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Chapter 1

Introduction

In the so-called “chip” experiment transport phenomena in strongly interacting de-

generate Fermi gases of 40K are studied. The micro-fabricated chip inside the vacuum

chamber allows to apply large magnetic fields and field gradients on short time scales

[1]. A Feshbach resonance at B = 202.1 G is utilized to drive the Fermi gas to the

strongly interacting regime and to control the interaction strength. To observe the

mentioned effects the cloud of atoms is imaged via absorption imaging after turning

off all trapping potentials. This time of flight measurement allows to extract the

momentum distribution of the Fermi gas.

Compared to an ideal Fermi gas, the system we want to study, a trapped gas has a

non-uniform density distribution. This prevents us from observing a sharp step in

the momentum distribution according to Fermi-Dirac statistics. It is also harder to

compare the experimental results to theory. As first realized in [2] the idea of this

project is to transfer the atoms at the outer region of the atomic cloud to a dark

state making them invisible for imaging. This way only the center of the cloud with

a more uniform density is probed. A so-called hollow-core beam with zero intensity

at its center is used for this purpose.

As shown in figure (1.1) the D2 line of 40K, the transition between the ground state
2S1/2 and the excited state 2P3/2 is used. Although operating at high magnetic

fields B ≈ 210 G at the zero-crossing of the Feshbach resonance the atomic states

are labeled by the low-field quantum numbers |F,mF 〉 they adiabatically connect

to. The cycling transition |F = 9/2,mF = −9/2〉 ↔ |F ′ = 11/2,m′F = −11/2〉 is

used for absorption imaging. Before the final imaging step atoms are transferred
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Figure 1.1: Simplified level scheme of the 40K D2 line. The cycling transition
|F = 9/2,mF = −9/2〉 ↔ |11/2,−11/2〉 is used to image the atomic cloud. The
|9/2,−7/2〉 ↔ |5/2,−5/2〉 transition is driven by the hollow beam to optically pump
atoms at the outer region of the cloud to the |7/2,−7/2〉 dark state. The branching
ratios of spontaneous emission from |5/2,−5/2〉 are .955 and .044 [2].

to the |9/2,−7/2〉 state where a pair of hollow-core beams drive the |9/2,−7/2〉 ↔
|5/2,−5/2〉 transition. This transition is dipole-forbidden at zero magnetic field,

but has a finite excitation probability at the desired magnetic field. Spontaneous

emission with a branching ratio of 95.5 % transfers the atoms in the |7/2,−7/2〉 dark

state [2].

The goal of this project is to set up a laser system as described in chapter 2 and to

generate a laser beam featuring a hollow core as shown in chapter 3.
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Chapter 2

Laser Setup

2.1 Laser Frequency
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Figure 2.1: Hyperfine energy shift of the ground state (2S1/2, left) and excited state
(2P3/2, right) as a function of magnetic field. The highlighted curves correspond to
the |F = 9/2,mF = −7/2〉 and |F ′ = 5/2,m′F = −5/2〉 states, respectively.

The desired laser frequency νL at B = 210 G of the hollow beams driving the
2S1/2 |9/2,−7/2〉 ↔ 2P3/2 |5/2,−5/2〉 transition in 40K needs to be calculated. As

derived in [3] the hyperfine structure Hamiltonian for arbitrary magnetic fields B

consists of terms for angular momentum coupling between I and J, a quadrupole

shift for I, J 6= 1/2 and the Zeeman effect.

Hhfs = I-J coupling + Quadrupole shift + Zeeman shift

= Ahfs I · J +Bhfs

3(I · J)2 + 3
2
I · J− I2 J2

2I(2I − 1)J(J − 1)
+
µB
~

(gJmJ + gImI)B (2.1)
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A state vector |ψ〉 containing each possible state |mJ ,mI〉 of the desired manifold

is created. It spans a Hamiltonian matrix Ehfs = 〈ψ|Hhfs|ψ〉 which is diagonalized

numerically to obtain the hyperfine energy shifts. The results are shown in Figure

(2.1). Table (2.2) lists the values at B = 210 G and the obtained transition frequency

νL. The constants used in this calculation are extracted from [4, 5].

2.2 External-Cavity Diode Laser

In 2010 Matthias Scholl created a set of external-cavity diode lasers (ECDLs) stabi-

lized by interference filters [6]. Undergoing continuous development this design has

been simplified to reduce costs while maintaining stability and has been successfully

tested for wavelengths of 405 and 767 nm [7]. The current revision C by Simon

Heun features a front-clamped laser diode aiming for its easier alignment. As shown

in figure (2.2, left) the design utilizes an interference filter in contrast to the com-

mon grating-stabilized Littrow configurations. Separating laser feedback and the

wavelength-selective element leads to increased tunability and reduced sensitivity to

misalignment [8].

0 20 40 60 80 100

0

10

20

30

40

ILD @mAD

P
@m

W
D

Figure 2.2: (left) Internal setup of the laser consisting of an anti-reflex coated laser
diode, an interference filter and an output coupler in cat’s-eye configuration. (right)
Output power over diode current measured after the optical isolator (red). A linear
fit (blue) determines the lasing threshold current ITH = 24 mA.

The output of an anti-reflex coated laser diode is collimated by the first lens and

fed through the interference filter. Two lenses in cat’s-eye configuration focus the

beam on the output coupler mounted on a piezo ring actuator. The lense after the

coupler is used to collimate the beam. The desired wavelength is coarsely adjusted

by turning the interference filter, a Fabry-Pérot etalon. Figure (2.2, right) shows

the output power after the optical isolator over the current through the laser diode.

6



A linear fit determines the lasing threshold current ITH = 24 mA. This is a simple

indicator for the quality of the external cavity’s feedback. Table (2.1) shows settings

of the temperature, diode current and piezo controller for stable operation at the

desired laser frequency νL.

symbol value description
RTH 11.731 kΩ thermistor resistance
ILD 41.81 mA laser diode current
VPZ 32 V piezo voltage

Table 2.1: Laser settings.

Unfortunately the laser has stability issues after moving the breadboard to the

laser table. The breadboard is mounted on 8 inch pedestals leading to increased

sensitivity to acoustic and mechanical noise. A correlation between the mode jumps

of the laser and a shutter placed nearby was observed. Watching the frequency

of the laser on a wavemeter revealed oscillations with an amplitude of ≈ 1 GHz

and a period on the order of some minutes. With a mode spacing of the laser’s

external cavity of 1.7 GHz [6] these oscillations lead to frequent mode jumps of the

laser. The time scale implies a problem in temperature stabilization of the laser.

Turning down the proportional and integral part of the temperature controller’s

feedback loop decreased the oscillations. This increases the time between mode

jumps to roughly 30 min, which is not satisfying. The wavemeter still shows a slow

drift in frequency. Further work needs to be done to shield the laser from ambient

temperature fluctuations.

2.3 Optics

As illustrated in figure (2.3) the optical setup consists of two parts, the beat note

generation and two acousto-optic modulators (AOMs) in double-pass configuration.

The latter allow to modulate the laser intensity on the order of tens of MHz with

very high extinction ratios of 1 000 000 : 1 as well as fine-tuning the frequency over

a range of ≈ 20 MHz. Running at 80 MHz both AOMs introduce a frequency shift

of +160 MHz. The perpendicularly polarized output of both branches is coupled

into a polarization-maintaining optical fiber. After the fiber both polarizations are

separated by a polarizing beam splitter with an extinction ratio of ≈ 300 : 1 to get
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Figure 2.3: Optical setup. The two double-pass AOM configurations (bottom) allow
to switch the laser fast and fine-tune the frequency. About 700µW are superimposed
with a reference laser on a glass plate and coupled into an optical fiber to detect the
beat note signal on a fast photo diode.

two independently switchable laser beams targeting the long and short axis of the

atom cloud.

2.4 Beat Note & Offset Lock

To reliably drive atomic transitions with linewidths on the order of a few MHz the

laser’s frequency needs to be stabilized. In this project the laser with frequency

νL is offset-locked to a reference laser νRef locked to the D2 line in 39K at zero

magnetic field. Light of both lasers is superimposed on a photodetector to obtain

the frequency νBeat of the beat note.

The corresponding electrical field modes of two laser beams with polarization vectors

Ei, frequencies ωi and relative phase ϕ can be described as

E(t) = EL cos(ωLt+ ϕ) + ERef cos(ωRef t) . (2.2)
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A photodetector detects the intensity I(t) with a finite band with on the order of a

few GHz. Therefore all terms oscillating with optical frequencies are negligible:

I(t) ∝ |E(t)|2

= E2
L cos2(ωLt+ ϕ) + E2

Ref cos2(ωRef t) + 2ELERef cos(ωLt+ ϕ) cos(ωRef t)

≈ ELERef [cos ((ωL + ωRef )t+ ϕ) + cos ((ωL − ωRef )t+ ϕ)]

≈ ELERef cos
(
(ωL − ωRef︸ ︷︷ ︸

ωBeat

)t+ ϕ
)

(2.3)

The scalar product ELERef shows that the intensity is proportional to both electric

field amplitudes. Two polarizing beam splitters ensure that both beams have the

same polarization to maximize the scalar product’s value. About 60µW of light are

coupled into the fiber for the photodetector. The obtained beat-note signal is shown

in figure (2.5, right). Its width is determined by both laser spectra. Therefore the

measured width ∆ν ≈ 1.8 MHz (FWHM) of the beat note is an upper bound for

the laser’s spectral width itself. As outlined in Table (2.2) the desired beat note

frequency νBeat is 1836.57 MHz.

symbol frequency [MHz] description
νL 391 016 296.05 40K D2 line

+ 819.89 F = 9/2,mF = −7/2 at B = 210 G
+ 581.51 F ′ = 5/2,m′F = −5/2 at B = 210 G
- 160.00 double-pass AOM at 80 MHz

νRef 391 016 170.03 39K D2 line
- 469.15 F = 2 at B = 0 G and AOMs

νBeat 1 836.57 νL − νRef
νV CO 1 811.57 νBeat − 25 MHz

Table 2.2: Breakdown of the different transition frequencies and frequency shifts
contributing to the beat note frequency νBeat. The desired frequency of the voltage-
controlled oscillator νV CO is shifted by 25 MHz due to the locking scheme.

Introduced in [9] the Grimm-type locking scheme offers a simple and inexpensive

method to stabilize the beat frequency. The setup here is based upon the work of

Daniel Fine for the high-field imaging system [10].

As outlined in figure (2.4) the beat note signal recorded by a Thorlabs DET025AFC

photo diode is amplified twice by +30 dB and mixed with the output of a VCO
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Figure 2.4: Offset lock schematics. The beat note signal is mixed with the output
from a VCO and split into two lines. One of these is ∆l = 2.08 m longer and
therefore introduces a phase delay. Mixing both lines and low-pass filtering gives
the error signal.

running at νV CO. The resulting signal is further amplified by +20 dB and low-

pass filtered (ν0 = 35 MHz). As for the beat note itself this leads to the difference

frequency ωLock.

U(t) ∝ cos
[
(ωBeat − ωV CO︸ ︷︷ ︸

ωLock

) t
]

(2.4)

The low-pass filter surpresses the sum frequency as well as higher-order terms which

are due to nonlinearities in the circuit. This signal is then split in two lines. One

of these is ∆l = 2.08 m longer introducing a phase delay. In the used RG178 cable

the propagation velocity is c̃ = .694 c leading to a time delay of ∆t = ∆l/c̃. Mixing

the two lines results in:

U(t) ∝ cos[ωLockt+ ωLock(t+ ∆t)] + cos[ωLockt− ωLock(t+ ∆t)]

= cos[ωLock(2t+ ∆t)] + cos[ωLock∆t]︸ ︷︷ ︸
UError

(2.5)

This signal is low-pass filtered again (ν0 = 500 kHz) to obtain the error signal UError

corresponding to the right term. For the feedback-loop a zero-crossing of this signal

is needed:

UError = cos[ωLock∆t] = 0 ⇔ π

2
= ωLock∆t = ωLock

∆l

c̃
(2.6)

This determines the lock frequency to be ωLock = ωBeat − ωV CO = 2π · 25 MHz

for the chosen cable and its length. The signal around subsequent zero-crossings

is surpressed by the first low-pass filter leaving only the first accessible for a lock.
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Figure (2.5, left) shows the error signal on an oscilloscope while ramping the piezo

voltage. The picture on the right shows the output of the spectrum analyzer with

the sharp peak of the VCO and the locked beat-note signal ωLock = 2π · 25 MHz

apart from it.

Figure 2.5: (left) The offset-lock signal on an oscilloscope obtained by ramping the
piezo voltage of the laser. The laser is locked to the zero-crossing on the left at
t ≈ −1 ms. (right) As shown in the spectrum this results in a constant offset of
25 MHz between VCO and beat note frequency. The horizontal scale is 5 MHz/DIV
and the vertical scale is 10 dB/DIV, attenuated by 30 dB.
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Chapter 3

Hollow-Core Beam

3.1 Spiral Phase Plates

A hollow-core beam is a laser beam featuring zero intensity at the optical axis.

[11] gives an in-depth overview of the different types of hollow-core beams and

the different methods to generate them, i. e. using a pair of axicons or a forked

diffraction grating. With the recent advancements in litography spiral phase plates

(SPPs) became commercially available. A SPP is the most straightforward way of

generating an optical vortex and therefore a hollow-core beam. It is a glass plate

coated with a substrate with optical thickness increasing proportional to the azimuth

angle φ. Therefore it imprints a phase factor eilφ onto an incident beam. The

integer l is called the “charge” of the resulting approximation to a Laguerre-Gaussian

beam LGl0, a type of hollow-core beam. The SPP VPP-1b (see figure 3.6) used

here features charge l = 1 vortices for various wavelengths Λ. Although there is a

mismatch between the wavelength λ = 767 nm of the laser and the design wavelength

Λ = 735 nm of the vortex in use the obtained hollow-core beam is well-defined. For

the following calculations this mismatch is taken into account by defining an effective

charge l = λ/Λ ≈ 1.04.
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3.2 Propagation Dynamics

The electric field amplitude of an incident TEM00 Gaussian beam with wave number

k = 2π
λ

, waist w0 at z = 0 and Rayleigh range z0 =
πw2

0

λ
at position (r1, φ1, z1) is

EG(r1, φ1, z1) = E0
w0

w(z1)
exp

[
− r21
w(z1)2

]
exp

[
−ikz1 − i

kr21
2R(z1)

+ iζ(z1)

]
.

The usual abbreviations for the width w(z1) = w0

√
1 + (z1/z0)2, the radius of cur-

vature R(z1) = z1[1 + (z1/z0)
2] and the Gouy phase ζ(z1) = arctan(z1/z0) are used.

A SPP placed at this position (see figure 3.1) results in an electric field

E(r1, φ1, z1) = EG(r1, φ1, z1) e
ilφ (3.1)

breaking the radial symmetry of the problem.

The propagation of such a transformed Gaussian beam can be calculated numer-

ically via the Fresnel or Fraunhofer diffraction integrals. A less cumbersome way

is the application of the Collins-Huygens integral [12], a paraxial variation of the

Fresnel integral in terms of the ABCD matrix formalism. This yields an analytical

description of the electric field E(r, φ, z) of a Gaussian beam modified by a SPP and

an ABCD lens system:

E(r, φ, z) = − i

λB
eikz

∫ ∞
0

dr1 r1

∫ 2π

0

dφ1 E(r1, φ1, z1)×

exp

[
ik

2B

(
Ar21 +Dr2

)]
exp

[
−ikrr1

B
cos(φ− φ1)

]
(3.2)

As shown in [13] substituting the incident electric field from equation (3.1) and

Figure 3.1: An incident Gaussian beam with waist w0 at z = 0 is altered by a spiral
phase plate at z = z1 followed by propagation through an ABCD lens system.

13



introducing abbreviations

E00(r, z1) = E0
w0

w(z1)
exp

[
ikr2D

2B

]
exp[−ikz1 + iζ(z1)] (3.3)

1

R2
c(z1)

=

[
1

w2(z1)
+

ik

2R(z1)
− iAk

2B

]
(3.4)

1

rc
=
kr

B
(3.5)

leads to the closed-form solution

E(r, φ, z) = 2π3/2(−i)|l|+1E00(r, z1)R
3
c

8rcλB
×

eikzeilφe
− R2

c
8r2c

[
I 1

2
|l|− 1

2

(
R2
c

8r2c

)
− I 1

2
|l|+ 1

2

(
R2
c

8r2c

)]
. (3.6)

In(x) denotes the modified Bessel functions of the first kind. The angle dependence

eilφ corresponds to a helical propagation of the wave-front. This effect can be used

to transfer orbital angular momentum ~l to an ensemble of atoms, e. g. to rotate

a Bose-Einstein condensate in order to create vortices. In this experiment we are

only interested in the doughnut-shaped intensity distribution:

I(r, z) ∝ |E(r, φ, z)|2

=
π3

24λ2

∣∣∣∣E00(r, z1)R
3
c

rcB
e
− R2

c
8r2c

∣∣∣∣2 ∣∣∣∣I 1
2
|l|− 1

2

(
R2
c

8r2c

)
− I 1

2
|l|+ 1

2

(
R2
c

8r2c

)∣∣∣∣2 . (3.7)

Surprisingly the rotational symmetry along the z axis is restored. This equation is

used to obtain the gray theoretical curves in figures (3.2 & 3.3). Unlike a Gaussian

beam the shape of the intensity distribution is not maintained along the optical

axis. Therefore it is not straightforward to define a width of the beam’s hollow

core. Instead the first maximum at r = rmax is calculated numerically and used to

describe the width of the hollow core. In order to compare this result to images of

the beam the rescaled intensity

Î(r, z) =
I(r, z)

I(r = rmax, z)
∈ [0, 1] (3.8)

is introduced.

14



The free parameters of this calculation are shown below along with the values used

for these figures.

symbol value description
w0 1.07 mm waist size of incident Gaussian beam
z1 −5 m distance of waist to SPP
λ 767 nm wavelength
Λ 735 nm design wavelength of the SPP

M = ( A B
C D ) see below ray transfer matrix

( 1 z
0 1 ) M in figure (3.2, top)

( 1 z
0 1 )
(

1 0
−1/0.3 1

)
( 1 0.05
0 1 ) M in figure (3.2, bottom)

( 1 z
0 1 )
(

1 0
−1/0.3 1

)
( 1 2.0
0 1 ) M in figure (3.3)

Table 3.1: Overview of the free parameters of equation (3.7) along with the values
used for the curves in figures (3.2 & 3.3).

15



3.3 Data

Figure 3.2: Propagation of the hollow-core beam in free space (top) and after a
lens with focal length f = 300 mm (bottom). The images shown are taken with a
CCD camera at distance z after the SPP and the lens, respectively. The calculated
intensity distribution (gray) is shown along with the data obtained by a cut through
the center of the image (orange). rmax denotes the position of the first maximum.

For comparison with this theoretical prediction the intensity distribution of the

hollow beam is recorded with a CCD camera, an inexpensive Logitech webcam. The

images shown in figures (3.2 & 3.3) are taken by subtracting the background and

averaging over 30 such frames. A cut through the center shown in orange gives

the intensity distribution I(r, z) below at a certain distance z after the last optical

element. Both the theoretical curve (gray) and the data (orange) are rescaled to

Î(r = rmax, z) = 1 and agree well visually. Most of the deviation compared to the
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theoretical curve is due to the CCD camera. Its intensity scaling is prone to be

nonlinear and the images show diagonal fringes due to the sensor’s coating being in

the same range as the incident wavelength.

While figure (3.2, top) shows the beam propagating in free space with z measured

directly after the SPP, figure (3.2, bottom) shows the beam after an achromatic

lens doublet with a focal length of f = 300 mm placed d = 50 mm behind the SPP.

Figure (3.3, left) shows the same lens placed d = 2.0 m behind the SPP. Surprisingly

a second focal spot appears at z = 351 mm after the lens. With the first maximum

at rmax = 26.9µm this focal spot features an even narrower hollow core compared

to the conventional focal spot of the lens with rmax = 56.8µm.

Figure (3.3, right) shows the position of the maximum over the distance to the lens

placed d = 1, 2, 3, 4, 5 m after the SPP. This reveals a slight shift by few mm of the

conventional focal spot due to a non-perfect collimation of the incident Gaussian

beam (z1 = −5 m). A perfectly collimated beam would have a waist placed far away

from the SPP, therefore z1 → ±∞. But more importantly the second, narrower

focal spot moves towards the first for increasing d.
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Figure 3.3: (left) Images of the first and second focal spot at z = 300 mm and
z = 351 mm after a f = 300 mm. (right) Position of the maximum rmax over
distance z after the lens placed d = 1, 2, 3, 4, 5 m behind the SPP. For increasing d
the second focal spot moves towards the first.

For the optical pumping process it is crucial that the center of the hollow-core

beam has zero intensity in order to preserve the density of atoms at the center

of the cloud. Therefore the ratio of power P (rH) through several pinholes with
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radii rH over the full power of the beam P0 is measured. A higher power beam

(P0 = 117 mW, λ = 855 nm,∆λ = 10 nm) is chosen to not be limited by the power

meter’s resolution. The normalized intensity function Î(r) ∈ [0, 1] gets an offset ∆I

as a fit parameter for the through-hole intensity:

P (rH)

P0

=

∫ rH
0

dr r
[
Î(r) + ∆I

]
∫∞
0

dr r Î(r)
(3.9)

The resulting power fractions are shown in figure (3.4, left) without (black) and with

an offset of ∆I = 10−3 (red) acquired through a fit.

3.4 Optical Pumping Process
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Figure 3.4: (left) Measured and theoretical power fraction through a pinhole with
radius rH as described by equation (3.9). Compared to the black line, the red line
introduces an offset ∆I = 10−3 to the intensity through the hole. (right) Model of
the optical pumping process with a hollow-core beam. The inhomogeneous Gaussian
density distribution (1/e2 radius of 5µm, dashed) is altered by the hollow-core beam
with offsets ∆I = 0 (black) and ∆I = 10−3 (red). The laser power is P = 1µW
with a pump time of τ = 100µs.

With the rescaled intensity distribution Î(r) according to equation (3.8) at hand

we are able to model the optical pumping process as described in [2]. As outlined

in figure (2.1) the hollow-core beams drive the transition |F = 9/2,mF − 7/2〉 ↔
|5/2,−5/2〉 with a branching ratio of η = .044 to pump atoms in the outer region

of the cloud to a dark state. After transfer to the |9/2,−9/2〉 state the density dis-

tribution of the remaining atoms can be imaged. Therefore the position-dependent
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probability p(r) of an atom remaining in the |9/2,−7/2〉 state is of interest. In other

words such an atom scatters zero photons with the probability p(r). Assuming a

two-level system this probability is given by

p(r) = exp[−γ(r) σ τ ] (3.10)

with photon flux γ(r) = I(r) λ
hc

, resonant absorption cross section σ = 3
2π
λ2η and

pump time τ . The photon flux is proportional to the derived intensity distribution

I(r) = I0

[
Î(r, z = f) + ∆I

]
=

P

2π
∫∞
0

dr r Î(r, z = f)

[
Î(r, z = f) + ∆I

]
(3.11)

for a beam with optical power P at the focal spot.

For the sake of simplicity we assume a thermal cloud of cold atoms in a harmonic

trap as a target for the hollow-core beams. The inhomogeneous density distribution

nInh(r) = e−2r
2/w2

c (3.12)

is well described by a Gaussian with width wc. Shining in the hollow-core beams

alters this density distribution leading to a more homogeneous one:

nHom(r) = p(r) nInh(r) (3.13)

This behavior is shown in figure (3.4, right) for a cloud width of wc = 5µm and

an incident beam with power P = 1µW turned on for τ = 100µs. As can be seen

there the altered density distribution (black) is narrower. Introducing the offset

∆I = 10−3 as shown in red leads to a loss of atoms (≈ 20 %) in the center of the

cloud.

Finally, this calculation demonstrates the general idea of this project and theoreti-

cally shows its feasibility with the chosen components.

3.5 Setup in the Experiment

Figure (3.5) shows the proposed setup of the hollow-core beams in the experiment.

After the outcoupler the beam is altered by the SPP and split into two parts with
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Figure 3.5: Proposed setup of the hollow-core beams in the experiment.

perpendicular polarization. Each beam goes through a lens that focuses the beam

on the atom cloud and is then combined on a 50/50 beam splitter. The high field

imaging beams drive a σ− transition ensured by a final quarter-wave plate not shown

in the picture. Unfortunately the hollow-core beams are supposed to be σ+ polarized.

This can be solved by slightly rotating the wave plate leading to a decreased imaging

efficiency.
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Figure 3.6: Data sheet of the used spiral phase plate VPP-1b manufactured by RPC
Photonics. For the final setup the vortex with design wavelength Λ = 735 nm is
used.

21



Chapter 4

Bibliography

1L. J. LeBlanc, “Exploring many-body physics with ultracold atoms”, Ph.D. Thesis

(University of Toronto, 2011).

2T. E. Drake, Y. Sagi, R. Paudel, J. T. Stewart, J. P. Gaebler, and D. S. Jin,

“Direct observation of the fermi surface in an ultracold atomic gas”, Phys. Rev.

A 86, 031601 (2012).

3L. J. LeBlanc, The hyperfine structure of potassium-40, Apr. 12, 2006.

4T. G. Tiecke, Properties of potassium, May 2011.

5S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition fre-

quencies of the d lines of 39K, 40K, and 41K measured with a femtosecond laser

frequency comb”, Phys. Rev. A 74, 032503 (2006).

6M. Scholl, Interference filter stabilized external cavity diode laser, Mar. 18, 2010.

7M. Scholl, W. Cairncross, I. Kivlichan, and S. Heun, Interference filter stabilized

external cavity diode laser, Aug. 24, 2012.

8X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P.

Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers”, Optics Com-

munications 266, 609–613 (2006).

9U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski,

“Simple scheme for tunable frequency offset locking of two lasers”, 70, 242–243

(1999).

10D. Fine, Frequency offset lock for imaging of 40 k in high magnetic fields, 2013.

22

http://dx.doi.org/10.1103/PhysRevA.86.031601
http://dx.doi.org/10.1103/PhysRevA.86.031601
http://dx.doi.org/10.1103/PhysRevA.74.032503
http://dx.doi.org/10.1016/j.optcom.2006.05.011
http://dx.doi.org/10.1016/j.optcom.2006.05.011
http://dx.doi.org/10.1063/1.1149573
http://dx.doi.org/10.1063/1.1149573


11J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their appli-

cations”, Progress in Optics 45, 120–204 (2003).

12S. A. J. Collins, “Lens-system diffraction integral written in terms of matrix op-

tics”, J. Opt. Soc. Am. 60, 1168–1177 (1970).

13A. Mawardi, S. Hild, A. Widera, and D. Meschede, “ABCD-treatment of a prop-

agating doughnut beam generated by a spiral phase plate”, 19, 21205 (2011).

23

http://books.google.ca/books?id=Z9YmPanePLEC
http://dx.doi.org/10.1364/JOSA.60.001168
http://dx.doi.org/10.1364/OE.19.021205

	Introduction
	Laser Setup
	Laser Frequency
	External-Cavity Diode Laser
	Optics
	Beat Note & Offset Lock

	Hollow-Core Beam
	Spiral Phase Plates
	Propagation Dynamics
	Data
	Optical Pumping Process
	Setup in the Experiment

	Bibliography

