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Abstract

is thesis reports on the creation and analysis of many-body states of interacting
fermionic atoms in optical laices. e realized system can be described by the
Fermi-Hubbard hamiltonian, whi is an important model for correlated electrons
in modern condensed maer physics. In this way, ultra-cold atoms can be utilized
as a quantum simulator to study solid state phenomena.
e use of a Feshba resonance in combination with a blue-detuned optical lat-
tice and a red-detuned dipole trap enables an independent control over all relevant
parameters in the many-body hamiltonian. By measuring the in-situ density dis-
tribution and doublon fraction it has been possible to identify both metallic and
insulating phases in the repulsive Hubbard model, including the experimental ob-
servation of the fermionic Mo insulator. In the aractive case, the appearance
of strong correlations has been detected via an anomalous expansion of the cloud
that is caused by the formation of non-condensed pairs. By monitoring the in-
situ density distribution of initially localized atoms during the free expansion in
a homogeneous optical laice, a strong influence of interactions on the out-of-
equilibrium dynamics within the Hubbard model has been found.
e reported experiments pave the way for future studies on magnetic order and
fermionic superfluidity in a clean and well-controlled experimental system.
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1. Introduction

Although the study of ultracold atoms is a relatively new field that started with
the first experimental realization of a Bose Einstein condensate in 1995 [1, 2], it
has already diversified into many subbranes studying different topics ranging
from the effects of disorder on non-interacting systems over collective excitations
and superfluidity in weakly interacting systems to the study of strongly correlated
states, molecular physics and quantum information.

Starting with the first realization of a quantum degenerate gas of fermionic atoms
in 1999 [3], ultracold fermions became an important subfield, especially in the
presence of strong interactions: Fermions cannot Bose condense due to the Pauli
principle (cf. sec. 2.2) and superfluidity of fermionic particles therefore relies on
first converting the fermions into bosonic pairs like e.g. molecules of fermionic
atoms or Cooper pairs of electrons (cf. sec. 3.3.3).

ere exist mainly two routes for realizing strongly interacting states of ultracold
atoms: One is the use of Feshba resonances (cf. sec. 3.3) in order to directly
boost the interactions. e second route, the use of optical laices, in contrast
mostly affects the kinetic energy of the particles. In a laice, the kinetic energy
of the particles becomes confined to several distinct Blo bands. Within a single
band of a sufficiently deep laice the kinetic energy becomes so small that the
interaction energy can easily dominate over the kinetic energy. is allows the
realization of strongly correlated states without the need of a Feshba resonance,
thereby avoiding the corresponding losses.

A first hallmark experiment combining ultracold atoms and optical laices was
the observation of the superfluid to Mo insulator transition with bosonic atoms
in 2001 [4]. is experiment did not only demonstrate the ability to rea strongly
correlated states using ultracold atoms in optical laices but furthermore demon-
strated the ability to implement Hubbard models with this tenique [5, 6]. is
started not only an intense researprogram concerning the Bose-Hubbardmodel [7]
but also created a lot of interest in combining fermionic quantum gases with an
optical laice.

Fermionic atoms in optical laices can be described by the fermionic Hubbard
model (cf. sec. 5), whi represents one of the central models in modern condensed
maer physics: Due to the complexity of real materials an important goal in the
study of electrons in solids is the sear for the simplest models that nonetheless
describe the physics of interest. In this context the Hubbard model was the first
to successfully describe the Mo transition between conducting and insulating
states.
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1. Introduction

Optical laices offer the possibility to study condensed maer physics using ul-
tracold atoms and can be seen as one example of a so-called antum Simulator,
whi was first proposed by Riard P. Feynman in 1982 [8]. e central idea of
a quantum simulation is to use one well-controlled quantum system to simulate
another quantum system. is is especially appealing in the case of electrons in a
solid, since many condensed maer phenomena involve a large number of elec-
trons while exact numerical simulations are still limited to less than 20 particles
due to the exponentially growing Hilbert space [9].

+ + +
Potential created by ions Potential created by

standing light wave 

-- -
J

J

tunneling interaction
U

U

:  Atoms

E
ne
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y

Figure 1.1.: In a tight-binding model like the Hubbard model the exact interactions
and potentials are absorbed into a few coefficients. In the easiest case of a single
band Hubbard model these coefficients are the hopping rate t and the on-site in-
teraction constant U . is model can therefore be realized by su diverse systems
as electrons in a solid or atoms in an optical laice.

One major advantages of ultracold atoms in this context is that they represent
a clean and simple system, whi allows one to study specifically the physics at
interest and nothing more: Unlike a real crystal, whi always has a finite defect
density, an optical laice is a perfectly periodic potential without any defects. In
addition the physics is mu simpler as no additional degrees of freedom, e.g.
laice phonons,have to be considered.

e second big advantage stems from the high controllability of atomic systems.
In contrast to a real solid, the strengths of all potentials can be controlled by vary-
ing the laser intensities. By the use of Feshba resonances it in addition became
possible to freely tune the interactions between the atoms, something that is im-
possible to aieve in a real solid, where one has to deal with the Coulomb repul-
sion between the electrons.

Apart from simulating condensed maer physics there are many more applica-
tions for atomic laice systems, whi form an intriguing and very ri many-
body system in their own right: In a deep laice, where tunneling can be ne-
glected, one can think of ea individual laice site as a small ”test tube” in whi
molecular physics of a small number of atoms can be studied in a clean and well
isolated environment [10], a topic that currently sees renewed interest due to the
recent production of ultracold ground state molecules [11, 12]. Using the capa-
bilities to resolve and address individual laice sites, whi have recently been
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1.1. is thesis

demonstrated [13–19], single atoms on isolated laice sites can become an ideal
candidate for a antum Memory and other antum Information applications.

1.1. This thesis

e main topic of this thesis is the experimental investigation of the equilib-
rium and out-of-equilibrium physics of an interacting spin mixture of ultracold
fermionic atoms in optical laices. To this end we implemented and optimized a
combination of several cooling teniques in order to prepare a sufficiently degen-
erate sample of ultracold fermions in a crossed beam dipole trap. In order to gain
full independent control over the density of atoms in the laice, we implemented
for the first time a blue-detuned optical laice for ultracold atoms. In contrast to a
standard red-detuned laice, the blue-detuned case creates a repulsive potential,
for whi new alignment and aracterization procedures had to be established.

e blue detuned laice allowed us to create deep laices without automatically
creating a strong harmonic confinement at the same time. It therefore enabled us
to control laice depth and confinement independently, whi was the key ingre-
dient to all experiments in this thesis. In additionwe adapted several measurement
teniques to the fermionic case and implemented for the first time phase-contrast
imaging with fermions in an optical laice.

In the case of repulsive interactions (cf. sec. 8) the combination of varying the
harmonic confinement at constant laice depth with the measurement of the in-
situ density distribution allowed us to directly measure the compressibility of the
cloud and thereby to distinguish incompressible band- and Mo-insulating states
from compressible metallic states.

In the case of aractive interactions (cf. sec. 9) the preparation of a low density
sample enabled us to study the intriguing pseudogap regime in the aractive Hub-
bard model, in whi fermionic atoms form pairs that do not condense due to a
finite entropy.

In a last experiment, we used the possibility to ange the parameters in real time
to study the expansion dynamics of a Fermi gas within a deep laice (cf. sec.
10). is experiment at the same time revealed a fascinating many body out-of-
equilibrium dynamics and allowed us to gain a first glimpse at the aracteristic
timescales of mass transport in a Hubbard model.

During the optimization of the laice wavelength we studied the photodissocia-
tion of Feshbamolecules by blue-detuned light in order to aieve a low enough
heating rate to perform equilibrium experiments in the laice, the results are given
in the appendix (cf. sec. A).

is thesis is linked to the PhD theses of Tim Rom, orsten Best and Sebas-
tian Will that were/are performed at the same experimental apparatus. ey are
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1. Introduction

focused on the measurement of density-density correlations of non-interacting
fermions (T.R.) and experiments with Bosons and Bose-Fermi mixtures (T.B and
S.W.).

1.2. Publications

e main results of this thesis are published in the following references:

• Metallic and Insulating Phases of Repulsively Interacting Fermions in
a 3D Optical Lattice
U. Sneider, L. Haermüller, S. Will, T. Best, I. Blo, T. Costi, R. Helmes,
D. Ras, and A. Ros.
Science 322, 1520–1525 (2008)

• Anomalous Expansion of Attractively Interacting Fermionic Atoms in
an Optical Lattice
L. Haermüller, U. Sneider, M. Moreno-Cardoner, T. Kitagawa, T. Best,
S. Will, E. Demler, E. Altman, I. Blo, and B. Paredes.
Science 327, 1621–1624 (2010)

• Breakdown of diࣹ usion: From collisional hydrodynamics to a contin-
uous quantum walk in a homogeneous Hubbard model
U. Sneider, L. Haermüller, J. Ronzheimer, S. Will, S. Braun, T. Best,
I. Blo, E. Demler, S. Mandt, D. Ras, and A. Ros.
arXiv:1005.3545v1 [cond-mat.quant-gas] (2010)

e following additional references have also been published in the context of this
thesis. ey are covered in detail in the aforementioned PhD theses:

• Free fermion antibun ing in a degenerate atomic Fermi gas released
from an optical lattice
T. Rom, T. Best, D. van Oosten, U. Sneider, S. Fölling, B. Paredes, and
I. Blo
Nature 444, 733–736 (2006)

• Role of Interactions in 87Rb-40K Bose-Fermi Mixtures in a 3D Optical
Lattice
T. Best, S. Will, U. Sneider, L. Haermüller, D. van Oosten, I. Blo, and
D.-S. Lühmann.
Phys. Rev. Le. 102, 30408 (2009)

• Time-resolved observation of coherentmulti-body interactions in quan-
tum phase revivals
S. Will, T. Best, U. Sneider, L. Haermüller, D.-S. Lühmann, and I. Blo.
Nature 465, 197 (2010)
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2. Statistical mechanics

Classical statistical physics typically deals with distinguishable particles: Even if
two macroscopic objects would not differ by small details, they could still be dis-
tinguished by their (classical) positions and velocities. Two quantum meanical
particles in the same internal quantum state on the other hand are indistinguish-
able. If their wavefunctions overlap at some time it is later on impossible to tell
whi particle originated from where. is indistinguishability of the particles
gives rise to fundamental differences between classical and quantum statistics:

In the case of two distinguishable particles (1 & 2) and two single-particle eigen-
states |a⟩ and |b⟩ there are four possible combinations:

|A⟩ = |a⟩1 |a⟩2 |B⟩ = |a⟩1 |b⟩2 (2.1)

|C⟩ = |b⟩1 |a⟩2 |D⟩ = |b⟩1 |b⟩2 (2.2)

If the particles are indistinguishable, all physical properties (e.g. expectation val-
ues) must remain unaffected by an interange of two particles. Formally, this can
be taken into account by requiring that any physical state |Ψ⟩ is an eigenstate of
the permutation operator P̂ij whi exanges the particles i and j: P̂12 |Ψ⟩ =

a |Ψ⟩, a ∈ C. e possible eigenvalues a of P̂ij can be found by noting that (in
3D) exanging the same pair of particles twice is equivalent to not interanging
them at all (P̂ij)

2 = 1̂. is implies a2 = 1 and leads to a = ±1, whi states
that the exange of two particles can either leave the wavefunction unanged
(a = 1) or ange its sign (a = −1)¹.

In the case of a = 1 the particles are called bosons and there are three possible
two-particle states:

|Ψ1
b⟩ = |A⟩ (2.3)

|Ψ2
b⟩ = |D⟩ (2.4)

|Ψ3
b⟩ = 1/

√
2 { |B⟩+ |C⟩} (2.5)

In the case of a = −1 the particles will be called fermions and there is only one
possible state:

|Ψf⟩ = 1/
√
2 { |B⟩ − |C⟩} (2.6)

¹In the two-dimensional case the situation is more subtle and leads to the existence of so-called
Anyons, that is particles with fractional statistics [20, 21].
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2. Statistical meanics

e above argument is known as the Pauli principle and can be extended to an
arbitrary number of particles [22]:

• e wave function of a set of N indistinguishable particles is either com-
pletely symmetric and remains unanged upon exanging two arbitrary
particles: In this case these particles are called bosons.

• Or it is completely antisymmetric, and thus anges its sign when two par-
ticles are exanged: In this case the particles are called fermions.

e so-called Spin-Statistics eorem, whi was derived for certain cases already
by Wolfgang Pauli [23], links the above distinction between bosons and fermions
to the spin of the particles and states that all particles with an integer or zero spin
are bosons and particles with half-integer spin are fermions.

e different symmetries of the wavefunction lead to the fundamentally different
Bose-Einstein and Fermi-Dirac statistics, whose consequences can be seen perhaps
most dramatically in the different Helium isotopes: Electron structure and em-
ical properties of 3He and 4He are identical, the only difference is the number of
neutrons in the nucleus whi leads to different nuclear spins and therefore dif-
ferent statistics.
Bosonic 4He becomes superfluid below 2.17K at atmospheric pressure while fer-
mionic 3He becomes superfluid only below 3mK [24].

For simplicity only non-interacting particles are considered in this apter. While
this is a crude approximation for bosons, interactions can be safely neglected in a
single component Fermi gas at ultracold temperatures (cf. sec. 3.2.2)

2.1. Bosons

As seen in the previous section, the possible many-body wavefunctions of N in-
distinguishable and non-interacting bosonic particles are given by all completely
symmetric combinations of single-particle eigenstates. In contrast to the fermionic
case, whi will be discussed in the next section, the required symmetry posses
no restrictions on the possible occupations of the single particle states.
e many-body ground state is therefore given by the state where all particles
occupy the single-particle ground state |ψ0⟩with energy ϵ0. is phenomena of a
macroscopic occupation of a single quantum state is known as Bose-Einstein con-
densation (BEC). It was predicted for non-interacting particles by A. Einstein in
1925 [25], expanding work by S. N. Bose [26] and was observed in dilute gases for
the first time in 1995 [1, 2].
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2.2. Fermions
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Figure 2.1.: Absorption images of a cloud of (weakly interacting) bosonic atoms
aer time of flight. In the le image a partial condensed cloud is shown, the right
image shows a pure BEC whose central density exceeds the dynamic range of the
imaging setup. X denotes a horizontal and z the vertical axis.

For finite temperatures T the occupation of the single-particle eigenstates with
energy ϵ is given by the Bose-Einstein distribution:

N(ϵ) =
1

exp
(
ϵ− µ

kBT

)
− 1

(2.7)

where µ ≤ ϵ0 denotes the emical potential (cf. sec. 2.3). ere exists a critical
temperature Tc below whi the occupationN0 of the single-particle ground state
becomes macroscopic. In the important case of a 3D harmonic trap the condensate
fraction N0/N is given by [24]:

N0(T )

N
= 1−

(
T

Tc

)3

(2.8)

In time-of-flight images (cf. sec. 2.2.3) the onset of Bose-Einstein condensation is
clearly visible in the bimodality of the cloud, whi is shown in figure 2.1: e
elliptical central core in the le image is the condensed atoms, while the round,
Gaussian shaped baground is due to the thermal component.

Most experiments so far have been carried out with weakly interacting atoms and
the interactions where taken into account by use of the Gross-Pitaevskii equation
and the Bogoliubov approximation. [24]. Only recently it became possible to use
Feshba resonances (cf. sec. 3.3) in order to realize systems of non-interacting
bosonic atoms [27, 28].

2.2. Fermions

Fermions are particles with an half-integer spin and include the constituents of
all atoms: electrons, protons and neutrons. As a consequence, any neutral atom
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2. Statistical meanics

with an uneven number of neutrons is itself fermionic. Important examples of
degenerate fermionic particles include the electrons in a metal [29], neutrons in
a neutron star and superfluid 3He. In the context of laser-cooled atoms, the two
most widely used fermionic species are the alkali metal isotopes Potassium 40K
and Lithium 6Li. Potassium, whi was also used in the experiments in this thesis,
was first cooled into the quantum degenerate regime by B. Demarco and D.S. Jin
in 1999 [3].

An important consequence of the general Pauli principle for indistinguishable
fermions is the so-called Pauli exclusion principle [22]:

Two identical fermions cannot be in the same quantum state.

is can be seen directly from the aforementioned antisymmetry of the wavefunc-
tion: e antisymmetrized wavefunction for two identical fermions in the same
single-particle state |a⟩ vanishes:

|Ψf⟩ = 1/
√
2 { |a⟩1 |a⟩2 − |a⟩1 |a⟩2} = 0 (2.9)

Due to this principle, N identical fermions at zero temperature will not form a
BEC, where all particles would occupy the same single-particle state, but will in-
stead form a so-called Fermi-sea: ey will occupy the N lowest energy states
by exactly one fermion per state. Important examples for this behavior are the
electronic shells of atoms or the Fermi-sea of conductance electrons in a solid:
Without the Pauli exclusion principle all atoms would be similar to the hydrogen
atomwith all electrons occupying the 1s energy state and (neglecting interactions)
all solids would be metallic since no band-insulating state could form.

2.2.1. Fermi-Dirac distribution

For non-interacting fermions in thermal equilibrium the average occupation of a
given (single-particle) eigenstate of the hamiltonian with energy ϵ is given by the
Fermi-Dirac distribution:

F (ϵ) =
1

e
ϵ−µ
kBT + 1

(2.10)

Here T denotes the temperature and µ is the emical potential whi controls
the particle number (cf. sec. 2.3).

Since the exponential ex is always positive, all occupations are less than or equal to
one, as required by the Pauli exclusion principle. As a consequence, there cannot
be a macroscopic occupation of any single-particle state, i.e. no BEC. In contrast to
the bosonic case there is no phase transition for non-interacting fermions. Instead
one finds a smooth crossover from the classical regime at high temperatures to
the quantum degenerate regime at low temperatures, whimakes the degeneracy
mu harder to detect than in the bosonic case.
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Figure 2.2.: Fermi-Dirac distributione Fermi-Dirac distribution for several re-
duced temperatures T/TF : At zero temperature the distribution reduces to a step
function at the Fermi energy EF , for small temperatures T/TF ≪ 1 the distri-
bution deviates from the step function only for energies close to the Fermi energy
and for large temperatures it approaes a classical Boltzmann distribution.

At zero temperature the Fermi-Dirac distribution reduces to the step function out-
lined in the previous paragraph: N identical particles occupy theN lowest energy
states and the energy of the N th state is called the Fermi energy EF :

F (ϵ)(T=0) =

{
1 ∀ ϵ ≤ EF

0 other
(2.11)

Accordingly, the Fermi temperature TF is defined as

TF =
EF − ϵ0
kB

(2.12)

where kB denotes Boltzmann’s constant and ϵ0 is the energy of the lowest single-
particle state, whi can be approximated by zero in most cases.

Fugacity

In practice, the Fermi-Dirac distribution is mostly given in a slightly different
parametrization using the fugacity z = e

µ
kBT :

F (ϵ) =
1

e
ϵ−µ
kBT + 1

=
1

1
z
e

ϵ
kBT + 1

(2.13)

15



2. Statistical meanics

e fugacity is a convenient parameter to express the ”degree of degeneracy” as
the term 1/z in the Fermi-Dirac distribution determines the relative weight of
the ex and the+1 term: In the classical regime at high temperatures 1/z becomes
large, one can neglect the+1 term and the Fermi-Dirac distribution reduces to the
classical Boltzmann-distribution. In the quantum degenerate regime T/TF ≪ 1,
1/z becomes very small and the +1 terms limits the occupations to one.

Entropy

e total entropy S of a set of identical non-interacting fermions is given by [30,
31]:

S

kB
=
E − µN

kBT
+
∑
n

log
(
1 + e

µ−ϵn
kBT

)
(2.14)

where E denotes the total energy and the sum is taken over all single-particle
states n. e entropy increases monotonically with temperature and depends on
the density of single-particle states n.

2.2.2. Fermionic atoms in an harmonic trap

In the experiment the last step of evaporative cooling is performed in a crossed
beam dipole trap (cf. sec. 4.2) that can be approximated by a harmonic potential:

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.15)

It is aracterized by three trap frequencies ωi for particles with mass m. In the
experiment, the horizontal trap frequencies are approximately equal ω⊥ = ωx =
ωy and the ratio between the vertical and the horizontal trap frequencies is the
aspect ratio γ of the trap γ = ωz

ω⊥
.

e corresponding single-particle hamiltonian Ĥ separates into three terms Ĥ =
Ĥx + Ĥy + Ĥz whi act only on a single coordinate. Consequently, the time-
independent Srödinger equation Ĥ |Ψ(x, y, z)⟩ = E |Ψ(x, y, z)⟩ can be split
up into three independent equations and its solutions can be wrien as a product
of three 1D harmonic oscillator eigenstates:

|Ψ(x, y, z)⟩ = |ψx(x)⟩ · |ψy(y)⟩ · |ψz(z)⟩ (2.16)

is separability of the hamiltonian into three independent 1D hamiltonians still
holds if a simple cubic laice potential (cf. sec. 4.3) is added and enormously fa-
cilitates the solution of the problem.
Due to the separability of the problem the eigenenergies of the system are given
by all possible combinations E = Ex + Ey + Ez of the 1D harmonic oscillator
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2.2. Fermions

eigenenergies Ei(n) = ~ωi(n+ 1/2). e corresponding density of states can be
approximated by:

g(ϵ) =
ϵ2

2γ(~ω⊥)3
(2.17)

Using this density of states it is possible to give explicit formulas and relations for
most thermodynamic quantities (cf. sec. C for details):

• Fermi temperature

TF =
EF

kB
=

~ωr

kB
(6γN)

1
3 (2.18)

• fugacity

Li3(−z) = − 1

6(T/TF )3
(2.19)

Here Li3 denotes the trilogarithm (cf. sec. C) and the equationmust be solved
numerically.

• entropy

S

kB
=
E − µN

kBT
+

1

2γ~3ω3

(
µ4

12kBT
+

1

6
kBµ

2π2T

+
7

180
k3Bπ

4T 3 + 2k3BT
3 Li4(−e

− µ
kBT

) (2.20)

emost widely used parameter to measure the degeneracy is the reduced temper-
ature T/TF whi is directly related to the entropy via the fugacity. For a given
aspect ratio γ both temperature and Fermi energy of the cloud scale linearly with
the trap frequency ω⊥. Consequently, they increase even if the trap frequency ω⊥
is increased adiabatically.
e entropy per particle, the fugacity and the reduced temperature on the other
hand stay constant and are thereby beer suited as a ”thermometer” than tem-
perature itself. In addition, at constant ”degeneracy”, i.e. constant entropy per
particle, temperature and mean energy also vary with particle number.
e emphasis on entropy per particle instead of temperature becomes especially
important when adiabatically (i.e. isentropically, cf. sec. 2.3) loading into the lat-
tice, where the density of states becomes more complex (cf. sec. 4.3.2) and does
not follow a power law any more.
e measurements shown in this thesis were performed at reduced temperatures
T/TF between 0.1 and 0.15.

17



2. Statistical meanics

0 0.1 0.2
0

log(2)
1

log(4)

2

Reduced temperature

E
nt

ro
py

 p
er

 p
ar

tic
le

 (k
B
)

0 0.5 1
0

2.5

5

7.5

10

Reduced temperature

E
nt

ro
py

 p
er

 p
ar

tic
le

 (k
B
)

0 0.5 1
100

105

1010

1015

1020

Reduced temperature

Fu
gy

ci
ty

Figure 2.3.: Entropy and fugacity in an harmonic trap as a function of the reduced
temperature T/TF . Shown is the entropy according to equation 2.20 (red) and the
result of a Sommerfield expansion π2 · T/TF (blue), whi is valid for small tem-
peratures. e fugacity approaes zero in the classical limit at high temperatures
and diverges for a vanishing temperature.

T/TF S/N (kB) z T@20Hz (nK) T@100Hz (nK)
0.02 0.20 5 · 1021 3 13
0.05 0.49 4 · 108 6 32
0.1 0.97 16000 13 64
0.15 1.42 480 19 96
0.2 1.85 77 26 129
0.4 3.3 3.4 5 257
1 5.8 0.17 129 643

N = 105 γ = 4

Table 2.1.: Entropy per particle, fugacity and temperature for a cloud of non-
interacting fermions in an harmonic potential. e measurements in this thesis
were performed at reduced temperatures between 0.1 and 0.15.

Thomas-Fermi approximation

Since the exact eigenstates of particles in an harmonic trap are well known, both
the real-space and the momentum space distributions could in principle be calcu-
lated by summing over all eigenstates.
In the limit of large particle numbers, however, it is more convenient to use a semi-
classical or omas-Fermi approximation that yields analytic formulas based on
a phase-space picture [32]: Every state is labeled by a position r⃗ and a momen-
tum p⃗ whi can be thought of to represent the center of the according wave
paet. e energy of these states is given by the classical hamiltonian: H(r⃗, p⃗) =
m
2
ω2
⊥(x

2+ y2+γ2z2)+ p2

2m
and the atom distribution in phase-space is given by:

w(r⃗, p⃗) =
1

h3
1

1
z
e

H(r⃗,p⃗)
kBT + 1

(2.21)

e real-space density distribution can be calculated by integrating this phase-
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2.2. Fermions

space distribution over all momenta [33]:

n(r⃗) =
1

(2π)3

∫
w(r⃗, p⃗)d3p⃗

= −(kBmT )
3/2

(2π)3/2 ~3
Li3/2

[
−z exp

(
−mω2

⊥
2kBT

(x2 + y2 + γ2z2)

)] (2.22)

In the same way the momentum distribution can be obtained by integrating over
real space:

Π(p) = − 1

(2π)3/2~3γ

(
kBT

mω2
⊥

)3/2

Li3/2

[
−z exp

(
− p2

2mkBT

)]
(2.23)

An important observation is that in theomas-Fermi approximation for fermions
the momentum distribution is always isotropic. As a consequence, the aspect ratio
of a fermionic cloud that is suddenly released from a trap, always approaes one
for sufficiently long time of flights.

2.2.3. Time-of-flight imaging

e standard way of measuring the temperature of a cloud of ultracold atoms
uses so-called time-of-flight imaging, where all trapping potentials are suddenly
swited off, and the cloud expands freely for some time before it is imaged. For
long time-of-flights, the initial cloud size can be neglected and, in the case of
non-interacting atoms, the observed density distribution is given by the initial
momentum distribution and the effects of gravity:

x(t) = p · t/m+ 1/2gt2 (2.24)

For non-degenerate clouds the resulting distribution is a 2D Gaussian, whose
width σ =

√
⟨p2⟩t2/m2 is a measure of temperature.

An important feature of the harmonic potential is the existence of scaling relations
that lead to analytic expressions for the time evolution of an ideal gas released
from an harmonic trap [34]:

n(x, y, z, t) =
n( x√

1+ω2
xt

2
, . . . , 0)

(1 + ω2
r t

2)
√

1 + ω2
zt

2
(2.25)

Here ωi denote the trap frequencies before the sudden swit-off. ese scaling
relations are valid for all time of flights. For ideal gases the free expansion there-
fore amounts to a rescaling of the spatial coordinates without altering the shape
of the distribution. is shape invariance under free expansion is particular for
harmonic potentials and does not hold for a general potential.
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Figure 2.4.: Absorption image of a degenerate non-interacting Fermi cloud taken
along the vertical direction aer 10ms time-of-flight.

Since every axes is rescaled separately, the aspect ratio of a fermionic cloud will
smoothly approa one, in accordance with the momentum distribution in the
omas-Fermi approximation (cf. eqn. 2.23).
In the case of non-interacting bosons (or a single fermionic atom) at zero temper-
ature, however, only the single-particle ground state is occupied and the momen-
tum distribution is anisotropic.

Extracting temperatures: Fitting procedure

e above derived equations for the density distribution aer time of flight are
used to extract the reduced temperature T/TF and thereby the entropy per particle
from standard absorption images (cf. e.g. app. 1 in [35]). ese images record the
integrated or column density

nc(x, y) =

∫
n(x, y, z)dz (2.26)

where the integration is taken along the imaging direction.

Combining the omas-Fermi real space density distribution (eqn. 2.22) with the
above scaling relations (eqn. 2.25) and integrating along the z direction yields:

nc(x, y) = A · Li2
(
−z · e

− x2

2σ2
x
− y2

2σ2
y

)
A =

−1

2
√
1 + (ω⊥t)2

√
1 + (γω⊥t)2

m(kBT )
2

π~3ω⊥

σi =
kBT

mω2
i

(
1 + (ωit)

2
)

(2.27)
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is distribution depends on the entropy per particle in two ways: First temper-
ature appears directly in the prefactor and the σi, and it enters in form of the
fugacity in the argument of the dilogarithm. Extracting the entropy per particle
from the prefactor and the σi requires knowledge of the trap frequencies and a
precise calibration of the column density in terms of the recorded optical den-
sity, whi is typically limited by uncertainties due to saturation and polarization
effects and optical pumping.

It is therefore common practice to use the fugacity z as a free fit parameter and
then calculate the reduce temperature using (eqn. 2.19):

nfit
c (x, y) = A ·

Li2

(
−z · e

− (x−xc)
2

2σ2
x

− (y−yc)
2

2σ2
y

)
Li2(−z)

+ b (2.28)

In this fit function the peak density A, the center position xc, yc, the baground
b and the widths σx, σy of the Gaussian are free parameters. One can think of this
distribution as a classical Gaussian that becomes deformed by the dilogarithm: In
the classical limit T ≫ TF the fugacity is small against one, the dilogarithm is
linear and the distribution stays Gaussian. e nonlinearity of the dilogarithm,
whi can be seen in Fig. 2.5 becomes increasingly important for larger fugacities
and leads to growing deviations from a Gaussian.
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Figure 2.5.: e dilogarithm Li2(x) for different ranges of x: For small values the
dilogarithm is approximately linear and the fit function of eqn. 2.28 reduces to a
Gaussian. For large values the dilogarithm is highly nonlinear and reflects the
deviations between Fermi-Dirac and classical statistics.

With this fit function the temperature gets extracted from the shape of the distri-
bution, i.e. the deviations from a Gaussian distribution. is procedure requires
only that the trap is harmonic and that the imaging process is linear in the atomic
density. No additional calibrations are needed.

We fit the full two-dimensional distribution using a Levenberg-Marquardt algo-
rithm [36, 37] implemented inMATLAB. In order to speed up the calculation of the
dilogarithm we use a look-up table with 106 entries on a logarithmic grid together
with a linear interpolation seme. In addition, all fit functions are wrien in su
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a way that they can handle all points of an image in a single call, therebymassively
reducing the overhead associated with function calls and loops. In order to ensure
reproducible starting conditions for the Fermi-Dirac fit we perform a pre-fit using
a Gaussian distribution and initialize the Fermi-Dirac fit with z = 10 � 5 and the
results of the pre-fit.

As the fugacity diverges for small reduced temperatures (cf. fig. 2.3) we alterna-
tively use the logarithm of the fugacity as free fit parameter. Due to the different
convergence aracteristics of the two methods their results start to differ at our
coldest clouds.
e results of these fiing procedures can be seen in figure 2.6. As expected for a
degenerate Fermi gas, the distribution cannot be fied with a Gaussian anymore.
e bla an green lines show the results of the two varieties of Fermi-Dirac fits,
whi are barely discernible, although the resulting temperatures differ by almost
a factor of two.

Figure 2.6.: Azimuthally averaged cloud together with several fits: Blue dots rep-
resent the measured data and the line indicates the best Gaussian fit. e bla and
green lines show the result of the two Fermi-Dirac fiing procedures described in
the text. e fits were performed on the full two-dimensional distribution before
the azimuthally averaging.

Figure 2.7 shows the result of Fermi-Dirac fits of the same image using various
fixed fugacities. For low reduced temperatures significant differences can be seen
only at the wings of the distribution around 55px away from the center of the
image. e thiness of this ”significance shell” shrinks rapidly with decreasing
temperature. is effectively limits this fiing method to temperatures T/TF &
0.1 due to imaging noise (cf. inset in fig. 2.6). In addition anharmonic terms in the
potential need to be taken into account at these cold temperatures.
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Figure 2.7.: Examples of Fermi-Dirac fits: e same image as in Fig. 2.6 was fied
for various fixed fugacities to illustrate the effect of temperature on the distribution.
For low reduced temperatures the only significant difference occurs in the wings
of the cloud (inset). e area with significant differences strongly decreases with
temperature.

2.3. Ensembles

In statical meanics three standard types of ensembles are used:

• Amicrocanonical ensemble is completely isolated from its environment and
is aracterized by a fixed particle number N and fixed total energy E.

• e canonical ensemble is in thermal contact with a heat reservoir, whi
imposes its temperature T on the ensemble. It can be described by the still
fixed particle number N and the temperature.

• e grand canonical ensemble is coupled to a particle reservoir with em-
ical potential µ in addition to the heat reservoir. It is aracterized by tem-
perature T and emical potential µ.

In the experiment the situation differs from all three ensembles:
Aer evaporative cooling the system is in principle isolated from the environment
and is aracterized by an atom number N and a fixed total entropy S.
In contrast to a microcanonical ensemble, however, several parameters (trap fre-
quency, laice depth, interaction strength) are controlled externally via classical
parameters. Ideally, all anges of these parameters are performed slowly enough
to be adiabatic and therefore conserve the entropy (isentropic processes). ereby
the total energy E and the temperature T of the system will ange but atom
number and entropy per particle remain constant. In the experiment, however,
theosen timescales are compromises between the adiabaticity requirements and
tenical heating (cf. sec. 7ff).
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3. Interactions

e role of interactions in the field of degenerate quantum gases can hardly be
overestimated, as any experimental study of ultracold atoms would be impossible
without interactions between the atoms: Elastic collisions are one of the key re-
quirements for evaporative cooling, since they redistributemomentum and energy
between the atoms and are therefore a necessary condition for thermalization.
But far beyond this ”tenical necessity” for interactions, they are also the key
to the riness of ultracold atoms: Interactions induce correlations between the
atoms and are thereby responsible for all of the intriguing many-body physics be-
yond the ”bare” Bose-Einstein or Fermi-Dirac statistics, ranging from Bogoliubov
excitations in weakly interacting Bose gases [38] to strongly interacting phases
like Mo insulators (cf. sec. 5.5.2) or antiferromagnetically ordered phases (cf. sec.
5.5.2).

One of the most important features of ultracold atoms is the possibility to freely
tune the effective interactions by use of Feshba resonances (cf. sec. 3.3). In many
cases, including fermionc 40K in a laice, it is possible to tune the interaction from
strongly aractive over non-interacting to strongly repulsive by simply anging
the magnetic field. is allows systematic tests of theoretical models as a function
of interaction strength. In addition, Feshba resonances can be used in order to
produce weakly bound molecules, so-called Feshba molecules (cf. sec. 3.3.2).

In the context of simulating condensed maer physics in optical laices, the most
important aracteristic of the interactions between the atoms is their short-range
aracter, whi allows an easy theoretical description in terms of a contact poten-
tial (cf. sec. 3.2.3) and is well suited to implement important model hamiltonians
like the Hubbard model (cf. sec. 5).

3.1. Types of interactions

e dominant aracter of the interaction between two atoms depends crucially
on their distance. Restricting the discussion in a first step to ground state alkali
atoms and neglecting all relativistic effects like spin-orbit coupling and hyperfine
interactions, two regimes remain [39]:

• At long distances, where the electron clouds of the atoms are well sepa-
rated, the interactions are dominated by the dipole-dipole interaction be-
tween mutually induced dipole moments, the van der Waals interaction,
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whi scales as VvdW = −C6/R
6 in the binding case. Here R denotes the

internuclear separation. e range of this potential is given by the van der
Waals length

lvdW =
1

2

(
mC6

~2

)1/4

(3.1)

In the case of 40K the van der Waals coefficient in the electronic ground
state is (in spectroscopic units) C6 = 0.189 × 108cm−1Å6 [40] and the
corresponding van der Waals length is lvdw = 65 a0 = 3.4 nm.

• At short distances the electron clouds start to overlap and give rise to a quan-
tum meanical exange interaction that depends crucially on the relative
spin of the outer electrons and splits the electronic ground state potential
into two curves, the singlet potential X1Σg and the triplet potential a3Σu.

In the Born-Oppenheimer approximation [39] these interactions give rise to the
non-relativistic Born-Oppenheimer potentials, whi are shown in Figure 3.1 for
the electronic ground state and the first excited state (s+p) of two potassium atoms.
If one atom is in the excited state, the dominating long-range term is a resonant
dipole-dipole interaction of the form Vdd = ±C3/R

3, whi can intuitively be
understood by considering ea atom as being in a superposition of ground and
excited state [41]. e range of this dipole-dipole interaction greatly exceeds that
of the van der Waals interaction. In addition, the effects of the mu weaker spin-
orbit interactions can be incorporated into these potentials and become dominant
at large distances, where the van der Waals potential is small. For negative total
energies these potentials give rise to many bound molecular states, for positive
energies the eigenstates are the scaering solutions.

e above picture of independent potentials reaes is limits, however, if one tries
to include hyperfine interactions, as these couple different Born-Oppenheimer po-
tentials and especially can couple singlet and triplet states and thereby effectively
render any collision problem into a multiannel problem. e potentials essen-
tially form a spin-dependent potential matrix, whose elements describe the (posi-
tion dependent) interactions between the different spin states [42]. Following [41],
one should think of the collision process as a kind of interferometer:

”A wave starts inward from long range. When the wave reaes
the distance where the hyperfine and exange interactions become
comparable in size, the wave splits. One part of the wave samples
the singlet potential and one part samples the triplet potential. e
two parts bounce off the inner wall of their respective potentials and
recombine on the way ba out. Finally, the interference between the
incoming wave and the outgoing wave establishes the nodal paern
of the scaering wave function.”
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Figure 3.1.:Molecular potentials (Born-Oppenheimer potentials) between two 40K
atoms. Ploed are the singlet (blue) and triplet (red) potential in the electronic
ground state (X1Σg , a3Σu) and those four excited potentials that can be reaed
by an (electric) dipole transition (red resp. blue). e ground state potentials are
taken from reference [40] and the excited state calculations were performed by O.
Dulieu (priv. comm.).

In the following the collisional annels will be labeled by the pair of atomic hy-
perfine states with whi they coincide at large internuclear distances and small
magnetic fields.

In principle, also three body interactions would need to be considered, but due
to the low density of ultracold atoms and the short range of the dominant in-
teractions, three body interactions can mostly be ignored. e only exception are
inelastic three-body collisions, where a single collision can lead to the loss of three
particles (cf. sec. 3.3.1).

3.2. Scattering theory

e multitude of interactions described in the previous section gives rise to a va-
riety of elastic and inelastic collision processes, whose probabilities can be calcu-
lated using scaering theory [43].

Elastic collisions, whi do not alter the relative kinetic energy, can nonetheless
redistribute momentum between the atoms and are responsible for thermalization
within the ensemble.
In addition, they ange the many-body wavefunction and thereby give rise to
the interaction energy (cf. below) and create correlations between the particles. In
inelastic collisions on the other hand, internal energy gets converted into kinetic
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3. Interactions

energy. Due to the large hyperfine and molecular energies involved, an inelastic
collision will almost always result in a particle loss, as the typical increase in
kinetic energy is mu larger than the trap depth.

3.2.1. Elastic scattering

Without interactions the relative wave function of two (distinguishable) particles
in the internal states |a⟩ and |b⟩ can be wrien as Ψ0(R⃗) = eik⃗·R⃗ |a, b⟩, where k⃗
denotes their relative momentum and R the interatomic distance. Elastic scaer-
ing can now ange this relative momentum and at large interparticle distances
R, beyond the range of the interactions, the effects of the interactions can be in-
corporated into the wavefunction via

ΨIA(R⃗) ∝
(
eik⃗·R⃗ +

eik
′R

R
f(E, k̂, k̂′)

)
|a, b⟩ (3.2)

where f(E, k̂, k̂′) denotes the scaering amplitude. Its square (|f |2) describes the
probability that a pair of atoms with collision energy E is scaered from relative
momentum k⃗ to relative momentum k⃗′ [43]. Energy conservation requires k = k′

and the overall effect of the collision can be summarized by the collisional cross
section σ(E), whi is defined as the integral of |f |2 over all relative momenta for
a given collisional energy.

e problem can be simplified tremendously by using spherical coordinates and
expanding both the incoming plane wave and the scaered wave into spherical
harmonics. In this expansion the scaering amplitude becomes a tensor flml′m′

and describes the probability to scaer a pair of particles from the relative angu-
lar momentum state lm to l′m′. In most cases one can neglect any anisotropies
like e.g. dipole-dipole interactions [44] and angular momentum is conserved. As a
consequence, the scaering problem decouples into independent angular momen-
tum annels: l = l′, m = m′. e type of the collision is labeled accordingly as
an s-wave collision for l = 0, p-wave for l = 1 and so on.

3.2.2. Ultracold collisions

In the case of ultracold atoms, additional simplifications arise due to the fact that
at ultracold temperatures the thermal de Broglie wavelength of the relative motion
is mu larger than the range of the interaction. Together with the small density
of ultracold gases, whi ensures that also the mean distance between the atoms
is large compared to the range of the interaction, this results in an inability to
resolve details of the potential during the collision and leads to quantum threshold
effects [43]:
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3.2. Scaering theory

In the limit of small momenta k, the scaering amplitude for s-wave collisions
fs(k) can be expressed by the following expansion [45]:

fs(k) = − 1

a−1
s + ik + k2 reff/2 + · · ·

(3.3)

Here as is the (s-wave) scaering length and reff denotes the effective range of
the interaction, whi typically is on the order of the van der Waals length. A
positive scaering length corresponds to a repulsive effective interaction while a
negative value denotes an aractive effective interaction.
In most cases, except close to Feshba resonances (cf. below), the scaering am-
plitude is dominated by the scaering length, the cross section σs becomes energy
independent and is given for distinguishable particles by:

σs = 4πa2s (3.4)

In the case of two indistinguishable fermions, s-wave collisions are impossible
since the Pauli principle prohibits the the occurrence of a relative s-wave state.
As a consequence, a spin mixture of two hyperfine states is needed in order to
have s-wave collisions in a Fermi gas.

But even in a spinmixture the fermionic nature shows a strong influence on the in-
teractions in a many-body system: While the effective cross section is given by the
value for distinguishable particles (cf. eq. 3.4) in the classical regime (T/TF & 1) it
decreases in the quantum degenerate regime and ultimately vanishes at zero tem-
perature. is effect is referred to as Pauli bloing and is caused by the decreasing
number of available scaering states [46].

In the case of non-vanishing angular momentum l ≥ 1 the effective potential
includes a repulsive centrifugal potential: ~2l(l + 1)/(2µR2). is centrifugal
barrier gives rise to classical turning points, whi, for low enough momenta, lie
outside of the interaction potential and thereby suppress these collisions. For p-
wave interactions, the cross section scales as σp(E) ∝ E2 for low energies and
p-wave collisions can be safely ignored at typical trap temperatures [47] away
from p-wave Feshba resonances (cf. next section).

3.2.3. Contact interaction

In most relevant cases the details of the potential are unimportant since both the
average distance between the particles and their relative de Broglie wavelength
greatly exceed the range of the interactions. As a consequence, as long as they re-
produce the correct scaering lengths, easier model potentials can be used instead
of the exact potentials. In the case of a smooth relative wavefunction without
a singularity the complete interaction potential can be replaced by a point like
contact interaction with a delta-function potential

VCI(x⃗− x⃗′) =
4π~2a
2µ

δ3(x⃗− x⃗′) (3.5)
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3. Interactions

whi reproduces the correct physics at low momenta [45].

3.3. Feshbach resonance

While a fully repulsive potential necessarily creates a positive scaering length, a
typical interatomic potential can produce any real scaering length (−∞≤a≤∞),
since it depends on the phase a pair of atoms acquires during the traverse of the
interatomic potentials. Even more, for a given form of the potential the scaering
length is an oscillatory function of the potential depth, as it specifically depends
on the position of the last bound state in the potential [45] and more and more
bound states appear for increasing potential depths.
On the one hand, this oscillatory behavior renders a theoretical ab-initio predic-
tion of the scaering length nearly impossible, but on the other hand it opens
the possibility to gain full control over the scaering length using only minuscule
anges in the interactions.

e key to manipulating the scaering length stems from the coupling between
different atomic states with the same spin projectionM = m1 +m2 but different
total magnetic moments [48]. e relative offset energies between the different
states in this multiannel scaering problem can be tuned via the magnetic field,
as their different magnetic moments result in relative Zeeman shis. Typically,
the atoms enter the collision in the lowest of the involved energy annels, whi
is oen referred to as the open annel. e second involved annel at higher
energy is called the closed annel, since the atoms do not possess enough energy
to separate in this potential.

e relative Zeeman shis between these two annels can be used to tune the
energy of the last bound state of the multiannel potential into resonance with
the kinetic energy of the atoms in the incoming hyperfine state. is results in
a Feshba resonance where the scaering amplitude is greatly enhanced by the
resonant coupling to the molecular state. e scaering length in fact diverges at
the resonance [49–53] and is given by [54]:

a(B) = abg

(
1− w

B −B0

)
(3.6)

Here abg denotes the baground scaering length away from the resonance, w
the width of the resonance and B0 the resonance position. e resulting scaer-
ing length is ploed in figure 3.2 for a Feshba resonance between the two lowest
hyperfine states ( |F,mF ⟩) |9/2,−9/2⟩, |9/2,−7/2⟩ in fermionic 40K. is res-
onance was used to control the interaction in all experiments in this thesis: While
the scaering length is positive for magnetic fields below the Feshba resonance
(the so-called BEC side), the interaction is aractive (a < 0) directly above the
resonance (the so-called BCS side, cf. below). For larger fields the scaering length
shows a zero crossing before it rises to the positive baground scaering length.
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3.3. Feshba resonance

In ultracold gases, Feshba resonances were first observed in 1998 by various
groups [55–58] using bosonic atoms. In fermionic 40K the first Feshba reso-
nances were predicted using a numerical coupledannels calculation in 2000 [59]
followed by a first observation in 2002 by the group of D. Jin at JILA [60]¹. First
experiments using a Feshba resonance in 40K in optical laices were performed
in the group of T. Esslinger at the ETHZ [62, 63]
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Figure 3.2.: Scaering Length between the two lowest hyperfine states
( |9/2,−9/2⟩, |9/2,−7/2⟩) in fermionic 40K. Baground scaering length abg
and resonance position B0 are taken from the JILA parametrization [61], the reso-
nance width w was taken from our measurement of the free expansion in a laice
(cf. sec. 10.3.5).

3.3.1. Losses at Feshbach resonance

In addition to the ange in scaering length a Feshba resonance also strongly
enhances inelastic collisions. is magnetic field dependent losses are oen used
to sear for Feshba resonances. We extended this sear to several new com-
binations of hyperfine states in 40K, the results are summarized in table 3.1.

Figures 3.3 and 3.4 show two examples of these loss features obtained with a mix-
ture of |−7/2⟩ and |−3/2⟩ atoms and a mixture of |−9/2⟩ and |−5/2⟩: In the
first mixture a single s-wave resonance at 260G can be seen, while the second
mixture shows in total three resonances. e sharp feature at 224G corresponds
to the well-known s-wave resonance between the |−9/2⟩ and |−5/2⟩ atoms
while the feature at 245G is also present in a pure |−5/2⟩ sample and can there-
fore be ascribed to a p-wave resonance in the |−5/2⟩ annel.

¹e same group also aracterized most known Feshba resonances in 40K, their results are
most coherently presented in the PhD esis of Cindy Regal [61]
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3. Interactions

open annel ( |mF ⟩) l B0 (G) w (G) prev. observation
|−9/2⟩+ |−7/2⟩ s 202.1 7.0± 0.2 [60, 64–68]
|−9/2⟩+ |−5/2⟩ s 224.2 9.7± 0.6 [62, 69, 70]
|−7/2⟩+ |−5/2⟩ s ∼ 174 ∼ 7 [61]
|−7/2⟩+ |−3/2⟩ s 168.5± 0.4 - -
|−7/2⟩+ |−3/2⟩ s 260.3± 0.6 - -

|−7/2⟩ p ∼ 198.8 - [63, 64, 71]
|−5/2⟩ p 245.3± 0.5 - -

|−9/2⟩+ |−5/2⟩ p 215± 5 - -

Table 3.1.: List of Feshba resonances observed in our experiment for various
hyperfine combinations in the F = 9/2 hyperfine ground state. Values printed
in bold type are new or improved measurements, all other values are taken from
[61]. e assignment of s-wave (p-wave)aracter to the new resonances was done
according to independent numerical coupled annels calculations performed by
P. Julienne and J. Bohn (private communication).

In addition to these two sharp loss features there is a very broad loss feature span-
ning from 200G to 240G. We aribute this loss process to a p-wave resonance
between the |−9/2⟩ and |−5/2⟩ annels. In this resonance the open annel
is coupled to the same annels that are also involved in the well known p-wave
|−7/2⟩ resonance at 199G, whi has the same total spin projection M = −7.
e presence of this loss annel prevents us from using the, otherwise very con-
venient, s-wave resonance between the |−9/2⟩ and |−5/2⟩ atoms at 225G. All
observed features in this mixture agree well with a coupled annels calculation
by Paul Julienne (private communication).

3.3.2. Feshbach molecules

Directly below the Feshba resonance, where the scaering length is large and
positive, the binding energy of the last multiannel bound state is very small and
is approximately given by:

Eb =
~2

ma2
(3.7)

ese Feshbamolecules are exceptionally large halo molecules: eir size (mean
internuclear distance) is given by the scaering length ⟨r⟩ = a/2 ≈ 70 nm @201.6G
and can greatly exceed the van der Waals length (lvdw65 a0 = 3.4 nm) [72]. In fig-
ure 3.5 the molecular wavefunction is ploed for different magnetic fields: While
the form of the wavefunction hardly anges in the closed annel, the large outer
maximum in the open annel extends to larger and lager distances upon ap-
proaing the Feshba resonance.

ese molecular states can experimentally be occupied in several ways [48]. e
most widely used way to convert pairs of atoms into molecules is a Landau-Zener
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Figure 3.3.: Atom number of a |−7/2⟩ plus |−3/2⟩ spin mixture aer a hold time
at various magnetic fields. One sees one loss feature at 260G that can be aributed
to an s-wave Feshba resonance in this annel.

type sweep of the magnetic field over the resonance, starting on the BCS side at
a < 0 and ramping to the BEC side with a > 0 [73–75]. e efficiency of these
Feshba sweeps for a gas of atoms can be calculated using a simple phase-space
model and can serve in the adiabatic case, where the sweep rate is sufficiently slow,
as a thermometer for the weakly interacting gas in the dipole trap [76]. In order to
prove that the atoms are really transfered into molecules, and not just lost from the
trap, an inverse ramp is used to dissociate the molecules. e observed increase
in atom number during this dissociation sweep, whi is shown exemplarily in
figure 3.6, is a direct proof for the creation of the molecules.

Especially in 6Li ultracold molecules can be created by performing evaporative
cooling at magnetic fields on the BEC side of the Feshba resonance. During the
final evaporative cooling the atoms are converted into molecules through three-
body collisions [77]. Another method, whi in addition allows to measure the
binding energy of the molecules, is the use of radio-frequency pulses to convert
atoms into molecules or vice versa [66, 73].

In the case of bosonic atoms, the lifetime of the resulting molecules is very short
[55, 78–80], as themolecules are created in the highest rovibrationally excited state
and can decay to deeper bound states by inelastic collisions with a third atom.
For fermionic atoms on the other hand, this process is highly suppressed by the
Pauli principle, as it requires a close approa of two identical fermions [81, 82].
Especially in the case of 6Li, this leads to extraordinarily long lifetimes on the
order of seconds [74]. In 40K the aievable lifetimes depend on the magnetic
field and are on the order of 1 − 100ms [83] with the longest lifetimes being
observed directly below the Feshba resonance. In a sufficiently deep laice with
one molecule per laice sites these collisions are suppressed and even for bosonic

33



3. Interactions

180 190 200 210 220 230 240 250
0

0.2

0.4

0.6

0.8

1

A
to

m
 n

um
be

r (
a.

u.
)

Magnetic field (G)

mF=-9/2 
+

 mF=-5/2  
p-wave

mF=-5/2  
p-wave

mF=-9/2 + mF=-5/2  s-wave

Figure 3.4.: Atom number of a |−9/2⟩ plus |−5/2⟩ spin mixture aer a hold time
at various magnetic fields. e colors correspond to independent experimental
runs.

molecules long lifetimes up to 700ms could be observed [84].

Feshba molecules can be used as a starting point for the creation of ultracold
ground-state molecules [11, 12], whi in the case of heteronuclear molecules of-
fer the possibility to study many-body physics in the presence of huge dipolar
interactions [11].

We have used Feshba sweeps in a deep laice in order to convert pairs of atoms
on the same laice site into molecules and thereby detect double occupied laice
sites (cf. sec. 6.6). During the optimization of the blue-detuned laice we studied
the effects of blue-detuned light onto Feshba molecules. e resulting photodis-
sociation spectra are presented in the appendix (cf. sec. A) and can be used to gain
direct information about the molecular wavefunction.

3.3.3. BEC-BCS crossover

e influence of Feshba resonances on the many-body states of a fermionic spin
mixture has received a lot of aention in recent years and is now commonly re-
ferred to as the BEC to BCS crossover [45]: e presence of interactions can have
dramatic consequences on the many-body state of fermionic spin mixtures. With-
out interactions, there would be no coupling between the different spin compo-
nents and the many-body ground state would consist of two independent Fermi
seas. e probably most dramatic consequence of interactions is the possibility
for fermions to become bound together into bosonic pairs, whi then can Bose
condense into a superfluid state.
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Figure 3.5.: Wavefunctions of a Feshba molecule in the open annel/closed
annel basis for the 40K Feshba resonance at 202.1G. e open annels cor-
responds to a pair of atoms in the |F=9/2,mF=−9/2⟩+ |9/2,−7/2⟩ hyperfine
states while the closed annel corresponds to |9/2,−9/2⟩+ |7/2,−7/2⟩. Note
the logarithmic scaling of the x-axis. e results were obtained by P. Julienne using
a numerical coupled-annels calculation.

Far above the Feshba resonance, where the two-body interaction is weakly at-
tractive (a < 0), the many-body ground state is given by the well known BCS
superfluid [24, 85, 86]. It was shown in 1957 by Bardeen, Cooper, and Srieffer
that an arbitrarily weak aractive interaction between the spin components leads
to the Cooper instability: Even though there exists no two particle bound state
with negative energy, the energy of a bound spin singlet state of two fermions
with opposite momenta nonetheless is less than two times the Fermi energy. At
sufficiently low temperatures all particles around the Fermi surface are bound
into these Cooper pairs whi condense and form a BCS superfluid. e critical
temperature for superfluidity in the BCS regime is given by [45]:

TC,BCS = 0.61e−π/(2kF |a|) (3.8)

Here kF denotes the wavevector at the Fermimomentum. e critical temperature
is exponentially small for weak interactions, but rises to experimentally reaable
temperatures close to the Feshba resonance, where 1/|kFa| is on the order of
one.

Far below the Feshba resonance on the other hand, there exists a weakly bound
molecular state and the two particle interaction is repulsive (a > 0). At low tem-
peratures the fermionic atoms form bosonic diatomic Feshba molecules whi
can Bose condense, forming a superfluid BEC of molecules. In this limit the for-
mation of pairs (molecules) and the condensation of these pairs happen at two
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Figure 3.6.: Atom number of a |−9/2⟩ plus |−7/2⟩ spin mixture aer a Fesh-
ba ramp to 201G followed by a dissociation ramp to a variable final value. e
detected molecule fraction of 83± 5% is consistent with an initial temperature of
T/TF ≤ 0.15 [76].

distinct temperatures: e pair formation happens at a temperature T ∗

T ∗
BEC ≈ 1

3

|Eb|

W
((

π
6

) 1
3 |Eb|

2EF

) (3.9)

that scales with the binding energy of the molecule Eb² [45].
Away from the resonance, where the size of the molecule is small compared to
the intermolecular distance and the interaction is weak, the temperature of the
superfluid transition approaes that of a non-interacting Bose gas with twice the
mass and half of the density:

TC,BEC = 0.22EF (3.10)

It turned out that these two limits are connected by a smooth crossover, the so-
called BEC-BCS crossover, whi is by now well studied in the dipole trap. Exper-
iments have observed superfluidity of the gas on the BEC side of the resonance
and in the strongly interacting crossover regime where 1/|kFa| < 1 [65, 87–94].
Upon varying the interactions, the system evolves smoothly from the BCS regime,
where the pair size (the size of a Cooper pair) is large compared to the interatomic
distance and its binding energy is small, through the crossover regime, where the
system is strongly interacting and the pair size in comparable to the interparticle
spacing, all the way to the BEC limit, where the pair size (the size of the molecule)

²Here W (x) denotes the Lambert W-function, whi is the solution to x = WeW and can be
expanded into W (x) ≈ log(x)− log(log(x)) for x > 3.
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3.4. Light assisted collisions

is smaller than the interatomic distance and its binding energy is large compared
to the Fermi energy.

But not only the superfluid phase is affected by the BEC-BCS crossover: e nor-
mal state varies from an essentially non-interacting Fermi gas of atoms to aweakly
interacting Bose gas in the so-called pseudogap regime. In this regime, where the
fermions are paired but the pairs are not condensed, bosonic excitations are more
important than fermionic excitations and e.g. the spin susceptibility is strongly
reduced.
Especially in the crossover region, where both bosonic and fermionic excitations
are relevant, this can lead to intriguing effects, e.g. the formation of polarons in
strongly imbalanced mixtures [95, 96].

3.4. Light assisted collisions

An additional type of collisions, whi becomes important in the presence of
strong light fields, i.e. laser fields, is termed light assisted collisions or radiative
collisions. ese are collisions between a ground state and an exited state atom,
or, more precisely, the term describes a collision between two atoms where one
atom absorbs a photon during the collision.
Due to the long-range dipole-dipole interaction between a ground states and an
excited state atom (cf. sec. 3.1), the excitation results in a strong force between the
atoms:
In the blue detuned case the potential is repulsive and accelerates the atoms away
from ea other until the excited atom returns to its electronic ground state via the
spontaneous emission of a photon. Due to the high gain in kinetic energy, whi
is on the order of a fraction of the photon detuning, the atoms will typically be
lost from the trap.
In the red-detuned case on the other hand, the atoms will be excited into a bound
molecular state in the excited potentials, whose subsequent decay can also lead to
a loss of the atoms.

An intuitive model for the rate of these collisions can be gained from the Fran-
Condon principle, that is the approximation that both the position and the ki-
netic energy of the nuclei remain constant during the absorption of the photon.
Roughly speaking, the timescale of the optical transition is fast compared to the
typical timescales for the motion of the nuclei, and the photon momentum is small
compared to the momenta of the nuclei.
As a consequence, for every photon energy the transition happens dominantly
at the Condon points Rc, where the photon energy ~ωL mates the difference
between the potential energies:

~ωL = Ees(Rc)− Egs(Rc) (3.11)
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Figure 3.7.: Cartoon picture of a light assisted collision. i red and blue lines
denote the molecular triplet and singlet potentials from fig. 3.1. in lines denote
the resp. wavefunctions in those potentials calculated by P. Julienne using a couple
annels calculation. in green lines denote some bound molecular states in the
excited potentials (sket). During a light assisted collisions a pair of atoms is
excited at the Condon point RC into the repulsive excited potential, where the
atoms are accelerated and gain a fraction of the photon detuning as kinetic energy
before they return to the ground state via a spontaneous emission.

Here Egs and Ees denote Born-Oppenheimer potentials (cf. sec. 3.1) between two
ground state atoms (Egs) or one ground state and one excited atom (Ees). e
relevant potentials in the case of two 40K atoms are depicted in figure 3.7 together
with a typical ground-state wavefunction.

In a quantummeanical calculation the transition probability between twomolec-
ular states (either bound or unbound) is proportional to the Fran-Condon factor,
whi describes the overlap between the nuclear wave functions:

FCF (gs, es) =

∣∣∣∣∫ Ψ∗
es(R)Ψgs(R)dR

∣∣∣∣2 (3.12)

Here Ψgs, Ψes denotes the molecular wavefunctions in the ground and excited
state and R is the internuclear distance. Typically, the strongest contribution to
this integral stems from the vicinity of the Condon points [39].

In the red-detuned case, i.e. light whi is red-detuned with respect to the atomic
transition, the resonant absorption of a photon is only possible if the detuning of
the light mates the binding energy of a molecular state in the excited potentials,
as depicted in figure 3.7.
is is in stark contrast to the blue-detuned case, where unbound states in the
scaering continuum are excited and a resonant absorption is possible for all blue
detunings. is has important consequences for the use of red-/blue-detuned light
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3.4. Light assisted collisions

(cf. sec. 4.1) in the trapping and manipulation of ultracold atoms: While in the red-
detuned case light assisted collisions can be efficiently suppressed by detuning the
laser from themolecular resonances [84], they are always present for blue-detuned
light.

In the case of not too large detunings (∆ . 200 cm−1), the Condon point lies at
rather large internuclear distancesRc & 20 a0, where the derivative of the ground
state van der Waals potential can be neglected in comparison to the derivative of
the excited state dipole-dipole potential. In this case the reflection approximation
shows that the Fran-Condon factor of the exciting transition in the blue-detuned
case is simply proportional to the amplitude of the ground-state wave function at
the Condon point [97, 98].
is was experimentally demonstrated by Vuletić et.al.: By use of a Feshba res-
onance, they could suppress the collision rate for a given detuning by a factor
of 15 by tuning the scaering length, and thereby the position of a node of the
wavefunction, to the Condon point [99].

In the regime of larger detunings, like the ones used in this thesis for the creation
of blue-detuned laices (cf. sec. 4.3.1), the Condon points are located at smaller
internuclear distances. ere the form of the ground state wave function is fixed
by the molecular potential and cannot be anged by the magnetic field.
As is shown in the appendix (cf. app. A), it is however still possible to significantly
suppress light assisted collisions by use of a suitable laice wavelength. Nonethe-
less, for the used parameters light assisted collisions give rise to an additional loss
annel in the laice, whi selectively affects only doubly occupied laice sites.
In the non-interacting case the mean distance between two atoms occupying the
same laice site is on the order of the harmonic oscillator lengths (55 − 70 nm),
whi is already considerably smaller than the mean interparticle distance in a
typical dipole trap. In the interacting case, however, the mean distance strongly
depends on the sign and strength of the interactions. is results in a strong in-
teraction dependence of the lifetime of doubly occupied sites (cf. sec. 9.6), whi,
at least for aractive interactions, creates a considerable heating rate.

Light assisted collisions are also responsible for the fast pair losses during fluo-
rescence imaging in optical laices, whi have been observed recently [18, 19].
In addition, these collisions constituted a major limitation for the atom numbers
aievable a MOT operated at low baground pressure. ey could eventually
be circumvented by the use of dark spot MOTs, where most of the trapped atoms
are pumped into a dark state of the cooling transition [100, 101].
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4. Optical potentials: Dipole trap and
lattice

4.1. Dipole potential

e interaction between atoms and light is probably the single most important tool
for the creation, manipulation, and detection of ultracold atoms. e aracter of
the interaction between a two-level atom and a monoromatic light field consists
of two parts, namely the absorptive and the dispersive interaction. eir relative
importance depends on the detuning δ = ω − ω0 between the frequency ω of the
light field and the transition frequency of the atom ω0 [102].
is apter mainly deals with the resulting dipole potentials in the case of large
detunings and describes the red-detuned dipole trap and the blue-detuned optical
laice used in the experiments.

Absorptive interaction e absorptive part of the interaction describes the
scaering of photons from the incident light field by the atoms. It consists of the
absorption of an incident photon followed by a spontaneous emission into another
mode. If a two-level atom is continuously illuminated with a not too far detuned
monoromatic light field (δ ≫ Γ, δ ≪ ω0) of intensity I , the average scaering
rate is given by [103]:

Γsc =
3πc2

2~ω3
0

(
Γ

δ

)2

I (4.1)

Here Γ denotes the natural linewidth of the emied fluorescence light and serves
as a measure for the strength of an atomic transition.

is scaering process is used in the initial laser-cooling of the atoms (cf. sec. 7)
and in absorption imaging [35]. When trapping ultracold atoms, however, photon
scaering needs to be avoided: Scaering a photon transfers an average momen-
tum of p =

√
2~k (k = 2π/λ) onto an atom that was initially at rest, whi

would lead to a severe heating of the cloud. Furthermore, the emission of the
photon would localize the atom [104] and thereby severely alter any delocalized
states.
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4. Optical potentials: Dipole trap and laice

Dispersive interaction e dispersive part of the interaction can be modeled
by a Raman process where an atom can (virtually) absorb a photon from the
monoromatic light field and re-emit it into the light field by stimulated emis-
sion. is creates a phase shi of the light, whi is used in phase contrast imaging
(cf. sec. 6.5) and induces energy shis (light shis) of the atomic levels [102]:
For a two-level atom and not too large detunings δ ≪ ω0 the energy shi of the
ground state creates the so-called dipole potential:

Udip =
3πc2

2~ω3
0

Γ

δ
I (4.2)

While the scaering rate decreases as I/δ2 with detuning, the dipole potential
scales as I/δ. For a given dipole potential the scaering rate therefore scales as
1/δ and in general high intensities and large detunings are used in order to aieve
the needed potential strength at the lowest possible scaering rate.

By using inhomogeneous intensity distributions I(r) it is possible to create a wide
variety of conservative potentialsU(r) in order to trap andmanipulate atoms. e
sign of the potential is given by the detuning of the light field:

• If the frequency of the light is smaller that the transition frequency of the
atom (δ < 0), the potential is called red detuned and negative. e po-
tential minima coincide with the intensity maxima and ground state atoms
experience a force towards high intensities, e.g. the center of a Gaussian
beam.

• In the blue-detuned case (δ > 0) the potential is positive and the atoms feel
a force towards the intensity minima.

Figure 4.1.: Dipole potential due to a red (blue) -detuned Gaussian beam. e red
detuned beam aracts the atoms while the blue-detuned beam repels them.

In the experiment a red-detuned dipole trap at λ = 1030 nm is used together with
a blue-detuned optical laice at λ = 738 nm.
Compared to equation 4.2, at these wavelengths two additional effects need to
be taken into account: e laice wavelength is close enough to the D lines of
Potassium (4s→ 4p) and Rubidium (5s→ 5p) su that the spin-orbit coupling
in the excited state and the resulting fine structure spliing into the D1 and D2

lines needs to be considered. e detuning of the dipole trap wavelength on the
other hand is so large that an additional term proportional to 1/(ω+ω0) becomes
relevant. e resulting potential for linear polarized light is given by [103]:

Udip(r) =
πc2

2

Γ

ω0

(
1

ω − ωD1

+
1

ω + ωD1

+
2

ω − ωD2

+
2

ω + ωD2

)
(4.3)
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4.2. Crossed dipole trap

where Γ and ω0 are averaged over the D1 and D2 lines.

Onemajor advantage of optical potentials compared tomagnetic potentials is their
possibility to affect all spin states in the same way, provided that the detunings
are large and linear polarizations are used. is opens the possibility to realize
spin mixtures without differential potentials between the components and to ac-
cess magnetic Feshba resonances at arbitrary magnetic fields. In addition the
strength of the potentials, and thereby the trap depth, can easily be controlled by
varying the light intensity.

4.2. Crossed dipole trap

e dipole trap used in the experiment consists of two beams¹ traveling in the hor-
izontal plane and intersecting ea other at right angles (cf. fig. 4.2). e elliptical
foci (wx

0,hor = 140µm, wx
0,vert = 30µm and wy

0,hor = 170µm, wy
0,vert = 70µm)

overlap and create an oblate (“pancake-shaped”) trap. In order to prevent un-
wanted interference effects, the two beams have orthogonal polarizations and a
frequency offset of 160MHz .

z

x

450 µmy
x

a b

Figure 4.2.: le: e two dipole trap beams are focused to overlapping elliptical
foci. right: e intensity distribution in one of the foci, the stripe paern in the
upper right corner is an artifact of interferences in the imaging path.

e resulting trapping potential is shown in figure 4.3 and consists of the sum of
the two dipole potentials and gravity. As one can see in the le image, the trap
is in general not isotropic in the horizontal directions. In most relevant cases,
however, the atoms are confined to the central part of the trap, whi can be well
approximated by a harmonic potential.

In the vertical direction the influence of gravity shis the potential minimum away
from the beam center (“gravitational sag”). is shi becomes larger for weaker
dipole traps until the so-called trap boom is reaed. Below the trap boom the

¹e light for the dipole trap is created by a diode-pumped single-frequency Yb:YAG disc laser
(Versadisc by ELS, now Sahajanand) that creates 18W output power at λ = 1030 nm.
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4. Optical potentials: Dipole trap and laice
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Figure 4.3.: Crossed dipole trap potential. le: Equipotential lines of the crossed
dipole trap in the horizontal plane. In the center, the trap is isotropic in the hori-
zontal plane. right: Trapping potentials along the vertical direction, consisting of
the sum of dipole potentials of various strengths and gravity. Due to the influ-
ence of gravity the minimum position is shied away from the center of the dipole
beams (dashed line).

dipole potential cannot hold the atoms against gravity anymore.
In the case of a mixture of Rubidium and Potassium atoms this shi is especially
important: e detuning of the dipole trap is large compared to the difference
between the resonance frequencies, and the linewidths of the transitions are al-
most equal. is leads to approximately equal dipole potentials for both species
while their masses differ by more than a factor of two. e resulting difference in
the gravitational sags could diminish the spatial overlap between the species and
thereby hinder sympathetic cooling, whi relies on collisions between 40K and
87Rb atoms (cf. sec. 7).

e osen oblate trap geometry minimizes gravitational sags due to the tight
vertical confinement and thereby allows an efficient sympathetic cooling.

4.2.1. Trap frequencies

In most relevant cases, the atoms occupy only the central part of the trapping
potential, whi can be approximated by a harmonic potential. e strength of
the trap can then be parameterized by three trap frequencies ωi (cf. sec. 2.2.2),
whi are measured in the experiment by exciting dipole oscillations of the cloud
in the trap (”sloshing”) and recording the center of mass momentum using time
of flight imaging. e oscillations are excited by vertically displacing the trap
center using a sudden ange of the dipole trap power. is sudden ange of
the gravitational sag induces a vertical center of mass motion. e excitation will
spread over all three axes and induce harmonic center of mass oscillations at the
trap frequency, as can be seen in figure 4.4.

44



4.2. Crossed dipole trap

Figure 4.4.: Measured and fied trap frequencies: e le (right) image shows an
example of the horizontal (vertical) center of mass motion. e amplitude of the
slower (ω = 2π × 50Hz) horizontal oscillation increases while the faster (ω =
2π × 210Hz) vertical motion is damped.

In figure 4.5 the measured trap frequencies are shown for various dipole trap pow-
ers. e horizontal trap frequencies are equal ωx = ωy = ω⊥ and scale, as ex-
pected, like the square root of the power (ω2

⊥ ∝ p) in the dipole beams. In the
vertical direction gravity alters the power-law scaling of the trap frequencies: e
trap boom, that is the power where the vertical trap frequency vanishes, occurs
when the steepest gradient of the dipole potential just compensates gravity. Away
from this point, the aspect ratio γ of the trap, whi is given by the ratio between
the vertical and horizontal trap frequencies γ = ωz/ω⊥ approaes γ = 4.

Figure 4.5.: Measured trap frequencies in the dipole trap as a function of total
dipole trap power together with power-law fits. Blue and green points denote the
measured trap frequencies in the two horizontal directions, the vertical frequencies
are shown in bla. e measured exponents of approx. 1/2 coincide with the
expected behavior of ω2 ∝ Imax ∝ p.
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4. Optical potentials: Dipole trap and laice

4.3. Optical lattice

e term optical laice describes a spatially periodic dipole potential, whi acts
on ultracold atoms in a similar way like the coulomb potential of the ions in a
crystalline solid acts on the electrons: e periodic potential modifies the disper-
sion relation of the atoms, leading to a band structure in whi the allowed energy
bands are separated by band gaps. In the case of non-interacting fermionic atoms
(or electrons in a solid) this band structure can generate metallic states that are
similar to the Fermi sea in a pure dipole trap but in addition the existence of the
band gaps can give rise to band-insulating many-body states.
In the limit of a very deep optical laice every laice site can be seen as an in-
dividual microtrap in whi e.g. very clear and precise experiments concerning
few-body physics and molecular dynamics are possible [10].

In thisapter a brief description of the experimental implementation of the laice
and the used calibration methods is given together with a description of the single-
particle eigenstates in homogeneous and inhomogeneous laices.

A review of the physics of optical laices and previous experiments can be found
in [7, 105].

4.3.1. Implementation

Spatially periodic intensity distributions can be created by a number of methods
ranging from imaging a periodic intensity mask to exploiting interference effects
between several beams. e method used in these experiments consists of retrore-
flecting linear polarized monoromatic laser beams ba onto themselves:
e superposition of two running plane waves with wave vectors k⃗ (k = 2π/λ)

and −k⃗ creates a standing wave with a periodic intensity distribution I(r⃗) ∝
cos(k⃗r⃗)2, whi gives rise to a 1D laice potential with a periodicity of d = λ/2:

V (z) = V0 ·cos(kz)2 = V0
1

2
(1 + cos(2kz)) (4.4)

e laice depth V0 is typically given in units of the recoil energy Er, whi de-
notes the ange in kinetic energy associated with the emission or absorption of
a photon with momentum ~k:

Er =
~2k2

2m
(4.5)

By superimposing more laser beams a variety of higher dimensional periodic po-
tentials can be created. In the experiment three mutually orthogonal beam pairs
are used to create a simple cubic (sc) periodic potential. Cross interferences be-
tween the different beam pairs are minimized by oosing mutually orthogonal
linear polarizations and are additionally averaged out due to frequency offsets
between them [106].
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4.3. Optical laice

Blue vs. red-detuned lattice

e form of the potential in equation 4.4 is identical for both blue- and red-detuned
laser light, the only difference is the sign of V0:
In a red-detuned laice the potential minima correspond to the intensity maxima,
while in a blue-detuned laice the atoms are located at the nodes of the light field.
is difference becomes important in the case of Gaussian beams instead of plane
waves, since in this case the intensity does not only depend on the longitudinal
(∥k⃗) but also the transversal (⊥ k⃗) position within the beams.

In a red-detuned laice the atoms are located around the intensity maxima and
therefore experience a Gaussian shaped dipole potential in the transverse direc-
tion, whi has the same width w0 and amplitude V0 as the laice potential (cf.
fig. 4.6).
For a typical beamwaist ofw0 = 150µmand laice depth of 8Er at a red-detuned
wavelength of λ = 830 nm this creates an additional confining potential with a
trap frequency of

ωc =
√
2

√
4V0
mw2

0

= 2π × 72Hz. (4.6)

Here the factor
√
2 is due to the fact that for every axes the transversal confine-

ments by two laice axes need to be added.

In the case of a blue-detuned laice, as used in this thesis, the atoms are located
near the intensity minima, where the (repulsive) transverse dipole potential van-
ishes in the ideal case. It is proportional only to the intensity difference between
the incoming and retro-reflected laice beam.

Since in both cases the laice depth depends on the transverse position within the
beams, another contribution to the effective transverse potential arises from the
on-site ground state energy, i.e. the energy of the single-particle ground state of a
single laice site in 1D. In the harmonic approximation, whi becomes exact for
deep laices, the on-site ground state energy is given by 1

2
~ωon-site where the trap

frequency due to the laice potential is given by

ωon-site =

√
2V0k

2

m
(4.7)

and depends via ωon-site(x) ∝
√
V0(x) also on the transversal position. is de-

pendence leads to a Gaussian shaped anticonfining potential with awidth of
√
2w0

in both cases. In the harmonic approximation this yields

ωac =

√
2h

mw0λ

(
V0
Er

) 1
4

, (4.8)
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Figure 4.6.: Transverse potential in a red (le, λ = 830 nm) and blue (right,
λ = 738 nm) detuned 1D optical laice with a central laice depth of V0 = 10Er

and a beam waist of w0 = 150µm. e bla lines denote transverse cuts
through the dipole potential at a longitudinal potential minimum (red→ I = Imax,
blue→ I = Imin). e indicated small dipole potential in the blue case is due to an
assumed imperfect reflection of the laice beam. e blue line indicates the spatial
dependence of the on-site energy, and the red line shows the sum of the two terms.

whi results in anticonfining trap frequencies of ωac = 2π× 30Hz for the above
red-detuned case and ωac = 2π × 34Hz for a blue-detuned laice at λ = 738 nm
and otherwise equal parameters.

For a red-detuned laice the quadratic sum of both contributions amounts to an
additional confinement ofωc = 2π×65Hz, whi fundamentally limits the usable
dynamic range of the setup, since no weaker confinements can be reaed in the
laice without the use of additional potentials.

For a blue-detuned laice, as used in this experiments², both contributions are an-
ticonfining and can easily be compensated by the red-detuned dipole trap. is
results in a huge range of possible confinements that is independent of the laice
depth and is a key ingredient for the experiments presented in this thesis. Espe-
cially it allows experiments with high atom numbers (and therefore strong signals)
in the interesting regime of deep laices but low to medium filling factors. e
expansion experiments presented in apter 10 specifically exploit the possibility
to realize a homogeneous laice without any additional potential (cf. fig. 10.6).

e anticonfining trap frequencies can be measured (Fig. 4.7) for every pair of
laice beams individually by adapting themethod used for the pure dipole trap. To
this means, the 1D laice is ramped up to the desired laice depth and the two trap
frequencies in the transversal directions are measured as before. e anticonfining
trap frequency is then given by ωac =

√
ω2 − ω2

0 , where ω is the measured trap
frequency with laice and ω0 is the trap frequency measured without the laice.

²e laice light is produced by a single-frequency Ti:Sa solid state laser (Coherent MBR) whi
produces up to 3W power at λ = 738 nm and is optically pumped by an 18W, λ = 532 nm
diode pumped ND:YVO4 solid state laser (Coherent, Verdi V18).
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4.3. Optical laice

Figure 4.7.: Measured anticonfining trap frequencies of the vertical laice as a
function of laice depth together with a powerlaw fit. e fied exponent of 0.28±
0.03 agrees well with the expected V

1/4
0 behaviour.

4.3.2. Single particle eigenstates

In this apter a description of the single-particle eigenstates in homogeneous and
inhomogeneous laices is given.
Togetherwith the Fermi Dirac statistics, the resulting band structure is already suf-
ficient to describe many aspects of electrons in solids, e.g. the existence of metallic
and band-insulating states. In the experiment, these non-interacting systems can
be simulated using a single component Fermi gas or by using the zero crossing of
the scaering length near a Feshba resonance.
e introduced notations will also be used in the following apter, where inter-
acting fermions will be discussed.

Bloch waves

In order to describe the dynamics of a single particle in a strictly periodic potential
like a homogeneous laice, the Blo theorem is a good starting point. It states that
all single particle eigenstates of a periodic potential can be wrien as periodically
modulated plane waves, that is as products of a plane wave eiq⃗·r⃗ times a periodic
function unq⃗ (r⃗) with laice periodicity:

ϕn
q⃗ (r⃗) = eiq⃗·r⃗unq⃗ (r⃗) (4.9)

ese solutions are the well-known Blo waves and are delocalized eigenstates
for non-interacting particles in a homogeneous laice [107, 108]. e index n is
called the band index and denotes the fact that for every quasi-momentum q⃗ there
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4. Optical potentials: Dipole trap and laice

exist infinitely many orthogonal solutions with different eigenenergies.
e following discussion will mostly be restricted to the lowest band of the one-
dimensional case, and the index n and the vector notation will be dropped.

Due to the 2kz periodicity of the laice potential in equation 4.4, the function
uq(z) in equation 4.9 can be wrien as a discrete Fourier sum

uq(z) =
∑
l

cl,q e
il2kz l ∈ Z, (4.10)

whi leads to the following expression for the Blo waves:

ϕq(z) =
∑
l

cl,q e
i(q+l2k)z (4.11)

A Blo wave can therefore also be regarded as a superposition of plane waves
with wavevectors q + l · 2k, where l · 2k are the reciprocal laice vectors [29].

is description, whi was derived solely from the periodicity of the potential,
can also be explained using the photon picture of the light field: As mentioned
above (cf. sec. 4.1), the homogeneous dipole potential of a plane wave arises due
to Raman processes where an atom absorbs a photon from the planewave followed
by a stimulated emission ba into the plane wave.
A standing wave consists of two counterpropagating plane waves and gives rise
to an additional type of Raman process: An atom can absorb a photon from one
beamwith wavevector k⃗ and re-emit it into the second beamwith wavevector−k⃗.
ese Raman processes ange the momentum of the atom by 2~k and thereby
couple the momenta p and p±2~k. is naturally leads to eigenstates in the form
of equation 4.11, i.e. Blo waves.
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Figure 4.8.: Composition of Blowaves: for three different quasi-momenta ~q the
weight of the corresponding plane waves is shown as a function of laice depth.
e red lines denote the real space momentum p = ~q, blue (bla) denote p =
~(q + 2k), (p = ~(q + 4k)) and the dashed lines denote p = ~(q − 2k), (p =
~(q−4k)). At zero laice depth the Blo waves are identical to plane waves with
momentum p = ~q.
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4.3. Optical laice

By inserting expression 4.11 into the Srödinger equation with a potential given
by equation 4.4 and numerically diagonalizing the resulting matrix (cf. e.g. [106]),
the coefficients cl,q and the eigenenergies can be calculated³.

Figure 4.8 shows the composition of various Blo waves in the lowest band as a
function of the laice depth. At zero laice depth the Blo wave coincides with a
plane wave of momentum p = ~q and for increasing laice depth the admixtures
of higher momenta p = ~(q ± 2k) become important.

Band structure In figure 4.9 the four lowest eigenenergies are shown as a func-
tion of the quasi-momentum (or laice momentum) ~q for various laice depths.
In the case of zero laice depth (upper le) the dispersion relation is given by the
free space parabola, but is periodic in q with a periodicity of 2k. is periodicity in
quasi-momentum is a consequence of the discrete translational symmetry of the
laice. Intuitively speaking, the argument q⃗ · r⃗ of the plane wave in equation 4.9
measures the phase difference between adjacent laice sites and is 2π-periodic.
It is therefore sufficient to restrict the values of q to the the first Brillouin zone, i.e.
the interval ~q ∈]−~k, ~k].

With increasing laice depth the dispersion relations differ more and more from
the free-space parabola and form distinct bands separated by band gaps, whi
are energy intervals without any eigenstates. As shown in figure 4.10 there is a
band gap separating the lowest from the first excited band for every finite laice
depth in 1D.
In the separable case of simple cubic laices all 3D eigenstates can be wrien as
products of three 1D eigenstates (cf. eqn. 2.16). If the laice depth is equal along
the three directions, the first excited band is threefold degenerate and consist of
products of two lowest band 1D eigenstates and one eigenstate of the first excited
1D band. In 3D, the band gap only opens for laice depths larger than V0 ≈ 2.2Er.

All experiments in this thesis focus on the physics within the lowest band and
we consequently try to avoid any populations of higher bands. For experiments
on the dynamics in higher bands see e.g. [109]. While the band gap is large at
deep laices, where the final measurements were performed, care has to be taken
during the initial ramp of the laice. In order to avoid atoms populating the first
excited band, the Fermi energy in the dipole trap prior to the loading should be
smaller than the recoil energy EF < Er.

e width of the allowed energy bands, the band width, decreases approximately
exponentially for increasing laice depths and vanishes for infinitely deep laices.
In this limit the harmonic approximation of equation 4.7 becomes exact and the
energies in the nth Blo band are given by (n− 1/2)~ωon-site.

³By introducing a cutoff in the index l, a finite size matrix can be obtained. In order to calculate
the two lowest bands at the relevant laice depths, already |l| < 5 is sufficient.
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Figure 4.9.: Energies of Blo waves for various laice depths. e lowest band is
shown in red, the first excited band in blue and higher bands in bla.

is strong decrease of the kinetic energy for deeper laices promotes the rela-
tive strength of the interactions and creates the possibility to rea the strongly
correlated regime without the use of Feshba resonances. On the down side,
however, it renders the system more susceptible to all sorts of imperfections in
the potentials.

Lattice depth calibration Spectroscopic measurements of the transition fre-
quencies from the lowest band to the first excited band have been used to measure
the laice depths. To this means, transitions were induced in a 1D laice bymodu-
lating the frequency of the laice light using anAcousto Optical Modulator. At the
position of the atoms, this frequency modulation translates into an oscillation of
the potential minima position. e number of atoms remaining in the lowest band
was measured as a function of the modulation frequency using a band-mapping
tenique (cf. sec. 6.4). As can be seen in figure 4.11, there exists a rather sharp
upper edge of the resulting minimum, whi corresponds to the maximal energy
difference between Blo-waves in the lowest band and the first excited band, i.e.
hfedge = E1(q = 0) − E0(q = 0). By comparing this frequency to the result
of a numerical band structure calculation (cf. fig. 4.10), the laice depth can be
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Figure 4.10.: Band structure as a function of laice depth. Shown are the lowest
and the first excited band in a 1D (le) and 3D (right) homogeneous laice. e
vertical dashed line in the 3D case denotes a laice depth of V0 ≈ 2.2Er , where
the band gap opens.

extracted with an uncertainty of less than 5%. Due to the weak confinement used
in this measurement the large cloud samples a rather large fraction of the laice
beam. is leads to an asymmetric broadening of the excitation towards smaller
frequencies due to the inhomogeneous laice depth.
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Figure 4.11.: Calibrating the laice depth by laice modulation spectroscopy. e
picture shows the remaining atom number in the lowest band as a function of
the modulation frequency. e measured position of the upper flank (98± 1 kHz)
results in a laice depth calibration of V0 = 34.8± 0.7Er

Wannier states

Even though the Blo waves are the correct eigenstates for non-interacting par-
ticles in a homogeneous laice, it is convenient to introduce the localized Wan-
nier functions as a second basis to describe atoms in a laice. ey are localized
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4. Optical potentials: Dipole trap and laice

around individual laice sites zi and form an orthonormal basis that is well suited
to incorporate the effects of inhomogeneous potentials or short-range interactions.
Wannier functions can be defined as Fourier transforms of the Blo waves

w(z − zi) =
1√
N

∑
q

eiqziϕq(z), (4.12)

where N is the number of laice sites⁴.

V0=1 Er

V0=10 ErV0=5 Er

V0=3 Er

Figure 4.12.:Wannier functions for different laice depths. e Wannier functions
w are ploed in blue together with the resulting density |w|2 in red. e laice
potential is sematically shown in gray.

Using the Wannier basis, the hamiltonian of a single particle in a possibly inho-
mogeneous laice can be wrien as:

Hij =

{
ϵi i = j
Jij i ̸= j

(4.13)

Here ϵi denotes the on-site energy of an atom localized on site i, whi can be
divided into two parts:

ϵi = Eon-site
i +

∫
w∗(z − zi)Vext(z)w(z − zi)dV (4.14)

e first partEon-site
i is the on-site energy due to the laice potential and the second

part is the potential energy associated with an additional potential Vext(r⃗).
e Jij denote the tunneling matrix elements between sites i and j and are given
by

Jij =

∫
w(z − zi)

(
− ~2

2m

∂2

∂z2
+ Vlat(z)

)
w(z − zj) dz (4.15)

⁴In a finite 1D system of N sites there exist only N discrete allowed quasi-momenta in the first
Brillouin zone, in an infinite system the sum is replaced by an integral.
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4.3. Optical laice

In a homogeneous laice all ϵi are equal and can be set to zero, thereby oos-
ing the energy of a localized atom as reference point. Furthermore, the tunneling
matrix elements (or tunneling rates) Jij only depend on the distance between the
sites (Jij = J|i−j|).
e additional potential Vext(r⃗) is assumed to be only slowly varying su that
it does not alter the tunneling matrix elements Jij . Although there exist approx-
imate formulas for the tunneling element at deep laices [7], they need to be
calculated numerically in the relevant regime.

Tight-binding regime

All experiments are performed in the tight-binding regime where (in the lowest
band) only tunneling between neighboring sites j = i ± 1 needs to be taken
into account (J ≡ J1). In this regime, whi is reaed for laice depths larger
than approximately 5Er, the bandwidth of the lowest band becomes 4J and the
dispersion relation is given by [7]

E(q) = −2J cos (qd) , (4.16)

where d = π/k denotes the laice constant. Figure 4.13 shows how the dispersion
relation evolves from a free space parabola into a cosine function in the tight-
binding regime.

e term tight-binding regime refers to the fact that in solid-state physics the same
cosine-shaped band can be derived by the Linear Combination of Atomic Orbitals
(LCAO) method using s-orbitals: In this method one starts from the tightly bound
limit where every electron occupies an atomic orbital of a single atom and incor-
porates the potentials due to all other atoms in the solid using perturbation theory
[29].

Kinetic energy and group velocity

An important difference between free space and the lowest band of a laice model
stems from the fact that kinetic energies are bounded in the laice case: While all
positive kinetic energies are possible in free space, only kinetic energies within the
bandwidth l4J can occur in a tight-binding band. Here l denotes the number of
dimensions. Furthermore, the possible kinetic energies are distributed symmetri-
cally around the energy of a localized atom (E = 0), i.e. they range from −6J to
6J in the three-dimensional case. is reflects the fact that, as a consequence of
Heisenberg’s uncertainty relation, a localized atom can actually lower its kinetic
energy by delocalizing over several laice sites.

e group velocity of an atom in a Blo wave with quasi-momentum ~q is in
general given by

vgr(q) =
1

~
∂E(q)

∂q
, (4.17)
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Figure 4.13.: Normalized dispersion relation in the lowest band for various laice
depths. e shape of the dispersion relation anges from a free space parabola
at zero laice depth (blue) into a cosine band in the tight-binding regime, whi
starts around a laice depth of 5Er (red). e bla line corresponds to 100 Er

and additional gray lines to 1,3, and 10 Er laice depths.

where E(q) denotes the dispersion relation. In the tight-binding case of E(q) =
−2J cos(qd) (cf. eqn. 4.16) this becomes

vgr(q) =
2Jd

~
sin(qd). (4.18)

If we define the tunneling time τ to be

τ ≡ ~
J
, (4.19)

the spread of possible group velocities is given by −2d/τ ≤ vgr ≤ 2d/τ .

is group velocity distribution, whi is ploed in figure 4.14, shows several im-
portant features: In sharp contrast to free space, where a higher kinetic energy
always results in higher velocities, in a tight-binding band the maximum group
velocities appear at zero energy in the center of the band, i.e. for quasi-momenta
~q = ±~k

2
= ±~ π

2d
. For both higher and lower kinetic energies the group veloci-

ties decrease symmetrically and vanish at the upper and lower band edges, i.e. at
~q = 0 and ~q = ±~k = ±~π/d

is at first glance counterintuitive behavior can be understood by considering
the relative phase factor eiqd between neighboring laice sites (cf. sec. 4.3.2): In
the case of a quasi-momentum at the edge of the Brillouin zone (~q± ~π/d), the
relative phase between neighboring laice sites is ±π. Due to the 2π-periodicity
of the phase, these two cases correspond to the same state. As a consequence the
velocity in the two cases must be equal, i.e. v = −v, and therefore vanish.
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Figure 4.14.: Single particle energy Eq and corresponding group velocity vq in a
tight-binding band.

Combined potential

In the experiment the atoms are subjected to the combined potential of a three-
dimensional blue-detuned optical laice in the tight-binding regime and a red-
detuned dipole trap. In this situation the periodicity of the laice potential is
broken and the Blo waves are no eigenstates anymore [110–112].

For typical dimensions of the atomic cloud in the laice (R < 60 d, cf. sec. 6.5),
the variation in laice depth over the cloud is less than 5%, whi results in an ap-
proximately constant tunneling rate J . Using the Wannier basis, the resulting 1D
hamiltonian (eqn. 4.13) for the lowest band can be wrien in second quantization:

Ĥ = −J
∑
⟨i,j⟩

ĉ†i ĉj +
∑
i

ϵin̂i (4.20)

e operators ĉ†i , ĉi denote the creation and annihilation operators of a particle on
site i and obey fermionic anticommutator relations, i.e. (ĉ†i )

2 = 0. is ensures
that two identical fermions cannot occupy the same laice site, as required by the
Pauli exclusion principle (cf. sec. 2). e number operator at site i is denoted by
n̂i = ĉ†i ĉi.
Neglecting the on-site energy of laice sites in the trap center, but retaining the
anticonfining effects (cf. eqn. 4.8), the total confining potential is assumed to be
harmonic:

ϵi = Vti
2 (4.21)

e trap center is at i = 0 and the prefactor Vt is given by the trapping frequency
ω and the distance d between adjacent laice sites:

Vt =
1

2
mω2d2 (4.22)
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For finite system sizes this hamiltonian can be diagonalized numerically⁵, exam-
ples of the eigenstates are shown in figure 4.15. Typically, the eigenstates are
extended over several laice sites and can be aracterized by a density distribu-
tion both in real space and in quasi-momentum space (cf. fig. 4.16).
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Figure 4.15.: Selected eigenstates of the combined potential. e gray shaded area
depicts the spatially varying lowest energy band (see text).

e lowest lying eigenstates look like harmonic oscillator eigenstates: In this regime
the relevant quasi-momenta are small and the cosine-shaped dispersion relation
can be approximated by a parabola. e system can then be described by a parti-
cle in a purely harmonic trap but with an effective mass that is determined by the
laice potential [105].
For higher-lying eigenstates the involved kinetic energies and quasi-momenta in-
crease, the differences between a parabola and the cosine-shaped dispersion re-
lation become important, and the eigenstates deviate from harmonic oscillator
states.
When the total eigenenergy equals the bandwidth 4J , themaximumquasi-momentum
~q = ~k is reaed in the trap center and the maerwave will be Bragg reflected.
As a consequence, states with an eigenenergy above 4J cannot extend to the trap
center but are localized to either the right or the le wing of the harmonic poten-
tial.

If the external potential is varying slowly enough, its effects can be visualized as
a curved Blo band: At every point in space r⃗ one can think of a 4J (or 12J
in 3D) thi energy band whi is offset from zero by the potential Vext(r⃗). In a
semi-classical picture a particle in this potential would be represented by a wave

⁵In order to avoid degeneracies, the trap center can be offset by a fraction of a laice site.
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4.3. Optical laice

paet localized at a certain position and with a certain energy (a certain quasi-
momentum). e wave paet would travel until it reaes either the lower or the
upper edge of the band. Reaing the lower edge results in a reflection due to the
potential, as in a harmonic oscillator, reaing the upper edge results in a Bragg
reflection.

is is a general feature of the combination of a periodic potential with a slowly
varying potential. In the easiest case of a linear potential (Wannier-Stark system)
this leads to Blo oscillations [113], where non-interacting particles perform pe-
riodic oscillations without a net travel [27, 28, 114, 115]. e amplitude A of these
oscillations is given by the ratio between half the bandwidth and the potential
gradient F :

A =
2J

F
(4.23)

e typical extension of an eigenstate in the combined potential of laice and
dipole trap can intuitively be understood in two ways: In the limit of very weak
laices, the eigenstates can be well approximated by harmonic oscillator eigen-
states and the effect of the laice can be approximated using the effective mass
of the particles. A deeper laice leads to a higher effective mass and thereby to a
smaller harmonic oscillator length. In the case of weak harmonic traps this results
in a pronounced shrinking of the cloud during the loading into the laice.
Starting in the limit of an infinitely deep laice, where the tunneling vanishes
(J → 0), the particles are localized to individual laice sites. For decreasing
laice depths tunneling increases and will leads to a larger extension of the eigen-
states.
ese two limits are smoothly connected and, for a constant external potential, a
deeper laice will generally lead to more localized eigenstates, as expected by the
above picture of a curved Blo band.
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Figure 4.16.: 1D eigenstates of a combined potential of laice and harmonic con-
finement. e vertical axis denotes the eigenenergies and every line depicts the
color coded density distribution of a single eigenstate in real space and quasi-
momentum space. For eigenenergies higher than the bandwidth 4J , the eigen-
state is localized in either the le or the right wing of the harmonic potential. e
alternation between the wings leads to the aracteristic stripe paern.
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5. Fermi-Hubbard model

Due to the sheer number of electrons and ion cores in a solid, all interacting via
long-range Coulomb interactions, the problem of calculating the many-body state
of the electrons in a solid is in general not solvable without massive approxima-
tions.
An important theme in the study of electrons in solids is therefore the sear for
the simplest models that nonetheless describe the physics of interest.
Historically, these models did fall into two distinct classes:

• In order to capture the transport behavior of many metallic and band-insul-
ating solids, the electrons are described by delocalized states. In these mod-
els, the easiest one being the free electron model by A. Sommerfield [108],
correlations between the electrons are typically neglected [29]. e many-
body state can be described by using only Fermi-Dirac statistics (cf. sec.
2.2.1) and the Blo wave picture described in the previous apter.
In these models a solid is metallic (conducting) if there is a partially filled
band, and insulating if all bands are either completely filled or empty.

• A second independent class of models used localized electrons in order to
explain magnetic phenomena. Examples of these ordering phenomena of
localized spins include the paramagnetic to (anti) ferromagnetic transition
in the Heisenberg model [116] or other spin models.

Already in the late 1930s it became clear, however, that the band models used to
predict whether a material should be metallic or insulating were not sufficient, as
many transition-metal oxides like NiO were found to be insulators or bad conduc-
tors, although they possess partially filled d-electron bands [117, 118].
ese insulators are referred to as Mo Insulators [119–121] and it was believed
that their insulating behavior was caused by interactions between the electrons.
A new model, whi incorporated possible correlations between the electrons,
was needed in order to describe the interaction-driven transition from a metal to
Mo-insulating states.

One of the most important models used to study these effects is the so-called Hub-
bard model, whiwas first proposed by J. Hubbard in 1963 [122]. Historically, the
Hubbard model was the first theoretical model to successfully describe the Mo
transition [123] by correlation effects in a band picture (cf. below). It has served as
a prototype model for strongly-correlated states in solid state physics, and many
other models like the t-J model [124, 125] can be derived from it in certain regimes.
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Figure 5.1.: In a single band tight-bindingmodel like the Hubbardmodel the effects
of the actual potential and interactions are approximated by a few matrix elements
J, U .

During the last 20 years, the 2D Hubbard model received renewed interest in solid
state physics due to the appearance of high-temperature superconductivity in the
copper-oxide layers of cuprates [126, 127] and it still is an object of active debate
to whi degree this phenomenon can be explained in terms of a Hubbard like
model [128, 129].

Despite its conceptual simplicity, already the homogeneous Hubbard model is not
analytically solvable in two- and three-dimensional situations apart from special
cases.

In the context of atomic physics, a Hubbard type model was first introduced for
bosonic atoms in optical laices [5, 6] and proved very successful in describing all
experiments up-to-date [7].

e following sections will first present the Fermi-Hubbard hamiltonian together
with some simple results on certain aspects of the homogeneous Hubbardmodel in
order to build an intuition of what to expect. is is followed by an overview over
some of the expected and observed phases of the Hubbard model and a brief sum-
mary of common numerical teniques. e last section of this apter presents a
generalization to trapped systems together with some remarks on dynamics and
the applicability of the Hubbard model for cold atoms.

5.1. Fermi-Hubbard hamiltonian

In the Hubbard model the hamiltonian is wrien using the Wannier basis (4.12)
and is given by the sum of three terms. In addition to the tunneling term and
the offset potential, that were already present in the single-particle hamiltonian of
equation 4.20, the many-body Hubbard model also contains an interaction term:
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Tunneling In theHubbardmodel tunneling ismostly restricted to nearest neigh-
bor tunneling (cf. sec. 4.3.2), whose strength is given by the hopping amplitude
J (cf. eqn. 4.15), whi leads to the following kinetic energy operator in second
quantization:

T = −J
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ (5.1)

For electrons, the index σ ∈ {↓, ↑} denotes the spin for a given quantization
axes, while for fermionic atoms it denotes two different hyperfine states. In the
case of higher dimensions the indices i, j are vectors (3D: i = (ix, iy, iz)) and
the braets ⟨i, j⟩ denote that the sum only runs over nearest neighbors. In the
solid state literature the hopping (or tunneling) amplitude is typically denoted by
t, while J would refer to the exange coupling (cf. sec. 5.5.2), whi is denoted
by Jex in this thesis.

Interaction One of the main approximations in the Hubbard model is the fact
that interactions are treated as local interactions between particles on the same
laice site. is is an excellent approximation in the case of ultracold atoms, where
the typical range of the interactions is given by the van der Waals length (cf. sec.
3.1), and is mu shorter than the laice constant.
Assuming only s-wave interactions and using the pseudopotential approximation
(cf. sec. 3.2.3), the effective interaction between two atoms in the same Wannier
state becomes:

U =
4π~2a
m

∫
|w(r⃗)|4dV (5.2)

With this effective interaction the total interaction energyW becomes:

W = U
∑
i

n̂i,↓n̂i,↑ (5.3)

Here n̂i,σ = ĉ†i,σ ĉi,σ measures the number of particles with spin σ on site i.

Although electrons in a solid interact primarily via the long-range Coulomb in-
teraction, the high density of additional electrons in other orbitals leads to strong
shielding effects that can reduce the interaction between electrons in a given band
to effective short-range interactions [121].

External potential e third term in the Hubbard model is the offset energy
due to additional slowly varying potentials (cf. sec. 4.21):

V =
∑
i

ϵi (n̂i,↓ + n̂i,↑) (5.4)
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By combining these terms the Fermi-Hubbard hamiltonian can be wrien as:

Ĥ = −J
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑ +
∑
i

ϵi (n̂i,↓ + n̂i,↑) , (5.5)

is model can easily be extended to include several bands as well as additional
hopping and interaction terms, e.g. next-to-nearest neighbor hopping, nearest-
neighbor interactions or density-induced hoppings [121].

5.2. Conductivity and compressibility

While the electronic conductivity is one of the standard observables in solid state
physics it turned out that the compressibility is easier to measure in trapped cold
atom setup (cf. sec. 6.5, 8.3,[130]). e questionwhether a given solid is conducting
or insulating is directly related to the question whether the many-body state of
the electrons in this material is compressible or not. is electronic compressibility
[131–133] is defined as the derivative of the electron density with respect to the
emical potential κe = ∂n

∂µ
.

At zero temperature both the electronic compressibility and the conductance are
proportional to the single-particle density of states at the Fermi energy:
If there are unoccupied states available at the Fermi energy, the electron density
will increase with an infinitesimal increase of the emical potential, i.e. the state
is compressible. Applying a voltage across the solid excites electrons into these
states whi results in a current, i.e. the material in question is a conductor.
If there is an energy gap between the highest occupied and the lowest empty sin-
gle particle states, any ange in emical potential or any applied voltage needs
to overcome this gap before it can create any excitation. is results in an incom-
pressible and insulating state.

5.2.1. An intuitive picture of the Mott transition

An intuitive picture of how the interaction between the particles leads to correla-
tion effects and insulating behavior can already be given using only two fermions
with different spin (↓, ↑) in a double well: At zero temperature and without in-
teractions both particles will occupy the same (not normalized) single-particle
ground state:

|Ψ0⟩ = ( |l⟩+ |r⟩)↓ ( |l⟩+ |r⟩)↑ = |l↓l↑⟩+ |l↓r↑⟩+ |r↓l↑⟩+ |r↓r↑⟩ (5.6)

In this state both particles are uncorrelated (i.e. the wave function factorizes) and
delocalized over both wells.

One straightforward idea to incorporate the effects of a repulsive on-site inter-
action between the particles into this wavefunction originates from the study of
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molecular hydrogen and was introduced to the field of correlated electrons by
M.C. Gutzwiller [121, 134]:
Since a repulsive interaction raises the energy of all configurations in whi both
particles occupy the same site, it will consequently decrease their weight in the
ground state. In the strongly interacting limit this yields:

|ΨU⟩ = |l↓r↑⟩+ |r↓l↑⟩ (5.7)

is wavefunction describes a strongly correlated or entangled [135] state: e
position of one particle depends on the position of the other and the wavefunc-
tion cannot be wrien as a product of two individual wavefunctions for the two
particles.

Generalized to an infinite system, the single-particle eigenstates are Blo waves
(cf. sec. 4.3.2) and the non-interacting many-body state corresponds to a half filled
Brillouin zone. As the energy difference between subsequent Blo waves van-
ishes in the thermodynamic limit, this describes a compressible metallic state.
In the strongly interacting limit on the other hand, the cost of adding another par-
ticle is on the order of U in the half-filled case, since it necessarily includes the
creation of double occupation, independent of the system size. e opening of
this energy gap, the so-called Mo gap for an exactly half-filled band drives the
transition from a compressible and conducting metal to an incompressible Mo
insulator.

5.3. Two particle Hubbard model

Analogous to the BEC-BCS crossover in free space (cf. sec. 3.3.3), the existence of
a two-particle bound state will also in the Hubbard model have a profound influ-
ence on the many-body physics.
In order to study the existence of these bound states, a homogeneous laice con-
taining only one atom per spin state will be analyzed in this section.

e two-particle wavefunction can be wrien in center-of-mass R⃗ and relative
coordinates r⃗ [136, 137]:

R⃗ =
1

2
· (r⃗1 + r⃗2) r⃗ = r⃗1 − r⃗2 (5.8)

Q⃗ = q⃗1 + q⃗2 q⃗ =
1

2
(q⃗1 − q⃗2) (5.9)

e tunneling term separates into center-of-mass and relative terms and the in-
teraction depends only the relative coordinate. us the total wavefunction can
be wrien as a product of the center-of-mass motion, whi is a Blo wave, and
the relative motion:

Ψ(r⃗1, r⃗2) = eiQ⃗·R⃗ ψQ⃗(r⃗) (5.10)
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5. Fermi-Hubbard model

e remaining hamiltonian for the relative motion is:

Ĥ rel
Q⃗

=
∑
l

(
−JQl

∑
il

(ĉ†il,rĉil+1,r + h.c.)

)
+ U

∏
l

δil,0 (5.11)

Here the sum (product) over l denotes the sum (product) over the different dimen-
sions.

is hamiltonian is equivalent to a single particle Hubbard model with an ad-
ditional potential at the central laice site. Due to the cosine shaped dispersion
relation in the Hubbard model, the effective tunneling for the relative motion de-
pends on the center-of-mass momentum [136]

JQl
= 2J cos

(
Ql
d

2

)
(5.12)

In the non-interacting case the solution is again a Blowavewith quasi-momentum
q⃗ and all eigenenergies are given by¹:

EQ⃗,q⃗ = Eq⃗1 + Eq⃗2 = −4J
∑
l

cos(Qld/2) cos(qld) (5.13)

In the interacting case the above hamiltonian (eqn. 5.11) can be solved numeri-
cally using exact diagonalization. Its spectrum consists of the band of two particle
scaering states with energies ranging from −4Jl to 4Jl and a possible bound
state:
While in 1D and 2D a bound state exists for all non-vanishing interactions, it
appears only above a critical interaction of |U/J | = 7.9136 [7] in the three di-
mensional case.

Similar to the case of a Feshba resonance in free space (cf. sec. 3.3), the appear-
ance of a bound state causes a scaering resonance [138, 139], whi leads to a
BEC-BCS crossover in the many-body case.

e appearance of this bound state and the corresponding scaering resonance
are a generic Hubbard model effect that is independent of the (molecular) Fesh-
ba resonance studied in free space. e scaering resonance can be addressed
either by anging the laice depth at constant magnetic field (i.e. constant free
space scaering length), or by anging the free space scaering length using a
(molecular) Feshba resonance. But also in the laer case the resonance in the
Hubbard model is reaed at some finite scaering length.

Moreover, the spectrum of eigenenergies, whi is shown in figure 5.2, illustrates
another peculiar aspect of all single-band Hubbard models: In the tight-binding
regime (cf. sec. 4.3.2) the possible kinetic energies are distributed symmetrically
around the energy of a localized particle and are bounded from below and above.

¹e allowed values for ql depend on the value of Ql via |ql| ≤ k − |Ql/2|
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5.3. Two particle Hubbard model

is is in stark contrast to free-space, where the kinetic energy is only bounded
from below, it needs to be positive but can be infinitely large.
One important consequence of this symmetry is the existence of repulsively bound
states: In the case of U/J > 8 the highest energy state is separated from the
continuum of scaering states in an exactly symmetric way to the lowest energy
state for U/J < −8. Due to the energy gap to the scaering continuum, two
particles in this repulsively bound state cannot decay into a scaering state and
are therefore bound together due their repulsive interaction. ese states, whi
were first observed for bosonic atoms [140], can determine the time constants with
whi the system responds to parameter anges, as will be seen in the expansion
measurements in apter 10.
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Figure 5.2.: Eigenenergies of the relative hamiltonian of the 3D two-particle Hub-
bard model for Q⃗ = 0⃗. e spectrum consists of a band of scaering states with
energies ranging from−12J to 12J . For interactions larger than |U/J | = 7.9136
an additional bound state appears. e inset shows the two lowest eigenenergies
around the critical interaction (calculated for a finite laice size).

e aracter of the bound states can also be seen from figure 5.3, where the prob-
ability to find both particles on the same laice site is ploed together with the
extension of the two lowest lying eigenstates: For |U/J | < 8 both states are scat-
tering states and their sizes are on the order of the simulated system size. For
|U/J | > 8 the lowest (highest) lying state is a bound state and its size decreases
for stronger interactions, while the second state remains a scaering state. In
the limit of dominating interactions |U/t| & 20 the probability of finding both
particles on the same site approaes one and the energy of the bound state is
approximately U . In this case the two fermionic particles can be described as one
composite boson, similar to a Feshba molecule.
In the many-body case (cf. below) the hamiltonian can then be mapped onto a
Hubbard model for hard-core bosons [141].
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Figure 5.3.: Probability of finding the two particles in the 3D two-particle Hubbard
model on the same laice site. e solid lines denote this probability for the two
lowest lying states, the dashed line for the highest energy state. e inset shows the
root-mean-square extension of the two lowest lying states (calculated for a finite
laice size).

5.4. Filling factor, doublon fraction, and entropy
capacity

In order to aracterize the many-body states of interest, several important pa-
rameters, i.e. filling factor, doublon fraction, and entropy capacity, will be defined
below together with their values in some limiting cases.

A first important parameter to aracterize a state in the homogeneous Hubbard
model is the filling factor n, that is the expectation value of the number operator
nσ = ⟨n̂σ⟩, i.e. the average particle number per laice site of a given spin state.
In the experimentally studied case of an even spin mixture in the trap the filling
factor is independent of the spin n = n↑ = n↓ but depends on the position in
the trap n = n(r⃗) (cf. ref. 5.7). e filling factor can range from zero to one,
where unity filling denotes two atoms per laice site and half-filling denotes the
important case of on average one atom per laice site.

5.4.1. Doublon fraction

One important observable in the experiment is the doublon fraction, that is the
fraction of atoms on doubly occupied laice sites. It strongly depends on the
interaction, the temperature, and the filling factor and can be calculated exactly
for certain limiting cases:
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5.4. Filling factor, doublon fraction, and entropy capacity

Assuming a homogeneous laice and an even spin mixture with filling factors
n = nσ we define the doublon fraction D as:

D =
2Npair

Natoms

=
2 ⟨n̂↓ · n̂↑⟩
⟨n̂↑⟩+ ⟨n̂↓⟩

=
⟨n̂↓ · n̂↑⟩

n
(5.14)

Non-Interacting Without interactions there are no correlations between the
different spin states and the doublon fraction simplifies to:

Dnon-IA =
⟨n̂↓ · n̂↑⟩

n
=

⟨n̂↓⟩ · ⟨n̂↑⟩
n

=
n · n
n

= n (5.15)
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Figure 5.4.: Doublon fraction as a function of filling in the non-interacting case
and the limits of strong interaction |U | ≫ J, kBT . In the strongly aractive
and repulsive case up to half filling, the doublon fraction is constant and yields
no information about the filling. It therefore cannot distinguish between a Mo
insulator (cf. sec. 5.5.2) at n = 0.5 and a complex metal with n < 0.5.

Strong repulsive interaction In the limit of dominating repulsive interactions
U ≫ 12J and U ≫ kBT the energy cost U of two atoms on the same laice site
is the biggest energy scale in the problem and the doublon fraction is as small as
possible for the given filling factors. Below half filling there are more laice sites
than atoms and the doublon fraction is zero. Above half filling the number of
atoms is bigger than the number of available laice sites and a fraction 2n− 1 of
laice sites must be occupied by two atoms, whi leads to the following doublon
fraction

Drep-IA =
2Npair

Natoms

=

{
0 n ≤ 0.5

2(2n− 1)

2n
= 2− 1

n
n > 0.5

(5.16)
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5. Fermi-Hubbard model

Strong attractive interaction In the case of−U ≫ 12J and−U ≫ kBT all
atoms will form pairs: D = 1

5.4.2. Entropy capacity

Another relevant quantity in the Hubbard model is the entropy capacity Smax per
laice site, whi depends on both the filling and the interaction and can be calcu-
lated using S = −kBtr(ρ log(ρ)) [142]. In the high temperature limit the density
matrix for a single laice site is diagonal

ρ = h |0↓, 0↑⟩⟨0↑, 0↓| +sd |1↓, 0↑⟩⟨0↑, 1↓|
+su |0↓, 1↑⟩⟨1↑, 0↓| +d |1↓, 1↑⟩⟨1↑, 1↓| (5.17)

in the Fo basis. e coefficients h, sd, su, d denote the probability for zero, sin-
gle, and double occupation. ey are determined by maximizing the entropy un-
der the requirements of an equal spin mixture (sd = su), the desired filling factor
(sd + d = n), normalization (h + sd + su + d = 1) and the doublon fractions
calculated in the previous section (5.4.1). e resulting entropy capacity is ploed
in figure 5.5.
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Figure 5.5.: Entropy capacity of a homogeneous Hubbard model. le: Maximum
entropy per laice site in the non-interacting and strongly-interacting limits. right:
Corresponding entropy capacity per particle.

As the local (single-site) Hilbert space is four dimensional, the maximum entropy
capacity is bounded by kB log(4), whi is reaed for a non-interacting cloud at
half filling, where all four possible configurations have the same probability.
In the limit of strong interactions the effective dimensionality of the local Hilbert
space is reduced to two in the aractive case (sd = su = 0) resp. three in the
repulsive case (n ≤ 0.5 → d = 0 and n ≥ 0.5 → h = 0). is leads to
a corresponding reduction of the entropy capacity: At half filling the entropy
capacity in the repulsive case, i.e. the Mo Insulator (cf. sec. 5.5.2), is given by
kB log 2, as there are both no holes and no doublons (h = d = 0).
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5.5. Phases of the three dimensional homogeneous Hubbard model

emaximum entropy per particle, whi is ploed in the right panel of figure 5.5,
scales as Smax/n and diverges for low fillings similar to the number of available
laice sites per particle. For high fillings on the other hand, the maximum entropy
per particle vanishes. For a given entropy density, this limits the aievable den-
sities and gives rise to incompressible band insulating states at all temperatures
(cf. sec. 5.5.1).
e average entropy per particle that can be reaed experimentally (cf. table 2.1)
is on the order of 1 − 1.5 kB and is above the entropy capacity of a half-filled
Hubbard model in the strongly interacting case. is regime can nonetheless be
realized experimentally by exploiting the inhomogeneity given by the trapping
potential: As will be detailed in apter 8.2.1, most of the entropy will be stored
in the low filling regions (cf. fig. 8.5), where large entropies per par particle are
possible.

5.5. Phases of the three dimensional
homogeneous Hubbard model

is section gives a brief overview over the phase diagram of the homogeneous
Hubbard model. As there exists no analytical solution for the Fermi-Hubbard
model, except from special cases, the phase diagram is not completely known and
many details of the various published phase diagrams [143–149] depend on the
approximations made in the calculations resp. the osen numerical method.

e phase diagram of the homogeneous model is discussed as a function of filling
n and temperature T , the connection to the trapped case will be given in section
5.7. In the experiment the total particle numberN and total entropy S (c.f. sec. 2.3)
are conserved and limit the accessible regimes. Unity filling for instance cannot
be reaed at finite entropies in the homogeneous system, as the entropy capacity
of the Hubbard model vanishes in this limit (cf. sec. 5.4.2).

5.5.1. Non-interacting

In the non-interacting case there are no correlations between particles with dif-
ferent spins and all many-body states can be described using only Fermi-Dirac
statistics and the single-particles eigenstates, the Blo waves. Every particle is
delocalized over the whole laice and there exist two zero temperature regimes,
a band-insulating state at unity filling and a metallic state for all other fillings.
e metallic state is conducting and compressible (cf. sec. 5.2): Adding another
particle anges the Fermi energy by an amount on the order of the bandwidth
divided by the number of laice sites (∆EF ∼ 12J/Nlat), whi vanishes in the
thermodynamic limit.
e band insulating state is incompressible since an additional particle would need
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5. Fermi-Hubbard model

to occupy a higher band and would thereby increase the Fermi energy by the band
gap.
Due to the decreasing entropy capacity of the Hubbard model above half filling
(cf. fig. 5.5), this incompressible band insulating phase exists for all entropies: For
every entropy per particle there exists a maximum filling, above whi the given
entropy would exceed the entropy capacity of the single band Hubbard model.

5.5.2. Repulsive interaction

e inclusion of repulsive interactions leads to modifications both in the arge
and in the spin distribution. If spin ordering is neglected, the system displays
metallic and band-insulting phases at weak interactions, similar to the non-inter-
acting case. For strong interactions in addition the incompressible Mo insulator
phase appears at half filling:
In the Mo insulator every particle is localized due to the mutual repulsion be-
tween the particles (cf. sec. 5.2.1), and the addition of another particle would
ange the Fermi energy by a finite amount of order U . is energy gap, the
Mo gap, gives rise to the incompressible and insulating behavior of this phase.

In the absence of magnetic order there is a first order phase transition at a critical
interaction Uc/12J = 1.26 [150] from metallic to insulating behavior for low
temperatures. Above a critical temperature [121] the phase transition turns into a
smooth crossover. In DMFT calculations (cf. sec. 5.6) the phase transition shows
up as a discontinuous jump in the doublon fraction [151]. In the Mo phase the
doublon fraction is exponentially suppressed in U and vanishes in the limit of
strong repulsive interactions (U → ∞), where the system reduces to a set of
uncoupled micro-traps with one particle per site.

U=0 U=∞

Figure 5.6.: le: In a non-interacting metal every atom is in a delocalized Blo
state. right: In the Mo insulating phase the atoms are localized due to the mutual
repulsion and at U = ∞ every particle occupies a Wannier state.

Including the possibility of magnetic ordering, however, the ground state at half
filling shows antiferromagnetic long-range order for all interactions due to a per-
fect nesting of the Fermi surface [152].
At finite temperatures the antiferromagnetic order parameter, whi is given by
the sublaice magnetization or staggered magnetization, is reduced by thermal
fluctuations and vanishes at the Néel temperature, where a transition into the
paramagnetic regime occurs. antumMonte Carlo calculations (cf. sec. 5.6) have
shown that the Néel temperature in a 3D simple cubic laice at Uc lies well above
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5.5. Phases of the three dimensional homogeneous Hubbard model

the critical temperature of the Mo transition [152], so that only a crossover from
a correlated metal to a Mo insulator can be observed. At small interactions the
critical temperature decreases exponentially with U [153].

In the spin-balanced case (N↑ = N↓) the staggered magnetization can point in
every direction. In the spin-imbalanced case (N↑ ̸= N↓), however, the system will
form a canted antiferromagnet, where the magnetization is the sum of a constant
component along the z-direction and a staggered magnetization in the x, y-plane.

Away from half filling, where the atoms are not localized, the system is expected to
become ferromagnetic for large interactions due to the Stoner instability [154, 155].
In the inhomogeneous trapped case the spin-imbalance can locally vary and the
system will show complex spin textures [155].

Strong repulsive interactions

In order to analyze the regime of finite but strong repulsive interactions (U ≫
12J, kBT ), the Hubbard model can be approximated using perturbation theory:
Starting in the limit of uncoupled laice sites, where the hamiltonian consists
only of the interaction term of the Hubbard model, tunneling between the sites
is treated as a perturbation. At half filling the first order contribution, whi
describes uncorrelated single particle tunneling, can be neglected, as it is detuned
by the large on-site interactionU . e behavior of the system is dominated by two
second order contributions that are analogues to two-photon Raman processes in
light fields:
e first one consists of a particle virtually hopping to the next site and ba,
where the intermediate state is again detuned byU . is process creates a coherent
admixture of the adjacent site to the eigenstate and thereby lowers its energy by
∼ J2/U .
e second process is superexange tunneling [156], in whi two adjacent fer-
mions interange their positions in a correlated second order hopping.

In the half filled case, where all particles are localized due to the repulsive interac-
tion, the Hubbard hamiltonian reduces to a Heisenberg hamiltonian [108] for the
remaining spin degree of freedom:

Hheis = Jex
∑
⟨i,j⟩

S⃗i · S⃗j (5.18)

e isospin operators S⃗i can be expressed in terms of the Pauli matrices σj

Ŝj
i =

1

2

∑
σ,σ′

ĉi,σσ
j
σ,σ′ ĉ

†
i,σ′ (5.19)

and the coupling between the spins is given by the exange coupling Jex =
4J2/U , whi favors an antiferromagnetic ordering of the spins.
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is tendency towards an antiferromagnetic state can be understood by observing
that the first process lowers the energy of the localized particles but is only possible
for adjacent particles with opposite spins, as the intermediate state is otherwise
Pauli forbidden.

In the case of a balanced spin mixture the ground state of this Heisenberg model
is indeed an antiferromagnetic insulator, whose Néel temperature again scales as
J2/U while the critical entropy per particle approaes S/N = 0.34 kB [157].
Similar critical entropy densities have also been reported for the full Hubbard
model at U/J = 8 [158]

In the case of spin-imbalanced mixtures the ground state can also show superfluid
counterflow [159]. Away from half filling the system can be described by the t−J
model [124, 125], in whi t describes the uncorrelated models of the defects (holes
or doublons) and J refers to the exange coupling of the Heisenberg model.

Superconducting phases

Since there exists no analytic solution for the Hubbard model (or even the t−J
model) in two and three dimensions, one has to rely on numerical and approxima-
tive methods, e.g. renormalization group methods [160], whi predict ri phase
diagrams [147]. One important question, especially in the 2D repulsive Hubbard
model, is the existence of superconducting eigenstates that could be used to model
the cuprate high-Tc superconductors [129].
Superfluid eigenstates of the suitable d symmetry have indeed been found in var-
ious approximative treatments of the 2D Hubbard model and its extensions [161–
165], but a rigorous proof of their existence is still missing, whi makes an exper-
imental observation of these states very desirable [166]. In the case of an extended
Hubbard model with next-to-nearest neighbor tunneling, the ground state is ex-
pected to show superfluidity also in the weakly interacting limit [167].

5.5.3. Attractive interaction

In the spin balanced case the ground state for weak aractive interactions is a
BCS like superfluid state, consisting of very loosely bound pairs of spin up and
spin down particles [168]. is is completely analogous to classical supercon-
ductors, where the BCS pairing is a genuine many-body effect in the absence of
two-particle bound states [24] in the 3D case.
If the interaction becomes stronger than a critical interaction (|Uc/J | ≈ 8), a
two-particle bound state appears (cf. sec. 5.3) in the aractive Hubbard model and
causes a scaering resonance that is similar to a Feshba resonance in free space
(cf. sec. 3.3). is gives rise to a BEC-BCS crossover, whi has been extensively
studied in free space (cf. [45] and references therein). At stronger interactions
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5.5. Phases of the three dimensional homogeneous Hubbard model

the fermionic particles form tightly bound pairs, whose size decreases to a single
laice site for strong interactions (cf. sec. 5.3)².

Without spin imbalance the ground state of the aractive 3D Hubbard model is a
superfluid for all interactions and all fillings. At half filling the superconducting
state is degenerate with a arge density ordered state [144] (cf. sec. 5.5.4). For
weak interactions, the critical temperature Tc of the superfluid transition grows
exponentially with increasing interactions similar to free space, and reaes a
maximum at intermediate interactions in the vicinity of the geometric resonance.
In contrast to free space, where the critical temperature approaes that of the
non-interacting Bose gas in the BEC limit, it decreases as J2/|U | (cf. below) in
the 3D laice [143–145]. At half filling, the critical entropies for the superfluid
phase equal those of the antiferromagnetically ordered phase of the correspond-
ing repulsive Hubbard model, as can be seen from the Lieb Mais transformation
discussed below (cf. sec. 5.5.4).

In a 2D system the superfluid is reaed through a Berezinskii-Kosterlitz-ouless
transition whose critical entropy per particle has been calculated using quantum
Monte Carlo methods [170] and yielded entropies below S/N < 0.2 kB , whi
is considerably colder than the entropies currently reaed in the experiment (cf.
sec. 2.2.2).
Even rier phase diagrams can be obtained in the spin imbalanced situation
where additional phases, e.g. the FFLO phase [148, 171–173] become relevant.

Strong attractive interactions: Hard core bosons

An important difference between the laice and free space on the BEC side of the
geometric resp. Feshba resonance is the quantum statistics of the tightly bound
pairs:
In free space the bound state is a emically bound molecule that can be treated
as a bosonic object at all experimentally relevant densities. e fermionic nature
of the atoms becomes relevant only in calculating the interaction strength and life
times of the molecules [82] (cf. sec. 3.3.2). Consequently, the many body ground
state in free space is a superfluid for all interaction strengths [45].
In the first band of the laice on the other hand, the Pauli principle forbids the
occupation of a single laice site by more than two fermions. As a consequence,
the bound states –or pairs– can be described as hard core bosons, as no laice site
can be occupied by more than one pair.

²Due to the high symmetry of the tight-binding dispersion, exactly the same physics appears also
in the high energy (small negative temperature) limit of the repulsive Hubbard model [169].
is can be seen be observing that for every eigenstate with energy E of a hamiltonian H
there exists an eigenstate with opposite energy −E for the hamiltonian −H . As described
in apter 10.3.3, for the Hubbard hamiltonian the transformation H ↔ −H consists of the
transformations U ↔ −U and J ↔ −J , where the laer is equivalent to π-boost in quasi-
momentum space (cf. sec. 10.3.3). As a consequence, a BEC-BCS crossover exists for states
centered around q⃗ = (π/d, π/d, π/d) in the repulsive Hubbard model.
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In the strongly interacting case (|U | ≫ 12J, kBT ) the binding energy of the pairs
approaes |U | (cf. sec. 5.3) and all particles will be paired. Similar to the repulsive
case, an effective hamiltonian can be derived for the pairs using second order
perturbation theory [174]:

Heff = −
∑
⟨i,j⟩

Jpair b̂
†
i b̂j +

∑
⟨i,j⟩

Jpair n̂bin̂bj (5.20)

where b̂i = ĉi,↓ĉi,↑, b̂
†
i = ĉ†i,↓ĉ

†
i,↑, n̂bi = b̂†i b̂i are the annihilation, creation and

number operators of the pairs and Jpair = 2J2/|U |. ese pair operators in-
deed describe hard core bosons, as can be seen from b̂ib̂i = ĉi,↓ĉi,↑ĉi,↓ĉi,↑ =
ĉi,↓ĉi,↓ĉi,↑ĉi,↑ = 0, since the Pauli principle requires ĉi,↑ĉi,↑ = 0.

e first term in the above hamiltonian describes the correlated hopping of a pair
from one site to the next, while the second part describes a nearest neighbor re-
pulsion between the pairs. is second term stems from the same principle as the
antiferromagnetic tendency in the repulsive case: If the neighboring site is unoc-
cupied, a localized pair can lower its energy via virtual hopping of one fermion to
the neighboring site and ba.

Pseudogap regime

e occurrence of pairing has dramatic consequences on the many-body state also
above Tc: In the pseudogap -or preformed pair- regime the particles are bound
into pairs, but the pairs are not condensed yet [145, 146, 175]. is formation of
uncondensed pairs e.g. dramatically alters the thermodynamics of the system, as
shown in apter 9.

is regime is related to the Pseudogap regime in the cuprate based high-tem-
perature superconductors, where the formation of preformed pairs is one possible
explanation for the observed gap in the electronic excitation spectrum [24, 176].
is gap opens below a crossover temperature T ∗ > TC and manifests itself in
e.g. the decrease of the spin-susceptibility, the specific heat and the in-plane d.c.
resistivity in the underdoped regime [177].

In the BCS regime of the Hubbard model the crossover temperature into the pseu-
dogap regime T ∗ > TC almost coincides with the critical temperature, but starts
to deviate from it in the BEC-BCS crossover regime. In the BEC (large |U |) limit,
where Tc decreases again as J2/|U |, T ∗ scales like the pair binding energy, whi
approaes |U | (cf. fig. 5.2).

5.5.4. Lieb-Mattis transformation

e Hubbard model is a highly symmetric model and incorporates many useful
symmetries between e.g. particle and hole state orU and−U dynamical properties
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(cf. sec. 10.3.3).
e Lieb-Mais transformation is a particular particle-hole transformation that
can be formulated for any bipartite laice and relates the phases of the repulsive
Hubbard model to those of the aractive Hubbard model. It consists of a particle-
hole transformation together with an additional phase shi for one spin state,
while leaving the other spin state unanged [173, 178]:

ĉi,↓ → (−1)ix+iy+iz ĉ†i,↓ (5.21)

ĉi,↑ → ĉi,↑ (5.22)

Due to the oice of the phase shi, whi corresponds to an additional phase of π
on all laice sites belonging to one sublaice, the kinetic energy operator (cf. eqn.
5.1) remains unanged, while the number operator of the spin down particles
anges into n̂i,↓ = 1− n̂i,↓. is ange in the number operator effectively flips
the sign of the interaction energy³ (U → −U) and furthermore exanges the
roles of imbalance (ni↓ − ni↑) and doping (ni↓ + ni↑ − 1).

As localized single atoms in the repulsive Hubbard model are transformed into
either empty laice sites (spin down), or doublons (spin up), a paramagnetic Mo
insulator becomes a disordered arge density wave of doublons, i.e. a state in
whi doublons are localized to random laice sites.
Any magnetic order in the repulsive Hubbard model is related to a paired or den-
sity ordered state on the aractive side [173]: Antiferromagnetic order for instance
is mapped onto either an ordered arge density wave, where all sites belonging
to one sublaice are occupied by a doublon, or a superfluid state, depending on
the direction of the staggered magnetization: Its z-component corresponds to the
ordered arge density wave while the x- and y-components are mapped onto the
real and imaginery part of the superfluid order parameter [178].

As was pointed out in [178], this mapping creates the possibility to experimentally
prove the existence of a d-wave superfluid in the doped repulsive 2D Hubbard
model model by observing the corresponding phase (a d-wave antiferromagnetic
phase) in the aractive Hubbard model. One major advantage in this case is the
possibility to effectively control the doping of the repulsive model by controlling
the spin imbalance in the aractive case.

5.6. Numerical methods

In 1D the Fermi-Hubbard model has been solved analytically by E. Lieb and F.-Y.
Wu in 1968 and a Mo Insulator was found for any positive U at half filling [179],

³In addition an unimportant constant energy offset (UN↑) is added, whi will be neglected
in the following. To avoid this offset it is convenient to write the interaction term in
symmetrized densities, where the density difference to half filling is measured: W =
U
∑

i (n̂i↓ − 1/2)(n̂i↑ − 1/2).
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while a conducting ground state was found for U=0 and away from half filling. In
higher dimensions the Hubbard model cannot be solved analytically, and one has
to rely on numerical methods or analytic approximations.

Exact diagonalization In some cases the exact many-body eigenstates can be
found by numerically diagonalizing the hamiltonian in a suitable basis. e com-
putational costs and the memory requirements of this method scale exponentially
with the number of particles and therefore limit this method to less than 20 parti-
cles on less than 25 laice sites, even if modern supercomputers are used [9].
Although the exponential scaling renders an application in 3D impossible, exact
diagonalization of small model systems with only two particles or on a few lat-
tice sights still provides valuable insight and many effects can be modeled at least
qualitatively, several examples of whi are given in this thesis. In addition, the
non-interacting problem can be solved exactly and efficiently with this method
for realistic system sizes and a lot of trap varieties. is can be used e.g. in order
to e the validity of the local density approximation (LDA) (cf. sec. 5.7.1).

Dynamical mean field theory Another important numerical method is dy-
namical mean field theory (DMFT), in whi the many-site problem is reduced
to a single site problem in the presence of an effective bath, whi represents the
remaining system [180]. is method has been used by R.W. Helmes, T.A. Costi
and Prof. A. Ros at the University of Cologne and the Resear Center Jüli
in order to model the metal to Mo insulator transition in the presence of an har-
monic trap [150]. In apter 8 their results are presented in more detail and are
compared to the experimental results. In addition, this method has also been used
to study the aractive Hubbard model [144] and has been extended to the three
species repulsive Hubbard model [181].

Further methods In the context of ultracold atoms in optical laices, two fur-
ther numerical methods are in common use: e density matrix renormalization
group (DMRG) method [182] is very successful in 1D and is currently expanded
to 2D. In addition there exist several quantum Monte Carlo methods, whi are
very powerful in the bosonic case, but are notoriously plagued by the so-called
sign problem when applied to repulsive fermions. It could indeed be shown that
the sign problem lies in the complexity class of nondeterministic polynomial (NP)
hard problems [183], whi almost certainly excludes the existence of an efficient
algorithm.
Nonetheless, they could be applied to the aractive Hubbardmodel in order to pre-
dict the critical entropies of various superfluid phases in 2D [170], and 3D [173]. In
addition they could predict the onset of antiferromagnetic order in the exactly half
filled repulsive Hubbard model [152, 184], where the sign problem is also absent.
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5.7. Inhomogeneous system

5.7. Inhomogeneous system

e presence of the harmonic trap destroys the translational symmetry of the lat-
tice and could in principle ange the physics of the problem completely. While
the inhomogeneity can easily be incorporated into a numerical calculation for
non-interacting particles (cf. sec. 4.3.2), it poses a severe complication in the gen-
eral case.
Fortunately, it turns out that, for typical experimental parameters, the length scale
of the additional potential is sufficiently large compared to the laice constant
su that the system can locally be approximated by a homogeneous system, as
detailed in this section.

By combining the general Fermi-Hubbard hamiltonian (cf. eq. 5.5) with the three
dimensional harmonic trapping potential (cf. eq. 4.21) with aspect ratio γ one ar-
rives at:

Ĥ = −J
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑ + Vt
∑
i

i2 (n̂i,↓ + n̂i,↑) (5.23)

where the horizontal trap frequency ω⊥ is used in the strength of the harmonic
trap Vt (cf. eqn. 4.22) and i2 is a short hand notation for i2 = i2x + i2y + γ2i2z .

5.7.1. Local density approximation

If the external potential varies slowly enough, the description of the inhomoge-
neousHubbardmodel can be simplified substantially by use of the local density ap-
proximation (LDA), in whi the inhomogeneous system is locally approximated
by a homogeneous Hubbard model. e effects of the external potential are then
incorporated by local shis in the emical potential:

µ(r⃗) = µ0 − ϵr⃗ (5.24)

All local quantities, e.g. the filling factor n(r⃗) or the entropy density s(r⃗) are
approximated by the corresponding quantities of the homogeneous system:

n(r⃗) = n(µ0 − ϵr⃗, T ) (5.25)

In order to compare the results of su calculations to experimental data, the cen-
tral emical potential µ0 and the temperature T are adjusted su that the result-
ing total atom number and entropy mat the experimental values:

N = 2

∫
n(µ0 − ϵr⃗, T ) dV (5.26)

S =

∫
s(µ0 − ϵr⃗, T ) dV (5.27)
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e validity of the LDA for calculating thermodynamic properties and the real-
and momentum-space density (cf. sec. 6) of the repulsive Hubbard model could be
shown by a direct comparison with numerical results obtained for the full inho-
mogeneous system [150, 185].

Characteristic trap energy

For a given set of hamiltonian parameters (tunneling J , interaction U , and trap
frequency ω⊥, γ), any thermal state in the trapped system is determined by the
emical potential µ0 and the temperature T , whi encode its total atom number
N and entropy S.
ese six parameters are, however, not independent of ea other: e number of
independent degrees of freedom is for instance reduced by the freedom to oose
a global energy scale, i.e. to express all parameters in units of the bandwidth 12J .
In the case of a typical harmonic trapping potential (cf. sec. 4.3.2) the validity
of the LDA implies an additional scaling relation connecting the trap frequen-
cies and the total atom number at constant emical potential. is can be seen
by imagining the inhomogeneous system as a sequence of boxes with constant
emical potentials (µ0, µ1, . . . ). As illustrated in figure 5.7, a ange in the trap-
ping frequency ω amounts to a rescaling of the volume of the boxes Vbox ∝ 1/ω
(3D: Vbox ∝ 1/ω3

⊥). If all extensive parameters (E,N, S) are scaled accordingly
to the ange of the box volume, the local physics and all intensive parameters
(n, s, µ, T ) remain unanged.

Figure 5.7.: Illustration of the scaling relation in LDA. If one approximates the
inhomogeneous system by a sequence of boxes with constant emical potential,
a ange in the trap frequency leads to a rescaling of the box volume. In LDA,
the physics in ea box is approximated by the (infinite) homogeneous system and
remains unanged by the rescaling.

A convenient parameter to exploit this scaling relation is the Fermi energy in the
limit of vanishing interactions and zero tunneling EF (J = 0, U = 0). In this
limit the eigenstates coincide with the Wannier states and the Nσ lowest energy
eigenstates correspond to the Wannier states on all laice sites within an ellipsoid
of volume Nσ/(λ/2)

3 around the trap center:

Vellip =
4π

3

r3⊥
γ

≈ Nσ/(λ/2)
3 (5.28)
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5.8. Validity of the Hubbard model

Here Nσ denotes the total atom number per spin state. e Fermi energy is then
given by the confining potential at the edge of the cloud

r⊥ =

(
γNσ

4π/3

) 1
3 λ

2
(5.29)

and is denoted as the aracteristic trap energy Et:

Et = Vt

(
γNσ

4π/3

) 2
3

(5.30)

Et

Figure 5.8.: Illustration of the aracteristic trap energyEt. It depends on both the
total atom number and the trap frequencies and can intuitively be understood as
the Fermi energy in the limit of zero tunneling and vanishing interaction.

Together with the entropy per particle S/N and the strength of the interaction
U/12J , the aracteristic trap energy Et/12J completely determines the many-
body state up to the aforementioned rescaling.

e ratio ofaracteristic trap energy to bandwidthEt/12J , whi is also referred
to as the compression, is equivalent to another widely used parameter, namely the
aracteristic density [62, 130]: ρc ∝ (Et/12J)

3/2. e main advantage of the
aracteristic trap energy is its dimensionality, whi allows an intuitive compar-
ison to other energies, e.g. the bandwidth 12J or interaction strength U .

5.8. Validity of the Hubbard model

In the context of solid state physics, the Hubbardmodel really needs to be seen as a
model, i.e. a highly idealized system that neglects many aspects of the real system,
e.g. disorder, impurities, or phonons. With respect to ultracold atoms, the Hubbard
model is a mumore precise description. Nonetheless, several assumptions of the
Hubbard model are not fulfilled in all cases and need to be eed in any given
situation:
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5. Fermi-Hubbard model

• In the Hubbard hamiltonian (cf. eqn. 5.5) only nearest neighbor tunneling
is included. is limits its applicability to the tight-binding regime of suffi-
ciently deep laices (V0 > 5Er, cf. sec. 4.3.2).

• An additional approximation is the use of Wannier functions as on-site
wavefunctions. While this is perfectly justified for non-interacting parti-
cles, the form of the on-site wavefunction generally depends on the inter-
actions and the number of particles. is was shown for bosonic systems
and Bose-Fermi mixtures in the following publications [186–188] and will
be discussed in detail in the PhD theses of orsten Best and Sebastian Will.

• For not too strong interactions, the ange in the on-site wavefunction can
be accounted for by a renormalization of the Hubbard parameters J and U .
In the presence of strong interactions, however, more complicated interac-
tion terms, e.g. density assisted hopping, need to be included [189].

• In order for the single band approximation to be valid, the band gap needs
to be large compared to all other energy scales, esp. the interaction energy
U and the Fermi energyEF . While this is typically a good approximation in
a relatively deep laice, care has to taken during the ramp up of the laice
in order to avoid occupation of the second band (cf. sec. 4.3.2)
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e fast progress in ultracold atoms in recent years is directly linked to tenical
progress, as new tenologies enable new experiments that enlarge our knowledge
about these systems.
e tenical advancement in the field of ultracold atoms is threefold: It includes
beer cooling teniques, whi allow us realize colder samples with less entropy.
Also more advanced tools to manipulate and engineer many-body states, su as
optical laices or Feshba resonances, have enabled us to prepare new quantum
states.
Additionally there is a continuous effort to develop new observables that allow us
to probe and identify these states.

is apter gives a brief introduction into several standard observables and dis-
cusses their potential in the context of the fermionic Hubbard model.

6.1. Momentum distribution

e classical probe to analyze ultracold atoms is the study of their momentum
distribution using time-of-flight imaging. In this method, whi was already used
in the first BEC experiments [1, 2], all trapping potentials are swited off instan-
taneously and the cloud is allowed to expand freely under the influence of gravity
for a certain time, the time-of-flight, before its density distribution is recorded by
e.g. absorptive imaging. For sufficiently long times-of-flight the recorded density
distribution directly reflects the initial velocity distribution of the atoms (cf. sec.
2.2.3), provided that interactions during the expansion can be neglected.

In laice experiments this method was used e.g. in the case of bosonic atoms to
detect the transition from a superfluid to a Mo insulating state [4], whi is
signaled by a dramatic ange in the contrast or visibility of the peaks in the
momentum distribution [190], as is shown in figure 6.1.

Although the quantitative interpretation of these images can be quite involved [191],
this method has proven to give useful information on the phase coherence between
different laice sites in the system [192] and is still one of the key observables in
the study of bosonic systems.

For fermions in a laice on the other hand, simple time-of-flight imaging is less
useful, as there does not exists any long-range phase coherence. Nonetheless,
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Figure 6.1.: le: Momentum distribution of a Mo insulator of bosonic 87Rb moni-
tored using absorption imaging aer time-of-flight. right: Momentum distribution
aer a slow ramp-down of the laice depth across the transition ba into a super-
fluid.

important information about the system can be extracted from the density-density
correlations within these images (cf. next section).

In the context of this thesis, measurements of the momentum distribution were
primarily used to determine the temperature of the fermionic cloud in the dipole
trap (cf. sec. 2.2.3).
It was, however, the prime observable in the related PhD thesis of orsten Best,
where the influence of the interaction between bosons and fermions on the super-
fluid to Mo insulator transition of the bosonic atoms was studied in detail [186].
It was also used in the related work on quantum phase diffusion in purely bosonic
systems [188], where Sebastian Will was the main investigator.

6.2. Second order correlation functions

An important extension of the abovemethod is the analysis of second order density-
density correlations in time-of-flight images, as described in detail in the PhD the-
sis of Tim Rom:
Although a bosonic Mo insulator with one atom per site and a spin polarized
fermionic band insulator have the same average momentum distribution at zero
temperature, they can be distinguished by looking at density-density correlations
in the measured column density distributions n(x⃗):

C(d⃗) =

∫
⟨n(x⃗− d⃗/2)n(x⃗+ d⃗/2)⟩d2x∫
⟨n(x⃗− d⃗/2)⟩⟨n(x⃗+ d⃗/2)⟩d2x

While bosonic atoms show positive density-density correlations at distances that
correspond to reciprocal laice vectors [193], fermionic atoms show anticorrela-
tions (dips) at the same positions [194], as can be seen in figure 6.2.
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Figure 6.2.: a: Single shot absorption image of a single species fermionic band-
insulator (inset: quasi-momentum distribution, see below), b: cut through (a) to-
gether with Gaussian fit, c: second order correlation function of 158 images and
d: high-pass filtered cut through (c). e position of the dips corresponds to the
first reciprocal laice vector ℓ = 2~kttof/m. e image is taken from T. Rom
et.al. [194].

As the position ℓ of these dips corresponds to the periodicity of the initial density
distribution, this method offers great potential to unambiguously detect ordered
states of fermionic atoms in an optical laice. In an antiferromagnetically ordered
state for instance the unit cell is doubled, whi leads to extra dips in the noise cor-
relation signal at exactly half of the original distance [195, 196], as could already
be demonstrated by artificially creating a density wave for bosonic atoms using a
superlaice [197]. More generally, this method should allow the detection of all
periodically ordered states in both spin and arge sector and the measurements
of their period [198].
By focusing on k⃗ ,−k⃗ correlations between the different spin states, noise corre-
lation measurements should be able to directly detect pairing between fermions,
as was already demonstrated for the case of weakly bound molecules in a dipole
trap [199]. In principle, noise correlations between the two spin components can
not only detect superfluidity in the laice but distinguish between BCS and FFLO
states [200].

6.3. Collective oscillations

In a trapped system collective modes are a convenient way to probe low lying
excitations of the system. e typically used modes include dipole oscillations,
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quadrupole oscillations and breathing modes [45]. ey can be excited by sudden
anges of the trapping frequency or the trap center and can be monitored either
in real space or by monitoring the momentum distribution using time-of-flight
measurements. In pure dipole traps they were used to measure e.g. the viscosity
of a strongly interacting fermionic gas [201] and the effective mass of fermionic
polarons [96]. Oscillation experiments were also the first experiments to show
beyond-meanfield effects in these systems [202].

In a laice context it was shown that, at least in 1D, the metal to Mo insulator
transition can in principle also be detected by observing the dipole and breathing
modes [203].
In this thesis dipole oscillations were used to measure the trap frequencies (cf. sec.
4.2.1) and the anticonfinement produced by the laice (cf. sec. 4.3.1).

6.4. Quasi-momentum distribution: band
mapping technique

Another related method is the use of band mapping teniques, where the laice
potential is not swited of instantaneously but on a timescale that is fast com-
pared to the tunneling timescale in the lowest band of the laice but adiabatic
with respect to interband transitions [204, 205]. In this method a Blo wave is
adiabatically transfered into a plane wave and the initial quasi-momentum distri-
bution in the lowest band becomes the final (free-space) momentum distribution.
In addition this method allows the unambiguous detection of population in higher
bands, as they aremapped onto highermomenta corresponding to higher Brillouin
zones [109].

In the case of non-interacting fermions this method can in principle be used to dis-
tinguish metallic and band-insulating states, as was first shown experimentally by
the group of T. Esslinger [62]. e situation is complicated, however, by the inho-
mogeneity of the harmonic trap, as the observed quasi-momentum distribution is
the sum over the whole trap.

While this method does return valuable information about the quasi-momentum
distribution of the many-body state, it can only yield the relative population of
the different quasi-momenta, and not the absolute populations. is is because
without any in-situ density measurement, the in-trap cloud size, and therefore
the number of quasi-momentum states, is not known.
On its own the Brillouin zone mapping cannot distinguish a band-insulating state
from e.g. a Mo insulator, as any collection of localized atoms, irrespective of
its temperature, has the same relative quasi-momentum distribution like a zero
temperature band insulator.
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Figure 6.3.: asi-momentum distribution for non-interacting fermions in a 8Er

deep laice. e harmonic confinement was increased from the le to the right
image, leading to many-body states ranging from purely metallic (le) to mostly
band-insulating (right). e band-insulating aracter was tested by use of in-situ
imaging, as detailed in apter 8.

6.5. Density distribution: In-situ imaging

emain observable used in this thesis is the in-situ real space density distribution
of the atoms in the combined potential of optical laice and dipole trap. Within
the local density approximation this is equivalent to measuring the density as a
function of emical potential for a given temperature (cf. sec. 5.7.1).
In 3D any in-situ imaging method cannot directly measure the density, but only
the column density, that is the density integrated along the line-of-sight, whi
is given by the beam path of the imaging laser. ere exist several numerical
methods to extract the real density distribution from the recorded column densi-
ties by exploiting symmetries of the trapping potential [206]. A second approa,
whi is used here, is to integrate the corresponding theoretical data as well and
to directly compare the resulting column densities.

In combination with the blue-detuned optical laice, whi offers the possibility
to ange the harmonic confinement at a constant laice depth, the in-situ density
distribution allows a direct measurement of the global compressibility of the cloud
and can thereby distinguish conducting from insulating many-body states (cf. sec.
5.2).

e high column densities of the in-situ atom distribution typically result in op-
tical densities that greatly exceed the dynamic range of standard, non-saturated
absorption imaging. is can be circumvented for example by the use of saturated
absorption imaging [207] or fluorescence imaging [208].

In this thesis a different approa was used, namely phase contrast imaging, a
method that is well known in microscopy, where it is used to image almost trans-
parent objects, like living cells, without the need to stain them [209].
Phase contrast imaging does not rely on the absorption of photons but instead
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uses the dispersive interaction between atoms and non-resonant light. It is a non-
destructive imaging method that offers the possibility to record several images of
the same cloud [210, 211].
In the experiment, both the in-situ density distribution and the quasi-momentum
distribution of the same cloud where recorded by using phase contrast imaging
followed by a band mapping tenique (cf. sec. 6.4).

At typical detunings of several hundred MHz absorption of the probe light can be
neglected and only the phase shi due to the dispersive interaction has to be taken
into account:
Assuming that the light enters and leaves the cloud at the same transversal posi-
tion, whi corresponds to the thin lens approximation in optics, the phase shi
Φ is proportional to the column density at these transverse coordinates Φ(x, y) ∝
nc(x, y). Accordingly, an incident plane monoromatic wave Ei(x, y, z, t) =
E0 sin(kz − ωt) acquires a position-dependent additional phase:

Eat(x, y, z, t) = E0 sin(kz − ωt+ Φ(x, y)) (6.1)

is field can be decomposed into an aenuated reference field with the origi-
nal phase, and an additional quadrature component with a π/2 phase difference
compared to the original field¹:

Eat(x, y, z, t) = Eref + Eadd

= E0 sin(kz − ωt) cos(Φ(x, y))

+ E0 cos(kz − ωt) sin(Φ(x, y)) (6.2)

Imaged onto a CCD ip, however, the phase shi alone would not alter the
recorded intensity distribution. Phase contrast imaging relies on a homodyne-
like interference between the two quadrature components, whi is created by
introducing an additional phase shi P of ±π/2 on the reference field:

Epci(x, y, z, t) = P (Eref ) + Eadd

= E0 cos(kz − ωt) [± cos(Φ(x, y)) + sin(Φ(x, y))] (6.3)

e total field can thus be described as an amplitude-modulated wave, whose
mean intensity is given by:

IPCI = I0 [± cos(Φ(x, y)) + sin(Φ(x, y))]2

= I0
[
cos2(Φ(x, y))± 2 cos(Φ(x, y)) sin(Φ(x, y)) + sin2(Φ(x, y))

]
= I0 [1± sin(2Φ(x, y))] (6.4)

For small phases Φ the intensity can be approximated by

Ipci(x, y) ≈ I0 [1± 2Φ(x, y))] , (6.5)

¹sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)
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where, according to Φ(x, y) ∝ nc(x, y), the intensity modulation is linear in
the column density. In this limit, phase contrast images can be interpreted in a
straightforward way, as the intensity modulation directly reflects the atomic col-
umn density. It is a very versatile method, suitable for a large range of column
densities, as the desired dynamic range can be controlled by the detuning. With-
out the small phase approximation the dynamic range is even larger, at least for
smooth density distributions, as the intensity modulation is periodic in the column
density.

Tenically, the necessary extra phase shi of the reference field is created by a
phase plate, that is a glass plate with a small dip in the center, whi produces a
relative phase shi of π/2 for light that passes through this central phase spot. e
phase plate is positioned in a focus of the unscaered light. In the idealized situ-
ation of figure 6.4, this position mates the Fourier plane of the imaging system,
where the light scaered by the atoms resembles the (extended) Fourier transform
of the column density distribution. Ideally the phase spot affects the unscaered
reference wave only, while it leaves the unfocused scaered light unanged.

C
C

D

Phaseplate

Figure 6.4.: Sematic phase contrast imaging setup. e incident plane wave is
shown as blue rays and illuminates the atomic cloud indicated on the le. e
scaered light, whi is indicated by green phase fronts, is imaged via a telescope
onto a CCD camera (right), where it interferes with the unscaered reference light.
e reference light is phase-shied by π/2 due to the phase plate in between the
telescope lenses.

In reality, however, a small part of the scaered light passes through the phase
spot as well and acquires the same phase shi as the reference wave. is leads
to several imaging artifacts like halos and shade-off effects that are symptomatic
for phase-contrast imaging [212], and, together with the thin lens approximation,
form the fundamental limitations of this method.

In the experiment, the total imaging setup consists of two telescopes with a total
magnification of ≈ 3.3, where the phase plate (phase spot diameter 300µm resp.
170µm) was positioned in the second telescope. Due to tenical problems with
unwanted interferences in the imaging setup, we used a slightly focused probe
beam instead of a plane wave. erefore the position of the phase plate, whi
was positioned in the focus of the probe beam, did not correspond to a Fourier
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plane of the imaging system.
Nonetheless, the above mentioned aberrations are especially noticeable for the
largest clouds studied during expansion measurements (cf. sec. 10), as these clouds
show a higher spectral weight at small spatial frequencies compared to the small
in-situ clouds.

A more detailed description of the used phase contrast setup will be found in
the PhD esis of Sebastian Will. e in-situ images are taken along the vertical
axis, whi exploits a second advantage of the osen oblate trap geometry as the
imaging integrates over less atoms than with a spherical trap. In addition, any
ange in the volume of the cloud corresponds to a more pronounced ange in
the horizontal directions.

6.6. Doublon fraction: Molecule creation

A third main observable used in this work is the so-called doublon fraction, that
is the fraction of atoms siing on doubly occupied laice sites. As was detailed
already in section 5.4.1, interaction effects manifest themselves also in the doublon
fraction and can lead either to a suppression of doubly occupied sites for repulsive
interactions or to a strong enhancement of the doublon fraction in the aractive
case.

In the experiment, the doublon fraction is measured by first increasing the laice
depth to typically V0 = 20Er in 200µs, a timescale that is adiabatic with re-
spect to interband transitions but fast compared to tunneling in the lowest band.
Once in the deep laice, where tunneling can be neglected (J = 23Hz), pairs of
atoms siing on the same laice site are converted into molecules using a mag-
netic Feshba sweep (cf. sec. 3.3.2)². e ramp parameters were osen su that
all molecules were photodissociated by the laice light (cf. sec. 3.4, A) before the
end of the ramp. e kinetic energy imposed on the dissociated atoms is on the
order of half the detuning of the laice light (∆ = 15THz) and leads to a fast
escape of these atoms from the trap.
By measuring either the total atom number (time-of-flight) or the density distri-
bution (in-situ) of the cloud both with and without the Feshba sweep we can
infer either the total doublon fraction or the spatial doublon distribution.
During the hold time needed for the Feshba ramps, doubly occupied sites can
already be lost due to light assisted collisions (cf. sec. 3.4). is process selectively
affects only doubly occupied sites and therefore leads to an underestimation of the
measured doublon fraction p, for whi the experimental data has to be corrected.
e measured doublon lifetimes in a deep laice (Vlat = 24Er) are strongly in-
teraction dependent and range from below < 40ms for aractive interactions

²e programmed ramp speed was 5G/ms and the final programmed field was 190G. Owing
to the high inductance of the used coils, however, the real field showed a considerable lag
compared to the programmed values.
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(a = −200 a0) over 70(10)ms in the non-interacting case to 310(70)ms for re-
pulsive interactions (a = 150 a0).

Due to the necessity to calculate the doublon fraction from atom numbers obtained
in different shots, this method is less accurate than alternativemethods that rely on
dissociating the formed molecules using radio-frequency pulses and subsequently
separating the different spin states using the Stern-Gerla effect during time-of-
flight [70]. However, the potential to observe the spatial doublon distribution is a
big advantage of the used method.

6.7. Transport coefficients

One of the most prominent observables in real condensed maer systems are
transport properties, i.e. the current induced by an applied bias. Depending on
the applied bias, the current can either be an electric current, carried by the elec-
tric arge of the electrons, or a thermal (magnetic) current carried by the energy
(spin) of the electrons.
In ultracold atoms, the observable corresponding to an electric current is the mass
flow, whi can either be measured directly in-situ or through a measurement of
the momentum distribution. Due to the perfect periodicity of an optical laice,
whi is by construction defect-free, directly applying a potential gradient does
not lead to a net flow of atoms but instead creates Blo oscillations [27, 28, 115].
In order to avoid these oscillations we studied transport properties in a homoge-
neous optical laice where the net flow of atoms was driven by initial gradients
in the emical potential, as will be discussed in section 10.

6.8. Spectroscopic techniques

In condensed maer experiments many different spectroscopic teniques are
used e.g. to study the dispersion relations of various quasiparticles like phonons
or excitons.
An important example is angle-resolved photoemission spectroscopy (ARPES),
whi is one of the most powerful teniques to probe the energy and momentum
distribution of the electrons in a material [213]. In the context of cuprate super-
conductivity, ARPES measurements e.g. provided important information about
the superconducting gap, the pseudogap and enabled a direct measurement of the
Fermi surface [214].

Similar methods have been implemented in ultracold atom systems using radio
frequency photons in order to spin-flip atoms out of a (possibly strongly-interacting)
many-body state into non- or weakly interacting states [215].
In the interpretation of these measurements an additional complication arises due
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to the inhomogeneity of the trap [216, 217]. While these methods have recently
been extended to momentum resolved detection [218] or to spatially resolving
the origin of the spin-flipped atoms [219], it was, however, so far not possible to
combine spatial and momentum resolution into a single method.

Another important observable in condensedmaer systems is the dynamical struc-
ture factor [220], whi can be measured by inelastic neutron scaering [107] and
contains information e.g. about the phonon and magnon spectrum of the material.
In ultracold atom systems, an analogous probe is the use of stimulated two-photon
Bragg scaering, where both the momentum and energy transfer are given by the
differences in momentum and energy of the two photons involved.
is method was first used to measure the real momentum width of a BEC [221]
and was recently applied to study the momentum resolved excitation spectrum of
non-interacting and interacting bosons in an optical laice [222].

An important special case is the use of Bragg spectroscopywith vanishingmomen-
tum in the laice, where the excitation can be provided by amplitude modulating
the potential depth without the need of additional beams [223]. In interacting
fermionic systems in optical laices, this spectroscopy method can be combined
with a measurement of the doublon fraction [70, 224]. While this procedure does
provide a direct measurement of the on-site interaction energy, it cannot provide
a general measure of possible many-particle gaps due to the restriction to zero
quasi-momentum transfer.

In this thesis a variation of this spectroscopy, whi is colloquially referred to as
shaking spectroscopy, i.e. frequency modulation of the laice light, was used to
calibrate the laice depths by measuring the band gap between the lowest and the
first excited band (cf. sec. 4.3.2).
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7. Overview over experimental cycle

is apter gives a brief overview over the experimental sequence and the ap-
plied cooling teniques. e used methods, laser-cooling and evaporative as well
as sympathetic cooling, are nowadays standard teniques and will only be re-
called briefly. e experimental setup and the first part of the cooling sequence
are presented in more detail in the PhD thesis of Tim Rom.

e experimental cycle starts with a two-species magneto optical trap (MOT) [225]
in whi first several 107 40K atoms are trapped and laser-cooled. During the
last few seconds of the Potassium MOT the Rubidium MOT lasers are added and
several 109 87Rb atoms are laser-cooled in the MOT as well. Together with a
small offset in the positions of the clouds, whi is created by slightly imbalanced
light intensities, this sequence minimizes the overlap between 40K and 87Rb dur-
ing the presence of the near-resonant MOT light, and thereby minimizes losses
due to light-assisted collisions. e MOT phase is followed by a short optical mo-
lasses [225] by whi primarily 87Rb is further cooled. Aer an optical pumping
stage both 40K and 87Rb are recaptured in a quadrupole trap and magnetically
transported within 2 s over 40 cm into a UHV glass cell [226]. is two-amber
design offers two advantages: First, it allows the MOT to operate at a baground
pressure of around 5 × 10−10 mbar, while keeping the pressure in the glass cell,
where the evaporative cooling takes place, below 10−11 mbar. Second, the optical
access to the glass cell is improved, as no MOT optics need to be integrated into
the laice, dipole trap, and imaging setup.

Aer the magnetic transport the atoms are loaded into an optically plugged qua-
drupole trap [2], where a first evaporative cooling stage takes place. is part of
the experimental cycle is described in more detail in the PhD thesis of orsten
Best. 87Rb is actively cooled using a standard radio frequency sweep while 40K
is sympathetically cooled by collisions with 87Rb. In order to prevent Majorana
losses at the magnetic field zero [35], we focus a tapered amplifier laser at λ =
760 nm and a waist of 20µm to the center of the quadrupole trap and plug the
”Majorana hole” using its repulsive dipole potential (see Fig. 7.1,7.2).

In this manner we can rea 10 × 106 Rb at 2µK in thermal equilibrium with
2 × 106 40K aer 9 s of evaporation. During the last 170ms of this radio fre-
quency sweep we start two overlap the quadrupole trap with a crossed dipole
trap, whi is described in detail in section 4.2. By decreasing the current in the
upper quadrupole coil and applying additional offset fields, the quadrupole field is
adiabatically transformed into a homogeneous offset field. During this field ramp
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7. Overview over experimental cycle

Figure 7.1.: le: Magnetic potential of a quadrupole trap. In the center the mag-
netic field vanishes, whi leads to Majorana losses. middle: Repulsive potential of
a tightly focused blue-detuned laser in the transverse direction. right: Combined
potential of quadrupole trap and optical plug.

the magnetic field zero is moved along the plug beam in order to avoid losses and
depolarization.
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Figure 7.2.: le: Atom numbers of 40K (red) and 87Rb (blue) aer the radio-
frequency forced evaporation in the plugged quadrupole trap as a function of the
plug power. right: e corresponding temperatures show that 40K and 87Rb are in
good thermal contact, as they rea the same temperature although only 87Rb is
actively cooled.

Once in a pure dipole trap, both species are transferred into their hyperfine ground
states (87Rb |F=1,mF=1⟩; 40K |F=9/2,mF=−9/2⟩) by use of adiabatic radio-
frequency and microwave sweeps (rapid adiabatic passage, RAP). Subsequently,
a second stage of evaporative cooling is performed by reducing the dipole trap
depth. Aer 3− 4 s of cooling we can rea an almost pure BEC of 87Rb together
with a quantum degenerate spin-polarized Fermi gas at T/TF = 0.16 − 0.18.
Images of su clouds are shown in figures 2.1 and 2.4.

In order to create a degenerate spin mixture of 40Kwe use an additional RAP pulse
on the |F=9/2,mF=−9/2⟩ to |F=9/2,mF=−7/2⟩ transition. By lowering the
RF power in this sweep we can reduce its transfer efficiency to 50% and thereby
create a superposition of both hyperfine states.
Subsequent collisions and inhomogeneities of the magnetic field lead to dephasing
of this superposition [227] and transform it into an incoherent spin mixture. It
turned out to be beneficial to perform the mixing sweep rather early during the
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cooling sequence, where the entropy is still high, as this process creates additional
entropy.

By lowering the dipole power below the trap boom for 87Rb, all bosons are evap-
orated away and the resulting purely fermionic spinmixture can be further cooled.
Aer total evaporation times of 6 − 7 s in the dipole trap we can rea reduced
temperatures on the order of T/TF & 0.10, whi is at the limit of the used fiing
method (cf. sec. 2.2.3).

A typical experiment then consists of seing the desired dipole trap strength and
magnetic field and subsequently ramping up the optical laice before probing the
resulting state using one of the observables described in section 6.

Most theoretical calculations relevant for this thesis are performed using the grand
canonical ensemble, whi yields the desired observables (e.g. density) as a func-
tion of emical potential and temperature. In order to compare theoretical and
experimental results, these parameters are adjusted su that the calculated dis-
tributions reproduce the measured atom number and entropy per particle (cf. sec.
8). While the atom number can be extracted from images taken in the laice, the
entropy per particle is typically extracted from dedicated time-of-flight images
taken in the dipole trap.

One experimental issue in using this entropy as a parameter in the laice system is
the presence of tenical heating due to e.g. scaering of photons, tenical noise,
and collisions with baground gas atoms. As a consequence, the experimentally
osen timescales for anging parameters like the laice depth are always a com-
promise between both tenical and non-adiabatic heating. Up to now, the rel-
evant adiabaticity timescales for inhomogeneous, strongly interacting fermionic
systems are not known in general (cf. sec. 11.3), but the dynamic expansion mea-
surements presented in apter 10 and other recent experiments [228] suggest that
these timescales can become surprisingly long for large interactions.
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8. Repulsive Fermi-Hubbard model

isapter presents the first main result of this thesis, the observation and exper-
imental distinction of metallic and insulating states of the Fermi-Hubbard model,
including the fermionic Mo insulator. e main parts of this apter are pub-
lished in [229] and [131].

Aer presenting the used measurement sequence, the theoretically expected re-
sults are discussed and then compared to the experimental data.

8.1. Measurement sequence

In order to probe the different regimes of the repulsive Fermi-Hubbard model we
created quantum degenerate spin mixtures of the two lowest hyperfine states of
fermionic potassium and transferred them into a combination of a blue-detuned
optical laice and a red-detuned dipole trap. At the end of the cooling sequence
described in apter 7 the dipole trap depth was slightly increased in order to pre-
vent further evaporation and the experiment started with N = 1.5 − 2.5 × 105

atoms at a reduced temperature of T/TF = 0.15(3).
In this experiment, where large repulsive interactions were needed, the final cool-
ing was performed either at B = 220G above the (−9/2,−7/2) Feshba res-
onance (cf. fig. 3.2) or at B = 165G below the resonance. While the former
field allowed to access interactions ranging from non-interacting up to scaering
lengths of a = 150 a0, the later allowed us to additionally access higher values up
to a = 300 a0 (B = 191.3G) without the need to cross the resonance. In prin-
ciple, even higher values could be aieved by a closer approa to the resonance
position at B0 = 202.1G in practice, however, this was hindered by enhanced
losses and heating in the laice.

e desired interaction was osen by adjusting the magnetic field once the evap-
orative cooling was completed and the final optical potentials were approaed
in the following sequence: First, the optical laice was increased to a depth of
1Er during a linear 7ms ”preramp”, followed by a linear 100ms ramp to the de-
sired dipole power before finally the laice depth was linearly increased to its final
value of 8Er in 50ms.
In the typically assumed limit of an adiabatic/isentropic evolution (cf. sec. 2.3), the
final state in the laice is completely determined by the entropy per particle S/N
together with the final compression Et/12J and interaction U/J (cf. sec. 5.7.1),
and is independent of the specific phase-space path. In other words, the final state
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in the laice would only depend on the end point of the osen sequence, but not
on the specific ramp. Note, however, that the ramp time needed to ensure adia-
baticity does depend on the osen path in phase-space.
In the presence of tenical heating rates (cf. sec. 11.2), it is therefore of paramount
importance to use a ramp sequence that is optimized with respect to the sum of
tenical heating and non-adiabaticities. Empirically we found that the best strat-
egy is to first set the trapping frequency and the scaering length in a very weak
laice, where tunneling is still fast and the system is only weakly interacting, be-
fore ramping up the laice to its final value. In the Hubbard regime evenmoderate
interactions, on the order of half the bandwidth or less, can substantially hinder
mass transport, as studied in later experiments (cf. sec. 10).

Aer a hold time of 12ms the in-situ density distribution was measured using
phase-contrast-imaging (cf. sec. 6.5) followed by a measurement of the quasi-
momentum distribution using a band mapping tenique (cf. sec. 6.4) in the same
experimental run. Alternatively, the fraction of doubly occupied laice sites (dou-
blons) was measured using Feshba sweeps in order to convert atoms on doubly
occupied laice sites into Feshba molecules (cf. sec. 6.6).

8.2. Theoretical expectation

All measurements are compared to DMFT (cf. sec. 5.6) calculations engineered in
the group of Prof. Aim Ros at the University of Cologne and performed in
the John von Neumann Institute for Computing Jüli. Details of the numerical
implementation can be found in [131].

At the experimentally realizable entropies magnetic order and the low tempera-
ture phases of the Hubbard model can be neglected and only three regimes are
relevant in the homogeneous case:
For weak interactions there exist the compressible and conducting metallic phase
of delocalized atoms and the incompressible band insulator at maximum filling.
While the maximum filling at zero temperature is exactly two atoms per laice
site, it becomes reduced at finite entropies due to the density dependent entropy
capacity (cf. fig. 5.5). For strong repulsive interactions and low enough entropy
densities, the Mo insulator appears in addition to the metallic and band insulat-
ing regimes at precisely half filling.

Due to the inhomogeneity of the trap the filling factor is position dependent and
always decays from a maximum at the trap center to zero at the edge of the cloud.
As a consequence, several phases can coexist in different areas of the trap. Even
in the limiting cases of figure 8.1 the density always drops below unity filling near
the edge of the cloud, leading to a metallic outer shell: e cloud can be either
purely metallic (A), or contain a Mo insulating (B) or band insulating (C) core.
Away from these limits an even more complex scenario can arise, where a band
insulating core is surrounded by a first metallic shell above half filling, followed
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Figure 8.1.: Illustration of the eigenstates of the trapped system in the limits of
dominating kinetic (A), interaction (B) or trap energy (C). (right) Resulting atom
distribution aer a fast ramp into a deep laice - as used in measuring the doublon
fraction (cf. sec. 6.6).

by a Mo insulating shell at unity filling and finally a second metallic shell at
lower density.

e expected density distributions were calculated as a function of the aracter-
istic trap energy (compression) Et/12J for various interactions strengths U/12J
and several average entropies per particle. Figure 8.2 shows the resulting density
distributions for an average entropy per particle of S/N ≈ log(2) kB , where mag-
netic ordering may become important in an harmonically trapped system.
For low compressions (Et/12J . 0.25) the whole cloud is metallic for all interac-
tions, while for sufficiently strong compressions a band insulating core is formed.
Beginning with U/12J ≈ 1 a Mo insulating core is formed for compressions
above Et/12J & 0.25. Above Et ≈ U/2, the central density rises above unity
and the Mo insulating core becomes a Mo insulating shell.
e experimentally relevant case of S/N ≈ log(4) kB (cf. fig. 8.3) exhibits the
same qualitative behavior.
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Figure 8.2.: Calculated density distributions for various interactions and an av-
erage entropy per particle of S/N ≈ log(2) kB , whi corresponds to an initial
temperature of T/TF = 0.07 in the dipole trap. e Mo insulating plateau is
clearly visible for U/12J ≥ 1. (Data taken from [131])
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Figure 8.3.: Calculated density distributions for an average entropy per particle of
S/N ≈ log(4) kB , whi corresponds to an initial temperature of T/TF = 0.15
in the dipole trap. Due to the higher entropy the density distribution is washed
out compared to low temperatures but the Mo insulating plateau remains clearly
visible. e small structures at higher fillings are numerical artifacts. (Data taken
from [131])
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e incompressibility of the Mo insulating phase can for instance be seen in the
central density, whi is ploed in figure 8.4. For low temperatures the central
density remains at half filling over a large rang of compressions. is indicates a
vanishing electronic compressibility ∂n/∂µ (cf. sec. 5.2), as the central emical
potential varies with the compression. Due to the compressibility of the surround-
ing metallic shell, however, the global compressibility of the cloud stays finite in
all cases (cf. fig. 8.9).
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Figure 8.4.: Calculated central density for U/12J = 1.5. e average entropies
correspond to T/TF = 0.07, 0.10, 0.15, 0.20, 0.25 in the dipole trap. (Data
taken from [131])

Together with these density distributions the DMFT calculations also yield the
doublon distribution, whi are presented in section 8.4 together with the experi-
mental data.

8.2.1. Entropy distribution

As shown in the previous section the DMFT calculations predict a fermionic Mo
insulator in an inhomogeneous system at an average entropy per particle ofS/N ≈
log(4) kB . is is in stark contrast to the homogeneous system, where the maxi-
mum entropy per particle in the Mo phase is given by S/N = log(2) kB (cf. sec.
5.4.2).

e reason for this difference lies in the density dependent entropy capacity of the
Hubbard model (cf. sec. 5.4.2): Even though the entropy capacity per laice site
vanishes for small filling factors, the entropy capacity per particle in fact diverges
(cf. fig. 5.5). Intuitively speaking, the number of laice sites an atom can oose
from diverges in the low density limit, leading to a diverging entropy capacity per
particle. As a consequence, atoms at the cloud edge carry mu more entropy (cf.
fig. 8.5) than atoms at the center. is entropy redistribution enables the formation
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8. Repulsive Fermi-Hubbard model

of Mo insulating regions with entropy densities below log(2) kB in the trap at
high average entropies. Furthermore, this redistribution of entropy towards the
low density regions can be used to implement further cooling semes (cf. sec.
11.1).
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Figure 8.5.: Entropy distribution for U/12J = 1.5 and two average entropies. e
solid lines denote the average entropy per laice site and the slashed lines denote
the average entropy per particle. (Data taken from [131])

8.3. Cloud size and compressibility

Within the local density approximation (cf. sec. 5.7.1), the in-situ density distri-
bution allows one to measure the functional dependence of the density on the
emical potential in a single shot (cf. sec. 6.5). As shown in figure 8.6 (column
A), the existence of the Mo insulating plateau (A2) or a Mo insulating shell (A3)
could in principle be directly deduced from an inspection of the density profiles.
In the experiment, however, only the column density can be recorded (cf. sec. 6.5)
and the visible signatures of the Mo insulator are washed out by the integration
along the line of sight. As a consequence, a quantitative comparison between the
numerically calculated distributions (B) and the experimentally recorded ones (C)
is needed in order to reliably identify the different phases.

8.3.1. Rescaled cloud size

e comparison between numerical and experimental density distributions was
performed using the cloud size R, whi denotes the expectation value of the
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Figure 8.6.: Comparison of in-trap density profiles. Calculated radial density pro-
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corresponding column densities obtained aer integration over the vertical axis
and convolution with the point spread function of our imaging system (center col-
umn), and experimental results (azimuthally averaged over more than five shots)
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and U/12J = 1.5 (red). At small compressions the calculated density profiles for
U/12J = 1 and U/12J = 1.5 are indistinguishable, as in both cases double occu-
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transversal position operator R̂ =
√
⟨x̂2 + ŷ2⟩:

R =

∫
R2(x

2 + y2)nc(x, y) dA∫
R2 nc(x, y) dA

(8.1)

where nc(x, y) denotes the column density. Typically the cloud size is given in
rescaled units:

Rsc = R/(γNσ)
1/3 (8.2)

HereNσ denotes the atom number per spin state and γ = ωv/ω⊥ ≈ 4 is the aspect
ratio of the trap (cf. sec. 4.2.1).

In thermal equilibrium the rescaled cloud size depends only on the compression
Et/12J , the strength of the interactionU/12J and the entropy per particle, whi
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8. Repulsive Fermi-Hubbard model

is given by the initial temperature in the pure harmonic trap T/TF . Within the
local density approximation (cf. sec. 5.7.1) there remains no dependence of these
rescaled units (Rsc vs. Et) on the atom number. e use of these units therefore
allowed us to greatly reduce the experimental noise, as the main noise source are
shot-to-shot fluctuations in the atom number.

In contrast to the numerical data, where the cloud size R was extracted by direct
integration of equation 8.1, imaging noise at large distances would add consid-
erable noise in the case of experimental data. In order to avoid this problem,
the phase-contrast images were first fied using the following adapted Fermi-Fit
function:

F (x, y) = a Li2

(
−100 e

− (x−xc)
2

2σ2
x

− (y−yc)
2

2σ2
y

)
+b+c

√
(x− xc)2

σ2
x

+
(y − yc)2

σ2
y

(8.3)

Here Li2 denotes the di-logarithm, xc, yc, σx, σy, a, b, c are free fit parameters and
the last term models a broad funnel-shaped baground, whi is an artifact of
phase-contrast imaging (cf. sec. 6.5). As can be seen in figure 8.7, this function
describes the measured distributions mu beer than a Gaussian. Indeed the
adapted Fermi-Fits yield on average 8% (non-interacting cloud) and 23% (interact-
ing cloud with U/12J = 1.5) smaller squared residuals compared to a Gaussian
fit function including the last baground term. Performing the integral of eqn.
8.1 over the fit function results in the imaged cloud size being given by:

R =
√

1.2642 (σ2
x + σ2

y)− η2 (8.4)

Here η denotes the imaging resolution (radius of Airy disc< 3µm) of the imaging
setup, whi is well below one third of the smallest used cloud size.

e resulting cloud sizes are ploed in figure 8.10 together with the theoretical
prediction (cf. fig. 8.8). In order to perform the rescaling and to determine the
compression, several parameters need to be known precisely: While trap frequen-
cies and laice depth were calibrated independently (cf. sec. 4.2.1,4.3.1 and 4.3.2),
this turned out to be impossible in the case of the absolute atom number. Although
relative atom numbers can easily be deduced from fits to absorption images, a pre-
cise calibration of the column density in terms of the recorded optical density is
limited by uncertainties due to saturation, polarization effects and optical pump-
ing. Within their uncertainty, the resulting atom numbers nonetheless agree with
an independent calibration using the in-situ cloud size of non-interacting atoms
in the pure harmonic trap.

It turned out, however, that for both calibrations the resulting uncertainty (≈ 15%)
is larger than the scaer of the rescaled in-situ cloud sizes in the laice: While
the cloud size in the harmonic trap scales as R ∝ N1/6 [38] for non-interacting
fermions, the restriction to the lowest band dictates R ∝ N1/3 in the laice, ren-
dering this cloud size mu more sensitive to the total atom number. Accordingly,
the precise adjustment of the atom number calibration was performed using the
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Figure 8.7.: Comparison of different fit functions. e azimuthally averaged data
(dots) is shown together with a fied Gaussian (red line) and an adapted Fermi-fit
(bla line). Both fits were performed on the full 2D distribution before averaging.
e influence of the small deviation at the trap center on the resulting atom number
(cloud size) is below 1% (0.1%), as the statistical weight of ea averaged data point
increases linearly with the distance from the cloud center.

non-interacting cloud sizes in the laice at medium high compressions, where the
cloud is mostly band-insulating and the cloud size becomes independent of the
compression.

8.3.2. Results

e theoretically expected cloud size is ploed in figure 8.8 for the experimentally
relevant initial temperature of T/TF = 0.15. In the limit of small compressions
the cloud is very extended and the central density becomes very low, resulting in
metallic states for all interactions.

Focusing first on the lower bla line, whi denotes the non-interacting case,
one sees that the cloud size decreases monotonically, approaing a limiting value
for strong compressions. is limit is due to the formation of an incompressible
band insulator, where the maximum density is limited by the Pauli principle. It
is a direct consequence of the fermionic nature of the atoms combined with the
restriction to the lowest band of the laice. In a pure harmonic trap there exists
no minimum cloud size as there is a gapless continuum of higher states in whi
the atoms can be excited. In the laice, a further compression of the cloud is only
possible if either Fermi energy or temperature are on the order of the band gap,
su that atoms can be excited into higher bands.

is behavior can be described quantitatively by defining the global compressibil-
ity of the cloud:

κRsc = − 1

R3
sc

∂Rsc

∂(Et/12J)
(8.5)
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Figure 8.8.: Numerically calculated cloud sizes of the interacting spin mixture ver-
sus compression for various interactions U/12J = 0, 0.5, · · · , 2.5 (increasing
cloud sizes) and an entropy per particle, whi corresponds to a temperature of
T/TF = 0.15 in the harmonic trap. e dashed line indicates the Mo insulat-
ing plateau. e remaining slope at the Mo plateau is caused by the compress-
ible metallic shells surrounding the incompressible Mo insulator. (Data taken
from [131])

whi is the derivative of the cloud size with respect to the compression. In the
non-interacting case the compressibility, whi is shown in figure 8.9, decreases
monotonically with increasing confinement and vanishes in the band-insulating
limit.

In the case of a repulsive interaction the resulting cloud size is larger than in the
non-interacting case, indicating that repulsive interactions tend to lower the den-
sity. For strong enough interactions the formation of theMo insulating core/shell
leads to an intermediate plateau in the cloud size Rsc ≈ 0.52 that is significantly
larger than the band insulator at the same entropy. For stronger compressions
the harmonic confinement starts to dominate over the interaction energy and the
cloud size shrinks faster again, as a metallic core above unity filling is formed. For
strong compressions the cloud size approaes that of the non-interacting band
insulator. is formation of the Mo insulating region at intermediate compres-
sions leads to a aracteristic feature in the compressibility, namely the appear-
ance of a local minimum. As shown in figure 8.9, this local minimum appears
first for U/12J ≈ 1, where the Mo insulator starts to form, and becomes more
pronounced for stronger interactions, when the Mo insulating region becomes
larger. For a given interaction strength it is most pronounced for the coldest tem-
peratures and vanishes above a critical entropy (cf. fig. 8.11). e global com-
pressibility is therefore an ideal observable to study the formation and melting of
a fermionic Mo insulator.
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Figure 8.9.: Numerically calculated global compressibility and temperature of the
interacting spin mixture versus compression for various interactions and an en-
tropy per particle corresponding to a temperature of T/TF = 0.15 in the harmonic
trap. le: e formation of the Mo insulator manifests itself as a local minimum
in the global compressibility. right: e repulsive interaction leads to a stronger
localization of the particles and therefore increases their spin entropy, whi leads
to a decrease in temperature. (Data taken from [131])

For high compressions a second interesting effect can appear: At constant entropy
and medium interaction strengths the cloud size can become slightly smaller than
in the non-interacting case due to the Pomeranuk effect [230, 231]: Repulsive
interactions lead to more localized particles. is increases their spin entropy
or—at constant entropy—leads to a colder temperature in the laice [189], as can
be seen in figure 8.9.

e same behaviour can also be seen in the experimental results, whi are shown
in figure 8.10: e non-interacting data agrees very well with the theoretical ex-
pectation for all compressions up to Et/12J ≈ 2. is shows that the osen lat-
tice ramp is adiabatic on the one-particle level for all trap frequencies. e insets
(A-E) show the simultaneously measured quasi-momentum distribution, whi
nicely illustrates the observed crossover from a purely metallic phase (A-C), ar-
acterized by a partly filled Brillouin zone to an almost completely band-insulating
cloud (E) with an evenly filled Brillouin zone. While su an evenly filled Bril-
louin zone could also result from a strongly heated cloud or localized atoms, the
vanishing compressibility of the experimental data (cf. fig. 8.11) is a direct proof
of the formation of an incompressible (band-) insulating state.
At very high compressions (Et/12J & 2), the second Blo band gets slightly
populated during the laice ramp-up (cf. sec. 4.3.2), whi leads to smaller cloud
sizes for all interactions, because a small number of atoms in a nearly empty band
can carry a considerable amount of entropy and thereby lower the temperature.

In the interacting case the lines in figure 8.10 represent a direct prediction without
free parameters! In general we aieved a good agreement between theory and
experiment, showing all the aracteristic features expected in this system: In the
limit of low compressions the density becomes small and interaction effects are
unimportant. For growing compressions, the interacting clouds become signifi-
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Figure 8.10.: Cloud sizes of the interacting spin mixture versus compression. Mea-
sured cloud size Rsc in a Vlat = 8Er deep laice as a function of the external
trapping potential. Dots denote single experimental shots, lines denote the theo-
retical expectation from DMFT for an initial temperature T/TF = 0.15. e insets
(A to E) show the quasi-momentum distribution of the non-interacting clouds (av-
eraged over several shots). F: Resulting cloud size for different laice ramp times
at Et/12J = 0.4 for a non-interacting and an interacting Fermi gas. e arrow
marks the ramp time of 50 ms used in the main graph. (Data taken from [229])

cantly larger than in the non-interacting case, indicating that the expected sup-
pression of doubly occupied sites (cf. sec. 5.2.1) leads to lower densities. e size
differences show a maximum around Et/12J ≈ 0.7, where the Mo-insulator
is expected in the strongly interacting case, and then decrease again for higher
compressions, where the state becomes dominated by the trapping energy. In
the case of strong interactions (U/12J = 1.5) we find the onset of a region
(0.5 < Et/12J < 0.7) where the cloud size decreases only slightly with increas-
ing harmonic confinement, whereas for stronger confinements the compressibility
increases again. is is consistent with the formation of an incompressible Mo
insulating core surrounded by a compressible metallic shell, as can be seen in the
corresponding in-trap density profiles (cf. fig. 8.3). For higher confinements, an
additional metallic core (1/2 < ni,σ < 1) starts to form in the center of the trap
and the cloud size decreases again.

e emergence of the Mo insulator can also be seen from the global compress-
ibilities shown in figure 8.11, where a local minimum around Et/12J ≈ 0.7 can
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8.3. Cloud size and compressibility

be observed in the strongly interacting case. While the shape of the minimum dif-
fers from the theoretical expectation, its position agrees very well with the largest
extension of the Mo insulating phase in the numerical calculations (cf. fig. 8.3).
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Figure 8.11.: Global compressibility κRsc of the atom cloud for various interac-
tions [(A) U/12J = 0, (B) U/12J = 1, (C) U/12J = 1.5]. Dots denote the
result of linear fits on the measured data and the error bars represent the fit un-
certainty. Solid lines display the theoretically expected results for an initial tem-
perature T/TF = 0.15. e influence of the initial temperature on the calculated
compressibility is shown in (D) for U/12J = 1.5. (Data taken from [131])

e only region with considerable deviations between experiment and theory lies
below the Mo-insulating region at moderately weak compressions Et/12J .
0.4. While in the non-interacting case the cloud sizes show perfect agreement
between theory and experiment, growing deviations appear for increasing in-
teractions, where the observed cloud sizes are systematically larger than theo-
retically expected. e most probable explanation for this discrepancy are non-
adiabaticities during the loading: In this compression regime, the cloud shrinks
considerably during the main laice ramp up (cf. fig. 9.4), as its kinetic energy
gets strongly reduced during the loading (cf. sec. 4.3.2).

Although a variation of the used ramp time (cf. fig. 8.10(F)) seems to suggest that
the resulting cloud size depends only weakly on the used ramp time, this may
in fact be misleading, as the resulting cloud size incorporates the effects of both
non-adiabaticities and tenical heating during the ramp sequence. In the non-
interacting case (gray) this results in a pronouncedminimum of the resulting cloud
size: While a too short ramp time increases the cloud size due to non-adiabaticies,
a too long ramp time heats the cloud considerably, resulting again in a larger cloud.
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8. Repulsive Fermi-Hubbard model

In the case of strong interactions (blue), both effects could partially compensate
ea other, leading to the observed weak dependence of the cloud size on the used
ramp time, while in truth there exists a mu longer adiabaticity timescale.
is explanation is supported by our observation that interactions indeed dramat-
ically increase the timescale needed for mass transport in this system, as will be
shown in apter 10. Another possible source of non-adiabaticities comes from
the decay time of excess doublons, see following section.

8.4. Doublon fraction

In addition to the global compressibility measurements, the fraction of atoms
on doubly occupied laice sites (doublon fraction D) was measured for mag-
netic fields above the Feshba resonance (U/12J = 0, 0.5, 1) by converting all
atoms on doubly occupied sites into molecules using a linear magnetic field ramp
(0.2ms/G) over the Feshba resonance (cf. sec. 6.6). e doublon fraction, whi
is ploed in figure 8.12 together with the theoretical expectation, gives insight into
the local on-site physics of the system. In combination with the in-situ size mea-
surements, this fraction can be compared for different interaction strengths at
constant cloud size Rsc.
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Figure 8.12.: Doublon fraction versus compression for different interaction
strengths. e yellow circles indicate the doublon fraction for a constant cloud
size Rsc = 0.53 (cf. fig. 8.10). Dots correspond to experimental data where the
error bars denote the standard deviation of at least four measurements, while the
lines are the DMFT predictions. (Data taken from [229])
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In the limit of weak confinement densities are low and the doublon fraction D
tends to zero, regardless of the strength of the repulsive interaction.
For intermediate compressions on the other hand, the doublon fraction depends
crucially on the interaction. At a constant size Rsc = 0.53 the doublon fraction
is around 40% for a non-interacting cloud but only around 5% for an intermediate
repulsive interaction U/12J = 1 (yellow circles in fig. 8.12). In this regime of
repulsive interactions, it is energetically favorable to reduce the number of dou-
bly occupied sites despite the cost in potential and kinetic energy. Consequently,
different compressions are needed to rea the same cloud size for different in-
teractions (cf. fig. 8.10). e observed suppression of the doublon fraction at in-
termediate compressions directly shows the emergence of strong correlations in
the system when the interaction energy U becomes comparable or larger than the
bandwidth 12J .

For strong compressions, where the trap dominates, the measured doublon frac-
tion becomes comparable for all interactions, as the atom distributions are ex-
pected to contain a large band-insulating core in all cases. e pair fraction is
limited to values smaller than 60% due to the finite entropy per particle, whi
limits the filling factor in the band-insulating state (cf. sec. 5.4.2).

Although the non-interacting and the slightly repulsively interacting curveU/12J =
0.5 mat the DMFT results, we see deviations for stronger repulsive interactions
(U/12J = 1). In this case, the measured pair fraction is in general ∼ 10% higher
than predicted by theory while the qualitative behavior agrees very well.
is can again be explained by non-adiabaticities during the loading: In the first
phases of the loading, where U/J is still small, doublons will form similar to the
non-interacting case. Most of these doublons should decay again later in the se-
quence, when U/J becomes important. Recent measurement in the group of T.
Esslinger (ETHZ) have shown, however, that the decay time of excess doublons
scales almost exponentially inU/J , and is at the relevant interactions on the order
of the used ramp times [228, 232].

For strong repulsive interactions a suppression of the doublon fraction with re-
spect to the non-interacting case occurs for all temperatures in the laice below
kB Tlat ≈ U , regardless of the formation of an incompressible Mo insulating
phase in the inhomogeneous system. Even for a compressible purely metallic
phase with ni,σ < 1/2 the doublon fraction vanishes completely in the strongly
interacting regime (cf. sec. 5.4.1). As a consequence, the doublon fraction alone
cannot prove the formation of a Mo insulator.

8.5. Conclusion and outlook

By measuring the global compressibility and the doublon fraction of repulsively
interacting fermionic atoms in an optical laice it was possible to explore dif-
ferent regimes of the repulsive Fermi-Hubbard model. e global compressibil-
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8. Repulsive Fermi-Hubbard model

ity allowed for a direct distinction between compressible Fermi liquid states and
Mo-/band-insulating states. By comparing clouds at constant density, the sup-
pressed doublon fraction at strong interactions directly signaled the entrance into
the strongly-correlated regime.

At present, the loading into the laice is limited by a combination of tenical
heating, whi limits the usable ramp times, and non-adiabaticities due to the
limitation of mass transport by interactions and the long decay time of excess
doublons.

In order to quantify the total heating, the temperatures before loading into the lat-
tice and aer a return to the dipole trap with a reversed sequence were compared.
We found a rise in temperature between 0.010(5)T/TF for a non-interacting
cloud and 0.05(2)T/TF for a medium repulsion of U/12J = 1 at compressions
around Et/12J = 0.5. e heating increased both for very low compressions,
where mass-transport limitations are more pronounced and very high compres-
sions, where light assisted collisions become more important due to the higher
density.

e good agreement between the experimental data and the numerical calcula-
tions, whi assume adiabatic loading and an initial temperature of T/TF = 0.15,
indicates that the actual initial temperatures lie rather at the lower end of the mea-
sured temperature range T/TF = 0.15(3).

For low enough initial temperatures¹ the system is expected to enter an antifer-
romagnetically ordered phase. In order to realize this state experimentally, the
best loading sequence would be to start at a higher trap frequency, su that the
central density in the harmonic trap mates the density of the Mo insulator
nhar ≈ 1 / (λ/2)3 and to decrease the harmonic confinement during the loading
of the laice, thereby minimizing the need for mass redistribution in the laice.

Straightforward extensions of the measurements in this apter include studying
the effects of spin imbalance on the system and the extension to the ternary Mo
insulator [181] in a mixture of three hyperfine states. In the case of one atom per
laice site three body losses should be suppressed and the atoms form a Heisen-
berg spin model with SU(3) symmetry [234] and an enhanced entropy capacity
of S/N = log(3)kB , compared to S/N = log(2)kB in the binary case.
For a broken SU(3) symmetry, that is different interaction strengths between the
three components, even more complex states are expected, including color selec-
tive and paired Mo insulator states [235, 236].

Furthermore, the method of directly measuring the global compressibility can be
readily extended to bosonic systems and Bose-Fermi mixtures.

¹Predictions range from T/TF ≈ 0.035 [157] to T/TF ≈ 0.058 [233] for the homogeneous
system. In a trapped system the values will be considerably higher due to the inhomogeneous
entropy distribution (cf. sec. 8.2.1,11.1.
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In a second set of experiments we studied the equilibrium states of the aractive
Hubbard model, using the same teniques as in the previous apter. e at-
tractive Fermi-Hubbard model is an intriguing many-body system, whi allows
one to study the effects of fermionic pairing in a laice system in a wide param-
eter range: Similarly to free-space, a bound state of two particles in an otherwise
empty system exists only above a certain threshold in the interaction strength
(U/J . −8, cf. sec. 5.3). In the many-body case on the other hand, the BCS
meanism predicts Cooper pairing for all interactions. is allows one to study
the so-called BEC-BCS crossover (cf. sec. 3.3.3) in the laice. An important dif-
ference lies in the position of the crossover, whi occurs at a finite interaction
strength and not at the position of the free space Feshba resonance, where en-
hanced heating and losses are observed.

Away from special commensurate situations like half-filling, the ground state is
a superfluid state for all interactions, analogous to free space (cf. sec. 5.5.3). Its
aracter anges gradually from a BCS like state for small interactions to a BEC
of tightly bound pairs for strong interactions (cf. sec. 3.3.3). In stark contrast to free
space, however, where the critical temperature for superfluidity in the BEC limit
approaes that of non-interacting bosons [45], the effective hopping of the pairs
(Jpair ∝ J2/U), and thereby the critical temperature, vanishes in the strongly
interacting limit (cf. sec. 5.5.3). In addition, the pairs in the strongly interacting
limit don’t form a weakly interacting Bose gas, but a gas of hard-core bosons,
as the Pauli principle forbids the occupation of a single laice site by more than
one pair. is highlights the differences between particles in free space and in the
lowest band of a laice.
But also above Tc the occurrence of pairing has dramatic consequences on the
many-body state, e.g. the existence of the pseudogap regime (cf. sec. 5.5.3).

9.1. Temperature tracking

By measuring the cloud size at constant compression and low densities it was
possible to essentially tra the temperature as a function of the interaction. In
a simplified picture the extension of the low-density cloud is connected to the
temperature via:

1

2
meffω

2r2max ≈ EF + kBT (9.1)
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9. Aractive Fermi-Hubbard model

A rising temperature, at otherwise unanged parameters, leads to a larger cloud,
as states with higher potential energies become accessible.

Traing the temperature at constant entropy provides valuable information about
the density of states, as can easily be seen from the usual relation between tem-
perature and entropy in a canonical ensemble [22]:

S = −kB
∑
i

pi ln(pi) (9.2)

with pi = exp(−βEi)/Z (β = 1/kBT ) being the probability to find the system
in the micro state i with energy Ei and Z =

∑
i exp(−βEi) being the canonical

partition function.
By introducing the density of states ρ(E) of the many-body system and exang-
ing the sum for an integral this becomes:

S = −kB
∫
E

ρ(E)
exp(−βE)

Z
ln

exp(−βE)
Z

dE (9.3)

In the experimentally relevant case of constant entropy (cf. sec. 2.3), equation 9.3
is an implicit formula for the temperature.

e resulting temperature of the system depends on the density of states ρ(E) at
all energies smaller than the sum of Fermi energy EF and thermal energy kBT :
E . N × (EF + kBT ).
is connection between the temperature and the density of states allows one in
principle to observe anges in the low energy sector of the system at relatively
high temperatures. As a specific example it enabled us to observe correlation ef-
fects near the BEC-BCS crossover by a rise in temperature; although our entropies
were too high to observe superfluidity.

e theoretical arguments and simulations describing the effects presented in this
apter where developed by Maria Moreno-Cardoner (Mainz, Germany), Takuya
Kitagawa and Eugene Demler (Harvard, USA), Ehud Altman (Rehovot, Israel)
and Belén Paredes (Mainz, Germany) and the results in this apter are published
in [237].

9.2. Effects of pairing

e influence of pairing on the thermodynamics of the gas can already be seen in
the maximum entropy capacity in some limiting cases:
e entropy capacity of a quantum system is directly proportional to the dimen-
sionality dH = dim(H) of its Hilbert space.

Smax = max

(
−kB

∑
i

pi ln(pi)

)
= −kBdH

1

dH
ln
(

1

dH

)
= kB ln(dH) (9.4)
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9.2. Effects of pairing

9.2.1. Two atoms in a double well - a toy model

In the minimal model of one spin-up and one spin-down particle in a double well,
whi is shown in figure 9.1, the entropy capacity in the non-interacting case is
kB ln(4). In the limit of strong aractive interactions (|U | ≫ J, kBT ), the entropy
capacity is reduced by a factor of two, as only the two configurations with both
particles in the same well remain energetically accessible.

Non-interacting: U=0 Infinite attraction: U=-∞

size needed to store log(4) kB entropy: dim(H)=4

2 possible configurations: 
dim(H)=2

4 possible configurations: 
dim(H)=4

-U -U

N=2 T>>J
 

S=kBln4

dim(H)=4 dim(H)=4

Figure 9.1.: Possible state and resulting entropy capacity of a minimal model of
two fermions in a double well.

In a double well model, adiabatically increasing the interaction at a constant en-
tropy of kB ln(4) would result in a strong temperature rise, as the temperature
must remain large compared to the interaction (kBT ≫ |U |). Alternatively, the
system would need to expand to four laice sites in order to store all the entropy.
In the case of an harmonically trapped system at finite temperature, isentropi-
cally increasing the interactions will therefore result in a moderate temperature
increase, su that higher lying laice sites become accessible, and consequently
lead to an expansion of the cloud.

9.2.2. Zero tunneling limit

In the zero tunneling limit the Hubbard hamiltonian reduces to a sum of uncou-
pled, local hamiltonians for ea laice site that can be solved analytically [237].
In this limit, whi neglects the kinetic energy of the particles, an increasing at-
tractive interaction progressively suppresses single occupied laice sites and the
system evolves from a non-interacting spin mixture into a gas of spinless, hard-
core pairs. In a similar manner, an increasing repulsive interactions progressively
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9. Aractive Fermi-Hubbard model

suppresses doubly occupied sites (cf. sec. 5.2.1, 8.4).
At zero entropy (T = 0) the cloud size in the non- or aractively interacting case
is given by the smallest size (R0) compatible with the Pauli principle. is max-
imally paed state, whi consists only of doubly occupied sites minimizes both
the potential energy due to the trap and the interaction energy and corresponds
to a perfect band insulator. For repulsive interaction the cloud size increases due
to the competition between interaction and potential energy.
At constant, finite entropy the cloud size shows a minimum for vanishing in-
teractions and increases for both repulsive and aractive interactions due to the
reduced entropy capacity. In the aractive case the strongly interacting cloud car-
ries only half of the entropy of the non-interacting cloud [237] at the same cloud
size.

9.2.3. Finite tunneling

At finite tunneling the above situation gets slightly modified due to the kinetic
energy of the particles. is is illustrated in figure 9.2, where the results of an exact
diagonalization calculation in a finite size one-dimensional system are shown. e
simulation was performed by Maria Moreno-Cardoner and will be analyzed in
detail in her PhD thesis.
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Figure 9.2.:Numeric simulation of the cloud size as a function of interaction. right:
e cloud size at finite entropy S/N = 0.56 shows the interplay between the
effect of pairing on the kinetic energy and on the entropy capacity. upper le:
Ground state cloud size. lower le: Cloud size increase ∆R from S/N = 0 to
S/N = 0.56. Data courtesy of Maria Moreno-Cardoner [237].

Even though there are crucial differences between 1D and 3D with respect to the
existence of two-particle bound states and the density of states, nonetheless all
principal effects show up in this calculation. As illustrated in the upper le panel
figure 9.2, the zero temperature cloud size for finite tunneling is larger than in
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9.2. Effects of pairing

the zero tunneling case, as the ground state now minimizes the sum of potential,
interaction and kinetic energy. In the case of a dominating trap Vt ≫ J, |U |, ki-
netic energy can be neglected and the cloud consists of a perfect band-insulator
with unity filling and cloud sizeR0. For decreasing confinement, however, kinetic
energy becomes important and leads to larger cloud sizes, as the band-insulator
gives way to metallic states (cf. sec. 4.3.2).
For strong aractive interactions the cloud consists of tightly bound pairs, as dis-
cussed in apter 5.3. Since their kinetic energy vanishes in the strongly inter-
acting limit (Jpair ∝ J2/U), the cloud again approaes a perfect band-insulator.
Repulsive interactions on the other hand again suppress the double occupancy of
laice sites and increase the cloud size.

At finite entropy the aforementioned decrease of the local entropy capacity again
comes into play and is clearly visible in the increase of the cloud size. As shown in
the lower le panel of figure 9.2, this effect depends strongly on the confinement.
While the increase in cloud size is nearly independent of the interaction in the
strongly confined limit, it develops a very pronounced interaction dependence in
the weak confinement regime: While finite entropy results only in minor size
increase in the non-interacting or repulsively interacting case, the formation of
pairs leads to a large increase in cloud size for aractively interacting atoms.
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Figure 9.3.: Numeric simulation of the doublon fraction in a 1D model. le: At
zero temperature an increasing confinement always increases the doublon fraction.
right: At finite entropy, however, the doublon fraction decreases with increas-
ing confinement for large aractive interactions. Data courtesy of Maria Moreno-
Cardoner [237]

e competition between these two interaction effects, i.e. the shrinking of the
zero temperature cloud size and the strong increase in the entropy effects, results
in a shi of the minimum cloud size to finite aractive interactions, as can be seen
in the main panel of figure 9.2.

e formation of pairs and its interplay with the entropy capacity can also be seen
in the doublon fraction, whi is shown in figure 9.3: In the zero temperature case
(le panel), the doublon fraction increases monotonically with both increasing
confinement, i.e. increasing density, and increasing aractive interactions.
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9. Aractive Fermi-Hubbard model

At finite entropy, however, an increasing confinement leads to an increasing tem-
perature (cf. fig. 8.9), whi becomes comparable or larger than the interaction
energy (kB T ∼ U). As a consequence, the effect of the interaction on the dou-
blon fraction decreases with increasing confinement (cf. sec. 8.4). is leads to
an abnormal behaviour for aractive interactions, where the doublon fraction de-
creases for increasing confinement, cf. figure 9.3, right panel.

9.3. Experimental sequence

e key ingredient to experimentally observe the aforementioned effects once
again was the combination of a red-detuned dipole trap and a blue-detuned opti-
cal laice, whi allows an independent control of the confinement energyEt and
the laice depth and thereby offers the possibility to realize low density systems
with large atom numbers.

Aer evaporation, the dipole trap depth is ramped in 100ms to the desired value
of the external confinement (ω⊥ = 2π × 20 to 70Hz) and the magnetic field is
adjusted to set the scaering length (cf. sec. 3.3). In this way, negative scaering
lengths up to a ≈ −400 a0 can be reaed, before a further approa to the Fes-
hba resonance is hindered by enhanced losses and heating. Subsequently, the
optical laice is linearly increased to a potential depth V0 = 0 to 9Er with a ramp
rate of 7ms/Er. We used the same adapted Fermi-Fit as in the repulsive case (cf.
eqn. 8.3) to extract the cloud size from in-situ phase-contrast images taken along
the short, vertical axis of the trap (cf. sec. 6.5) or measured the doublon fraction
by converting atoms on doubly occupied laice sites into molecules (cf. sec. 6.6).

9.4. Experimental results

e principal experimental result is presented in figure 9.4, where the cloud size
(top) and the doublon fraction (boom) are shown as a function of the scaering
length for various laice depths.
In the pure dipole trap (dark gray) the ange in scaering length has no measur-
able effect on the cloud size, as the resulting interaction energies can be neglected
in comparison to the Fermi energy.
is anges dramatically in the laice, where interaction effects are strongly en-
hanced by the increased on-site density and, more importantly, the reduction of
the kinetic energies (cf. sec. 4.3.2): As in the previous apter (cf. fig. 8.10), increas-
ing repulsive interactions lead to larger cloud sizes. Similarly, small aractive in-
teractions result in slightly smaller clouds. For larger aractive interactions, how-
ever, the cloud sizes increases again. We observe the expected minimum at small
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9.4. Experimental results

aractive interactions¹. e minimum becomes more pronounced and ”sharper”
for deeper laices, where smaller scaering lengths are sufficient to create the
same effective interaction strength U/J .
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Figure 9.4.: Cloud size and doublon fraction as a function on interaction. top:
Measured cloud size vs. scaering length for various laice depths. Dots repre-
sent the running average over three experimental shots. boom: Corresponding
doublon fraction. Dots denote the average over at least five consecutive measure-
ments, with the standard deviations shown as error bars. Lines are guides to the
eye. Data were taken in a fixed external dipole trap (ω⊥ = 2π × 25Hz, aspect
ratio γ ≈ 4) at a fixed entropy before loading of the laice of S/N = 1.42(26) kB
(T/TF = 0.15(3))

is at first glance counter-intuitive or anomalous expansion of the cloud for in-
creasing aractive interactions can be understood intuitively by considering the
thermodynamic arguments presented before. In order to further e this expla-
nation, we additionally measured the doublon fraction for the same experimental
parameters (cf. fig. 9.4, boom).

In the non-interacting case there exist no correlations between the different spin

¹Compared to the plots in [237], the analysis presented here uses an updated parametrization of
the Feshba resonance. is uses a new measurement of the zero-crossing of the scaering
length, whi is based on the free expansion of an initially localized cloud in a homogeneous
Hubbard model (cf. sec. 10.3.5).
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9. Aractive Fermi-Hubbard model

components and the number of doubly occupied sites is given by the integral over
the squared density (cf. sec. 5.4.1). In comparison to the non-interacting case we
observe a strong increase in the doublon fraction for increasing aractive interac-
tions. is increase directly signals the occurrence of strong correlation between
the spin components, as the mean density simultaneously decreases due to the ex-
pansion. e high observed doublon fractions of up to 80% confirm the assumption
that in this limit the cloud consists mostly of tightly bound on-site pairs.

e vertical, dashed red line in figure 9.4 denotes the threshold for the existence
of a two-body bound state (U/J ≈ −8, cf. sec. 5.3) in the deepest used laice
(V0 = 9Er, red). At this interaction strength one would expect strong correla-
tions to appear in the case of two particles in an otherwise empty system.
e fact that the observed minimum in cloud size appears for mu smaller in-
teractions hints towards a many-body origin of the pairing, as expected by the
Cooper instability (cf. sec. 3.3.3). e system is in the so-called pseudogap or pre-
formed pair regime where bound pairs have formed but did not condense yet (cf.
sec. 5.5.3).

9.4.1. Influence of compression and temperature
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9.5. Heating during loading

As can be seen in figure 9.5 (le), the effect on the cloud size is most pronounced
for low compression (Et/12J ), where Fermi energy and temperature are lowest.
At higher compressions, where the densities are higher, stronger interactions are
needed to dominate over Fermi energy and temperature. In addition the observed
heating is more pronounced at higher compressions (cf. below). is unfortu-
nately prohibits a quantitative comparison of the experimental result with the
perturbative calculation in [237], whi was based on a high temperature expan-
sion [238–240] and is only valid in the compression regime.
As can be seen in the right part of figure 9.5, an increasing entropy leads to larger
clouds and decreasing interaction effects.

9.5. Heating during loading

In order to measure the amount of heating during the loading sequence, the atoms
where unloaded from the laice ba into the harmonic trap by inverting the used
loading sequence, followed by a hold time of 150ms at a = 100 a0. During this
hold time the cloud equilibrates via elastic collisions and all previous excitations
are converted into an entropy/temperature increase. e non-isentropic temper-
ature increase during the loading is approximated by one-half of the temperature
difference between measurements with and without the loading/unloading se-
quence and is presented in figure 9.6.

For low compressions, where the anomalous expansion effect is most pronounced,
the heating during the loading is below 2% of the Fermi temperature, but rises
considerably for higher compressions. In addition, the heating also depends on
the interaction and increases for stronger aractive interactions.

Note that this simple evaluation assumes equal heating during both ramps [241]
and implicitly assumes that the cloud remains in thermal equilibrium during the
loading!
e main sources of heating expected in this system are pair losses due to light
assisted collisions, inelastic three-body collisions, tenical noise and non-adia-
baticities of the loading sequence. Concerning non-adiabaticities, an additional
possibility are unwanted reflections of the dipole trap laser stemming from the
inside of the glass cell. ese lead to a second, incommensurable standing wave
that would act as a quasi-disorder potential [242] whose depth would increase
with the compression and could hinder mass transport.

Especially non-adiabaticities during the loadingwill lead to non-equilibrium states
in the laice. It is, however, not clear, whether su non-adiabaticities necessarily
result in a large entropy increase. Even if the state in the laice becomes consid-
erably altered, some of the non-adiabatic effects could be ”reversed” during the
unloading by processes similarly to a ”freezing in” and subsequent melting of a
state.
Even though later expansion experiments have shown a strong increase of the
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Figure 9.6.: Heating during laice loading as a function of scaering length for
various compressions and a maximum laice depth of 7Er . e ploed heating is
given by 1

2(Twith Lat. − Twithout Lat.).

adiabaticity timescales due to interactions (cf. sec. 10), the increase was found to
be symmetric for aractive and repulsive interactions. e observed heating in
this experiment on the other hand is asymmetric and is stronger for aractive
interactions.

While non-adiabaticities and tenical heating will play a role, the dominant ef-
fect appears to be light assisted collisions, as the separately measured doublon
lifetime, whi is shown in the next section, strongly decreases on approaing
the Feshba resonance, mating the observed increasing heating.

9.6. Doublon lifetime

e lifetime of a doublons was directly measured by comparing the doublon frac-
tions measured aer variable hold times in a 20Er deep laice. In su a deep
laice three-body collisions can be neglected, as they are suppressed by the Pauli
principle. Binary on-site collisions, especially the light assisted collisions intro-
duced in section 3.4 on the other hand, should increase in deep laices. is is
due to the fact that the extension of the on-site wavefunction decreases for deeper
laices, thereby increasing the wavefunction at the Condon point. e higher
light intensity of a deep laice additionally increases the collision rate (cf. sec.
A.2.2).

In this measurement doublons where created by loading into a 9Er deep laice
at various aractive interactions and low compression. Subsequently, the laice
depth was increased to 20Er in 200µs, thereby creating a low density gas of
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9.7. Adiabaticity timescales
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Figure 9.7.: Doublon lifetime in a 20Er deep laice. red: loading at strong at-
tractive interaction and low density Et/12J = 0.25(8). blue: same sequence at
higher density Et/12J = 2.0(1). e dashed line is a guide to the eye.

tightly bound on-site pairs (cf. following section and fig. 9.4). e number of
doublons was measured as a function of holdtime and the resulting lifetimes are
ploed in figure 9.7.

e observed lifetimes are strongly interaction dependent and decrease for in-
creasing aractive interactions. In addition the lifetime decreases for deeper lat-
tices and higher densities. e doublon lifetime is expected to almost vanish on
approaing the Feshba resonance, as the on-site wavefunction of the two atoms
approaes that of a Feshba molecule, for whi mu shorter lifetimes have
been measured (cf. sec. A) in the presence of the laice light.

ese relatively short doublon lifetimes render light-assisted collisions the most
likely candidate for the observed non-isentropic heating. e observed compres-
sion dependence could be caused either by a direct influence of the dipole light
or by additional losses due to collisions between already dissociated atoms and
atoms on nearby laice sites.

9.7. Adiabaticity timescales

In order to get a handle on the loading dynamics, and a first estimate on the rele-
vant adiabaticity timescales in the strongly aractive regime, both cloud size and
doublon fraction were measured as a function of laice ramp time. Figure 9.8
shows that the doublon fraction saturates already for ramp times as short as 5ms,
while the ramp needed to be 20 times slower in order to rea the equilibrium
cloud size in this deep laice.

is illustrates that, in the strongly interacting limit, pair formation is a local two-
particle process that is independent of global equilibrium, as long as the tempera-
ture remains mu smaller than the binding energy of order U . e strong differ-
ence of more than an order of magnitude between the timescales also highlights
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9. Aractive Fermi-Hubbard model

the fact that local observables, like the doublon fraction, can only yield limited
information about the global equilibrium of the system.
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Figure 9.8.: Influence of the laice ramp time on doublon fraction and cloud size.
le: Doublon fraction at an harmonic confinement of ω⊥ = 2π × 28Hz. right:
Cloud size for a harmonic confinement of ω⊥ = 2π × 40Hz. Both measurements
were taken at a = −75 a0, a final laice depth of 15Er , and utilized a 1Er pre-
ramp.

9.8. Conclusion and outlook

e results presented in this apter show how pair formation in a fermionic Hub-
bard model with aractive interactions gives rise to an anomalous expansion of
the gas as the araction increases. e consequences of pairing in the first band
of a laice potential are fundamentally different from the consequences of pairing
in the continuum.

e realization of the so-called pseudogap or preformed pair regime, where bound
pairs have formed but did not condense yet (cf. sec. 5.5.3), is an important step
towards the the experimental study of fermionic superfluidity in the aractive
Hubbard model. e fact that the observed minimum in cloud size appears for
interactions mu smaller than the position of the BEC-BCS crossover hints to-
wards a many-body origin of the pairing, as predicted by the Cooper instability
(cf. sec. 3.3.3). In the future, this studies can be extended to include the effects of
population imbalances, where even rier phase diagrams with additional phases
(e.g. the FFLO phase) are predicted [148, 171–173].

In addition this work opens an interesting route toward the detection of quantum
many-body phases at finite entropies, where a marked ange in the thermody-
namic behavior can serve as a footprint of the crossover between two phases ex-
hibiting substantially different entropy densities, as observed recently for a quan-
tum critical condensed maer system [243].
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10. Dynamics in the Fermi-Hubbard
model

In this last part of the experimental work we took advantage of the fact that ul-
tracold atoms offer a full real-time control over all hamiltonian parameters by e.g.
varying laser intensities or magnetic fields. In particular it is possible to instan-
taneously ange parameters and thereby implement quantum quenes. is is
a major advantage of ultracold atoms compared to real solids where the imple-
mentation of quantum quenes is hindered by both the la of real-time control
and the short relaxation timescales. In typical metals for example, electronic re-
laxation occurs on timescales on the order of 10−15 − 10−11 s [244] and can only
be probed at surfaces by pump-probe spectroscopy using fast laser pulses.

e second important motivation for this experiment is of a more tenical na-
ture: One open, fundamental question in optical laice experiments concerns
the timescales needed to adiabatically load into the laice (cf. previous apters
and [245–247]) or to aieve equilibrium in the laice [228, 247]. With the excep-
tion of the one-dimensional case, where DMRG [182, 248] enables the theoretical
study of dynamics in the Hubbard model at least for short time spans [249], there
exists no theoretical method to calculate these timescales.
In addition it turned out that, for the inhomogeneous systems studied here, the
timescales of e.g. mass transport are more involved than simple scaling arguments
(e.g. ∝ 1/J, 1/U, 1/ω) would predict.

Although there have been several previous studies of out-of-equilibrium dynam-
ics in optical laices [27, 28, 68, 114, 115, 250–252], up to now all experiments were
performed in the presence of additional potentials, either in a trap or under the
influence of gravity. is had profound consequences for the dynamics already
on the single particle level by e.g. inducing Blo oscillations (cf. sec. 4.3.2.
Here it was possible to eliminate all external potentials in a two-dimensional (2D)
system by compensating the anticonfining potential of the blue-detuned optical
laice (cf. sec. 4.3.1) in the horizontal directions and to study dynamics and trans-
port properties in a homogeneous Hubbard model. is was aieved by first
preparing a confined state in a combination of the optical laice and an harmonic
trap and suddenly switing off the harmonic confinement while retaining the lat-
tice. e subsequent dynamic expansion is driven by density gradients instead of
potentials and therefore does not alter the single-particle dynamics. e dynam-
ics was probed by monitoring the evolution of the in-situ density distribution, as
depicted in figure 10.1.
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10. Dynamics in the Fermi-Hubbard model

Initial State

Repulsive Interaction U/J=10

Non-interacting U/J=0b

Initial State Free Expansion in lattice

a

Non-interacting U/J=0

Figure 10.1.: top: Free expansion in a homogeneous laice. First a band-insulator
is created in the combination of an optical laice and a strong harmonic trap. Sub-
sequently the harmonic confinement is swited off and the cloud expands in a ho-
mogeneous Hubbard model. boom: Observed in-situ density distributions. e
evolution of the initial density distribution (le) crucially depends on the interac-
tion (right).

e theoretical analysis of the resulting dynamics was performed in collaboration
with the group of Prof. Aim Ros from the university of Cologne and Prof.
Eugene Demler from Harvard University. All numerical simulations of the inter-
acting system shown in this apter were performed by Stephan Mandt, David
Ras and Prof. Aim Ros.

10.1. Experimental sequence

e experiment starts with the preparation of a band-insulating state of a balanced
spinmixture, using a sequence similar to the one inapter 8: rough evaporative
cooling in the dipole trap a quantum degenerate mixture of the two lowest hyper-
fine states of potassium was reaed with atom numbers of N = 1−1.5 × 105

atoms per spin state at reduced temperatures of T/TF = 0.13(2), where TF
denotes the Fermi temperature in the harmonic trap (cf. sec. 2.2.2). e trap-
ping frequencies of the dipole trap were then increased to approx. 2π × 100Hz
(2π × 400Hz) in the horizontal (vertical) directions.

Subsequently, the blue-detuned 3D optical laice is ramped up linearly to a depth
of 8Er in 56ms. During the ramp the magnetic field is held at 209.1G, whi
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10.1. Experimental sequence

corresponds to vanishing interactions (cf. sec. 10.3.5). is loading procedure re-
sults in a large band-insulating core with a high doublon fraction surrounded by
a metallic shell at a compression of Et/12J = 1.8 (cf. fig. 8.3). In the next step,
the tunneling rate J is reduced to J = h × 23Hz by linearly increasing the lat-
tice depth to 20Er in 200µs, a timescale that is slow enough to avoid excitations
into excited bands, but fast compared to tunneling within the lowest band. Due to
this reduced tunneling rate the density distribution is essentially frozen out during
the following 40ms magnetic field ramp to Bdyn = 206 − 260G, whi sets the
interaction for the expansion. Combined with the strong harmonic confinement
this leads to a dephasing between different laice sites and effectively localizes all
particles to individual sites, similar to the effects observed in our study of coherent
multi-body interactions in quantum phase revivals in bosonic 87Rb [188], whi
will be presented in detail in the thesis of Sebastian Will.

In total, this sequence produces a cloud of localized atoms with a well-known
density distribution that is independent of the interaction between the particles.
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Figure 10.2.: Experimental Sequence. Starting with a degenerate Fermi gas in the
dipole trap a non-interacting band insulator is created. During a freeze-out period
the atoms localize to individual laice sites and the desired interaction is set with-
out altering the density distribution. Subsequently the harmonic confinement is
swited off and the cloud expands in a homogeneous Hubbard model.

e expansion is initiated by lowering the laice depth in 200µs to values between
4Er and 15Er while simultaneously switing off the harmonic confinement. To
this end, the strength of the dipole trap is reduced by more than 90%, su that for
the horizontal directions the remaining dipole potential precisely compensates the
anticonfinement produced by the laice beams (cf. sec. 10.2.1). While the vertical
motion is expected to be strongly suppressed by gravity-induced Blo oscilla-
tions of amplitude A = 2J/mg < 2λ/2, cf. eq. 4.23), the atoms are exposed to a
homogeneous Hubbard model without additional potentials in the horizontal di-
rections. e evolution of the density distribution during the following expansion
in this quasi 2D situation was monitored by in-situ imaging along the vertical axis
of the cloud, thereby integrating over any vertical dynamics.

In a second set of experiments, vertical tunneling of the atoms during the expan-
sion was suppressed by retaining the depth of the vertical laice at 20Er, thereby

127



10. Dynamics in the Fermi-Hubbard model

realizing several layers of independent two-dimensional Hubbard models without
any influence of gravity.

10.2. Non-interacting case

In the absence of collisions and additional potentials the Hubbard hamiltonian
(cf. eqn. 5.5) consists only of the hopping term. In this case quasi-momentum, and
thereby also group velocity v⃗, is conserved and ea initially localized particle
expands independently with a constant velocity distribution, leading to a ballistic
expansion.
e delocalized density distribution ρ(r⃗, t) aer an expansion time t of an atom,
whi is initially localized at the central laice site (r⃗0 = 0), is given by the initial
velocity distribution ρv(v⃗),

ρ(r⃗, t) = ρv(r⃗/t) (10.1)

whi can be aracterized by the mean expansion velocity vexp:

v2exp = ⟨v̂2x + v̂2y⟩ =
∫
R3(v

2
x + v2y)ρ(v⃗) dV∫
R3 ρ(v⃗) dV

(10.2)

e root mean square (RMS) width Rsp(t) =
√

⟨x̂2 + ŷ2⟩ (cf. eqn. 8.1) of the ex-
panding particle, whi will be denoted as the single particle width, scales linearly
with expansion time and is proportional to the mean expansion velocity:

Rsp = vexp · t (10.3)

e total density distribution of the whole cloud aer an evolution time t is given
by the convolution of the initial density distribution with the delocalized proba-
bility distribution (eqn. 10.1) of the individual atoms and its RMS width is given
in the relevant cases by:

R(t) =
√
R2

0 + v2expt
2 (10.4)

In the case of an initially localized particle its wave function is given by a single
Wannier function, that is an equal superposition of all Blo waves (cf. sec. 4.3.2).
In 1D the corresponding mean expansion velocity can then be calculated by av-
eraging the squared group velocities vgr(q) = 2Jd

~ sin(qd) of the Blo waves (cf.
sec. 4.3.2) over the first Brillouin zone:

v2exp =
d

2π

∫ π/d

−π/d

(
2Jd

~

)2

sin2(qd) dq (10.5)

In the separable D-dimensional case this results in a mean expansion velocity of:

vexp =

√√√√ D∑
i=1

v2exp,i =
√
2D

Jd

~
(10.6)
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Figure 10.3: Simulated density dis-
tribution for the non-interacting
expansion in a 2D homogeneous
Hubbard model. (le) Resulting
density distribution of a single lo-
calized particle. (right) Resulting
density distribution for a perfect
band insulator without metallic
shells (T = 0, Et/12J = ∞).
Simulation performed using MAT-
LAB and exact diagonalization on
a 250x250 laice.
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10. Dynamics in the Fermi-Hubbard model

As is shown in the le panel of figure 10.3, the expanding density distribution of an
individual non-interacting atom acquires the square symmetry of the underlying
simple-cubic laice.

As a consequence also the symmetry of the expanding cloud as a whole anges
during the expansion from the rotational symmetry of the initial density distribu-
tion into a square symmetry. is can be seen both in the numerical calculation
(fig. 10.3, right panel) and in the experimental data (fig. 10.4).
For very long expansion times this symmetry becomes distorted in the experiment
by residual inhomogeneities in the remaining potential and in the laice depth.

1ms 8ms 10ms

12ms 14ms 16ms

18ms 20ms 24ms

28ms 36ms

80ms

300 λ/2

Figure 10.4.: In-situ absorption images (column density a.u.) of an expanding non-
interacting (|U/J | . 0.3) cloud in a quasi 2D laice with laice depth 8Er . e
expansion anges the symmetry of the cloud from the rotational symmetry of
the harmonic trap to the square symmetry of the laice Brillouin zone. At long
expansion times residual potentials and laice inhomogeneities deform the cloud.

In order to experimentally measure the mean expansion velocity, the cloud size
R =

√
⟨r̂2⊥⟩ is extracted from in-situ phase-contrast images using a 2D Gaussian
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10.2. Non-interacting case

fit similar to the previous apters (cf. sec. 8.3.1)¹:

G(x, y) = Ae
− (x−xc)

2

2σ2
x

− (y−yc)
2

2σ2
y + b (10.7)

Here xc, yc, σx, σy, A, and b are free fit parameters and the perpendicular cloud
size is given by R =

√
⟨r̂2⊥⟩ =

√
σ2
x + σ2

y − w2, where w denotes the imaging
resolution (radius of Airy disc w < 3µm) of our imaging setup. e resulting
cloud sizes R(t) (fig. 10.5, orange) were fied by the expected behaviour of eqn.
10.4, thereby yielding the desiredmean expansion velocity vexp. e corresponding
single-particle width Rsp(t) is calculated by deconvolving R(t) with the initial
width R(0): Rsp(t) =

√
R(t)2 −R(0)2.
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Figure 10.5.: Measured cloud size (orange) and deconvolved single-particle width
(green) of an expanding non-interacting cloud in an 8Er deep laice. Solid lines
denote the quantum-meanical prediction and dashed lines the corresponding
classical random walk. e inset shows the linear scaling of the mean expansion
velocity with tunneling J .

emeasuredwidthsR(t) (orange dots in figure 10.5) show a very good agreement
with the theoretically expected behaviour. In particular does the deconvolved
single-particle width Rsp (green) grow linearly in time, thereby confirming the
ballistic expansion. e expansion rate agrees well with the quantum-meanical
prediction of the mean expansion velocity (cf. eqn. 10.6), whi is shown as solid
lines in figure 10.5). Classical hopping, on the other hand, would result in a random
walk where at every timestep the particle randomly hops to one of the neighbour-
ing sites. A classical random walk of the same hopping rate would predict a mu
slower square-root expansion of the single-particle width (dashed lines). It would
furthermore preserve the spherical shape of the initial cloud.

¹While the adapted Fermi-Fit of equation 8.3 is beer suited to describe the initial distribution,
a gaussian fit function yields beer fits for the expanding clouds.
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10. Dynamics in the Fermi-Hubbard model

is result directly shows that the dynamics is governed by the quantum-meanical
tunneling from laice site to laice site and not by classical thermal hopping,
whiwould occur e.g. for a thermalized atom on the surface of a crystal. e bal-
listic expansion therefore can be viewed as a continuous quantumwalk [253–255],
whi is also the basis of a recently proposed quantum computing algorithm [256].

10.2.1. Canceling the harmonic confinement

An important condition for the observed ballistic expansion is the absence of addi-
tional potentials, as any residual potential would ange the velocity distribution
during the expansion. In figure 10.6 the measured cloud sizes R(t) of an expand-
ing non-interacting cloud in an 8Er deep quasi 2D laice are shown as a function
of the dipole laser power during the expansion. e red line denotes a fit with the
expected dynamics (cf. eqn. 10.4) for the homogeneous case to the first 20ms.
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Figure 10.6.: Expansion of non-interacting atoms as a function of dipole beam
power p (a.u.) in an 8Er laice.

While the initial expansion velocity depends only slightly on the residual con-
finement, it completely dominates the size aer long expansion times. e largest
cloud sizes are reaed only if the confinement created by the dipole trap compen-
sates the anticonfinement due to the laice. is situation corresponds to dipole
powers between p = 2/3 and p = 1 in figure 10.6. Both an over- and an under-
compensation leads to deviations from the expected ballistic behaviour and ulti-
mately limits the cloud size by either classical reflections or Bragg reflections of
the expanding atoms (cf. sec. 4.3.2).

In the well-compensated case the dominant deviation from the homogeneous sit-
uation arises due to the finite size of the laice beams (w ≈ 150µm), whi leads
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t=50 ℏ/J t=75 ℏ/J

t=25 ℏ/Jt=0 ℏ/Jt=0 ℏ/J t=25 ℏ/J

x
y

Figure 10.7.: Simulated column density distribution for the non-interacting ex-
pansion including the finite size of the laice beams. Simulation performed in the
group of Prof. A. Ros.

to a position dependent hopping rate: e laice depth in any given direction
decreases with increasing distance to the center of the corresponding laser beam.
is in turn leads to an increase in the hopping rate. Including these effects into a
numerical calculation (cf. fig. 10.7) reproduces the star-like deformation visible in
the lower row of figure 10.4. For very long expansion times (& 35ms) additional
potentials due to imperfections in the alignment and beam shapes of the dipole
and laice beams become important and lead to further distortions of the cloud.

10.3. Interacting case

e ballistic expansion observed for non-interacting atoms is in stark contrast to
the interacting case, where a qualitatively different dynamics is observed: Fig-
ure 10.8 shows in-situ absorption images taken aer 25ms of quasi 2D expansion
in an 8Er deep laice. e observed dynamics gradually anges from a purely
ballistic expansion in the non-interacting case, whi results in a square density
distribution, into a more complex expansion for interacting atoms:
For increasing interaction strengths the center of the cloud expands slower and
slower and preserves the initial rotational symmetry, while a small part of the
atoms nonetheless expands ballistically.
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 U/J=3  U/J=9  U/J=12

 U/J=−12  U/J=−9  U/J=−6  U/J=−3

 U/J=−1.7  U/J=−1  U/J=0  U/J=0.5

 U/J=1.3

 U2D/J=0  U2D/J=1.2  U2D/J=2.2  U2D/J=4.2
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Figure 10.8.: In-situ absorption images for various interactions aer 25ms expan-
sion in a homogeneous quasi 2D laice. e images show a symmetric crossover
from a ballistic expansion for non-interacting clouds to an interaction dominated
expansion for both aractive and repulsive interactions. Images are averaged over
at least five shots and all scales are identical to figure 10.4. e boom line shows
the results of a 2D simulation of the Boltzmann equation performed by St. Mandt
for the same initial conditions.
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10.3. Interacting case

is can be understood intuitively by observing that interactions, i.e. elastic colli-
sions, lead to a diffusive dynamics and allow the particles to regain local thermal
equilibrium [257, 258]. As a consequence, sufficiently large atomic clouds, where
density gradients are small, remain close to local thermal equilibrium and their
dynamics can be described by the laws of hydrodynamics. As the diffusion equa-
tion (cf. below) is rotationally invariant, the initial spherical shape is preserved for
most parts of the cloud already for moderately strong interactions, cf. figures 10.1
and 10.8.
For a small fraction of atoms in the outer parts of the atomic cloud, however, the
density is so small that mean free path is larger than the distance to the cloud edge,
resulting in a ballistic expansion of these atoms. erefore the tails of the cloud
show the square symmetry aracteristic for freely expanding particles (cf. fig.
10.8). is initial fraction of ballistically expanding atoms decreases for increas-
ing interaction strengths. During the expansion the density gets reduced and, in
the limit of infinite expansion times, all atoms are expected to become ballistic.

We observe the same behaviour irrespective of the sign of the interactions, al-
though one would intuitively expect that repulsive (aractive) interactions lead
to a positive (negative) pressure and therefore an increased (reduced) expansion
rate.
is symmetry is a direct consequence of the osen initial state, whi consists
only of localized atoms, and the highly symmetric dispersion relation of the Hub-
bard model and is further discussed in section 10.3.3.

10.3.1. Theoretical description

e resulting dynamics of interacting atoms was analyzed in collaboration with
the group of Prof. Aim Ros. Elastic collisions between the interacting atoms
lead to a constant redistribution of kinetic energy and quasi-momentum and give
rise to a particular kind of diffusive dynamics: As the time τ between scaering
events strongly depends on the density n, the same holds for the diffusion constant
D ∝ τ . It shows a minimum in the half filled case and diverges in the limits of
an empty or completely filled band, where scaering is suppressed, as in this case
no scaering partners or unoccupied final states are available:

D(n) ∝ (n(1− n))−1 (10.8)

Accordingly, the dynamics is described by a highly singular, non-linear diffusion
equation [259] :

∂tn(r, t) = ∇ (D(n)∇n) (10.9)

e divergence of the diffusion constant at vanishing densitiesD(n) ∝ 1/n leads
to the unphysical prediction of diverging currents ji = D(n)∂n

∂i
and diverging

velocities.
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10. Dynamics in the Fermi-Hubbard model

In reality, however, the diffusive description becomes invalid in this limit and
the dynamics gradually becomes ballistic again. Intuitively speaking, the velocity
limit imposed by the band structure constrains the maximal velocity and gives
rise to a strong feedba from the ballistic tails on the diffuse core, as the ballistic
outer regions thereby hold the diffusive part of the cloud together. us the bare
diffusion equation becomes invalid even in relatively dense regions, where the
scaering rate is high.

For a theoretical description of the expanding clouds one consequently needs an
approa that can correctly describe both the diffusive and the ballistic regime.
e probably simplest one is a Boltzmann equation in the relaxation time approx-
imation [29]:

∂tfq + vq∇rfq + F(r)∇qfq = − 1

τ(n, e)

(
fq − f 0

q (n, e)
)

(10.10)

It describes the evolution of the quasi-classical momentum distribution fq(r, t)
as a function of position and time in the presence of a force F. e transport
scaering time τ(n) describes the relaxation towards an equilibrium distribution
f 0
q for given energy (e) and particle densities (n).

Numerical simulations performed in the group of Prof. A. Ros used this equa-
tion to predict the evolution of the interacting clouds. Examples of the resulting
distributions are shown in the lowest row of figure 10.8, details of the calculation
and the analysis can be found in [260, 261].

In two dimensions the non-linear diffusion equation predicts a universal mini-
mal loss rate ∂tN ≤ −4πγ of the total number of particles N for D(n) = γ/n
[259, 262], whi describes the rate of particles reaing infinity and is completely
independent of the initial distribution. is loss rate is closely related to the rate
with whi the diffusive part of the cloud emits ballistic particles [260, 261]. In
addition, these effects have an interesting geometrical interpretation [259] due to
their connection with the famous Ricci flows [263, 264], whi where used e.g. in
the proof of the celebrated Poincaré conjecture in three dimensions [264].

In one dimension there exists an infinite number of conservation laws that strongly
restrict the possibilities for equilibration. is leads to a different behaviour that
cannot be described by this hydrodynamic approa.

10.3.2. Core width and core expansion velocity

For a more quantitative analysis, the same experiment was performed in a fully
two-dimensional situation. In this experiment the vertical laice is kept at a depth
of 20Er during the expansion in an otherwise identical sequence. In both cases
(quasi 2D and 2D) we observe a spherical, diffusive core surrounded by ballistic
tails without any qualitative differences between the cases.
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Figure 10.9.: Numerically calculated density distribution for U/J = 1.2 together
with Gaussian fits. Numerical simulations performed by St. Mandt.

In the case of interacting atoms the shape of the cloud anges considerably dur-
ing the expansion, evolving from a “compact” Fermi-Dirac like in-trap distribution
(cf. sec. 8.3.1) to a “fat tail” distribution, as illustrated in figure 10.9 using fits to
numerically simulated data. is leads to considerable systematic errors in the
estimation of ⟨r̂2⊥⟩ (̸= R2

G) in the interacting case, as no suitable fit function was
found. In principle, these systematic errors could be avoided by determining ⟨r2⟩
via direct integration. In the experiment, however, this is hindered by imaging
aberrations and the small signal to noise ratio in the extreme dilute limit (cf. sec.
8.3.1). e ange in the shape of the cloud is due to the density dependent dy-
namics in the interacting case: While the expansion remains ballistic in the low
density limit, the expansion velocity decreases for higher densities due to the in-
creasing number of collisions. As a consequence, ⟨r̂2⊥⟩ will be dominated by the
ballistically expanding outermost atoms for long expansion times.

In order to focus on the dynamics of the high density core, we instead use the
core width Rc, whi is defined as the half width at half maximum (HWHM) of
the column density distribution. It is extracted from phase-contrast images that
have been azimuthally averaged and individually normalized. e resulting core
widths are shown in figure 10.10 for various interactions and have been fied by
the same fit function as in the non-interacting case (cf. eqn. 10.4).

e resulting core expansion velocities vc, whi are shown in figure 10.11, de-
crease dramatically already for interactions mu smaller than the bandwidth 8J .
is shows the strong impact of moderate interactions on mass transport in defect
free systems. It also has important consequences on all dynamic procedures in the
laice, e.g. loading into the laice or cooling within the laice (cf. sec. 11.1), as it
limits the required adiabaticity timescales.
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Figure 10.10.: Core widths Rc as a function of expansion time for various inter-
actions in an 8Er deep laice in the 2D case. Blue lines denote the fits used to
extract the core expansion velocities (Eq. 10.4)

e core expansion velocities vc even become negative for interactions larger than
|U/J | & 3: In this regime, the diffusive core dissolves by emiing ballistic parti-
cles and therefore shrinks in size, as the particle current in the flanks of the core
is always higher than in the center of the core, where the density gradient van-
ishes. e slight asymmetry observed at large interactions can be aributed to
interaction dependent losses due to light-assisted collisions during the prepara-
tion sequence (cf. sec. 3.4 and fig. 9.7).

All qualitative features seen in the experiment, including the drastic collapse of
the expansion velocities and the shrinking of the core width for strong interac-
tions, are well reproduced by the numerical results obtained in the group of Prof.
A. Ros. antitative discrepancies between experiment and numerics proba-
bly arise because the leading order perturbation theory in U/J , whi has been
employed in the calculation of the diffusion constant, is not valid for U & J .
Furthermore, the relaxation time approximation breaks down in the crossover re-
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Figure 10.11.: Measured core expansion velocities versus interaction for various
laice depths in a 2D situation. e red line denotes the result of a numerical
calculation (see text) and the bla line is a guide to the eye.

gion from diffusive to ballistic behaviour, where the colliding atoms are far from
thermal equilibrium.

But even though the core expansion velocity can be qualitatively predicted by
a diffusive ansatz, the full quantum dynamics is certainly more complex and in-
cludes e.g. the formation of entanglement between distant atoms [265, 266]. In the
case of a sufficiently high initial doublon density the free expansion itself could
possibly be used to locally cool the atoms via quantum distillation processes [248].

10.3.3. Dynamical U vs. -U symmetry of the Hubbard
model

In this section, the observed dynamical symmetry between repulsive and arac-
tive interactions in the fermionic Hubbard model is addressed. e presented
analysis was performed in collaboration with Prof. A. Ros, Prof. E. Demler and
M. Moreno-Cardoner. First some intuitive argument for the observed symmetry
are given before a formal theorem is presented.

In the interacting case elastic collisions between the atoms lead to a diffusive
dynamics, whose diffusion constant depends on the scaering cross section σ.
Since this cross section is proportional to the square of the interaction strength,
σ ∝ a2 ∝ U2 (cf. eqn. 3.4, 5.2), it is intuitively clear that, for small expansion
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10. Dynamics in the Fermi-Hubbard model

times, the dynamics depends only on the absolute value of the interaction, but not
on the sign.

For longer expansion times, however, an additional argument is needed, as in the
long run all interaction energy will be converted into kinetic energy: In the initial
state there is a high number doublons ND, giving rise to an interaction energy
Eint = NDU . During the expansion, the number of doublons decreases and, in
the limit of long expansion times, the average density and the number of doublons
typically vanish. Consequently, the initial interaction energy will be completely
converted into kinetic energy, except for very large interactions, where isolated
doublons cannot decay any more [140].

In free space, where the dispersion relation is a parabola (E ∝ p2), an increase
in kinetic energy will always result in higher group velocities, while a decrease
will result in smaller velocities. erefore the dynamics will not show a U vs.−U
symmetry in free space!

e observed symmetry in the laice now arises from the high symmetry of the
tight-binding dispersion relation in the lowest band of a Hubbard model (cf. sec.
4.3.2), whi is, for the one dimensional case, ploed in figure 4.14 and 10.12 to-
gether with the resulting group velocities (cf. eqn. 4.18).
In contrast to free space, where a higher kinetic energy always results in a higher
group velocity, the tight-binding group velocity distribution shows a maximum
at a quasi-momentum of ~q = ~π/(2d). is maximum is located in the middle
between q = 0 and the edge of the first Brillouin zone and corresponds to an en-
ergy of Eπ/(2d) = 0.
Any force acting on an atom in this Blo state will slow it down, independent of
the sign of the force. Furthermore, the group velocity distribution is completely
symmetric with respect to this point.

Due to the specific loading seme applied in the experiment (cf. sec. 10.1), the
many-body state at the beginning of the expansion consists only of localized
atoms, since any coherences between different laice sites dephased during the
freeze out period (cf. sec. 10.1). e energy of a Wannier state (EW = 0) lies in
the center of the Blo band and coincides with the energy of the fastest Blo
wave. Furthermore, a Wannier state can be wrien as an equal superposition of
all Blo waves (cf. fig. 10.12, le), and, as a consequence, its quasi-momentum
distribution is flat and symmetric about ~q = ~π/(2d).

During the course of the expansion the average density will decrease and all in-
teraction energy will be converted into kinetic energy.
As both the group velocity distribution and the initial quasi-momentum distribu-
tion are symmetric with respect to ~q = ~π/(2d) it follows that the evolution of
the total group velocity distribution, and thereby the density distribution, will be
independent of the sign of the interaction.

As illustrated in right part of figure 10.12 for the case of a positive interaction,
the conversion of interaction energy to kinetic energy will lead to a redistribution

140



10.3. Interacting case

Eq vq

q π/d
−π/d

Eq vq

q π/d
−π/d

Figure 10.12.: le: Cartoon picture of the initial state in the Blo basis. Since the
initial state consists only of localized particles, its quasi-momentum distribution
is flat over the whole Brillouin zone. right: asi-momentum distribution aer a
long expansion time at moderately large positive U . e positive initial interaction
energy has been converted into kinetic energy. is results in a non-flat distribu-
tion, whi can be described by an thermal distribution at negative temperature.

of atoms across the different quasi-momenta. Due to energy conservation, this
redistribution will necessarily create a higher occupation of large quasi-momenta,
whi only have a small group velocity. is explains the observed slowing-down
of the expansion in the interacting case on longer timescales. In the case of an
aractive interaction, dominantly small quasi-momenta with be occupied in an
analogous fashion. Due to the symmetric group velocity distribution for small
and large quasi-momenta this will lead to the same slowing-down effect.

Dynamics theorem

e above intuitive argument can be be turned into a precise theorem by consider-
ing a coherent dynamical evolution arising from two Hubbard-type hamiltonians
that differ only in the sign of the interaction term:

Ĥ± = −J
∑
⟨ij⟩σ

ĉ†iσ ĉjσ ± U
∑
i

n̂i↑n̂i↓ (10.11)

e desired theorem can be formulated in terms of two operators:
eπ-boost operator B̂Q, whi translates all quasi-momenta byQ = (π/d, π/d, π/d),
is given in second quantization notation by:

B̂Qĉ
†
qB̂Q = ĉ†q+Q (10.12)

e effect of the time reversal operator R̂t on a Blo wave is to negate the quasi-
momentum:

R̂tĉ
†
qR̂

†
t = ĉ†−q (10.13)

Using these two operators the observed symmetry can be expressed by the follow-
ing theorem:
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10. Dynamics in the Fermi-Hubbard model

If the experimentally measured quantity Ô is invariant under both
time reversal and π-boost, and the initial state |Ψ0⟩ is time rever-
sal invariant and only acquires a global phase factor under the boost
transformation (B̂Q |Ψ0⟩ = eiχ |Ψ0⟩, χ ∈ R), then the observed time
evolutions

⟨Ô(t)⟩± = ⟨Ψ0|eiĤ±tÔe−iĤ±t|Ψ0⟩ (10.14)

are identical: ⟨Ô(t)⟩+ = ⟨Ô(t)⟩−.

e proof of this theorem is presented in appendix B.

e experimental observable is the density distribution n̂(rj) =
∑

σ ĉ
†
jσ ĉjσ and

the initial state consists of atoms that are completely localized to individual laice
sites (cf. sec. 10.1). Because both the initial state and the measured operator fulfill
the requirements of the symmetry theorem (cf. sec. B), the dynamics is guaranteed
to show the U ↔ −U symmetry for all interaction strengths. Since the bi-partite
aracter of the laice is crucial to the proof of the theorem, this symmetry can
be expected to be broken in laices without the bi-partite structure, su as a
triangular laice.

Temperatures after the expansion

In the interacting case elastic collisions between the atoms will lead to thermal-
ization and the cloud will regain local thermal equilibrium. But to whi final
temperatures?

As detailed in apter 5.7.1, the inhomogeneous system can be locally approxi-
mated by the homogeneous system by use of the local density approximation. In
global equilibrium this results in an inhomogeneous emical potential and a ho-
mogeneous global temperature. During the expansion the system will only regain
local thermal equilibrium, i.e. the system can locally again be described by a ho-
mogeneous system in equilibrium, but in this case not only the emical potential
but also the temperature becomes position dependent.

If all doublons dissolve during the expansion, the expanding cloud will rea su
low densities that interactions between the particles can be neglected. In that case
the single particle eigenstates of the homogeneous system are the Blo waves,
whose eigenenergies lie in the interval ϵ ∈ [−4J, 4J ].

Due to the localized initial states, all Blo waves are equally occupied and the
average kinetic energy per particle is E = 0, i.e. it is located exactly in the middle
of all possible energies. In the non-interacting case this represents a thermal state
of infinite temperature, as only T = ∞ describes an even occupation of all single
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particle eigenstates:

lim
T→∞

F (ϵ) = lim
T→∞

1
1
z
e

ϵ
kBT + 1

=
1

1
z
e0 + 1

= const. (10.15)

In the interacting case the initial kinetic energies still follow the same distribution
than in the non-interacting case, but on top of that there is the interaction energy,
whi can range from zero to U/2 per particle. During the expansion all interac-
tion energy will be converted into kinetic energy and, for repulsive interactions,
raise the average kinetic energy per particle well above the middle of its possi-
ble values. In the low density limit this corresponds to a state where high lying
single-particle states are more occupied than low lying states. In this limit, the
system will consequently equilibrate to negative local temperatures [267–269].

e observed symmetry between repulsively and aractively interacting fermions
can again be seen by observing that, for negative interactions the average energy
per particle is decreased by the same amount as it is increased in the repulsive
case. erefore the temperatures in the aractive and repulsive case are identical
up to the sign.

10.3.4. Doublon dissolution time

Both the qualitative and quantitative analysis of the experimental results assume
the relaxation of the system to local equilibrium. For very strong aractive or
repulsive interactions |U | ≫ J , however, doubly occupied sites (doublons) only
decay very slowly [140, 169, 228] as the missing or excess energy of order U can
only be transferred to other particles in a higher order process [140, 169, 228] .

Consequently, an important question for the resulting expansion is whether the
rate with whi the diffusive core dissolves is determined by the decay time of
individual doublons or whether the laer is fast compared to the former.

In order to investigate this, the doublon fractions were measured (cf. sec. 6.6) dur-
ing the expansion and fied by a simple exponential decay. e resulting doublon
dissolution times, whi are shown in figure 10.13), are about an order of magni-
tude larger than the decay time of excess doublons measured recently in a half
filled situation [228] in 3D at comparable interactions. In addition, they agree
with the timescales for melting of the diffusive core observed in the numerical
simulations performed by St. Mandt, although this simulations did not include an
explicit doublon dissolution time.
is strongly suggests that, at least in the investigated range of interactions, the
doubly occupied sites remain in local equilibrium in the diffusive regime.
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Figure 10.13.: Measured doublon dissolution time during the expansion in a 8Er

deep laice. e bla lines is an exponential fit∼ c1+e|U |/c2 (c1,2: fit parameters)
and serves as a guide to the eye.

10.3.5. Width of Feshbach resonance

Compared to previous dipole trap experiments, the dynamics in the laice are
mu more sensitive to small scaering lengths, since the strongly reduced ki-
netic energy of atoms in a laice (cf. sec. 4.3.2) enhances the role of interactions.
e observed pronounced dependence on small interactions (cf. fig. 10.11) enabled
us to remeasure the zero crossing of the scaering length around the Feshba res-
onance at B0 = 202.1G (cf. sec. 3.3.1).

e zero crossing is located at B(a = 0) = 209.1± 0.2G and, using the standard
parametrization of the (free space) Feshba resonances (cf. eqn. 3.6) this zero
crossing leads to a new width of

w = 7.0± 0.2G (10.16)

compared to the previous dipole trap measurement of wdipole = 7.8 ± 0.6G [61].
In addition to the pronounced dependence of the slope, only the expansion at the
newly assigned zero crossing mates that of a single component Fermi gas under
the same conditions and leads to the square shape expected for non-interacting
atoms. e uncertainty of the newly assigned zero crossing is dominated by un-
certainties in the magnetic field calibrations.

A precise knowledge of the scaering length is of paramount importance for the
determination of the interaction parameter U in the Hubbard model and is there-
fore an important prerequisite for any quantitative analysis of experimental data.
Furthermore, precisemeasurements of the various Feshba resonances are a valu-
able input for the global fits of the molecular ground state potentials [40]. Due to
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its high sensitivity, this method enables a fast and reliable determination of zero
crossings also for other spin combinations and Feshba resonances.

10.4. Conclusion

In this experiment the non-equilibrium dynamics of interacting and non-interact-
ing fermions in an optical laice was studied. In particular the possibility of full
real-time control of most relevant parameters was used to implement a quantum
quen, that is a sudden ange of the hamiltonian. By monitoring the in-situ
density distribution of an expanding cloud of initially localized atoms in a homo-
geneous Hubbardmodel, the crossover from a ballistic expansion at small densities
or vanishing interactions to diffusive, hydrodynamic expansion in the interacting
case could be observed.

Even small interactions lead to a drastic reduction of the expansion velocity of
the atomic cloud and ange the shape of the expanding cloud from a square in
the non-interacting case to the sum of a large spherical symmetric core and a
small square baground. For strong interactions the core width shrinks instead
of expanding.

e feedba between the diffusive and ballistic parts of the cloud controls the
expansion: the diffusive core slowly emits ballistic particles whi in turn hold
the diffusive part of the cloud together and regularize the otherwise singular dif-
fusion in the tails. We observed identical behaviour for both aractive and repul-
sive interactions, highlighting the high symmetry of the (tight-binding) dispersion
relation in the Hubbard model.

e surprisingly large timescales of mass transport in an interacting Hubbard
model set lower limits on the timescales needed both to adiabatically load the
atoms into the laice and to cool the system in the laice [270]. ey are therefore
of paramount importance for all aempts to create complex, strongly correlated
many-body states like Néel-ordered states in these systems.

e method of directly measuring the expansion velocity can be generalized in
a straightforward way to more complex quantum states including metallic and
Mo-insulating states in the repulsive Hubbard model (cf. sec. 8) or the pseudo-
gap regime in the aractive Hubbard model (cf. sec. 9). Furthermore it can be
extended to bosonic quantum gases, where the transition from a superfluid to a
Mo-insulator can be investigated, and to Bose-Fermi mixtures [271]. In addition,
the effects of various disorder potentials on the two-dimensional dynamics can be
studied.
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Despite the progress made during the last years in the field, part of whi is re-
ported in this thesis, several important allenges remain on the way to the prepa-
ration and detection of even lower entropy states in the fermionic Hubbard model:
e main allenge is the necessity to prepare states with lower entropy densities,
i.e. the need to develop and implement new cooling or entropymanagement meth-
ods.
An important step in this direction is the analysis and suppression of the various
tenical heating rates.
In addition, a beer understanding of the dynamics and aracteristic timescales
of inhomogeneous Hubbard models is needed. ese two points are essential for
the development of new preparation and cooling semes, as any experimen-
tal sequence needs to be optimized to minimize the combined effects of non-
adiabaticities and tenical heating.
Last but not least new detection methods will be required in order to fully ar-
acterize the many-body states.

11.1. Cooling and entropy management

In order to approa the ground states of the fermionic Hubbard model, the en-
tropy densities need to be further reduced. e critical entropy densities for an-
tiferromagnetically ordered states in the repulsive Hubbard model, or superfluid
states in the aractive case, lie approximately a factor of two (cf. sec. 5.5.2 ff.) be-
low the currently aieved entropy densities of S/N = log(2) kB in the fermionic
Mo insulator¹ (cf. fig. 8.5). is reduction can in principle be aieved in two
ways: Either by cooling, i.e. by reducing the average entropy per particle, or by
entropy management, that is by optimizing the entropy distribution among the
atoms.

It remains doubtful whether lower entropy samples can be realized by optimizing
the evaporative cooling in the dipole trap prior to the loading into the laice. e
collision rate, and thereby the cooling power, decreases and ultimately vanishes
for lower temperatures due to the effect of Pauli bloing (cf. sec. 3.2.2). In ad-
dition, in the dipole trap setup used so far, a lower trap depth is connected to a
lower trap frequency, whi leads to a lower density.

¹In the Mo insulator the entropy density, i.e. the entropy per laice site, and the entropy per
atom are identical.

147



11. Challenges

ere have been several proposals on how to utilize the laice in the cooling pro-
cess: One idea relies on transferring the entropy onto a second species that is sub-
jected to a different laice [149, 272, 273]. In the presence of a BEC in a weakly
confining laice, the creation of a highly compressed band-insulator leads to a
high net entropy flow from the fermions to the BEC, whi could subsequently be
evaporated away [273]. In the case of a Rb-K system, however, the needed poten-
tials would result in strong tenical heating due to the small detunings necessary
to aieve the needed selectivity.
Further ideas include using Raman sideband cooling [274] or implementing filter-
ing operations on states with high initial densities [275].

An alternative possibility is to create lower entropy regions in the laice by ap-
plying entropy management : Due to the combination of the optical laice with
an additional trapping potential not only the density distribution, but also the en-
tropy distribution becomes inhomogeneous. As was shown in apter 5.4.2, the
entropy capacity per atom diverges in the low density limit and the entropy is
dominantly stored in the outer low density parts of the cloud (cf. sec. 8.2.1).
Using optimized trapping potentials that go beyond a simple harmonic trap, it is
possible to further enhance the effect of the low density parts, and thereby to sig-
nificantly reduce the entropy density in the high density regions [270, 276]. If the
potential is tailored su that a large part of the atoms sits in a low density shell,
these atoms could carry most of the entropy and thereby enable low temperatures
also in the high density part. e reduction in entropy density aievable through
this seme should be sufficient to rea magnetic order in the Mo insulator or
superfluid states in the aractive Hubbard model.
ismethod requires a slow enough loading in order to facilitate the entropy trans-
fer from the high density to the low density regions, but it requires no further
ange of parameters in the laice. It is similar to the highly successful “dimple
tri” already applied in the loading of dipole traps [45]. Alternatively, the load-
ing procedure could be tailored su that some particles are excited into higher
bands, where their average entropy would again be large. In addition the trap-
ping potential could also be anged dynamically in the laice, thereby providing
additional cooling [276] during any further preparation steps.

As the low density (high entropy) areas are located near the edge of the cloud, it
would also be possible to evaporatively cool the ensemble in the laice by selec-
tively removing the outer atoms using either resonant light at moderate spatial
resolution or by employing e.g. microwave addressing in the presence of mag-
netic field gradients [277, 278]. Another possible route would be the introduction
of a repulsive barrier between the inner and the outer parts of the cloud. is
barrier could then be used to separate the low entropy from the high entropy re-
gion [270]. ese methods, however, create an intermediate out-of-equilibrium
state that subsequently needs to reequilibrate and therefore is affected by teni-
cal heating during the sequence and the reequilibration.

While several methods hold the potential for global cooling, i.e. for lowering the
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average entropy per particle, they also represent severe additional allenges. Not
only do they require additional microwave and light fields, whi introduce ad-
ditional heating sources, they furthermore are based on a reequilibration within
the laice. is includes mass and entropy redistribution and will lead to rather
long timescales, whi in turn amplify the accumulated heating. erefore, the
best route for the reduction of entropy density needed to aieve superfluidity and
magnetic ordering at the moment seems to be the use of entropy management, i.e.
optimized potentials.

11.2. Heating rates

e practical limitation of all cooling teniques is given by the various heating
processes: ese constantly generate entropy and limit the final temperatures to
a value set by an equilibrium between heating and cooling.

Relevant heatingmeanisms in the dipole trap include fermionic hole heating [279]
due to collisions with baground gas atoms and three body collisions as well as
light assisted collisions and spontaneous photon scaering due to the dipole laser.
In addition, all kinds of tenical noise on e.g. the magnetic fields or the frequency,
power, and pointing of the dipole laser lead to further tenical heating.

In the optical laice, most heating rates will increase due to the increased density
of the sample and the presence of the additional laice light. In the current exper-
iment, the dominant heating process in the laice seems to be given by pair losses
on doubly occupied sites due to light assisted collision (cf. sec. 3.4,9.6,A).

11.3. Dynamics

All preparation semes for ultracold atoms, including all cooling methods as
well as all loading procedures for the optical laice, require suitable timescales.
ey must not only be performed fast compared to the tenical heating discussed
above, but at the same time they need to be slow enough to ensure adiabaticity
and thermalization.
A thorough understanding of the dynamics is therefore required in order to find
the optimal sequences. ere exists, however, no theoretical tools that can model
time-dependent problems in the two or three dimensional fermionic Hubbard
model.

Up to now, all experiments rely on the preparation of a low entropy sample in ther-
mal equilibrium in an harmonic trap. e sample is subsequently loaded into the
laice and all comparisons with theoretical calculations assume adiabatic load-
ing, i.e. they assume that the final state in the laice is a thermal state whose total
entropy equals the initial entropy prior to the loading (cf. sec. 2.2.3).

149



11. Challenges

eamount of heating during the laice ramp is typicallymonitored bymeasuring
the total entropy increase aer reversing the loading sequence (cf. sec. 8.5,9.5 and
[70, 229]). While this gives an upper bound on tenical heating, it is insufficient
to determine the many-body state in the laice, as it is by no means clear whether
the final state in the laice is a thermal state in global equilibrium or not! Recent
experiments have in fact shown surprisingly long time scales for mass transport
(cf. sec. 10 and [247]) and the relaxation of excess doublons [228]. An additional
complication arises due to unwanted reflections of the dipole trap laser from the
inside of the glass cell. ese lead to a second, incommensurable standing wave
that acts as a quasi-disorder potential [242], whi could hinder mass transport.

Especially in future experiments aimed at realizing more complex many-body
states involving long-range order, e.g. antiferromagnetic order, even longer time
scales can be expected due to the lower energy scales.

In addition, a dynamical model is required to analyze experiments on dynamical
properties of the Hubbard model, e.g. the expansion experiments presented in the
previous apter. is is a fascinating subject by itself and especially the study
of transport properties of mass, spin, and energy or entropy will be a ri field
in the future, reaing far beyond being a mere necessity for the preparation of
interesting equilibrium states.

11.4. Detection

In addition to the preparation of more complex many-body states in the laice,
the reliable detection of these states presents a allenge as well. In the case of
the repulsive Fermi-Hubbard model, many observables have been identified that
can be used to detect antiferromagnetic order. ese include the use of superlat-
tices to directly measure the staggered magnetization (cf. the PhD thesis of Stefan
Trotzky), the use of noise correlation methods to detect the doubling of the unit
cell (cf. sec. 6.2), the increase in doublon fraction [280], Bragg scaering [281] and
many more [282, 283]. e detection will be complicated by the fact that, in prac-
tice, the staggered magnetization will always point in a direction perpendicular to
the quantization axis and therefore cannot be detected by a method that can just
distinguish the bare hyperfine states [284]. e noise correlation and superlaice
methods, however, do not suffer from this problem. A further allenge for the
detection stems from the requirement that the measurement must be fast com-
pared to the magnetic dephasing times. In addition, only a fraction of the system
will be in the desired quantum state, while the remaining atoms form a metallic
shell, thereby diluting the desired signal.

In the case of the aractive Hubbard model on the other hand, mu less work
has been devoted to finding the best observables in order to observe fermionic
superfluidity in the laice. In dipole traps, the most common method relies on
the projection of Cooper pairs onto bound molecules by means of a fast magnetic
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sweep across the Feshba resonance [45]. While the center-of-mass momentum
of the pair remains unaffected in free space, the vanishing pair hopping in the BEC
limit of the aractive Hubbard model (Jpair ∝ J2/|U |, cf. sec. 5.5.3) will lead to
a localization of these pairs. Superfluid correlations should, however, again show
up in noise correlation measurements, especially in the correlations between the
different spin components [200].

e ultimate tool will be the use of recently demonstrated imaging teniques with
single site resolution [13–19] in combination with single site spin operations and
various correlation teniques. Once adapted to the fermionic case, they are in
principle capable of measuring the full quantum states of the atoms in the laice,
similar to what is routinely performed for ions [285] and photons [286].
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12. Conclusion & Outlook

e main topic of this thesis has been the realization of the Fermi-Hubbard model
using spin mixtures of ultracold 40K in optical laices. By use of a Feshba reso-
nance and a blue-detuned laice it was possible to implement the Hubbard model
with an independent control over all relevant parameters.
is created the possibility to study several equilibrium phases of both the repul-
sive and the aractive Hubbard model as well as out-of-equilibrium dynamics in
these systems.
To this end, in-situ density measurements, whi were implemented using phase-
contrast imaging, and measurements of the doublon fraction were performed.

By measuring the global compressibility and the doublon fraction of repulsively
interacting fermionic atoms in an optical laice it was possible to explore different
regimes of the repulsive Fermi-Hubbard model and to directly identify compress-
ible metallic states and Mo-/band-insulating states by measuring the cloud size
and the global compressibility. is constitutes one of the first realizations of a
fermionic Mo insulator using ultracold atoms. By comparing clouds at constant
average density, the suppressed doublon fraction at strong interactions directly
signaled the entrance into the strongly-correlated regime.

In a second experiment it could be shown how pair formation in a fermionic Hub-
bard model with aractive interactions gives rise to an anomalous expansion of
the gas as the araction increases. e consequences of pairing in the first band
of a laice potential are fundamentally different from the consequences of pairing
in the continuum. e realization of the so-called pseudogap or preformed pair
regime, where bound pairs have formed but did not condense, is an important
step towards the experimental study of fermionic superfluidity in the aractive
Hubbard model. e fact that the observed minimum in cloud size appears for in-
teractions mu smaller than the position of the BEC-BCS crossover hints towards
a many-body origin of the pairing, as predicted by the Cooper instability.

In a third experiment, the free expansion of a cloud of initially localized atoms
in a homogeneous Hubbard model has been studied. is experiment utilized the
real-time control over most relevant parameters and demonstrates the possibility
to implement quantum quenes and to study the resulting non-equilibrium dy-
namics in these systems. By monitoring the in-situ density distribution during
the expansion, a crossover from a ballistic expansion at small densities or van-
ishing interactions to a hydrodynamic expansion in the interacting case could be
observed. Even small interactions lead to a drastic reduction of the expansion ve-
locity of the atomic cloud and finally, for strong interactions, the core width of the
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atomic cloud shrinks instead of expanding. Surprisingly, only the magnitude but
not the sign of the interaction maers: the dynamics is identical for repulsive and
aractive interactions, highlighting the high symmetry of the dispersion relation
in the Hubbard model.

Although the experiments were performed at entropies per particle on the order
of S/N = (log(3)− log(4))kB , lower entropy states could be reaed in parts of
the system, as the combination of laice and harmonic trap leads to a substantial
entropy redistribution.
In addition, the performed studies also revealed the remaining allenges on the
way to experimental studies of superfluidity and quantum magnetism in these
systems. e dominant heating processes in the laice seem to be light-assisted
collisions, whi have been studied extensively (cf. sec. A) and will be further an-
alyzed in the future.
e surprisingly large timescales of mass transport in an interacting Hubbard
model set lower limits on the timescales needed both to adiabatically load the
atoms into the laice and to cool the system in the laice. ey are therefore
of paramount importance for all aempts to create complex, strongly correlated
many-body states like Néel-ordered states in these systems.

12.1. Outlook

In addition to the extension of the current work to lower entropies, there are many
important experiments that still remain to be done using already available te-
nology and already demonstrated entropy densities. In the equilibrium case these
include a study of the effects of spin imbalance in the various regimes as well as an
extension of the developed measurement semes to the case of a fermionic three
component system, i.e. a mixtures of three hyperfine states. In addition these new
diagnostics will also be used to study various Bose-Fermi mixtures.

In the repulsive case, the study of the ternary Mo insulator [181] with one atom
per laice site seems especially promising, since in this case three body losses
are suppressed. is system approximately realize a Heisenberg spin model with
SU(3) symmetry [234] and an enhanced entropy capacity of S/N = log(3)kB ,
compared to S/N = log(2)kB in the binary case. For a broken SU(3) symme-
try, i.e. different interaction strengths between the three components, even more
complex states are expected, including color selective and paired Mo insulator
states [235, 236].

In the aractive case, we plan to extend our studies to the spin imbalanced case,
where even rier ground state phase diagrams with additional phases like the
FFLO phase are predicted [148, 171–173].

e method of directly measuring the expansion velocity can be generalized in
a straightforward way to more complex quantum states including metallic and
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Mo-insulating states in the repulsive Hubbard model (c.f. 8) or the pseudogap
regime in the aractive Hubbard model (c.f. 9). Furthermore it can be extended to
bosonic quantum gases, where the transition from a superfluid to a Mo-insulator
can be investigated, and to Bose-Fermi mixtures [271], where polaronic physics
can be studied. In addition, the effects of various disorder potentials on the two-
dimensional dynamics can be studied.

Major goals for the future include the observation of superfluidity in the aractive
Hubbard model and antiferromagnetic order in the repulsive Hubbard model. To
this end, several tenical enhancements are currently implemented during the
rebuilding of the setup aer the move to Muni. ey include a new dipole trap
setup, beer magnetic field control, an improved laser system and an enhanced
optical access and should enable the preparation of larger and colder clouds. ese
can serve as a starting point for analyzing the various heating meanisms and
implementing new entropy management methods.

In a second experimental setup, whi is currently under construction, we plan to
extend all of the above measurements into the crossover regime between 2D and
3D and to implement superlaice structures.
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A. Photo dissociation

In this appendix, photodissociation measurements of 40K2 Feshba molecules are
presented together with a qualitative interpretation. A detailed quantitative anal-
ysis, however, is still missing. e photodissociation of Feshba molecules in the
presence of blue-detuned light was studied with two applications in mind:

One important tenical goal was to findwavelengthswhere the photodissociation
rate is minimal, as for these wavelengths also heating rates due to light assisted
collisions in the laice are minimal. is is due to the fact that for blue-detuned
light photodissociation of a molecule and a light assisted collision of a pair of
atoms are essentially the same process. In both cases one of the atoms absorbs a
photon and the pair of atoms is excited into a repulsive molecular potential where
subsequently a fraction of the photon detuning is converted into kinetic energy
(c.f. 3.4).

e typical distance of two atoms on the same laice site is on the order of the har-
monic oscillator length of the on-site wavefunction, whi is in the blue detuned
case around 55 − 70 nm ≈ 1100 − 1400 a0. is is comparable to the size of a
Feshba molecule close to resonance, whi is on the order of half the scaering
length ⟨r⟩ ≈ a/2 ≈ 70 nm@201.6G (c.f. 3.3.2). In the range of large detunings
∆ ≫ 10 nm used for optical laices, the Condon point lies within the van der
Waals potential (c.f. 3.1). At these distances, the wave function is completely gov-
erned by the molecular potential, i.e. it is identical for atoms forming a Feshba
molecule and atoms on the same laice site.

e second motivation for this experiment stems from molecular physics: Pro-
vided the repulsive excited statemolecular potentials are known precisely, it should
be possible to infer the position of the nodes of the Feshba molecule wavefunc-
tion from the dissociation spectra. In the simplest approximation the excitation
takes place only at the Condon point, where the energy difference between the
molecular potentials equals the photon energy (c.f. 3.4). Consequently, the Fran-
Condon factor is proportional to the square of the ground state wave function at
this point. In this picture, a minimum in the excitation rate directly corresponds
to a node in the molecular wavefunction. In reality, however, there are several
further complications:

• ere exist in total four excited state molecular potential with dipole al-
lowed transitions to the ground state potentials

• In some of these potentials there exists more than one Condon point
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• For large detunings the above approximation breaks down and the Fran-
Condon factor becomes more complex.

In addition, it is not clear at presence whether the excited potentials are known
accurately enough for su a direct mapping. In a complete analysis, this pho-
todissociation data should be used together with the position of the Feshba res-
onances and the numerous photoassociation data in a global fit for the molecular
potentials, similar to the method used in [40, 287].

A.1. Experimental sequence

ese measurements were performed in pure dipole trap without a laice. An
equal mixture of the (|F,mF ⟩) |9/2,−9/2⟩ and |9/2,−7/2⟩ hyperfine states was
cooled to T/TF ≈ 0.3 at a magnetic field of B ≈ 219G, whi corresponds to
weak repulsive interactions above the Feshba resonance located atB = 202.1G
.
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Figure A.1.: Feshba molecules are produced with an adiabatic magnetic field
ramp over the Feshba resonance at 202.1G and aer a hold time get dissociated
by a second ramp in the opposite direction. During this (constant) hold time a
light pulse of variable wavelength, intensity and duration can photodissociate the
molecules.

en about 60% of the atomswere converted into Feshbamolecules using an adi-
abatic ramp of the magnetic field down to 201G. Aer a short hold time (≤10ms)
the molecules were converted ba into atoms by a second magnetic field ramp
and the atom number was measured using standard time-of-flight imaging.
By applying a blue-detuned light pulse during the hold time between the two
magnetic field sweeps, a fraction of the molecules was photodissociated.

In this sequence, the detected atom number consists of two parts: Atoms that were
not converted into molecules by the first magnetic sweep (atomic baground),
and molecules that were dissociated by the second magnetic sweep. Due to their
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high kinetic energy, atoms stemming from photodissociated molecules leave the
trap immediately and are detected as a reduction of the final atom number. In
addition, the atomic baground was measured directly by skipping the second
magnetic field ramp, since molecules remain invisible on absorption images taken
with light resonant on the atomic transition.

A.2. Experimental results

A.2.1. Varying the dissociation wavelength

e main measurement in this experiment is the effect of the wavelength on the
dissociation rate. As measuring the dissociation rate for every wavelength would
be very time consuming, instead scans of the remaining atom number were taken
for constant ramps, timings and intensities: Only the wavelength of the dissocia-
tion laser (a cw Ti:Sa) was varied. Every point in the following curves corresponds
to an individual run of the experiment.
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Figure A.2.: Final atom number aer the experimental sequence described above.
e intensity and duration of the photodissociation pulse were constant; only the
wavelength was varied around the atomic D2 transition at 766.5 nm (766.7 nm
vacuum wavelength)

e behaviour of the remaining atom number around the atomic resonance is
depicted in Figure A.2 and shows a completely different behaviour for red- and
blue-detuned light: On the blue-detuned side (λ < 766.5nm) all molecules were
photodissociated and only the atomic baground was measured. On the atomic
D2 resonance both molecules and atoms leave the trap. In the red-detuned case on
the other hand, most molecules survive already for modest detunings of 0.2 nm,
except on narrow bound-bound resonances, where the Feshba molecules are
excited into excited molecular states. ere should be many more of these narrow
resonances, but only a few were hit during this rather coarse scan.

For larger detunings on the blue-detuned side, the photodissociation rate decreases
non-monotonically, exhibiting a rather strong oscillating behaviour, as can be seen
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A. Photo dissociation

in figure A.3. A maximum in the observed atom number corresponds to a min-
imum in the photodissociation rate, whi is proportional to the Fran-Condon
factor. As the photodissociation in the blue detuned case is a bound-free transi-
tion into a continuum of states, the Fran-Condon factor will mostly depend on
the absolute value of the bound state wavefunction at the Condon point. In this
simple picture every maximum corresponds to a node of the Feshba molecule
wavefunction.
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Figure A.3.: A single scan taken on the blue-detuned side of the atomic D2 res-
onance at constant magnetic field, intensity and pulse duration, whi shows the
oscillatory behaviors of the photodisssociation rate. Based on this measurement, a
wavelength of 738 nm was osen for the final optical laice setup.

On top of the oscillatory behaviour the photodissociation rate strongly decreases
for increasing detuning. In order to extend the above measurement to a larger
wavelength range, several scans were taken with different intensities and pulse
duration. e combined results of this measurements are shown in figure A.4,
displaying in total almost thirty minima of the photodissociation rate. is would
allow in principle the determination of equally many node positions of the Fesh-
ba wavefunction.

A.2.2. Dissociation rate

In order to extract the global scaling of the photodissociation rate Γdis with de-
tuning, the lifetime τ of the Feshba molecules in the presence of blue-detuned
light with intensity I was measured for several detunings. Since the photodis-
sociation rate is proportional to the intensity of the light, the intensity in every
measurement was osen su that the resulting lifetime (τ < 10ms) was short
compared to the lifetime without any light τbg ≈ 26ms@ 201G, whi is given
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Figure A.4.: Combined data of several scans spanning in total 45 nm on the blue-
detuned side of the atomic resonance, taken in steps of 0.05-0.15nm. Almost 30
maxima were found. e graph is created out of nine individual scans whi were
taken for different pulse durations and intensities and subsequently were rescaled
and displaced vertically in order to produce a continuous curve. e wavelengths
were not scaled or shied!

by collisions. We eed that the number of molecules decays exponentially as a
function of pulse duration at constant intensity, and as a function of intensity at
constant pulse length.

Figure A.5.: e main graph shows the product I · τ taken at several maxima
of figure A.4. is data cannot be fied by a parabola, a power law fit would
suggest∼ 1/∆3 and the dashed line is a guide to the eye. e inset shows another
measurement of I · τ for various randomly osen wavelengths in a log-log plot.
is data is compatible with a 1/∆2 scaling of the photodissociation rate.

In Figure A.5 the resulting product I ·τ is ploed for various measurements. While
the data for randomly osen detunings would be compatible with a 1/∆2 be-
haviour, a second measurement performed at several minima of the photodisso-
ciation rate displays deviations from the above power for large detunings. Su
a deviation is to be expected, since for small distances the molecular potentials
deviate from their long distance power-law behaviour and eventually become
non-monotonic (c.f. Figure 3.1). is can also be seen in Figure A.6, where the
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distance between subsequent minima in the photodissociation rate is ploed. e
pronounced minimum around 750 nm could mean that more than one upper po-
tential is involved or may correspond to a turning point of the upper potential. e
measured position at 750 nm would however be inconsistent with the calculated
potentials of O. Dulieu, whi are shown in figure 3.1.

Figure A.6.: e main graph shows the distance from one observed peak to the
next, the inset shows the peak positions. e pronouncedminimum around 750 nm
could mean that more than one upper potential is involved or may correspond to
a turning point of the upper potential.

A.2.3. Influence of the magnetic field

In Figure A.7, a detailed scan of the photodissociation rate around the minimum at
738 nm is shown for two different values of the magnetic field and shows that the
position of the minimum is independent of the magnetic field, illustrating that the
shape of the molecular wavefunction (i.e. the position of the nodes) in the inner
part of the molecular potential does not depend on the (kHz scale) variation of
the molecular binding energy. Even though the magnetic field has no influence
on the positions of the minima, it has a profound effect on the absolute scale of
the photodissociation rate. As is shown in Figure A.8, the photodissociation rate
decreases by a factor of two upon anging the magnetic field from B = 201G
to B = 201.6G.

is decrease in the photodissociation rate with respect to magnetic field can be
understood by considering the molecular wavefunction, whi is ploed in figure
3.5 in the main text: On approaing the Feshba resonance, the outermost max-
imum in the open annel will extend to larger and lager distances, giving rise to
the halo aracter of the molecular wavefunction. Even though the form of the
wave function in the inner part does not ange, its amplitude will decrease due
to normalization. is results in a reduced Frank-Condon factor and leads to a
reduced photodissociation rate.
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Figure A.7.: Two scans for two different magnetic fields with all other parameters
being identical.
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Figure A.8.: Measured 1/e-intensities of the number of molecules for a constant
pulse duration as a function of the magnetic field. e photodissociation rate de-
creases for both wavelengths by a factor of two when going from B = 201G to
B = 201.6G.
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B. Dynamical U vs. -U symmetry

In this appendix the dynamical symmetry theorem, whi was found during the
analysis of the expansion data shown in apter 10, is presented in some detail
together with an analytical proof. e analysis was performed in collaboration
with A.Ros, E. Demler and M. Moreno-Cardoner.

We consider a coherent dynamical evolution arising from twoHubbard-type hamil-
tonians that differ only in the sign of the interaction term:

Ĥ± = −J
∑
⟨ij⟩σ

ĉ†iσ ĉjσ ± U
∑
i

n̂i↑n̂i↓ (B.1)

In order to state and proof the desired theorem we first introduce two operators,
the π-boost operator BQ and the time reversal operator Rt.

Boost operator e π-boost operator B̂Q, whi translates all quasi-momenta
by Q = (π/d, π/d, π/d), is a linear self-adjoint operator (B̂2

Q = 1) and is given
in second quantization notation by:

B̂Qĉ
†
qB̂Q = ĉ†q+Q (B.2)

Here ĉ†q denotes the creation operator for the Blo wave with quasi-momentum
q. From the definition of a Wannier state (cf. eqn. 4.12)

ĉ†r =
1√
N

∑
q

e−iqr ĉ†q (B.3)

we get

B̂Qĉ
†
rB̂Q =

1√
N

∑
q

e−iqr B̂Qĉ
†
qB̂Q =

1√
N

∑
q

e−iqr ĉ†q+Q

=
eiQr

√
N

∑
q

e−i(q+Q)r ĉ†q+Q =
eiQr

√
N

∑
q′

e−iq′r ĉ†q′

= eiQrĉ†r (B.4)

e Boost operator assigns an additional position-dependent phase eiQr to every
Wannier state. As a consequence, applying the boost operator to a coherent su-
perposition of Wannier states anges the relative phase between the components:

B̂Q(ĉ
†
r + ĉ†r′)B̂Q ∝ (ĉ†r + eiQ(r′−r)ĉ†r′) (B.5)
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Time reversal operator e time reversal operator R̂t is an anti-linear oper-
ator that obeys R̂tz = z∗R̂t, z ∈ C and R̂tR̂

†
t = 1. Its effect on a Blo wave is

to negate the quasi-momentum:

R̂tĉ
†
qR̂

†
t = ĉ†−q (B.6)

is means for a Wannier state:

R̂tĉ
†
rR̂

†
t =

1√
N

∑
q

R̂te
−iqr ĉ†qR̂

†
t =

1√
N

∑
q

e+iqr R̂tĉ
†
qR̂

†
t

=
1√
N

∑
q

e+iqr ĉ†−q =
1√
N

∑
q′

e−iq′r ĉ†q′

= ĉ†r (B.7)

Note the complex conjugation in the prefactor at the second equal sign, whi is
due to the anti-linear nature of the operator.
A Wannier state is invariant under time reversal.

Applying the time reversal operator turns the wavefunction into its complex con-
jugate [288] or, equivalently, modifies the time evolution operator:

R̂te
−iĤtR̂†

t = eiĤt (B.8)

The theorem

If the experimentally measured quantity Ô is invariant under both time reversal
and π-boost, and the initial state |Ψ0⟩ is time reversal invariant and only acquires a
global phase factor under the boost transformation (B̂Q |Ψ0⟩ = eiχ |Ψ0⟩, χ ∈ R),
then the observed time evolutions

⟨Ô(t)⟩± = ⟨Ψ0|eiĤ±tÔe−iĤ±t|Ψ0⟩ (B.9)

are identical: ⟨Ô(t)⟩+ = ⟨Ô(t)⟩−.

In order to proof the above symmetry theorem we first observe that

⟨Ô(t)⟩+ = ⟨Ψ0|R̂†
tR̂te

iĤ+tR̂†
tR̂tÔR̂

†
tR̂te

−iĤ+tR̂†
tR̂t|Ψ0⟩

= ⟨Ψ0|e−iĤ+tÔeiĤ+t|Ψ0⟩ (B.10)

e last equation follows from the definition of time reversal invariance, R̂t|Ψ0⟩ =
|Ψ0⟩ and R̂tÔR̂

†
t = Ô, and from the unitarity property R̂†

tR̂t = 1. Note that
equation (B.10) corresponds to the symmetry of time evolutions for Ĥ → −Ĥ.

166



From the definition of the π-boost we get:

B̂QĤ±B̂Q = −J
∑
⟨ij⟩σ

B̂Qĉ
†
iσB̂

2
QĉjσB̂Q ± U

∑
i

B̂Qn̂i↑B̂
2
Qn̂i↓B̂Q

= +J
∑
⟨ij⟩σ

ĉ†iσ ĉjσ ± U
∑
i

n̂i↑n̂i↓

= −Ĥ∓ (B.11)

Here we used the unitarity of the boost operator B̂2
Q = 1 and the transformation

behaviour of the density operator B̂Qn̂i↕B̂Q = B̂Qĉ
†
i↕B̂

2
Qĉi↕B̂Q = n̂i↕. With this

we can continue equation (B.10):

⟨Ô(t)⟩+ = ⟨Ψ0|B̂2
Qe

−iĤ+tB̂2
QÔB̂

2
Qe

iĤ+tB̂2
Q|Ψ0⟩

= ⟨Ψ0|B̂Qe
+iĤ−tÔe−iĤ−tB̂Q|Ψ0⟩

= ⟨Ψ0|e−iχe+iĤ−tÔe−iĤ−teiχ|Ψ0⟩
= ⟨Ô(t)⟩−e−iχeiχ

= ⟨Ô(t)⟩− (B.12)

In the last equation we used the π-boost invariance of the observable B̂QÔB̂Q =

Ô, the required transformation behavior of the initial state B̂Q |Ψ0⟩ = eiχ |Ψ0⟩,
and the unitarity of the boost operator B̂2

Q = 1.

Initial state

e many-body state given in the experiment can be wrien as an incoherent
mixture of states of the form:

|Ψmb⟩ =
n∏

i=1

ĉ†ri |vac⟩ (B.13)

is state describes n particles localized at the positions ri and transforms under
B̂Q according to:

B̂Q |Ψmb⟩ = B̂Q

n∏
i=1

ĉ†ri |vac⟩

= B̂Q ĉ
†
r1
B̂2

Q ĉ
†
r2
B̂2

Q ĉ
†
r3
B̂2

Q · · · ĉ†rn B̂
2
Q |vac⟩

= eiQr1 ĉ†r1 e
iQr2 ĉ†r2 e

iQr3 ĉ†r3 · · · e
iQrn ĉ†rn |vac⟩

=
∏
i

eiQri |Ψmb⟩

= eiQ
∑

i ri |Ψmb⟩ (B.14)
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On the second line we used B̂2
Q = 1 and on the third line we used B̂Q |vac⟩ =

|vac⟩.

An according calculation with R̂t results in R̂t |Ψ⟩ = |Ψ⟩. is shows that a
many-body state of the form of eqn. B.13 fulfills the requirements of the above
symmetry theorem. e extension to the mixed state used in the experiment is
straightforward. Due to the definition of a general densitymatrix ρ =

∑
j pj |Ψj⟩⟨Ψj|

we get:

⟨Ô⟩ρ = tr[ρÔ] =
∑
j

pj⟨Ψj| Ô |Ψj⟩ (B.15)

and see that the theorem also holds for mixed states, as it holds for every term in
the sum.

e experimental observable is the density distribution n̂(rj) =
∑

σ ĉ
†
jσ ĉjσ and

the initial state consists of atoms that are completely localized to individual lat-
tice sites (cf. sec. 10.1). Because both the initial state and the measured operator
fulfill the requirements of the symmetry theorem, we are guaranteed to find the
described U ↔ −U symmetry in the dynamics for all interaction strengths.

Since the bi-partite aracter of the laice is crucial to the proof of the theorem,
this symmetry can be expected to be broken in laices without the bi-partite struc-
ture, su as a triangular laice.
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C. Poly-logarithmic functions

A class of useful functions are the poly-logarithmic functions whi appear in the
analytic solution of the following common integrals:

∞∫
0

ϵn F (ϵ)dϵ = −(kbT )
1+nΓ(1 + n)Li1+n(−Z) (C.1)

Here Lin(z) denotes the poly-logarithm of order n and Γ is the Euler gamma
function. e poly-logarithms can be calculated using the following power series

Lin(−z) =
∞∑
k=1

(−z)k

kn
(C.2)

whi converges for all complex numbers with |z| ≤ 1.

In the case of the dilogarithm an arbitrary argument can be mapped into the unit
circle using the following reflection identity [289]:

Li2(x) = −Li2

(
1

x

)
− π2

6
− 1

2
(log(−x))2 (C.3)
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[39] W. Demtröder. Atoms, Molecules and Photons. Springer, Berlin (2006).
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[53] K. Góral, T. Köhler, S. A. Gardiner, E. Tiesinga, and P. S. Julienne. Adiabatic
association of ultracold molecules via magnetic-field tunable interactions. J.
Phys. B: At. Mol. Opt. Phys. 37, 3457–3500 (2004).

[54] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson. Resonances in ultracold
collisions of Li6, Li7, and Na23. Phys. Rev. A 51, 4852–4861 (1995).

[55] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn,
and W. Keerle. Stability of Spin-Aligned Hydrogen at Low Temperatures
and High Magnetic Fields: New Field-Dependent Scaering Resonances and
Predissociations. Nature 392, 151–154 (1998).

[56] P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J.
Verhaar. Observation of a Feshba Resonance in Cold Atom Scaering.
Phys. Rev. Le. 81, 69–72 (1998).

174

http://dx.doi.org/10.1103/PhysRevLett.95.150406
http://dx.doi.org/10.1103/PhysRevLett.86.5409
http://dx.doi.org/10.1103/PhysRevLett.86.5409
http://dx.doi.org/10.1103/PhysRevLett.82.4208
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/DOI: 10.1016/0003-4916(58)90007-1
http://dx.doi.org/DOI: 10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1103/PhysRevLett.37.1628
http://dx.doi.org/10.1103/PhysRevA.47.4114
http://dx.doi.org/10.1103/PhysRevA.47.4114
http://dx.doi.org/10.1088/0953-4075/37/17/006
http://dx.doi.org/10.1088/0953-4075/37/17/006
http://dx.doi.org/10.1103/PhysRevA.51.4852
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.81.69


Bibliography

[57] J. L. Roberts, N. R. Claussen, J. P. Burke, C. H. Greene, E. A. Cornell, and
C. E. Wieman. Resonant Magnetic Field Control of Elastic Scaering in Cold
R85b. Phys. Rev. Le. 81, 5109–5112 (1998).
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[109] T. Müller, S. Fölling, A. Widera, and I. Blo. State Preparation and Dy-
namics of Ultracold Atoms in Higher Laice Orbitals. Phys. Rev. Le. 99,
200405 (2007).

[110] L. Viverit, C. Menoi, T. Calarco, and A. Smerzi. Efficient and Robust Ini-
tialization of a bit Register with Fermionic Atoms. Phys. Rev. Le. 93,
110401 (2004).

[111] P. B. Blakie, A. Beze, and P. Buonsante. Degenerate Fermi gas in a com-
bined harmonic-laice potential. Phys. Rev. A 75, 63609 (2007).

[112] C. Hooley and J. intanilla. Single-Atom Density of States of an Optical
Laice. Phys. Rev. Le. 93, 80404 (2004).

[113] T. Hartmann, F. Ke, H. J. Kors, and S. Mossmann. Dynamics of Blo
oscillations. New J. Phys. 6, 2 (2004).

178

http://dx.doi.org/10.1103/PhysRevLett.83.943
http://dx.doi.org/10.1103/PhysRevLett.83.943
http://dx.doi.org/10.1103/PhysRevLett.70.2253
http://dx.doi.org/10.1103/PhysRevLett.70.2253
http://dx.doi.org/10.1103/PhysRevA.50.R3597
http://dx.doi.org/10.1103/PhysRevA.50.R3597
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://de.arxiv.org/abs/1009.0194
http://de.arxiv.org/abs/1009.0194
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.93.110401
http://dx.doi.org/10.1103/PhysRevLett.93.110401
http://dx.doi.org/10.1103/PhysRevA.75.063609
http://dx.doi.org/10.1103/PhysRevLett.93.080404
http://dx.doi.org/10.1088/1367-2630/6/1/002


Bibliography

[114] M. Ben Dahan, E. Peik, J. Reiel, Y. Castin, and C. Salomon. Blo Os-
cillations of Atoms in an Optical Potential. Phys. Rev. Le. 76, 4508–4511
(1996).

[115] H. O, E. de Mirandes, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio.
Collisionally Induced Transport in Periodic Potentials. Phys. Rev. Le. 92,
160601 (2004).

[116] W. Heisenberg. Zur eorie des Ferromagnetismus. Z. Phys. 49, 619–636
(1928).

[117] J. H. de Boer and E. J. W. Verwey. Semi-conductors with partially and with
completely filled 3d-laice bands. Proc. Phys. Soc. 49, 59–71 (1937).

[118] N. F. Mo and R. Peierls. Discussion of the paper by de Boer and Verwey.
Proc. Phys. Soc. 49, 72–73 (1937).

[119] N. Mo. e Basis of the Electron eory of Metals, with Special Reference
to the Transition Metals. Proc. Phys. Soc. A 62, 416–422 (1949).

[120] I. G. Austin and N. F. Mo. Metallic and Nonmetallic Behavior in Transition
Metal Oxides. Science 168, 71–77 (1970).

[121] M. Imada, A. Fujimori, and Y. Tokura. Metal-insulator transitions. Rev.
Mod. Phys. 70, 1039–1263 (1998).

[122] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. A.
276, 238–257 (1963). http://www.jstor.org/stable/2414761.

[123] J. Hubbard. Electron correlations in narrow energy-bands. Current
Contents, Citation Classics 22, 16 (1980). http://garfield.library.
upenn.edu/classics1980/A1980JS76400001.pdf.

[124] J. Spalek and A. M. Oles. No Title. Physica B 375, 86–88 (1977).

[125] J. Spalek. t-J model then and now: A personal perspective from the pio-
neering times. ACTA PHYSICA POLONICA A 111, 409 (2007). http:
//arxiv.org/abs/0706.4236.

[126] J. G. Bednorz and K. A. Müller. Possible highTc superconductivity in the
Ba-La-Cu-O system. Z. Phys. B Condensed Maer 64, 189–193 (2001).

[127] D. N. Basov and T. Timusk. Electrodynamics of high- Tc superconductors.
Rev. Mod. Phys. 77, 721–779 (2005).

[128] V. Z. Kresin and S. A. Wolf. Colloquium: Electron-laice interaction and its
impact on high T[sub c] superconductivity. Rev. Mod. Phys. 81, 481 (2009).

[129] P. A. Lee, N. Nagaosa, and X.-G. Wen. Doping a Mo insulator: Physics of
high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).

179

http://dx.doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/10.1103/PhysRevLett.92.160601
http://dx.doi.org/10.1103/PhysRevLett.92.160601
http://dx.doi.org/doi: 10.1088/0959-5309/49/4S/307
http://dx.doi.org/doi: 10.1088/0959-5309/49/4S/308
http://dx.doi.org/doi: 10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1126/science.168.3927.71
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://www.jstor.org/stable/2414761
http://garfield.library.upenn.edu/classics1980/A1980JS76400001.pdf
http://garfield.library.upenn.edu/classics1980/A1980JS76400001.pdf
http://arxiv.org/abs/0706.4236
http://arxiv.org/abs/0706.4236
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.81.481
http://dx.doi.org/10.1103/RevModPhys.78.17


Bibliography

[130] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T. Scalear. Localantum
Criticality in Confined Fermions on Optical Laices. Phys. Rev. Le. 91,
130403 (2003).

[131] U. Sneider, L. Haermuller, S. Will, T. Best, I. Blo, T. A. Costi, R. W.
Helmes, D. Ras, and A. Ros. Supporting online material for: Metallic
and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical
Laice. Science 322, 1520–1525 (2008).

[132] D. Pines and P. Nozieres. e eory of antum Liquids. Benjamin, New
York (1966).

[133] G. D. Mahan. Many Particle Physics, 3rd ed. Plenum, New York (2000).

[134] M. C. Gutzwiller. Correlation of Electrons in a Narrow s Band. Phys. Rev.
137, A1726–A1735 (1965).

[135] P. Zanardi. antum entanglement in fermionic laices. Phys. Rev. A 65,
42101 (2002).

[136] A. Kantian, A. J. Daley, P. Torma, and P. Zoller. Atomic laice excitons:
from condensates to crystals. New J. Phys. 9, 407 (2007).

[137] M. Valiente and D. Petrosyan. Two-particle states in the Hubbard model. J.
Phys. B: At. Mol. Opt. Phys. 41, 161002 (2008).

[138] M. Wouters and G. Orso. Two-body problem in periodic potentials. Phys.
Rev. A 73, 12707 (2006).

[139] P. Fediev, M. Bijlsma, and P. Zoller. Extended Molecules and Geometric
Scaering Resonances in Optical Laices. Phys. Rev. Le. 92, 80401 (2004).

[140] K. Winkler, G. alhammer, F. Lang, R. Grimm, J. Heer Denslag, A. J.
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