) are quadratic in J/U and given by:

∆n = 4g(g + 1)
J2

U2
. (9.25)

We omitted the site index in ∆n because of the translational symmetry. Notice
that due to the fact that the true Mott ground state is not a Fock state, the
number fluctuations decrease as the ratio U/J increases, but they are not exactly
zero. This is a problem for the lattice based quantum computer proposals and we
will try to correct for it in chapter 11.
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We conclude this section by using the first order perturbation theory results,
to crudely estimate the critical transition point. Quantum phase transitions such
as the superfluid to Mott insulator transition can be understood based on the
phenomena of level crossing: as a characteristic parameter is changed (in this case
U/J), at some critical point a state that was an excited state becomes the new
ground state of the system. If we use this criteria to calculate the critical point
and use Eq. (9.22) we get

(U/J)c ≈ 2(2g + 1) ∼ 4g (9.26)

This result only applies for the one dimensional case. It is a factor of two
smaller than the calculated value from mean field theory (Eq. 3.9) but it is in
better agreement with numerical Monte Carlo simulations and strong coupling
expansions which predict a critical point for a unit filled lattice of (U/J)c ≈ 4.65
[78, 79].

9.2 Harmonic confinement plus lattice

In this section we consider a one dimensional optical lattice in the presence of a
magnetic confinement with oscillation frequency ωT . We assume that the magnetic
trap has its minimum at the lattice site n = 0. The magnetic confinement intro-
duces a characteristic energy scale Ω = ma2ωT /2, so that Vn = Ωn2 (see Eq.(6.1)).
We first focus on the case in which the system has an odd number of atoms.

For the analysis we are also going to consider a parameter regime where

U >
Ω(N − 1)2

4
, (9.27)

ΩN > J. (9.28)

The first condition expresses the requirements that the on site interaction energy
U must be bigger than the trapping energy of the most externally trapped atom,
so multiple atom occupation in any well is inhibited. The second states the re-
quirement that the kinetic energy must be smaller than the potential energy cost
for an atom at the edge of the atomic cloud to tunnel to the next unoccupied site.
Thus it is energetically costly for the atoms to tunnel.

In this parameter regime the Bose-Hubbard Hamiltonian can be split into two
parts: an unperturbed part which includes the interaction and potential energy
and which is diagonal in a Fock state representation, and a kinetic energy part
which is going to be treated as a perturbation.

Ĥ = Ĥ(0) + δĤ, (9.29)

Ĥ(0) = Ω
∑

n

n2â†n ân +
1
2
U

∑
n

â†nâ†nânân, (9.30)

δĤ = −J
∑

n

(â†n ân+1 + â†n+1 ân ). (9.31)
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With the constraints Eq. (9.27) and Eq. (9.28) we are guaranteed that to zeroth
order in perturbation theory, the ground state of the system consists of a unit filled
central core comprising N wells in the central region of the trap, surrounded by
external empty sites, which in solid state language can be called a sea of holes. If
the number of atoms is odd, due to the the assumed trap symmetry, at zero order
in perturbation theory the ground state is unique and given by:

∣∣∣Φ(0)
0

〉
=

∣∣∣∣∣∣
0, .., 0, 1, 1, ...., 1, 1︸ ︷︷ ︸

N sites

, 0, .., 0

〉
. (9.32)

The unperturbed ground state energy is

E
(0)
0 =

Ω
24

N(N2 − 1). (9.33)

The zeroth order low lying excitations consist of 1-ph excitations and another kind
of excitations which we refer as n-hh excitations. In the following we proceed to
describe them in more detail:

• One particle hole excitation (1-ph)

The 1-ph excitations are described by the Fock states,
∣∣∣Ψph

nm

〉
, with an extra

particle at site m and a hole at the site n, both inside the central core.

∣∣∣Φ(0)
iph

〉
≡

∣∣∣Ψph
mn

〉
(9.34)

=

∣∣∣∣∣0, .., 0, 1, ..., 2︸︷︷︸
m

, ..., 0︸︷︷︸
n

, .., 1, 0, .., 0

〉
.

As opposed to the translationally invariant system, the presence of the trap
breaks the degeneracy and the 1-ph excitations are not degenerate at zero
order. Their energy is given by the interaction energy cost U to create a
1-ph pair plus the potential energy cost due to the trap:

Eph(0)
nm = E

(0)
0 + U + Ω(m2 − n2). (9.35)

with n and m integers, n,m = −N−1
2 , . . . , N−1

2 .

• Hole hopping excitations (n-hh)

These excitations are described by the states with a maximum of one particle
per well and holes inside the inner central core. They have to be included in
the trapped system because of the reservoir of holes surrounding the central
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core which brings an extra degree of delocalization. Because the n-hh excita-
tions are only due to the transfer of holes to the inner core, they don’t have
the interaction energy cost U for having two particles at the same site and
therefore they can be lower in energy than the 1-ph excitations. We label the
1-hh, states with only one hole inside the central core, by

∣∣Ψhh
mn

〉
. Explicitly

they are given by:

∣∣∣Φ(0)
ihh

〉
≡

∣∣∣Ψhh
mn

〉
(9.36)

=

∣∣∣∣∣0, .., 1︸︷︷︸
n

, .., 0, 1, ..., 0︸︷︷︸
m

, .., 1, 0, .., 0

〉
.

The zero order energy cost to create 1-hh excitations is:

Ehh(0)
nm = E

(0)
0 + Ω(m2 − n2), (9.37)

with n and m integers such that |n| > (N − 1)/2 and |m| < (N − 1)/2

At first order the kinetic energy term mixes the unperturbed ground state with
the 1-ph excitation which have the extra particle and the hole at adjacent sites
and with the 1-hh excitations were the most external trapped atom tunnels to the
first available vacant site. The ground state wave function at first order is then
given by

∣∣∣Φ(1)
0

〉
=

∣∣∣Φ(0)
0

〉
+ 2J

(N−3)/2∑

n=−(N−1)/2

∣∣∣Ψph
nn+1

〉
+

∣∣∣Ψph
−n−(n+1)

〉
√

2(U − Ω(1 + 2n))

+
√

2J

ΩN

∣∣Ψhh
nn+1

〉
+

∣∣∣Ψhh
−n−(n+1)

〉
√

2
. (9.38)

The first order wave functions of the excitations directly coupled to the unper-
turbed ground state are

∣∣∣Φ(1)
±nph

〉
=

∣∣∣Ψph
nn±1

〉
−
√

2J

∣∣∣Φ(0)
0

〉

(U − Ω(1± 2n))
, (9.39)

∣∣∣Φ(1)
±hh

〉
=

∣∣∣Ψhh
±L±(L+1)

〉
− J

∣∣∣Φ(0)
0

〉

(ΩN)
, (9.40)

with L = (N − 1)/2.
In Fig. 9.5 we plot comparisons between the analytic (blue) and exact (red)

excitation spectra. The index n labels the eigenenergies in increasing energy order.
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The parameters used for the plots were U/J = 40 and 60, Ω/J = 1.875, N = 9 and
M = 11. The analytical spectrum was calculated to zeroth order in perturbation
theory. The convergence of perturbative results to the exact ones as the interaction
parameter U/J is increased can be seen in the plots. The lines indicate the energies
of the states that are coupled to the zero order ground state. The first two lines
correspond to the two degenerate 1-hh excitation states

∣∣∣Ψhh
±L±(L+1)

〉
with energy

ΩN , the others correspond to 1-ph excitations
∣∣∣Ψph

nn±1

〉
with energies (U −Ω(1±

2n)).
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Figure 9.5: Comparisons between the exact (red) and the perturbative (blue)
spectra for a trapped system with N = 9, M = 11 and Ω/J = 1.875 deep in the
Mott regime. The lines indicate the energies of the states that are coupled directly
to the ground state.

When the number of atoms is even, the trap symmetry is broken and the
ground state becomes degenerate. In this case, at zeroth order, the degenerate
ground states are:
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∣∣∣Φ(0)
0±

〉
=

1√
2

(∣∣∣Φ(0)
L

〉
±

∣∣∣Φ(0)
R

〉)
, (9.41)

∣∣∣Φ(0)
L

〉
=

∣∣∣∣∣∣
0, ..., 0, 1, 1, 1, ...., 1, 1︸ ︷︷ ︸

N−1 sites

, 0, .., 0

〉
,

∣∣∣Φ(0)
R

〉
=

∣∣∣∣∣∣
0, .., 0, 1, 1, ...., 1, 1︸ ︷︷ ︸

N−1 sites

, 1, 0, .., 0

〉
.

When the system has an even number of atoms, there are always going to be a
nonzero number fluctuation at the trap edge. Because the states

∣∣∣Φ(0)
L

〉
and

∣∣∣Φ(0)
R

〉

are not coupled by the Bose-Hubbard Hamiltonian at first order, the previous anal-
ysis we did for the system with an odd number of atoms can be straightforwardly
extended to the even case.

The constraint ΩN > J used for the analysis above can be an important
experimental restriction if the total number of trapped atoms is large. In the
regime where ΩN < J , but still U > Ω(N/2)2, the energy splitting between 1-ph
excitations induced by the trap is small and degenerate perturbation theory must
be used at first order. An analytic treatment becomes really difficult, nevertheless,
it is possible to have a qualitative analysis of the system. In this case, the system
can be divided in two parts: a central unit filled core comprising K < N wells
at the center of the trap and a superfluid layer surrounding the central core with
maximum one atom per lattice site where the mobility of the holes is high. The
size K of the unit filled central core is determined by the strength of the magnetic
confinement, K ∼ J/Ω. The properties of the unit filled core can be described to
a good approximation by the commensurate homogeneous results. On the other
hand, the atoms surrounding the central core are almost free to tunnel and they
have superfluid like properties.

9.3 Conclusions

In summary, in this chapter we have described the basic properties of the Mott
insulating phase both in translationally invariant and harmonically trapped sys-
tems. All the results derived here are going to be used as the starting point for
the calculations in the following chapters.
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Chapter 10

Bragg Spectroscopy

To date, the primary observable used to study ultra cold atoms in an optical lattice
has been the momentum distribution of the system, observed after ballistic expan-
sion. In particular, this type of measurement has been used to reveal the phase
coherence between sites in the lattice and has been a really useful technique to
characterize the superfluid phase. However, the disappearance of the interference
pattern is not a conclusive diagnostic of the Mott phase. Recent analysis shows
that this is more correctly related to the degree of condensate depletion. Indeed,
for this reason, the diagnostic tool used in the experiments by Greiner et al. [46],
to prove the achievement of the Mott phase, was to apply a potential gradient to
the lattice and show the presence of a gap in the excitation spectrum.

Moreover, because the usual procedure for producing the Mott insulator state is
to begin with a magnetically trapped Bose-Einstein condensate (with no discernible
thermal component), and slowly load it into an optical lattice, finite temperature
effects or non-adiabatic ramping of the lattice may lead to the production of an
imperfect Mott phase. As more elaborate experiments are undertaken with optical
lattices in the strongly correlated regime it will be crucially important to diagnose
the properties of the states produced.

The results we present here suggest that Bragg spectroscopy can not only give
information about the excitation spectrum, which is a crucial diagnostic of the
Mott insulator phase as characterized by the opening of a gap, but that it can also
be used in the Mott regime to estimate the temperature of the system. Specifically,
we study the linear response to Bragg spectroscopy of cold atoms loaded in a one
dimensional optical lattice based on a perturbative analysis. We obtain analytical
expressions for the dynamical structure factor and use them to calculate the energy
deposited into the system. We also test the accuracy of our approximations by
comparing them with numerical solutions obtained by diagonalizing the Bose-
Hubbard Hamiltonian for moderate number of atoms and wells. The calculations
are done for translationally invariant lattices and in the presence of an harmonic
external potential. First we start by reviewing the basic formalism that describes
Bragg spectroscopy.



174 Chapter 10 Bragg Spectroscopy

10.1 Formalism

The application of Bragg spectroscopy to study cold atomic systems was first
pioneered by the NIST and MIT groups [65, 66]. Their scheme involved using a
pair of interfering laser fields to Bragg scatter atoms into a higher momentum state.
Since those experiments Bragg spectroscopy has been established as a versatile
tool for probing Bose-Einstein condensates in a wide range of situations (e.g see
[141, 142, 143, 144]).

Figure 10.1: Bragg spectroscopic scheme considered in this paper. The lattice
potential with atoms loaded into the ground band is perturbed by a shallow running
wave perturbation (the Bragg potential).

Two-photon Bragg spectroscopy in a lattice is performed by superimposing a
periodic travelling wave potential on the lattice potential. This could be arranged
by modulating the lattice amplitude, as done by Stöferle et al. [145]. The more
general situation arises when the Bragg potential is produced by an additional
pair of independent laser fields, chosen to produce a shallow potential that is not
necessarily commensurate with lattice potential (see Fig. 10.1). Specifically, the
atomic sample is illuminated with two additional laser beams with wave vectors
of magnitudes k1 and k2 in the direction of the lattice and frequency difference
ω. The intersecting beams create a periodic potential parallel to the lattice with
travelling intensity modulation given by Vo cos(qx − ωt). The difference in wave
vectors of the beams defines the Bragg momentum q = k1 − k2 and the difference
in frequency the Bragg energy ~ω. Atoms exposed to these beams can undergo
stimulated light scattering by absorbing a photon from one of the beams and
emitting a photon into the other.

We consider a one dimensional optical lattice with M lattice sites, sufficiently
deep that the tight-binding approximation is valid, and assume that we can restrict
the dynamics of the atoms to the lowest vibrational band. This is guaranteed if
the loading is done slow enough to avoid band excitations,i.e. if the energy of the
Bragg perturbation ~ω is less than the energy gap to the second band and if the
momentum transfer q is contained within the first Brillioun zone. A detailed anal-
ysis of the validity of the first band approximation is found in Ref.[148]. There the
authors, using a mean field approach combined with Bogoliubov analysis, extended
the existing theory of Bragg spectroscopy of magnetically trapped BEC [146, 147]
to lattice systems.
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As shown in chapter 3, under the single-band approximation the system is de-
scribed by the Bose-Hubbard Hamiltonian, which we will denote as Ĥo. Hereafter
we assume, unless otherwise specified, a harmonic magnetic confinement such that
Vn = Ωn2. In the tight-binding approximation, the Hamiltonian describing the
Bragg perturbation is given by

ĤB =
1
2
Vo(ρ̂†qe

−iωt + ρ̂qe
iωt). (10.1)

The density fluctuation operator ρ̂†q is defined as

ρ̂†q =
M−1∑

m,n=0

In,m
q â†mân, (10.2)

with
In,m
q =

∫
dxeiqxw∗0(x− am)w0(x− an), (10.3)

where w0(x) is the Wannier orbital centered at the origin of the lowest vibra-
tional band. To calculate In,m

q we approximate the Wannier orbitals by Gaus-
sians localized at the bottom of the potential wells , φ0(x − an) ∼ exp[−(x −
an)2/2a2

ho]/(π1/4√aho), where the width aho can be estimated by minimizing the
ground state energy. For a lattice potential of the form ERVlat sin2(πx/a), with
ER the recoil energy of the atoms, aho scales like aho ∼ (Vlat)−1/4a/π. Ne-
glecting the overlap between Wannier orbitals located in different sites we get
In,m
q ∼ Iqδn,m exp(ia(n + m)q/2), where δn,m is the Kronecker delta function.

Then

Iq = exp
(
− 1√

Vlat

( qa

2π

)2
)

. (10.4)

Notice that Iq approaches one for small qa and deep lattices. Using the approxi-
mate expression for In,m

q we can rewrite the density operator as:

ρ̂†q = Iq

M−1∑

m=0

â†mâmeiqma. (10.5)

To simplify the notation and to have a better physical understanding of the
excitations induced by the Bragg perturbation, it is convenient to introduce the
quasimomentum field operator b̂k which annihilates an atom with quasimomentum
k, and is defined as the Fourier transform of the field operator ân, i.e., b̂k =

1√
M

∑M
n=1 eiknaân. The quasimomentum k can assume only discrete values which

are integer multiples of 2π
Ma .

In the quasimomentum basis the operator ρ̂†q can be written as

ρ̂†q = Iq

M−1∑

k=0

b̂†k+q b̂k, (10.6)
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where we have assumed that q can be also expressed as an integer multiple of
2π
Ma . By writing the Bragg perturbation potential in the quasimomentum basis it
can be seen that the two means by which momentum is imparted to the atomic
sample,is either by promoting an atom from quasimomentum k to k + q or by
demoting a particle with momentum k to k − q.

10.2 Observables

Useful experimental observables in Bragg spectroscopy are related to the density-
density response function. Here we focus our attention on the imparted momentum
and energy, which can be measured by time-of-flight techniques. In this section
we elaborate on the form of these observables.

In the tight-binding approximations the total momentum is given by

P̂ =
∑

k

~kb̂†k b̂k. (10.7)

From the Heisenberg equations of motion we get

dP̂

dt
=

i

~

[
Ĥ,P̂

]
=

i

~

([
ĤB,P̂

]
+

[
Ĥo,P̂

])
(10.8)

= − iqVo

2
(ρ̂†qe

−iωt − ρ̂qe
iωt)− 2ΩX̂. (10.9)

where Ĥ is the total Hamiltonian, Ĥ = Ĥo + ĤB, and X̂ is the center of mass
position given by X̂ =

∑
n(na)â†nân. The second term in the momentum rate

equation is just related to the force felt by atoms due to the presence of an harmonic
external confinement. On the other hand, the first term takes into account the rate
of change of the momentum due to the Bragg perturbation. If the perturbation is
applied for a time short compared to the oscillator period tosc= 2π√

4JΩa
the second

term in the right-hand-side is small and can be neglected in the calculations.
The energy change rate is

dĤo

dt
=

i

~

[
ĤB,Ĥo

]
=

i

~

[
ĤB,Ĥ

]
, (10.10)

= −1
2
Vo

(
e−iωt dρ̂†q

dt
+ eiωt dρ̂q

dt

)
.

Because the energy of a closed system is conserved, as opposed to the momentum
rate equation, the energy change rate is independent of the magnetic potential and
only depends on the applied Bragg perturbation.
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10.3 Linear response

The first order variation δ〈 ˆO(t)〉 of the thermal average of an observable ˆO(t) with
respect to its mean value due to a weak perturbation ĤB applied to a system at
t = to , is given by the Kubo formula [51]

δ
〈
Ô(t)

〉
=

i

~

∫ t

to

dτ
〈[

ĤB(τ), Ô(t)
]〉

, (10.11)

where the operators Ô(t) and ĤB(τ) are in the Heisenberg representation with
respect to the time independent hamiltonian Ĥo, and the expectation value is
taken using the equilibrium state of the system.

For the particular case where the observables are the momentum and energy
rates, we get after some algebra :

δ

〈
dP̂

dt

〉
= ~q

(
Vo

2~

)2

× (10.12)

∫ t

to

dτ
(
e−iω(τ−t)

〈[
ρ̂†q(τ), ρ̂q(t)

]〉
− eiω(τ−t)

〈[
ρ̂q(τ), ρ̂†q(t)

]〉

+e−iω(τ+t)
〈[

ρ̂†q(τ), ρ̂†q(t)
]〉
− eiω(τ+t) 〈[ρ̂q(τ), ρ̂q(t)]〉

)
− 2Ωδ

〈
X̂

〉
,

δ

〈
dĤ

dt

〉
= − i

~

(
Vo

2

)2

× (10.13)

∫ t

to

dτ

(
e−iω(τ−t) d

dt

〈[
ρ̂†q(τ), ρ̂q(t)

]〉
− eiω(τ−t) d

dt

〈[
ρ̂q(τ), ρ̂†q(t)

]〉

+e−iω(τ+t) d

dt

〈[
ρ̂†q(τ), ρ̂†q(t)

]〉
− eiω(τ+t) d

dt
〈[ρ̂q(τ), ρ̂q(t)]〉

)
.

We now introduce the functions S(q, ω) and R(q, ω) given by

〈
ρ̂†q(τ)ρ̂q(t)

〉
=

∫
e−iω(τ−t)S(q, ω)dω, (10.14)

〈
ρ̂†q(τ)ρ̂†q(t)

〉
=

∫
eiω(τ+t)R(q, ω)dω. (10.15)

In terms of these functions it can be seen that since
〈[

ρ̂†q(τ), ρ̂†q(t)
]〉

=
〈[

ρ̂q(τ), ρ̂q(t)
]〉

=
0 Eq. (10.13) and Eq. (10.14) reduce to:

δ

〈
dP̂

dt

〉
= 2~q

(
Vo

2~

)2 ∫
dω′

(
S(q, ω′)− S(−q,−ω′)

)×
(

sin ((ω − ω′)t)
(ω − ω′)

)
− 2Ωδ

〈
X̂

〉
,
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δ

〈
dĤ

dt

〉
=

2
~

(
Vo

2

)2 ∫
dω′ω′

(
S(q, ω′)− S(−q,−ω′)

)× (10.16)

(
sin ((ω − ω′)t)

(ω − ω′)

)
.

where we have set to = 0. The quantity S(q, ω), the Fourier transform of density
correlations, is the so called dynamic structure factor and is given by

S(q, ω) =
1
Z

∑

ij

e−βEi |〈i| ρ̂q |j〉|2 δ(ω − ωij) (10.17)

≡
∑

ij

Sij(q)δ(ω − ωij). (10.18)

where |i〉 and Ei are eigenstates and eigenenergies of the unperturbed Hamiltonian,
e−βEi is the usual Boltzmann factor with β = 1/kBT where kB is Boltzmann’s
constant and T the temperature, Z is the canonical partition function, ~ωij =
Ej −Ei and Sij(q) ≡ 1

Z e−βEi |〈i| ρ̂q |j〉|2 .

Notice that because atoms could be scattered by absorbing a photon from
either one of the laser beams the response of the system is determined not only
by S(q, ω) but by the combination S(q, ω′) − S(−q,−ω′). If the perturbation
is applied for a time long with respect to the frequency of the applied field the
momentum and energy rates approach the golden rule results.

Performing the frequency integration we get

δ

〈
dP̂

dt

〉
= 2~q

(
Vo

2~

)2 ∑

ij

(
Sij(q)

(
sin ((ω − ωij)t)

ω − ωij

)
(10.19)

−Sij(−q)
(

sin ((ω + ωij)t)
ω + ωij

))
− 2Ωδ

〈
X̂(t)

〉
,

δ

〈
dĤ

dt

〉
= 2

(
Vo

2~

)2 ∑

ij

~ωij

(
Sij(q)

(
sin ((ω − ωij)t)

ω − ωij

)
(10.20)

+Sij(−q)
(

sin ((ω + ωij)t)
ω + ωij

)
).

The total momentum and energy transfer after applying the Bragg perturbation
can be obtained by integrating the above equations. We get as a final result that
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δ
〈
P̂

〉
= ~q

(
Vo

~

)2 ∑

ij

(
Sij(q)

(
sin ((ω − ωij)τ/2)

ω − ωij

)2

(10.21)

−Sij(−q)
(

sin ((ω + ωij)τ/2)
ω + ωij

)2
)
− 2Ω/a

∫ τ

0
δ
〈
X̂(t)

〉
dt

δ
〈
Ĥ

〉
=

(
Vo

~

)2 ∑

ij

~ωij

(
Sij(q)

(
sin ((ω − ωij)τ/2)

ω − ωij

)2

(10.22)

+Sij(−q)
(

sin ((ω + ωij)τ/2)
ω + ωij

)2
)

,

where τ is the duration of the perturbation.

10.4 Zero-temperature regime

10.4.1 Bogoliubov approach

In this section we use the zero temperature Bogoliubov approximation for atoms in
an optical lattice to study the dynamical structure factor in the superfluid regime.
Because quadratic approximations were discussed in detail in in chapter 5, we refer
the reader to this chapter for details.

Under the Bogoliubov approximation the field operator at lattice site n is
written as a complex number zn plus small fluctuations δ̂ =

∑M
s6=0(us

nα̂s −v∗sn α̂†s ),
with {us

n, vs
n} the quasiparticle amplitudes. Using this ansatz in Eq.(10.17) we get

an expression for the dynamical structure factor given by

ST=0(q, ω) = S0(q)δ(ω) +
∑

i

Si(q)δ(ω − ωB
i ), (10.23)

S0(q) ≡
∣∣∣∣∣

M∑

n=1

|zn|2eiqan

∣∣∣∣∣

2

, (10.24)

Si(q) ≡
∣∣∣∣∣
∑

n

(znu∗in − z∗nv∗in )eiqan

∣∣∣∣∣
2

. (10.25)

Translationally invariant system

To understand many-body effects included in the Bogoliubov approximation we
start by studying the case of a translationally invariant lattice (Vn = 0) with
N atoms, M wells and periodic boundary conditions. Using the results for the
quasiparticle amplitudes and energies calculated using the improved Popov ap-
proximation, which was shown to be the best quadratic approximation we get:
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S(q, ω) = N2δ(ω) + Mno
εq

ωB
q

δ(ω − ωB
q /~) (10.26)

= N2δ(ω) + MnoS(q)δ(ω − ωB
q /~), (10.27)

with no given by Eq. (5.136), εk = 4J sin2(ak/2) and ωB
k =

√
ε2
k + 2nUεk. Here n

is the total density n = N/M . Notice that due to the translational invariance of
the system, the quasimomentum is a good quantum number and only quasiparticle
states that have the same quasimomentum as the transferred momentum q are
excited.

For small q, the structure factor behaves like
√

J
2Unq which is just the free

particle expression with the bare particle mass m replaced by the effective mass,
m∗ = ~2/2Ja2 (a the lattice spacing). Suppression of S(q) in the phonon regime is
a direct consequence of the importance of quantum correlations in the long wave-
length limit. On the other hand, away from the phonon regime, the presence of
the optical lattice changes the behavior of S(q) in a drastic way. As opposed to
the free case where at high transferred momenta ωB

q ∼ q2 and S(q) approaches
one, the periodic potential modifies the single particle dispersion relation, which
becomes always bounded by 4J . The term proportional to 2nUεk dominates even
at high momenta and many-body effects play a crucial role.

In Fig.10.2 we show the energy δ〈Ĥ〉 imparted to the system as a function of
the frequency ω of the Bragg probe, for different values of and U/J and of the
momentum q. The blue curve corresponds to the solution using the Bogoliubov
approximation and the red one to the solution obtained by the exact diagonal-
ization of the Bose-Hubbard Hamiltonian. The number of lattice sites and wells
used in the plots were M = N = 9. For U/J = 0.001 the Bogoliubov and exact
curves perfectly overlap. The agreement is expected as the non-interacting Hamil-
tonian is quadratic and therefore exactly matches the Bogoliubov Hamiltonian.
The almost non interacting regime may be experimentally achieved by varying
the onsite interaction energy U independently of J , by means of a Feshbach res-
onance that changes the scattering length [20, 21]. For U/J = 1 the agreement
is good only for the low momentum q = 2π/9. The agreement for low momenta
can be understood by the fact that for low q the Bragg spectroscopy is probing
the long wave-length modes. These modes have a phonon-like dispersion relation
and are almost not affected by the presence of the lattice. In general Bogoliubov
quasi-particle states correspond to solutions of the approximate Hamiltonian with
a plane-wave character which are only valid in the weakly interacting regime. As
quantum correlations become important, the exact eigenstates of the interacting
system do not necessarily have the simple plane wave character,(see Ref. Lieb
and Liniger [149]), especially in the commensurate filling situation where for a
critical value of U/J the system exhibits the superfluid-Mott insulator transition.
However the unit filled commensurate case is the worse scenario, and as discussed
in chapter 5, for non commensurate fillings or commensurate systems with larger
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filling factor we expect the validity of the Bogoliubov approximation to extend
over a larger range of U/J values.

As a final remark, it is important to point out that the small oscillations in
Fig. 10.2 are due to the square shape of the applied Bragg pulse. These oscillations
would disappear if instead a pulse with Gaussian profile is applied.
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Figure 10.2: Imparted energy: Comparisons between the the exact and Bogoliubov
approximation for N = M = 9. The horizontal axis is in units of ~. For the plot
we used Jτ/~ = 10. See text Eq. (10.23).

10.4.2 Inhomogeneous system

Using the quasiparticle amplitudes derived under the T.F. approximation (see
section 5.6.2), we get an expression for the dynamical structure factor given by

S(q, ω) = 9N2

(
sin(x)− x cos(x)

x3

)2

δ(ω)

+
~ω∗

8U

∑

i

(i(i + 1)(2i + 1))|P̃i(x)|2δ(ω − ω∗
√

i(i + 1)/2)(10.28)

where x ≡ qaRTF and P̃n(x) =
∫ 1
−1 Pn(u)eiuxdu.

An alternative way to calculate the dynamical structure factor is to use the so
called local density approximation (LDA). This approximation is valid for large
condensates, where the density profile varies in a smooth way and the system
behaves locally as an uniform gas. Using a LDA the dynamical structure factor
can be written as
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SLDA(q, ω) =

(∑
m

z(m)eiqam

)
δ(ω) + εs

∑
m

|z(m)|2
~ωB

q (m)
δ(~ω − ωB

q (m)). (10.29)

Here ωB
q (m) is the local homogeneous Bogoliubov dispersion relation with n re-

placed by the local density in the trap. The LDA ignores the Doppler effect
associated with the spreading of the momentum distribution of the condensate
and therefore it is not valid for large momentum transfers.

To test the validity of the HFB-Popov approximation to describe the energy
imparted to the system by Bragg spectroscopy in the trapped case we use a system
with 11 lattice sites and 9 atoms. Unfortunately for such a small number of atoms
and wells the assumptions under which the analytic Thomas Fermi expressions
were developed, i.e. large number of atoms and smooth variations of the density
profile, do not apply. Therefore for the case with M = 11, N = 9 we restrict
ourselves to comparisons between numerical solutions of the HFB-Popov equations
and solutions found by the exact diagonalization of the many-body Hamiltonian.
We solve numerically Eqs.(5.113) -(5.117) to obtain the quasi-particle energy and
amplitudes. We then use them to calculate the imparted energy. In the presence of
the trap, the number of occupied wells for a fixed number of atoms depends on the
trap frequency, particles are not necessarily uniformly distributed throughout the
lattice, and therefore commensurability is only meaningful locally. This explains
why in contrast to the commensurate homogeneous system, the agreement between
the two solutions is good up to U/J = 5 for the chosen parameters, as shown in
Fig. 10.3. The failure of the HFB-Popov approximation for U/J ∼ 10 can also be
observed in the density plots, as shown in Fig. 10.4.

The multiple peaks depicted in the plots are due to the external trapping po-
tential, which not only discretizes the spectrum but also changes the plane wave
character of the quasiparticle amplitudes. Therefore, for a given transfer momen-
tum q different quasiparticle modes can be excited. In Fig.10.3, we explicitly show
with a line the position of the quasiparticle energies.Similar to the homogeneous
case, the lower the transfer momentum q, the better is the agreement between the
HFB-Popov results and the exact solution.

For small systems such as the one in consideration discretization effects can
not be ignored. On the other hand, if the inverse of the transfer momentum is
bigger than the size of the condensate wave function, then to first approximation
the discretization in the excitation spectrum can be safely ignored and the system
can be treated as locally uniform. Instead of distinguishable peaks the response
curve becomes smooth.

To explore the validity of Eq.(10.28) derived under the Thomas-Fermi approx-
imation we plot in Fig. 10.5 S(q, ω) vs. ω for different transfer momenta. The
parameters used for the plot were U/J = 0.2, Ω/J = 9.5×10−4 and N = 100. For
these parameters we believe the HFB-Popov should give a good description of the
system. In chapter 5 we showed that in the regime when the TF approximation is
valid, it gives a very good description of the low lying excitations. However it fails
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Figure 10.3: Comparisons of the imparted energy vs. Bragg frequency curves
calculated from the exact diagonalization of the manybody Hamiltonian (red) and
the from the HFB-Popov approximation(blue) for a trapped system with N = 9,
M = 11 and Ω/J = 1.875. The horizontal axis is in units of ~. The lines depicted
in the plot are located at the different quasiparticle energies excited by the Bragg
perturbation.

to describe high energy modes. To illustrate this issue we compare in Fig. 10.6
the TF excitation spectrum with the one found by solving the HFB-Popov Equa-
tions. The quasiparticle energies are labelled in increasing energy order. When the
Thomas-Fermi approximation is used in S(q, ω), we expect then to obtain a fair
description of it only if low-lying modes are probed. Low-lying modes are probed
if the inverse of the transfer momentum q−1 is big compared to the size of the con-
densate wave function. This is explicitly shown in Fig. 10.5, where only for small
values of q the two solutions agree. For higher Bragg momenta, qRTF > 1, higher
modes contribute to S(q/ω) and the TF approximation gives a poor description
of S(q, ω).

10.5 Mott insulator regime

In this section we derive expressions for the zero temperature dynamical structure
factor in the Mott regime for both the homogeneous and trapped systems and
compare them with the solutions obtained by exact diagonalization of the Bose-
Hubbard Hamiltonian.
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Figure 10.4: Density profile calculated from the exact diagonalization of the many-
body Hamiltonian (red) and from the HFB-Popov approximation (blue) for a
trapped system with N = 9, M = 11 and Ω/J = 1.875. n labels the lattice
site.

10.5.1 Commensurate homogeneous system

In this section we assume a commensurately filled lattice with filling factor N/M =
g, periodic boundary conditions and a parameter regime where U À J . Using the
eigenvalues and eigenstates calculated in section 9.1 with first order perturbation
theory in the high filling factor limit, we get an expression for the dynamical
structure factor given by

S(T=0)(q, ω) = N2δ(ω)δq0 +
J2g(g + 1)
~U2

× (10.30)

∑

r,R

δ(~ω − E
(1)
rR )

∣∣∣∣∣
M∑

m=1

eiqam
(
CrR

mm+1 + CrR
mm−1 − CrR

m+1m − CrR
m−1m

)
∣∣∣∣∣

2

= N2δ(ω)δq0 +
32J2g(g + 1)

~U2
sin2

(qa

2

)∑
r

′
sin

(πr

M

)2
δ(~ω − E

(1)
rq̃ )(10.31)

with qa = 2πq̃/M , and the prime in the sum meaning that it is constrained over
the r’s with q̃ + r even. Is important to emphasize that only the states with R = 0
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Figure 10.5: Dynamical structure factor vs. ~ω/J in the Thomas-Fermi (blue)
and HFB-Popov (red) approximations. The horizontal axis is in units of ~. The
system parameters are U/J = 0.2, Ω/J = 9.5× 10−4 and N = 100.

have a dispersion relation which agrees to first order in J to the mean-field solution
found in Ref. [151]. However, these states give zero contribution to the sum of Eq.
(10.31).

In Fig. 10.7 we compare the imparted energy as a function of the Bragg fre-
quency calculated using the expression of the dynamical structure factor Eq. (10.31)
to results obtained by the exact diagonalization of the Bose-Hubbard Hamiltonian
with parameters N = M = 9 and U/J = 45. We show the response for two dif-
ferent Bragg momenta q = 2π/9 and 8π/9. In contrast to the superfluid regime,
where Bragg spectroscopy excites only the quasiparticle state with quasimomen-
tum q, in the Mott regime we observe M − 1 peaks centered around U . The
different peaks are due to the two dimensional character of the 1-ph dispersion
relation. The Bragg momentum q fixes one quantum number R but the other can
take M − 1 different values. In the analytic solution due to the constraint in Eq.
(10.31), q̃ + r even, only (M − 1)/2 of the possible M − 1 peaks are present. The
constraint is a consequence of the extra symmetry introduced in the high filling fac-
tor solution where similar ”effective masses” are assumed. Nevertheless, Fig. 10.7
shows that even in the situation with g = 1, the peaks captured by the analytic
solution are the most relevant ones. As g is increased, as long as the perturbation
analysis is valid, we expect even better agreement. The interval of frequencies
over which the system responds has an approximate width of 4J(2g+1) cos(qa/2).
The cos(qa/2) dependence indicates that as q approaches π the response width is
minimized. This behavior can be observed in Fig. 10.7, when we plot the response
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for q = 8π/9. It is important to point out that the presence of distinguishable
peaks in Fig. 10.7 is a result of the finite system size. As the number of lattice
sites is increased, more peaks are contained in the interval 4J(2g + 1) cos(qa/2).
The separation between one peak and the next decreases and instead of individual
peaks a continuous envelope is approached.
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Figure 10.7: Transfer energy vs. Bragg frequency for a zero temperature homoge-
neous system with M = N = 9 and different transfer momenta q. The horizontal
axis is in units of ~. The perturbation time was set to Jτ/~ = 10. Note the change
of the vertical scale between the two panels.

10.5.2 Inhomogeneous system

In this section we consider a one dimensional optical lattice in the presence of a
magnetic confinement. We assume that the magnetic trap has its minimum at the
lattice site n = 0. In the regime where U > Ω(N−1)2

4 and ΩN > J assuming an odd
number of atoms, we can use the eigenvalues and eigenmodes derived to first order
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Figure 10.8: Transfer energy vs. Bragg frequency for a zero temperature trapped
system with parameters U/J=45, Ω/J = 1.857, M = 11 and N = 9 and different
transfer momenta q. The horizontal axis is in units of ~. The perturbation time
was set to Jτ/~ = 10. Note the change of the vertical scale between the two
panels.

in perturbation theory in section 9.2 in the expression for the dynamical structure
factor to get:

S(T=0)(q, ω) = N2δ(ω)δq0 +
8J2 sin2(qa/2)
~(NΩ)2

δ(~ω −NΩ)

+
L−1∑

m=−L

16J2 sin2(qa/2)
~(U − Ω(1 + 2m))2

δ(~ω − U + Ω(1 + 2m)), (10.32)

where L = (N − 1)/2. In Fig. 10.8 we plot the imparted energy as a function
of the Bragg frequency ~ω and Bragg momenta q = 2π/11, 10π/11. The system
parameters are Ω = 1.8J , U/J = 45, M = 11 and N = 9. We observe nine
peaks both in the perturbative and exact solutions. The peak at lower frequency,
NΩ ≈ 18J , is described by the first term in Eq. (10.32) and corresponds to the
two degenerated 1-hh excitations created when a hole tunnels into one of the most
externally occupied sites. The other N − 1 peaks, separated by Ω, are described
by the second term in Eq. (10.32) and correspond to the 1-ph excitations with
the particle and hole at adjacent lattice sites. To explicitly show the sin(qa/2)
dependence of the response of the system, we plot the imparted energy for two
different transfer momenta q, one close to zero the other close to π. Even in the
presence of the trap S(q, ω) tends to 0 as qapproaches an integer value of 2π.

If the number of atoms is even, the trap symmetry is broken and the ground
state becomes degenerated. To first order in perturbation theory the dynamical
structure factor in this case is given by
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S(T=0)(q, ω) = 2N2δ(ω)δq0 + 8J2 sin2(q/2)
(

δ(~ω − (N + 1)Ω)
~((N + 1)Ω)2

+
δ(~ω − (N − 1)Ω)
~((N − 1)Ω)2

+ 4
N/2−1∑

m=N/2

δ(~ω − (U − Ω(1 + 2m))
~(U − Ω(1 + 2m))2


 . (10.33)

In this case instead of a single excitation peak at ~ω = NΩ we have two almost
degenerate peaks at ~ω = (N ± 1)Ω. Apart from this, the response of the system
is analogous to the odd number case.

All the previous analysis was done for the case ΩN > J . This can be a signif-
icant constraint if the total number of atoms is large. In the opposite case when
ΩN < J but still U > Ω(N/2)2, the energy splitting between one particle hole ex-
citations is small and degenerate perturbation theory must be used at first order.
In this case the system can be divided in a central unit filled core, which to a good
approximation has a response which can be described by the commensurate homo-
geneous results, surrounded by a superfluid region whose excitations are mainly
due hole hopping excitations. We expect that the response to Bragg spectroscopy
of the system in this parameter regime has peaks localized around U , which probes
the one particle hole excitation band analogous to the commensurate translation-
ally invariant case. We also expect lower frequency peaks around ΩN associated
with hole hopping excitations inside the superfluid region that surrounds the unit
filled central core.

Be aware that the parameter regime chosen for all the plots in the Mott phase
lies in the regime where first order perturbation theory is valid and therefore peaks
at 2U due to higher order excitations are suppressed even in the exact numerical
results.

10.6 Finite temperature

In most of the experiments the way to load ultra-cold atoms in an optical lattice
is by first forming a Bose-Einstein condensate in a weak magnetic trap and then
adiabatically turning on the lattice by slowly ramping up the intensity of the laser
beams. Ideally this kind of process should end up with the atoms in the many-body
ground state.However, that the Bose-Einstein condensate used as a starting point
is not produced exactly at T = 0, and the final temperature is not trivially related
to the initial one. It has been shown [150] that even for an ideal non interacting
gas there are different regimes where the atomic sample can be significantly heated
or cooled by adiabatically changing the lattice depth. The role of interactions is
and how many-body effects affect the final temperature of the sample are not yet
well understood.

Besides this issue, there remains the point of how long one must wait to be
truly adiabatic with respect to many-body excitations. Interactions are essential
for establishing equilibrium in the system, and understanding them in detail will
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be really important to determine the time scales for adiabatic loading. For a deep
lattice the tunneling rate seems to be the most restrictive time scale for maintaining
adiabaticity. If adiabaticity were determined by the tunneling time ~/J , it would
be very hard to be satisfied experimentally because J decreases exponentially with
the lattice depth.

Because of these issues, it would be very interesting from an experimental
point of view to have a mechanism for determining the temperature of the system.
What we show in this section is that Bragg spectroscopy could give information
about the temperature, at least deep in the Mott regime. As we did for the zero
temperature case, we start by describing the superfluid case, then the deep Mott
insulator case, and finally showing numerical calculations in the regime where the
Mott transition takes place.

• Superfluid Regime

At finite temperature both quantum and thermal fluctuations contribute to
the depletion of the condensate. We expect the Bogoliubov approach to be a
good description of the many-body system for moderate lattice depths and
small thermal depletion. At finite temperature the occupation number of a
quasiparticle state is determined by Bose statistics, ns =

〈
α̂†sα̂s

〉
with ns

the Bose distribution function ns = 1

eβωB
s −1

. Taking into account thermal
depletion, the expression for the dynamical structure factor is

S(q, ω) = S0(q)δ(ω) +
∑

i

(ni + 1)Si(q)δ(ω − ωB
i )

+
∑

i

niSi(−q)δ(ω + ωB
i ) (10.34)

with S0(q) and Si(q) defined in Eqs. (10.24) and (10.25).

Even though the finite temperature dynamic structure factor is in fact dif-
ferent from the zero temperature one, observables such as the imparted mo-
mentum and imparted energy do not depend on S(q, ω) but on S(q, ω) −
S(−q,−ω). This difference is independent of the temperature, at least at the
order of approximation at which Eq.(10.34) was calculated [15, 147, 148].

Therefore, Bogoliubov analysis shows that, provided the temperature is suf-
ficient low and the interactions are weak enough that Eq.(10.34) is valid,
Bragg spectroscopy is not a good method for determining the temperature
of the gas.

• Mott Regime

In the homogeneous Mott phase all the 1-ph excitations have an energy sep-
aration of order U from the ground state but splitting between them of order
J . If the temperature of the system is kBT & U/5, 1-ph excitations begin to
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contribute to the dynamical structure factor (Eq. (10.17)) and it starts to
develop frequency peaks at frequencies resonant with the energy difference
between two 1-ph excitations. These peaks survive even when the difference,
S(q, ω)−S(−q,−ω), is taken and therefore when Bragg spectroscopy is per-
formed a small frequency response is observed. In the presence of the trap the
analysis is more complicated because also n-hh excitations have to be taken
into account. The relevant temperature scale in this case is kBT & ΩN/5
and the small frequency peaks probe the energy difference between two n-hh,
two 1-ph or one n-hh and one 1-ph excitations.

In Figs. 10.9 and 10.10 we plot the imparted energy as a function of the
Bragg frequency calculated from the exact diagonalization of the Bose-Hubbard
Hamiltonian for different temperatures and different ratios of U/J . In Fig. 10.9
we use a homogeneous system with N = M = 9 and in Fig. 10.10 a trapped
system with N = 9, M = 11 at different temperatures. The response is consistent
with the previous analysis: a response almost independent of the temperature in
the superfluid regime and the appearance of low energy Bragg peaks in the Mott
regime. We observe some dependence on the temperature in the intermediate
region but it is not as pronounced as the one observed deep in the Mott regime.

10.7 Conclusions

In recent experiments [145], Bragg spectroscopy was performed using a setup where
the laser beams for the Bragg perturbation were the same as those used to create
the lattice potential, and the response was observed. Previous linear response
analysis done for translationally invariant systems [148, 151]) found no scattering
when the Bragg momentum equals the lattice momentum. In ref. [151], the authors
attributed the signal observed in the experiments to nonlinear response or to effects
of inhomogeneity or finite system size. Our linear response calculations considering
small trapped systems still show no scattering at q = 2π/a and therefore indicate
nonlinear response as the most plausible explanation for the experimental results.
The validity of a linear response treatment can be checked by verifying the linear
dependence of the Bragg signal upon the intensity of the Bragg beams.

In summary, we have studied the linear response of cold atoms loaded in a
one dimensional optical lattice to Bragg spectroscopy and showed that it can be
used to probe the excitation spectrum of the system, with and without harmonic
confinement. In the superfluid regime we showed the validity of the Bogoliubov
approximation to describe the very weakly interacting regime and its breakdown
as quantum correlations become important. A new theory beyond the simple Bo-
goliubov approximation is required to describe regimes beyond the very weakly
interacting one. In the Mott insulator phase we showed how Bragg spectroscopy
can be used to get information about the excitation spectrum: Bragg peaks are
centered around the characteristic Mott excitation gap, contained in an interval
whose width is proportional to the 1-ph excitation band width and have an av-
erage height which is maximized when the Bragg momentum approaches π/a. In
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Figure 10.9: Transfer energy as a function of the temperature for different U/J
parameters. The plots are for a homogeneous system with N = M = 9. The
horizontal axis in in units of ~.

the trapped case, Bragg peaks at lower energy reveal information about 1-hh ex-
citations. Finally, we also discussed how Bragg spectroscopy can be an important
experimental tool to determine the temperature of the system in the Mott insulator
phase.
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Chapter 11

Scalable register initialization
for quantum computing in an
optical lattice

The goal of building a quantum computer has spurred tremendous progress in
coherent control and measurement of small quantum systems. Neutral atoms in
optical lattices have been proposed as a suitable candidate for quantum computing
implementation. The appeal of this system stems from the defect-free nature of
the lattice potential, and the long coherence times of the constituent atoms. In
order to fully realize the promised computational speedup of a quantum device,
the underlying system should be scalable to a large number of information carriers
or qubits. Indeed, the first two criteria delineated by DiVincenzo [152] for scalable
quantum computation are:

• A scalable physical system with well characterized qubits

• The ability to initialize the state of the qubits to a simple fiducial state.

In many systems, the first criterion can be met by increasing the number of
storage components for the qubits, e.g. in solid state systems the number of dopant
qubits in the bulk material could be increased, in optical lattices the number of
trapped atoms could be increases and in ion systems large scale micro-trap arrays
have been proposed [153]. There are two main approaches to satisfy the second
criterion [152]. One is to allow the system to interact with the environment and
“naturally” cool to its ground state and thereafter use this state as the initial
state. The other is to actively cool each qubit by projective measurement to a
fiducial state |0〉. A problem arises with these approaches when the ground state
of the many body Hamiltonian is not a suitable initial state. This is the case for
bosonic qubits embedded in systems with periodic confinement, for example in
Josephson junction arrays [154], neutral atoms trapped in electromagnetic micro-
traps [155] or optical lattices [46]. For these systems, the underlying dynamics is
Bose-Hubbard-like and the ground state contains residual coherences described by
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non-zero number fluctuations in each mode. As shown in Eq.(9.8), these fluctua-
tions scale as gJ/U

√
M , so if not corrected, the dynamics will impart a constraint

to scalability. In this chapter we show how this can be corrected in two steps,
first by introducing an inhomogeneity to the lattice using a quadratic trapping
potential and second by projecting out components of the many-body wavefunc-
tion with multiply occupied lattice sites by selective measurements on a molecular
photo-associative transition. Provided the measurement strength is sufficiently
large, the system does not evolve out of the restricted basis and the measurement
can maintain a unit filled register for the duration of quantum computation. This
strategy allows the Mott insulator transition to become a robust mechanism for
register initialization.

11.1 Homogeneous dynamics

It was recognized early on that the Mott insulator transition might be an effi-
cient way to initialize a register of atomic qubits in an optical lattice for use in
quantum information processing. A key advantage of loading from a BEC is the
availability of an initially high phase space density which can be frozen to the Mott
insulator state with atoms occupying most lattice sites. For the homogeneous sys-
tem (Vi = 0), only commensurate fillings give rise to a Mott insulator transition.
For the purposes of quantum computation, one particle per well is desirable. In
practice, this is difficult to achieve directly because the precise number of atoms
is unknown and the lattice strength is not perfectly uniform on the boundaries.
There are proposals to prepare unit filled lattices using dissipative techniques in-
volving filling the lattice atom by atom [156] or using Raman side-band cooling
[157]. Additionally, it has been shown that one can repair imperfect filling from a
BEC via an adiabatic transfer mechanism between two sublevels of each atom [48].
While these techniques can initialize the lattice, any mechanism used to prepare a
register of qubits in the unit filled state will suffer a degradation in fidelity, defined
as the population in the unit filled state. The degradation comes from the coupling
between the desired unit filled state and undesired states that pertain to the exact
Mott ground state.

In this section we derive the time dependent fidelity in a homogeneous com-
mensurately filled system prepared at time t = 0 in the unit filled Fock state |T 〉
(See Eq.(9.4)). While our results can be generalized to higher dimensions, we con-
sider only a one dimension system. We assume an idealized homogeneous lattice
with periodic boundaries and unit filling, g = N/M = 1, where N is the number of
atoms and M is the number of wells. The regime of interest is the strong coupling
limit, where first order perturbation theory is valid. This regime is experimentally
achievable in an optical lattice because the tunneling decreases exponentially with
the trap depth.

To study the time dependent fidelity at first order in perturbation theory, in
principle we have to consider all the M(M −1) eigenmodes that span the one par-
ticle hole subspace. However, by translational symmetry only the translationally
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invariant states are coupled to |T 〉, and only they have to be considered for the
time evolution. As shown in chapter 9, the translationally invariant states inside
the one particle hole subspace are the bM/2c states in the subspace, given by:

∣∣∣Φ(1)
r

〉
=

M∑

n,m6=n

Cr
nm |Ψnm〉 ,

Cr
nm =

√
2

M
sin

(
π(2r − 1)|n−m|

M

)
, (11.1)

E(1)
r = U − 6J cos

(
(2r − 1)π

M

)
, r = 1, . . . b(M)/2c. (11.2)

The state vector at any time can be written as:

|Ψ(t)〉 = c0(t) |T 〉+
bM/2c∑

r=1

cr(t)
∣∣∣Φ(1)

r

〉
with c0(0) = 1. (11.3)

By solving the Schrödinger equation to first order in perturbation theory, the
time dependent fidelity to be in the unit filled state F (t) = |c0(t)|2 can be esti-
mated to be:

F (t) = 1−
bM/2c∑

r=0

|cr(t)|2, (11.4)

|cr(t)|2 ≈ 64

(
J

E
(1)
r

)2

sin2

(
π(2r − 1)

M

)
sin2

(
E

(1)
r t/~
2

)
. (11.5)

If the number of wells M À 1, the sum in Eq. (11.4) can be approximated by an
integral. In this case we get an expression for the fidelity of the form:

F (t) ' 1− 64
J2M

U2π

∫ π

0
dx sin2(x) sin2

(
(U − 6J cos(x))t

2~

)

= 1− 8
(

J

U

)2

M

(
1− cos(Ut/~)J1(6tJ/~)

3Jt/~

)
, (11.6)

where Jn is the nth Bessel function of the first kind.
To test the validity of the approximations, we first compare in Fig.11.1 the per-

centage fidelity given by the Eq. (11.4) (red) and the numerical solution calculated
by the exact diagonalization of the Bose-Hubbard Hamiltonian (dots). Due to the
exponential scalability of the Hilbert space we restrict the calculations to only 5
wells. We also show comparisons with the analytic solution, Eq. (11.6) (blue). The
on site interaction strength used was U/J = 100.

We observe a very nice agreement between the perturbative and the exact
solutions. The agreement confirms the validity of restricting the evolution to the
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Figure 11.1: Comparisons between the time evolution of the percentage fidelity
calculated by diagonalizing the Bose-Hubbard Hamiltonian (dots), the perturba-
tive solution inside the one particle hole subspace (red) and the analytic solution
Eq. 11.6 (blue).

one particle hole subspace. On the other hand, because of the small number of
wells used for the simulations, we do not expect Eq. (11.6) to be a very good
approximation. Nevertheless, we observe that for short times the analytic solution
is a fair description of the dynamics.

In Fig.11.2 we compare the analytic solution, Eq. (11.6) (blue) with the pertur-
bative solution given by Eq. (11.4) (red) for a larger system with M = 31. Even
though for this large number of wells an exact solution is not available, we ensure
the validity of perturbation theory by choosing the same

√
MJ/U than the one in

Fig.11.1. In this M = 31 case, which lies in a regime where we expect Eq. (11.6)
to be valid, the agreement between the blue and red curves is very good.

In general the behavior of F (t) consists of fast oscillations with frequency equal
to U/~, modulated by longer oscillations with frequency determined by the zeros
of J1. For short times, Jt/~¿ 1, the fidelity is

F (t) ≈ 1− 16
(

J

U

)2

M sin2

(
Ut/~

2

)
, (11.7)

which corresponds to the Rabi oscillations of an effective two level system spanned
by |T 〉 and |S〉, with |S〉 the translationally invariant state directly coupled to the
first order ground state (see Eq. (9.9)). For later times the coupling to other
states becomes important. Notice that the time average of the fidelity over many
oscillation periods is 〈F (t)〉 = 1− 8(J/U)2M . Consequently, the deviation from a
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Figure 11.2: Percentage fidelity as a function of time calculated using the pertur-
bative solution 11.4 (red) and the analytic solution Eq. 11.6 (blue).The number
of sites used for the plot is M = 31

perfectly prepared register, described by 1−〈F (t)〉, is twice as bad as if the system
were prepared in the stationary ground state of the Bose-Hubbard Hamiltonian
(Eq. (9.8)). This indicates that a lattice filled with a commensurate number of
atoms in the Mott insulator state may create a more robust quantum computer
register than one prepared dissipatively.

11.2 Dynamics in presence of the external trap

As mentioned before, in practice it is difficult to prepare an optical lattice with
exactly one atom per well. To arrange the desired configuration, we propose to
use an inhomogeneous lattice with open boundaries created by a weak quadratic
magnetic trap. We require fewer number of atoms than available sites, N < M .
The addition of the trap acts to collect atoms near the potential minimum and
leaves empty wells (holes) at the edges. In experiments where the optical lattice is
loaded from a BEC, the external trap is already present to confine the condensate.
For simplicity we assume a one dimensional trap with oscillation frequency given
by ωT . The magnetic confinement introduces a characteristic energy scale Ω =
m/2a2ωT , so that Vn = Ωn2 (see Eq. (6.1)). To inhibit multiple atom occupation
in any well in the ground state configuration, we require the on site interaction
energy U to be larger than the trapping energy of the most externally trapped
atoms, U > Ω(N−1)2

4 .
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Figure 11.3: Schematic of an inhomogeneous lattice filled with N qubits with an
onsite interaction energy U . An externally applied trapping potential of strength
Vj = Ωj2, e.g. due to a magnetic field, acts to fill gaps in the central region of the
trap. The center subspace R of the lattice defines the quantum computer register
containing K < N qubits.

We define our register as the subspace R comprising K < N wells in the
center region of the the trap (see Fig. 11.3). The barrier space flanking R will
act to suppress percolation of holes from the edges to the center. The esti-
mated probability for holes in R due to tunneling through the barrier is ph ≈∏(N+1)/2

j=(K−1)/2(J/Ω(2j + 1))2 = (J/2Ω)N−K+4(Γ[K/2]/Γ[N/2 + 1])2, which is negli-
gible provided the barrier region is sufficiently large and J/KΩ < 1.

Hereafter, we restrict our attention to the dynamics of the reduced state of the
register obtained by the tracing over spatial modes outside the register subspace
of the entire many body wavefunction. The degree of inhomogeneity is quantified
by the ratio Ω/J . For 0 < Ω/J ¿ 1, the energy splitting between Fock states
describing particle-hole pairs is small and the model of homogeneous dynamics is
valid.

For Ω/J & 1, to first order in perturbation theory, the state space is spanned
by the unit filled state in the register subspace, |T 〉R, and the 2K nearest neighbor
particle-hole pairs |S±j 〉:

|T 〉R = |1, 1, 1, . . . , , 1, 1, 1〉︸ ︷︷ ︸
K sites

, (11.8)

|S+
j 〉R = |1, . . . , 2︸︷︷︸

j

, 0︸︷︷︸
j+1

, . . . , 1〉. |j| < (K − 1)/2, (11.9)

|S−j 〉R = |1, . . . , 2︸︷︷︸
j−1

, 0︸︷︷︸
j

, . . . , 1〉. (11.10)

Here we have introduced coordinates with the site j = 0 coincident with the trap
minimum. For each j the states |S±j 〉R are distinguished by the two energetically
distinct orientations of a doubly occupied site and its neighboring hole with ener-
gies, E(S±j ) = U(1∓ Ω

U (2j − 1)). We define the zero of energy coincident with the
state |T 〉R.
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With an eye to the projective measurement, it is important to understand the
free dynamics when the trap is present and the register is initialized in the pure
state |T 〉R inside the register, R〈T |Ψ(0)〉R = 1. Here |Ψ(0)〉R is the projection
of the initial many body state |Ψ(0)〉 in the register subspace, i.e. |Ψ(0)〉R =
|P〉〈P|Ψ(0)〉 with |P〉〈P| the projection operator that traces over spatial modes
outside the register. We proceed to estimate the fidelity to be in the unit filled
state in the register: FR(t) = |R〈T |P〉〈|P|Ψ(t)〉|2 ≡ |R〈T |Ψ(t)〉R|.

The quantity FR(t) is generally difficult to compute because atoms couple into
and out of the register. Instead, we will first solve the simpler problem of the
fidelity to be in the target state of a commensurately filled inhomogeneous lattice
with K sites. We will use this fidelity to estimate FR(t). In the commensurately
filled inhomogeneous system, to first order in J/U , the dynamics can be restricted
to the Hilbert space spanned by the state vectors {|T 〉R, |S±j 〉R}, and therefore the
time dependent state can be written as :

|Ψ(t)〉com = cT (t)|T 〉R +
∑

j,±
e−iE(S±j )t/~cS±j

(t)|S±j 〉R. (11.11)

The evolution of the amplitudes {cT (t), cS±j
(t)} is dictated by the following equa-

tions of motion:

i~
∂

∂t
cT (t) = −J

√
2

∑

j,±
e−iE(S±j )t/~cS±j

(t), (11.12)

i~
∂

∂t
cS±j

(t) = −J
√

2e−iE(S±j )t/~cT (t). (11.13)

Using the fact that J/U ¿ 1, for times Jt . ~ we can set the value of cT (t) in Eq.
(11.13) to 1. Integrating the equation we obtain

|cS±j
(t)|2 = 8

(
J

U

)2

sin2

(
E(S±j )t

2~

)
, (11.14)

|cT (t)|2 = 1− 8
(

J

U

)2 ∑

j,±

∣∣∣cS±j
(t)

∣∣∣
2
. (11.15)

After performing the sum, the fidelity Fcom(K, t) ≡ |cT (t)|2 is :

Fcom(K, t) ≈ 1− 8
J2

U2

(
K − cos(Ut/~)

(
1 +

sin(Ω(K − 1)t/~)
sin(Ωt/~)

))
. (11.16)

Notice that for Ωt → 0, we recover the short time fidelity in the homogeneous case,
Eq. (11.7).

Once Fcom(K, t) is calculated, we can bound the fidelity FR(t) inside the reg-
ister. Provided N > K the following inequalities on the time averaged fidelities
hold:

〈Fcom(N, t)〉 ≤ 〈FR(t)〉 ≤ 〈Fcom(K, t)〉. (11.17)



200
Chapter 11 Scalable register initialization for quantum computing in

an optical lattice

The lower bound arises because the probability to be in the unit filled state of
a large commensurately filled lattice, given an initial state which is unit filled, is
always less than or equal to the probability to be unit filled over a smaller subspace
of K < N of a non commensurately filled lattice whose register is prepared in the
unit filled state. This inequality holds provided the probability for holes to tunnel
into the register R is small over relevant time scales. The upper bound is a
consequence of the fact that unit filling in the register state is degraded because
particles can tunnel in and out of the register. Therefore its fidelity is less than
that of a commensurately filled lattice of the same size K prepared in the unit
filled state.
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Figure 11.4: Comparisons between the time evolution of the percentage fidelity
Fcom(K = 5, t) calculated by evolving the initial target state using the Bose-
Hubbard Hamiltonian (dots), the restricted one particle hole basis (red) and the
analytic solution Eq. 11.16 (blue). In the plot we assumed a commensurate unit
filled lattice with five sites and infinitely high boundaries.

In Fig. 11.4 we compare this analytic solution, Eq. 11.16 (blue), with the solutions
found by propagating the initial state using the exact Bose-Hubbard Hamiltonian
(dots) and by using a restricted basis set of dimension K(K − 1) + 1 consisting
of the target state and all particle-hole pairs (red). Infinitely high boundaries
were assumed for the numerical solutions. The parameters used for the plot were
U/J = 100,Ω/J = 2.7 and K = 5. We observe complete agreement between the
exact points and the red curve, which justifies the restriction of the dynamics to
the one-particle hole subspace. On the other hand, the analytic approximation
accurately reproduces the exact dynamics only for times t . 0.5~/J . This is not
unexpected because the analytic solution only takes into account the states with
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Figure 11.5: Percentage fidelity as a function time calculated using the approxi-
mated solution 11.16 (blue) and the fidelity found numerically by restricting the
dynamics to the one particle hole subspace. We assumed infinity high boundaries
and K = 31.

no separation between the atomic pair and the hole which are the ones coupled to
first order in J to the ground state and sets cT (t) in Eq. (11.13) to one. In Fig.
11.5 we plot the fidelity for a lattice with more sites, K = 31. Because the Hilbert
space is too large to have an exact solution, we decrease J to get the same J

√
K/U

ratio as the one used in Fig. 11.4. In this way we can be sure of the validity of
the solution constrained to the one-particle hole subspace which is plotted in red.
We observe for this parameter regime that the analytic solution (blue) gives a very
good description of the quantum dynamics. This is consistent with the fact that
as the ratio J/U is decreased, the role in the dynamics of other modes different
from the |S±j 〉R modes becomes less important.

11.3 Measurement

In Sec. 11.2 we showed that the system dynamics can be restricted to a set of
two level couplings {|T 〉R → |S±j 〉}. We now sketch how to perform a continuous
measurement to drive the register into the unit filled “target” state |T 〉R. The full
details are contained in [158]. The idea is to apply an external control field that is
resonant with a coupling between the “faulty” states {|S±j 〉} and a set of excited
states {|M±

j 〉R}. These states are described by K− 2 atoms trapped in the lattice
and a dipole-dipole molecular S+P state at site j+(1∓1)/2. The bound molecular



202
Chapter 11 Scalable register initialization for quantum computing in

an optical lattice

|T 〉
{|S±

j 〉}

√

2J

0−

g (P3/2)

{|M±
j 〉}

∆

γM

S + P3/2

E(S±
j
) + |Vc|

ΩM

Figure 11.6: Schematic of the relevant couplings in the problem. The unit filled
state |T 〉 describing a target quantum register and the states |S±j 〉 having one
doubly occupied lattice site and a neighboring hole are coupled to first order in J .
A catalysis laser resonantly couples the ground states |S±j 〉 to the excited states
|M±

j 〉 describing a bound molecule at the doubly occupied site. The bound states
quickly decay and give the possibility of monitoring population in the “faulty”
register states |S±j 〉.

state is chosen such that the catalysis laser is far off resonance from other bound
states and repulsive potentials, see Fig. 11.6. If the population in the excited states
is easily measurable, for instance by the emission of photons during decay, then the
presence of population in the particle-hole states can be monitored. It is vital that
the coupling field be able to spectroscopically resolve the measurement transition
without exciting the target state. This is possible if the atoms in multiply occupied
wells see a shifted excited state, E(M±

j ) = E(S±j ) + E − U , where for example E
is the energy of a dipole-dipole molecular state. The “bare” energy Hamiltonian
of the system is:

H0 + HBH =
∑

j,±E(S±j )|S±j 〉RR〈S±j |+ E(M±
j )|M±

j 〉RR〈M±
j |

−√2J
∑

j,±(|S±j 〉RR〈T |+ |T 〉RR〈S±j |).
(11.18)

When the catalysis laser is turned on, for the bound states of interest, such
as the long range bound states of the 0−g (P3/2) potential [159], the detuning from
atomic resonances is several thousands of linewidths, meaning the atomic satura-
tion is low. In this case, the excited atomic states can be adiabatically eliminated
and each atom in a singly occupied well experiences a light shift equal to Vc. Be-
cause there are K singly occupied wells in the |T 〉 state its total single atom light
shift is equal to KVc. The |S±j 〉 states have K − 2 singly occupied wells giving
a corresponding light shift of (K − 2)Vc. The differential single atom light shift
between these states is then 2|Vc|. Therefore, when the control Hamiltonian with
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Figure 11.7: Population in the unit filled register state |T 〉R during continuous
measurement of the register beginning in the Bose-Hubbard ground state |Ψg〉. The
plots show dynamics appropriate to tunneling in one dimension with U/J = 500.
(a) Quantum trajectories corresponding to a null measurement result for three
different register sizes K. The time scale to saturate the target state is independent
of the number of qubits: tsat ≈ κ−1. (b) Long time dynamics for K = 501,
N = 551 and finite detector efficiencies η. The population in |T 〉R for η = 1 is
indistinguishable from one. Also shown is the oscillatory dynamics at fundamental
frequency U described by Eq. (11.16) if the measurement is turned off after the
target state is reached. The arrow indicates ρT,T (0).

Rabi frequency ΩM is turned on resonant, the total Hamiltonian in the rotating
frame is:

HI =
∑

j,±(2|Vc|+ E(S±j ))|S±j 〉RR〈S±j |+ (|2Vc|+ E(S±j )− U)|M±
j 〉RR〈M±

j |
−√2J(|S±j 〉RR〈T |+ |T 〉RR〈S±j |) + ~ΩM/2(|M±

j 〉RR〈S±j |+ |S±j 〉RR〈M±
j |)),

(11.19)

Any population in the bound molecular states will decay at a rate γM ≈ 2Γ,
where Γ is the single atom decay rate. For molecular photo-association by red
detuned light, the decay products are typically ground state molecular species or
“hot” atoms meaning the atoms escape the trapped ground states described by Eq.
(11.10). It is possible then to model the system according to a trace non-preserving
master equation:

ρ̇ = −i/~[HI , ρ]− γM/2
∑

j,±
(|M±

j 〉RR〈M±
j |ρ + ρ|M±

j 〉RR〈M±
j |). (11.20)
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Assuming low saturation of the excited states, the dynamics in the ground state is

ρ̇S±j ,T = −iρS±j ,T (E(S±j ) + |Vc|)/~+ i(ρT,T − ρS±j ,S±j
)
√

2J/~− ρS±j ,T κ

ρ̇T,T = i(ρS±j ,T − ρT,S±j
)
√

2J/~
ρ̇S±j ,S±j

= −i(ρS±j ,T − ρT,S±j
)
√

2J/~− 2ρS±j ,S±j
κ.

(11.21)
These equations describe the Bose-Hubbard coupled states with a decay in

population of each state with an atomic pair at a rate 2κ = ΩM
2γM/(4(U/~)2 +

(γM/2)2), and decay of coherences between each of these states and state |T 〉 at a
rate κ.

This type of evolution characterized by measurement induced phase damping
was studied extensively by Gagen and Milburn [160]. We now show that our system
can satisfy the conditions for this effect and in particular can be driven to the |T 〉
state by monitoring the environment for a signature of decay from the molecular
bound state.

For the inhomogeneous system, the state |T 〉 couples to 2K distinguishable
states |S±j 〉. However, we can define an effective Rabi frequency between the state
|T 〉 and the subspace spanned by |S±J 〉. This frequency is close to the coupling
matrix element between the state |T 〉 and the state |S〉 in the homogeneous system,
namely 2

√
KJ . The coherences between the two subspaces decay at a rate κ,

and the population in the subspace {|S±j 〉} decays at a rate 2κ. The “good”
measurement regime as derived in [160] is then:

ΩM/γM ¿ 1 < ~κ/2
√

KJ. (11.22)

The left side inequality ensures that the excited states |M±
j 〉 are weakly pop-

ulated (equivalent to the condition for adiabatic elimination of these states). The
right side inequality ensures that measurement is sufficiently strong to damp co-
herences on the time scale that they develop due to tunneling.

When the environment is monitored, for instance by looking for photon scatter-
ing from the bound molecular state, the evolution of ground states can be modelled
using quantum trajectories. The success or failure of the preparation is conclusive
with failure probability pfail = 1− ρT,T (0). Real experiments will be constrained
to finite detector efficiencies η. For η = 0, corresponding to nonselective measure-
ment, the system dynamics evolve according to Eq. (11.21). In the case of finite
detector efficiencies, we can express the approximate fidelity to be in the target
state is F (η, t) = ρT,T (t) = η + (1 − η)ρη=0

T,T (t). Simulations of successful register
preparation and maintenance by measurement with different efficiencies are shown
in Fig. 11.7.

It is necessary to keep the measurement on during a computation to maintain
high fidelity in the unit filled state. If instead the catalysis field is turned off after
the target state is reached, the system will freely evolve as shown in Sec. 11.2.
To illustrate this we show in Fig. 11.7 the evolution of the fidelity described by
Eq. (11.16) if the measurement is turned off after the target state is reached.
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11.4 Conclusions

In summary, we have shown that efforts to prepare a register of atomic qubits in an
optical lattice suffer from errors inherent in the underlying many body dynamics.
By considering the free dynamics in both homogeneous and trapped systems we
have shown that there is a loss of fidelity of initialization of the unit filled regis-
ter which scales with the number of qubits because it is not a stationary state.
Because our analysis is based on first order perturbation theory we established
the parameter regime where our analytic approach is valid by comparing it with
exact numerical results for moderate numbers of atoms and wells. To make the
Mott insulator transition a robust mechanism for initialization, we have suggested
one approach to correct for the mentioned problems by performing a continuous
measurement on the system. While our discussion has focused on one dimensional
dynamics, the method is also applicable to higher dimensions, which is the relevant
regime for scalability.
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Chapter 12

Conlusions

This thesis gives a global understanding of the basic physics that describes bosonic
cold atoms in optical lattices, starting from the superfluid regime and going into
the strongly correlated Mott insulator regime. In the following I am going to
summarize what I consider are the most relevant contributions of this work.

• The equilibrium properties of lattice systems in the superfluid regime were
studied by using standard mean field techniques and quadratic approxima-
tions.

• An explicit expression for the superfluid density based on the rigidity of the
system under phase variations was derived. This expression enabled us to
explore the connection between the quantum depletion of the condensate
and the quasimomentum distribution on the one hand, and the superfluid
fraction on the other. Also, the superfluid fraction was shown to be a natural
order parameter to describe the superfluid to Mott insulator transition.

• A functional effective action approach, the 2PI-CTP formalism, capable of
dealing with nonequilibrium situations that require a treatment beyond mean
field theory, was studied. Using the patterned loading system, this formalism
was shown to be a powerful tool to go beyond the HFB approximation and
to incorporate the nonlocal and non-Markovian aspects characteristic of the
quantum dynamics.

• It was shown that the complicated nonlocal and non-Markovian solutions
derived using the 2PI-CTP formalism reduce to the standard kinetic theory
equations when the system dynamics admits two-time separation.

• Bragg spectroscopy was shown to be a suitable experimental tool to char-
acterizing the Mott insulator phase and to estimate the temperature of the
system deep in the Mott insulator regime.

• It was shown that the use of a lattice with a spatial inhomogeneity created
by a quadratic magnetic trapping potential, together with a selective mea-
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surement of atomic pairs allow for the Mott insulator transition to become
a robust mechanism for quantum register initialization.

In the recent years there has been spectacular progress in experimental and the-
oretical studies of atoms loaded into an optical lattice. However, there are still
many ideas and possible experiments that could help us to address fundamen-
tal questions in solid state physics, atomic physics, quantum optics and quantum
information. I want to finish this work by mentioning some of them.

One can use for example multi-component ultracold atoms in optical lattices
together with Feshbach resonances to realize Hamiltonians other than the pure
Bose-Hubbard one. Also by loading fermionic atoms into an optical lattice the
Hubbard Hamiltonian could be realized. This could help to answer many theo-
retical questions still open in fermionic systems, such as the BEC-BCS crossover
and the basic physics behind high temperature superconductivity. From the per-
spective of atomic and molecular physics an interesting experiment could be the
use of the Mott insulator state with two atoms per site as a mean to create a
molecular condensate. The creation of vortices in individual lattice sites could
also allow the study of the integer and fractional quantum Hall effects in ultracold
gases. By introducing noise in a controlled way in optical lattice, one can also
study disordered periodic systems, which are very important in condensed matter
physics. And finally and perhaps one of the most challenging tasks is to develop
the necessary techniques and protocols that allow neutral atoms in optical lattices
as a mean to implement a quantum computer.
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Phys. Rev. Lett. 75, 4583 (1995).

[29] G. Grynberg, B. Lounis, P. Verkerk, J. Y. Courtois, and C. Salomon, Phys.
Rev. Lett. 70, 2249 (1993).

[30] Vladan Vuletic, Cheng Chin, Andrew J. Kerman, and Steven Chu, Phys. Rev.
Lett. 81, 5768 (1998).



BIBLIOGRAPHY 211

[31] Andrew J. Kerman, Vladan Vuletic, Cheng Chin, and Steven Chu, Phys. Rev.
Lett. 84, 439442 (2000).

[32] Marshall T. DePue, Colin McCormick, S. Lukman Winoto, Steven Oliver,
and David S. Weiss, Phys. Rev. Lett. 82, 2262 (1999).

[33] S. Peil, J. V. Porto, B. L. Tolra et. al, Phys. Rev. A 67, 051603 (2003).

[34] P. Blair Blakie and Charles W. Clark, J. Phys. B: At. Mol. Opt. Phys. 37
1391 (2004).

[35] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger, Phys. Rev.
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