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Zusammenfassung

Diese Promotionsarbeit beschiftigt sich mit der Realisierung, Charakterisierung und Analyse
ultrakalter bosonischer und fermionischer Atome in dreidimensionalen optischen Gitterpoten-
tialen. Ultrakalte Quantengase in optischen Gittern konnen als ideale Modellsysteme zur Un-
tersuchung von Quanten- Vielteilchenphysik angesehen werden. In dieser Arbeit werden wech-
selwirkende Ensembles aus bosonischen 37Rb- und fermionischen “°K-Atomen zur Unter-
suchung von Gleichgewichtsphasen und Nicht-Gleichgewichtsdynamik eingesetzt. Dies wird
durch einen vielseitigen experimentellen Aufbau ermoglicht, dessen Herzstiick ein blauver-
stimmtes optisches Gitter ist, das in Kombination mit Feshbach-Resonanzen und einer rotver-
stimmten Dipolfalle eine unabhiingige Kontrolle iiber Tunnelkopplung, Wechselwirkungen und
externen Einschluss erlaubt.

Das Fermi-Hubbard-Modell, das eine zentrale Rolle in der theoretischen Beschreibung stark
korrelierter Elektronen einnimmt, wird experimentell realisiert, indem wechselwirkende fer-
mionische Spinmischungen in das optische Gitter geladen werden. Mit Hilfe einer Phasenkon-
trastabbildung wird die In-situ-Grofe der atomaren Dichteverteilung gemessen, wodurch die
globale Kompressibilitit des Vielteilchenzustandes als Funktion von Wechselwirkung und ex-
ternem Einschluss ermittelt werden kann. Dies erlaubt eine klare Identifizierung metallisch-
er und isolierender Phasen. Bei stark abstoender Wechselwirkung signalisieren eine ver-
schwindende Kompressibilitdt und Unterdriickung doppelbesetzter Gitterplidtze das Entstehen
eines fermionischen Mott-Isolators.

In einer zweiten Serie von Experimenten werden Wechselwirkungseffekte in bosonischen
Quantengasen untersucht. Ublicherweise werden Wechselwirkungen zwischen mikroskop-
ischen Teilchen als Zweiteilchen-Wechselwirkungen aufgefasst. Als solche sind sie auch im
Ein-Band-Bose-Hubbard-Modell enthalten. Jedoch zeigen unsere Messungen das Vorhan-
densein von Mehrteilchen-Wechselwirkungen, die durch virtuelle Ubergiinge von Atomen zu
hoheren Gitterbdndern entstehen. Diese Beobachtungen werden durch die Entwicklung einer
neuen atomoptischen Messtechnik ermoglicht: Bei der Quanten-Phasen-Revival-Spektroskopie
wird ein dynamisches Kollabieren und Wiederaufleben des bosonischen Materiewellenfeldes
hervorgerufen. Die Frequenzen der Dynamik ergeben sich direkt aus den Wechselwirkungsen-
ergien der atomaren Fock-Zustéinde auf einzelnen Gitterpldtzen und kdnnen mit hoher Prézision
gemessen werden.

Der dritte Teil der Arbeit behandelt Mischungen bosonischer und fermionischer Atome,
deren Interspezieswechselwirkung mit Hilfe einer Feshbach-Resonanz genau kontrolliert wird.
Untersuchungen der Gleichgewichtsphasen zeigen, dass sich der bosonische Phaseniibergang
vom superfluiden Zustand zum Mott-Isolator in Richtung geringerer Gittertiefen verschiebt,
wenn anziehende Wechselwirkung zwischen Bosonen und Fermionen herrscht. Dieser Befund
wird weiter analysiert, indem Quanten-Phasen-Revival-Spektroskopie auf ein System ange-
wandt wird, in dem ein einzelnes Fermion und ein kohirentes bosonisches Feld die einzelnen
Gitterplitze besetzen. Zusitzlich zur direkten Beobachtung der Bose-Fermi-Wechselwirkungs-
energien, wird gezeigt, dass die Bose-Bose-Wechselwirkung durch die Anwesenheit eines
Fermions modifiziert wird. Diese Renormierung der bosonischen Wechselwirkungsenergie
kann die Verschiebung des Mott-Isolator-Ubergangs erkliren.






Abstract

This thesis reports on the realization, characterization and analysis of ultracold bosonic and
fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in op-
tical lattices can be regarded as ideal model systems to investigate quantum many-body physics.
In this work interacting ensembles of bosonic 8”Rb and fermionic “°K atoms are employed to
study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a
versatile experimental setup, whose core feature is a blue-detuned optical lattice that is com-
bined with Feshbach resonances and a red-detuned dipole trap to allow for independent control
of tunneling, interactions and external confinement.

The Fermi-Hubbard model, which plays a central role in the theoretical description of strong-
ly correlated electrons, is experimentally realized by loading interacting fermionic spin mix-
tures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density
distribution is measured, which allows to extract the global compressibility of the many-body
state as a function of interaction and external confinement. Thereby, metallic and insulating
phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and
suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator.

In a second series of experiments interaction effects in bosonic lattice quantum gases are
analyzed. Typically, interactions between microscopic particles are described as two-body in-
teractions. As such they are also contained in the single-band Bose-Hubbard model. However,
our measurements demonstrate the presence of multi-body interactions that effectively emerge
via virtual transitions of atoms to higher lattice bands. These findings are enabled by the devel-
opment of a novel atom optical measurement technique: In quantum phase revival spectroscopy
periodic collapse and revival dynamics of the bosonic matter wave field are induced. The fre-
quencies of the dynamics are directly related to the on-site interaction energies of atomic Fock
states and can be read out with high precision.

The third part of this work deals with mixtures of bosons and fermions in optical lattices, in
which the interspecies interactions are accurately controlled by means of a Feshbach resonance.
Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition
is shifted towards lower lattice depths when bosons and fermions interact attractively. This
observation is further analyzed by applying quantum phase revival spectroscopy to few-body
systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In
addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions
are proven to be modified by the presence of a fermion. This renormalization of bosonic
interaction energies can explain the shift of the Mott insulator transition.

The experiments of this thesis lay important foundations for future studies of quantum mag-
netism with fermionic spin mixtures as well as for the realization of complex quantum phases
with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the
single-band Hubbard model.






More is different.

P. W. Anderson [1]
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1. Introduction

The first creation of atomic Bose-Einstein condensates in 1995 [2, 3] was the starting point for
the research field of ultracold atoms, which since then has made advances at a breathtaking
pace. In the beginning, the experiments focussed on weakly interacting Bose-Einstein conden-
sates (BECs), in which up to several million atoms occupy a single macroscopic wavefunction.
It was possible to confirm the predictions of Bogoliubov’s mean-field theory [4, 5], to demon-
strate the coherence properties via matter wave interference [6] and to prove superfluidity by
the creation of vortices [7-9]. The first quantum degenerate gas of fermionic atoms was real-
ized in 1999 [10]. Spin-polarized fermions do not undergo a quantum phase transition on the
way to ultra low temperatures, but fermionic spin mixtures of two atomic hyperfine states soon
turned out to be a meaningful analog to spin up and spin down electrons in condensed matter.

Reaching beyond mean-field physics, fast progress was made to enter the regime of strong
correlations with ultracold atoms. In this regime, many-particle systems are no longer de-
scribed by a single macroscopic wavefunction. Instead, strong interactions between the parti-
cles lead to quantum mechanical correlations in the many-body wavefunctions, which give rise
to much richer physics and complex quantum phases.

The advent of Feshbach resonances [11] made it possible to tune and enhance the interactions
between ultracold atoms over enormous ranges. With this novel tool, in particular, degenerate
Fermi gases started to unfold their full experimental potential. In a Feshbach resonance an
external magnetic field is used to tune a molecular level into resonance with the energy of the
colliding atom pair [12]. This effectively controls the interatomic scattering length, but brings
with it the risk of enhanced three-body losses in the vicinity of the resonance. Being a fortunate
coincidence of nature, such losses proved to be strongly suppressed for fermionic spin mixtures
giving access to an extremely fruitful branch of research: The study of the crossover between
molecular Bose-Einstein condensation and Bardeen-Cooper-Shrieffer (BCS) superfluidity. The
breakthroughs include the creation of BECs of molecules on the repulsive side of interactions
[13-16], the observation of pairing on the BCS side [17, 18], the proof of BCS-superfluidity
via the creation of vortices [19] as well as studies of imbalanced Fermi mixtures [20-23].

For bosonic atoms the approach of strong correlations via Feshbach resonances is hindered
by inelastic losses. However, a different, but no less successful route towards strong interac-
tions was found: In 1998, Dieter Jaksch and collaborators [24] proposed to trap bosons in a
so-called optical lattice to experimentally realize the Bose-Hubbard Hamiltonian, which was
so far only known as a model system in condensed matter theory [25]. An optical lattice is usu-
ally formed by the interference of counterpropagating laser beams, creating a regular array of
intensity minima and maxima with simple cubic symmetry. Based on the optical dipole force,
atoms are trapped in this array that resembles the structure of ions in a solid crystal [26]. When
the intensity of the lasers is increased, the tunneling of atoms through the artificial crystal is
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more and more suppressed. At the point where the interaction energy effectively dominates
over the kinetic energy, the atoms get localized at individual lattice sites and the many-body
state corresponds to a Mott insulating phase. Soon after the observation of number-squeezed
states in an one-dimensional optical lattice [27], the field had a seminal breakthrough: In 2002,
Markus Greiner and collaborators [28] observed the quantum phase transition from a bosonic
superfluid to a Mott insulator in a three-dimensional (3D) optical lattice. In the following
years optical lattices have been used to create Mott insulators in 1D and 2D [29, 30], a Tonks-
Girardeau gas [31, 32] as well as a band insulator of spin-polarized fermions [33]. Recently,
also more complex lattice geometries such as superlattices [34-36] and hexagonal lattices [37]
have been realized.

The enormous experimental progress that has been made with fermions at Feshbach reso-
nances and bosons in optical lattices has fueled the prospect that ultracold atoms can be used to
study problems of quantum many-body physics with high precision. This idea follows Richard
P. Feynman’s vision of quantum simulation [38], which he presented in 1981. Feynman argued
on general grounds that, on a classical computer, the accuracy of simulations of quantum me-
chanical systems must have an intrinsic limit. Therefore he proposed to use a well-controlled
quantum system for the simulation of quantum mechanical problems.

In this thesis I report on the realization, characterization and analysis of many-body quantum
states of ultracold atoms in an optical lattice. The studies with ensembles of interacting bosonic
8TRb and fermionic “°K atoms are enabled by a versatile setup, that integrates many of the
aforementioned experimental concepts. A key innovation is the first implementation of a blue-
detuned optical lattice that is combined with a red-detuned dipole trap to provide independent
control of the lattice depth and the underlying trapping potential. This allows to vary the atomic
filling at lattice sites, while leaving the lattice depth unchanged, or to create homogeneous
lattice systems. In combination with Feshbach resonances these capabilities open the door to
new classes of equilibrium and nonequilibrium experiments.

The research of this thesis has lead to several important achievements: First, it has been
possible to implement the Fermi-Hubbard model in an optical lattice with an ultracold spin
mixture of fermionic atoms. Metallic and insulating phases have been identified, including the
fermionic Mott insulator. Second, a new atom optical technique has been developed to measure
the on-site interactions of bosonic atoms with high precision. This has allowed to demonstrate
the presence of effective multi-body interactions pointing towards important multi-band effects
in optical lattices. Third, the first lattice Bose-Fermi mixtures with tunable interspecies inter-
actions have been created. This has allowed to study the influence of fermionic "impurities" on
the bosonic superfluid to Mott insulator transition and to reveal several nontrivial interaction
effects. In the following, a brief outline and motivation of the specific experiments is given:

Metallic and insulating phases of fermionic spin mixtures

In condensed matter physics the Mott insulator phase is a paradigmatic manifestation of strong
correlations between electrons in solids. When interactions are exceedingly strong, it can
emerge in materials, in which the unit cell of the crystal is on average occupied by one elec-



tron. Under these circumstances individual electrons get localized at the atomic sites and the
material is not able to conduct electrical current, although the conduction band is only half-
filled. For crystals with simple cubic symmetry the electron spins in the Mott insulator are
antiferromagnetically ordered, if the temperature of the material is below the Néel-temperature
Tx. This temperature is determined by the energy scale of the Heisenberg exchange interac-
tion J.,, which describes the energy cost for neighboring spins to exchange places. Up to this
point, the physics of Mott insulators is described by the famous Fermi-Hubbard model. It is
the simplest model system that captures the competition between interactions and kinetic en-
ergy in electronic materials [39]. However, the known territory is soon departed when Mott
insulating materials are doped: Some of them quickly turn into superconductors with surpris-
ingly high transition temperatures. These are the famous high-7, superconductors [40], which
are typically found in cuprates, which are chemical compounds consisting of two-dimensional
copper-oxide layers. It is a long-standing open question, reaching back to the discovery of
high-7; materials in 1986 [41], whether the corresponding superconducting many-body state
also emerges from within the Fermi-Hubbard model. So far, conclusive explanations for the
mechanism of high-temperature superconductivity could not be given. This is - cast in simple
words - the reason, why quantum simulation of the Fermi-Hubbard Hamiltonian in a clean and
defect free model system is a highly relevant research topic.

In the experiment, we implement the Fermi-Hubbard model by loading a fermionic spin
mixture of “°K atoms into a three-dimensional optical lattice. The quantum phases of the
system are explored by changing the strength of the external confining potential. Leaving the
overall atom number fixed, this effectively changes the system size and the local filling at the
lattice sites. Such a procedure is virtually impossible in real materials. The response of the
system is probed by monitoring the in-situ cloud size via phase-contrast imaging, which allows
to extract the compressibility of the quantum many-body state. We show how a noninteracting
spin mixture evolves from a dilute compressible metal into an incompressible band insulating
state with doubly occupied sites when the confinement is increased. For strong interactions and
intermediate confinement, we observe the emergence of an incompressible Mott insulator state
in the center of the trap, which is also signaled by a strong suppression of doubly occupied
lattice sites as a result of the localization of atoms.

Given the above outline of the status in condensed matter physics, it is the natural next step to
direct experimental efforts to the realization and detection of an antiferromagnetically ordered
Mott insulator. To reach this aim, the entropy per particle should lie below kp In(2), which
corresponds to staying below the Néel-temperature. Current experiments, including ours, lie
a factor of two above this value. Schemes for the reduction of entropy in optical lattices are
intensely pursued with the prospect of studying quantum magnetism with ultracold atoms.

Quantum phase revival spectroscopy and multi-body interactions

When a Bose-FEinstein condensate is loaded into a shallow optical lattice, the atoms macroscop-
ically occupy a quantum state that is delocalized across the whole system. If the lattice depth is
abruptly increased, the atoms will remain in the delocalized state, although it is not the ground
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state of the system. If the lattice depth is chosen sufficiently deep, this nonequilibrium state
does not relax, because the tunnel coupling between lattice sites is very small. Taking a glance
at an individual lattice site, the local quantum state can be well described as a coherent matter
wave field that is formed by a Poissonian superposition of atom number states (Fock states). It
is known from quantum optics [42] that coherent states, which have originally been introduced
as a description for the superposition of photons in a coherent light field, can show intriguing
quantum dynamics: When the phase evolution of the individual Fock states is nonlinear in the
particle number, the coherent state undergoes a series of collapses and revivals. For atomic
coherent states, this quantum evolution is caused by interatomic collisions and the periodicity
of the revivals is inversely proportional to the interaction energy of a colliding atom pair. This
conversion of an energy into a frequency makes the observation of quantum phase revivals a
precise measurement tool for atomic interactions.

For the experimental realization of this intriguing atom optical phenomenon, we load a Bose-
Einstein condensate of 87Rb atoms into a shallow optical lattice. A nonadiabatic increase of
the lattice depth creates an array of coherent states with a mean filling of typically less than two
atoms and initiates the quantum phase evolution on all lattice sites in parallel. Simultaneously
with the increase of the lattice depth we cancel the underlying confinement of the lattice. This
minimizes mutual energy offsets between lattice sites and boosts the coherence time of the
evolution by more than a factor of ten compared to previous experiments [43, 44]. More than
forty revival cycles are observed in the temporal modulation of the contrast of time-of-flight
interference patterns.

The resulting high spectral resolution allows us to perform the most precise measurements
of atomic Fock state energies to date. The spectral analysis of the quantum evolution reveals
that the collisions of atoms in an optical lattice cannot be exclusively described by two-body
interactions: Virtual transitions of atoms to excited on-site orbitals generate effective multi-
body interactions as higher-order corrections to the single orbital two-body interaction. The
precision measurement of the multi-body interaction energies signifies the impact of multi-
orbital effects in optical lattices and provides crucial input for the comparison of optical-lattice
quantum simulators with many-body quantum theory.

The observation of quantum phase revivals additionally reveals the atom number statistics
at individual lattice sites. Due to the effect of multi-body interactions, each Fock state appears
with a characteristic frequency in the experimental spectra. The corresponding spectral weight
encodes the occupation of individual Fock states, which allows us to monitor how the on-site
quantum state evolves from coherent, for shallow lattice depths, to highly number-squeezed,
for deeper lattices. This technique is similar to foundational experiments in cavity quantum
electrodynamics that yield the statistics of the cavity photon field [45].

Equilibrium phases of Bose-Fermi mixtures in an optical lattice

Multi-component systems play an important role in quantum many-body physics. From inter-
acting atoms and photons to electrons and phonons the interplay of interactions in binary mix-
tures gives rise to intriguing many-body phenomena such as superradiance, BCS-superfluidity



or polaronic effects. However, a scenario, in which particles of different quantum statistics
occupy a lattice structure and interact with each other, is somewhat unusual. A system of this
kind becomes available when loading quantum degenerate clouds of bosonic and fermionic
atoms into an optical lattice. The complex interplay of Bose-Bose and Bose-Fermi interactions
gives rise to a physical richness that has inspired numerous theoretical investigations. They led
to the prediction of a plethora of intriguing quantum phases, including exotic superfluids [46],
charge-density waves [47] and polaron-like quasiparticles [48]. Even a supersolid phase of the
bosonic component has been conjectured [49].

Being an initial step on the way towards the creation of complex quantum phases, we have
realized the first lattice Bose-Fermi mixture with tunable interspecies interactions. The inves-
tigation of the coherence of the bosonic component shows that the superfluid to Mott insulator
transition is shifted towards lower lattice depths for negative interspecies scattering lengths.
This shift can be attributed to an effective deepening of the optical lattice owing to the pres-
ence of attractively interacting fermions. The resulting renormalization of bosonic interactions
and tunneling reaches beyond the single-band Hubbard model and requires the inclusion of
higher lattice bands. On the side of repulsive interspecies interactions we do not see a notable
shift of the Mott insulator transition suggesting that bosons and fermions do not occupy the
same lattice sites. This behavior is consistent both with a trivial global phase separation and
a local anticorrelation of the species, as expected for a charge-density wave or a supersolid.
However, with the present techniques we cannot distinguish between these scenarios.

Few-body Bose-Fermi systems on individual lattice sites

In order to gain further insight into the interaction effects of lattice Bose-Fermi mixtures, we
make use of quantum phase revival spectroscopy. Specifically, we create an array of few-body
systems, which consist of a single fermion and a bosonic coherent state. By inducing collapse
and revival dynamics in this ensemble of "microlabs" it is possible to monitor the interaction
effects between the fermion and individual bosonic Fock states. For the first time, the absolute
strength of the Bose-Fermi interaction is directly measured as a function of the interspecies
scattering length. Furthermore, it is demonstrated that the presence of an interacting fermion
mediates a modification of the Bose-Bose interactions. Indeed, the data shows an increase of
the repulsion among the bosons when an attractively interacting fermion is present, which is
consistent with the observed shift of the superfluid to Mott insulator transition.

Additionally, we have identified an intriguing interference effect in quantum phase revival
spectroscopy that allows us to selectively infer the mean fermionic filling on those sites of the
lattice array, in which bosons and fermions overlap. With this method it is possible to show
that the local fermionic filling indeed varies as a function of the interspecies interactions. We
observe a marked increase of the on-site fermion density for interspecies attraction, while for
repulsive interactions again a separation between bosons and fermions is detected.

Our studies on tunable Bose-Fermi mixtures in optical lattices constitute early steps in the
investigation of this extremely rich quantum system. In fact, they are a promising starting point
to investigate tunable disorder [50], polaron physics [51] and complex quantum phases [49].



1. Introduction

On the few-body level, Bose-Fermi systems on individual lattice sites may be a useful platform
to study impurity physics or effective field theories that are relevant in the description of atomic
nuclei [52].

Outline

In chapter 2 we give a brief overview of the physics of weakly interacting quantum gases,
which is followed by the description of the main routes to enter the strongly correlated regime:
Optical lattice potentials and Feshbach resonances.

Chapter 3 is concerned with the description of Hubbard models for ultracold atoms in optical
lattices. We derive the Hubbard Hamiltonian and indicate the approximations that are made
with respect to the full many-body Hamiltonian. This clarifies that also physics beyond the
usual single-band Hubbard model can be expected in realistic lattice systems. The Bose- and
Fermi-Hubbard models are discussed along with the expected phases in implementations of the
models with ultracold atoms in optical lattices.

Chapter 4 provides theoretical background on the detection methods that are used in this
thesis: Absorption imaging and phase-contrast imaging. The latter is of crucial importance for
the reliable detection of fermionic in-situ density distributions in chapter 6. Furthermore, we
discuss the most relevant physical observables that can be extracted from in-situ and time-of-
flight images.

Chapter 5 gives a brief overview of the experimental apparatus focussing on the main innova-
tions that are crucial for the presented experiments. In particular, we discuss the phase-contrast
imaging system as well as alignment and characterization methods of the combined setup of
the blue-detuned optical lattice and the red-detuned dipole trap.

In chapter 6 the experimental realization of the Fermi-Hubbard model with fermionic spin
mixtures in an optical lattice is presented. We describe the experimental route towards the
observation of metallic and insulating phases in repulsively interacting mixtures, including the
demonstration of a fermionic Mott insulator. Furthermore, the anomalous expansion of attrac-
tively interacting mixtures at finite temperature is briefly outlined. In the outlook we discuss
strategies to cool fermionic spin mixtures below the Néel-temperature as well as detection
methods for antiferromagnetic order.

Chapter 7 describes the observation of coherent multi-body interactions in a bosonic lattice
quantum gas by means of quantum phase revival spectroscopy. We introduce the theory of
collapse and revival dynamics of a matter wave field and show that it can be used to measure the
interaction energy of atomic Fock states. The experimental part reports on long-lived quantum
phase revival dynamics in a homogeneous lattice and the resulting precision measurement of
Fock state energies and effective multi-body interactions. We further work out a proposal for
the detection of the Schrodinger cat state that arises during the collapse of a matter wave field.

In chapter 8 we report on the realization of a Bose-Fermi mixture with tunable interspecies
interactions in a three-dimensional optical lattice. It is demonstrated that the superfluid to Mott
insulator transition shifts towards lower lattice depths for attractive interspecies interactions,
while evidence for phase separation is found for interspecies repulsion.



Chapter 9 describes the application of quantum phase revival spectroscopy to few-body sys-
tems consisting of a single fermion and a small coherent bosonic field. We report on the direct
measurement of absolute Bose-Fermi interaction energies and demonstrate that the Bose-Bose
interaction energy is modified by the presence of an interacting fermion. Additional unpub-
lished data shows the observation of collapse and revival dynamics in the fermionic compo-
nent.
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2. Towards strongly interacting bosons and fermions

This chapter sets the stage from which this thesis departs into the realm of strongly interacting
bosons and fermions. Several theoretical concepts that are needed for a basic understanding of
the experiments in later chapters are briefly summarized.

The first section introduces theoretical background on ultracold quantum gases. After a fast
journey through second quantization, quantum statistics and basics of statistical mechanics,
ideal fermions and weakly interacting bosons are discussed in the Thomas-Fermi limit. The
consequences of interactions in ultracold quantum gases are exemplarily illustrated in a mean-
field analysis of an interacting Bose-Fermi mixture in a harmonic trap. The section concludes
with a discussion of possible routes towards strongly interacting quantum systems. The second
section is dedicated to the theory of optical lattices. After discussing the landscape of experi-
mental lattice potentials, we turn to the band structure of a simple cubic lattice and introduce
the Wannier basis. In the third section, the concept of Feshbach resonances is presented. After
a brief summary of the basics of quantum mechanical scattering theory, resonance scattering,
the emergence of bound molecular states and the problem of two interacting atoms in a tight
harmonic potential are discussed. Finally, the specific Feshbach resonances that are used in the
experiments of this thesis are introduced.

2.1. Ultracold quantum gases

We start with a reminder of quantum statistics [53] and many-body quantum theory in second
quantization [54]. Second quantization is the language of choice to formulate the many-body
Hamiltonians for bosons and fermions in optical lattice potentials. It is heavily used through-
out the thesis. Then, basic formalisms for bosonic and fermionic quantum gases in harmonic
trapping potentials are introduced, including the important Thomas-Fermi approximation [55—
57]. The bosonic and fermionic formalisms are both applied in a self-consistent mean-field
calculation for an interacting Bose-Fermi mixture in a harmonic trap, revealing a marked influ-
ence of interspecies interactions on the phases of the mixture. Finally, we discuss under which
conditions a quantum system can be regarded as strongly interacting [26, 58] and identify fun-
damental routes to reach this regime with ultracold atoms.

2.1.1. Bosons and fermions

Indistinguishability of particles is a fundamental concept of quantum theory. We consider a
system of [V indistinguishable particles. The single-particle states in the system are described
by a basis of single-particle wavefunctions {1z (x)}, where = denotes the collection of spatial
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and spin coordinates and E uniquely labels the state by representing a complete set of single-
particle quantum numbers. For example, for free fermions in a box E denotes the momentum k
and the z-component of the spin, s,. Using the single-particle wavefunctions, the most general
many-particle wavefunction W(x1, . ..xy) for the whole N-particle system can be constructed
by
\I/(:rl,...,xN): Z C(El,...,EN)'lﬂEl(xl)---'lﬂEN({EN), (21)
E1,..En

where each Ej, in the sum runs over the complete set of quantum numbers. Because quantum
particles are fundamentally indistinguishable, a single-particle wavefunction cannot be strictly
assigned to a certain particle. This implies the invariance of observables under the exchange of
particles. Particularly, the probability density |¥|? must be unchanged:

|\Il(...,xk,...,xl,...)\2:\\Il(...,xl,...,xk,...)\Q. (22)

From this we conclude that there are two possibilities for the sign of the many-particle wave-
function when particle coordinates are exchanged:

V(oo @pyeeey gy ) =2V @y, Thy e ) (2.3)

Therefore, the principle of indistinguishability suggests that quantum particles are grouped into
two fundamental classes: First, the bosons, for which the wavefunction transforms symmetri-
cally (upper sign). Second, the fermions, for which the wavefunction transforms antisymmet-
rically (lower sign). Indeed, the famous spin-statistics theorem in quantum field theory states,
that particles with integer spin are bosons and particles with half-integer spin are fermions [59].
According to equation 2.3 two fermions cannot occupy the same quantum state, because then
¥ would be equal to —W implying, that the wavefunction must vanish

U(oy @y eevy Thy oo ) = 0. 2.4)

This is Pauli’s exclusion principle for fermions.

Quantum statistics has a profound impact on the construction of many-particle wavefunc-
tions. For the case of bosons, a single-particle quantum state can be occupied by many parti-
cles. Accordingly, the general many-particle wavefunction for N bosons is expanded in terms
of a basis of completely symmetrized wavefunctions

nl!---nool)l/2

@Eh__.’nm(xl,...,x]v):( N Z b, (21) Vg, (TN). (2.5)

Er,.. . EN
(n1,+M00)

Here, the sum runs over all possibilities, in which N particles are distributed over the single-
particle states, such that n; particles are in state 11, no particles are in state s and so on. In
total, there are N!/(n;!na!- - - noo!) possibilities, which explains the normalization.

In the case of fermions, Pauli’s principle restricts the occupation of single-particle states to

10



2.1. Ultracold quantum gases

either ni = 0 or 1. The basis states of the general many-particle wavefunction for N fermions
are given by the normalized Slater determinants

Ve (21)  YE (v2) - YR (TN)
oF 1 1/}E2($1) 7/’E2(l‘2) sz(xN)

nl,...,noo(xlv"wa):ﬁ . : :
¢EN(x1) ¢EN('I2) wEN(xN)

The mathematical properties of the determinant ensure, that the basis wavefunctions transform
antisymmetrically under exchange of any two particles.

(2.6)

Second quantization

Second quantization offers a convenient way to capture the symmetry properties of bosons and
fermions without explicitly writing down the above many-particle basis states during calcula-
tions. The underlying formalism implicitly takes care of maintaining the appropriate symmetry
of the many-particle wavefunctions. For example the completely symmetrized bosonic N-
particle state 2.5 is represented by an occupation number state |95 ) = |n1,ng,...) =
[n1)|n2) - - - |neo) with the occupation numbers n; as defined above.

For bosons, the whole range of integer occupation numbers is allowed, including zero. In
order to construct and manipulate the occupation number states, the creation and annihilation
operators &,t and a; are introduced for each single-particle state k. The operators obey the
bosonic commutation relations

lag,a)- =0, [al,al]- =0 and [ag,al]- = ok, 2.7)

where [A, B]- = AB — BA. These relations determine all properties of the operators. They

imply, that the creation operator dL raises and the annihilation operator a;, lowers the number

of particles in the single-particle state ¢, by one according to dynk) = Vni + 1|ng + 1),
ai|ng) = \/nk|nk — 1), and especially ax|0) = 0, where |0) is the vacuum state. Furthermore,
it is easy to show that the eigenvalues of the operator n; = d;&k correspond to the number of
particles occupying the single-particle state ¢, , which suggests the name number operator for
.

For fermions, the occupation numbers are restricted to n; = 0 or 1 and the many-particle
wavefunction must be antisymmetric. Those requirements are automatically taken care of by
defining the anticommutation relations for the fermionic creation and annihilation operators CL

and ¢y, according to
er. e =0, [eféf]l+ =0 and [&, ] = du, (2.8)

where [A, B]+ = AB + BA. With these relations one can show, that é;rcék|0> = 0, which
prevents double occupation of a single quantum state (Pauli’s exclusion principle), as well as
ct0) = [1), cf[1) = 0, ¢x[1) = |0) and ¢4]0) = 0.

11
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Bosons Fermions

\ / \ /

\ ]
——
@/

Figure 2.1.: Bosonic and fermionic quantum statistics. At zero temperature bosons form a
Bose-Einstein condensate, while fermions arrange in a Fermi sea. The energy of the highest
occupied state in the Fermi sea is the Fermi energy er. Green and red balls correspond to
two spin states (spin up and spin down). The color coding introduced in this figure is kept
throughout the thesis: Blue balls indicate bosons, red and green balls indicate fermions.

Energy

Within the formalism of second quantization it is simple to write down many-particle ground
states. For N noninteracting, spinless bosons with the single-particle ground state g, , the
many-particle ground state can be directly constructed via

1

VNI

In this state, all particles occupy the same single-particle state, which is the defining property
of a Bose-Einstein condensate (see figure 2.1).

|®B) = |N,0,0,...) (@h)~10,0,0,...). (2.9)

In a fermionic IV-particle system each single-particle state can only be occupied by a single
fermion at most. Therefore, the zero-temperature many-particle ground state is realized, when
the N single-particle states with lowest energy are filled from bottom up as expressed by

|@p) =[1,1,...,1,0,0,...,0) = ] ¢fl0,0,0,...). (2.10)
N times k<kp

The indices are ordered in such a way, that a lower index corresponds to a lower energy. The
index kp is defined such, that Zkg kp — V. The energy Ej, = ep of the highest occupied
single-particle state is called the Fermi energy (see figure 2.1).

Operators in second quantization
As shown above, second quantization offers a concise way to express many-particle states.

However, the formalism unfolds its full potential, when it is used to rewrite /N-particle Hamil-
tonians in a way that allows for elegant diagonalization formalisms. In real space, a N-particle

12
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Hamiltonian generally has the form

N N
H=> T(x)+ Y Valzg,z)
k=1

k#l=1
N
+ Z ‘/g}(xk,ml,ﬂfm)‘f'-.-
k#l#m=1

@2.11)

Here T'(x}) denotes an operator acting on a single particle (e.g. kinetic or potential energy),
Va(xk, z;) an operator acting on two particles (e.g. two-body interaction between particles)
and V3(xy, x;, x,,,) an operator acting on three particles (e.g. three-body interaction between
particles). Generally, also operators involving a larger number of particles can play a role
as indicated by the dots. We will see in chapter 7 that higher particle terms can happen to be
relevant not only theoretically, but also experimentally. In second quantization the Hamiltonian
takes the form [54]

H= Za i|T|j)a; + Za (ig| Va|kl)ayag,

Z]k‘l

(2.12)
+ = Z& ala zyk\‘fgﬂmn)anamal +.

zgk

Ilmn
Here, only the case of bosonic operators is shown for brevity. The identical expression holds
for fermions, when the operators a; are replaced by ¢;. However, it is very important to
keep the ordering of the indices as changes affect the overall sign. The matrix elements are
complex numbers that are calculated by integration over the generalized coordinate x, for ex-
ample (i|T'|j) = [ dz vy, (x) T(x) g, (). We come across Hamiltonians of this kind several
times in this thesis. N evertheless, it is often convenient to use Hamiltonian 2.12 in a slightly
different form that is obtained by introducing the field operators ¥ (z) = i Y (x)ay and

) =% e Ur (x)d,t. A simple calculation yields
i = [ ded @ T@) ) + 5 [ deds! 3101 (@) Vil a') b))
b [ deds! da" G @) @) (@) Vi, ) Y i)

2.1.2. Bose-Einstein and Fermi-Dirac distribution

In the preceding section, we have derived the effects of quantum statistics on an elementary
level. However, in systems of practical importance the particle number is often very large and,
even more importantly, such systems generally have a finite temperature. Therefore it is crucial
to consider the impact of quantum statistics on statistical mechanics and thermodynamics.

13
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According to the fundamental postulate of statistical mechanics, a macroscopic system in
thermodynamic equilibrium is equally likely to be in any of the states that satisfy the macro-
scopic conditions [53]. This means, that the system is a member of an ensemble, in which
the total energy FE, the particle number N and the volume V' are fixed. It is called the micro-
canonical ensemble. Remarkably, those conditions are quite closely met in experiments with
ultracold atoms.! However, for calculations it is often more practical to consider the system
being in contact with a large reservoir, which allows for the exchange of particles and energy.
The corresponding ensemble is called the grand canonical ensemble, in which the temperature
T = 1/(kpp) and the chemical potential p, which is the energy cost to add a particle, are
fixed. The probability of the system to be in any state with particle number /N and total energy
E is determined by the Boltzmann factor e #(F=#N) /7 where Z is the partition function,
which we are going to derive for ideal gases in the following. The partition function has crucial
importance for the calculation of ensemble averages of physical observables.

We assume an ideal gas consisting of noninteracting particles, where the eigenenergies of the
single-particle states are denoted by ¢; and the many-particle states are given by |nq,. .., 7o)
with the total energy > . €;n;. The grand canonical partition function is then given by [54]

7 = ﬁTri e~ Pleimmni — ﬁ Z (e’ﬁ(ei’”)y. (2.14)
i=1

=1 n

We can further evaluate this expression by taking into account quantum statistics. For bosons,
the occupation numbers n are unrestricted and cover all integer numbers, which yields

1
z= === @.15)

i
and for fermions, n can either take the value O or 1, such that

Zp = [J(1 4 e P ), (2.16)

%

Now, statistics can be connected to thermodynamics via the fundamental relation [54]

Q(T,V, p) = —; InZ = i; > (1 Plime)), (2.17)

which is the grand canonical potential that allows to calculate all macroscopic thermodynamic
properties in equilibrium. The upper (lower) sign refers to bosons (fermions) in this and the

IThis is true under the assumption that ultracold atom systems are truly in thermodynamic equilibrium. In prac-
tice, an ultracold sample under investigation has typically undergone a sequence of parameter changes, which
can only be adiabatic to a certain degree. For example, changes of I/ and V are induced by variation of the
interparticle interactions or the trapping potential.

14
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Figure 2.2.: Fermi-Dirac distribution for several dimensionless temperatures 7'/TF as a func-
tion of the dimensionless energy of single-particle quantum states €/ep. Curves in the quantum
degenerate regime are plotted in blue.

following equations. The mean total atom number of the ideal gas is given by

oN . 1
(N) = ~on = Z(n,> with  (n;) = Bl F1 = fe/r(€), (2.18)

7

which are the famous Bose-Einstein and the Fermi-Dirac distributions for the mean occupation
of individual quantum states in noninteracting systems. Additionally the mean entropy is given
by [53]

_ %Y _ Blei — ) —B(ei—p)

It is important to note that the results derived here are generally valid for all systems of non-
interacting bosonic and fermionic particles. However, for practical calculations it often proves
useful to replace the discrete summations over the state index ¢, which appears in equations 2.17
to 2.19, by a continuous integral. This leads to the concept of the density-of-states capturing
the effects of the trapping potential on the energy levels.

2.1.3. Quantum degenerate fermionic gases

A gas of fermionic atoms in a single spin state at low temperature is the "most ideal" gas one
can think of. As we will discuss later in this chapter, low energy collisions between fermionic
atoms are largely suppressed due to Pauli’s principle (see section 2.3). We consider the gas to
be trapped in a three-dimensional harmonic potential

1
V(r) = 3™ (wiz® + w;y2 +w?z?), (2.20)
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where m is the mass of the particles and the w, denote the trapping frequencies in each direc-
tion a = x,y, 2. The eigenenergies of the single-particle states are given by [60]

1
enemyme =) wa (na + 2) : (2.21)
«

This single-particle spectrum of the harmonic oscillator gives rise to the density-of-states?

€2

g(e) = e (2.22)

where w = (wxwywz)l/ 3 is the geometric mean of the trapping frequencies. With equation 2.22

and the Fermi-Dirac distribution the total particle number /V in the system can be expressed by

kTBT 3 . ,6’—>oo
N = / 0 +1 (hw) Lig(—e’# / deg(e)O(pn —€). (2.23)

At a certain temperature 7' and total particle number [V, this relation implicitly fixes the chem-
ical potential ;. When the temperature approaches zero, the Fermi-Dirac distribution becomes
a step function, indicating that the single-particle states are filled from bottom up.?> Under
these conditions the chemical potential is called the Fermi energy e, denoting the energy of
the highest occupied single-particle state. Using equation 2.23 we obtain

er = hiw(6N)'/3, (2.24)

which allows for the definition of the Fermi temperature 7¢ = ep/kp and the Fermi momentum
kp = \/2mep/h?. Furthermore, using the equations 2.19 and 2.22 the total entropy of the
system can be calculated [61, 62], which to the lowest order in the temperature reads

S LT T\?
=1m°N—+0O <TF>

2.25
. T (2.25)

Thomas-Fermi approximation

The calculation of finite temperature properties of an ideal Fermi gas, such as the real space
density distribution, is considerably simplified by taking a semi-classical approach that is called
the Thomas-Fermi approximation. This approach is quantum in so far, that the Fermi-Dirac
distribution is used, but classical in so far, that the energies of the single-particle states € are

The continuum approximation of the quantum mechanically discrete eigenenergies is strictly speaking only valid,
when the discreteness is not resolved, for example, due to finite temperature. For the harmonic oscillator, the
condition justifying the use of a density-of-states requires that kT > hw, (o = z, y, 2).

3@(ac) is defined as O for < 0 and 1 for x > 0.
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approximated by the classical Hamiltonian H (r, p), according to

1

SA(B+ve)-n)

fr(r,p) =

. (2.26)
+1

The semi-classical approach is valid in the limit of large particle numbers and corresponds to a
local-density approximation [57]. The volume of a single quantum state viewed in the classical

phase space (r,p) is (27h)3. Accordingly, the real-space density distribution in an arbitrary
potential V'(r) is obtained by integration over all momenta [56, 57]

1 1
np(r) = W/dp fe(r,p) = ——5—Lizp (*65(“_‘/(”)) ; (2.27)

s
where \qg = /27h?/mkgT is the de Broglie wavelength. Li,,(z) denotes the polylogarithm
of n*® order.*
Assuming a three-dimensional harmonic potential V' (r) (see equation 2.20), it is instructive
to consider the Thomas-Fermi approximation in the limits of high and zero temperature. In the
first case, T — oo, the classical Boltzmann distribution is recovered

kpT

N 2.2 .
na(r) = ———e" 20 /%6 with o2 —
mws,

720,040, @

(2.28)

corresponding to a Gaussian distribution as expected for a harmonic potential (o« = z, y, z). In
the second case, 1" — 0, we obtain the profile

3

2m)z2 3
np(r) = (w %3 Re [(er — V(r))?3]
2 (2.29)
8 N a? \?
e S, ) 1— Bl
72 ReoRpyRes ( Ea: R%) ’

keeping in mind the definition of the Fermi energy er as the zero temperature chemical potential
2.24. The extension of the cloud in the directions of the harmonic potential that is possible at
the energy er is called the Fermi radius

2
Rra = | —= =/ R asnyvs, (2.30)
mw2 MWe,

*The polylogarithm is defined by a series expansion Lin () = 3>, 2* /k™ that can also be written as [56]

0 e’ )z -1’

where r denotes a vector in 2n dimensions. Note the limiting values Li, (z) === z and —Li,(—z) -2

In"(z)/T'(n + 1), where I'(n) is the Gamma function.
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2. Towards strongly interacting bosons and fermions

The density profiles n¢(r) and ng(r) play an important role in the thermometry of ultracold
fermion clouds, which is discussed in chapter 6 and appendix C.

2.1.4. Quantum degenerate bosonic gases

The behavior of an ideal gas of bosonic atoms differs fundamentally from the fermionic case:
When the temperature is lowered, an ideal Bose gas undergoes a phase transition and the single-
particle ground state of the system becomes macroscopically occupied. This phenomenon of
Bose-Einstein condensation is fundamentally rooted in quantum statistics and can be identified
on general grounds by examining the Bose-Einstein distribution (see equation 2.18)

1

fB(e) = Blam 1 (2.31)

Assuming without loss of generality, that the energy of the single-particle ground state ¢y van-

ishes, fB(€o) ﬁ_>—oo> oo diverges, when the temperature approaches zero. Note that p < 0,
because fp(€;) must assume nonnegative values. The divergence of the Bose-Einstein distri-
bution entails a macroscopic occupation of the single-particle ground state.

Assuming a three-dimensional harmonic oscillator with the density-of-states 2.22, we obtain
for the total particle number

_ >~ g(e) _ kT ’ < Bu
N—NO/0 de—simi— = ( i) Lis(e™) (2.32)

where it is crucial to separate out the ground state occupation Ny that is otherwise not properly
accounted for by the integral. The maximal particle number that could be accommodated in
the system at a fixed temperature without condensation, Ng = 0, is reached for ePr 5 1 since
Li3(z) is monotonically increasing and 0 < e* < 1. Therefore, the chemical potential must
be 1 = 0 at this point. In turn, if a fixed number of particles is to be accommodated in the
system, there is a critical temperature 7, below which a fraction of the atoms must occupy the
ground state. The critical temperature follows from equation 2.32 by setting Ng = Oand ¢t = 0

N \/3
kpT. =ho | ——— | ~0.94haN/3, (2.33)
Liz(1)
Insertion of this result into equation 2.32 yields the fraction of condensed atoms as a function
of temperature
No T\?
—=1—-= . 2.34
V-1 (1) @234

Using a semi-classical approach analogous to equation 2.27, it turns out that condensation sets
in, when the density reaches nj}** = Lig/5(1)/A}5 = 2.612/A35. This corresponds to the
intuitive argument that Bose-Einstein condensation happens, when the de Broglie wavelength
reaches the same order of magnitude as the interparticle spacing.
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2.1. Ultracold quantum gases

Weakly interacting Bose gas

Atomic Bose gases are not as ideal as spin-polarized Fermi gases, because interactions are
not suppressed at low temperatures. A realistic description needs to include interparticle in-
teractions and this has been successfully done using the Gross-Pitaevskii equation [55] for the
ground state of the many-particle system ®(r,¢). This is a nonlinear Schrédinger equation

2
i a(e.0) = (~ 10 Vi) +glote.0)?) o0 235)

where the interactions are included by the parameter g = 4wh?as/m with the scattering length
as (see section 2.3 for further details). With the knowledge, that in a pure Bose-Einstein con-
densate all atoms occupy an unique single-particle state, it is plausible to make the ansatz
®(r,t) = p(r)e /" Here, ¢(r) is understood to be normalized to the total particle number
[dr|é(r)|*> = N and p is the chemical potential. Accordingly, the time independent Gross-
Pitaevskii equation reads

(-5 2
g+ V() + g0 ) 9(6) = (o) (236

allowing to calculate the real space wavefunction ¢(r) that is connected to the density distri-
bution via ng(r) = |¢(r)|?. In general, this equation must be solved numerically. However, it
turns out that under most experimental conditions the contribution of the kinetic energy term,
proportional to A, is negligible compared to the potential and interaction energy [55]. Omitting
the kinetic energy, the real space density of the weakly interacting Bose gas is simply given by

nB(r)::|¢(rﬂ2::Inax[lL_?:%r),0}. (2.37)

This approximation is also called Thomas-Fermi approximation due to the close analogy to
equation 2.29.

For the case of harmonic confinement (equation 2.20), it is straightforward to derive for the
chemical potential

ho (15Nas\*/*
= — 2.38
where ¢ = /h/(mw) is the harmonic oscillator length corresponding to w. The Thomas-Fermi
radius for weakly interacting bosons in a spherically symmetric trap is given by
15Na, \'/®
Ry =1 ( ; as) . (2.39)
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2. Towards strongly interacting bosons and fermions

2.1.5. Interacting Bose-Fermi mixtures in a harmonic trap

In the experiment, we realize interacting mixtures of quantum degenerate bosons and fermions
by sympathetic cooling in a harmonic trap. This technique requires both interactions and good
overlap of the two species to ensure proper thermalization. However, when approaching the
quantum degenerate regime, the densities can become high enough that interactions consider-
ably influence the density distribution of both species inside the trap. In the case of repulsive
interactions they can even phase separate.

In the following section, we will derive phases of a quantum degenerate interacting mixture
of bosons and fermions in a harmonic trap. We will see that in - what is commonly called -
the weakly interacting regime, interactions can still have a dramatic influence on the quantum
phases. We use a mean-field approach to identify phase separation (agr > 0), density en-
hancement (apr < 0) and eventually the collapse of the mixture (agr < 0), as a function
of the Bose-Bose and Bose-Fermi interaction strength. We discuss this simple model here,
first of all, because it is experimentally important to understand the density distribution of har-
monically trapped Bose-Fermi mixtures prior to the lattice ramp-up. Additionally, it provides
intuition to effects that are also relevant for a Bose-Fermi mixture loaded into an optical lat-
tice. In the presence of an optical lattice the expected phases are even richer and, consequently,
much less accessible by simple theoretical means.

Self-consistent mean-field calculation

We calculate the density profiles of harmonically trapped Bose-Fermi mixtures at 7' = 0 using
a self-consistent mean-field theory [63—65]. Our model is based on the Thomas-Fermi approx-
imation both for the bosonic and the fermionic component given in equations 2.37 and 2.29,
respectively. The interactions between bosons and fermions are accounted for by adding to the
external trapping potential Vg p(r), a mean-field potential ggrnr(r) felt by the bosons and,
analogously, ggrnp(r) felt by the fermions. This results in a coupled pair of equations for the
bosonic and the fermionic real-space densities

np(r) = max [NB_VB(I')_QBF”F(I')7O}’ (2.40)
JBB

we) = [ Vite) — g (e)] 2.41)

F = a2hd pr — Vi gBFNB : :

The Bose-Bose and the Bose-Fermi interactions in the system are parametrized by the respec-
tive scattering lengths:

gep = 2nhi’app/uBB,
gsr = 2mh’apr/uBF,

where upp = mp/2 and ugr = (mpmy)/(mp + myp) denote the reduced masses of a collid-
ing atom pair. The chemical potentials are implicitly determined by the bosonic and fermionic
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Figure 2.3.: Real space density profiles of an interacting mixture of 8’Rb and 4°K in a three-
dimensional harmonic trap at four interactions. The mean-field calculation has been performed
assuming Ng = 3 X 10° bosons and Ny = 3 x 10° fermions and trap frequencies of wr, =
wry = 27 X 40 Hz in the horizontal and wg, = 27 x 200 Hz in the vertical direction, similar to
the experimental situation of chapter 8. Blue (red) lines indicate bosonic (fermionic) profiles
and r5y, = +/x? + y2. Note the factor of ten between the units of ng and ny. Dashed lines
show the profiles at vanishing interactions. Strikingly, the fermionic cloud is much larger than
the bosonic cloud with the same atom number; the volume of the clouds differs by a factor
of about twenty! This is a remarkable manifestation of the different quantum statistics. (a) At
attractive interspecies interactions the atomic density accumulates in the center until the system
undergoes a mean-field collapse, when the interspecies attraction is increased beyond app ~
—450 ag. Note that agpr = —185 a( approximately corresponds to the background scattering
length between “Rb and “°K (see section 2.3.5). (b) In the case of repulsive interactions
the fermions are pushed out from the trap center. The bosonic cloud is compressed by the
surrounding fermions and shows an increased density in the trap center. When the interspecies
repulsion is raised beyond apr = 4415 ag the central fermionic density vanishes. At this point
the central bosonic density is enhanced by about 20 %.
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2. Towards strongly interacting bosons and fermions

atom numbers Ng and Nf by

Npjp = /drnB/F(raMB/F)- (2.42)

The coupled equations are solved numerically by iteratively inserting the density distributions
into the respective other equation. Conveniently, the three-dimensional problem can be re-
duced to one dimension in the case of a harmonic trapping potential that is equally deep (in
absolute units) for the bosons and the fermions. Indeed, V5 (r) = Vi(r) is typically a good
approximation for magnetically trapped alkali atoms in the stretched hyperfine state or atoms
in a far-detuned optical dipole trap (see section 2.2). Introducing rescaled units

2 2
a}a:\/%xa:\/%xm (2.43)

where oo = x, y, z, the external trapping potential takes the convenient form V3 (1) = Vi (F) =
2 = 72, In the new coordinates the problem is spherically symmetric and therefore the density
distributions solely depend on 7 instead of a three-dimensional vector r. The simplified coupled
equations read

_ 72 _ =
np(F) = max [“B P~ gernr(7) ,0] , (2.44)
9BB
. (2mp)? ” .

np(f) = 513 e [(,up — 7= gBFnB(r))2} (2.45)

672h
and equation 2.42 takes the form
2 \: [® i

NB/F =4m -5 / drr TLB/F(T’, MB/F) (246)

meF 0

After rescaling, the density distributions merely depend on the geometrical mean of the trap-
ping frequencies wr = (wawasz)l/ 3 and the aspect ratio of the trap does not enter. Note
that the results that are obtained from this set of equations are only valid within the require-
ments of the Thomas-Fermi approximations (see the preceding sections).

We solve the coupled equations by means of numerical iteration to obtain the density distri-
butions ng(7) and np (7). The following steps are performed in this procedure:

o Initialization: The starting point (: = 0) is the Thomas-Fermi profile of the pure Bose-
Einstein condensate np (7). It is calculated using equation 2.44 with vanishing inter-
species interactions (ggr = 0) and the chemical potential ;1 ¢ being implicitly given by
equation 2.46.

o Start of the iteration loop: np ;(7) is inserted into equation 2.45. The resulting fermionic
density profile is used to calculate the corresponding chemical potential i ;41 for N
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2.1. Ultracold quantum gases

fermions using equation 2.46. This yields the correctly normalized fermionic density
np,i1(F).

e End of iteration loop: This new fermionic density np ;41(7) leads to a new bosonic
density distribution np ;41 (7) as a result of the interspecies interactions. It is obtained
by inserting np ;11 (7) into equation 2.44 and matching of the bosonic chemical potential
1B,i+1 to the number of bosons N using equation 2.46.

The last two steps are iteratively repeated several times (typically © = 1 up to 4). The iter-
ation can yield different outcomes: Either the procedure converges and the resulting density
distributions constitute the self-consistent solutions of the problem, or the procedure diverges
corresponding to an increasing central density for each iteration. The latter case can happen
for attractive interspecies interactions and corresponds to a collapse of the mixture [66]. Fig-
ure 2.3 shows a summary of results obtained both for attractively and repulsively interacting
Bose-Fermi mixtures at typical experimental parameters.

2.1.6. Routes towards the strongly interacting regime

The ratio between the interaction energy and the kinetic energy per particle determines, whether
a degenerate quantum system is in the weakly or strongly interacting regime. At quantum de-
generacy the de Broglie wavelength approximately corresponds to the interparticle spacing.
Therefore, the de Broglie wavelength relates to the particle density via A\gg ~ n~ /3 and the
density dependent kinetic energy can be approximated by e, = h?n?/?/(2m). The den-
sity dependent interaction €;,; = |g|n has already been introduced in the preceding sections,
where the interaction strength reads g = 47h%as/m and ay is the scattering length (see section
2.3). Accordingly, the ratio between interaction and kinetic energy per particle is given by the
parameter [58]

_ €int |g |7”L

 ekin h2n2/3/(2m)

We note, that  corresponds to the parameter kr|as| used to characterize fermionic quantum
systems, because the Fermi momentum kg coincides with n'/3 in the quantum degenerate
regime [56, 57].

When v < 1, the quantum system is regarded as weakly interacting. In this regime inter-
particle correlations need not be taken into account. For example, weakly interacting bosonic
quantum gases are remarkably well described within the effective single-particle theory of the
Gross-Pitaevskii equation 2.35. This relatively simple framework has been successfully em-
ployed to describe exciting phenomena, such as interfering condensates or vortices [55, 58].

However, strongly correlated many-body quantum phases only arise, when  exceeds unity.
Equation 2.47 shows the possibilities to reach this regime: Either one increases the mass m or
the interaction strength g. While these options may rather be called "impossibilities" in solid
state physics, the remarkable techniques and control of atomic physics renders them possible
for ultracold quantum gases. We discuss in the next two sections, how, on the one hand, an
optical lattice potential can be employed to change the effective mass of atoms, and how, on the

~ n'3|ayl. (2.47)
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2. Towards strongly interacting bosons and fermions

other hand, Feshbach resonances can serve as a direct control knob of the interaction strength
g via the scattering length a.

Those two approaches have led to wonderful studies in ultracold atom physics within the
last ten years. Seminal results have been the realization of the superfluid to Mott insulator tran-
sition in an optical lattice [24, 28] or the investigation of the BEC-BCS crossover in quantum
degenerate fermionic spin mixtures [13, 17-19]. The experiments in this thesis utilize both
techniques simultaneously.

2.2. Optical lattice potentials

This section briefly reviews the theory of optical lattice potentials [26]. After an introduction
to optical dipole forces [67], we explain how optical standing waves can be employed to create
simple cubic lattice potentials for ultracold atoms. We analyze, compare and model the land-
scape of realistic lattice potentials, in particular focussing on the differences of using red- or
blue-detuned laser light to create the underlying optical standing waves. The section concludes
with a discussion of the band structure in simple cubic lattices [68].

2.2.1. Optical dipole potentials

A light field can act on neutral atoms both in a dissipative and a conservative way. A dissi-
pative force arises from the absorption and subsequent reemission of photons. This process
can transfer net momentum on the atoms and creates a force that is often called radiation pres-
sure. It is used for laser cooling and magneto-optical traps, where temperatures down to 100
microkelvin can be achieved with Doppler cooling techniques. Sub-Doppler techniques even
allow to reach the microkelvin regime, at least theoretically [67, 69].°> A conservative force, the
so-called optical dipole force, originates from the interaction of a light field with the electric
dipole moment that is induced in the atom by the very same light field. This interaction results
in a shift of the atomic energy levels, the AC-Stark shift, that is proportional to the intensity of
the field.

When neutral atoms are exposed to light generally both of the aforementioned forces are
present. However, we will show in this section that the conservative part can play the dominat-
ing role, when the light field is far detuned from all atomic resonances. The large detuning sup-
presses scattering of photons more strongly than the interaction with the self-induced dipole.
As the optical dipole potential is proportional to the intensity of the light field, an appropriately
engineered intensity distribution allows for the creation of optical dipole traps [70] or optical
lattice potentials [26, 68]. Typical depths of optical dipole potentials reach several microkelvin.
Therefore, they are well suited to capture atoms that have been cooled by radiation pressure in
a first step.

>The Doppler temperature is given by the energy scale defined by the natural linewidth T' of the transition that is
used for cooling, Tp = Al'/(2ks). The minimal temperature that can principally be reached with sub-Doppler
techniques is set by the recoil energy, corresponding to the recoil temperature Tsp = (hk)?/(2mkp).
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2.2. Optical lattice potentials

Oscillator model

We assume an atom to be exposed to a monochromatic light field E that oscillates at a frequency
w. This induces an electric dipole moment proportional to the electric field d(w) = a(w)E.
The proportionality constant «(w) is called the polarizability. It is a function of the frequency w
and generally takes a complex value, i.e. it also contains information on a phase shift between
the electric field and the induced dipole. The potential energy of the self-induced dipole is
given by

Vaip x —(d - E) o —Re[a(w)] - I, (2.48)

where (...) denotes the temporal average over the fast oscillation of the light field. This is
the conservative dipole potential that is proportional to the intensity I = egcE?/2, where the
amplitude of the electric field is given by £ = |E| and c is the speed of light. The real part
of the polarizability indicates that the in-phase component of the oscillating dipole moment is
responsible for the dipole force. Conversely, the imaginary part of the polarizability denotes
the out-of-phase component that gives rise to the spontaneous scattering rate

Tge o< Imja(w)] - 1. (2.49)

An expression for the polarizability can be derived using classical [71], semi-classical or
fully quantized theories [42, 72, 73]. However, it turns out that for a two-level system in the
limit of low saturation, also the quantum mechanical approaches yield the polarizability

3 T /wj
wi — w? —i(w?/wWd)T’

(2.50)

a(w) = 6meyc

which is conveniently derived for a classical damped oscillator [70]. Here, wg denotes the
optical transition frequency of the atom and I' the damping rate associated with the spontaneous
decay rate of the excited level (corresponding to the line width of the transition). The limit
of low saturation, i.e. negligible population in the excited level, is reached at far detuning®
A = w — wy, which is typically the case for dipole traps, and also implies that 'y, < I’
as we will see below. While the classical derivation yields an accurate description for a(w),
this is not the case for the damping rate I'. In a semi-classical derivation it turns out that the
damping rate is determined by the dipole matrix element between the ground and excited state
[ o< [(eld|g)[*.

Based on the above expressions, it is possible to derive the dipole potential and the scattering
rate in the limit of large detuning and negligible saturation:

2
Vaip(r) = 3m< 2 + : >~I(r), (2.51)

2w3 \wop—w  wy+w

3rc? [ w)® T T 2
T = —— | — -I(r). 2.52
se(r) 27%)8 <w0> <w0 —w + wo + w) (r) ( )

%1n the picture of the Bloch sphere this corresponds to a Bloch vector that only oscillates close to the ground state.
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2. Towards strongly interacting bosons and fermions

For the case of large, but not too large detuning |A| < wp, one may neglect the terms pro-
portional to 1/(wp + w) corresponding to the often employed rotating wave approximation
[42, 71]. This yields the simplified formulas

32 T
Vaip(r) = TwSZ I(r), (2.53)
3rc? (T\?
Lee(r) = o (A> I(r). (2.54)

Those two expressions contain the physics of optical dipole potentials in a concise form. We
see that Vg;p, is proportional to 1 /A, while the scattering rate I'y. scales as I/ A2, The sign of
the detuning determines, whether the dipole potential is repulsive (A > 0, blue detuning) or
attractive (A < 0, red detuning). Furthermore, we note that I'y. is proportional to Vg, /A. This
shows that inelastic scattering can be efficiently suppressed by choosing a large detuning A.
When optical dipole forces are employed for ultracold atoms, it is crucial to minimize inelastic
scattering; the recoil energy of a single scattering process corresponds to a temperature of
several 100 nanokelvins and creates strong heating compared to the motional ground state
energy of the atoms. Therefore, the detuning should generally be chosen as large as possible
within the limits of available laser power to ensure a conservative potential.

Although being conceptually appealing, the approximate equations 2.53 and 2.54 must be
taken with a grain of salt, when it comes to actual calculations. Considering the case of rubid-
ium, the error originating from the rotating wave approximation for the dipole potential depth
amounts to 3% for A = 738 nm (used for the optical lattice in this thesis) and even 12% for
A = 1030 nm (used for the dipole trap in this thesis). Therefore, in most cases the rotating
wave approximation must not be applied. Furthermore, for °K and 87Rb, which are used in
the experiment, the fine structure splitting due to the spin-orbit coupling must be taken into
account [70] leading to the D, and Dy line doublet, which is present in all alkali atoms. For
linearly polarized light, the resulting formula for the dipole potential reads

2
Vdip(r):% [21;,[)2 < _ : )+F§1 ( _ ! )] I(r),
wp, AD2 AD2 +2wD2 W, AD1 ADl —|-2le

(2.55)
where ', denotes the line width and A, = w — w, the detuning of the laser frequency w from
the respective resonance frequency w, of the x = Dy, D5 line. The corresponding data for 4°K
and 87Rb are provided in the appendices A.1 and A.2. For circularly polarized light, the dipole
potential is also sensitive to the hyperfine splitting and depends on the quantum numbers F'
and mp of Zeeman sublevels in the ground state [70]. However, using linear polarization the
optical dipole force offers an elegant way to create identical potentials for different Zeeman
sublevels without differential shifts. This is particularly relevant for the experiments using spin
mixtures of “OK reported in chapter 6.
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Figure 2.4.: The lower pictures schematically show the dipole potential in the focus of a round
red- (a) and blue-detuned (b) Gaussian laser beam. The envelope area of the upper images is
defined by the beam radius w(z). A red detuned beam can act as a trap for ultracold atoms,
while the blue beam creates a repulsive potential.

Red-detuned dipole trap

It is conceptually simple to create a trap for ultracold atoms based on the optical dipole force
discussed above. For red detuning the force is attractive and atoms are drawn towards the
intensity maximum. Therefore, the focus of a single red-detuned Gaussian laser beam can be
used to create a three-dimensional trapping potential for atoms (see figure 2.4). The intensity
distribution of an elliptical Gaussian beam propagating along the z-axis, can be written as [74]

2 2

2P _ 2z 2y
I(x) = ¢ W W) (2.56)
Twe(2)wy(2)

where P is the total power of the beam, giving rise to a peak intensity I = 2P/(mwo,woy).
The beam radius wy(2) (o« = x,y) denotes the distance from the beam center at which the
intensity has dropped by a factor 1/¢2. It is given by

2
Wal(z) = woat |1 + (i) : 2.57)
ZRa

where wy,, is the beam waist along the directions « = x,y and zp, = muga /A defines the
Rayleigh length; ) is the wavelength of the laser light. The trapping potential that is created by
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Figure 2.5.: An optical standing wave formed by retroreflection of a Gaussian laser beam
creates a one-dimensional optical lattice potential. Generally, the electric field amplitude of the
returning beam is reduced by a factor, which we call the effective reflection coefficient p.

a Gaussian beam profile can be approximated in the vicinity of the focus by

z \? Y 21/ 2\ 1/ z\?
1-2(— ) —-2|— ) —=(— ]| —=|— . (2.58)
(o) () ) 6]

This corresponds to a harmonic trap with radial and axial trap frequencies

4V 4V Vol 1 1
Wy = g , Wy = —g and Wy = —0 (T + T)’ (259)
muwg, mwoy m \ Zgp, ZRy

where m denotes the atomic mass. For typical parameters the axial trap frequencies w, and
w,y are about two orders of magnitude larger than the axial trap frequency w,. Therefore a
Gaussian single beam trap is highly anisotropic and hard to handle experimentally without
additional axial confinement.

Vdip (I‘) ~ -V

2.2.2. Optical lattice potentials

Optical lattice potentials for ultracold atoms are created by interfering counterpropagating
Gaussian laser beams. Using one, two or three of such standing waves 1D, 2D and 3D op-
tical lattices can be formed. For blue or red detuning the atoms are either trapped in the inten-
sity minima or maxima, respectively, which has a subtle influence on the details of the global
potential landscape.

1D optical lattice potential

When a Gaussian beam with a wavelength X is retroreflected into itself, an optical standing
wave with a periodicity of A\/2 forms (see figure 2.5). Such a standing wave can be used as
a one-dimensional (1D) optical lattice potential for atoms. Typically, the axial extend of the
atom cloud is much smaller than the Rayleigh length zg, such that the axially dependent beam
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radius can be approximated by the constant beam waist w..” The resulting periodic potential

is given by
Ty 2

Vip(r) =Vie ~*% cos?(kz) ~V, (1 -2 %) cos?(kz), (2.60)
wz

[

where k = 27/ is the wavevector of the laser light, 7, = /22 + y? is the radial coordinate
and V is the depth of the optical lattice potential. We note that the depth of the lattice V. is four
times larger compared to the potential depth of the bare Gaussian beam without retroreflection.
This enhancement is caused by constructive interference, which becomes obvious, when the
counterpropagating beams are viewed on the level of electric fields. Usually, the depth of an
optical lattice is given in units of the recoil energy Eio. = h2k%/(2m). In the following, we
also use the dimensionless lattice depth s, =V, / F\cc.

In the above description of a 1D optical lattice, we have made the implicit assumption that the
retroreflected beam has the same electric field amplitude as the incoming part. In experimental
realizations, however, the returning part has passed through several additional optical elements
reducing the field amplitude. We account for this by introducing an effective reflection coeffi-
cient p, that quantifies the ratio of the returning and the incoming electric field amplitudes at
the position of the atoms. For 0 < p, < 1 the standing wave is not fully modulated anymore
and reads

2
V, —ofzy
Vip(r) = e P (14 p? + 29, cos(2k2)) 2.61)
Vz Tgy 2
>~ 1-2 w? (1+ p; + 2p- cos(2kz)) . (2.62)

For perfect reflectivity (p, = 1) equation 2.60 is recovered using cos(2kz) = 2 cos?(kz) — 1.

External potential of a 1D optical lattice

The Gaussian beam shape and finite modulation of the standing wave give rise to a transverse
underlying potential in addition to the axial modulation of the optical lattice. We aim at an
effective description of the lattice potential according to

Vip(r) = V! cos?(kz) + %mwiyrgy. (2.63)

Here, V] = p, V. is the effective lattice depth and w,,, = w, = w, the transverse trap frequency
of a spherically symmetric beam. We distinguish two contributions to the frequency wg,:

First, we use equation 2.62 to derive the transverse curvature of the lattice potential as it is

felt by the atoms. It is crucial to distinguish red (V, < 0) and blue detuning (V, > 0) of the

laser light, because in the first case the atoms are trapped in the intensity maxima for which

"From now on we use the convention that the index of the beam waist denotes the propagation direction of the
rotationally symmetric lattice beam, i.e. w is the waist of a round beam propagating in z-direction.
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Figure 2.6.: External trapping potential for red- and blue-detuned lattices. The intensity dis-
tribution of a 3D lattice with reduced reflectivity (p = 0.25) of the retro beam is shown as
a density plot. Cuts show the influence of the perpendicular beams on the lattice potential
along the z axis. In the case of blue detuning the cut is taken for I(x,a/2,a/2) (blue) and
I(x,7a/2,a/2) (gray), while for red detuning the cut corresponds to I(x,0,0). The underly-
ing confinement of the red lattice is much stronger than the corresponding anticonfinement of
the blue lattice.

Figure 2.7.: Comparison of the lattice potentials created by a red- (a) and blue-detuned (b)
laser. In a red lattice the potential minima are located at the intensity maximaas V'(r) oc —I(r),
while in a blue lattice the potential minima are located at the intensity minima as V' (r) o< I(r).
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cos(2kz) = 1, while in the second case the atoms sit in the intensity minima described by

cos(2kz) = —1. From this, we obtain the first contribution to the transverse potential
V. (14 p2£2p,)
2 z z z
w =—— (2.64)
pot,zy m w?

where the upper (lower) sign denotes red (blue) detuning. For a positive (negative) overall sign
the potential is (anti)confining (see figure 2.6).

The second contribution is more subtle. Viewing a single lattice well as an harmonic oscilla-
tor potential in the axial direction, that is approximating cos(2kz) harmonically, we obtain for
the trap frequency in a lattice well at the center of the beam (7, = 0)

2k?
e = = |VZ]. (2.65)

Due to the Gaussian beam shape the absolute modulation depth of the standing wave radially
goes down according to the factor exp(—2r§y Jw?). Consequently, the trap frequency on a
lattice well decreases like

2

Ty 2
2 o TIZ/
Wlat,z (T:By) = Wlat,z € " = Wiat,z 1- (266)

2
wz

in the transverse direction and so does the ground state energy FEo(7zy) = Mwiat,»(72y)/2 of
the local harmonic oscillator. This gives rise to an additional radial anticonfinement that is
independent of the sign of the laser detuning. Hence, the frequency originating from the shift
in the harmonic ground state energy reads

2
wﬁO,SEy = _W ’V;/‘Erec- (267)

z

Combining the two contributions and introducing the dimensionless effective lattice depth
s., = V! / Frec, the transverse trap frequency of the external potential reads

E 1
wa, = —— Kp +p. £ 2) s, — 2\/3;} : (2.68)
z

B 2
mws;

where the upper (lower) sign holds for red (blue) detuning. In typical experimental setups the
effective reflection coefficient does not exceed the range 0.8 < p, < 1. For those values the
prefactor 1/p, + p, + 2 is very close to 4 (zero) for the case of red (blue) detuning. Therefore,
a red-detuned lattice has an underlying external potential that consists of a dominant confining
term (scaling as s,) and an anticonfining term (scaling as @). In a blue-detuned lattice,
however, both terms are anticonfining and the \/g scaling dominates. This important result is
confirmed by direct measurements of the transverse external potential in a blue-detuned optical
lattice presented in section 5.4.
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3D optical lattice potential

A simple cubic optical lattice potential can be created by crossing three optical standing waves
orthogonally to each other. In order to suppress interference between the three standing waves
it is crucial to choose mutually orthogonal linear polarizations. However, in the experiment
slight deviations of the polarizations and resulting small interferences are hard to avoid. Such
interferences can be rendered harmless by choosing laser frequencies of the beams that differ
by some tens of MHz. This leads to rapid oscillations of spurious potential corrugations and
the atoms effectively feel a smooth lattice potential due to time averaging. Therefore, we can
assume independent 1D optical lattices in x, y and z direction, which create a 3D optical
lattice potential of simple cubic type with a lattice constant of A/2 and a one atom basis. Using
equation 2.61 the 3D optical lattice potential can be written as

-2
VgD(I') =T “wi

1 (14 p2 + 2p, cos(2kz))

2
Vy, —27=%
+ Zy e Vi (1+ ,032, + 2py cos(2ky)) (2.69)
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Here, V,, denote the potential depth, w,, the waist and p,, the effective reflectivity of the su-
perimposed 1D standing waves (o = z,y, z). As above, red (blue) detuning corresponds to
Vo <0V, > 0).

External potential of 3D optical lattices

It is convenient to approximate the 3D optical lattice potential in the center, for distances much
smaller than the beam waists, as a sum of a homogeneous periodic modulation and an external
harmonic potential according to

1
Vap(r) =~ V! cos?(kz) + v, cos®(ky) + V/ cos?(kz) + 3™ (wiz® + w§y2 +w?z?) . (2.70)
Here, the effective lattice depths are denoted by V. = p,V, and w, are the effective trap
frequencies of the external harmonic potential in the directions & = z,y, z. Using the above
results for the 1D case, the squared trap frequencies are readily derived and read

2 Elec (1/py+ﬁ’yi2)3;—2 5;/ (1/pz—|—p2:|:2)slz—2 s’z
wl = — . Vo . v @2.71)
m ’LUy wy

The corresponding expressions for wz and w? are obtained by cyclic permutation of the indices.
Assuming an isotropic potential, for which the dimensionless effective lattice depths s/, = ',
the effective reflectivities p, = p, the waists w, = w are equal in all directions o = x,y, 2
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2.2. Optical lattice potentials

and 72 = 22 + y2 + 22, the entire external potential can be expressed by
ext 1 / / TZ
VESH(r) = — Ehrec S +2) s —2Vs = (2.72)

This expression contains both the effects of finite effective reflectivity as well as the anticon-
finement scaling as /s’ that originates from the transverse change of the ground state energy
for each lattice beam. In the case of a blue-detuned 3D optical lattice (lower sign), which is
used in the experiments of this thesis, the later term is dominating the external potential of the
lattice.

2.2.3. Band structure and Bloch states

In this section we derive the eigenstates of a single particle that moves in a periodic potential.
The corresponding eigenenergies form energy bands with a characteristic structure depending
on the symmetries and the depth of the lattice. Irrespective whether an electron in an ionic
crystal or an atom in an optical lattice is the matter of interest, the resulting physics is identical.
However, we want to emphasize two caveats on the theory derived in this section:

e First, it refers to a homogeneous lattice system that extends to infinity. This is a rea-
sonable assumption for large solid state crystals, but in the case of finite-sized optical
lattices it must be handled with care. Deviations that arise in an optical lattice with an
underlying confining potential are numerically addressed in section 3.3.3.

e Second, what is derived in this section is a single-particle theory. Therefore, the the-
ory itself and all implications that are drawn from it are strictly speaking only valid for
single particles or noninteracting many-particle systems. Noninteracting systems can be
realized with ultracold atoms using spin polarized fermions, which do not collide in the
low energy limit, or by tuning the scattering length to zero using a Feshbach resonance
(see section 2.3). However, essentially all experiments of this thesis feature interacting
particles.

Nevertheless, the single-particle band structure of homogeneous lattices is the basis to under-
standing the physics of more involved interacting systems. Band structure in conjunction with
quantum statistics often allows to understand basic physical effects in lattices, such as the for-
mation of metallic or band insulator states for fermions [75] (see chapter 6).

The optical lattice used in the experiments has a three-dimensional simple cubic structure.
Therefore, the movement of the atoms can be considered independently for the three coordinate
axes x, y and z. It is sufficient to solve the Schrodinger equation of the one-dimensional

problem:
A2

~ . ~ p
Ho(M(z) = EM¢(™ (z) with H = 5tV (@), (2.73)
where p = —ihd/0z is the momentum operator and V' (x) is assumed to be a homogeneous lat-

tice potential with periodicity a = A/2 = 7 /k, where ) is the wavelength of the laser creating
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2. Towards strongly interacting bosons and fermions

the lattice. According to Bloch’s theorem [75] each eigenstate (;S((]n) (x) of this Hamiltonian can

be written as a product of a plane wave with wavevector ¢ and a function u,(ln) (x) = u,(ln) (x+a)
with the same periodicity as the lattice potential,

¢((]n) (z) = eiae/h u((ln) (z). (2.74)

We use this wavefunction as an ansatz and insert it into equation 2.73 to obtain an eigenvalue
problem for u((]n) (z):
1

H, ug”) (z) = <2m (p+q)° + V(x)) ug”) (x) = Eé”) u((I”) (). (2.75)

At this point we can use the fact that both the potential V' (x) and the functions u((ln) () have
the same periodicity. They can be expanded in discrete Fourier sums consisting of plane waves
with wavevector 2k and the corresponding higher harmonics:

_ Z Wei?km: and u(n) (.%') _ Z an,q)eikax, (2.76)

S

where the indices 7, s run over all integer numbers. Based on the expansion of u((ln) (z) it
becomes apparent, that the Bloch function qzbé”) (x) can be constructed by a superposition of
plane waves with wavevectors ¢/h + 2ks, where 2ks are the reciprocal lattice vectors [75].
This implies, that the quasi-momenta q that give rise to distinct Bloch functions are restricted
to the interval | — Kk, hk]. This interval is called the first Brillouin zone. For each value of ¢
we can expect an infinite number of discrete energy levels E(gn) that are conveniently labeled
by the positive integer index n. It will become clear below, why n is called the band index.

Inserting the Fourier sums into equation 2.75, we obtain for the kinetic energy

1 A n 2hks + 2 i2ksx _(n
— (+ ¢ ul"(z) =) (QmQ)e 2hsz o(n:q) 2.77)

and the potential energy
V Z Z |74 61216 r+s)kx qu _ Z Z Vv, ezk’saz gng ) (2.78)

The functional form of an optical lattice potential is known to be sinusoidal, such that the
corresponding Fourier expansion is simply given by

Vi /. p
V(z) = Vy cos®(kx) = < (emx + 72k 2) (2.79)
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2.2. Optical lattice potentials

with the only non-vanishing Fourier coefficients being V) = V,/2 and V4, = V, /4. This
allows to write the eigenvalue problem of equation 2.75 in matrix form

S

ST Hypclp? = B elma), (2.80)

where H,y is the matrix of the Hamiltonian ﬁq calculated with respect to the basis of plane
waves e'2#5¢_The entries of the matrix are given by

(25 + )% Bree + Vi/2 if |s — /| = 0,
Hgy = (V. /4 if [s — | =1, (2.81)

0 else.

Here it becomes apparent, that the recoil energy Eroc = h%k%/(2m) is the natural unit for the
lattice depth V..

The Hamiltonian can be numerically diagonalized for a given quasi-momentum ¢ yielding

the eigenenergies E(gn) and the eigenvectors ¢(™%?) = (cgn’q)) that define the Bloch functions
via equations 2.76 and 2.74. The matrix entries for large indices |s| correspond to high-energy
contributions (see equation 2.78) and the coefficients cg’”’) become very small in the lowest
bands. Therefore, it is sufficient to include the matrix entries up to a cut-off index |s| < Spmax.
For typical lattice depths up to 50 E,. it is sufficient to keep the entries with |s| < 7. In
principle, the numerical diagonalization within the limited Hilbert space yields results for the

first 2sax + 1 bands, but the outcome is most accurate for the lowest energy bands.

The results of band structure calculations for a one-dimensional sinusoidal lattice at several
depths are displayed in figure 2.8. For very low lattice depth the band structure does not
show band gaps and corresponds to the kinetic energy of a free particle, where the dispersion
parabola is reduced to the first Brillouin zone. For increasing lattice depths band gaps open
up and the band width decreases exponentially in particular for the lowest lying bands. We
observe that the energies E(gn) for a fixed index n are a continuous function of ¢ being bounded
from below and above, which motivates the name band index for n. In very deep lattices, the
individual lattice wells become more and more independent and the low energy physics can be
well described in the harmonic approximation. In this case, the gap between the lowest bands
is given by the energy spacing of the on-site harmonic oscillator fw,s .. However, we note
that even in deep lattices the higher bands with energies larger than the depth of the lattice
(dashed lines in figure 2.8) remain wide and still closely resemble the dispersion relation of a
free particle. Here, the main effect of the lattice can be captured by assigning a larger effective
mass meg > m to the particle, which leads to a slower movement through the lattice potential.
Generally, the effective mass at quasi-momentum ¢gg and band index n is given by

- 2E™ | \
myg (qo) = h? 1 : (2.82)
q0

0q?
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2. Towards strongly interacting bosons and fermions
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Figure 2.8.: Band structure of a one-dimensional optical lattice. The eigenenergies Eqn) of
Bloch states d)én) at quasi-momenta ¢ are displayed for the lowest bands n at several lattice
depths ranging from 0 to 40 E}e.. The lattice depths V,, are shown as dashed lines. Dotted
lines indicate the zero point energy fuvjat /2, when single lattice wells are treated in harmonic
approximation. For deep lattices the lowest band becomes flat and the band gap is well approx-
imated by the level spacing of the harmonic oscillator iy -
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2.2. Optical lattice potentials
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Figure 2.9.: Exemplary Bloch wavefunctions ¢£,”) of a one-dimensional 8 FE,.. lattice. The
upper (lower) panels show the probability amplitudes (probability densities) in the first and

second band for the quasi-momenta ¢ = 0 (solid lines) and ¢ = +hk (dashed lines). The
periodicity of the lattice potential is indicated by the gray shading.

Similarly, the group velocity of a wavepacket in the Bloch state (;5((12) is given by the first deriva-
tive of the dispersion relation [68]

N 10E"
’Ug(gr)(qO) 7 8;

(2.83)

q90

Examples for the Bloch wavefunctions ¢E,") (x), which are obtained in a band structure cal-
culation, are shown in figure 2.9. Being composed of a discrete sum of plane waves, the Bloch
functions are delocalized and extend over the complete, infinitely large lattice. In the lowest
band (n = 1), the Bloch state in the center of the Brillouin zone (¢ = 0) is symmetric, while
at the Brillouin zone edges (¢ = 4hk) the wavefunction is antisymmetric. The symmetries
alternate for higher bands as do the curvatures of the energy bands. The wavefunctions with
the highest energy within a certain band are antisymmetric. Furthermore, figure 2.9 shows that
the wavefunctions of the second band feature an enhanced probability of finding the particle
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Figure 2.10.: Bandwidths of the first and second Bloch band as a function of lattice depth in
one (a) and three (b) dimensions. While the bands are fully separated in the one-dimensional
case, in the three-dimensional case the band gap only starts to open at about 2.24 F,e.. The
lattice depth is assumed to be identical for each lattice axis.

within the potential barrier separating the lattice sites.

The Bloch states of the three-dimensional simple cubic lattice can be constructed as prod-
uct wavefunctions of the one-dimensional Bloch states for each axis x, y and z, because the
Hamiltonian is fully separable. The energy of the product state is given by the sum of the
eigenenergies of the three individual Bloch states. In a one-dimensional lattice the first and
second Bloch band are fully separated for any nonvanishing lattice depth (see figure 2.10a).
However, in three dimensions the first excited band corresponds to product wavefunctions of
two (n = 1) and one (n = 2) Bloch states. For low lattice depths and certain quasi-momenta
q = (¢z, gy ¢-), those can have a lower total energy than wavefunctions of the lowest band
consisting of a product of three (n = 1) Bloch states. For a three-dimensional lattice a band
gap between the lowest lattice bands starts to open for depths larger than about 2.24 E\. (see
figure 2.10b).

All experiments reported in this thesis start by adiabatically loading an ultracold quantum
gas or quantum gas mixture into a three-dimensional optical lattice. The lattice depths of all
axes are ramped up slowly in order to ensure, that the many-body system remains in its ground
state and, in particular, stays in the first lattice band. For the case of a Bose-Einstein condensate
this last requirement is not very critical as the atoms dominantly accumulate in the ¢ = 0 Bloch
state of the first band, which is the lowest energy state and well separated from the second band
even for low lattices. However, for fermionic atoms a Fermi sea develops, in which the Bloch
states of the first Brillouin zone are filled from bottom up (see section 2.1). Depending on the
filling of the Brillouin zone, which is determined by the system size, higher lying Bloch states
may be populated, whose energy is degenerate with states of the second band. This situation
bears the risk of populating the second band during lattice loading. In chapter 6 an experimental
solution to this problem is presented.
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2.2. Optical lattice potentials

(a) Wannier functions wp=1(x) (b) Wannier probability densities [w=1(x)|?
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Figure 2.11.: Wannier functions (a) and probability densities (b) at several lattice depths plot-
ted together with the schematic lattice potential (gray shading). For deeper lattices, the Wannier
functions are strongly localized. Their overlap with neighboring lattice sites is reduced, which
corresponds to a suppression of tunnel coupling.

2.2.4. Wannier basis

Instead of working within the basis of fully delocalized Bloch wavefunctions, it is often more
convenient to use a basis set of wavefunctions that are localized at individual lattice sites.
Particularly, in the limit of deep lattices the individual sites are more and more decoupled
from each other and the motion of atoms tends to be restricted to single wells. If the lattice is
occupied by many particles, interactions may further enhance localization (see chapter 3).

The Wannier functions form a basis set of maximally localized wavefunctions composed by
coherent superpositions of Bloch states. The Wannier function of a localized particle at the 5"
lattice site in the n® Bloch band is defined by [75]

1 o
wpy (T — 15) = Vi Z e 1% (;5((1") (). (2.84)
q

Here, the phase factor exp(—igx;) compensates the factor exp(igz), which appears in the
definition of the Bloch states 2.74, at the coordinate x;, inducing constructive superposition of

the states ngn) (x) at the corresponding lattice site. The sum runs over the quasi-momenta ¢
within the first Brillouin zone taking discrete values, if the lattice has a finite size. Assuming
normalized Bloch states in a system with M lattice sites, there are M different quasi-momenta
q and the normalization is given by N = M.

Because both the Bloch and Wannier wavefunctions form a basis, also the reverse transfor-
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2. Towards strongly interacting bosons and fermions

mation is possible

1 .
o™ (z) = — Z e"Tiw, (z — x;), (2.85)
q VN -

where the summation is performed over all M lattice sites. This expression shows that the
quasi-momentum ¢ determines the phase relation between the localized wavefunctions on the
individual lattice sites.

Owing to the decoupling of the spatial directions in a simple cubic lattice, the three-dimen-
sional Wannier function for a particle in the n'" band at lattice site r; = (zj,y),%;) is given
by the product

Wy (r = 1) = Wiy (T — ) - Wy (Y — Y5) - W) (2 — 25) (2.86)

of the n'® band Wannier functions w(p) (a0 — o) of the individual one-dimensional lattices
(e = x,y, z). When the first Bloch band is concerned, we usually drop the band index of the
Wannier function and simply write w(r —r;).

2.3. Feshbach resonances

Feshbach resonances allow to control the interactions between atoms by an external magnetic
field and have become one of the most important tools in ultracold atom experiments [12].
In this section we will briefly summarize the basics on interatomic interactions and Feshbach
resonances as far as they are relevant to this thesis. The discussion also includes the creation
of loosely bound Feshbach molecules and the effects of a tight external confinement on the
collision physics of two interacting particles.

2.3.1. Elastic scattering and low energy collisions

As in classical mechanics, scattering of two particles in quantum mechanics is described in
a coordinate system, in which the center of mass of the two particles is at rest. By doing
this the problem reduces to an effective single-particle Hamiltonian in terms of the coordinate
r = ro — r1, which is the relative distance between the two particles at positions r; and ra,
and the reduced mass . = mima/(m1 + m2). In the absence of scattering the solution would
simply be a plane wave e’**, which can be chosen to propagate along the z-direction without
loss of generality. k denotes the momentum of the effective particle with the reduced mass .
When a potential V'(r), which we assume to be spherically symmetric for simplicity (r = |r|),
is introduced, there will be a finite probability for the particle to be scattered. The resulting
asymptotic wavefunction at large distances has the from

ikr
b(r) o e 4 () er , (2.87)
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2.3. Feshbach resonances

consisting of the incoming wave e**# and an outgoing spherical wave f(6)e’*" /r, where the
scattering amplitude f(6) is a function of the scattering angle 6 (and generally also of the
momentum k). Based on this wavefunction the incoming and the outgoing probability flux can

be calculated, which yields for the differential cross section

do
— =|f(0). 2.88
e =110) (288)

Since we have assumed a spherically symmetric potential, the wavefunction ¢ (r) can be
expanded in terms of spherical waves with angular momentum [ and vanishing projection on
the z-axis (m = 0). In this basis the scattering amplitude takes the form [60, 76]

o 2151 -1
:Z 21+ 1) ( o )Pl(cose), (2.89)

=

where P(cos 6) are the Legendre polynomials. The strength of this formulation lies in the fact,
that the whole scattering process is captured by the parameters §;, which simply denote the
spatial phase shift that is added to each spherical wave with angular momentum [ due to the
scattering process. Using the optical theorem we can directly compute the total scattering cross
section [76]

Ot = —JIm[f(0 = k—w Z 21 + 1) sin? §;. (2.90)
1=0

It can be shown, that the phase shifts scale as a function of the collisional momentum k
according to &, oc k% *1. This means the phase shifts for partial waves [ # 0 essentially vanish
for collisions with very low momentum - and so do their contributions to the total scattering
cross section. More pictorially, at low momenta, i.e. low collision energy Fyi, = h%k? /2y, the
effective particle is not able to penetrate the centrifugal barrier [76]. This is the second term
of the effective potential Vg (r) = V(r) + A%1(I + 1)/(2mr) that arises when the scattering
problem is formulated in spherical coordinates. Hence, the scattering amplitude reduces to

e?i% — 1 1

FO = fs = 0 = Teoroe — ik’ (2.91)

which is even independent of the scattering angle 6 as Py(cos @) = 1. It is possible to argue
that k cot o must be an even function of k [56, 76] and correspondingly one can introduce the

expansion
1 1
kcot §g A2 —— + =regk? (2.92)
as 2
for low momenta, where as denotes the s-wave scattering length and r.g the effective range
of the scattering potential. The effective range is typically of the order of the van der Waals

length 7o ~ (uCs/1%)"/* /2.8 For the case k|as| < 1 and kreg < 1 the scattering amplitude

8References [12, 77] quote van der Waals lengths of 64.90 ag for 40K and 82.58 ag for 8"Rb, where ao denotes
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2. Towards strongly interacting bosons and fermions

becomes independent of the momentum £ reading fs = —as and leads to a total cross section
for s-wave collisions of
2
Otot,s ~ 4may, (2.93)

which equals the scattering cross section of a hard sphere with a radius as [76].

Identical particles

For now we have derived the theory of collisions based on the assumption of distinguishable
particles. However, indistinguishability of quantum particles and their quantum statistics have
a profound impact on scattering. On the one hand, the scattering wavefunction ¢ (r) must be
spatially symmetric for two identical bosons. Therefore, only partial waves with even [ enter
and they enter twice due to symmetrization. The s-wave scattering cross section therefore
amounts to oyots = 8mas. On the other hand, the spatial wavefunction for two identical
fermions must be antisymmetric as the spin wavefunction is necessarily symmetric. In this
case only partial waves with odd [/ contribute and s-wave collisions of identical fermions are
forbidden. Therefore, spin polarized ultracold Fermi gases show essentially no interactions,
because scattering of higher partial waves is energetically suppressed.

Pseudo-potentials

Assuming that the collisional momentum is so low, that the corresponding de Broglie wave-
length A\qg = 27/k is much larger than the range of the interatomic potential, the details of
the potential do not matter for the scattering process. In this case it is convenient to replace
the complicated full interatomic potential by a much simpler pseudo-potential that neverthe-
less reproduces the s-wave scattering correctly. This purpose is served by a the simple contact
potential operator

2mh?
Vir) = 0 5. (2.94)

0
Using plane waves it is easily shown, that this expression reproduces the s-wave scattering
amplitude f; = —as in first Born approximation [76]. However, for practical use in three

dimensions it often must be regularized to avoid 1/r divergences of wavefunctions when r —
0. This is typically done by replacing the delta function with §(r) %r [53, 78].

2.3.2. Feshbach resonances

The phenomenon of resonance scattering is treated in many textbooks [60, 76]. Assuming low
collision momenta and modeling the attractive scattering potential by a box, it can be shown
that the s-wave scattering length diverges and changes sign (from negative to positive) when
the potential is deepened and a new bound state enters (see figure 2.12). Practically this means,
that it would be possible to tune the interactions between particles when there was a knob that
allowed to tune a bound state into resonance with the energy of the colliding particles.

the Bohr radius.
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Figure 2.12.: Scattering resonance. We assume two colliding particles with an attractive in-
terparticle box potential V'(r) with a finite range R (blue solid lines). (a) Due to the attractive
potential with a depth V; the radial wavefunction u(r) o< r — a5 (red solid line) has a stronger
curvature inside the range R than outside. The intercept as of the outside wavefunction with
the abscissa corresponds to the scattering length as; < 0. When the potential is deep enough
that a bound state almost enters, the scattering length diverges as — —o0o. (b) When the po-
tential is deeper (Vo < V1) and a real, very loosely bound state has just entered, the bend of
the wavefunction becomes stronger and gives rise to a very large positive scattering length a.
Thus, by tuning the position of a bound state, it can be possible to vary the scattering length
over a huge range.

For atoms it is not directly possible to tune the depth of the interatomic potential; however,
Feshbach resonances offer an ingenious way to bring a bound state into resonance with col-
liding atoms simply by changing an external magnetic field (see figure 2.13a). Let us assume
that two (distinguishable) atoms in the hyperfine states |1, mp, ) and |Fa, mp,) collide with a
very low relative kinetic energy in the entrance channel (also called: open channel). The atoms
can perform s-wave scattering into scattering channels that conserve M = mp, + mpg, [12].
However, those scattering channels typically have a different magnetic moment than the open
channel as they correspond to a different spin configuration. By varying the external magnetic
field, it can thus be possible to tune a bound state of one of the scattering channels (also called:
closed channel) into resonance with the open channel. If there was no coupling between the
open and the closed channel, the atoms would just acquire a phase shift corresponding to the
open potential. They would scatter off each other without resonance effects. However, the spin
configurations of the open and the closed channels are coupled, because the hyperfine interac-
tion of the two atom system is neither diagonal in the total electronic spin S = 51 4 Sy nor in
the total nuclear spin I= 11 + IQ [12, 56].°

This coupling leads to a coherent superposition of the unbound open channel and the bound
closed channel wavefunction during the collision. When the admixture of the bound state is
relatively small such that the region of the avoided crossing is large (see figure 2.13b), the

°In ultracold atom experiments typically alkali atoms are used in their ground states with vanishing orbital angular
momentum L.
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2. Towards strongly interacting bosons and fermions

Feshbach resonance is commonly classified as broad or open-channel dominated. In turn,
when the admixture of the bound state is large, the extend of the avoided crossing is small and
the resonance is called narrow or closed-channel dominated.

Generally, the divergent behavior of the s-wave scattering length a at a Feshbach resonance
can be efficiently parametrized as a function of the magnetic field B by the expression

A
B) = 1— . 2.95
lB) =anc (1- 525 ) 2.95)
Here By denotes the position of the resonance and A the width, that is the distance between
By and the magnetic field, at which the scattering length vanishes (see figure 2.13b). The
background scattering length apg is the scattering length far away from the resonance that is
determined by the last bound state or first virtual bound state of the open channel molecular
potential.

2.3.3. Creation of molecules

In the proximity of the Feshbach resonance, on the side of large and positive scattering lengths,
a dressed bound state develops with a strong admixture of the open channel wavefunction. Two
atoms occupying this bound dressed state can be viewed as a molecule that, in the region of the
avoided crossing close to the resonance, has the binding energy

FL2

N ——r 2.96
S (2.96)

Ey

which corresponds to a quadratic dependence on (B — By). The molecules in this region are
often called Feshbach molecules and are extremely weakly bound. Their molecular wavefunc-
tion extends to a very large size on the order of the scattering length a;. When the magnetic
field is tuned further below the resonance the dressed molecule asymptotically turns into the
purely bound state of the bare closed channel potential. In this regime the binding energy tunes
linearly as a function of the magnetic field following Ey, = du - B, where du is the difference
in the magnetic moment of the open and the closed channel.

Feshbach resonances allow to create molecules from free atoms by adiabatically sweeping
the magnetic field across the resonance starting from the attractive side [13, 56, 79]. If the
Landau-Zener type sweep is performed slowly with respect to the coupling between the open
and closed channel and if the temperature of the atomic cloud is low enough, the experimen-
tally achieved conversion efficiencies can reach more than 90% [80, 81]. Alternatively, the
molecular state can be populated using radio-frequency (RF) techniques, which are less effi-
cient, but allow to measure the molecular binding energy [13, 82-84]. In the special case of
6Li a cloud of Feshbach molecules can simply be created by evaporatively cooling the sample
on the as > 0 side of the resonance [81].

When a Feshbach resonance is used to create molecules of two distinct fermionic species,
such as two spin states in °Li or “°K, it has been observed that the lifetime of the molecules
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Figure 2.13.: Feshbach resonance. (a) Two atoms that perform a low energy s-wave collision
in the open channel (blue solid line) can couple to the bound state of a closed channel potential
(black solid line). The bound state can be tuned into resonance using an external magnetic field
owing to the different magnetic moments of the open and closed channel spin configurations
(inset). (b) The Feshbach resonance gives rise to a divergence of the scattering length as (blue
solid line). The width A of the resonance is the distance between the resonance position and
the zero crossing of as. The energy of the bare molecular state in the close channel (dotted line)
depends linearly on the magnetic field and d is the difference of the magnetic moments in the
open and closed channel. The binding energy E}, of the dressed molecular state (red solid line)
flattens upon approaching the resonance due to mixing of the open and the closed channel in
the region of the avoided crossing. The position of the resonance is shifted by J with respect to
the zero crossing of the bare molecular state energy.
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Figure 2.14.: Two interacting atoms in a harmonic oscillator potential. (a) The general struc-
ture of the energy levels obtained in an analytical calculation according to reference [78] is
shown as a function of the scattering length as in units of the harmonic oscillator length
¢y = \/h/pw. For vanishing interactions (as; = 0) the energy is given by F = hw(2n + 3/2),
while for infinitely strong attraction or repulsion (a; — =£00) the energies are shifted by Aw
yielding E = hw(2n + 1/2). (b) Application of the analytical result to a °K [9/2, —9/2)
+9/2,—7/2) spin mixture in a 20 E\. lattice in the vicinity of the Feshbach resonance at
By = 202.1 G (see section 2.3.5).
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is particularly long close to the resonance position. In this regime, the molecule is well ap-
proximated by two individual atoms, such that three-body collisions are strongly suppressed
by Pauli’s principle prohibiting s-wave collisions of two identical fermions [85]. Further away
from the resonance, the molecule is more closely bound and it becomes less stable against
three-body collisions, because here the bosonic character, which favors collisions, tends to
dominate over the fermionic quantum statistics of the constituent atoms. Fermionic molecules
can be created by using a heteronuclear mixture of fermionic and bosonic species, for example
40K and 87Rb or ®Li and ?3Na [86]. In contrast to bosonic molecules, those are particularly
long-lived far away from the resonance, where close binding lets the molecules clearly show
fermionic character and collisions among them are prohibited by Pauli’s principle. In turn,
close to the resonance the lifetime is expected to be very short. The use of an optical lattice
can help to increase the lifetime of Feshbach molecules considerably. Isolating atom pairs on
individual lattice sites and transferring them into the molecular state, helps to strongly suppress
three-body collisions [82].

Feshbach resonances have become a very important tool in experimental ultracold atom
physics. In the context of spin mixtures of interacting fermions, they have enabled the fruitful
investigation of the so-called BEC-BCS crossover. The ability to tune the interactions between
the spins has dramatic consequences: While for vanishing interactions the two spin states pop-
ulate independent Fermi seas, they pair up in momentum space for attractive interactions form-
ing a superfluid of Cooper pairs [17, 18]. These pairs in momentum space smoothly connect
to the molecular state on the repulsive side of the resonance, where a BEC of molecules forms
[14-16]. The superfluidity in the crossover region has been demonstrated by the observation of
vortices [19]. Another productive branch of experimental efforts uses Feshbach resonances to
create ultracold ground state molecules. Here, the weakly bound Feshbach molecules form the
starting point, from which the rovibrational ground state is typically addressed using a STIRAP
pulse sequence [87-91].

In the experiments presented of this thesis, the formation of molecules by a Feshbach sweep
is used to detect double occupation of lattice sites in an interacting fermionic spin mixture
of 49K atoms (see chapter 6). Furthermore, RF spectroscopy on KRb molecules has been
performed in our experimental setup. These efforts are reported in the PhD thesis of Thorsten
Best [92].

2.3.4. Two interacting atoms in a harmonic trap

For the creation of molecules in an optical lattice, it is important to understand the physics
of two interacting atoms on an individual lattice site. If the on-site potential is approximated
by a harmonic oscillator and the atoms are assumed to interact through a regularized contact
interaction, the problem can be solved analytically [78]. As shown in figure 2.14 the energy
levels of the bare 3D harmonic oscillator, which correspond to the noninteracting case (as = 0),
get mixed when interactions set in. The contact interaction between the atoms leads to the
emergence of a bound state, whose binding energy diverges towards negative infinity at ag = 0
(see figure 2.14a). The application of this level structure to the case of the By = 202.1 G
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Figure 2.15.: Tunable fermionic 40K spin mixture. (a) An s-wave Feshbach resonance be-
tween the hyperfine levels |9/2, —9/2) and [9/2, —7/2) is located at By = 202.1 G. Slightly
below at 198.8(5) G, there is a p-wave resonance (gray shaded) of atoms in the |9/2, —7/2)
state [94, 95]. (b) In chapter 6 we investigate repulsively interacting Fermi-Fermi mix-
tures in an optical lattice (A = 738 nm) at discrete values of the interaction parameter
U/12J = 0,0.5,1.0 and 1.5. For the fixed lattice depth of V' = 8 F\¢, these working points
correspond to the magnetic fields (1) 209.9 G, (2) 215.8 G, 3) 258.7 Gand (@) 175.5 G.

Feshbach resonance of “°K is shown in figure 2.14b. In contrast to the free space situation, the
bound molecular state is not entered exactly on resonance, but already at higher magnetic fields
starting at By + A, where the scattering length vanishes [79, 93]. The so-called confinement-
induced molecules [82] that exist between By and By + A dissociate smoothly when the lattice
is adiabatically ramped down.

The energy levels of atom pairs on the sites of an optical lattice have been experimentally
investigated using RF spectroscopy [82, 83]. Additionally, figure 2.14b shows that the first and
the second band are smoothly connected, when the magnetic field is ramped from below to
above the resonance, which has also been observed experimentally [33].

2.3.5. Feshbach resonances for rubidium and potassium
The Fermi-Fermi resonance

In chapter 6 many-body quantum phases of fermionic spin mixtures in a three-dimensional
optical lattice are investigated using ’K in the hyperfine sublevels | F, mg) = [9/2, —9/2) and
|9/2, —7/2). For this combination of spins a broad (open-channel dominated) s-wave Feshbach
resonance is available at By = 202.1 G to tune interspecies interactions and perform molecule
conversion [13, 94-97]. We rely on the parametrization agg = 174 ap and A = 7.8 + 0.06
G given in reference [17] (see figure 2.15). A recent measurement of the zero crossing of the
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Figure 2.16.: In a first step, molecules consisting of a |9/2,—9/2) and a |9/2, —7/2) atom
are created by slowly ramping the magnetic field to B = 201 G below the Feshbach resonance.
During time-of-flight expansion the magnetic field is again ramped up and the molecules dis-
sociate when the resonance is crossed (see inset). The number of atoms (normalized to the
maximal number of recovered atoms) is shown as a function of the final magnetic field. The
solid line is a fit to the data using an error function. The difference of the highest and low-
est normalized atom number yields a lower bound to the molecule conversion efficiency, here
about 80%.

scattering length in our group suggests an updated width of A = 7.0 + 0.2 G [98]. Below the
s-wave resonance, a p-wave resonance among the |9/2, —7/2) spins is located at about 199 G
[94, 95]. Unfortunately, the presence of this resonance hinders a close approach of the s-wave
resonance on the repulsive side of interactions due to increased losses. The working point at
about 175 G corresponds to a scattering length of about apr = 225 ag and is the strongest
repulsion that can safely be addressed for our experimental parameters.

An exemplary molecule conversion and dissociation measurement performed in a harmoni-
cally trapped sample is shown in figure 2.16. Such measurements allow for a precise determina-
tion of the resonance position. Additionally, they can serve as a thermometer as the molecule
conversion efficiency has been shown to be a sensitive function of the initial dimensionless
temperature 7'/Tw of the spin mixture. The conservative value of 80% conversion efficiency
suggests T'/Tr < 0.15 according to reference [80].

The Bose-Fermi resonance

In chapters 8 and 9 experiments with interacting Bose-Fermi mixtures are reported. In those
investigations we tune the interspecies scattering length with the s-wave Feshbach resonance
at By = 546.75(6) G between “°K and 87Rb in the absolute ground state hyperfine sublevels
|9/2,—9/2) and |1, +1), respectively (see figure 2.17). The resonance is the most useable
of many, mostly extremely narrow ones between “°K and 3“Rb. It has been characterized in
several references [99-103], but the most accurate parametrization has recently been reported
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Figure 2.17.: Interspecies Feshbach resonance between the absolute ground state hyperfine
sublevels |9/2, —9/2) and |1, +1) of “°K and 8"Rb, respectively.

by Simoni et al. [104] quoting a background scattering length of apc = —189 ag and a width
of A = —3.1 G. Based on the experimental data in chapter 9, we have been able to precisely
extract the magnetic field By + A, at which the interspecies interactions vanish, confirming the
parametrization on a 0.1 G level.
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The concepts of the Hubbard model have largely shaped the way we think about atoms in
optical lattices. Originally, the Hubbard model has been developed in theoretical condensed
matter physics [105]. It constitutes the simplest model system that describes the competition
between the kinetic energy and interactions of electrons in the lattice potential of an ionic
crystal [39]. This competition gives rise to a quantum phase transition from a metallic state of
delocalized atoms to an insulating state - the famous Mott insulator transition. Nevertheless,
many ground state properties of the Hubbard model are yet unknown even after decades of
theoretical research.

In 1998 Jaksch et al. [24] have proposed the implementation of the Bose-Hubbard model
[25] with ultracold bosonic atoms in an optical lattice. The proposal has been realized in a
seminal experiment by Greiner ef al. [28] that lead to the observation of the superfluid to Mott
insulator transition. Since then ultracold atoms in optical lattices are regarded as an near ideal
experimental implementation of the Hubbard model, much cleaner, much more controllable
and much more tractable than any real strongly correlated solid state system. The remarkable
correspondence between a theoretical model system and its experimental realization has fueled
the idea to use ultracold atoms in optical lattices as a quantum simulator [38], operating to find
the ground states of complex theoretical model systems.

In the first section I derive the Hubbard Hamiltonian departing from the full many-body
Hamiltonian of interacting particles in a periodic potential. The derivation is presented in
a general form that is valid both for bosonic and fermionic atoms. Then, the implementa-
tion of the Bose-Hubbard model using interacting bosonic atoms in a simple cubic optical
lattice is presented, including a brief discussion of the superfluid to Mott insulator transition
[24, 28, 106]. The third section introduces the Fermi-Hubbard model that has originally been
developed in condensed matter physics to describe electrons in real materials, which form a
many-body system of spin one-half fermions.! It can be experimentally realized with two-
component spin mixtures of fermionic atoms. The phases of the Fermi-Hubbard model at
half-filling are discussed with a special emphasis on the ground state phases at strong repul-
sion. Here the Fermi-Hubbard model reduces to a quantum Heisenberg model, which favors
antiferromagnetic ordering of spins. The chapter concludes with a discussion of the band struc-
ture and single-particle wavefunctions in a harmonically confined lattice system, as it is typical
in experimental realizations. Based on this geometry, the formation of a band insulator of
noninteracting fermions is explained.

!Originally, this model is called the Hubbard model. In this thesis we will mostly refer to it as the Fermi-Hubbard
model for better distinction from the bosonic version, the Bose-Hubbard model.
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3. Hubbard models for bosons and fermions

3.1. Derivation of the Hubbard model

In order to assess under which conditions ultracold atoms in optical lattices form a good quan-
tum simulator of the Hubbard model, it is crucial to understand the approximations that are
applied in its derivation. In fact, care must be taken to operate experimental optical lattice
setups within the bounds of the Hubbard model. We will discuss in chapters 7, 8 and 9 that
effects beyond the Hubbard model can play an important role in optical lattice experiments.

The derivation of the single-band Hubbard model [105] starts with the general many-body
Hamiltonian of a d-dimensional lattice system of bosonic or fermionic atoms. The spin state of
the atoms is indicated by the index o, which, for example, represents the spin up and spin down
states in a fermionic spin mixture. The atoms are exposed to a periodic lattice potential Vj,¢ (r)
with an additional underlying trapping potential Viap(r). Within this section no specific as-
sumptions about the dimensionality, the exact lattice geometry or the underlying potential are
made. The interactions between atom pairs are parametrized by a contact interaction as shown
in equation 2.94.

Using the field operator formalism introduced in section 2.1.1, the full Hamiltonian H =
ﬁo + ﬁint reads

A S 2 ~
o= Y [ i) [—;A+vlat<r>+vmp<r> bom). G
o = 53 [ d'r bl ey @yl (32

where the interaction strength is defined by g = 47h%as/m with the s-wave scattering length
as. The field operators ¢, (r) and @l(r) describe the annihilation and creation of an atom
with spin o at position r, respectively. In quantum systems of noninteracting particles there is
an intrinsic tendency for delocalization to minimize the kinetic energy. However, interactions
favor the localization of particles to reduce the interaction energy. This competition between
kinetic and interaction energy is the physical core of the Hubbard model. Therefore, it is natural
to expand the field operators in terms of the localized Wannier functions (see section 2.2.4).
The Wannier function at a lattice site j in the n'" Bloch band is given by

1 ; . n
W(p) (I‘ — I‘j) = W Z e " (Z)El )(I‘), 3.3)
q

where q denotes the d-dimensional quasi-momentum vector, running over the first Brillouin
zone, and M is the number lattice of sites in the system. The operator that creates a Wannier
state at site j is defined by

@Inm - / d’r Wip)(r — r;) b (r). (3.4)

For brevity, the fermionic operators ¢;, and é}a are used in this section, but can be replaced by
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3.1. Derivation of the Hubbard model

bosonic operators at any point of the derivation. The expansion of the field operator reads

Z Z w (n)JU smgle -band Z w* I‘ _ I‘] }L (3'5)

n=1 j=1

In the second step, we have introduced the first major simplification of the Hubbard model: The
restriction to the first Bloch band.? Since higher bands are excluded, all interband couplings are
suppressed that otherwise inherently arise as a consequence of interactions. The experimental
observation of interaction-induced coupling between bands is a central topic of chapter 7.
With the single-band field operators of equation 3.5 the Hamiltonian H takes the form

Z Z ng wcjo + Z Z Uzjkl CZO-CJO-/CI{IO'/élO' + Z Z € Nio (3.6)
o1

oo’ ijkl

where n;, = éjoéw counts the number of particles in spin state ¢ at lattice site 7.
The first term denotes the kinetic energy, which is expressed by the tunneling matrix ele-
ments .J;;. They denote the gain in energy when a particle hops from site i to site j and read

K2 1 .
sy [ drue—x [_2mA + Vm(r)} w(r—rj) = =32 > e T, 3.)
q

where q runs over the first Brillouin zone. In the second step the definition of the Wannier
function is inserted and the property of the Bloch states to be the eigenfunctions of the enclosed
operator is used (see section 2.2.3). The equation establishes an important relation between the

tunneling of particles and the dispersion relation Eq. Using ), eia—alri — pr 0q,q for
M > 1, it can be cast in the instructive form
Eq=—) Jijelma, (3.8)
i

where r; denotes a fixed, but arbitrary lattice site.
The second term describes all possible forms of interactions between the different lattice
sites within the first Bloch band. The interaction matrix elements are given by

Uijkl = g / drw*(r —r)w* (r — rj)w(r — rp)w(r — 1) 3.9

and yield notable contributions when the Wannier functions at lattice sites ¢, j, k and [ have a
significant overlap.

2This approximation is justified when the Fermi energy of the system lies within the first band. The interaction
energy of a particle pair should be much smaller than the band gap between the first and second band. Therefore,
in experimental realizations care must be taken to chose atom number, lattice depth and system size in a way
that only the first band is populated. Furthermore, population of the second band during lattice loading must be
avoided.
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3. Hubbard models for bosons and fermions

Figure 3.1.: Illustration of the matrix elements of the Hubbard model (see text).

The third term accounts for the external trapping potential

o — / &1 [w(r — 13)[?Virap(F) & Virap(ri). (3.10)

Here, we have used the orthonormality of the Wannier function and the fact, that the trapping
potential typically varies very slowly over the extent of the on-site Wannier function.

Based on the general single-band Hamiltonian (see equation 3.6), the Hubbard model is
obtained by omitting almost all of the intersite couplings. Only the strongest terms are kept:

e Tunneling between adjacent lattice sites ¢ and j, for which the notation (7, j) is used in
the following. This approximation is often called the tight-binding limit [75, 105, 107].

e On-site interactions. Uy;;; is the dominating on-site interaction matrix element, particu-
larly, when a contact interaction between the particles is assumed. All intersite couplings
like U;j;; or the exchange terms U;j;; are ignored.

Using the notations J = J;; for the nearest-neighbor tunneling matrix element between sites
1 and j and U = Uy;;; for the on-site interaction matrix element, the Hubbard model takes the

form
H=-7Y " e ¢o+ % SN el i+ €iio. (.11)
o (i,5) oo’ i )

Compared to the full Hamiltonian, the Hubbard model comprises extensive simplifications.
Nevertheless, it lucidly features the competition between tunneling and interaction, which gives
rise to highly correlated ground states.

3.1.1. Matrix elements of the Hubbard model

The experiments of this thesis use a three-dimensional (d = 3) optical lattice with an underly-
ing harmonic confinement. The lattice has simple cubic symmetry and the depth is identical on
all three axes (o = z, y, ). We summarize the most important relations for the matrix elements
in this experimental setting.
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3.1. Derivation of the Hubbard model

Tunneling matrix element

In a simple cubic lattice the movement of particles can be considered independently for each
lattice axis. With the lattice constant a = \/2, which corresponds to the distance between
adjacent lattice sites, the tunneling matrix element reads

n? 92
J = —/daw*(a +a) (_me + Vlat(a)> w(a). (3.12)
This energy scale defines the tunneling time scale by 7; = //(z.J), where z is the coordination
number. The coordination number is the number of nearest neighbors of an individual lattice
site, such that 2 = 6 for a three-dimensional simple cubic lattice.

Applying the tight-binding approximation to equation 3.8 the one-dimensional dispersion
relation takes a sinusoidal form and has a band width of 4.J,

E,, = —2J cos(qqa). (3.13)
Therefore, the tunneling matrix element can be inferred from a band structure calculation via

[58, 106]
1

J=7 (Exnk — Eo) (3.14)
provided the lattice is deep enough to fulfill the tight-binding approximation.> Because the
three-dimensional dispersion relation corresponds to Eq = —2.J > cos(gqa), the band width

of the three-dimensional lattice is given by 12.J.

In the limit of very deep lattices, an analytic expression for the dependence of the tunnel-
ing matrix element on the lattice depth can be derived by solving a one-dimensional Mathieu
equation [26, 58] yielding

J ag AErec s3/4em 25, (3.15)
NG
This expression shows that the tunnel coupling between nearest neighbors decreases exponen-
tially for increasing lattice depth s, = V,/Fye.. However, for experimentally relevant lattice
depths (sq < 50 FEyec), the accuracy of equation 3.15 is mostly not sufficient and J must
be calculated numerically based on a band structure calculation and equation 3.12 (see figure
3.2a).

Interaction matrix element

Applying definition 3.9 to the case ¢ = j = k = [, the on-site interaction matrix element is
given by

m m

Arha, Anha, [ [ ’
U=-""1 d3r |Jw(r)* = ma (/ da|w(a)|4> , (3.16)

—0o0

3This is typically the case for lattice depth larger than 5 E,c.. Under these conditions the higher-order tunneling
processes are suppressed with respect to next-neighbor tunneling by at least an order of magnitude [106, 108].

55



3. Hubbard models for bosons and fermions

where the integral corresponds to the density-density overlap integral of the on-site wavefunc-
tion. The second step is possible, because the three-dimensional Wannier function factorizes
and the one-dimensional Wannier functions w(«) are identical for each direction due to iden-
tical lattice depths. The matrix element U represents the on-site interaction energy of an atom
pair within the single-band approximation of the Hubbard model. However, interactions be-
tween atoms promote population to higher bands, which effectively modifies the on-site inter-
action matrix element. The details of this process are discussed in chapter 7.

For very deep lattices, when single lattice sites can be approximated by an harmonic oscilla-
tor potential, the Wannier function may be replaced by the Gaussian ground state wavefunction
of the harmonic oscillator. In this limit the interaction energy can be expressed as a function of
the dimensionless lattice depth s,

U~ \/ikassg/‘*Erec. (3.17)

For practically relevant lattice depths (s, < 50 Eec) and typical interactions (as ~ 100 ag)
the relative error compared to a calculation with Wannier functions amounts to at least 20 per
cent as shown in figure 3.2b. Therefore, the harmonic approximation must be applied carefully
and should only be used as a rough estimate of the interaction energy (see variational model in
section 9.2.3).

According to equations 3.15 and 3.17 the tunnel coupling decreases exponentially and the
interaction matrix element features a power law increase when the lattice depth is raised. There-
fore the ratio U/J can be tuned over several orders of magnitude simply by changing the lattice
depth as shown in figure 3.2c for the case of 8’Rb atoms. In this way, optical lattices are used to
enter the strongly interacting regime. With the additional application of a Feshbach resonance
to control the s-wave scattering length ag (see section 2.3), the parameters J and U can even
be tuned independently from each other. This approach can be advantageous, because it allows
to have strong interactions and fast tunneling at the same time, ensuring a fast redistribution of
atoms. Due to the limited lifetime of ultracold atom samples, fast adiabatic parameter changes
are experimentally crucial as discussed in chapter 6.

3.2. Bose-Hubbard model

The Bose-Hubbard model [24, 25, 106, 109] describes a single bosonic species in a periodic
potential. It is obtained from the general Hubbard Hamiltonian 3.11 by omitting the spin degree
of freedom and inserting the bosonic operators a; and d} that obey the commutation relations
[, &;(] = §;j. The Bose-Hubbard Hamiltonian reads

. U
Hay = _JZajaj+5Zﬁi(ﬁi— D)+ (e — w)i, (3.18)
(i) i i

where n; = d;rdi counts the number of bosons at lattice site 7.
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Figure 3.2.: Tunneling and interaction matrix elements. (a) The tunneling matrix element is
calculated numerically (red) and using the approximate formulas 3.14 (blue) and 3.15 (black).
The results are independent of the atomic species or lattice constant (a = A/2), because V,
(o = x,y, 2) and J are given in units of F,.. (b) On-site interaction energy U for 87Rb in
the |F,mp) = |1,+1) state (as = 102 ap) as a function of the depth of a three-dimensional
738 nm-lattice. The exact numerical result and the harmonic approximation 3.17 are shown in
red and blue, respectively. (c) The relative strength of the interaction U/.J can be tuned over
several orders of magnitude. The red curve shows the exact numerical result, the blue curve
uses the approximations 3.15 and 3.17.
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3. Hubbard models for bosons and fermions

The first term indicates that an energy corresponding to the tunneling matrix element J is
gained, when a boson is delocalized between neighboring lattice sites. When the tunneling
matrix element J is large in comparison to the interaction energy U, many-body quantum
states with strong number fluctuations are energetically favored.

The second term captures the total interaction energy of n; atoms at lattice site ¢. U corre-
sponds to the interaction energy per atom pair. It can take negative and positive values depend-
ing on whether the interaction is attractive or repulsive. Taking into account the indistinguisha-
bility of quantum particles, there are n;(n; —1)/2 atom pairs that perform collisions. When the
interaction energy U is large and positive, the localization of atoms is favored. This is because
delocalized many-body states also feature high local occupations that are energetically costly
due to a quadratic dependence of the interaction energy on n;.

The third term accounts for an external trapping potential by assigning an energy offset
€i = Virap(r;) to each lattice site 4. Typically, the external confinement is a harmonic trap. For
a homogeneous system ¢; is zero. When the system is treated in terms of a grand canonical
ensemble, the chemical potential i fixes the mean total atom number of the system.

3.2.1. Superfluid and Mott insulating ground state
Two bosons in a double well system

The basic physics of the Bose-Hubbard model can be nicely illustrated by considering a double
well system with two interacting bosons, which can easily be solved. It reveals how the ground
state evolves from delocalized to localized atoms, when the ratio of the interaction energy U to
the tunneling matrix element J is increased. The full Hamiltonian reads

. 4 4 u. . . A
A = =7 (alaz + aban ) + 3 [ (i — 1) + Ao — 1) (3.19)

where a possible energy offset A = ez — €1 between the sites is neglected. Using the basis set
{]2,0),]1,1),]0,2)} we obtain the matrix form

A U —v2J 0
B = —var o —vag |. (3.20)
0 —V2J U

The ground state of the model has the eigenenergy

1/ Z/ 2
E,=— —+/4J2 + — 21
9= 95 7\ J 1 (3.21)

and is generally formed by the superposition of all basis states

U U \?
l1hg) o |2,0) +10,2) + m]ﬂ/H(W) 11,1), (3.22)
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3.2. Bose-Hubbard model

where normalization is neglected for better readability. In the limit of strong attractive inter-
actions (U/J — —o0), double occupation is energetically favored and the state approaches
|thg) — |20) + |02). At vanishing interactions (U/J = 0) the atoms are maximally delo-
calized expressed by the binomial state [1),) — [2,0) + |0,2) + /2|1, 1). This state has the
strongest possible number fluctuations and corresponds to the superfluid state of this miniature
Bose-Hubbard system. Finally, strongly repulsive interactions (U/J — o) suppress double
occupation and number fluctuations. The energetic cost of delocalization becomes too high
as an energy U must be expended for double occupancies. The particles are localized at the
individual lattice sites [1)4) — |1, 1), which is the miniature version of a Mott insulator.

Many bosons in a homogeneous lattice

The limiting cases of the miniature Bose-Hubbard model can readily be extended to /N bosons
in a system of M lattice sites [58]. When the tunneling matrix element J is much larger than
the interaction energy U, the tunneling term dominates and favors the maximal delocalization
of atoms. Maximal delocalization is achieved when all atoms occupy the same single-particle
Bloch state ¢q—o(r). The system is in a superfluid state that in the Wannier basis takes the form

AN
(WsF) v/ gm0 X (\/M Z df) |0). (3.23)
=1

In this notation the maximal number fluctuations are directly visible: There is a finite probabil-
ity to find any atom number between zero and N at a given lattice site :.

In the limit of dominating interactions (U/J — o0), the atoms are localized to individual
lattice sites and number fluctuations are fully suppressed. The many-body wavefunction of
the Mott insulating state is given by a product of local Fock states with commensurate integer
filling,

M
[Py 17700 o [ [(@1)10). (3.24)
i=1

The Mott insulator state with fixed local atom numbers minimizes the total interaction energy.

3.2.2. Quantum phase transition

The Bose-Hubbard model contains a second-order quantum phase transition between the super-
fluid and the Mott insulating state, which is controlled by the ratio U/J. The phase boundaries
at zero temperature can be calculated within a grand-canonical ensemble using a mean-field
treatment similar to a Bogoliubov approach [110]. In second-order perturbation theory the
phase boundary between the superfluid and Mott insulating state is given by

<J> _1(n—p/U)A—n+p/U)
v). = 1+ p/U ’

(3.25)
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Figure 3.3.: Phase diagram of the Bose-Hubbard model at 7' = 0. (a) As the ratio J/U
decreases the system undergoes a phase transition from a superfluid (SF) to a Mott insulator
(MI). The phase boundaries (equation 3.25) are shown as red lines. The Mott lobes (shaded in
blue) contain the incompressible Mott phases at integer filling n. (b) In a trapped geometry,
the phase diagram (a) gives rise to a shell structure: Moving from the trap center outwards
corresponds to sampling a continuously decreasing chemical potential. The Mott insulator
shells are separated by superfluid layers, which become thinner for decreasing .J/U.

where z is the coordination number. The filling factors n of the Mott phases are integer numbers
that depend on the chemical potential vian — 1 < /U < n. The resulting phase diagram is
shown in figure 3.3a.

The optical lattice in experimental realizations of the Bose-Hubbard model is inhomoge-
neous, featuring an underlying confining potential Vi, (r). However, in a local-density ap-
proximation the system can be locally viewed as being homogeneous.* This allows to define a
local chemical potential according to

i = ph— € = fi — Virap(rs), (3.26)

where r; is the position of lattice site 4. Therefore, at a fixed lattice depth, corresponding to
a fixed value of J/U, the phases in a trapped system correspond to a cut through the phase
diagram along the j1/U-axis. Starting with the maximal chemical potential x in the center of
the trap, the local chemical potential p; decreases towards zero when moving away from the
trap center. Accordingly, the system forms Mott insulating shells with fixed filling factors n
that are separated by intermediate superfluid layers (see figure 3.3b).

When the lattice depth is raised the parameter J/U decreases and the system enters the Mott
insulating phases at the tip of each Mott lobe with filling n. Taking the derivative of equation

*Note that the tight-binding limit with its restriction to nearest-neighbor tunneling processes favors the applicabil-
ity of a local-density approximation.
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3.25 with respect to the chemical potential yields the critical values for the phase transition of
each Mott lobe,

(n)
<‘]> _1 <1+2n—2\/n2 +n), (3.27)
U c,max z

which are marked by red dots in figure 3.3a. When the optical lattice is slowly raised in the
experiment, Mott domains emerge starting with a n = 1 Mott insulator at the edge of the
cloud. Mott domains with higher fillings are gradually reached for deeper lattices in the center
of the trap. The mean-field calculation presented here predicts a critical value for the n = 1

Mott domain of (J/U )E}Rnax = (0.0286, while a quantum Monte Carlo simulation of the Bose-
Hubbard model has yielded the exact value (J/U )E?nax = 0.0341[111].

3.3. Fermi-Hubbard model

The Fermi-Hubbard model describes an interacting spin mixture (spin up |1) and down |])) of
fermionic particles in a lattice potential. In solid state physics the Hubbard model resembles
electrons that interact via Coulomb interactions and move in a crystal of positively charged
ions. Equivalent physics is expected, when an ultracold mixture of two hyperfine states of
a fermionic species is loaded into an optical lattice. Using the fermionic anticommutation
relations [¢;,, é;r o'+ = 0ij050 the Fermi-Hubbard model is readily derived from equation 3.11
reading

Hep = ~JY > i+ U iy + Y e + i), (3.28)

o (i.4) @ @

where o runs over the spin states |1), |]). Analogous to the Bose-Hubbard model the parameter
J denotes the tunneling energy that is gained when a particle is delocalized over neighboring
lattice sites. The tunnel coupling is identical for both spins ¢ given the lattice potential is spin-
independent. The interaction matrix element U denotes the energy cost when a spin up and a
spin down atom occupy the same lattice site. Pauli’s principle prohibits occupations of more
than one atom per spin state and lattice site.

The Fermi-Hubbard model gives rise to complex phase diagrams, which result from an intri-
cate interplay of interaction, delocalization, filling, spin ordering and temperature. The ground
states of the Hubbard model are the topic of vast theoretical investigations. Due to the lack
of analytical solutions in the two- and three-dimensional case, generally, approximate numer-
ical methods are employed. Exact quantum Monte Carlo methods are often troubled by the
notorious sign problem that originates from the antisymmetry of fermionic many-body wave-
functions. One of the most important questions under debate is, whether the two-dimensional
Fermi-Hubbard model can explain the properties of cuprate high-temperature superconductors
[40]. The complexity of the theoretical investigations makes a clean experimental realization
of the Fermi-Hubbard highly desirable with the prospect to measure the phase diagrams in a
perfectly controlled way.

In this section, we briefly discuss limiting cases of the Fermi-Hubbard model, which are
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relevant to the experiments of this thesis (see chapter 6), aiming at an intuitive understanding.
For thorough discussions of the phases of the Fermi-Hubbard model, we refer the reader to
many textbooks and reviews [40, 105, 112-115].

3.3.1. Spins in a double well system

As the smallest nontrivial instance of the Fermi-Hubbard model, we consider a double well
system filled with a spin up and a spin down fermion. Already in this miniature model basic
properties are revealed, illustrating the notions of band width, double occupancy and antiferro-
magnetism. The full two-site Hamiltonian reads

(2 AT A NN NN AT A N ~ ~ N
ég =—-J (CJ{TC% + CL,CQ\L + CchlT + C%Cu) +U (nunm + nzinQT) . (3.29)

Because the Hamiltonian conserves the atom number, we can restrict the discussion to the Fock
space with one spin up and one spin down atom {| 1], 0), |1, ), [{, 1), |0, T4)}, where the first
entry corresponds to site 1 and the second entry to site 2. Using this basis the Hamiltonian can
be cast in the matrix form

u —-J —-J 0
~2) | -4 0 0 —J
Higp = 7 0 o -7 |- (3.30)

0o —-J —-J U

A straightforward analytical calculation yields the eigenenergies F; and eigenvectors |1);) (nor-
malization constants are omitted for better readability):

e [ = 0 for the singlet eigenstate [¢)1) o< | T,4) — ], 1),

e FEy = U for the eigenstate |¢)2) o |1],0) — |0,]1) featuring a superposition of doubly
occupied sites,

o L3y = % +4/4J2 + UTQ for the eigenstates that are formed by a superposition of all

basis states [153/4) o [14,0) + [0, 11) + (UJ S (5,)2) (I1.4) + 14, 1)), where

the upper sign applies to |13) and the lower one to |1)4).

The spectrum and the eigenstates (see figure 3.4) have important features that are similarly
observed in the many-body case. At vanishing interaction U/4J = 0 the energy difference
between the ground and highest excited state, |13) and |14), amounts to 4.J. This corresponds
to the band width of the first Bloch band in an infinite homogeneous lattice within the tight-
binding approximation (see equation 3.14). Accordingly, the states |¢)3) and |¢)4) may be
viewed as the Bloch states ¢,—p, and ¢,—¢ with maximal and minimal quasi-momentum, re-
spectively. In those states the fermions are delocalized over the system and there is a 50 per cent
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Figure 3.4.: Properties of the double-well Fermi-Hubbard model with a spin up and a spin
down particle. The eigenenergies (a) and the double occupancy (b) of the four eigenstates are
shown as a function of the normalized interaction U /(4.J).

probability for double occupation in both cases. For non-vanishing interactions the probability
to find doubly occupied lattice sites is given by

1

27
2
1+[%q: 1+(g)]

Dyjy = (3.31)

where the upper (lower) sign applies to state [1)3) (|14)) (see figure 3.4). The eigenstates [1)1)
and |12) do not depend on the interaction parameter and the probability for double occupation
remains fixed at D; = 0 and D9 = 1, respectively.

The eigenstate |1)4) has the lowest eigenenergy and forms the ground state. In the limit of
strongly attractive interactions the atoms pair up in each well and the double occupancy reaches
a value of one. The eigenenergy can be approximated by U — 4.J/|U| and the correction term
4J%/|U| corresponds to the energy that is gained when the atom pair is delocalized over the
double well [34]. In the opposite limit of strong repulsion the ground state shows antiferro-
magnetic ordering of the spins. The corresponding eigenenergy is given by the Heisenberg
exchange energy —4.J2/U that is gained when neighboring spins exchange places via inter-
mediate double occupation [36]. This is in close analogy to the Fermi-Hubbard model in an
infinite homogeneous lattice system, which maps to a quantum Heisenberg model in the limit
of strong repulsion and half-filling (see below). The zero temperature phase of the Heisen-
berg model is antiferromagnetically ordered and the lowest lying excitations have an energy of
Jew = 4J% /U (see figure 3.6) [105, 116, 117].

3.3.2. Schematic phase diagram

A schematic phase diagram of the three-dimensional Hubbard model at half-filling is shown in
figure 3.5 summarizing results for repulsive [116-118] and attractive [112, 119-121] interac-
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Figure 3.5.: Sketch of the phase diagram for the Fermi-Hubbard model at half-filling in a
three-dimensional optical lattice (adapted from reference [115]). The following abbreviations
have been used: Molecular Bose-Einstein condensate (BEC), Bardeen-Cooper-Shrieffer (BCS)
and anti-ferromagnetic phase (AFM).

tions. Half-filling corresponds to a mean local filling factor per spin state of 74 = 1 = 0.5.

For the case of attractive interactions the on-site interaction energy between the spin up
and down fermions is negative. At sufficiently low temperatures this gives rise to a superfluid
regime with a BEC-BCS crossover. For weak interactions the particles form BCS pairs and the
critical temperature increases monotonically with |U|/.J. When the interactions get stronger,
the atom pairs get more strongly bound until they eventually form hardcore bosons that undergo
Bose-Einstein condensation. In the BEC regime the critical temperature decreases as J2/U.
This is also the energy scale for nearest-neighbor tunneling and nearest-neighbor repulsion
between the hardcore bosons [121]. In the competition of energy scales, a charge density wave
emerges, in which the density is reduced at every other lattice site [105]. Even above the
critical temperature for superfluidity, a pseudo-gap regime of preformed, uncondensed pairs is
predicted. The experimental observation of those pairs and the thermodynamic consequences
of their presence are briefly discussed in section 6.3 [122].

At half-filling the phases of the attractive Fermi-Hubbard model can be mapped to the repul-
sive Fermi-Hubbard model using a particle-hole transformation [121]. In the regime of higher
temperatures the phase of disordered preformed pairs maps to a paramagnetic Mott insulator
without spin ordering. In the metallic Fermi liquid phase at weak repulsion the particles are
delocalized to minimize their kinetic energy. When the repulsion is increased, the interactions
of particles with opposite spin smoothly lead to localization [116]. Deep in the Mott insulating
regime double occupation of lattice sites is suppressed due to the repulsion (and Pauli’s princi-
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Figure 3.6.: Antiferromagnetic ordering and exchange interactions. (a) The Mott insulating
ground state of the Fermi-Hubbard model, which is characterized by localized spins, shows
antiferromagnetic ordering when the temperature of the system is low enough. (b) When oppo-
site spins occupy neighboring lattice sites (upper panel), they reduce their energy by —4.J% /U
through a virtual exchange process. This process has two possible exchange paths, during
which either the left or the right well are virtually doubly occupied. The intermediate state is
detuned by the interaction energy U. For identical spins (lower panel) the exchange process is
not possible, because Pauli’s principle forbids the intermediate doubly occupied state [105].

ple). Owing to its paramagnetic character, the Mott insulating phase can accommodate a large
amount of spin entropy.

Upon lowering of the temperature less spin entropy needs to be stored and the system can dis-
play magnetic ordering (see figure 3.6a). Antiferromagnetic spin order sets in below the Néel
temperature after crossing a second-order phase transition. When the repulsive interactions are
small, a weak spin-density wave modulation develops. In this regime the Néel temperature
is exponentially suppressed as a function of U/.J [117]. For increasing repulsion, the system
undergoes a crossover towards an antiferromagnetically ordered Mott insulator. At very strong
repulsion the Hubbard Hamiltonian at half-filling can be reduced to a quantum Heisenberg
model R o

Hug = Jez »_Si - S;, (3.32)
(6,9)
where J., = 4J%/U is the Heisenberg exchange energy. The spin operator at lattice site i is
given by

N 1
= Ay
S, = 3 E , ;O Cig, (3.33)

where o = (0, 0y,0) is the vector of Pauli matrices [105]. The exchange energy J., =
4J?% /U expresses the energy that is gained in a virtual tunneling process between lattice sites
that are singly occupied by atoms of opposite spin (see figure 3.6b). In this process an atom
tunnels to the neighboring lattice site, where it interacts at an energy U before it tunnels back.
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When the neighboring lattice sites are occupied by identical spin, this superexchange interac-
tion is forbidden by the Pauli principle. Therefore, antiferromagnetic ordering is energetically
favored (see section 3.3.1). For a three-dimensional simple cubic lattice, quantum Monte Carlo
simulations have shown that the Néel temperature is essentially given by the exchange energy,
Tn ~ 0964 [116, 117].

The case of half-filling gives a flavor of the rich physics that is contained in the Fermi-
Hubbard model. In the experiments of this thesis the atoms are trapped in an optical lattice with
underlying harmonic confinement, which gives rise to a strong variation of the local fillings.
One expects that several phases coexist in the trap, ranging from metallic over Mott insulating
to band insulating phases. This intriguing situation is elucidated in chapter 6 both theoretically
and experimentally. In addition to the parameters considered so far, the impact of doping on
the phases of the Fermi-Hubbard model is an extremely active field of research [40]. It is
believed that superconducting ground states with d-wave symmetry can arise within the two-
dimensional repulsive Fermi-Hubbard model when the system is doped [123]. This might be an
explanation for the high-temperature superconductivity in cuprates, but the exact mechanism
is not well understood. Therefore, experimental realizations of the two-dimensional Fermi-
Hubbard model are highly sought after [118, 124—126].

3.3.3. Band insulator of noninteracting fermions

In order to investigate the role of the underlying harmonic confinement in optical lattices, it is
instructive to consider a gas of noninteracting fermions. It can experimentally be created using
an ultracold cloud of spin polarized fermionic atoms. In such a sample s-wave collisions do
not occur owing to Pauli’s principle and collisions at higher partial waves are suppressed by
low temperature (see section 2.1.3). Alternatively, vanishing interactions can be achieved in a
mixture of spin up and spin down fermions by means of a Feshbach resonance. This approach
is chosen in the measurements of chapter 6.

For the proper preparation and interpretation of quantum phases, it is crucial to understand
the influence of the underlying potential on the band structure of the lattice.> Owing to the har-
monic confinement, translational symmetry is broken and the Bloch states of the homogeneous
lattice are no longer appropriate (see section 2.2.3). The new single-particle states are limited
to a finite spatial extend. They can even be localized to a single lattice site when the lattice is
deep and external confinement is tight, as we will see below.

The single-particle eigenstates are derived via numerical diagonalization of the Schrodinger
equation. Because the physics of a simple cubic lattice is separable into its individual axes, it
suffices to consider only one dimension. The Schrodinger equation for one axis (o = x, ¥, 2)

31t is worth noting that most optical lattice setups have an approximately harmonic confining potential. This is a
natural consequence of the use of Gaussian laser beams for optical lattices. However, techniques are currently
being investigated that aim at the projection of optical lattice potentials. Thereby, it may become possible to
create engineered potential landscapes, for example, box potentials.
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Figure 3.7.: Numerically calculated single-particle wavefunctions ¢;(«) and eigenenergies
F; in an one-dimensional optical lattice (A = 738 nm) at 8 F. with an underlying harmonic
potential (w, = 27 x 200 Hz for 4°K). Solid lines indicate the probability density |¢;(z)|? that
is vertically positioned at the respective eigenenergy F;. Red and blue colors are used for better
readability and distinction of degenerate states. Panel (a) shows the lowest energy states of the
first band, while panel (b) displays the onset of the second band. Mind the different scaling of
the position axis and the gap on the energy axis. Gray areas show the widths of the first and
second band derived from a band structure calculation (see section 2.2.3). The band widths are
locally offset by the underlying harmonic potential.
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reads [127, 128]

h 9? 1

<_27’I’LW + Va COSZ(]COZ) -+ 2777,0.)36!2) (Z)z(a) = EZ(Z)Z(a), (334)
where w,, denotes the trapping frequency of the harmonic potential, k& = 27/ the wave vector
and X the wavelength of the lattice laser. The position coordinate « is discretized into typically
ten intervals per lattice period a = \/2, such that the Schrédinger equation can be cast in matrix
form. Diagonalization of the matrix yields the eigenvalues F; along with the eigenstates ¢;(«).

In figure 3.7 the result of a calculation for typical experimental parameters is displayed.
It shows that the areas of finite probability density |¢;(a)|?> > 0 can also approximately be
deduced from the band structure of the homogeneous lattice: The gray shaded areas display
the sum of the energy bands in the homogeneous lattice and the local energy offset from the
harmonic confinement. For low energies this is a good approximation, because the energy
offset between adjacent sites is small and the lattice appears almost homogeneous. However,
for higher energies deviations can become significant.

It is important to note that the usual meaning of bands is somewhat obscured by the presence
of the confining potential. The spectrum of a homogeneous lattice has energetically forbid-
den regions, in which no eigenstates exist. Those regions separate the bands containing the
eigenstates (see figures 2.8 and 2.10). In the inhomogeneous case, however, a true gap be-
tween the bands only exists locally. The eigenenergies in lower bands can be larger than those
of higher lying bands when one departs from the center of the lattice. Generally, the spatial
overlap between states of comparable energy in different bands is low, which implies poor in-
terband coupling. Therefore, equilibration across different lattice bands is very slow compared
to typical experimental time scales.

Figure 3.8a shows the single-particle spectrum of the eigenstates in figure 3.7, distinguishing
three regions A, B and C. For low energies, E; increases linearly with the state index, similar
to the eigenenergies of a purely harmonic potential. Region B starts when the eigenstates are
localized either to the left or right side of the lattice, while the probability density vanishes
in the center. Those states are pairwise degenerate and become more and more localized to
single lattice sites for increasing ¢. For quantum numbers ¢ beyond a certain threshold (here
about 110), delocalized states in the center become available again, belonging to the second
band. The probability densities of the eigenstates in the second band (see figure 3.7b) approach
zero in the center of each lattice site. This is similar to the second band Bloch functions in
the homogeneous lattice as shown in figure 2.9 and indicates the dominant admixture of plane
waves with momenta in the second Brillouin zone |hk, 2hk] and | — ik, —2Rk].

Based on the above results we can analyze the formation of a band insulator in an optical
lattice with underlying harmonic confinement. For a system of N noninteracting fermions at
zero temperature, the N lowest single-particle eigenstates ¢;(«) are filled from bottom up.
The local filling 71, is calculated by integrating all density distributions |¢;(«)|? fori < N
over the extend a of lattice site j and subsequent summation. The result is shown for several
fermion numbers N in figure 3.8b. Unity filling is reached in the center of the trap as soon
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Figure 3.8.: (a) Single-particle spectrum as a function of the quantum number 7 for a one-
dimensional 8 E'. lattice with a harmonic confinement of w, = 27 x 200 Hz (same parameters
as in figure 3.7). (b) Formation of a band insulator. Noninteracting fermions at 7' = 0 fill the
eigenstates from bottom up. The local occupation 72; is shown for an increasing number of
fermions N (red solid lines with increasing darkness). The band insulating state is reached at
about N ~ 110. When more single-particle states are occupied, population enters the second
band shown as gray dashed line.

as all states of region A are filled at N ~ 15. Departing from there, the central density does
not increase further, but the distribution broadens and forms a wide flat-top profile until all
states of region B are added. At N ~ 110 the band insulating state with maximal extent is
reached. The populated eigenstates correspond to Bloch states with quasi-momenta in the first
Brillouin zone. Experimental Brillouin zone mapping in time-of-flight expansion would show
a square-shaped atomic cloud (see section 4.2.4).

The band insulator is an incompressible many-body state. In a homogeneous lattice it corre-
sponds to a completely filled first Bloch band. An increase of the local filling is only possible
when the compression is strong enough to overcome the gap between the first and second band.
In the harmonically confined lattice such a gap does not exist in a strict sense. Nevertheless, the
incompressibility can be experimentally probed in a very direct manner: For a fixed number
of fermions inside the band insulating region B, an increase of the trap frequency w, does ini-
tially not change the size of the cloud. The system is incompressible. Upon further increasing
wq, the highest populated single-particle state in the first band eventually reaches the energy of
the lowest eigenstate in the second band. It becomes energetically favorable to populate states
of the second band leading to double occupation of the central lattice sites. At this point the
system starts to shrink in size, which implies finite compressibility.

SHowever, it should be noted that Brillouin zone mapping in time-of-flight yields an almost square-shaped distri-
bution with a flat top for any filling inside region B, only the atomic density differs [129]. Thus, for the given
parameters the qualitative differences in experimental images between N = 15 and N = 110 would only be
marginal, but they could, in principle, be distinguished by a measurement of the absolute atom numbers.
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In the typical experimental preparation scheme, an ultracold atomic cloud is initially held
in a harmonic trap and the optical lattice is smoothly ramped up. Usually the aim is to exclu-
sively populate the first band. This imposes an upper bound on the atom number depending
on the system parameters, as can be conjectured from figure 3.7. Is there a simple criterion to
predict whether the atomic cloud will solely populate the first band? By inspecting the single-
particle spectrum as a function of the lattice depth (at fixed harmonic confinement) one can
show that states with an energy F; < E\ in the purely harmonic potential evolve into the first
band (regions A and B), while states with E; > FE\.. either lie in the first, second or higher
bands (region C and upwards) [127]. Therefore, exclusive population of the first lattice band
is achieved when the Fermi energy of the harmonically trapped cloud is smaller than the re-
coil energy ep < Fyec. Using equation 2.24 this results in an upper bound for the number of

fermions 5
1 [ Erec
Npax < = = , 3.35
=6 < ho > ( )

1/3

where @ = (wywyw,)"/* is the geometric mean of the trap frequencies in the harmonic poten-

tial.

Many-body Hamiltonian

It is instructive to consider the many-body system of noninteracting fermions in an optical
lattice, because it is an important reference point to the changes that arise when interactions
come into play. The single-particle Schrodinger equation 3.34 gives rise to the corresponding
many-body Hamiltonian

H=-7Y éle;+Y ey, (3.36)
(4,5) J
where the tight-binding approximation is introduced by restricting the tunneling to nearest

neighbors (i, j) and n; = é;r-éj counts the number of fermions at site j. Alternatively, the

Hamiltonian is obtained from the Fermi-Hubbard model 3.28 by setting U = 0 and omitting
o, because only a single spin state is considered.
For a three-dimensional optical lattice with @ = A/2 and spherically symmetric harmonic
confinement characterized by the trap frequency w, the local energy offset is given by
mw3\2 .2

G =" i’ =W (3.37)

Here, j = (jiz, jy, j-) is the site index and V; = mw?\? /8 is the energy offset between adjacent
lattice sites at the trap center.

The exemplary calculation in figure 3.7 shows that higher lying single-particle states of the
first band are already localized to single lattice sites at moderate lattice depths. Only the lowest
states close to the trap center are delocalized over several lattice sites. Neglecting the effect of
those central states, we can use equation 3.37 to derive an analytical expression for the density
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of states of the inhomogeneous three-dimensional lattice, reading
psp(€) = 2nV, 22l /2, (3.38)

With the relation N = [;* de p3p () we obtain the Fermi energy as a function of the total atom
number N

N\ 2/3
5 ) , (3.39)

7
which plays an important role for the definition of rescaled units in chapter 6. The density of

states 3.38 allows to calculate the total entropy of the system at a given temperature using the
general prescription 2.19. To the lowest order in temperature, the Sommerfeld approximation

yields [61, 62]
T2
Tr

It is interesting to compare this result to the entropy of a harmonically trapped Fermi gas with-
out a lattice, which has been derived in equation 2.25. The expressions differ exactly by a factor
of two for a fixed dimensionless temperature 7'/Tr. This has an important implication for the
loading of ultracold fermions into an optical lattice: When a harmonically trapped noninteract-
ing Fermi gas is adiabatically (S = const.) transferred into a deep lattice, the dimensionless
temperature is doubled. If the loading is nonadiabatic, the temperature increase will even be
larger.

2
T
S_mnT o

. 3.40
kp 2 Ty (3.40)
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4. Detection and observables

Powerful detection methods and reliable observables are the cornerstones in the analysis of
many-body quantum phases of ultracold atoms. By far the most detection techniques aim
at direct imaging of atomic densities either in-situ or after time-of-flight expansion. On the
basis of experimental images, observables are defined that characterize the quantum many-
body state. The quality of these observables determines how much can be learned from a
sample of ultracold atoms.

In the first part of this chapter, the theoretical foundations of absorption and phase-contrast
imaging are described [130]. In the second part we summarize the fundamental experimental
observables used in this work, including the in-situ density distribution, the momentum and the
quasi-momentum distribution as well as measures of first- and second-order correlations.

4.1. Detecting ultracold atoms

All information that we gain about clouds of ultracold atoms is acquired either by imaging
the in-situ density distribution in the trap or the momentum distribution obtained after time-
of-flight expansion. The vast majority of the existing experimental setups relies on optical
detection techniques.! In the experiments of this thesis we employ absorption and phase-
contrast imaging.

4.1.1. Interaction between atoms and light

When a light field passes through a medium generally both its amplitude and phase are mod-
ified. The changes in the amplitude and the phase originate from a complex susceptibility of
the medium that gives rise to a complex index of refraction n..s [42, 74]. A cloud of ultracold
atoms can be idealized as an ensemble of two-level systems with a spatially dependent density
n(r). During imaging the cloud is illuminated by a monochromatic laser at wavelength \. If
the laser intensity [y is low compared to the saturation intensity Is,¢, the complex index of
refraction is given within the rotation wave approximation by [42, 130]

. )\O'() ) 2A/F
Pret(r) = 1+ n(r) 70 (1 FAAZT? T 1+ 4A2/F2> ’

4.1)

Here, 09 = 3\2 /27 denotes the resonant scattering cross section of an atomic two-level system,
A = w — wy the detuning between the laser frequency w and the atomic resonance wy, and I’

!"The only notable exception being the electron microscope realized in Herwig Ott’s group, which is based on the
ionization of ultracold atoms and subsequent detection with a channeltron [131].
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the natural line width of the transition.
We let the light propagate along the z-direction and apply the thin-lens approximation,
which means that the light is assumed to enter and exit the atom cloud at the same z- and

y-coordinates. The propagation through the cloud transforms a laser field Fy o ?** into
E =exp (zk/dz [Mpet () — 1]) Ey =t(x,y) @Y B 4.2)
where the spatially dependent transmission coefficient and phase shift are given by
~D(e)/2 a
ta,y) =e 7 and  (z,y) = 7 D(z,y). 4.3)
The optical density D(z,y) of the medium is given by
D(z,y) = mncol(% Y), (4.4)

where the column density no(z,y) = [dzn(r) is defined as the spatial density integrated
along the z-axis. The integration indicates that no spatially resolved information is obtained
along the line-of-sight. The above equations form the basis for the theoretical treatment of
absorption imaging and phase-contrast imaging.

4.1.2. Absorption imaging

Absorption imaging is our standard method to measure the density distributions of ultracold
potassium and rubidium atoms after time-of-flight expansion [130]. The atom clouds are illu-
minated by a resonant laser beam and partly absorb the light. This imprints a shadow cast on
the intensity profile of the laser beam that is imaged on a charge coupled device (CCD) camera.
The absorption process is followed by spontaneous emission that leads to the transfer of recoil
momentum and strong heating of the cloud. Assuming that 150 photons are scattered during 50
ws of illumination, momentum diffusion blurs the image by about 2 ym (4 pm) for rubidium
(potassium) [130]. Therefore, the duration of illumination should not be too long. Obviously,
absorption imaging is destructive.

In order to extract the atomic density distribution 72(r), three individual images are recorded:
First, the shadow cast of the atom cloud Iy, (x, y), second, the intensity profile of the imaging
beam without atoms Iy (x,y), and, third, the stray light distribution I;(z,y) without atoms
and without imaging beam. The stray light is subtracted both from the image with atoms
I(z,y) = Iy(z,y) — Is(z,y) and the image without atoms Iy(z,y) = Iwo(z,y) — Is(z,y).
Noting that I o |FE|? and using equations 4.2 and 4.3, a relation between the two images is

easy to derive:
I(z,y) = e P9 Iy, y). 4.5)

According to the approximations introduced in section 4.1.1, the relation is valid in the limit
of low laser intensity Io(x,y) < Ist. This is a favorable regime, because the optical density
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4.1. Detecting ultracold atoms

is solely determined by the relative intensity ratio D(x,y) = —In(I/ly) and no absolute
intensities are required.

The applicability of absorption imaging is technically limited by the dynamic range of the
CCD camera that typically corresponds to D(z,y) < 4. The optical density of a trapped
degenerate atom cloud is generally much larger, up to D = 100 and even more. Therefore,
the optical density must be reduced by about two orders of magnitude. This can be achieved
by releasing the atom cloud from the trap and allowing for free expansion in time-of-flight.
In principle, the optical density could also be reduced by choosing a large detuning A of the
imaging beam (see equation 4.4). However, this increases the real part of the refractive index
and gives rise to a finite phase shift ¢(x,y). The thin-lens approximation breaks down and
the experimental images show lensing and distortions. While large detuning is delicate in
absorption imaging, it is beneficially employed in the phase-contrast method (see next section).

An ideal implementation of absorption imaging is often difficult due to technical constraints.
In our setup, we are bound to use linearly polarized light. Therefore, the atoms cannot be
treated as two-level systems and several degenerate transitions must be taken into account (at
vanishing magnetic field). Averaging of the respective squared Clebsch-Gordon coefficients
yields a reduced scattering cross section oy. The theoretical correction factors for 8'Rb and
40K are agp, = 7/15 and ax = 2/5, respectively [129]. These values have been validated by
independent atom number calibrations based on the in-situ size of Bose-Einstein condensates
and noninteracting degenerate Fermi clouds (see section 6.2.3).

4.1.3. Phase-contrast imaging

The implementation of phase-contrast imaging (PCI) has been a pivotal step towards a depend-
able measurement of in-situ cloud sizes of interacting fermionic spin mixtures, which led to
the observation of a fermionic Mott insulator (see section 5.5 for technical details and chapter
6 for the experiments).

Phase-contrast imaging has two remarkable features: First, it is an almost nondestructive
technique, because it relies on elastic scattering of far-detuned laser light. Therefore, multiple
images of the same atomic sample can be recorded. Second, in-situ density distributions can be
detected, which usually have an optical density that is too high for absorption imaging (see pre-
vious section) [130, 132—-135]. These properties have led to several intriguing applications of
the phase-contrast method, for example, in the detection of local magnetization and in-situ spin
textures of spinor condensates [136, 137] or in studies of in-trap distributions of imbalanced
strongly interacting Fermi gases [21, 138].

Phase-contrast imaging was invented by Frits Zernike in 1934 and earned him the 1953
Nobel prize in physics. The invention was originally driven by the aim to visualize transparent
objects, such as biological cells [139]. The phase-contrast method relies on converting the
phase shift that is imprinted on a light beam passing through a refractive object into intensity
information that can be observed in a microscope or recorded by a camera. This conversion is
achieved by interfering light that is coherently scattered by the object with unscattered light.

The interference effect of the phase-contrast method is achieved by an elegant distinction be-
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Figure 4.1.: Theory of phase-contrast imaging. (a) Elementary phase-contrast setup. Far-
detuned imaging light is coherently scattered by the atoms (gray shaded area). A phase plate in
the Fourier plane shifts the relative phase between scattered (F.) and unscattered (Fy4.)light.
In the imaging plane, the phase modulation ¢(z,y), which the atoms imprint on the imaging
beam, can be converted into an intensity modulation I(x,y), if the phase shift « of the phase
plate is chosen appropriately (see main text). (b) Relative signal I/I, as a function of the
phase shift ¢ for advancing (&« = 4+ /2, dashed) and retarding (&« = —m/2, solid) phase
plates. For simplicity a transparent atom cloud is assumed (¢ = 1) corresponding to the limit
of far detuning. The shading indicates that the phase shift ¢ is positive (negative) for red (blue)
detuned imaging light (see equation 4.3). The method is usually used in the linear regime
I/Iy  ¢. Only here the phase-contrast signal is proportional to the column density of the
atom cloud, because ¢ o n¢oi(r).

tween scattered and unscattered light: When light passes through a refractive object it acquires
an angular spread that is not present for light that does not pass through the object. Therefore,
scattered and unscattered light propagate along different paths allowing for a spatial distinction
as shown in figure 4.1a. In an appropriately designed imaging system, the unscattered light has
an intermediate focus at a plane, where the spatial extent of the scattered light is much larger
than the focussed unscattered beam. This plane is called the Fourier plane [74]. Here, a differ-
ential phase shift between scattered and unscattered light can be applied by placing a special
phase plate into the beam path. At the center of the phase plate, where the focussed unscattered
light propagates, the optical path length is different from the outer regions. After passing the
plate the scattered and phase-shifted unscattered light propagate further and, finally, recom-
bine in the imaging plane (see figure 4.1a). At this point, they complete a homodyne detection
scheme, in which the unscattered light acts as a local oscillator and interferes destructively or
constructively with the coherently scattered light.

Theoretical background

In order to properly account for interference and phase sensitivity, the phase-contrast method
is theoretically treated on the level of the electric field. The laser field (see equation 4.2) is
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4.1. Detecting ultracold atoms

decomposed into a scattered and an unscattered part after passing through the atom cloud
E =te"Ey = By + Eyge, (4.6)

where the definitions Fy. = (t et — 1)Ey and Eus. = Ejp are introduced. The transmission
coefficient t = ¢(x,y) and the phase shift ¢ = ¢(z,y) are understood to be functions of the
spatial coordinates x and y.

The phase plate in the Fourier plane (see figure 4.1) imprints a phase shift « on the unscat-
tered light with respect to the scattered light. Positive (negative) « is generated by a phase plate
that advances (retards) the unscattered light by propagation through a bump (dimple). Using
E = Ey + €' Ey. the intensity at the imaging plane Ipcy o< |E|? is given by

Ipcr = Iy |t e —1 + 6ia‘2
= I <t2 + 2 —2cos(a) — 2ty/2 — 2 cos(a) cos ((Z) + %)) . 4.7)

Phase shifts of & = 4/2 are most favorable, because in these cases the dependence between
Ipci/1y and ¢ is almost linear. Furthermore, a large dynamic range of up to Ipcr/Ip < 6 is
covered before the signal rolls over (see figure 4.1b).> For these values of « the phase contrast
signal is given by

Ipcr = I (t2 222t cos <¢ + %)) . (4.8)

This expression can be further simplified in the limit of small optical densities (corresponding
to small phase shifts ¢) and full transmission (t — 1) to

Ipct = Io (2 — 2t + 2 £ 2t¢) — Iy (1 +£2¢). (4.9)

Small optical density can experimentally be enforced by choosing a sufficiently large detuning
A. Far-detuned phase-contrast imaging is linear in ¢ and, consequently, linear in the column
density no1(x,y) (see equations 4.3 and 4.4). Furthermore, equation 4.9 indicates that ex-
perimental images have a background corresponding to Iy, which must be subtracted in the
evaluation process.

Outside of the linear regime the phase-contrast signal /I is a periodic function of the
optical density (see equation 4.8), whereas absorption imaging saturates for large optical den-
sities (see equation 4.5). Nonlinear phase-contrast imaging has been successfully applied for
thermometry in Bose-Einstein condensates [135] .

Linear phase-contrast imaging with a retarding phase plate & = — /2 is used in chapter 6 to
detect the in-situ density distribution of potassium atoms. Blue-detuning of the imaging laser is
induced by shifting the respective atomic transition with a strong magnetic field (see appendix
B). Details on the experimental setup are provided in section 5.5.

“Reference [135] points out that a phase shift of o = 27 /3 ensures even better linearity of Ipcy/Io in particular
for small ¢. However, the cost is a limitation of the dynamic range to Irci/Io < 4.
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4.2. Observables

Based on the recorded images, experimental observables are defined that yield information
about the many-body quantum state. In this section, we focus on observables that characterize
many-body states of ultracold atoms in simple cubic optical lattice potentials. We discuss the
in-situ density distribution as well as the distributions of the momenta and the quasi-momenta.
On the basis of the momentum distribution, we introduce and analyze measures of bosonic
coherence - the visibility and the fraction of coherent atoms - that are used in chapters 7 to 9.
While these quantify first-order correlations, second-order correlations can also be extracted
from the quantum noise in images of the momentum distribution, which, for example, provides
information on the spatial ordering of atoms.

To simplify the discussion we consider a homogeneous simple cubic lattice, in which all sites
are equivalent. Furthermore, we make the idealizing assumption that time-of-flight imaging
transforms the in-situ real-space density distribution into the momentum distribution. In the
experimental realization, this would require a purely ballistic expansion of the atom cloud after
the release from the trap and a very long time of flight. Both requirements are rather hard to
fulfill [130, 140], but the visibility and the fraction of coherent atoms are rather insensitive to
the resulting deviations [140]. More care must be taken for observables that are sensitive to the
fine details of the momentum distribution, for example, when the absolute degree of coherence
in a bosonic system is to be determined [141].

4.2.1. In-situ density distribution

We start by considering the general in-situ density distribution of a quantum gas in an optical
lattice. Due to the periodic potential the single-particle states can be expressed in terms of the
Wannier functions wy,)(r — r;) (where r; = 27/an; with lattice constant a and n; being a
three-dimensional vector of integers labeling lattice site 7) (see section 2.2.4). If all atomic
population is contained in the first lattice band, the index n can be dropped and the field op-
erator can be expanded according to 1(r) = 3 jw(r —rj)a;. The annihilation operator a;
destroys a particle in the Wannier state w(r —r;), while the field operator ¢)(r) as a whole anni-
hilates a particle at position r. Using the definition of the in-situ real space density distribution
we obtain

n(r) = @ (@)dr)) =Y w'(r —r;) w(r —x;)(ala;). (4.10)
(]

Here, the expectation value <&Zdj> is understood to be taken within the many-body quantum

state | ') in second quantized form, which can generally also feature a time dependence. When
the off-diagonal (i # j) correlations (&Idﬁ vanish, corresponding to the absence of long-range
phase coherence, the density distribution turns into a simple sum > _; 7 |w(r —r;) |2 of Wannier
functions weighted by the local filling ; = (7).

The locally resolved detection of the in-situ density is not possible with common imaging
techniques due to the small spacing between lattice sites (a ~ 400 pm). Only recently quantum

gas microscopes have been demonstrated that employ fluorescence imaging and permit single-
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(b)

Figure 4.2.: Momentum distribution of 8"Rb atoms during collapse and revival dynamics in
a 41 Ey.. deep lattice. The data show three points of the evolution at hold times of (a) 40 us
(start), (b) 120 us (collapse) and (c) 320 us (partial revival). The data are taken from the set
in figure 7.8. While the overall atom number is almost constant, the off-diagonal correlations
vary in time and result in the emergence or suppression of interference.

site and and single-atom resolved detection [142-144]. However, even without ultra high reso-
lution the detection of the real space density can yield valuable information [22, 23, 132, 133].
For example, the full three-dimensional density distributions n(r) of imbalanced Fermi mix-
tures have been reconstructed from the recorded column density nqo(z,y) by exploiting the
symmetries of the harmonic trap in an inverse Abel transformation [21]. Furthermore, the first
direct images of the shell structure in a bosonic Mott insulator have been obtained via in-situ
absorption imaging [145, 146] (compare section 3.2.2).

In chapter 6, in-situ phase-contrast images of fermionic spin mixtures in an optical lattice
are recorded (see figure 6.5b). We measure the radius of the column density as a function of
the external trapping potential and use these data to extract the global compressibility of the
many-body quantum state. The compressibility permits a direct distinction between metallic
(compressible) and insulating (incompressible) phases and reveals a fermionic Mott insulator
for strong interactions.

4.2.2. Momentum distribution

The measurement of momentum distributions has a very long tradition in the field of ultracold
atoms. The time-of-flight technique, in which all trapping potentials are abruptly switched off
before atoms undergo ballistic expansion, enabled the first unambiguous detection of Bose-
Einstein condensates [2, 3]. It was equally important in the first detection of the superfluid
to Mott insulator transition. Here, the loss of contrast in a lattice Bose gas revealed the sup-
pression of long-range coherence as an indicator for the localization of atoms [28] (see section
3.2). Within this thesis the momentum distribution is mostly used for the analysis of bosonic
many-body quantum states. Therefore, we use bosonic operators ¢ and &' in the following
derivation, although the relations also account for fermions.
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In order to derive the atomic density in momentum space, we first Fourier transform the field
operator ¢ (r) and obtain

(k) = Z dj/d3r e KT w(r — 1)) = Zdje*"k'rf w(k) = aw(k), (4.11)
J

J

where w(k) is the Fourier transform of the Wannier function. Furthermore, the annihilation
operator for an atom at momentum k is given by ax = > j a; e~%T; With the above relations
the momentum distribution is given by its definition

n(k) = (GR)1P(K) = lwk)[* D e ™) @lay). (4.12)
ij

To further elucidate equation 4.12, we divide it into diagonal (¢ = j) and off-diagonal (i # j)
terms according to

n(k) = [wk)* | D () +> e ™) ala;)

J 1#£]

. |w(k)‘2 Z<’fl]> + |<&>|2 Z e~ ik (ri—r;)

J i#]

(4.13)

The squared modulus of w(k) gives rise to an envelope of the momentum distribution, the
so-called Wannier background. In the absence of phase coherence ((d;rdﬁ = 0 foralli # j)
the momentum distribution is given by this background, whose width is inversely proportional
to the width of the on-site Wannier function w(r) owing to the Fourier relation. If phase co-
herence is perfectly established, the single-particle density matrix <d1&j) will take finite values
even for lattice sites ¢ and j that are far away from each other. In this case, the width of the in-
dividual interference peaks is inversely proportional to the system size. For an infinitely large
theoretical system §-peaks are obtained. For partial coherence the width of the interference
peaks is inversely proportional to the coherence length.

In order to make the replacement (&j@-) — |(@)|? in the second step of the above equa-

tion, we follow a Gutzwiller ansatz, in which the many-body quantum state |¥) factorizes into
equivalent on-site wavefunctions (compare section 7.2.1). In this case, all information on the
phase coherence of the system is contained in the squared modulus of the field amplitude |{(a)|?,
which determines how strongly the interference term ), ey e~k (ri=r;) contributes.

Measurements of the bosonic phase coherence play a central role in chapters 7 to 9. Specifi-
cally, the collapse and revival dynamics of coherent bosonic states require a robust observable
for the dynamical evolution of the coherence (see figure 4.2). As a consequence of equation
4.13, the contrast of the interference pattern forms a measure for |(a)|?. We make use of two
experimental observables, the visibility (chapter 7) and the fraction of coherent atoms (chapter

80



4.2. Observables

(a) - - : : ; - (b)

1.0+
081 10, of 2k
08l 10% of 2hk
o6l 20%of 2nk
> 5 U°[ 30%of 2nk
> 06f z 40% of 2hk
—_— e
2 S 0.4
2 04t 19% of 2hk ZﬁkI z B .
10% of 2hk 2ﬁkI ~tmin
20% of 2hk H 0.2 . & 1
0.2r 30% of 2hk i [norm
40% of 2hk W\ i
(0] 5 X X X X - 0ks . ——\ - - n
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Coherence, [(a)| /i1 Coherence, [(2)| /17

Figure 4.3.: Comparison of visibility and fraction of coherent atoms as measures for bosonic
coherence. Based on simulated momentum distributions of a two-dimensional lattice system
(11 x 11 sites) with a known value of |{@)|?/n (7 is the mean on-site filling) the experimental
observables are extracted: (a) The visibility is defined by V = (nmax — Tmin)/(Pmax + Tomin)
and (b) the fraction of coherent atoms follows from (N ax — Tmin ) /Mnorm- Both quantities are
evaluated for several sizes of the ny .- and nyj-counting boxes given in units of the Brillouin
zone width 2hk.

9), that yield a maximal value when all atoms are found in the interference peaks and vanish
when all atoms are part of the featureless background.

Visibility
In analogy to typical definitions of contrast, the visibility V of a bosonic interference pattern is

defined by [147]
y = Nomax = Nt (4.14)
N, max T N, min
Nnax denotes the total number of atoms inside four boxes around the first order interference
peaks and N, the total number of atoms in a set of identical boxes that are rotated by 45

degree around the central peak (see inset of figure 4.3a).

Fraction of coherent atoms

The fraction of coherent atoms is obtained from an experimental image as follows: First, the
Wannier background is fitted by a Gaussian and subtracted from the image. In the resulting
image, the atom numbers in boxes that contain the central, first- and second-order coherence
peaks are counted and summed up to obtain Ny,. The total atom number Ny is the sum of
Ncon and the atoms contained in the Gaussian background. The ratio N¢op/Niot yields the
fraction of coherent atoms [43].

Figure 4.3 shows a simulation that elucidates the exact relation of the visibility and the
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fraction of coherent atoms to the theoretical coherence |{a)|?. For this purpose, the momentum
distribution of a small two-dimensional lattice is calculated as a function of |(a)|?. From the
resulting numerical momentum distributions the visibility V and Ny, /Niot are derived, as if
they were experimental images (see insets of figure 4.3). Furthermore, the dependence of the

observables on the size of the evaluation boxes is investigated.

As expected, both observables have a strictly monotonic relation to the coherence. The
visibility shows a nonlinear behavior with a strong enhancement for weak coherences (see
figure 4.3a). This can be helpful, if a high sensitivity to small values of |(a)|? is required. In
fact, the nonlinearity has helped us to identify the beat signal in the quantum phase revival
dynamics in chapter 7 (see figure 4.2 for exemplary images). Nevertheless, it bears the risk of
frequency mixing in the evaluation of the experimental collapse and revival time traces. The
nonlinearity is strongest for small evaluation boxes and the relation becomes increasingly linear
for larger ones.

The fraction of coherent atoms is an almost perfectly linear function of |{a)|? (see figure
4.3b). While the absolute values of Ncop,/Niot show a strong variation as a function of the box
sizes, the linearity is always preserved. The linear behavior makes it harder to detect small
values of the coherence, but it is conceptionally favorable for the evaluation of quantum phase
revival measurements: The experimental time traces and the time-dependent oscillating coher-
ence |(a)(t)|? only differ by a fixed factor. Therefore, the Fourier transform of the experimental
trace precisely yields the spectral content of the quantum phase revival dynamics contained in
|(@)(t)|?. The fraction of coherent atoms is extensively used in the analyses of chapter 9.

When fermionic atoms are released from optical lattices, they also show an interference
pattern (see excursion 9.3). As in the case of bosonic atoms, the width of the interference peaks
contains information on the delocalization of atoms and, consequently, their coherence length
[33] (see figure 9.11a and b). Necessarily, the interference peaks are broad, because fermions
cannot macroscopically occupy delocalized Bloch states due to Pauli’s principle. As shown in
figure 3.7 only few of the lowest lying single-particle states show a notable delocalization.

4.2.3. Noise correlations

In strongly correlated quantum phases, such as a bosonic Mott insulator, the atoms are local-
ized at individual lattice sites: The off-diagonal elements of the single-particle density matrix
(d;r a;) vanish, which corresponds to the absence of long-range phase coherence. When the po-
tential is switched-off to obtain a time-of-flight image, all atoms leave the lattice individually
and no interference occurs. The resulting momentum distribution merely shows the practi-
cally featureless Wannier background (see above). Many of the intriguing strongly correlated
phases that are predicted to emerge within ultracold atom systems suffer from this problem, for
example, antiferromagnetically ordered states as well as spin- and charge density waves.

While the momentum distribution measures first-order correlations (1)(k)¢)(k)), it is also
possible to extract second-order density-density correlations from experimental images [148].
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Figure 4.4.: Quantum noise correlations for bosonic and fermionic atoms. (a) When two iden-
tical atoms are released from neighboring lattice sites, they can reach the independent detectors
via two, fundamentally indistinguishable paths. The respective probability amplitudes interfere
constructively (destructively) for bosons (fermions) corresponding to the upper (lower) sign.
The correlation between the detectors is sinusoidally modulated as a function of the distance d.
For more than two atoms the correlations evolve from a sinusoidal modulation to narrow peaks,
in analogy to optical diffraction from a grating with an increasing number of slits. (b) Exper-
imental noise correlations of a ’"Rb Mott insulator released from a three-dimensional optical
lattice (Viat = 32 Elec). About 30 images have been averaged. The position of the correlation
peaks with a periodicity ¢ = ht/(ma) resembles the in-situ order with a lattice constant a.
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The density-density correlations in momentum space are theoretically defined by
C(k,K) = (k) A(K) = ()P )DK) G ), (4.15)

which is evaluated within the many-body state of interest |¥) in second quantized form. Altman
and collaborators [148] have shown that such correlations can be extracted from the atomic
shot-noise in images of the momentum distribution using the prescription [149]

_ [ d*r (neoi(r — d/2)neol(r +d/2))
J @r (neoi(r — d/2)) (neol(r + d/2))’

where n01(r) denotes the column density recorded in experimental images. The coordinate
r = (z,y) in the image corresponds to a momentum k = mr/(ht), where ¢ is the time-of-
flight and m the atomic mass. In the prescription 4.16 the angled brackets (. ..) do not denote
a quantum mechanical expectation value, but averaging over an ensemble of independently
acquired images.

C(d) (4.16)

The emergence of correlation peaks for certain distances d can reveal the hidden order in
strongly correlated many-body quantum states as well as the quantum statistics of the underly-
ing particles. For example, a Mott insulator of bosons and a band insulator of spin-polarized
fermions have identical in-situ density and momentum distributions. In both cases, correlations
appear at locations d that correspond to reciprocal lattice vectors with the periodicity

ht t
{=— = —2hk, (4.17)
ma m
where k = 27/ is the wave vector of the lattice light with wavelength \. While bosons show
a positive signal indicating bunching [30, 149], the antibunching of fermions is revealed by a
negative signal (see figure 4.4) [129, 150] .

Noise correlation analysis has been proposed as a helpful tool for the identification of anti-
ferromagnetically ordered phases, where doubling of the unit cell (see figure 3.6) will lead to
additional correlation peaks at positions with the periodicity ¢/2 [151]. Similar signatures are
expected for the detection of density waves [148] and supersolids [152]. The proof of principle
that noise correlations can identify modulated in-situ densities has already been provided by
the detection of patterned loading of an optical superlattice [153].

Based on second-order correlations, we devise a novel detection scheme for the Schrodinger
cat state that is expected to arise in bosonic collapse and revival dynamics (see excursion 7.4)
[43, 154, 155]. At the time of the collapse (see for example figure 4.2b) the formation of an
on-site superposition of coherent states is expected, which we show to lead to characteristic
k/-k quantum correlations in the momentum distribution. The analysis of k/-k correlations
has also been proposed to reveal the Cooper-pairing in momentum space of the fermionic BCS
state [148]. Correlations between opposite momenta, albeit of classical nature, have already
been observed after the dissociation of weakly bound Feshbach molecules [156].

84



4.2. Observables

(b)
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Figure 4.5.: Brillouin zone mapping reveals the quasi-momentum distribution for a noninter-
acting spin mixture of 40K in a 8 E,e. lattice. While the overall atom number is approximately
constant, the filling of the Brillouin zone varies as a function of the external harmonic confine-
ment corresponding to (a) w; = 27 x 46 Hz, (b) 27 x 90 Hz and (c) and 27 x 157 Hz. For the
strongest harmonic confinement the first Brillouin zone is homogeneously filled and popula-
tion in higher Brillouin zones is negligible. This observation is compatible with the formation
of a band insulator in the center of the trap, which is independently confirmed by a cloud size
measurement. (Images are selected from the black data in figure 6.6).

4.2.4. Quasi-momentum distribution

While the lattice is abruptly switched off for the measurement of the momentum distribution,
the quasi-momentum distribution can be revealed when the lattice is ramped down on a time
scale that is adiabatic with respect to the band gap, but fast with respect to tunneling. In this
case the band gaps become continuously smaller until the free particle dispersion is reached
(see section 2.2.3). The Bloch states are adiabatically transformed into the corresponding free-
space plane waves, whose momenta p are mapped in time-of-flight expansion. Population of
the first band is expected to lie within the first Brillouin zone of the reciprocal lattice [75, 157]
and population of higher bands n analogously maps to higher Brillouin zones (n — 1)hk <
|p| < nhk, where k = 27/a.

At first sight, Brillouin zone mapping seems to be an ideal tool to distinguish metallic and
band insulating phases of noninteracting fermions [33] (see figure 4.5). A box-shaped Fermi
surface is indeed expected when the first band is fully occupied and forms a band insulator
(see section 3.3.3). However, in practice, the Fermi surface is smeared out, because the spa-
tial variation of the filling in the underlying harmonic trap corresponds to a local variation of
the band filling. Additionally, Brillouin zone mapping only reveals the relative population of
Bloch states. Therefore, experimental observation of a homogeneously filled Brillouin zone is
compatible with a band insulator. But it is not a sufficient condition, because a sample with an
irregular arrangement of localized atoms or a Mott insulator have the same quasi-momentum
distribution as a zero-temperature band insulator. Nevertheless, in combination with further
observables (for example the in-situ cloud size) Brillouin zone mapping can yield useful infor-
mation on the many-body quantum state.
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4. Detection and observables

In chapter 6 we map the quasi-momentum distributions of a noninteracting spin mixture of
fermions. Therefore, we use the fermionic operators ¢;, and é}a with o € {1,/} and the

fermionic form of the field operator ¥ (r) = 3 jo W(r — rj)¢jo in the following derivation.
In analogy to equation 4.11, the field operator can be formally expressed in quasi-momentum
space as 1)(q) = éqow(q), where the annihilation operator for an atom in Bloch state ¢ and
spin state o is given by
bao = D Ejoc’ I (4.18)
Jo

By definition, the quasi-momentum distribution for a spin state ¢ is given by the occupation of
Bloch states

(fiqo) = (Chotao) = Y e ATl o). (4.19)
]

As our imaging techniques do not distinguish the spin states, the observed distribution cor-
responds to (g) = (fiqy) + (Nq)). Under restriction to the first Brillouin zone (|q| < hk)
this yields a simple relation between the momentum distribution (equation 4.12) and quasi-
momentum distribution (equation 4.19)

n(q) = [w(q)|* (fq)- (4.20)

The spatial position of the atomic density in the experimental image relates to the quasi-
momentum via r = qht/m, where ¢ is the time-of-flight and m the atomic mass. Relation
4.20 is utilized in section 9.3, where the momentum distribution of spin-polarized fermions is
used to extract information on the quasi-momentum distribution.
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5. Experimental apparatus

This chapter summarizes the experimental sequence and the techniques used to produce, ma-
nipulate and probe ultracold bosonic and fermionic quantum gases in our setup. Many of the
applied cooling and trapping techniques are fairly standard and are only described in passing
[69]. More emphasis is put on peculiarities of our setup, such as the optically plugged mag-
netic quadrupole trap, the combined trapping in a red-detuned dipole trap and a blue-detuned
optical lattice as well as phase-contrast imaging. Further details on the experimental setup can
be found in the PhD theses of Tim Rom [129] and Thorsten Best [92].

5.1. Overview of the setup and experimental sequence

In the following we briefly outline the experimental sequence, which is used to create quantum
degenerate clouds of bosonic 8’Rb and fermionic “°K. The relevant energy levels and transi-
tions are summarized in figure 5.1 and a cross-sectional view of the apparatus is displayed in
figure 5.2.

e Two-species magneto-optical trap: About 3 x 10° 8’Rb atoms and 2 x 107 “°K are
captured and laser cooled in a vapor cell magneto-optical trap (MOT) [67]. Commercial
rubidium- and homemade potassium-dispensers are used as atom sources. The latter
ones contain enriched potassium with 7% of 4°K. The dispensers operate in a pulsed
mode: Atoms are only released during the MOT phase of the experimental cycle, which
efficiently minimizes the background pressure in the MOT chamber. The duration of
the MOT phase is dominated by a loading time of up to 14 s for “°K, while 3"Rb is
rapidly captured within the last 4 s or less. The largest atom numbers in the two-species
MOT are obtained by displacing the rubidium and potassium cloud with respect to each
other using slightly imbalanced laser intensities. This reduces the overlap and suppresses
heteronuclear atom loss via light-induced collisions.

e Molasses: The MOT is followed by a short molasses phase (10 ms), during which the
magnetic field is switched off and the laser detuning is shifted further to the red. This
mostly affects the rubidium cloud, reaching sub-Doppler temperatures of about 50 pK,
while potassium essentially remains at the Doppler temperature of about 150 K [129].

e Optical pumping: Using o -polarized light at a weak homogeneous magnetic field, the
atoms are actively transferred into weak-field seeking states that are magnetically trap-
pable. Within 400 us rubidium is pumped to the |F, mp) = |2,+2) state by applying
light on the |F = 2) — |F' = 2) and |F' = 1) — |F’ = 2) transitions, while potas-
sium is transferred to the |F,mp) = [9/2,49/2) state by simultaneously driving the
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Figure 5.1.: Level scheme for the D- lines of 8’Rb and °K and corresponding optical tran-
sitions used in the experimental sequence. Cooling and repumping denote the transitions used
for laser cooling. Spin polarization is used to transfer the atoms to hyperfine sublevels that are
magnetically trappable. Absorption and phase-contrast images are recorded on the imaging-
transition. The A indicates that the potassium cooling and repumping transitions are detuned,
but the exact detunings are different. Strong reference transitions are stabilized and used to
lock the other laser frequencies by means of offset-locks. The label c.o. indicates crossover

resonances.
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MOT chamber & coils differential pumping
& magnetic transport

Rb & K dispensers
less than 1-10-"" mbar

quadrupole coils glass cell

Figure 5.2.: Cross-sectional view of the experimental apparatus showing the vacuum cham-
ber and the most important magnetic field coils. Green annotations show the pressure in the
corresponding part of the vacuum chamber.

|F =9/2) = |F' =9/2)and |F = 7/2) — |F' = 9/2) transitions. At this point rubid-
ium and potassium are prepared in stretched hyperfine states having the same magnetic
moment up. This ensures good overlap in the magnetic trap that is crucial for proper
thermalization during sympathetic cooling. Furthermore, spin-changing collisions that
can lead to atom loss and heating are efficiently suppressed.

e Magnetic transport: After optical pumping the atom clouds are transferred into a mode-
matched magnetic quadrupole trap [129, 130] and adiabatically compressed within 200
ms to a vertical trap gradient of 100 G/cm. Then, the rubidium and potassium clouds
are transferred from the MOT chamber to an ultra-high vacuum (UHV) glass cell over a
distance of almost 40 cm (see figure 5.2). The transport is performed within 2 s by using
a chain of quadrupole coil pairs, whose currents are cleverly ramped to smoothly move
the clouds with a constant quadrupole field through the vacuum chamber [108, 129].
The chamber design allows for a large pressure gradient between the MOT and the UHV
glass cell, where good optical access from all six directions is achieved.

e Sympathetic cooling in a plugged quadrupole trap: At the end of the transport the
atoms are captured in a powerful quadrupole trap (see figure 5.2). In order to perform
efficient cooling without Majorana spin flips [158, 159], a focussed blue-detuned laser
along the z-axis prevents the atoms from reaching the magnetic field zero in the center
of the quadrupole field (see section 5.2). Rubidium is evaporatively cooled by applying
a slow radio-frequency (RF) sweep, which continuously flips the most energetic atoms
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into untrapped Zeeman levels. Potassium is almost not affected by the RF sweep and
sympathetically cooled by thermalization with the rubidium atoms. At the end of typi-
cally 8 s of RF evaporation 10 x 10° 87Rb and up to 2 x 10° 4°K atoms are in thermal
equilibrium at a temperature of about 2 uK.

e Cooling in a crossed dipole trap: Within 200 ms the two pre-cooled clouds are smoothly
transferred into a pancake-shaped crossed dipole trap (see section 5.3). The quadru-
pole field is continuously transformed into a homogeneous offset field at 13.6 G. Using
Landau-Zener microwave and RF sweeps rubidium and potassium are transferred into
the absolute ground states |F, mp) = |1, +1) and |F, mp) = |9/2,—9/2), respectively.
A short pulse of imaging light is used to clean out the few remaining rubidium atoms in
the /' = 2 manifold. By continuously reducing the dipole trap depth, quantum degener-
acy is achieved for both species within about 4 s. Typically, a quasi-pure Bose-Einstein
condensate (about 3 x 10° atoms) coexists with a spin-polarized Fermi cloud (about
3 x 10° atoms) at a temperature of slightly below T//Ty = 0.2. The balance between
bosons and fermions can be controlled over a wide range by adjusting the initial MOT
parameters. This cooling sequence is used in the experiments with Bose-Fermi mixtures
(see chapters 8 and 9).

e Cooling towards a fermionic spin mixture: When quantum degenerate spin mixtures
of fermions are needed (see chapter 6), early during evaporation in the dipole trap 50%
of the potassium atoms in the |F,mp) = |9/2,—9/2) state are transferred into the
|9/2,—7/2) state. This is done by means of a Landau-Zener sweep at high magnetic
fields, where the Zeeman levels are well separated, either at 165 G or 220 G, which is
below or above the Feshbach resonance (see section 2.3.5). While the Landau-Zener
sweep actually creates a coherent superposition of the two spin states, collisions and
inhomogeneities of the external fields lead to rapid decoherence that generates a statis-
tical mixture of the spin states [81, 160]. During evaporation all rubidium atoms are
used as a coolant until the trap bottom is crossed (see section 5.3). From this point on,
the potassium mixture is cooled via further evaporation and internal thermalization to
temperatures down to about 7'/7Ty = 0.1. This cooling sequence typically takes about
6s.!

The details of the experimental sequence after preparation of the quantum degenerate gases
depend on the intended experiments and are described in each of the chapters 6 to 9 individ-
ually. Typically, the dipole trap is adjusted to provide the desired harmonic confinement and
a homogeneous magnetic field is used to tune interatomic interactions via a Feshbach reso-
nance.” Then the optical lattice potential is ramped up and further experimental manipulations

'Tt is very convenient that the mixture is almost perfectly balanced after evaporation, even if the initially prepared
spin mixture is not exactly 50%-50%. This is caused by the fact that both spin states experience the same dipole
trap depth and tend to form an identical Fermi sea. If one spin state has the majority, the excess spins evaporate
predominantly.

Details on the creation, stabilization and calibration of magnetic fields for Feshbach resonances in our setup are
provided in the PhD thesis of Thorsten Best [92].
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Figure 5.3.: Optically-plugged magnetic quadrupole trap. (a) A coil pair with counterpropa-
gating currents [ creates a magnetic quadrupole field that vanishes at the trap center and in-
creases linearly in all directions. A blue-detuned laser is focussed along the symmetry axis. (b)
Schematic of the combined magnetic and optical potentials.

on the atom clouds are carried out. Finally, absorption or phase-contrast images of the atomic
distribution are recorded either after time-of-flight expansion or in-situ. In one experimental
cycle images are usually taken along the y- or the z-axis or both (for directions see figure 5.2).

The following sections focus on the nonstandard techniques and peculiarities of the experi-
mental setup:

5.2. Optically-plugged magnetic quadrupole trap

Neutral atoms in a weak-field seeking Zeeman sublevel can be trapped in inhomogeneous mag-
netic fields. For such states the spatially dependent Zeeman energy

Erag(r) = grmpup|B(r)| (5.1)

constitutes a conservative potential, where g is the Landé g-factor for the hyperfine state F',
mp the projection of the angular momentum along the magnetic field axis and pp the Bohr
magneton. The resulting force is directed towards the magnetic field minimum. Only if the
atom moves slowly enough such that the magnetic moment adiabatically follows the direction
of the magnetic field, it stays in the weak-field seeking sublevel and remains trapped [130].3
Considering a magnetic quadrupole potential (see figure 5.3), the adiabaticity condition is
impossible to meet at the center, where the magnetic field vanishes and linearly increases in
all directions. Here, atoms can undergo Majorana spin flips to untrapped states and get lost
from the trap. While this loss mechanism is negligible for laser cooled atoms with a very
low density, it becomes more and more severe, when phase space-density increases during
evaporation. In our setup, the Majorana hole is plugged by focussing a blue-detuned laser
beam along the symmetry axis of the quadrupole field (see figure 5.3). The plug laser strongly

3 Adiabaticity specifically means that the rate of change of the magnetic field direction # must be smaller than the
Larmor frequency wr: df/dt < Emag/h = wr.
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prevents the atoms from reaching the trap center. The resulting trapping potential has the shape
of a cylindrically symmetric torus in the horizontal plane with slight distortions in the vertical
direction due the influence of gravity.

For the magnetic part of this hybrid trapping geometry we use a coil pair, which creates
a field gradient B’ of about 300 G/cm at a current of 35 A. This tightly confining potential
offers excellent conditions for rapid thermalization and efficient sympathetic cooling. The
optical part is provided by a tapered amplifier seeded by a grating stabilized diode laser that
operates at 760 nm. The focussed beam has a waist of 20 yum and a power of about 450
mW at the position of the atoms. The detunings of 20 nm and 7 nm with respect to the Ds-
resonances of 8’Rb and 4°K, respectively, are small enough to ensure a strongly repulsive force
and large enough to suppress harmful off-resonant excitation. The strong repulsion actually
helps suppressing inelastic photon scattering, because the atoms do not enter the high intensity
part of the beam. Nevertheless, care must be taken to prevent resonant photon scattering as
diode lasers typically have a broad background of amplified spontaneous emission spanning
several tens of nanometers across the whole gain profile [161]. Therefore, we filter out any
resonant light by placing two notch filters in the laser beam path.*

In view of our demands, the optically-plugged quadrupole trap has several advantages com-
pared to the Ioffe-Pritchard type QUIC trap that was originally installed in the setup [108, 129].
First, the tight confinement allows for much faster RF evaporation (8 s compared to 20 s) and
at the same time higher atom numbers are reached at 2 K (about a factor of 1.5 more for both
species). Second, the atom clouds are positioned exactly in the center of the glass cell on the
symmetry axis of the quadrupole coil pair. The higher symmetry ensures very good optical ac-
cess to the atoms and minimizes the risk of creating unwanted additional standing waves inside
the glass cell with the dipole trap or lattice beams. Third, the quadrupole coil pair allows to cre-
ate large homogeneous magnetic fields by switching to copropagating currents, which we use
to address Feshbach resonances. The coils are not arranged in perfect Helmholtz configuration
such that the resulting magnetic field has a non-vanishing curvature at the center. However, the
curvature does not drag the atoms, because they sit on the symmetry axis. Additional technical
details on the optically-plugged trap can be found in reference [92].

5.3. Crossed dipole trap

The optical dipole trap is formed by two elliptical laser beams that cross each other in the
horizontal xy-plane at an angle of about 90° (see figure 5.4). The short axis of both beams is
aligned along the direction of gravity, which generates a pancake-shaped trap. The trap laser’
operates at 1030 nm being far red-detuned both for rubidium and potassium. The polarizations
of the beams are chosen orthogonally and a frequency difference of 160 MHz is imprinted
using acousto-optical modulators in order to suppress and temporally average unwanted inter-

*StopLine single-notch filter, NF03-785E-25, by Semrock. The notch is tuned to the appropriate wavelength range
by changing the angle of incidence.

SVersaDisk, by ELS Elektronik Laser System GmbH. Ytterbium:YAG disc-laser at 1030 nm, 18 W, single-mode
operation with a linewidth of less than 5 MHz. Production and sales discontinued as of 2010.
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Figure 5.4.: Potential landscape of the crossed dipole trap in the horizontal zy-plane (a) and
the vertical xz-plane (b). The potential is calculated with a numerical model that takes all
experimental beam parameters and tilts into account (see main text). Gravity is neglected in
the plots for clarity. The difference in the waists of the two beams is clearly visible in panel
(a). A symmetric trapping potential [top view of (a)] is achieved by choosing a power ratio of
P,/P, =~ 2. Note that the scaling of the z-axis in panel (b) is stretched by a factor of four.

ference. The beam waists are about wyor , = 140 pm, Wyert ; = 45 pm and wyer y, = 170 pm,
Wyert,y = (0 pm. The different x- and y-beam parameters are compensated by appropriately
adjusting the power levels to yield a symmetric trapping potential in the horizontal plane (see
figure 5.4a). The power in the beams approximately follows the ratio P,/P, ~ 2. The ellip-
tical beam shape results in a tight vertical confinement and ensures good overlap of 8"Rb and
40K in the presence of gravity (see section 5.3.1).

In order to avoid the occurrence of standing waves, it is crucial to prohibit direct backre-
flections of the beams from surfaces of the glass cell or any other optical elements.® In com-
bination with geometrical constraints of the vacuum chamber, this requirement is the reason
for the surprisingly different waists of the x- and y-beam. Furthermore, the beams are steered
through the glass cell under angles of about 3° both in the vertical and horizontal direction. As
an experimental check to make sure that the potential is free of standing waves, we provoke
Raman-Nath diffraction. To this end, a Bose-Einstein condensate is released from the trap
and a single dipole beam is pulsed on with the maximal available power for a few us during
time-of-flight expansion. Our setup is optimized to show no perceptible diffraction peaks.

The optical dipole trap is slightly more red-detuned for “°K than for 87Rb. Therefore, ru-
bidium feels a slightly deeper potential. Neglecting the influence of gravity, the ratio of the
potential depths is calculated via equation 2.55 (see appendix A for atomic data) yielding

SWhen the fraction of backreflected intensity is p?, the modulation depth of the resulting standing wave is 4p (see
section 2.2.2). Even a tiny fraction of p> = 0.01% backreflected intensity would lead to a 4% modulation!
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Figure 5.5.: Numerically calculated potential profiles Vi (0, 0, z) of the crossed dipole trap
along the vertical axis taking into account gravity and the experimental beam parameters. (a)
Potential for rubidium at various laser powers. Gravitational sag strongly pulls the trap mini-
mum (black dots) downwards for lower laser powers. (b) Additionally, the effective trap depth
for rubidium AVeg gy, is effectively lower than AV.g x when the laser power stays below a
certain critical level. Therefore, dominantly rubidium is lost when the laser power is reduced
during final evaporation. The differential sag is Agy, — Ak ~ 5 pm. Dashed lines indicate the
pure gravitational potential for rubidium and potassium.

Vrp/Vk ~ 1.15. The corresponding ratio of trap frequencies is given by
\%
PRb _ 2R K 0,727, (5.2)
WK Vk mrp

A good spatial overlap of rubidium and potassium is crucial for efficient thermalization during
sympathetic evaporative cooling, as well as for the preparation and investigation of interacting
Bose-Fermi mixtures in optical lattices (see chapters 8 and 9).

Gravity has a different influence on the potential landscape for 8"Rb and “°K owing to their
different masses. Assuming a harmonic approximation in the vertical direction of the trap
(x=y=0)

5.3.1. Gravitational sag

1
Viot (0,0, 2) ~ imwgzz + mgz, (5.3)
the minimum shifts with respect to the unperturbed potential by A = —g/w?. The mass depen-

dence is contained in the trap frequency w, (see equation 5.2). Both the absolute gravitational
sag A and the differential sag between the two species Agy, — Ak can be reduced by choosing
a large vertical trap frequency w,. This motivates the use of strongly elliptical beams for the
dipole trap as specified above. The shift of the trap minimum in the experimental trap setup is
illustrated in figure 5.5a based on an accurate numerical ab-initio model of the potential.
Gravitational sag is essential to the sympathetic cooling scheme. On the one hand, good
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Figure 5.6.: Measurement of the gravitational sag A for 87Rb (blue) and “°K (red). The
conversion of dipole trap control voltage to beam power is P, = U, - 0.95 W/V. Dashed lines
show the results of the numerical trap model, the gray shaded areas correspond to a 10 %
error in the voltage-to-power conversion. The agreement between measurement and numerical
model is excellent. The inset shows the calculated differential sag between 87Rb and “°K
corresponding to the distance of the cloud centers in a noninteracting Bose-Fermi mixture. The
green area indicates the operating range of the dipole trap in the experiments with Bose-Fermi
mixtures. The typical differential sag is about 6 pm.
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spatial overlap is desired to ensure proper thermalization between rubidium and potassium. On
the other hand, the rubidium is supposed to be the coolant for potassium: Rubidium should
predominantly evaporate, while the potassium atoms should ideally stay in the trap and be-
come colder. At large beam powers, when gravity does not play a role compared to the dipole
potential, the trap is slightly deeper for 8'Rb (see above) in contrast to the desired evaporation
scenario. However, when the beam power is smaller than a certain critical value, gravity ef-
fectively reduces the rubidium trap depth below the potassium trap depth (see figure 5.5b). At
the same time the differential sag remains small enough to ensure proper thermalization over
a wide range of powers. For the parameters in figure 5.5b, a Bose-Einstein condensate and a
degenerate Fermi gas with 3 x 10° atoms have a vertical extent of 9 and 25 pm, respectively
(compare figure 2.3). The corresponding differential sag of about Agy, — Ax =~ 5 pm is so
small that the two clouds still have maximal overlap.

Figure 5.6 shows a measurement of the gravitational sag both for rubidium and potassium
together with the results from our numerical trap model. From extrapolation of the theoretical
data we obtain a trap bottom of U, = 0.116 V and U, = 0.061 V for rubidium and potassium,
respectively, which is in excellent agreement with independent measurements. The trap bottom
of the crossed dipole trap is a very sensitive measure for the overlap of the two dipole beams.
Therefore, the minimization of the trap bottom is a good strategy for the optimization of the
beam overlap during realignment (see section 5.4.2).

5.3.2. Characterization

Typically, the extent of the quantum degenerate clouds is much smaller than the waists of the
dipole beams. Therefore, the crossed dipole trap can be approximated by a harmonic oscil-
lator in the vicinity of the central potential minimum. Comprehensive measurements of the
corresponding harmonic trap frequencies are presented in figure 5.7. The frequencies are ob-
tained by inducing dipole oscillations of a spin-polarized 4°K cloud (see figure 5.7a). After
displacement along the axis of gravity and abrupt reduction of the beam power, oscillations of
the cloud are initiated along the z-axis. These also couple to the horizontal plane as a result of
slight anharmonicities. The atoms are observed after time-of-flight expansion, which reveals
the oscillation of the center-of-mass momentum. Time traces with several oscillation cycles
are recorded and fitted by a sinusoidal fit model (see figure 5.7a).

Figure 5.7b shows the trap frequencies as a function of the beam power. The data is excel-
lently reproduced by the numerical ab-initio model of the trap. For higher beam powers the
aspect ratio is approximately v = w,/w; =~ 4, where w| ~ w,,w,. For lower beam pow-
ers the trap frequencies w, and w, extrapolate to the origin following a square-root scaling as
a function of the beam power, while the vertical trap frequency w, becomes quickly smaller
when the trap bottom is approached (see previous section). For the data at lowest power we
find an aspect ratio of v ~ 3.5.
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Figure 5.7.: Comprehensive measurement of trap frequencies using spin-polarized ‘°K. (a)
Oscillations along the individual axes at U, = 0.14 V (corresponding to P, ~ 135 mW).
The momentum of the oscillating cloud is monitored after time-of-flight expansion. The corre-
sponding oscillation frequencies are obtained from a fit (solid lines) yielding w, = 27 x 185
Hz (top), wy = 27 x 51 Hz (middle) and w, = 27 x 47 Hz (bottom). (b) Measurements of the
trap frequencies at several power levels yield a full characterization of the trapping potential
as a function of the beam power (P,  U,, see above). The dashed lines are the result of our
numerical ab-initio model. The gray-shaded area highlights the data of panel (a).
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Figure 5.8.: Species-dependence of the optical lattice. (a) Lattice depth for 37Rb (blue, index
B) and *°K (red, index F) as a function of wavelength. The depths are displayed in units of the
respective recoil energy. A Gaussian standing wave with a total power of P = 100 mW and a
beam waist of wy = 170 pm are assumed, corresponding to typical experimental parameters.
(b) Ratio sp/sp of lattice depths for 87Rb and 4°K as a function of the wavelength. Nega-
tive values indicate that the lattice has opposite detunings for the two species (gray shading).
Dashed lines indicate the position of the respective D; and D> lines.

5.4. Three-dimensional blue-detuned optical lattice

The blue-detuned optical lattice is one of the most important features of our experimental setup.
The section starts with a brief discussion of the pros and cons of different lattice wavelengths
for 8"Rb and “°K. The reasons for us to choose blue-detuned wavelengths (738 nm and 755 nm)
are discussed. The main part deals with technical requirements, newly developed alignment
techniques and calibration methods for the lattice depths and the underlying anticonfinement.
The contents of this section are essential to all experiments in this thesis.

5.4.1. What is the best lattice wavelength?

At a given laser wavelength 8"Rb and *°K generally feel a different dipole potential owing to the
differences in their electronic level structure. Calculated via equation 2.55 and shown in figure
5.8, this species-dependence offers a variety of interesting choices for the lattice wavelength
of the double-species system. Close to the atomic D; and D5 resonances the optical potentials
diverge. In between the D-line doublets there is a wavelength at which the lattice effectively
vanishes, since the red detuning with respect to D; is compensated by the blue detuning with
respect to Dy. This destructive interference is located at 768.97 nm and 790.03 nm for “°K and
8TRD, respectively. Those wavelengths offer the intriguing possibility to create a lattice for one
species that is invisible to the other. Nevertheless, the relative proximity of these wavelengths
to the atomic resonances, particularly in the first case, bears the problem of strong inelastic
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5.4. Three-dimensional blue-detuned optical lattice

scattering of photons and potentially devastating heating [129]. As a rule of thumb, the rate for
inelastic scattering at a given lattice depth should not exceed about 10 mHz in order to allow
for realistic experimental hold times (about 100 ms).

Most experimental setups use a red-detuned optical lattice. Red detuning bears the advan-
tage that the lattice beams themselves provide confinement and hold the atom clouds without
the need of additional potentials (see section 2.2.2). This convenience comes at the cost that
the underlying confinement changes as a function of the beam intensity and cannot be indepen-
dently varied.

In order to gain control of the underlying potential, we use an optical lattice that is blue-
detuned for both 87Rb and “°K. The copropagating red-detuned optical dipole trap is used
to compensate the anticonfinement of the lattice. This combination allows to realize flexible
confining potentials in a broad parameter range, including a homogeneous lattice. Our initial
choice for the wavelength has been 755.50 nm, because the lattice depths are equal for rubidium
and potassium in units of the respective recoil energy sg/sp = 1 (see figure 5.8b). These
conditions are particularly convenient for experiments with Bose-Fermi mixtures, because the
Wannier functions of rubidium and potassium have identical shape and the tunneling strengths
differ by a constant factor that is given by the mass ratio J2/J¥ = mp/mp. This wavelength
is used in chapter 8.

In measurements with spin mixtures of fermionic “°K enhanced losses of doubly occupied
lattice sites and, even more severely, of weakly bound Feshbach molecules have been observed
at 755.50 nm. This problem precluded dependable measurements with Fermi-Fermi mixtures
and required a solution. The losses are induced by radiative collisions [162], in which the
absorption of a lattice photon excites the molecule to an unbound state in the continuum. Phe-
nomenologically, we found that this process is efficiently suppressed for larger detunings A
following a 1/A? scaling (see section 6.2.1 and appendix of [163]). Additionally, our investi-
gations showed that the loss rate has local minima at certain intermediate wavelengths. Here,
the Condon point of the transition to the continuum state hits a node of the spatial wavefunction
of the Feshbach molecule [163]. Eventually, we have opted for a lattice wavelength at about
738 nm being a compromise between the suppression of radiative collisions and available laser
power ensuring sufficient lattice depths both for 8’Rb and “°K.” This wavelength is used in
chapters 6, 7 and 9.

5.4.2. Adjustment, tweaking and calibration

The joint alignment of the red-detuned dipole trap and the blue-detuned lattice is a delicate
task: It is crucial to precisely overlap the potential maxima of the anticonfining lattice beams
with the potential minimum of the dipole trap. Already slight deviations result in an anhar-
monic combined potential. Large deviations can lead to potential landscapes with several local
minima and maxima, for example a Mexican hat potential, precluding a reliable comparison of
experimental results to theoretical models.

"MBR 110, single-frequency Ti:Sapphire laser, about 3 W output power at the lattice wavelength (738 nm),
pumped by Verdi V18, diode-pumped solid-state laser at 532 nm, 18 W output power, by Coherent, Inc.
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The technical demand yields a high gain: The combination of the two optical potentials
allows to tune the harmonic confinement independent from the lattice depths. This important
feature opens the door to new classes of equilibrium and nonequilibrium experiments with
ultracold quantum gases, as demonstrated in chapters 6, 7 and 9. The three orthogonal lattice
axes are formed by round Gaussian laser beams, which have a waist of 170(5) pm at the
position of the atoms.

Technical requirements

Several independent laser beams must maintain an accurate alignment with respect to each
other. Therefore, all parts of the beam paths should have a high passive stability. A number
of measures are taken to achieve this goal: Concerning the optomechanics, all components are
mounted on monolithic pedestals, which are adapted to a beam height of 6.8 cm above the
surface of the optical table. When beam paths leave the standard height, very rigid second
layers or lead-filled boxes are used as mounts for the optics. These measures mainly help to
suppress mechanical oscillations.

In order to achieve a good long-term stability of the alignment, the temperature at the experi-
ment table should be stable. Even without active temperature regulation, this goal is approached
by removing all heat sources from the vicinity of the experimental setup, apart from those that
can intrinsically not be removed (magnetic coils, beam dumps, cameras, etc.). Additionally,
the experiment table is surrounded by a protective curtain that minimizes air circulation across
the setup. The curtain is rarely opened during operation of the experiments. Remote-controlled
motorized mirror mounts (see below) allow to keep it closed even during alignment procedures.

Because the optical lattice is created by a coherent single-mode laser, it is a persistent chal-
lenge to avoid false reflections that can lead to the formation of unwanted additional standing
waves. For example, the direct backreflection of only 0.01% of the incoming intensity leads
to a standing wave with 4% modulation depth. However, the glass cell (see figure 5.2) is not
antireflection coated from the inside and reflections of about 4% must be expected. Therefore,
the formation of unwanted standing waves can only be safely avoided by making it geomet-
rically impossible. Similar to the dipole trap (see section 5.3) the lattice beams are steered
through the glass cell under angles of at least 3 degrees.We have further identified several op-
tical elements in the beam paths, such as beam cubes, standard mirrors and dichroic optics,
that produce false reflections, for example from their backside. These problems are addressed
either by avoiding the use of the respective elements (for example, dichroic optics), minimizing
their use whenever possible or blocking the reflections when other solutions are impractical.

All beam paths that need precise alignment (lattice, dipole trap and blue-plug) are equipped
with a piezo-actuated mirror mount. These mounts are placed at strategically good positions
to ensure a high degree of sensitivity. They are mechanically sturdy and feature reliable actua-
tion.®

8Picomotor™ Center Mounts (Model 8807) and Picomotor™ Pint-Sized Center Mounts (Model 8885), by New
Focus.
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5.4. Three-dimensional blue-detuned optical lattice

Full alignment procedure

The accuracy of the beam alignment is of paramount importance to the experiments of this
thesis. In the following, we summarize the individual steps:

e Optically-plugged quadrupole trap: The first step is to move the plug beam into the
trapping region of laser-cooled rubidium atoms inside the quadrupole trap. To this end,
an absorption image of the atom cloud is recorded and its center position is fitted. The
plug beam is directly viewed on the CCD camera and stirred to the fitted position. Owing
to chromatic shifts this is only a rough alignment, but usually the beam hits the cloud
edge. Then, the repulsive force of the blue-detuned light can be identified as a local
minimum in the density of the atom cloud. When the beam is stirred towards the cloud
center, the suppression of Majorana losses takes effect and leads to larger atom numbers
and lower temperatures. The beam position is now accurately scanned with the piezo
mirror. Both a maximum in atom number and minimum in temperature reveal the opti-
mal plug position. After optimization with rubidium atoms, the alignment automatically
works for the sympathetically cooled potassium.

e Optical dipole trap: The procedure starts by aligning one of the dipole trap beams
about 50 pm below the center of the quadrupole trap. The beam position is visualized by
loading atoms into this single beam trap. This avoids the problem of chromatic shifts that
arise when the beam is directly viewed on the camera and compared to the position of
the atoms on an absorption image. Then, the second horizontal beam is overlapped with
the first one and the trap depth is maximized by minimizing the trap bottom (see section
5.3.1). As soon as the beams are roughly aligned, it is possible to evaporatively cool
rubidium atoms towards condensation. The condensate is used to create an atom laser by
ramping the dipole trap intensity linearly down across the trap bottom. The higher the
trap bottom, the earlier atoms are released and the longer the atom laser. Therefore, the
length of the atom laser is a sensitive indicator for the trap bottom. Moving the vertical
position of the second beam with the piezo mirror, a minimum in the length of the atom
laser is clearly observed and indicates the optimal beam overlap.

e Optical lattice: The three axes of the optical lattice are aligned individually. In principle,
the procedure is identical for each of them. At first, the mirror for retroreflection is
blocked to avoid the formation of a standing wave. The incoming light simply forms
a blue-detuned Gaussian laser beam. In order to align the potential maximum with the
potential minimum of the dipole trap, a rubidium Bose-Einstein condensate is held in a
rather shallow dipole trap. At high power the blue beam can push the BEC out of its
equilibrium position. Using the motorized mirror, the vertical positioning is optimized
by maximizing the displacement of the BEC with respect to the equilibrium position. At
maximal displacement the BEC is exposed to the highest light intensity corresponding
to the vertical center of the blue-detuned Gaussian beam. The horizontal positioning is
optimized by finding the position, where the atoms are not displaced from equilibrium
to either direction, because the incoming beam hits the cloud head-on. If the intensity
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Figure 5.9.: Lattice calibration via frequency-modulation spectroscopy. The data shows a res-
onance between the first and second band at 98.2 + 1.0 kHz, which corresponds to a lattice
depths of 34.9 + 0.6 EL, .. The light-gray shaded area indicates the experimental uncertainty
of the resonance position. The dark-gray shaded bar represents the width of the resonance as
expected from a band structure calculation. The inset illustrates frequency modulation spec-
troscopy (see main text).
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of the blue beam is further increased, the BEC splits into two parts. By symmetrizing
the atom number in the two halves, the alignment can be further improved. The precise
positioning of the incoming lattice beam is crucial, because it also forms the reference
for the alignment of the retroreflected beam.

After unblocking the retro-mirror, the BEC is released from a pure dipole trap and in the
initial time-of-flight phase exposed to the (possibly poorly modulated) standing wave.
Using a short pulse of few tens of us Raman-Nath diffraction is induced. The power of
the lattice beam is adjusted to a level, at which the first-order diffraction peaks are only
faintly visible. In this regime, the number of diffracted atoms is a monotonic function of
the modulation depth of the standing wave. The position of the retro-mirror is optimized
by maximizing the number of diffracted atoms. If second-order diffraction peaks start
to appear in the course of optimization, the laser power must be reduced until merely
first-order peaks remain. The procedure is iterated until the maximal modulation depth
is reached corresponding to optimal overlap of the incoming and the retroreflected beam.
Obviously, care must be taken to match the waists of the incoming and the retroreflected
beam at the position of the atoms. Furthermore, loss of laser light on the retroreflection
beam path should be minimized to ensure a maximally modulated lattice potential.
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Figure 5.10.: Energy gap between the first and second lattice band E(gz) — Ec(ll) as a function
of lattice depth. The scale on the left side shows the resonance frequencies for “°K in a 738
nm lattice, while the scale on the right side is valid in general. Boundaries of the resonance
frequencies are set by the band gaps for ¢ = 0 and ¢ = £k (see section 2.2.3 and figure 2.8).

Lattice calibration

The depth of each lattice axis is calibrated by means of frequency-modulation spectroscopy
that probes the energy gap between the first and second lattice band. To this end, a quantum
degenerate spin-polarized “°K cloud is prepared in a very shallow dipole trap. One lattice axis
is adiabatically ramped up to a power level, at which an energy gap between 70 and 100 kHz
between the two lowest bands is expected corresponding to a lattice depth between 20 and 30
EY . (compare section 2.2.3 and figure 2.8).

The frequency of the lattice laser w is sinusoidally modulated by an acousto-optical mod-
ulator for about 100 ms with an amplitude Aw of typically several MHz. This modulation
results in a periodic displacement of the lattice, the spatial amplitude of which is determined
by the optical path length between the atom cloud and the retro-mirror. The retro-mirror sets
the boundary condition to the standing wave and determines the location of the individual lat-
tice wells depending on the frequency of the lattice laser. For our conditions a spatial shaking
amplitude Az of 0.1 to 1.0 % of a lattice wavelength A can be expected depending on the
exact value of Aw (see inset of figure 5.9). The oscillation of a lattice site around its equilib-
rium position can be expressed by Ax(t) = Axgsin(27 fpat), where fry is the modulation
frequency.

The shaking couples the first and second lattice band. This can be seen in a harmonic
oscillator model: The physics at a single lattice site is captured by the Hamiltonian Hy =
P> /(2mp) + me?ati'z /2, where wy,y is the harmonic on-site trap frequency and mp the mass
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of a potassium atom. Incorporating the time-dependence of the equilibrium position, we obtain

~ 2
p TMFW]at

e 5t lE + Az(t)]? ~ Hy + mpwd iAx(t). (5.4)

The term proportional to Az? is neglected, because it is small for our conditions. The pertur-
bation H 1= me%ati'A.’IJ() sin(2 fpat) is linear in & and therefore couples states of different
spatial symmetry. Population is transferred from the first to the second lattice band when the
frequency fry is in resonance with the band gap.’

In order to obtain a strong signature in the atom number, the depth of the dipole trap is
chosen weak enough that second band population does not stay trapped (compare figure 3.7).
Resonant excitation is indicated by strong atom loss (see figure 5.9). The upper edge of the
triangle-shaped feature is given by

B = (B0 - B, /n (5.5)

representing the maximal energy gap between the first and second band (see section 2.2.3).
As indicated by the data of figure 5.10, the width of the resonance is theoretically expected
to be a lot narrower than the observed feature. Owing to the shallow underlying trapping
potential, the cloud of fermions has a large extent and samples the inhomogeneous distribution
of lattice depths that arises from the Gaussian shape of the laser beams (illustrated in figure
2.7). Nevertheless, the sharp upper edge reveals the maximal lattice depth, which is found in
the center of the trap, with an accuracy on the level of few per cent. This kind of local resolution
distinguishes our method from others that yield an averaged lattice depth sampled by the area
of the whole atom cloud, such as in Raman-Nath diffraction [129].

It is advantageous to use spin-polarized fermions for the lattice calibration, because s-wave
collisions are suppressed by Pauli’s principle and interaction-induced shifts [165] of the cali-
bration can be excluded. The modulation spectra can be safely compared to a single-particle
band structure calculation (see section 2.2.3). Based on the measured calibration for “°K we
calculate the respective lattice depth for 8"Rb using equation 2.55 (for spectroscopic data see
appendix A). For a lattice wavelength of 738 nm the conversion of the dimensionless lattice
depth is sg/sp = 1.500(15) (see also 5.4.1).

Characterization of the anticonfinement

Accurate knowledge of the anticonfining trap frequencies as a function of the lattice depth
is crucial for precise tailoring of the potential landscape. The theoretical background on the
anticonfinement in a blue-detuned optical lattice is discussed in section 2.2.2. Substantial effort
is made to characterize the corresponding frequencies experimentally.

The measurement procedure is similar to the characterization of the bare trapping potential
(see section 5.3.2). A spin-polarized “°K cloud is prepared in the dipole trap at a certain

9This description is analogous to the semi-classical theory of atom-light interactions [71, 72, 164].
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Figure 5.11.: Anticonfinement of the blue-detuned optical lattice in practice. (a) Measured
anticonfining trap frequencies for the lattice axis along z-direction. A power law fit (wac =
as?) yields the parameters a = —10.2(7) Hz and b = 0.27(3) (black line). The exponent b is
in good agreement with the dominant s*/4 scaling originating from the varying on-site ground
state energy (see equation 2.67). (b) Anticonfining frequencies extracted from our numerical
ab-initio model. The only free parameter is the reflection coefficient p of the retroreflection
beam path (see section 2.2.2). Here, p = 0.8 is chosen to illustrate the effect, while the actual
experimental value is rather p ~ 0.9. The contributions from varying ground state energy
(orange dashed-line) and finite reflectivity (blue dashed-line) are added in quadrature to yield
the total anticonfinement (black line).
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Figure 5.12.: Schematic of the main imaging system for absorption and phase-contrast imag-
ing. The numbers at the lenses denote the respective focal length f. The overall magnification
is m = 3.3. In phase-contrast imaging the unscattered light passes through the center of the
phase plate imprinting a phase shift relative to the coherently scattered light. For absorption
imaging the phase plate is laterally moved out of the beam path.

depth. One of the three lattice axes is adiabatically ramped up and the atom cloud is displaced
(opposite to the direction of gravity) by tightening the dipole trap. When the cloud is released,
it oscillates perpendicular to the propagation direction of the lattice. The measured oscillation
frequency wosc contains both the confinement of the dipole trap wg;p, and the anticonfinement
of the optical lattice wac. wqip 18 known from the calibration without the lattice (see section

5.3.2). Therefore the anticonfining trap frequency can be extracted via wac = —/w? — wﬁip.

Such measurements are performed for all three lattice axes at several lattice depths yielding a
comprehensive characterization.

An exemplary measurement of the anticonfining trap frequency wac as a function of the
lattice depth is shown in figure 5.11a. The fit of a power law model confirms that wac ap-
proximately scales as s'/4. This complies with our theoretical analysis of section 2.2.2, where
the local variation of the ground state energy is identified as the main contribution to the anti-
confinement. The second contribution originating from the finite reflectivity in the retro-beam
path plays a minor role. We have also extracted the anticonfining frequencies from the nu-
merical ab-initio model of the trapping potentials and find a remarkable agreement with the
measurements (see figure 5.11b). This confirms the accuracy of the model, which is also used
to determine the anticonfining frequencies for ’Rb on a theoretical basis.

5.5. Imaging system

The main imaging system of the experimental setup points along the direction of gravity (z-
axis) and allows us to observe atom clouds either in-situ or after time-of-flight expansion. The
lens system consists of two telescopes as shown figure 5.12: The first one has a magnification
of m; = 3/2 and the second one mg = 20/9, which gives a total magnification of m =
mims = 3.3. Due to space limitations the first lens (f = 80 mm) has a diameter of d = 1
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inch, which results in a diffraction-limited resolution of about 6 ym.!® This value has been
experimentally confirmed in absorption images of Bose-Einstein condensates with extremely
low atom numbers, where the smallest observable cloud diameters have indeed been 6 pm,
demonstrating that the imaging system is diffraction limited. The axial position of the last lens
(f = 200 mm) is adjustable and allows to adapt the focus to different expansion times. A

front-illuminated CCD camera'! is used to take either absorption or phase-contrast images.

5.5.1. Phase-contrast imaging

An introduction to the theory of phase contrast imaging is given in section 4.1.3. The key
ingredient of this powerful technique is a phase plate that is placed in a Fourier plane of the
beam path to shift the phase of the unscattered light with respect to the scattered light. We use
a retarding phase plate (see figure 5.13a) that is inserted at the focus of the second telescope.
Here the unscattered light traverses the plate through a thinner spot in the center corresponding
to a shorter optical path length. To facilitate the alignment and ensure reproducibility the phase
plate is mounted on a precision xyz-translation stage.

Phase plate and alignment

Figure 5.13a shows a schematic of the phase plate, for which a fused-silica wafer with broad-
band antireflection coating forms the basis.!”> The central dimple has been created at the
Leibniz-Insitute of Surface Modification (Leipzig, Germany) using an ion-etching technique
that allows for a surface roughness of better than /10 in the etched region, where A is the
wavelength of the imaging light. For a material with a refractive index n,.f, a retardation by
a = —m/2 is achieved when the dimple has a depth of As = \/(4n.f — 4). The imaging
wavelength is assumed to be A\ = 774 nm, right in between the resonances of “°K and 8"Rb.
Together with n..s = 1.45 this leads to a depth As ~ 430 nm that creates an approximate
phase shift of « ~ —7/2 for both species.

The choice of the dimple size is a subtle issue. On the one hand, the dimple should not
be too small to ensure that all unscattered light safely propagates through the center. On the
other hand, the larger the extent of the dimple, the larger the amount of scattered light that is
subjected to an unwanted phase shift. This point is a notorious problem of the phase-contrast
method and the reason for imaging artifacts such as halos or shade-off effects [166—168]. While
an exact understanding of the specific artifacts is involved and depends on the details of the
imaging system [166], a smaller diameter of the dimple generally helps to suppress them. For
the measurements in chapter 6 we have used a diameter of 300 ym. However, the experimental
images show signs of a halo effect, which is accounted for by adding a funnel to the fitting
function that is used to extract the cloud radius (see equation 6.3). This complication has been
reduced by choosing a smaller dimple diameter of 170 pm in later measurements [98].

19The theoretical diffraction-limited resolution is defined as the diameter of the smallest object, whose Airy disc
fills the aperture of the first lens, that is 1.22 - 2\ f /d based on the Fraunhofer approximation [74, 139].

''iXon, DV885, by Andor, chip size of 1004 x 1002 pixels with a pixel size of 8 ym X 8 um.

2Fused-silica wafer (Coring HPES), diameter 2 inch, thickness 1 mm, by Plan Optik AG.
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Figure 5.13.: Phase-contrast imaging with a retarding phase plate. (a) The retarding phase
plate has a central dimple with a diameter of 170 um and a depth of As = 430 nm. It in-
duces a phase shift of approximately a@ ~ —/2 for both “°K and 8"Rb. (b) Phase-contrast
signal versus detuning for “°K atoms. The data shows the relative signal I/l at the cen-
ter of the cloud. Dark points are fitted by the model I/Iy = t(n,A)? + 2 — 2cos(a) —
2t(neol, A)y/2 — 2 cos(ar) cos [p(neol, A) + /2] (compare equation 4.7) using the column
density n.o and the phase shift «v as fit parameters. Gray points are excluded due to proximity
to the atomic resonance. The fit yields 1., = 1.125 x 101¥ m~2 and o = —1.568(3) ~ —7/2
(black solid line). A low atom number is chosen in order to stay in the linear regime ¢ o n¢ol.
Otherwise phase wrapping can occur for small detunings (upper right inset, 8"Rb Bose-Einstein
condensate imaged at A = +27 x 60 MHz).
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For alignment, first the axial position of the imaging beam focus is determined using a beam
profiling camera and the phase plate is accurately positioned at this axial location. Second, the
transverse position is tweaked to thread the imaging beam through the dimple. To this end, we
monitor the imaging beam with a beam profiling camera at a distance that is equivalent to the
position of the CCD camera. The phase plate is now moved laterally using the xy-directions
of the translation stage. When the edge of the dimple crosses the imaging beam, a diffraction
pattern appears on the camera. Moving the phase plate further, the pattern will appear again, if
the dimple has moved across the focus. This two-fold occurrence of diffraction, while moving
the phase plate through the imaging beam, allows to uniquely determine the position of the
dimple relative to the beam focus. Once the correct position is found, the phase plate can
reproducibly be moved with the translation stage and a rapid switching between absorption
and phase-contrast imaging is possible.

Phase-contrast signal

A characterization of the relative signal of phase-contrast imaging is shown in figure 5.13b.
Images of spin-polarized 4°K clouds are recorded for detunings ranging from the far red to
the blue. The insets show that a reduced intensity (black clouds) is detected for red-detuning,
while blue-detuning leads to an enhanced intensity (white clouds) as expected for a retarding
phase plate. A low number of atoms (about 10%) is chosen to avoid nonlinearities. The relative
signal /1 (see section 4.1.3) at the cloud center is plotted as a function of the detuning and
fitted by an ab-initio model corresponding to equation 4.7. Data points in the range —27 x 150
MHz < A < +27 x 150 MHz are excluded, because the clouds suffer from strong incoherent
scattering and atom loss. The extracted retardation of & = —1.568(3) is in excellent agreement
with the intended value of & = —7 /2.

Instead of shifting the frequency of the imaging beam, the detuning can also be achieved
by shifting the atomic levels and leaving the imaging frequency unchanged. This approach is
employed in chapter 6, where Zeeman shifts in high magnetic fields effectively lead to blue
detuning in the range A = 27 x 280 to 400 MHz (see appendix B).
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6. Interacting fermions in optical lattice potentials

In this chapter I report on the experimental realization of the Fermi-Hubbard model. To this
end, a repulsively interacting balanced spin mixture of ultracold “°K atoms is loaded into a
three-dimensional optical lattice potential. The emerging quantum phases are probed by mea-
suring the global compressibility of the quantum gas. The compressibility becomes exper-
imentally accessible using in-situ phase-contrast imaging and independent control of exter-
nal confinement and lattice depth. Comparing the experimental data to calculations based on
dynamical mean field theory (DMFT), it is demonstrated that the system evolves from a com-
pressible metallic into an incompressible band insulating state when the external confinement is
increased. For strong repulsion evidence for an incompressible Mott insulating phase is found,
underlining the great potential of using ultracold fermionic atoms to simulate model systems of
condensed-matter theory. Additionally, measurements on attractively interacting spin mixtures
are presented that demonstrate the fundamental impact of finite entropy on many-body quan-
tum phases. The chapter concludes with a discussion of strategies to achieve lower entropy
in lattice-based quantum gases. Novel routes towards low entropy are intensely investigated,
because they will open the field to studies of quantum magnetism. The presentation given
here focusses on the experimental peculiarities of the project. A detailed discussion including
further theoretical aspects can also be found in the PhD thesis of Ulrich Schneider [163].

6.1. Fermi-Hubbard model in a 3D optical lattice

The general single-band Hubbard model is derived in chapter 3. Using equation 3.28 the Hub-
bard Hamiltonian [169] for a fermionic spin mixture in a three-dimensional optical lattice with
simple cubic symmetry and underlying harmonic potential can be written as

H=-7Y 3" to+UD nyiur + Vi Y (i2+32+9%2) (R +7ur) . (6.
o (i) i

i

Here, the indices i = (i, iy, i) label the lattice sites in three dimensions, (i, j) denotes nearest-
neighbor lattice sites, o € {], 1} the two spin states, .J the tunneling matrix element, and U the
on-site interaction energy. The operators ¢, are the annihilation operators of a fermion in spin
state o on the i*? lattice site, éf . are the corresponding creation operators, and nj, measures
the number of spin ¢ fermions on site i.

The presence of the harmonic confining potential is represented by the third term. The
parameter V; = mwicﬂ /2 denotes the energy offset between two adjacent lattice sites in
the trap center, where m is the mass of a single atom, a = \/2 the lattice constant, \ is

the wavelength of the lattice laser, and w; = w, = w, the horizontal trap frequency. The
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experimental trapping potential is pancake-shaped. Therefore the vertical trap frequency is
parametrized using the aspect ratio v = w,/w;. Owing to the single-band restriction and
Pauli’s principle, each lattice site can be occupied by one atom per spin state at most.

Metallic, Mott and band insulating phases

Besides the fundamental influence of finite temperature [141], the phases of the Hubbard model
are determined by the interplay of the three energy scales in Hamiltonian 6.1: The kinetic
energy, whose scale is set by the bandwidth 12.J of the lattice (see section 2.2.3), the interaction
energy U and the strength of the harmonic confinement. Instead of using V; to quantify the
harmonic confinement, it is convenient to define the characteristic trap energy

2/3
YNo
E, = 2
t Vt<4ﬂ/3> , (6.2)

which explicitly depends on the atom number N, per spin state (N, = N3). In fact, £ is
the Fermi energy of a noninteracting fermionic quantum gas in the zero-tunneling limit that is
been derived in equation 3.39 (see figure 6.5a for illustration). The characteristic trap energy
is proportional both to the atom number and the trap frequency E} wiNg/ % and describes
the effective compression of the system. In the experiments it is controlled by the trapping
potential (see sections 5.3 and 5.4), while the atom number is left as constant as possible.!

Figure 6.1 shows the different zero-temperature phases expected in the center of the trap,
depending on which term in the Hamiltonian dominates:

e For weak interactions in a shallow trap, U < Ey; < 12J, the Fermi energy er is smaller
than the bandwidth of the three-dimensional lattice, ep < 12.J (corresponding to region
A in section 3.3.3). The atoms are delocalized, minimizing the kinetic energy of the
many-body system, and the central filling obeys ng, < 1, where the local filling factor
ni; = (Niy) denotes the average occupation per spin state at lattice site i. The system
is in a compressible metallic state: When the chemical potential is increased, the local
filling factor increases continuously. There is no excitation gap.

e Dominating repulsive interactions, U > 12J and U > E, suppress double occupation
of lattice sites. This can lead to Fermi liquid (ng, < 1/2) or Mott insulating (ng, =
1/2) states at the trap center. A notable Mott insulating core at experimentally relevant
temperatures starts to emerge for interactions U/12J > 1 and compressions Ey/12J >
0.3 (see figure 6.2). In the Mott insulating state the addition of a fermion (of opposite
spin) to a singly occupied lattice site costs an energy amount U. In order to compress
this state, the external potential must overcome the interaction energy, otherwise the

'n typical ultracold atom experiments it is notoriously difficult to vary the atom number from shot to shot in
a controlled way. However, our setup offers exceptional control of the harmonic confinement. Therefore we
actively vary the harmonic trapping potential, while the atom number is kept constant. The remaining shot-to-
shot fluctuations of the atom number are largely suppressed in the experimental data, because all quantities are
expressed in rescaled, atom number independent units, such as F; and Rs. (see below).
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(a) Metal:

delocalized atoms

(b) Mott insulator:

localized atoms

(c) Band insulator:

localized atoms,
double occupation

U <<E; << 12J

50

Distance from
trap center, r (a)

50

Ngg=0to1,D=0to 1

Noo=0.5,D=0

Noo=1,D - 1

Figure 6.1.: (a) to (¢) Zero-temperature quantum phases of the Hubbard model for a balanced
spin mixture in a harmonic confining potential. The left column schematically illustrates the
equilibrium atom distribution, dashed lines indicate the extent of the first band (compare fig-
ure 3.7). The center column displays the corresponding in-trap density profiles. The right
column shows the distribution of singly and doubly occupied lattice sites after projection into
the zero-tunneling limit. Experimentally the projection is achieved by a rapid increase of the
lattice depth. ng, denotes the central filling and D the fraction of atoms on doubly occupied
lattice sites. Strictly speaking, the Mott insulator (b) shows antiferromagnetic ordering at zero
temperature (see section 3.3.2). Here, a paramagnetic Mott insulator is displayed, because

experimental temperatures are larger than the Néel temperature for magnetic ordering.




6. Interacting fermions in optical lattice potentials

system stays constant in size. Therefore, the Mott insulating phase can be viewed as an
interaction insulator.

e Stronger compression leads to higher filling. For E; > 12J and E; > U this ultimately
results in a band insulator with unity filling in the trap center (ng, = 1) at least for
vanishing temperature. The band insulating state is incompressible, because the external
potential must overcome the band gap between the first and second lattice band to achieve
a reduction of the system size (see section 3.3.3). Otherwise filling factors larger than
unity are prohibited by Pauli’s principle. Accordingly, the band insulating state could
also be called a Pauli insulator.

It is important to note that finite temperature reduces the local fillings and enlarges the cloud
size, because the corresponding entropy must be accommodated in the system. Nevertheless,
the above characterization of quantum phases remains valid, provided the temperatures are
clearly in the quantum degenerate regime (1" < Tf).

In the trapped system the filling varies smoothly from a maximum in the center to zero at
the edge of the cloud. This generally leads to a coexistence of several phases. For example,
at dominating characteristic trap energy, strongly repulsive interactions and low temperature
(Ey > U > 12J), a wedding cake-like structure develops (see figure 6.2): A band insulating
core (ng, ~ 1) is surrounded by a metallic shell (1/2 < n;, < 1), a Mott insulating shell
(n;e = 0) and another metallic shell (n;, < 1/2) [170]. It is important to note, that in all cases,
independent of interaction, confinement or temperature, the outermost shell is always metallic.

6.2. Experimental observation of metallic and insulating phases

The measurement idea is to identify the phases of the Hubbard model (equation 6.1) by study-
ing the response of the system to changes in the external confinement. To this end noninter-
acting and repulsively interacting spin mixtures of fermionic “°K are investigated in a three-
dimensional optical lattice. Our experimental setup allows to vary the interaction strength,
the lattice depth and the external harmonic confinement independent from each other, such
that all three terms of the Hamiltonian are individually controlled. The temperatures of the
atomic samples are deep in the degenerate regime (7' < 1) and the corresponding entropies
in the lattice are low enough, that the phases of the experimental system are determined by the
zero-temperature phases of the Hubbard model outlined above.?

On the one hand, the system is probed on a global level by monitoring the in-situ density
distribution for increasing harmonic confinement. This allows to directly extract the com-
pressibility of the many-body quantum system and the response of the cloud size uniquely
distinguishes compressible metallic from incompressible insulating states. On the other hand,
the system is studied on a local level by measuring the fraction of doubly occupied sites for
different experimental parameters. Both the local and global observables indicate the entrance

*However, the entropies are not low enough to reach magnetic ordering of the spins, which is discussed later in
this chapter (see also section 3.3.2).
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6.2. Experimental observation of metallic and insulating phases

a b
@) Te/ T=0.07 — (®) Te/T=0.15 —

Figure 6.2.: Theoretical in-trap density distributions at strongly repulsive interactions
(U/12J = 1.5). The radial distance from the trap center is denoted by r given in units of
the lattice constant a = /2. While for lower temperature the different phases can be clearly
distinguished in the radial profile (a), higher temperature washes out the boundaries (b). The
red solid lines enclose the region, where a Mott insulating core has formed. In this regime
the global compressibility is reduced as shown in figure 6.7d. Please note that the dimen-
sionless temperatures 7'/Ty given here, refer to the Fermi gas in the harmonic trap prior to
lattice loading. The DMFT calculations have been performed by Theo Costi, Achim Rosch
and collaborators [171].
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6. Interacting fermions in optical lattice potentials

into the strongly interacting regime, as increasing repulsion leads to a suppression of double
occupancy and larger cloud sizes.

6.2.1. Experimental techniques: Overcoming the challenges

In order to realize the above measurement idea, several experimental challenges had to be
overcome. In the following the most important ones are summarized:

¢ Quantum degenerate fermion clouds: Initial DMFT calculations had suggested that
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the fermionic spin mixture should have a temperature 7/Ty < 0.15 prior to lattice
loading in order to observe a Mott insulating core after an adiabatic lattice ramp-up.
While setups with fermionic ®Li routinely achieve temperatures in this range, it had
been a notorious challenge with 4°K. The difference is mainly rooted in the low natural
abundance of the potassium isotope (resulting in comparably small atomic samples) and

less favorable scattering properties.

The temperature goal has eventually been reached by carefully tweaking the cooling
sequence in many respects. Starting with the optimization of atom numbers in the
double-species magneto-optical trap, over faster sympathetic cooling in the optically-
plugged magnetic trap to careful timing of the preparation and subsequent cooling of
the fermionic spin mixture in the dipole trap. The individual modifications have usually
lead to an increase of the available atom number, which then has been turned into colder
temperatures via evaporation.

Alignment and calibration of optical potentials: The combination of the red-detuned
dipole trap and the blue-detuned optical lattice required the development of precise align-
ment techniques for the laser beams creating the potentials. In a red-detuned lattice the
atomic cloud is intrinsically dragged to the beam center during loading and the underly-
ing potential can safely be assumed to be harmonic. In our combined setup, the harmonic
approximation is only valid, when the individual beams are perfectly centered on each
other. This is crucial for a sound comparison to theoretical data. Our techniques for
beam alignment and calibration of lattice depth, trap frequencies and anticonfinement
are described in chapter 5 in detail.

Radiative collisions in blue-detuned optical lattices: Generally, atom pairs on the sites
of an optical lattice are prone to radiative collisions. In such collisions one of the atoms
is excited by a photon of the lattice laser and the atom pair populates a state in the excited
molecular potential [162]. Similarly, molecules on the sites of an optical lattice can suffer
from photodissociation.

In a red-detuned lattice, the absorption of a photon can lead to the population of a bound
state in the excited molecular potential, provided the photon is resonant with the respec-
tive transition. This loss and heating process is unwanted, but it can safely be avoided by
shifting the lattice laser frequency by a few GHz to detune the transition.
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In the case of a blue-detuned lattice, radiative collisions are harder to suppress, because
absorption of a lattice photon leads to the population of unbound molecular states in the
continuum compared to discrete bound states for red-detuning [162]. In detailed stud-
ies (see appendix of reference [163]) we have found that the photodissociation rate of
molecules decreases for larger detunings, approximately following a 1/A? power law (A
is the detuning between the D-transitions of 40K and the lattice laser). Furthermore, we
have observed a strong reduction of the Frank-Condon overlap between the ground and
excited state molecular wavefunctions whenever the Condon point is close to a node of
the ground state wavefunction [162]. The Frank-Condon overlap determines the strength
of the transitions and the Condon point is the relative distance of the atoms, at which res-
onant excitation is possible for a given laser frequency. By choosing a lattice wavelength
at about 738 nm, it has been possible to suppress the loss of doubly occupied sites and
molecules below a critical level. This was a cornerstone to unleash the full potential of
the combined use of a red-detuned dipole trap and a blue-detuned lattice.

e Adiabatic lattice loading: Adiabatic loading generally requires a slow ramp-up of the
lattice depth to make sure that the sample stays in its many-body ground state at any
point of the ramp. However, the time frame for the experimental sequence is limited,
because heating rates continuously increase the entropy in the system [172]. The heating
has technical origins, ranging from spontaneous light scattering over radiative collisions
to collisions with the background gas in the vacuum chamber.

The time scale for adiabaticity can be significantly shortened by choosing an intelligent
ramping sequence that aims at the least complicated thermodynamic path through phase
space. One step to reach this goal is mode-matched loading, which minimizes the mass
transport on the way from the initial state in the harmonic trap to the final strongly inter-
acting state in the lattice. Mass transport in a lattice and the decay of doubly occupied
sites have been shown to be extremely slow, already at weak interactions (U/12.J > 0.2)
[98, 163, 173]. This suggests to first increase the harmonic confinement and then raise
the lattice depth in a compression measurement.

However, there is another important aspect that must be taken into account in the context
of adiabatic preparation: In a three-dimensional optical lattice the first and the second
band have a partial overlap until a depth of 2.2 E,.. is reached. A gap only opens
up for deeper lattices (see section 2.2.3). When the atom cloud is compressed prior to
lattice loading, there is a risk that states in the second band get populated, which only
slowly relax back into the first band (see figure 2.10). If that happened, the interpretation
of experimental results in terms of the single-band Hubbard model would be hindered.
Therefore, a preramp of the lattice to a depth of 1 E,.. is performed, then the harmonic
trap is compressed and, finally, the lattice depth is risen to the desired value.?

3 Actually, it seems desirable to perform a preramp to a lattice depth above 2.2 . in order to ensure a real
band gap. However, this would require a very slow compression beyond the time scale that is affordable due to
technical heating. In this respect the preramp to 1 E\. is a already compromise.
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Figure 6.3.: Overview of the experimental sequence as described in the main text. Remark-
able features are the preramp of the optical lattice (3), the nondestructive in-situ phase-contrast
image after (6) and the subsequent time-of-flight absorption image after (7) mapping out the
Brillouin zone.

e In-situ imaging: The measurement of the in-situ cloud sizes necessitates a reliable imag-
ing technique to detect optically dense atomic samples inside the optical lattice. Initially,
detuned absorption imaging as well as saturated imaging with high light intensities have
been tested. The former was prone to lensing, as expected for imaging systems with
limited numerical aperture [130], and the latter showed strong nonlinearity between the
atomic and the optical density [174]. Finally, dependable measurements of in-situ cloud
sizes have become possible by an elegant implementation of high-field phase-contrast
imaging (see sections 4.1.3 and 5.5 and appendix B).

6.2.2. Experimental parameters

The experiment is performed with a balanced, quantum degenerate mixture of fermionic “°K
atoms in the two hyperfine states |F,mpr) = |9/2,-9/2) = ||) and |9/2,—7/2 = |1). The
mixture is prepared in a pancake-shaped optical dipole trap (Agip = 1030 nm) formed by two
elliptical beams in the horizontal plane. Measurements of the trap frequencies in the vertical
direction and the horizontal plane yield an aspect ratio of v = w, /w, ~ 4, in compliance with
a numerical trap model that is based on the geometrical beam sizes and the power balance in
the beams (see section 5.3).

After sympathetic cooling of 8’Rb and “°K down to a temperature of about 7" = 2 uK in
the magnetic trap, both species are loaded into the dipole trap. Rubidium is transferred to
the absolute ground state |F,mp) = |1,+1) and the potassium spin mixture is created. By
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Figure 6.4.: Ultracold fermionic spin mixture. (a) Column density of a noninteracting “°K
spin mixture after 10 ms time-of-flight expansion. The vertical axis corresponds to the optical
density (a.u.). (b) The azimuthally averaged raw data (solid line, see inset) is fitted by a Gaus-
sian (blue dashed line) and a Fermi-Dirac model (red dashed line) omitting the noisy data of
the central pixels. The Fermi fit yields a temperature of 7'/TF =~ 0.10, which is close to the
reliability limit of this thermometry method for the given cloud sizes [80].

lowering the intensity of the trapping laser in an exponential ramp, sympathetic cooling is
continued. After the trap bottom for 87Rb is crossed, the rubidium atoms are gone. Then the
interacting “°K spin mixture further cools evaporatively, thermalizing via s-wave collisions.
With this procedure samples with 1.5 x 107 to 2.5 x 10° potassium atoms at 7'/Tf = 0.15(3)
are created. The temperatures are measured by fitting the momentum distribution recorded after
time-of-flight with a Fermi-Dirac model (see figure 6.4 and appendix C for further details).

The Feshbach resonance located at a magnetic field B = 202.1 G (see section 2.3) is used to
tune the scattering length apr, providing direct control of the on-site interaction energy U. The
preparation of the spin mixture and final evaporation either happen above the resonance (220
G) or below the resonance (165 G). While the former gives access to noninteracting (209.9 G)
and repulsively interacting samples with apr < 150 ag, the latter allows to reach scattering
lengths of up to apr = 300 ag (191.3 G) by approaching the resonance from below. A further
approach of the resonance is not possible owing to enhanced losses and heating that probably
originate from a p-wave resonance in striking distance (see section 2.3). The desired magnetic
field is chosen directly after evaporation (see figure 6.3).

In a first step, the optical lattice (A = 738 nm) is raised to a depth of V1 = 1 Fyec. This
preramp is performed to separate the first and second lattice band (see above). Subsequently,
the external harmonic confinement is tuned to the desired value by changing the dipole trap
depth within 100 ms. Horizontal trap frequencies in the range from w; ~ 27 x 20 Hz to
2m x 120 Hz are accessed. The preparation is completed by increasing the lattice depth to
Viat = 8 Eiec in a linear ramp within 50 ms.
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6. Interacting fermions in optical lattice potentials

After a hold time of 12 ms we record an in-situ image of the cloud along the vertical axis
of the trap using phase-contrast imaging. Phase-contrast imaging with a retarding phase plate
requires blue-detuned laser light in order to ensure linearity between the imaging signal and
the atomic density (see section 4.1.3 and figure 4.1b). This detuning is elegantly generated by
taking the image at the same magnetic field that is initially used to adjust the interaction. The
imaging laser, which is resonant at zero magnetic field, is effectively blue-detuned with respect
to the Zeeman-shifted transition by A = 27 x 280 MHz to 2w x 400 MHz depending on the
exact value of the magnetic field (see appendix B). The phase-contrast image is used to extract

the cloud size R = /(r?) = /(22 + y2) with a two-dimensional fitting function*

2
T Uy

_emwg)®  (y—yp)? )2 — )2
F(z,y) = AL (1006 0z 2oy >+B\/(x w0 W= o 63

with the free parameters o, yo (cloud center); o, o, (widths); A, B and C. The sec-
ond term accounts for a funnel that has a technical reason rooted in phase-contrast imag-
ing. The Fermi-type distribution F'(z,y) fits the in-situ clouds better than a Gaussian dis-
tribution (see supplementary material of [171]). The resulting cloud radius is given by R =

1.264%(02 + o) — n?, where 7 = 3 pum accounts for the finite resolution of our imaging

system (see section 5.5).

Because very few photons are scattered in phase-contrast imaging, almost all atoms remain
in the sample and the momenta are only marginally modified. This allows to measure the
quasi-momentum distribution in the same experimental run using a band-mapping technique
[33, 108, 157, 175]. To this end, the lattice is adiabatically ramped down in 200 us and a
standard resonant absorption image is taken after 10 ms time-of-flight.

6.2.3. Probing the global compressibility

In order to benchmark the experimental data, we compare it to accurate DMFT calculations
[39, 113, 170, 176] by Theo Costi at the Institute for Advanced Simulation in Jiilich and the
group of Achim Rosch at the University of Cologne. As a first step in the calculations, the ho-
mogeneous Hubbard model is solved for a wide range of temperatures and chemical potentials
using a numerical renormalization group approach [177-179]. In a second step, the trapped
system is locally approximated by uniform miniature systems through a local density approxi-
mation (LDA). This procedure yields reliable results even close to the boundary between metal
and insulator, which has been validated in references [170, 180]. Density profiles for various
compressions and temperatures are calculated (see figure 6.2) and, finally, theoretical line-of-
sight integrated density profiles are derived in analogy to the experimental data.

The comparison of theoretical and experimental results is facilitated by expressing the cloud
size R in rescaled units Ry = R/(7N,)/? and the harmonic confinement in terms of the
dimensionless compression F;/12.J. In these units, the cloud size only depends on the inter-

*For a Gaussian distribution this definition of the cloud radius yields the standard deviation.
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(a) (b) Compression
[

Figure 6.5.: Compression of a fermionic spin mixture. (a) The characteristic trap energy FE}
defines the compression of the atom cloud. (b) In-situ phase-contrast images for strong repul-
sive interactions U/12J = 1.5 (see figure 6.6, red data). The compression of the dipole trap is
continuously increased from left to right and top to bottom covering a range of horizontal trap
frequencies from w | = 27 x 20 to 2w x 120 Hz. The rescaled cloud size Rs. = R/(’yNU)l/?’
is derived by measuring the cloud radius R in phase-contrast images (see main text). The atom
number N, per spin state o is extracted from a subsequent time-of-flight image in the same
experimental run (see figure 6.3).
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6. Interacting fermions in optical lattice potentials

action strength U/12.J and the average entropy per particle .S/, but not on the absolute atom
number N. The theoretical calculations are based on the entropy per particle that is experimen-
tally determined by the temperature 7'/TF of a noninteracting Fermi gas in the harmonic trap
(see equation 2.25) and the additional assumption of adiabatic lattice loading.

The rescaled units necessitate the precise knowledge of several experimental parameters.
The interaction energy U and the tunneling matrix element J are derived from the lattice depth,
the trap frequencies w, (@ = x, vy, 2) are precisely measured using the methods presented in
sections 5.3 and 5.4. These parameters and the temperature 7'/ Ty are known with a relative
uncertainty around or below 10%. However, it is notoriously difficult to determine the abso-
lute atom number N = N; + N| with a similar precision. Several calibration methods are
compared to each other: First, a theoretical calibration of the potassium number is obtained
by analyzing the transition strength for the given polarization of the imaging light (see section
4.1.2). Second, we measure the in-situ cloud size of a noninteracting harmonically trapped spin
mixture. Based on the Thomas-Fermi radius (see equation 2.30) the atom number can be ex-
tracted. However, owing to the weak dependence of the radius on the atom number R oc NV 1/6
the method suffers from a rather large uncertainty. Third, we make use of the favorable size
scaling R o« N 1/3 of a band insulator of noninteracting fermions in the lattice. The band
insulating regime is reached for compressions around E;/12J = 2 and the expected cloud
sizes can be calculated by relatively simple means (see section 3.3.3). Comparison of the three
methods yields consistent results, suggesting a high accuracy of the atom number calibration.

Figure 6.6 shows the quantitative comparison between the measured and the numerically
calculated cloud sizes Rq. as a function of the compression F;/12.J. In addition, the global
compressibility of the system

1 ORsc

- e 4
" = 7R3 9(E,/12J) ©4

is extracted from the experimental data by means of linear fitting of four consecutive data points
to determine the derivative.

Noninteracting system

For the noninteracting system we find that the cloud sizes decrease continuously (see figure
6.6, black data points) until the characteristic trap energy roughly equals the lattice bandwidth
(Ey/12J = 1) (see section 3.3.3). For stronger compression, the cloud size essentially remains
constant and the compressibility (see figure 6.7a) approaches zero. At this point almost all
atoms are in the band insulating regime, while the surrounding metallic shell has a negligible
effect on the cloud size.

This is supported by the measured distributions of the quasi-momenta, which are shown as
insets in figure 6.6. The distributions change gradually from a partially filled first Brillouin
zone, as expected for a metal, to an almost evenly filled first Brillouin zone for increasing
compression, as expected for a band insulator [33]. Nevertheless, experimental band (or Bril-
louin zone) mapping can only reveal the relative occupations of the extended Bloch states.
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Figure 6.6.: Response of the interacting spin mixture to compression of the underlying har-
monic confinement. The rescaled cloud sizes R in a V},; = 8 FE,. lattice are shown as a
function of the external trapping potential for interactions U/12.J ranging between 0 and 1.5.
Circles denote individual experimental shots, while lines show the theoretical expectations ob-
tained by DMFT for an initial temperature 7'/TF = 0.15 prior to lattice loading. The insets (a)
to (e) show the quasi-momentum distributions for the noninteracting case obtained via Brillouin
zone mapping (averaged over several experimental shots).
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Figure 6.7.: (a) to (c) Global compressibility xr_, as a function of the compression for several
interactions. Each data point corresponds to the linear slope of four consecutive points in the
cloud size data (see figure 6.6). Error bars represent the uncertainty of the fit. Solid lines show
the theoretically expected results for an initial temperature 7'/7TF = 0.15. Panel (d) illustrates
the influence of the initial temperature on the calculated compressibility at strong repulsion
U/12J = 1.5.
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Information on the absolute occupation of the Bloch states cannot be extracted. For example,
localized atoms or a heated sample would both show a homogeneously filled Brillouin zone.
In contrast, our measurement of compressibility directly demonstrates the incompressibility
of the fermionic band insulator in excellent agreement with the theoretical expectation for a
noninteracting Fermi gas (see figures 6.6 and 6.7a, black data).

Repulsively interacting system

For moderately repulsive interactions (U/12J = 0.5 and 1.0, green and blue data in figure
6.6), the cloud size is clearly bigger than in the noninteracting case, but eventually reaches the
size of the band insulator. For stronger repulsion (U/12J = 1.5, red data in figure 6.6) only
a marginal decrease of the cloud size is observed in the compression range 0.5 < E;/12J <
0.7, while for stronger confinements the compressibility increases again. This behavior is
consistent with the formation of a Mott insulating core that is surrounded by a metallic shell,
as shown in the theoretical in-trap profiles of figure 6.2. The increase of compressibility for
strong confinements is due to the emergence of an additional metallic core (1/2 < nj, < 1) in
the center of the trap.

We point out that a local minimum in the global compressibility is a genuine characteristic
of a Mott insulating core. At large U and low temperature 7', the theoretical analysis shows
that the minimum of global compressibility decreases in the Mott region as 1/U?. The remain-
ing compressibility originates from the surrounding metallic shell, which becomes smaller for
larger interaction. The data shows an indication of this decrease in the compressibility min-
imum (compare figures 6.7b and 6.7c). For strong repulsion the location of the minimum
(see figure 6.7c) at Ey/12J ~ 0.6 approximately coincides with theory, while the subsequent
increase happens slightly earlier. When the system is further compressed, all cloud sizes even-
tually approach the band insulating state and the corresponding compressibilities tend to zero.

The general agreement between the measured cloud sizes and the theoretical calculations
is remarkably good for the range of interactions investigated here. Nevertheless, we observe
that the cloud sizes for repulsive interactions and intermediate compression (around Et/12.J =
0.5) are larger than predicted by theory and the discrepancies become more pronounced for
stronger interactions. While the exact origin of the deviation is not yet known, a likely reason
is nonadiabatic lattice loading. The data in figure 6.8 shows that the atomic cloud shrinks
considerably during the loading ramp. However, the transport of atoms is substantially slowed
down already at moderate interactions [98], which can lead to larger cloud sizes. Furthermore,
at low compressions the atomic cloud has a radial extent of up to 100 ym (on the order of
the radius of the lattice beams) and suffers from gravitational sag. The inhomogeneous lattice
depths across the cloud as well as trap anharmonicities may further account for the observed
deviations. Finally, there may be effects that reach beyond the single-band Hubbard model or
the DMFT formalism.
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Figure 6.8.: Experimental determination of the optimal ramp time for lattice loading. The
in-situ cloud size is measured at intermediate compression (E;/12J = 0.4) as a function of
the ramp time, both for a noninteracting (black) and an interacting (U/12J = 1.0, blue) spin
mixture. The rapid initial decrease of the cloud size can be attributed to improved spatial
redistribution of atoms during the ramp and corresponds to better adiabaticity. The slowly in-
creasing radii for longer ramp times mainly originate from heating effects in the optical lattice.
The arrow indicates the ramp time of 50 ms used in the experiment, which is a compromise
between adiabaticity and heating.

Lattice loading, adiabaticity and heating

In order to make sure that the lattice loading ramp is as adiabatic as possible, the in-situ cloud
sizes are measured as a function of lattice ramp time at a compression E;/12J ~ 0.4 (see
figure 6.8). This is the most interesting compression regime, because here the Mott insulating
core starts to form and the discrepancy between experiment and theory is most pronounced.
The measurement shows that for very fast ramping the cloud does not shrink to its minimal
size, indicating nonadiabatic loading. For the noninteracting case, an increase of the cloud size
is observed for very slow ramping. Interestingly, this is not the case for repulsive interactions
(see figure 6.8, blue data) albeit heating should play a similar role. This might suggest that
a second, longer adiabaticity time scale is present for stronger interactions, obscuring a clear
minimum in the cloud size. Nevertheless, based on these data we have decided to use a lattice
ramp time (from 1 Fye. to 8 Fyec) of 50 ms in the experiment, supposedly being as adiabatic
as possible.

We have further investigated the role of heating in the experimental sequence. To this end,
the temperature before lattice loading is compared to the temperature that is measured after
loading and unloading the lattice in a reversed sequence. The duration of this round trip is
exactly twice as long as the actual measurement sequence. We observe a rise in temperature
T between 0.010(5) T for a noninteracting cloud and 0.05(2) 7% for medium repulsion of
U/12J = 1 at compressions around F;/12J ~ 0.5. Before lattice loading, typical tempera-
tures lie in the range 7'/Ty = 0.15(3). Given that the theoretical calculations, which assume
initial temperatures of 7/Ty = 0.15 and adiabatic preparation, agree well with the experi-
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6.2. Experimental observation of metallic and insulating phases

mental data, the actual initial temperatures are expected to lie at the low end of the measured
temperature range.

The theoretical calculations in figure 6.7d show, that the minimum in the local compress-
ibility, which signals the Mott insulating state, starts to appear at initial temperatures in the
range of 0.15 < T/Tp < 0.2. At these temperatures the entropy per particle amounts to
1.5kp < S/N < 2kp, which is much higher than the entropy per particle of a Mott insulator
in a homogeneous system. In fact, it even exceeds the highest possible value in the half-filled
homogeneous Hubbard model (kp In(4) ~ 1.4kp).> How is it possible to observe interesting
quantum phases at these entropies? The key to this question is the presence of the underly-
ing trapping potential. It induces a strong variation of the local filling, and the local filling
crucially determines the entropy capacity. The entropy capacity typically increases for lower
filling factors. Therefore, an enormous fraction of the entropy is accumulated in the metallic
shell at the edges of the cloud. Here, diluted atoms carry a large amount of configurational
entropy as shown in figure 6.12. This ensures that the entropy per particle can locally approach
the value kp In(2) ~ 0.69kp that is required to observe a Mott insulating phase free of thermal
excitations.

6.2.4. Measuring the double occupancy

In addition to the global compressibility, the fraction of atoms on doubly occupied lattice sites
D is measured [181]. To this end, atoms on doubly occupied lattice sites are converted into
molecules using an adiabatic magnetic field ramp (0.2 ms/G) across the Feshbach resonance
[13] (see section 2.3.3). This technique can only be applied for field values above the Feshbach
resonance, in our case corresponding to the interactions U/12J = 0, 0.5 and 1. The initial
preparation is identical to the compression measurements described above, followed by a jump
of the lattice depth to 20 Ey¢. (within 200 us) to prevent tunneling of atoms during the magnetic
field ramp. After the ramp (during 15 ms hold time) the lattice depth is reduced to zero within
200 ps and an absorption image is recorded after time-of-flight. The image shows the number
of atoms on singly occupied sites, while the converted molecules remain invisible, because
their resonance is shifted with respect to the bare atomic transition. The difference of the atom
number in runs with and without the magnetic field ramp, normalized to the total atom number,
yields the double occupancy D. Correction factors are applied to account for the losses of
doubly occupied sites during the hold time of 15 ms in the deep lattice (see section 6.2.1).

The global double occupancy D provides insight into the local on-site properties of the

5 At half-filling, the maximal entropy is accommodated in the case of vanishing interactions. In a system of N

—2
lattice sites and N /2 atoms per spin state, each configuration j has the same probability p; = [W]

With S = —kp ), p;In(p;) and Stirling’s formula In(N!) ~ N In(NV) the entropy per particle S/N =
kp In(4) is readily obtained. For strong repulsion each lattice site is occupied by exactly one atom. Here, all

-1
configurations have equal probability p;° = [WM] leading to S/N = kpIn(2). In the case of
long-range antiferromagnetic order, there are only two configurations for the global quantum state. In the limit

of large IV this results in vanishing entropy per particle S/N 2 0.
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Figure 6.9.: Double occupancy D as a function of compression for the interaction strengths
U/12J = 0, 0.5 and 1. The shaded circles (1) and (2) indicate the fraction of atoms on dou-
bly occupied sites for a constant cloud size Rs. ~ 0.5 (see figure 6.6), which illustrates the
strong suppression of double occupancy in the interacting case. Error bars denote the standard
deviation of at least four measurements.
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6.2. Experimental observation of metallic and insulating phases

many-body state. It is mathematically defined by

2
D=3 (i), (6.5)

i

where the sum runs over all lattice sites i and the expectation value (. . . ) is calculated within the
many-body quantum state. In a homogeneous lattice all sites are equivalent and the site index
can be suppressed. The double occupancy takes the form Dyom = 2(fp 72)) /(0 + 1)) =
(g ny)/n with the additional assumption of a balanced mixture n = (ny) = (n)). For a
homogeneous system, three limiting cases can be distinguished:

e At strongly attractive interactions (|U| > 12J and |U| > kpT) all atoms form pairs to

o . . oo
minimize the interaction energy. Therefore, D, =~ = 1.

e At vanishing interactions the spin states do not mutually influence their local occupation

numbers. Therefore, (74 - 7)) = n? and D}

hom — '

e At strongly repulsive interactions (U > 12J and U > kgT') two regimes must be
distinguished: For n < 0.5, double occupancy is perfectly suppressed Dpc | = 0 in order
to avoid the energy cost of U. For n > 0.5, each atom beyond n = 0.5 creates a doubly
occupied site on a perfectly half-filled background. Therefore, Dpe = = 2(n — 0.5)/n
starting at a local filling of n = 0.5.

The third case constitutes the most extreme example for suppressed double occupancy due to
repulsive interactions. The experimental curves are expected to be smoothened by the finite
value of the repulsion and the inhomogeneous system. In combination with the in-situ size, the
double occupancy D can be compared for different interaction strengths at constant cloud size
Rs.. Then, the suppression of double occupancy serves as an important indicator for strong
correlations.

Figure 6.9 shows that D approaches zero in the limit of weak confinement, because the
cloud is large and diluted, regardless of the interactions. For intermediate compression, the
fraction of doubly occupied sites crucially depends on the interaction. Choosing Rg. ~ 0.5 as
a constant cloud radius, a double occupancy of 40 % is observed for the noninteracting system
and of about 5 % for intermediate repulsive interaction U/12.J = 1.0 (shaded circles in figure
6.9). Here, repulsive interactions energetically favor the reduction of double occupancy despite
the cost of additional potential and kinetic energy.® For very strong compression, the system
develops a band insulating core and double occupancy becomes comparable irrespective of the
interaction. We find that D is ultimately limited to slightly below 60%. The finite entropy per
particle intrinsically reduces the filling in the band insulating core and, additionally, gives rise
to extended surrounding metallic shells (see figure 6.2).

Although the noninteracting and the repulsively interacting curve U/12J = 0.5 match the
DMEFT results for an initial temperature of 7'/Tr = 0.15, notable deviations are observed

®Localized wavefunctions have a stronger curvature, which corresponds to higher momentum contributions and,
consequently, higher kinetic energy.
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6. Interacting fermions in optical lattice potentials

for stronger repulsion U/12J = 1.0. The measured pair fraction is about 10 % higher than
predicted by theory. Similar to the deviations in the cloud size discussed above, nonadiabatic
lattice loading likely explains this behavior. In the early stage of the lattice ramp a small
interaction parameter U/12J favors a larger double occupancy D. When the lattice depth is
further increased, transitional double occupancy must decay into singly occupied sites, which
is hindered by very slow time scales [98, 173]. Nevertheless, additional experimental studies
are needed to investigate the mechanisms behind the deviations in further detail.

The measurement of double occupancies yields valuable, complementary information to the
cloud size measurements presented above. It is an important check for consistency. However,
the suppression of doubly occupied sites compared to the noninteracting case is not a unique
feature of the Mott insulating state. On the contrary, the suppression of double occupancy
generally occurs when the interaction is strongly repulsive and the thermal energy in the lattice
kpTiat is much smaller than U. In particular, even for a purely metallic phase with ny, < 0.5
the double occupancy vanishes in the limit of strong repulsive interactions as discussed above.

6.3. Attractively interacting spin mixtures in an optical lattice

So far, we have focussed on the repulsive Hubbard model. Owing to the versatility of Feshbach
resonances, it is experimentally straightforward to access the domain of attractive interactions
by choosing magnetic field values, at which the scattering length is negative. Applying the
same preparation and detection techniques as in the repulsive case, we have studied the first
realization of the attractive Hubbard model with ultracold atoms [122]. The most important
results are briefly summarized in this section.

The attractive Hubbard model plays an important role in solid state physics, because lattice
deformations (phonons), collective charge oscillations (plasmons) or spin fluctuations (mag-
nons) can effectively lead to attractive interactions between electrons overcoming the intrinsic
electrostatic repulsion [105]. In section 3.3.2 the resulting phases are reviewed for the case
of half-filling. In the context of ultracold atoms, several theoretical works have addressed the
regime of preformed pairs [119, 120, 182, 183].

Here, we are not concerned with the zero-temperature phases, but observe a counterintu-
itive thermodynamic effect that arises from the interplay of strong correlations and finite en-
tropy: When loading an attractively interacting spin mixture at finite temperature into a three-
dimensional optical lattice, the in-situ cloud size increases as a function of attraction instead of
contracting. This phenomenon is similar to the well-known Pomeranchuk effect [184], which
occurs in the liquid-to-solid transition of 3He: Solid helium has a larger entropy capacity than
the liquid phase owing to randomly oriented spins. Therefore, He freezes into a solid during
adiabatic squeezing, while absorbing heat and cooling the surrounding liquid.

6.3.1. Experimental results

A fermionic mixture with 1.6(2) x 10° atoms per spin state and a temperature of T/Tf =
0.15(3) is prepared as described above. The scattering length is tuned in the range between
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Figure 6.10.: Measured cloud size and double occupancy. (a) The cloud radius in the hori-
zontal plane R, and (b) the fraction of atoms on doubly occupied lattice sites as a function
of scattering length are shown for several lattice depths. The data points in (a) correspond
to a moving average over three consecutive points to smoothen the noise. Each point in (b)
shows the average of at least five measurements at identical parameters; the error bars denote
the standard deviation. The data is recorded at a fixed horizontal (vertical) trap frequency
w] =271 x 25 Hz (w, =~ 27 x 100 Hz).

arrp = —400 ag to +150 ag and the external confinement is adjusted with the dipole trap
within 100 ms. Subsequently, the optical lattice is slowly ramped to depths ranging from
0 to 9 E. with a rate of 7 ms per F,e.. The in-situ cloud size is measured using phase-
contrast imaging (along the vertical z-axis) and the double occupancy is extracted via molecule
conversion analogous to the measurements on the repulsive side.

Figure 6.10a shows a contraction of the gas for weak attractive interactions, as one might ex-
pect intuitively. However, when the attraction exceeds a critical value, typically at a scattering
length between |app| = 20 ag to 40 ag, the cloud shows an anomalous expansion. The effect
is the more pronounced, the deeper the lattice and the stronger the localization of the atoms. In
addition, the double occupancy D steeply increases when the interactions become more attrac-
tive (see figure 6.10b). Despite the expansion of the cloud and atomic densities much lower
than two atoms per site, D reaches up to 80% for strong attraction and deep lattices, which
indicates that the system is in a preformed-pair regime [183] (see section 3.3.2). Without the
optical lattice, the anomalous expansion disappears and the cloud size remains constant. The
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6. Interacting fermions in optical lattice potentials

double occupancy only shows a moderate increase to about 40%, which is measured by quickly
projecting the harmonically trapped cloud into a deep lattice.

Apparently, localization of atoms and strong correlations are necessary to evoke the coun-
terintuitive expansion of the atomic cloud at increasing attraction. Without the lattice, these
correlations are not strong enough to lead to a significant change in the density of states. How-
ever, what is the physical mechanism behind the anomalous expansion?

6.3.2. A basic explanation

We assume that the total entropy in the system is identical for all scattering lengths, since the
initial preparation is identical for all samples and all manipulations are considered adiabatic.
Hence, for all interactions a certain amount of entropy must be accommodated in the lattice
system (see figure 6.11).

Basic insight is obtained in the zero-tunneling limit, in which the atoms are fully localized
and each site can be considered individually. Within a grand-canonical ensemble, the on-site
physics is characterized by the probabilities for zero, single and double occupancy. In principle,
the zero-tunneling limit allows to exactly calculate the thermodynamic properties for arbitrary
interactions. Such calculations have been carried out by Belen Paredes and Maria Moreno-
Cardoner and are presented in reference [122].

Here, only the entropy capacities per lattice site at zero and infinitely attractive interactions
are considered. Generally, the entropy is given by S = —kp >, pjIn(p;), where p; denotes
the probability of finding the system in the state j and the sum runs over all allowed states. For
a spin mixture of noninteracting fermions the entropy at site i is given by

s9 = —2kp [niIn(ng) + (1 — ny) In(1 — ny)], (6.6)
because the local filling per spin state n; = (nj) = (ny;) corresponds to the probability of
finding a spin up or spin down atom at this site. The factor of two accounts for the contribution
of both spin states. In the limit of infinite attraction, on-site pairs form in order to gain the large
negative interaction energy. These pairs behave as hard-core bosons and lead to a local entropy
of
s; = —kp[niIn(ng) + (1 — ny) In(1 — ny)]. (6.7)

1

Comparing the expressions of the two limiting cases, we observe that correlations can signifi-
cantly reduce the local entropy density. The system with strongly attractive interactions needs
to occupy twice as many lattice sites to store the same amount of entropy as the noninteracting
system. This result is also illustrated in figure 6.11 using a simple double well system.

Within the zero-tunneling model the minimal cloud size is expected to occur at vanishing
interactions apr = 0. In the experimental data, however, the minimum is shifted towards
slightly attractive interactions (see figure 6.10a). This shift originates from a competition be-
tween energy minimization through delocalization and reduced entropy capacity. Assuming
zero temperature and vanishing interactions, the cloud will be larger at finite tunneling than in
the zero-tunneling limit, because the delocalization of atoms minimizes the total energy. If in
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Figure 6.11.: Attractively interacting fermionic spin mixture and finite entropy. (a) The cloud
size R is determined by the interplay between entropy and several energy scales: The inter-
action energy U, the tunneling matrix element .JJ and the characteristic trap energy E;. Addi-
tionally, the tunnel coupling .J2 /U of bound atom pairs becomes relevant at strongly attractive
interactions. (b) and (c) Configurations of two fermions (spin up and down) in a zero-tunneling
double well potential. For vanishing interactions there are four possibilities to arrange the
atoms. In the limit of infinitely attractive interactions the atoms are tightly bound, merely al-
lowing for two configurations. Therefore, the entropy per lattice site is reduced by a factor of
two. The atom cloud is forced to expand in order to accommodate the total entropy present in
the finite-temperature system.
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6. Interacting fermions in optical lattice potentials

this T" = 0 scenario the attraction between the atoms is increased, the cloud size shrinks further
until all states in the trap center are occupied by a spin up and a spin down atom.” If finite tem-
perature is introduced again, the shrinking of the cloud at attractive interactions is counteracted
by the need to accommodate the finite entropy. The entropy effect will dominate only beyond
a critical attraction and therefore the minimum in the cloud size is slightly shifted. Based on
these considerations one can expect a larger shift of the size minimum towards attractive inter-
actions, the more tunneling and delocalization dominate over the harmonic confinement. This
behavior has also been experimentally confirmed [122].

This brief overview on our studies of the attractive Hubbard model underlines the impor-
tance of the interplay between finite entropy, interaction and confinement in real experimental
systems. In any finite-sized quantum system at finite temperature unusual thermodynamics can
emerge. In fact, related arguments have helped to understand the loss of bosonic coherence in
a weakly interacting Bose-Fermi mixture discussed in chapter 8. Generally, the finite entropy
effects presented here could help to detect transitions between quantum many-body phases
with different entropy capacity. This might be particularly promising for transitions between
topological phases [185], whose different topology can lead to very distinctive ways of storing
entropy [186].

6.4. Conclusion and Outlook

In this chapter various regimes of the Fermi-Hubbard model have been studied with fermionic
40K spin mixtures in a fully tunable optical lattice potential. For the case of repulsive interac-
tions, we have extracted the global compressibility of the quantum system by measuring the
in-situ cloud sizes using phase-contrast imaging. This has allowed us to observe the evolu-
tion from a compressible Fermi liquid over an incompressible Mott to a band insulating phase,
when the confinement and the interactions are increased. By measuring the suppression of dou-
ble occupancy, it has been possible to identify regimes of strong correlations. Our studies of
attractively interacting spin mixtures have revealed an anomalous expansion of the cloud size
for increasing attraction. Here, the formation of atom pairs reduces the local entropy capacity,
which entails the expansion of the system to accommodate the total entropy.

Together with the works in Tilman Esslinger’s group [33, 173, 181, 187, 188], our stud-
ies constitute the first steps in the experimental investigation of Fermi-Hubbard models with
optical lattices [98, 122, 171]. The observation of the fermionic Mott insulator has been an
important achievement. The next milestone will be the creation of low temperature phases of
the Fermi-Hubbard model [40, 112, 118], namely the BCS-BEC crossover for attractive and
antiferromagnetic order for repulsive interactions (see section 3.3.2). The latter will open the
path to investigations of quantum magnetism with ultracold atoms [189]. This could ultimately
lead to the observation of a d-wave superconducting phase [124, 126] that is believed to emerge
within the two-dimensional Hubbard model.

The prospects of fermionic quantum gases in optical lattices are truly amazing, but a number

"In the limit of strong compression, this corresponds to the maximally packed state of an ideal band insulator.

134



6.4. Conclusion and QOutlook

of challenges are awaiting solutions. In order to enter the antiferromagnetically ordered phase,
it will be necessary to achieve entropies lower than S/N < kpIn(2). Only below this level
excitations on the energy scale .J2/U are suppressed, which result from the superexchange
coupling that mediates an effective spin-spin interaction between neighboring lattice sites [117,
176, 190, 191]. Such entropies are predicted to require initial temperatures of less than 7'/ Ty ~
0.06 [190] in a homogeneous system. This is about a factor of two lower than the current state
of the art. In an optimistic scenario, the entropy redistribution in the inhomogeneous lattice
system might actually help to locally generate regions with sufficiently low entropies, although
the global entropy per particle may not fall below the required level (see figure 6.12). In this
case the temperature criterion would be relaxed by a bit, but the antiferromagnetically ordered
domains may be small and their detection rather challenging.

Besides the demand for lower initial entropies, it will be important to minimize unwanted
excitations of the quantum state during the experimental sequence [172]. On the one hand,
technical heating could be minimized. On the other hand, lattice loading should be performed
as adiabatically as possible. This has turned out to be surprisingly delicate due to slow time
scales for mass redistribution already at moderate interactions [98, 173]. Apart from slower
ramping, which has the potentially devastating disadvantage of more technical heating, better
adiabaticity may be achieved by developing ramp sequences that minimize mass redistribution
(in the presence of interactions) during preparation.

Creation of low entropy states

The DMFT analysis in the context of our experimental work has quantitatively revealed re-
markable variations in the spatial entropy distribution of the strongly interacting fermions. In
large part the entropy is carried by the metallic phases at the edge of the cloud, while the Mott
and, even more pronounced, the band insulating regions store relatively little entropy (see fig-
ure 6.12). This entropic shell structure induced by the underlying trapping potential suggests
novel approaches to lower the entropy in an optical lattice.®

One possibility might be the creation of a band insulator in the center of the trap and subse-
quent active removal of the outer high entropy regions [115, 192]. Then, a suitable potential
must adiabatically be build around the remaining band insulating core, because otherwise a
highly excited many-body state would remain in the trap center. Alternatively, a combined po-
tential of a shallow harmonic trap and a tightly confining dimple could help to create a central
region with ultra-low entropy, while the dilute gas in the shallow outer part will carry almost all
the entropy [193]. It has been proposed to adiabatically remove the dilute outer shell via clever
reshaping of the potentials [194]. The dynamical scheme of quantum distillation [195] sug-
gests to utilize the small tunneling rate of doubly occupied sites: While the low-entropy band
insulating core will stay stable [98, 173], the outer metallic shell with high entropy will quickly
move away from the trap center upon relaxing the external confinement. Apart from the above
schemes for spatial filtering, it might also be promising to perform local atom number filtering.

8To my knowledge, the first qualitative arguments pointing to these possibilities have been made by Nikolay
Prokof’ev during a DARPA OLE team meeting in the summer of 2008 in Cambridge, MA.
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Figure 6.12.: (a) to (d) Calculated spatial entropy distribution of a balanced spin mixture for
various compressions and fixed global atom number N (Ny = N| = N/2). The interaction
parameter is strongly repulsive U/12J = 1.5. The solid (dashed) lines show the entropy per
lattice site (per particle) for initial temperatures of 7'/TF = 0.07 (blue) and T'/Ty = 0.15
(red). Identical entropy per particle and lattice site of In(2) indicates a Mott insulating phase
with unity filling, but without magnetic ordering. A Mott insulating core is clearly visible in
(b) for both temperatures. The calculations have been performed by Theo Costi, Achim Rosch
and collaborators published in the supplementary online material of [171].
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Because much of the entropy is carried by number fluctuations, the selective removal of doubly
occupied sites in a region that is expected to be half-filled at zero temperature can effectively
cool the sample, as experimentally shown in a recent experiment [196].

Filtering schemes of the above type predict a reduction of the entropy per particle by about
a factor of ten. Nevertheless, their implementation is challenging in typical experimental se-
tups that rely on the use of Gaussian beams for the creation of optical potentials and employ
imaging systems with medium resolution. One anticipates that it will be much easier to create
the required potential landscapes in novel setups with single-site resolution [142, 144] by holo-
graphic projection of optical potentials [143]. Such setups will also simplify the observation
of low entropy regions, because antiferromagnetic ordering can even be identified if the spatial
extent of the ordered region is limited [143, 197].

Further interesting proposals for the creation of low entropy states suggest to bring the lat-
tice quantum gas into thermal contact with a second atomic species (ideally bosons) for which
the lattice is transparent (see section 5.4.1). The additional species is supposed to serve as a
coolant, which is evaporated from the system after absorbing entropy from the fermionic spin
mixture [198-200]. Being similar to the principle of usual sympathetic cooling, the basic idea
seems appealing. However, the details of thermalization and the risk of enhanced inelastic
three-body collisions between the species are yet to be explored. An alternative route towards
studying the low temperature phases of the repulsive Hubbard model makes use of the fact
that the lowest temperatures in fermionic quantum gases have been reached for attractive in-
teractions. The study of the attractive side of the phase diagram (see section 3.3.2) might help
to also understand the effects on the repulsive side using a mapping based on particle-hole
transformation [121].

Detection of magnetic ordering

When approaching the ultra-low entropy phases of the repulsive Hubbard model, powerful
methods for the detection of antiferromagnetic spin order are needed. Because magnetic or-
dering happens in real space (see figure 3.6), usual time-of-flight imaging, which reveals the
momentum distribution, will not be useful. Additionally, it has recently been pointed out that
any spin imbalance will lead to the formation of a canted antiferromagnet, in which the stag-
gered order forms in the plane perpendicular to the quantization axis [201, 202]. Slight spin
imbalances can hardly be avoided in experiments. Therefore, it will be necessary to reorient the
spins along the quantization axis using a 7 /2 pulse, which is likely to reduce the "visibility" of
the order [203]. In any case, powerful approaches to the detection of antiferromagnetic phases
are much in demand.

A meaningful extension to time-of-flight imaging is the analysis of density-density corre-
lations in the quantum noise of absorption images [148] (see section 4.2.3). This technique
has been validated for a Mott insulator of bosons [149], a band insulator of noninteracting
fermions [150] and patterned loading of bosons in an optical superlattice [153]. For the case of
staggered order the emergence of correlation peaks is expected at distances corresponding to
integer multiples of k), = (7 /a,w/a) [as opposed to (27 /a, 27 /a), see section 4.2.3], where
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a is the lattice constant [151]. Remarkably, quantum Monte Carlo simulations have shown that
shallow precursors of these peaks already appear above the Néel temperature T ~ 4.J2/U
heralding the onset of singlet formation of neighboring spins [151]. Nevertheless, noise cor-
relations are a tough experimental observable, because many images recorded under identical
conditions (on the order of a hundred) must be averaged to obtain unambiguous signals.

Observables that yield information on the in-situ order in a single experimental shot are
highly desirable. One possibility to achieve this goal might be light scattering from the lattice
quantum gas, which acts as a refractive medium [197, 203]. This technique would be analogous
to neutron or x-ray scattering in solid state physics. Alternatively, external light fields could
also be used to probe the excitation spectrum of the quantum gas by means of Bragg [165] or
Raman scattering [204]. A variation of this approach is the application of lattice modulation
[29, 181, 205] (compare section 5.4.2) and subsequent measurement of the double occupancy
[173, 188, 206]. This scheme relies on the assumption that the creation of doubly occupied
sites via lattice modulation is enhanced, when the many-body quantum state approaches anti-
ferromagnetic order. One of the advantages of the method is the sensitivity to nearest-neighbor
correlations that are expected to emerge already above T (see above). However, it is very
indirect and requires an accurate quantitative evaluation of double occupancy, which must be
compared to a theoretical model.

A model-independent smoking gun for antiferromagnetic order could be obtained via in-
situ imaging with single-site and single-atom resolution. Important technical challenges have
been mastered in setups that use bosonic 87Rb [142, 144, 197]. There are several more to be
mastered in upcoming setups for fermionic species. A future spin resolved in-situ detection
will unambiguously identify staggered order simply by looking at it [197, 207]. In particular,
surrounding metallic shells in the trapped geometry will not spoil the signal as the magnetic
order can be identified entirely on a local level. Above the Néel temperature the dilute metallic
wings of the sample may even be used to perform thermometry, for example, by measuring the
equation of state [208-211].
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7. Quantum phase revival spectroscopy and multi-body
interactions

Interactions lie at the heart of correlated many-body quantum phases [105, 109, 189]. Typically,
the interactions between microscopic particles, such as electrons, atoms, or molecules, are
described as two-body interactions. Only in rare cases, such as strongly interacting nuclear
matter, higher-body interactions are considered by introducing a new energy scale, whenever
three or more particles collide. Recent theoretical studies have shown that such multi-body
interactions may give rise to novel, exotic many-body quantum phases in systems of ultracold
quantum gases [212-214]. So far, higher-body interactions in ultracold atomic systems have
only been observed as inelastic loss resonances in three- and four-body recombinations of
atom-atom and atom-dimer collisions [215-219]. Elastic multi-body interactions, however,
have been elusive, because a method to detect them has not been available.

In this chapter, I report on a novel method to precisely measure the interactions among
ultracold atoms residing on the sites of an optical lattice: quantum phase revival spectroscopy.
The technique resolves the number of atoms involved into on-site collisions and detects the
corresponding interaction strengths on an absolute energy scale. The energy difference between
the interacting and the noninteracting system is directly accessed as a result of an intrinsic
interference effect.

Equipped with these capabilities, the presence of effective multi-body interactions is re-
vealed in systems of bosonic atoms that are tightly confined at single lattice sites. Such multi-
body interactions emerge from two-body collisions through virtual transitions of atoms from
the lowest to higher vibrational states [220]. This process underlines the relevance of multi-
band physics for interacting atoms in optical lattices. Additionally, the precision measurement
of interaction energies provides input on the question, how accurately optical lattice systems
are described by single-band Hubbard models or, vice-versa, how well single-band Hubbard
models are realized. This assessment is crucial for the comparison of optical lattice quantum
simulators with many-body quantum theory [26].

In the first part of this chapter, the origin of quantum phase revival dynamics is explained
on general grounds using a simplified single-orbital single site model. For the case of ideal
coherent states it is shown, that collapse and revival dynamics arise, when the eigenenergies
of the underlying Fock states depend nonlinearly on the particle number [221-227]. In the
second part, I discuss how these dynamics can be practically realized and observed with ul-
tracold bosonic atoms in an optical lattice [43, 44, 228]. By establishing a direct connection
between experimental and theoretical observables, foundations are laid for quantum phase re-
vival spectroscopy that allows to accurately measure the interaction energies of individual Fock
states. It is additionally shown that the atom number statistics at a lattice site can be observed,
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7. Quantum phase revival spectroscopy and multi-body interactions

similar to foundational experiments in cavity quantum electrodynamics that yield the statistics
of a cavity photon field [45, 154, 229]. Subsequently, two theoretical models for the on-site
Fock state energies are discussed and it is demonstrated, how multi-orbital physics gives rise
to effective multi-body interactions. In the third part reports on the observation of long-lived
collapse and revival dynamics of bosonic 3’Rb on the sites of an optical lattice. Fourier trans-
form of the resulting time traces yields the energies of individual Fock states with high spectral
resolution. Comparing the measured Fock state energies to calculations that rely on the exact
diagonalization of a multi-orbital single site system, we find excellent agreement. Based on
these data the strengths of the multi-body interactions are accurately extracted. Quantum phase
revival spectroscopy is also used to track the change in the on-site atom number statistics from
Poissonian to number-squeezed when approaching the Mott insulator transition. The chapter
concludes with two excursions that propose the creation and detection of a Schrédinger cat and
exotic condensate states by means of collapse and revival dynamics.

7.1. Quantum evolution of coherent states

Coherent states represent the most stable field solution in physics [154, 230]: Formed by a
distinct superposition of number states (Fock states) they are insensitive to the removal of
particles. Coherent states are characterized by a single amplitude and phase and are used
extensively in the quantum description of classical coherent fields, ranging from laser light to
coherent matter waves in superconductors, superfluids and atomic Bose-Einstein condensates
(BECs). Their remarkable properties also play a crucial role in the path integral formalism of
many-body perturbation theory [105, 231].

When coherent states are used to describe matter wave fields, such as Bose-Einstein conden-
sates, the interactions between the underlying particles can give rise to a nonequilibrium phase
evolution of the Fock states constituting the coherent state. When this phase evolution depends
nonlinearly on the particle number, the coherent state undergoes a sequence of collapses and re-
vivals [43, 44, 228]. In such a sequence, the quantum state first evolves into a highly correlated
and entangled state in which at the time of the collapse the field amplitude vanishes. However,
when the evolution progresses, the entanglement is unravelled again and the original coherent
field is ideally recreated. This section explains the inner workings of the collapse and revival
phenomenon focussing on the case of interacting atoms [221, 222, 227]. However, remarkable
examples of such collapse and revival dynamics have also been observed for a coherent light
field interacting with a single atom in cavity quantum electrodynamics [45] or for a classical
oscillation of a single ion stored in a trap [232]

7.1.1. Coherent states

We consider a confining potential, such as a box or a harmonic oscillator, whose ground state is
occupied by n bosonic atoms (see chapter 2). The higher lying excited states of the potential are
omitted, which means the system is treated in a single-mode approximation. The occupation
of the ground state mode is described by Fock states |n), where n can be any positive integer
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7.1. Quantum evolution of coherent states

number including zero, constituting the basis of the Fock space. The operators ¢ and G' denote
the annihilation and creation operators, respectively, which reduce and increase the occupation
of the ground state mode by one atom, They are defined by

aln) = vnln—1), (7.1)
alln)y = Vn+1n+1). (7.2)

Fock states are the eigenstates of the atom number operator 7 = a'a and fulfill 2|n) = n|n) as
follows directly from the above relations.

Coherent states, on the other hand, are defined by the property of being eigenstates of the
annihilation operator a,
ala) = ala). (7.3)

Thus the action of the annihilation operator, which corresponds to the removal of an atom,
leaves a coherent state unchanged besides multiplication with the eigenvalue . Generally, this
eigenvalue is a complex number o = |a|e’? and the coherent state |) is uniquely defined by
the amplitude || and the phase ¢. Using the defining equation 7.3, the structure of coherent
states in the Fock basis can be straightforwardly derived. The general form of a coherent state
is given by a coherent superposition of Fock states,

) = eloP /QZ\ﬁ‘” (7.4)

where the statistical weight of the Fock states |n) follows a Poisson distribution P(n) =
e12*|a|2" /n) and the exact atom number remains uncertain. The mean atom number is given
by (f) = |a|?> = 7 and the variance (n?) — (2)? = (R) = 7 characterizes the fluctuations.
Accordingly, we may rewrite the eigenvalue as o = /7 - €%%.

Coherent states have originally been introduced in the quantum description of electro-mag-
netic waves. The operator of the electric field of a single light mode is given by E(X) o
ae”™ 4+ aTex [73]. When the corresponding mode is occupied by a coherent state, the expec-
tation value of the electric field (| E(x)|c) is a cosine wave |a| cos(x — ) with a well-defined
macroscopic phase corresponding to a classical coherent wave. The intensity of the light field
is proportional to |a|? = 7, which is the mean number of photons occupying the mode.

A Bose-FEinstein condensate is the matter wave analogue of a classical coherent wave. When
a Bose-Einstein condensate of noninteracting atoms is abruptly split by deforming the confin-
ing potential into a double well, the ground state orbital of each well is occupied by a superpo-
sition of Fock states, which ideally corresponds to a coherent state. Both parts may be viewed
as classical waves and their coherence can be probed in an interference experiment; when the
phase of the interference pattern is stationary in consecutive realizations of the experiment, the
matter wave fields have a fixed relative phase [6, 233, 234].! When a Bose-Einstein condensate

'In case the phase relation between the two halves is not fixed, the phase will fluctuate between consecutive
realizations of the experiment [227].
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7. Quantum phase revival spectroscopy and multi-body interactions

of interacting atoms is split, the quantum states of the two parts do not necessarily correspond
to ideal coherent states, but are composed of a superposition of Fock states with a narrower
"squeezed" atom number distribution [234].

The general atom number superposition state

o)

W) =) cnln). (1.5)

n=0

can describe pure Fock states as well as coherent and number-squeezed states. The coeffi-
cients ¢,, denote the probability amplitude of the corresponding Fock state |n) and fulfill the

normalization condition ) leal? = 1.

7.1.2. Interactions and time evolution of Fock states

Interactions between ultracold atoms are typically described by binary s-wave collisions that
are parametrized by a single parameter, the s-wave scattering length a; (see section 2.3).
Higher partial waves can be neglected due to low collision energies and inelastic three-body
losses can be minimized by choosing low atom densities and short interaction times. The 8'Rb
atoms in the |F, mp) = |1, 41) hyperfine state used in the experiments of this chapter interact
repulsively with a positive s-wave scattering length of about a; ~ 102 ag [77, 235].

When two identical repulsively interacting atoms occupy the ground state of the confining
potential, the interatomic collisions raise the total energy of the system by an amount U. This
interaction energy per atom pair is generally given by

2
Uzhh%/w@ﬁ%z (7.6)

m

where m is the mass of the colliding atoms and ¢(r) the spatial orbital of the atoms. The
integral [ |¢(r)|* d®r quantifies the overlap of the atomic densities, n(r) = |¢(1)|?.

Assuming weak interactions, the spatial orbital ¢(r) is often identified with the single-
particle ground state orbital ¢(r) of the confining potential. This is justified when U is much
smaller than the energy gap between the ground state and the higher lying excited states, such
that multi-orbital effects can be neglected; specifically for a harmonic oscillator potential with
frequency w the condition U < fw must be fulfilled. In the case of a single site of an optical
lattice, the ground state orbital ¢o(r) is often identified with the maximally localized wave-
function in the first lattice band, the Wannier function w(r).

Based on this single-orbital approximation it is straightforward to derive the total interaction
energy when a Fock state |n) occupies the ground state. The interaction of n(n — 1)/2 atom
pairs gives rise to the single-orbital Fock state energy (see figure 7.1a)

ESO = %n(n —1). (7.7)
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7.1. Quantum evolution of coherent states

This is the eigenenergy of the Hamiltonian

HSO = Zq(h —1), (7.8)

2
which is identical to the zero tunneling limit (J — 0) of the Bose-Hubbard Hamiltonian at a
single lattice site [24, 106, 109] (see chapter 3). The condition for the single-orbital approxi-
mation to hold for larger atom numbers n is even stricter, as E5° must be much smaller than
the energy gap between ground and excited states to ensure that U is independent of the atom
number. For a harmonic potential this means ESO < hw. We note that the total energy of a
Fock state |n) comprises not only E5© but also the zero point energy of the given confining
potential must be added; e.g. for the case of a three-dimensional isotropic harmonic potential
the zero point energy n-3hw/2 must be taken into account even when the atoms do not interact.
However, this offset can typically be neglected as it does not have an observable impact on the
dynamical evolution of the Fock states, which will become clear below.
Within the single-orbital approximation the time evolution of a Fock state |n) is determined
by the Hamiltonian H5° with H5C|n) = ESO|n) and we get

|n> (t) _ e—iETSlot/h |n> _ e—iUn(n—l)t/2h ‘n> (7.9)

Hence, the collisional phase shift acquired over time is quadratic in the atom number. For a
single Fock state this merely leads to an unobservable global phase, but for a superposition of
Fock states the nonlinearity in the atom number gives rise to an intriguing dynamical evolution.

7.1.3. Time evolution of coherent states

Coherent states are formed by a superposition of Fock states and as such they are no eigenstates
of the Hamiltonian governing the system (equation 7.8). In fact, each Fock state individually
evolves according to equation 7.9 and the complete evolution is given by

‘wa@» _ e*|a|2/2 Z % . efiUn(nfl)t/Qh’n>. (7.10)
n=0 :

The quadratic dependence of the collisional phase on the atom number causes the Fock states
to dephase and |1, (t)) evolves away from a coherent state loosing its initially well-defined
macroscopic phase. This would not be the case if the eigenenergies had a linear atom number
dependence. Here the phase factor of each Fock state could be included into the definition
of «, giving rise to a time dependent macroscopic phase, while the state itself would remain
coherent.

The dynamical evolution of |1, ()) cannot be observed directly; it is only accessible through
the time dependence of a physical observable. In analogy to the quantum description of the
electric field (see above), the property that quantifies the presence of a macroscopic phase is
given by the expectation value of the field operator, (@) (t) = (1o(t)]a|1q(t)). This expectation
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Figure 7.1.: Interactions in a single-orbital system and quantum phase revival dynamics. (a)
Interacting atoms in the ground state of a confining potential undergo coherent collisions. If
only the single ground state orbital is taken into account, the interaction energy per atom
pair U is independent of the filling n as given by equation 7.7. (b) Under such conditions
a coherent matter wave field undergoes perfectly periodic collapses and revivals. The revival
time ¢,y = h/U is inversely proportional to the interaction energy U, while the collapse time
teon = h/(v/nU) is additionally inversely proportional to /7, which is the standard deviation
of the Poisson distribution.

value, which is called the field amplitude in the following, generally has a complex value and
reads [222, 226]:

@) =a-em> % gminUt/h (7.11)

n!

We show below, that the matter wave dynamics of a coherent state can be experimentally de-
tected as the squared modulus of (1, (t)|a|1q()), complying with the requirement that physi-
cal observables assume real values. The dynamical evolution is observed as

[a)®)* = n-e ™ exp (ﬁ (e_iUt/h 4 eiUt/h>)

= n-exp (27’1 (cos (%) — 1)) . (7.12)

This result describes an oscillatory behavior (see Figure 7.1b) that is governed by the funda-
mental frequency U/h and its higher harmonics n - U/h.

Collapse

For short times (¢t < h/U) equation 7.12 can be approximated by

[(a)(t)|* ~ i - exp (—2U*/h?) , (7.13)
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7.1. Quantum evolution of coherent states

expressing the collapse of the matter wave field. The width of this Gaussian decay defines
the characteristic collapse time t.,; = h/(v/iU), where /7 is the standard deviation of the
Poisson distribution. This result is intuitively clear as the mutual dephasing of Fock states
is expected to happen the faster the broader the atom number distribution is, as illustrated in
figure 7.1b.

Revival

Due to the discreteness of the atom number distribution, the coherent field is fully restored
at the revival time t,., = h/U when each Fock state has acquired a phase shift which is an
integer multiple of 27. According to equation 7.9 at t,e, the Fock states with zero and one
atom have not evolved at all, the state with two atoms has gained a phase of 2, the state with
three atoms 3 - 27 and so on. The phases of all Fock states are identical modulo 27 and the
initial coherent state is recreated, |1 (trev)) = |9 (0)) = |a).2 The rephasing repeats itself
after integer multiples of .., and gives rise to strictly periodic collapse and revival dynamics
of the matter wave field amplitude.

7.1.4. Visualization of the time evolution

In quantum optics the Q-function is commonly used as a visual representation of quantum
fields [42, 154]. Here we employ

Q(B,1) (7.14)

RO
T

to visualize the collapse and revival dynamics of the matter wave field |14 (t)). It quantifies the

overlap between the evolving quantum state |1, (¢)) and a coherent state |3) with a mean atom

number fig = |(|? and phase ¢ = arg(8). The Q-function has the maximum value 1/7 for

perfect overlap.

Figure 7.2 shows the Q-function of the state |1, (t)) at discrete times of the evolution. In the
beginning, |1, (0)) corresponds to a coherent state with o = /71, where we have chosen ¢ = 0
without loss of generality. The Q-function is maximal for S = «, but also has finite values in
a circular region around «. The finite overlap with neighboring coherent states signifies that
coherent states are quasi-orthogonal forming an overcomplete basis of the Fock space.

During the quantum evolution, |1,(t)) moves away from a coherent state until the macro-
scopic phase becomes maximally uncertain at ¢ = t,,/2. Here, the state forms a coherent
superposition of two quasi-coherent states o) and |ag) with complex phases o 2 = +ia.?

“This statement is actually not correct when the zero point energy of each Fock state is taken into, e.g. n - 3hiw/2
for a three-dimensional harmonic confinement. However, the corresponding phase shifts drop out when the time
evolution |(a)(t)|? is calculated due to the linearity in n.

31t is worth mentioning that the superimposed states are not perfectly coherent states, which is also signaled by
the fact that the Q-function does only reach half its maximal value. The exact nature of the state is discussed in
section 7.4.
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7. Quantum phase revival spectroscopy and multi-body interactions

Because the eigenvalues of the superimposed states have the same absolute value, but an op-
posite sign, the expectation value (a) vanishes. The superposition of two macroscopic quan-
tum fields at this point of maximal collapse can be viewed as a Schrédinger cat state that is
discussed in more detail in section 7.4. In figure 7.2b even more complex superpositions of
quasi-coherent states can be identified; those appear at higher mean fillings and can also be
found for noninteger values of 7. For example, four quasi-coherent states with relative phases
of 7r/2 are superimposed at t = ¢,y /4 (see figure 7.2b (VI)).

7.2. Quantum phase revival spectroscopy

When a superfluid of bosonic atoms is loaded into a shallow optical lattice, the quantum state
at a single lattice site is effectively indistinguishable from a coherent state. The individual sites
can be isolated from each other by abruptly increasing the lattice depth and a huge array of
coherent states is formed. The collapse and revival dynamics are realized on many thousand
lattice sites in parallel.

In this section, we discuss how the dynamics can be detected on a macroscopic scale after
time-of-flight expansion and identify, which conclusions about the on-site dynamics can be
drawn from this global view. These considerations form the foundations for using quantum
phase revivals as a spectroscopic technique. In addition, we highlight that the on-site physics
in an optical lattice can generally not be understood in the single-orbital framework of the
previous section, because the band structure gives rise to multi-orbital effects. Interactions
can promote atoms to higher-lying orbitals and effectively change the shape of the on-site
wavefunction as a function of the atom number. We present an instructive physical picture of
the process that is provided by effective field theory: Virtual transitions of atoms to excited
orbitals generate effective multi-body interactions as higher-order corrections to the single-
orbital two-body interaction per atom pair U. It is shown that quantum phase revivals are an
ideal experimental tool to detect such multi-body interactions.

7.2.1. Coherent and number-squeezed states in optical lattices

A coherent state of massive particles cannot be realized in an isolated potential, because it
is not compatible with particle number conservation. However, by splitting a Bose-Einstein
condensate into two or more parts it is possible to create an array of states that are essentially
indistinguishable from coherent states. The splitting procedure should be nonadiabatic, such
that each atom remains in a delocalized state with a finite probability to be found in any part.
The many-body state of the global system is highly entangled and the coupling between the
parts should be fully suppressed to avoid relaxation. If one only takes a look at one of the
parts, the local quantum state appears to be constructed of a superposition of Fock states that
resembles a coherent state with a well-defined amplitude and phase.

In the experiment we split a Bose-Einstein condensate into many thousand parts using a
three-dimensional optical lattice. Initially the condensate is prepared in a harmonic trap and all
(or most) atoms occupy the macroscopic ground state wavefunction in the harmonic potential.
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7.2. Quantum phase revival spectroscopy

Figure 7.2.: Matter wave dynamics of a coherent state in a single-orbital system visualized by
the Q-function. The coherent states |3) are characterized by points in the complex plane. The
contour plots show their overlap with [1),(t)) at discrete times ¢ ranging from 0 (I) to tyey/2
(XT) scanned in steps of tyey/20. |10, (t)) evolves away from a coherent state until it forms a
Schrodinger cat-type superposition of two quasi-coherent states with a phase difference of 7 at
the time of maximal collapse (t;cv/2). Panel (a) shows the evolution for 77 = 2.0 and (b) for
7 = 7.0, where the latter reveals even more complex superpositions of quasi-coherent states at
intermediate times. Contour lines are spaced by 0.02 and the maximal value of the ()-function
is 1/m ~ 0.32 by definition.
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7. Quantum phase revival spectroscopy and multi-body interactions

The atoms are delocalized and can be found in a huge spatial volume. When a shallow optical
lattice is switched on the atoms remain delocalized; for vanishing on-site interaction U/.J ~ 0
all atoms occupy the Bloch state with the lowest energy ¢,—o(r), which extends macroscopi-
cally over the whole lattice (see section 2.2.3 and figure 3.7). Picking out a single lattice site,
there is a finite probability for each atom to be found there. In the Wannier basis the many-body
wavefunction for a system of /N atoms on M lattice sites can expressed as [58, 155]

v AN
1 .
(USF) /7m0 O (M Z azT) 10)

1 N!
_ S ),

nil---npy

(7.15)

where the occupation numbers n; in the second line have to comply with the additional con-
straint Zf\i 1 n; = N. This multinomial state (equation 7.15) directly signifies the entangle-
ment and the atom number fluctuations between the lattice sites. There is even a very small,
albeit finite probability to find all N atoms at a single lattice site.

Relaxing the constraint of a fixed global atom number, that is assuming a grand canonical
ensemble, the many-body wavefunction 7.15 can be factorized into a product of on-site wave-
functions [v;),

M
Ws) om0 = [ ] 1¥4)- (7.16)
i=1
Here, the intricate entanglement between lattice sites is absent, which simplifies many calcu-
lations without affecting the qualitative and quantitative results provided N and M are large
[155, 236]. For the case of a homogeneous lattice with a fixed local filling |a|? = 7 = N/M,
the on-site wavefunctions |¢;) are essentially indistinguishable from a coherent state

[5) = |a) = el /QZ\FM (7.17)

When the Bose-Einstein condensate is split with finite interactions U/J > 0, the on-site wave-
function will show sub Poissonian number statistics. The repulsion between the atoms limits
the delocalization, which effectively squeezes the statistical distribution of Fock states [27, 28].
For very large interactions U/J — oo, the system is in the Mott insulator phase, where each
lattice site is occupied by a fixed number of atoms, and the many-body wavefunction at com-
mensurate integer filling 72 is given by a product of local Fock states

M
P10/ 500 = [ ] 170)- (7.18)
=1

Generally, the global many-body state |¥) in an optical lattice, which has been adiabati-
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cally raised up to a certain ratio U/.J, can be conveniently captured by a product of on-site
wavefunctions that are formed by a superposition of Fock states [24, 58]

M oo ‘ M
@)~ [[D cnyi =[] va)- (7.19)
=1

i=1n=0

(4)

The coefficients an’ denote the probability amplitudes for a Fock state |n) at lattice site ¢ and

oo ) |

fulfill the normalization ", |cq(1z = 1. This wavefunction corresponds to the Gutzwiller

ansatz that, for example, can be used to calculate the coefficients cgf ) for a given mean filling n
within the Bose-Hubbard model [108, 237, 238].

After creating an array of coherent or number-squeezed states of the general type 7.19, we
rapidly increase the lattice depth in a nonadiabatic process to switch off the tunnel coupling
between the lattice sites (J — 0). Because the lattice sites are isolated from each other, the local
Fock states |n); are the new eigenstates of the system and their eigenenergies E,(f) determine
the dynamical evolution. Accordingly, the time dependent many-body state can be written as

M e} .
w(e) = [ o) with [s(e) = 3 DB /0y, (7.20)
i=1 n=0

In the following section, we discuss the impact of this evolution on the matter wave interference
pattern observed after time-of-flight expansion.

7.2.2. Evolving momentum distribution in homogeneous lattices

Quantum phase revival dynamics do not change the atom distribution on the individual lattice

sites as the evolving phases do not change the probabilities |c£§ ) |. However, they leave strong
signatures in the momentum distribution, which can be observed after sufficiently long time-of-
flight expansion of the atomic sample in the far-field .* The momentum distribution is generally
given by

k) = |wk)? Y e ™ E ) @]ay),

= Jw®)[* [ D () + > e i alay) (7.21)

i=j i

*Typical experimental expansion times (10 to 20 ms) are not long enough to exactly transform the in-situ density
into the momentum distribution. This has been investigated in detail by Gerbier et al. [140]. However, in the
analysis of the experimental images we use observables (visibility and fraction of coherent atoms) that are fairly
insensitive to the details of the time-of-flight pattern (see section 4.2). Therefore it is justified to assume infinite
time-of-flight for practical purposes.
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where r; denotes the coordinate of lattice site 7 and a; (&ZT) the corresponding annihilation (cre-
ation) operator for an atom. The envelope |w(k)|? is determined by the Fourier transform of
the on-site Wannier function w(r), which together with the factor 3, .(f;) gives rise to the
so-called Wannier background. The term e~*¢(*i=%5) js responsible for the emergence of the
interference pattern and the factor (d;rdj> measures the correlation between the lattice sites ¢
and j. Quantifying the coherence in the system, this factor determines how well the inter-
ference pattern is modulated. The integral of |w(k)|? Dot e‘ik'(”_rf')@gfzj) over complete
momentum space vanishes identically.’ Nevertheless, this term encodes the dynamical evolu-
tion of the individual lattice sites. Using the general many-body wavefunction (equation 7.19),

the time dependence of the correlations (7 # j) can be derived as

(T (t)|aja; [ W(1) = (wit)adle(t)) - (b (6)lazlw;(t)). (7.22)

This induces a temporal modulation of the interference pattern. In order to derive an analyti-
cal expression for the time dependent momentum distribution n(k, t), we make the following
simplifying assumptions about the general on-site state |1;(¢)) shown in equation 7.19:

o The energies of individual Fock states have identical values at each lattice site Fy, O = E,.

This assumption is justified when the lattice is homogeneous over the extent of the atom
cloud. We note that the lattice is homogeneous in experimental realizations, when two
conditions are fulfilled: First, the lattice depth must be uniform over the extent of the
atom cloud and, second, the underlying potential should be neither confining or anticon-
fining, but a flat. Both conditions are largely met in the experiments of this chapter.

e The on-site atom number statistics are assumed to be identical at each lattice site such
that c,(f ) = ¢n,» which also implies a uniform mean filling (n;) = 7 for all indices i. We
note that this requirement is hard to meet with present day technology. During the initial
loading of a shallow lattice, the cloud is typically confined in a harmonic trap which gives
rise to mean on-site fillings ranging between zero and a maximal value (7;) = Timax in
the center of the trap. To achieve uniform number statistics across the lattice, however, a
box-like underlying potential would be necessary.

Under these assumptions, the index of the on-site wavefunctions can be dropped and we obtain

(w(t)]ata; | W) L= s ale @) = @) o), (7.23)

where [¢(t)) = 32 c,ePnt/?|n). Therefore we can write down a simplified expression for
the time dependent momentum distribution in a lattice with M sites

n(k,t) = [w(k)]* [ Ma+ [(@)@)> > e )| (7.24)
7]
>Note that [ dk [w(k)|?e™™ i=ri) = §;; because the Wannier function is symmetric and its squared modulus

assumed to be normalized to unity [239].
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The amplitude of the interference term is given by the squared modulus of the field amplitude,
which refers to a single lattice site similar to the dynamics discussed in section 7.1. For the
evaluation of the experimental images we use the visibility of the interference pattern (see
section 4.2). The visibility has a monotonic relation to |(a)(¢)|? and therefore constitutes an
appropriate experimental observable for the quantum dynamics.

The evolution of the matter wave field amplitude can be expressed in general terms by
o0 .
(@) ()] =D Vn+ T eps e EraimEnlt/h (7.25)
n=0
such that the squared modulus reads

o
(@) () = S Vm+ IV Lemchy 1 Caeniy e/ Bmtt=Bn=EnaitBDUL - (76)

m,n=0

For the specific case of a coherent state with the probability amplitudes c,, = e~lal*/2gn / Vvn!
and the eigenenergies E5° = Un(n — 1)/2 of a single-orbital model, a straightforward calcu-
lation recovers the dynamics of equation 7.12. Therefore periodic collapses and revivals of the
visibility at the frequencies U/h and its higher harmonics would be expected in the experiment
(see figure 7.3c, grey solid line).

On the one hand, equation 7.26 can be used to calculate the quantum dynamics for given
Fock state energies F,, and coefficients c,. On the other hand, it can also be used in the reverse
way forming the basis of quantum phase revival spectroscopy. From this equation we know
that the dynamical evolution |(a)(t)|? is generally composed of oscillations at frequencies

fmn = (Em+1 - Em — Lin+1 + En)/h (727)
Each frequency has a spectral weight of
Crn = Vm + 1vVn + 1 emc 16t (7.28)

where the indices m and n can take any integer value including zero. When the quantum
evolution |{a)(t)|? is accurately measured in an experiment, the oscillation frequencies f,,
and their spectral weight C,,,,, can be extracted, for example, using a Fourier transform. It is
convenient to determine the energetic reference point by setting the Fock state energies of the
noninteracting system to zero, which corresponds to omitting the on-site zero point energy.
Using this convention, the Fock state energies for zero atoms and one atom vanish, Fg = F; =
0, and the general frequencies of order U/h are given by

fio = Es3/h with Cio = \/500’01’263
for = (Bs—2Ey)/h with  Cy1 = V6eieof?ch (7.29)
fso = (E4—2Es+Ey)/h  with Cs = V12¢les?c]
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7. Quantum phase revival spectroscopy and multi-body interactions

and so forth. Because the Fock state energy E is obtained directly, it is possible to iteratively
extract all energies F,, with n > 2 from the experimental data. Furthermore, the frequencies
of order 2U /h and their spectral weights read

foo = (Es3—Es)/h with — Co = V3ciercach
fan = (B4— Es— E)/h with  C31 = VBcicaesc] (7.30)
fio = (Bs—Ey—FE3+Ey)/h  with  Cip = VI5chezeach

and so forth. Analogously, higher frequency components of order £ U/h are given by fy, 1/,
and the corresponding weights by C}, ¢ ,, where / is a positive integer.

Based on the above derivation, we conclude that quantum phase revival spectroscopy offers a
unique tool to measure the energy of individual Fock states on an absolute scale. The inference
of different Fock states intrinsically ensures that the energy difference between the interacting
and the noninteracting state is measured. In addition, information on the probability amplitudes
cn, can be obtained via the spectral weights Cp,,,. Equations 7.29 and 7.30 explicitly show
that the evolution of |(a)(¢)|? is only nontrivial when the many-body quantum state shows
number fluctuations. Only if the probability amplitudes ¢, of at least three Fock states do
not vanish, an oscillatory behavior can arise. On the other hand, the mixing of several Fock
states can "amplify" the signal of a Fock state with a small probability amplitude, because the
statistical weight may be increased by large coefficients c,, of the other contributing Fock states.
Amazingly, quantum phase revival spectroscopy is also sensitive to the probability amplitude
cg of the Fock state with zero atoms, which is the occupation of the vacuum state.

7.2.3. Quantum phase revivals with fixed global atom number

We have derived the quantum phase revival dynamics assuming a grand canonical ensemble and
a factorized global many-body state composed of independent on-site states. While these as-
sumptions considerably simplify calculations, they do not resemble experimental reality. Here
the total atom number is rather fixed and the many-body state is a highly entangled multinomial
superposition of global many-body Fock states (see equation 7.15). It is an important question
whether the dynamics change when these realistic conditions are taken into account.

The question has only recently been answered by Schachenmayer et al. [236], who have
analytically calculated the quantum dynamics in a lattice system with N atoms, a mean on-site
filling of 7 and single-orbital eigenenergies E5° = Un(n — 1)/2. They obtain

(a)(t)|* =7 - (1 + %ﬁ (cos (?) — 1>>(N1) : (7.31)

which differs from equation 7.12 for small atom numbers N. However, in the limit of large
atom numbers N >> 7, this expression reduces to equation 7.12 as limy _,o0 (1 +2/N)V = e*.
Already for a system with NV = 5 and i = 1, the result of the exact treatment is almost indis-
tinguishable from the approximate calculation employed above. Experimental lattice systems
consist of typically N = 10° atoms with a local filling on the order of 7 ~ 1 and therefore the
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Figure 7.3.: Signature of multi-body interactions in quantum phase revivals. (a) For repulsive
interactions, virtual transitions to higher lattice orbitals broaden the ground-state wavefunction
at a lattice site depending on the atom number (orange solid lines). This gives rise to charac-
teristic Fock state energies, which can be described by effective multi-body interactions. (b)
A BEC loaded into a weak optical lattice forms a superfluid in which each atom is delocalized
over several lattice sites. The quantum states at each site can be expressed as a superposi-
tion of Fock states, |n), with amplitudes ¢,,. (c¢) Quantum phase revivals of a coherent state
of interacting atoms in the multi-orbital system of a deep lattice well (blue solid line). The
beat signal indicates coherent multi-body interactions. The dynamics are markedly different
from the monochromatic evolution expected in a single-orbital model with a single two-body
interaction energy, U (gray solid line).
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Figure 7.4.: (a) On-site potential at lattice depth Vi;; = 32 Eyec and Vi = 36 Epec with
hard boundary conditions. The dashed lines show the lowest lying single-particle energies with
three and four classically bound states, respectively. (b) The effective one-dimensional ground
state wavefunction in a Vj,; = 40 FE\. lattice is modified as a function of the filling n = 1 to 4
for interacting ®"Rb atoms. The black solid line shows the single-particle on-site wavefunction
¢1(z) calculated on an individual lattice site with hard boundary conditions (see (a)). ¢1(2) is
essentially identical to the Wannier function w(z) of the lowest lattice band (gray dashed line).
The figure is displayed with kind permission of Dirk-Séren Liihmann [238].

simplified coherent state treatment is safely applicable.

7.2.4. Multi-orbital physics, Fock state energies and multi-body
interactions

Using quantum phase revival spectroscopy we will see in the experimental data (section 7.3)
that the single-orbital approximation employed above breaks down at rather moderate interac-
tions and lattice depths. In a multi-orbital system, atom-atom interactions can promote particles
to higher-lying orbitals; the admixture of these orbitals modifies the shape of the spatial on-site
wavefunctions and gives rise to renormalized Fock state energies [145, 212, 240-247].

In this section, we present two approaches to treat the on-site multi-orbital system theoreti-
cally. The first one is based on exact diagonalization of a finite multi-orbital system in analogy
to the so-called configuration interaction method used in quantum chemistry [238, 248, 249].
The second one uses the techniques of effective field theory to derive a perturbation expansion
for the Fock state energies [220, 250, 251].

Calculation of Fock state energies using exact diagonalization

It is intuitively understandable that interactions between atoms can lead to a modification of the
ground state wavefunction at a lattice site. For the case of repulsive interactions a broadening of
the on-site ground state wavefunction is expected (figure 7.3a). Because the interaction energy
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Figure 7.5.: Occupation of many-body states on a lattice site. (a) Population that is not found
in the many-body ground state of the noninteracting n-atom system |1) = |n,0,...,0) as
a function of lattice depth and atom number assuming as; = 102 ag and 4° single-particle
orbitals. (b) Occupation of single-particle orbitals for Fock states with n = 2 and n = 5 atoms
(33 orbitals, Vigy = 40 Eyec, as = 102 ag). The notation [a37] comprises all permutations of
a, 3, and ~. All orbitals corresponding to a set [a/37] are energetically degenerate and their
occupations have been added up. The energy of the orbitals increases from left to right. Those
orbitals containing exclusively second (third) band admixtures are displayed in blue (green).
Occupation of the second band, while energetically favorable compared to the third band, is
suppressed due to conservation of parity.
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7. Quantum phase revival spectroscopy and multi-body interactions

per atom pair is proportional to the overlap of the atomic densities (equation 7.6), this will
reduce the energy of the Fock state E5. The reduction can be expected to be more and more
pronounced the higher the number of atoms at the lattice site.

To calculate the Fock state energies F,, in deep three-dimensional lattices Vi, using exact
diagonalization, it is convenient to focus on a single lattice site with hard boundary conditions
(figure 7.4a). The considerations are further restricted to the s = 3 or 4 lowest lying orbitals
in each of the three dimensions, because those orbitals - being classically bound - are least
prone to tunneling.® This gives rise to a finite Hilbert space with m = 32 or 43 single-particle
states. The corresponding three-dimensional orbitals are constructed from the one-dimensional
eigenfunctions in z, y, and z direction via

Papy(r) = ¢a(®) P5(y) Py(2), (7.32)
with o, 8,7 = 1,...,s. The occupation numbers n,g, of the orbitals ¢z~ (r) define the
on-site many-body states |N) = |n111, 7211, .- ., Nsss), Which we label by a number N for

simplicity. Assuming that n atoms occupy the lattice site, the number of mutually orthogonal
many-body states | V') amounts to

(n+m—1)!

Ninax = n!(m —1)!

(7.33)

and defines the dimension of the Hilbert space, where m = s3 is the number of single-particle
orbitals. We note that the uncorrelated noninteracting ground state with n bosonic atoms is
given when all atoms occupy the lowest orbital ¢111(r), which is |1) = |n,0,...,0) in the
notation employed here. This corresponds to the Fock state |n) within the single-orbital Bose-
Hubbard model.

Repulsive interactions between the n atoms induce the admixture of energetically higher
lying many-body states | N'). Those admixtures can be exactly calculated through the diagonal-
ization of the Schroédinger equation of the n atom system in its matrix representation

> (N|H|N") ey = Encn. (7.34)
N/

Defining the field operator ¢(r) = 3, 5y Papry (r) Gapy, the Hamiltonian takes the form

-9

= [@rdin) ( 2+ v+ 55 0 ) dto). (1.35)

where V/(r) is the on-site trapping potential and g = 47h?a,/m the atom-atom contact inter-
action characterized by the s-wave scattering length a.

The lowest eigenvalue E™™ of H corresponds to the ground state energy of the interacting

®We will discuss in section 7.3 that the energy cutoff that is effectively introduced by the restriction to those
orbitals is justified by the experimental scenario.
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Figure 7.6.: Second-order diagrams relevant to the generation of effective two- and three-
body interactions. (a) and (b) Diagrams of this type give rise to two-body interactions within
the second order shift. Their contributions are canceled by introducing the counter term pro-
portional to an adjustable constant A (see equation 7.38) for proper renormalization. (c) This
diagram exemplarily shows a process generating three-body interactions. Two atoms in the
lowest vibrational state © = 0 collide promoting one atom to a higher-lying state 1 7% 0 that
subsequently collides with a distinct third atom in state ¢ = 0. An effective three-body inter-
action between the three distinct incoming atoms is created, mediated by a virtual transition to
the 1 # 0 intermediate state. The diagrams are adapted from Johnson et al. [220].

n-atom system, which we call the multi-orbital Fock state energy E{L“in = EMO. The energy
offset is ideally chosen such that the ground state energy of the noninteracting n atom system
vanishes. It is important to remark that the multi-orbital Fock state energy E}\LAO is the total
energy of the Fock state |n) in the interacting system and corresponds to the energy that is
measured in a quantum phase revival experiment. It does not only include interaction energy,
but also the kinetic and potential energy carried by the admixed higher lying many-body states
|N) (see figure 7.5). As shown in the following section, EM© is significantly lower than the

single-orbital Fock state energy ESC = g"(g—_l) [ d3r|p111(r)|*. However, ENO is larger

than the pure interaction energy Eth% =4 [d®r (o1 (r)dT (r)d(r)d(r)) that accounts for the
interaction energy, but neglects the additional potential and kinetic energy of the excited many-

body states [249, 252].

Emergence of multi-body interactions using effective field theory

A treatment of the multi-orbital system of interacting atoms within the framework of effective
quantum field theory illustrates the physical processes pictorially: Atom-atom interactions in-
duce virtual transitions to higher-lying excited orbitals at a lattice site. Those transitions appear
as higher-order terms in the perturbation expansion and generate effective multi-body interac-
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7. Quantum phase revival spectroscopy and multi-body interactions

tions. The resulting multi-orbital Fock state energies in an individual lattice well are given by
the expansion

U. U. U
EMO — gn(n —-1)+ Fdn(n —1)(n—-2)+ ﬁn(n —D(n—=2)(n—3)+... (7.36)
which represents the eigenenergies of the corresponding effective Hamiltonian [220]. The

characteristic strength of the effective m-body interaction is denoted by Up.

We briefly sketch the emergence of multi-body interactions following the derivation given in
Johnson et al. [220]. The eigenenergy of a Fock state with n atoms is given by a perturbation
expansion in higher-order terms

EMO~ EO L ED L ED (7.37)

The zeroth-order term corresponds to the energy of the noninteracting system that can be set
to zero Ey(lo) = ( without loss of generality. The first-order term represents the pure two-body
interaction E\Y) = Uyn(n — 1)/2 that happens within the lowest single-particle orbital. The
coupling to excited single-particle orbitals is introduced by the second-order term

02 &L s K2 00| (n; pvlaladaoao|n; 00) 2 A
2 . Y2 HY 22 00 1\ M ) 4 _
B == > B +5n(n - 1) (7.38)

u2v

where the indices ¢ and v are used as a short hand notation for the indices of the three-
dimensional single-particle orbitals introduced above. The occupation numbers of states with
n atoms are expressed by

|n;00) = |n,0,...,0)
In;pp) = n—2,0,...,2,,...,0) (7.39)
Insuv) =|n—2,0,...,1,,...,1,,...,0).

The sum over the indices 1 and v terminates at a high-energy cutoff A which excludes highly
excited orbitals from the calculation. K09 denotes the overlap integral of the orbitals involved
in the virtual processes and s,,,, takes the value 4 (1) for the case ;1 = v (1 # v), respectively.
The parameter A is introduced to ensure proper renormalization of the perturbation theory. It

must be chosen such that Ef) does not generate two-body energies in addition to ES). There-

(2)

fore the condition E22 = 0 must be fulfilled and the contributions of all two-body diagrams

that are generated by the first term of equation 7.38 (examples shown in figure 7.6a and b) are

canceled in the renormalization process. The remaining three-body processes (example shown

in figure 7.6¢) give rise to effective three-body interactions

Us
n

E® = & —=1)(n-2), (7.40)
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where Us denotes the corresponding characteristic energy scale.

7.3. Experimental realization

The conditions at a single site of an optical lattice are ideally suited to observe the quantum
phase revival dynamics that is outlined above. First, the interaction energy U/h is typically on
the order of some kilohertz leading to a revival time ¢,., = h/U on the order of 1 ms. This
time scale is long enough to be easily resolved experimentally and still short enough to avoid
disruption or dephasing due to loss processes or technical fluctuations. Second, the collapse
time tcon = trev/ V1 is slightly shorter than the revival time because typical mean fillings are
n 2 1. This ensures that the collapse is neither too fast for experimental detection nor too
slow. In the latter case, the matter wave field might not have fully collapsed before the onset of
the revival. Third, the quantum phase revival dynamics is realized on several thousand sites in
parallel which generates strong experimental signatures as discussed in the previous section.

However, the parallel implementation of the dynamics on many sites requires a homoge-
neous lattice across the atomic cloud. On the one hand, it is crucial that the depth of the optical
lattice is identical at all occupied sites such that the level spacings between the on-site orbitals
do not differ from site to site. Otherwise, the revival times would not be well-defined across the
lattice and the dynamics would wash out. On the other hand, mutual energy offsets between the
lattice sites must be avoided as these can lead to rapid relative dephasing. Previous experiments
were restricted to the observation of few revivals only, because the dynamics was realized in
red-detuned optical lattices. The underlying harmonic confinement in those configurations led
to rapid mutual dephasing between the sites which severely damped the observed dynamics
after few revivals.

In this section, I report on the observation of quantum phase revival dynamics over more
than 40 cycles. The remarkable increase of coherence time has been enabled by using a blue-
detuned optical lattice and simultaneous compensation of the underlying anticonfinement by
a copropagating red-detuned dipole trap (for details see section 5.4). This improvement is
a qualitative change that allows for the observation of novel physics. High spectral resolu-
tion, which is gained by the detection of long quantum phase revival traces, enables precise
measurements of individual Fock state energies E;LWO on an absolute energy scale. Our data
unambiguously reveals characteristic Fock state energies that cannot be described within the
single-orbital framework that is also employed in the context of the Bose-Hubbard model.
Using the measured Fock state energies, we can precisely infer the strength of the effective
multi-body interactions (see section 7.2.4).

7.3.1. Preparing an array of miniature BECs

The experiment begins with the preparation of a pure Bose-Einstein condensate of "Rb atoms
in the |F,mp) = |1,+1) hyperfine state. Away from any Feshbach resonances atoms in
this state interact repulsively; the background scattering length is quoted in the literature as
as =~ 102 ap with deviations on the per cent level [77, 235]. The atom number is adjusted

159



7. Quantum phase revival spectroscopy and multi-body interactions

A
\V/P S . :
Optical lattice E 50 us j E
Ve ko ;
1 1 ! _
A - i
Dipole trap i '\— TOF :
: ' ;~ time
€ > fe—
100 ms 10 ms
t=0..9ms
hold time

Figure 7.7.: Experimental sequence as described in the text.

for different data sets between 1.2 x 105 and 3.5 x 107 with shot-to-shot variations of +10%
or better. The atom cloud is held in a pancake-shaped crossed optical dipole trap operating
at a wavelength of A\gijp, = 1030 nm. The trap frequencies are w, = 27 x 130 Hz in the
direction of gravity and w; = 27 X 32 Hz in the orthogonal plane. Subsequently, a three-
dimensional lattice of simple cubic type is superimposed and adiabatically ramped up within
100 ms to a depth V7, ranging between 3 E'c and 13 E..., below the Mott insulator transition
that is expected slightly below 15 FE¢. for our parameters. The lattice is created by a laser
operating at a blue-detuned wavelength of A,y = 738 nm as described in detail in section 5.4.
For the lattice depths V1, the many-body ground state of the system is a superfluid. Therefore,
we expect the quantum states at the individual lattice sites to range from coherent states for
shallow lattice depths to highly number-squeezed states for deeper lattices [43, 253-255].

After adiabatic loading, we suddenly increase the lattice depth from V7, to V31, ranging from
25 FElec to 41 Elec. This suppresses the tunnel coupling, freezes out the atom number distribu-
tion at each lattice site and effectively creates an array of miniature Bose-Einstein condensates
(see figure 7.7). The jump is performed within 50 us, which is slow enough to avoid the pop-
ulation of higher lattice bands, but fast in comparison with tunneling in the first band. The
nonadiabatic change of parameters abruptly exposes the system to a new Hamiltonian and the
many-body state prepared at V7, is no longer the ground state or even an eigenstate. Therefore
nonequilibrium dynamics arise. The quantum phase evolution on the individual lattice sites
starts, governed by the Fock state energies of equation 7.36.

Quantum phase revivals have been studied in previous experiments [43, 44, 228]. However,
these were limited to following the dynamics for short traces only, with typically four to five
revival cycles. In those cases, the measurements were performed in a red-detuned optical lattice
where a global harmonic confinement led to rapid relative dephasing of lattice sites. In these
experiments, the different detunings of the optical lattice (blue-detuned) and the dipole trap
(red-detuned) with respect to the atomic resonances (Ap; = 795 nm and Apy = 780 nm)
allow us to change the underlying harmonic confinement during the experimental sequence.
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Simultaneously with the jump to the lattice depth V31, we reduce the dipole trap to cancel
the harmonic confinement, creating a homogeneous lattice system in the horizontal plane (see
also section 5.4). After letting the system evolve for a hold time ¢, all trapping potentials are
switched off simultaneously and an absorption image of the matter wave interference pattern is
recorded after tTor = 10 ms time-of-flight expansion. As a measure of the ensemble averaged
squared modulus of the matter wave amplitude |(a)(t)|? (see section 4.2.2), we determine the
visibility of the interference pattern for each image [147] according to

Y = Nmax = N (7.41)

N, max T N, min

Here, N,,.x denotes the total atom number in the four boxes around the first order interference
peaks and Ny, the total atom number in boxes that are rotated by 45 degree around the central
peak. The width of the boxes is chosen as 15 per cent of 2hk,tTor/m, which is the distance
between the center and the first order diffraction peaks (kjay = 27/ Aag)-

7.3.2. Observation of multi-orbital quantum phase revivals

Figure 7.8 shows a typical time trace of the multi-orbital phase evolution. It displays about 40
revivals, while the coherence time allows to record the dynamics for even longer times. On
top of a fast series of collapses and revivals, a slower modulation of the envelope is observed
that indicates a beat between different frequencies in the system. Due to the large number of
observed revivals, it is possible to analyze the spectral content of the trace using a numerical
Fourier transform. Technical details on the Fourier analysis are provided in appendix D.

In the resulting spectrum, five distinct frequency components of orders U/h and 2U / h can be
clearly identified (figure 7.9). The smallest peaks at about 3.4 kHz and 7.1 kHz originate from
sites occupied by up to four atoms, because they correspond to the energy terms Ey —2E3+ Eo
and By — E3 — F5 with spectral weights of v/12 ca|c3|?c; and v/8 cjeacscl, respectively. It is
interesting to note that quantum phase revival spectroscopy can help to detect Fock states with
very small probability amplitudes c,. Their signal can be "amplified" through the interference
with Fock states [n—1) and |n—2) with larger amplitudes ¢,,—1 and ¢,,—2. This can be deduced,
for example, from equation 7.26. The residual damping in the time trace most probably stems
from residual harmonic confinement along the vertical z-axis, residual tunneling [256] via
higher bands, and the finite extension of the atomic ensemble. The latter leads to the sampling
of a slightly inhomogeneous distribution of lattice depths as a result of the Gaussian shape of
the lattice laser beams.

As discussed in section 4.2.2, the relation between V and |{a)(¢)|? is monotonic but not
exactly linear. Depending on the amount of nonlinearity, one might expect mixing between
the spectral contributions of |(a)(t)|?, when the data is evaluated using the visibility. Indeed,
we observe additional frequencies in the spectra (see below) which we assign to nonlinear
spectral mixing. However, those frequencies are suppressed by a factor of fifty compared to
the dominant spectral features.
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Figure 7.8.: Multi-orbital quantum phase revivals of a number-squeezed state. Collapse and
revival dynamics of number-squeezed superposition states in a deep optical lattice. A Bose-
Einstein condensate of about 1.9(3) x 10 8’Rb atoms was adiabatically loaded into a Vi, = 8
FEec lattice within 100 ms. Quantum phase evolution was induced by a nonadiabatic jump to
a Vi = 41(1) E,ec deep lattice, while the superposition states with finite number fluctuations
are preserved. The sample has an ensemble-averaged mean atom number of (1) ~ 1.0 and a
central mean atom number of 7, /=~ 2.5. Simultaneously with the lattice jump, the underlying
harmonic confinement is instantaneously minimized to maximize the coherence time. The
quantum phase dynamics show a beat signal resulting from coherent multi-body interactions.
Each data point corresponds to a single run of the experiment. The solid line interpolates the
data and serves as a guide to the eye.
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Figure 7.9.: Spectral analysis of the time trace in Figure 7.8 reveals the contributing frequen-

cies. The solid line shows Gaussian fits to the peaks. Grey dashed lines display the frequencies
corresponding to the single-orbital interaction energies U and 2U at a lattice depth of 41 Fec.
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Figure 7.10.: Minimization of underlying confinement for quantum phase revival dynamics.
(a) Picking a revival at a hold time ¢( of about 2.5 ms, we vary the intensity of the dipole trap
laser and (b) monitor the change of the visibility at the revival, identifying a clear maximum. (c)
Converting the dipole trap intensity to trap frequency using the model outlined in section 5.3,
we find that maximal coherence time is observed at the expected point of vanishing harmonic
confinement w; = 0 (arrow).

7.3.3. Minimization of the harmonic confinement

In order to obtain time traces with the long coherence time demonstrated in figure 7.8, it is
critical to minimize the harmonic confinement in the system. Otherwise rapid relative dephas-
ing between lattice sites restricts the measurement to only few revival cycles [43, 44, 228].
Based on the accurate model of our combined lattice plus dipole trap potential (section 5.4),
we can directly "dial-in" the desired trapping potential and cancel the harmonic confinement
in the horizontal plane. To ensure that this theoretical potential does indeed yield the largest
coherence times, we perform an independent cross check. We typically choose a phase revival
at an intermediate hold time of about {3 ~ 2.5 ms. At this point we monitor the visibility of
the interference pattern as a function of the dipole trap intensity (see figure 7.10). From these
data we determine the maximal visibility and find that the corresponding dipole trap intensity
complies with the model of our trapping potential. In the experiments of this section it is cru-
cial to minimize the harmonic confinement, but it is demonstrated in section 7.5 that exotic
condensate states can be created via quantum phase evolution in the presence of underlying
trapping potentials.

7.3.4. Precision measurement of Fock state energies and multi-body
interactions

In order to measure the dependence of the multi-orbital Fock state energies EMC on lattice
depth, we have recorded several long collapse and revival traces with Vi between 25 Fye. and
41 Fyec as shown in figure 7.11. Owing to long coherence times and high spectral resolution,
the Fourier transform of the traces reveals sets of frequencies of orders U/h and 2U /h with a
relative statistical uncertainty on the level of few per cent. The frequencies increase monoton-
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Figure 7.11.: Quantum phase revival energies in a multi-orbital system. Long collapse and
revival traces have been recorded under identical loading conditions (V1, = 8 Ey.), but variable
lattice depth V1 during phase evolution. The contributing frequencies f,,,, of orders U/h (red
circles) and 2U /h (blue circles) have been derived using numerical Fourier transform and are
plotted as energies h X f,,. The typical experimental uncertainty is 50 hxHz. The shading
of the data points reflects the relative spectral weight (the darker the higher). The solid lines
with grey shading indicate the theoretically expected energies. They have been calculated
using exact diagonalization (see section 7.2.4) with an on-site basis set of 43 orbitals at an s-
wave scattering length of as = 102(2) ag, where ay is the Bohr radius. A calculation using a
smaller basis set with 33 orbitals yields slightly higher energies (dashed lines). The dotted lines
show the single-orbital interaction energies U and 2U that have been calculated using Wannier
orbitals, which are commonly used in the Bose-Hubbard model (BHM). At low lattice depth
we can resolve the strongest peaks only owing to smaller peak spacings.
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ically with lattice depth. Already for the energy of the Fock state with two atoms we observe
the stunning relevance of multi-orbital effects in optical lattices: The measured energy FEj is
10(1) % lower than predicted by a simple single-orbital Bose-Hubbard model.”

We compare the experimental data to the theoretical results of an exact diagonalization of
the multi-orbital system at a single lattice site. The calculations have been performed by D.-
S. Lithmann at the University of Hamburg. According to the description in section 7.2.4, we
use hard boundary conditions and a contact interaction. The first assumption is justified be-
cause the on-site wavefunctions essentially do not extent to neighboring lattice sites at the high
lattice depths used in the experiment. The second assumption is a subtle issue in the context of
renormalization, where care must be taken in the use of the contact interaction [53, 78, 220].
Therefore and due to the uncertainties in the published values for the scattering length as (see
above) [77, 235], we use as as an adjustable parameter to match our theory to the experi-
mentally measured value of Fo. Based on the resulting best match, our theory has predictive
power for the Fock states with higher atom number. When the diagonalization is performed on
a Hilbert space with 42 single-particle orbitals, corresponding to the four lowest lying lattice
bands in three dimensions, we find the best match for Fs at a; = 102(2) ag. This value also
leads to remarkable agreement for all other measured energies suggesting applicability and
high accuracy of this multi-orbital theory (figure 7.11, black solid lines).

It is a natural question whether the inclusion of higher-lying orbitals improves the accuracy
of the calculation. While from a purely theoretical viewpoint the answer might seem to be
affirmative, there are experimental reasons for this being not the case. A cutoff at around
s = 4 seems reasonable since only the lowest four orbitals are classically bound, that is their
energy is lower than the lattice depth. While within Bloch theory there is no fundamental
difference between classically bound and unbound states, the band structure calculation in
figure 2.8 shows that lattice bands with energies larger than the lattice depth essentially have a
parabolic dispersion relation, similar to a free particle. Such states are prone to fast tunneling.
Admixtures of these states would quickly be lost from our system for two reasons: First, the
lattice does not have underlying confinement in the horizontal plane (see schematic potential
landscape in figure 2.7) and, second, is also exposed to a linear gravitational gradient in the
vertical direction.® Therefore, high-lying orbitals are likely to form fast loss channels and do
not contribute to wavefunction renormalization.

Using the experimental and theoretical data on the multi-orbital Fock state energies E©
(figure 7.12a), we can iteratively derive the strength of effective multi-body interactions us-
ing equation 7.36). The relevant relations read U; = E%VIO, Us = E}J)V[O —3U3, and Uy =
Ei\/lo — 6Uz — 4U3. Results are shown in figure 7.12b. We observe that the effective three-
body interaction is attractive and the measured values agree well with the results obtained from
exact diagonalization. Given the fact that exact diagonalization is solely based on a two-body

"For this calculation we have taken Wannier orbitals as the on-site ground state wavefunction, which is commonly
done within the Bose-Hubbard model.

8In a recent experiment by Bakr e al. [196], which uses a similar optical lattice setup, atoms are selectively
excited to higher-lying lattice bands. The fast loss in classically unbound bands is confirmed by monitoring the
population of individual lattice sites using single site resolved imaging.
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Figure 7.12.: Fock state energies and effective multi-body interactions in experiment (data
points) and theory (lines). (a) Multi-orbital Fock state energies as derived from both exper-
imental and theoretical data in figure 7.11. The solid (dashed) lines show the multi-orbital
Fock state energies EMO as calculated by exact diagonalization on a Hilbert space with 43
(3%) single-particle orbitals. The corresponding energies of the Bose-Hubbard model (BHM,
dotted lines) lie considerably higher. (b) Effective two-body (top), three-body (middle) and
four-body (bottom) interaction strengths as derived from experiment and theory, assuming
as = 102(2) ap and 43 contributing single-particle orbitals. The error bars correspond to
one standard deviation.
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contact interaction, this agreement indicates that intrinsic, direct three-body interactions are
negligible for our experimental parameters. The energy scale of the measured effective four-
body interaction strengths is as low as h x 100 Hz and also in good agreement with theory,
if the experimental uncertainties are taken into account. Altogether, our data shows that the
expansion of Fock state energies in terms of multi-body interactions converges quickly. This
offers the possibility to efficiently incorporate interaction effects of multi-orbital physics into
refined effective single-band lattice Hamiltonians.

7.3.5. Observation of atom number statistics

In addition to measuring coherent interatomic interaction strengths on an absolute energy scale,
quantum phase revival spectroscopy can be used to reveal the changes of the on-site number
statistics for different many-body quantum states [229]. The spectral weights of the detected
frequencies carry information on the probability amplitudes of the Fock states c,, (equation
7.26). To demonstrate this, we adiabatically prepare three-dimensional arrays of coherent
(VI = 3 FEiec) to highly number-squeezed states (1, = 13 FEyec) close to the Mott insula-
tor transition around 15 FEi... For the differently prepared states, we use an identical setting
of Vi = 40 E,¢ to record the quantum phase revivals (figure 7.13). Thus, quantum phase
revivals are employed as a detection sequence for the different many-body quantum states.

As V1, is increased from 3 Eye to 11 Eiec, the time traces evolve from seemingly irregular
oscillations into a clear beat signal because fewer frequencies contribute. This can be observed
in the corresponding spectra displayed in figure 7.13b and is more quantitatively shown in
figure 7.14. The narrowing of the spectra reflects a decrease in the variance of the atom number
distribution. This is dominantly caused by number squeezing, which also leads to smaller peak
amplitudes in the Fourier spectra. Additionally, stronger interactions in deeper lattices induce
a reduction of the average on-site density, which also entails a smaller variance. We attribute
the surprisingly pronounced dynamics at Vi, = 13 Fiyec, in proximity of the Mott insulator
transition, to the presence of up to three superfluid layers of the emergent Mott shells with
fillings n = 1,2 and 3.

7.4. Excursion: Detecting a Schrédinger cat in the quantum noise

In section 7.1, we have discussed the quantum collapse and revival dynamics of an ideal coher-
ent state of interacting atoms. The amplitude of the matter wave field is maximally collapsed
at half of the revival time t,e,/2 = h/(2U). At this instant of time the quantum state of the
system corresponds to a superposition of two quasi-coherent states which is strikingly illus-
trated by the Q-function (section 7.1.4 and figure 7.2). Because two macroscopically occupied
quantum states states are involved, it is justified to call the quantum state at maximal collapse
a Schrodinger cat state [154, 257]. The experimental detection of the Schrodinger cat is chal-
lenging as it does not show any specific signatures in the momentum distribution observed in
time-of-flight images. However, in this excursion we show that correlations in the quantum
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Figure 7.13.: Influence of the global atom number statistics on quantum phase revival spectra
when the Mott insulator transition is approached. (a) Multi-orbital quantum phase revivals in
a deep lattice (Vg = 40 E\.) after adiabatic loading of 3.3(3) x 10° 87Rb atoms into lattices
with depths ranging from V;, = 3 Elec to 13 Ep.. The mean atom number of the individual
traces differed by as little as +=1%. The coherence time for shallow lattices seems significantly
reduced, however, the visibility reliably shows dynamics down to the per cent level (inset). (b)
The corresponding Fourier spectra reveal frequency contributions from Fock states containing
up to six atoms. The peak positions agree with the theoretical predictions obtained from exact
diagonalization (dashed vertical lines) and are independent of V7,. Number squeezing manifests
itself both in reduced peak amplitudes and in a narrowing of the spectra for increasing Vi,. The
solid lines show Gaussian fits to the peaks.
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Figure 7.14.: Relative weight of frequencies in the spectra for different lattice depths V1, (see
figure 7.13). For each spectrum the area under the individual peaks has been determined (see
inset) and normalized to the area under all peaks of order U/h. The evaluation shows that
the spectrum narrows down to the frequencies Es/h and (E3 — 2F5)/h with the theoretical
weights cocles and ¢ c3es, respectively.

noise of experimental images might allow its identification.’

7.4.1. The quantum state at maximal collapse - a Schrédinger cat

In this excursion we refer to the time dependent coherent state 7.10 to keep the treatment
specific. In principle, all calculations can also be carried out with the general superposition
state [1h(t)) = 0%, ce™Ent/Mn) that also comprises number-squeezed states. At maximal
collapse the coherent state takes the form

CO. — | 2 - &n —imn(n—
[Ya(trev/2)) = 45 H> = g7lol*/2 Z ﬁe (n—1) /2]n> (7.42)
n=0 :

The phase factor exp(—i¢) with ¢ = 7n(n — 1)/2 assumes the value 1 for n = 4m and
n = 4m + 1 and the value —1 for n = 4m + 2 and n = 4m + 3, where m is an integer number
including zero. Therefore, we can decompose the sum into components with a relative phase
shift of 7:

4m+1

—laf?/2 Z

ey Z qdm+2 o
\/ (4m + 2 V(4m +3

°The ideas for this proposal have been sparked in discussions with Immanuel Bloch and Eugene Demler.

|¢coll —e

P (7.43)

\4m+2 \4m+3

169



7. Quantum phase revival spectroscopy and multi-body interactions

It is interesting to note that this state is not an eigenstate of the annihilation operator, but of the
annihilation operator applied twice,

aalyy = =y, (7.44)

which has crucial importance for the discussion of noise correlations at maximum collapse

in the next section. From the analysis of the Q-function we know that |1)<°!!) corresponds to

the superposition of two quasi-coherent states with a relative phase shift of 7. Therefore, we
coll

approximate [1)°") by the superposition

ety ~ jﬁ<|m> | - ia)) = [cat), (7.45)

where the states |ic) and | — i) are taken to be actual coherent states for simplicity. Using
this state the matter wave field amplitude vanishes exactly

(cat|a|cat) = % (a + a(—ialia) — a(ia| —ia) — a) =0, (7.46)

while (y<°!|ajypcol) > 0 generally has a small, but non-vanishing value. However, the Schro-
dinger cat state shares the important property

aalcat) = —a?|cat) (7.47)

with |¢°!1). In the following analysis, we restrict ourselves to using |cat) as it simplifies the
calculations. At the end of the discussion, we will specify the changes that may occur when
the accurate state |/ is used.

7.4.2. Detection via noise correlations

In an optical lattice, the cat state discussed above will ideally form at each lattice site. There-
fore, we assume the global many-body state to have the form

@ty = I Icat)s. (7.48)

We assume the system to have M lattice sites that are filled with /V atoms in total, resulting in
a mean on-site filling n = N/M.

At the time of the collapse, the density in momentum space n(k) = (n(k)), which is ob-
served in time-of-flight imaging, does not show a direct signature of the Schrédinger cat state.
Based on equation 7.24 we expect a density n(k, t;ey/2) = |w(k)|?>Mn. In order to identify a
unique feature of the Schrodinger cat, we analyze the correlated density in the following. It is
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theoretically described by

(10A(K)) = (51 ()05 (k) (K) 40

= 0(k — K) (¢ ()(k)) + (T (k)9 () (k)b (K)),
where the commutation relation [}[J(k), YT (K')] = 6(k—K') is applied in the last step to achieve
normal order. The term (¢)f(k)1)(k)) creates an autocorrelation peak which does not contain
any information on the structure of the many-body quantum state. Therefore, it will be omitted.
Using the transformation ¢ (k) = w(k) Y, a;e~*Ti, the correlated density can be expressed
in terms of on-site operators a;:

(W) () () (k) = o)) D et 8w (alaf aar).
ijkl
(7.50)
Taking the expectation value within the many-body Schrédinger cat state 7.48, a straightfor-

ward calculation yields the result

<dz&£&j&l> = (afaj)g@kfsﬂ + NN 040k + NiNg0i50k (7.51)
and the correlated density of the many-body Schrédinger cat takes the form
(W (k)9 ()P (k) b (K')) =

‘ ()’ |wk’ Ze—zk-i-k)(rj rz)OéOé +Ze—zkk (rr— rlnnk_i_znznk

ij
(7.52)

To understand the meaning of this formula, it is crucial to note that the positions of the lattice
sites form a regular, simple cubic array according to r; = (\ja/2)n;, where n; € 73 is a
three-dimensional vector with integer valued entries.

The second sum of equation 7.52 gives rise to the typical correlation signals that have been
observed in experiments analyzing a Mott insulator of bosons [148, 149]. The experimental
observable for these correlations is commonly defined as

J die(n(k ( d))
[ di(a(k))(n(k — d))

where d = k — k’ defines the difference of the momenta k and k’, which corresponds to the
distance of pixels in a time-of-flight image. Assuming identical and real valued coherent state

C(d) =

—1, (7.53)
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amplitudes a;; = o = o™ at each lattice site, we obtain

) — L JduPuk = P T, e Cedt ) 1 T il
oM [ dk|w(k)?|w(k — d)|2 e —
1 ide (et
~ er d(rp—ri) (7.54)
ik

The second line holds, because the rapid oscillations in the numerator average out the first term
to zero. This means the Schrodinger cat state is expected to show the same correlations that are
also observed for a bosonic Mott insulator [149], which therefore do not provide a distinctive
feature.

However, the unique property of the cat state is captured by the first term of equation 7.52.
This term can be detected by defining an anticorrelation function, in which the role of k' is
taken by —k’. As an appropriate experimental observable we propose

[ dk(i(n(d —k)
[ dk(i(k))(i(d —k))

which should allow to detect the exotic k/—k correlations of the Schrodinger cat state according
to

AC(d) = (7.55)

_ _ 1 fdk\w Hw(k d)\ Sae” i(2k—d)-(rp—r;)
A d - = id(rj—r;) L ik
0 Mzz-zje BT [ diw () Pw(k — d)?
1 o
~ qpae . (7.56)
ij

The anticorrelations defined here are expected to vanish for a bosonic Mott insulator. We
further note that a superfluid state is expected to neither show correlations C'(d) nor anticorre-
lations AC'(d).

The application of the anticorrelation function 7.55 on an actual experimental image neces-
sitates a delicate procedure. To obtain AC(d), the image n(k) needs to be correlated with
its point reflected counterpart n(—k) displaced by a relative distance d. The point reflection
must be centered on k = 0. In principle, the center of the image can be determined by fitting
the maximum of the envelope originating from the Wannier function |w(k)|?. Nevertheless, it
constitutes a critical step of the scheme because complications can arise from finite imaging
resolution or pixel size. It is important to note that each experimental image n (k) merely is
a single realization of the atomic density. Due to the atom shot noise present in the image, it
does not correspond to the expectation values used in the definitions 7.53 and 7.55. However,
the quantum mechanical expectation values can be derived by appropriately averaging over an
ensemble of independently acquired experimental images as described and argued in detail in
[148, 149, 153]

Finally, we note that the anticorrelations, that have been derived for an idealized cat state
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7.45 to simplify the calculation, are expected to emerge in the same way for the exact state
at maximum quantum collapse [1/<°!!). In the above derivation, the k/—k correlations arise

because the cat state fulfills aa|cat) = —a?|cat), while a|cat) # «|cat) at the same time.
Similarly, the exact maximally collapsed state has the properties aa|y!) = —a2[ypol)

and alyl) # alyel). Nevertheless, it remains an interesting open question whether the
Schrédinger cat can survive when the full multinomial wavefunction is used as the many-body
quantum state instead of the Gutzwiller-type product ansatz. This topic is currently being the-

oretically investigated [155, 258].

7.5. Excursion: Atom optical transformation of BECs in an optical lattice

In this brief section, we show that interesting physics can also arise when collapse and revival
dynamics happens in the presence of an underlying confinement. It turns out that a global
potential can be used as an atom optical element that imprints a locally varying phase on the
matter wave field, similar to the effect of a lens or a tailored phase mask on a light wave.
For example, this can enable the transformation of an initial condensate state into an exotic
condensate at ¢ = 0 with a non-trivial momentum distribution [259, 260].

In a theoretical treatment, an underlying potential can generally be incorporated by assigning
an energy offset ¢; to each lattice site i. Accordingly, the energy of a Fock state |n); at this
lattice site reads Eff) + ¢;n, and the global many-body state given in equation 7.19 for a lattice
with M occupied sites takes the more general form

M 0o
N ()
() = [T1ei(0)) with [ei()) =D eDelEntemtihn),. (1.57)
i=1 n=0
Employing the approximations used in section 7.2.2 (Eg) = F, and cg ) = ¢y, for all occupied
lattice sites ¢), a straightforward calculation yields the modified time dependent momentum
distribution as a generalization of equation 7.24

n(k, t) = [wk)* [ Ma+ [(a)t)]? ) e RtimrdemiaGet/h ) (7.58)
i#]

The quantum phase revival dynamics contained in |{a)(t)|?
an additional phase term e ~*(¢i —¢)*/" complements the interference term e
For the case of isotropic harmonic confinement, the local energy offset is proportional to the
squared distance of the lattice site from the trap center according to ¢; = mw?r?/2, where
w denotes the trap frequency of the global underlying confinement, r; = (Ajat/2)n; is the
position of lattice site ¢ and n; is a three-dimensional vector with integer entries. Additionally,
the local phase is a linear function of the evolution time ¢. Expressed in the language of optics,
this setting is analogous to a grating that is illuminated by a coherent light wave and directly
followed by a thin lens. A thin lens also creates a phase shift that depends quadratically on the

are given by equation 7.26, while
—zk(rJ—rZ)
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Figure 7.15.: Time evolution originating from underlying harmonic confinement; the dis-
played images are the raw data that entered the evaluation in figure 7.10. A fixed evolution time
to of about 2.5 ms was chosen coinciding with a strong quantum phase revival in a Vi = 40
E,¢c deep lattice. The horizontal trap frequency w /(27) was increased starting from slightly
negative values, corresponding to an anticonfining potential. At vanishing confinement, the
regular momentum pattern of a superfluid state appears, while more complex structures of the
momentum distribution arise for increasing confinement, indicating fractional rephasing, that
is higher-order Talbot fringes.
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distance from the lens center [74].

In the matter wave case, the "focal length" of this lens is inversely proportional to the evo-
lution time ¢. However, at times when (e; — €;)t is an integer multiple of 27 the lens does not
have an observable effect because all phase terms have the same value. For a typical harmonic
potential with w ~ 27 x 100 Hz, such a complete rephasing in the external potential occurs
after about 100 ms, while at certain intermediate times already fractional rephasing is expected
[260].'° By choosing a larger trap frequency w, this time scale can be significantly shortened.
Generally speaking, the time evolution due to an underlying potential is a coherent process
which induces dephasing and subsequent rephasing, but not necessarily decoherence. Practi-
cally, however, the time scale for rephasing may be so long that decoherence due to technical
reasons or atom loss precludes its observation.

We have observed the onset of the evolution that originates from the harmonic confinement,
as displayed in figure 7.15. In these data, a fixed observation time is chosen and the energy off-
sets €; are varied via the external potential. Within the given evolution time rephasing would be
expected for large enough compression. However, we merely observe indications for fractional
rephasings, which occur at smaller compressions. At larger compression the coherence of the
evolution is limited, probably due to anharmonicities of the trapping potential and a slight vari-
ation of the lattice depth across the extent of the atomic cloud. Additionally, effects arising
from finite time-of-flight expansion may play an important role [140].

Going beyond the case of harmonic confinement, equation 7.58 suggests an interesting pos-
sibility to manipulate the frozen-out condensate state in a deep optical lattice. Recent experi-
ments have shown that the engineering and projection of almost arbitrary potential landscapes
with resolutions on the order of the lattice spacing are within technical reach [142, 144, 264].
Using such experimental capabilities, it may be possible to transform the initial quantum state
into exotic nonequilibrium condensate states [260] by appropriately engineering the local en-
ergy offsets ¢;. We note that the quantum phase revival term |(a)(t)|? does not play an active
role in this transformation. The transformation is solely based on the evolution in the exter-
nal potential. However, the additional collapse and revival dynamics cannot be avoided as the
lattice has to be deep during the evolution in the external potential in order to avoid a spatial
redistribution of atoms. The quantum phase revivals effectively discretize the observation of
the evolution into time steps of .., as only the fully revived state can form a condensate.

7.6. Conclusion and Outlook

The conclusion of this chapter is two-fold: First, a new type of spectroscopy has been developed
that allows for the precise measurement of the energy of atom number states on an absolute
energy scale. Second, the application of this novel technique has revealed that the energies of
Fock states on the sites of an optical lattice can generally not be understood within a single-
orbital framework. Instead multi-orbital effects give rise to effective multi-body interactions.

10please note the similarity to the Talbot effect [261], that is the self-imaging of waves in the near-field (Fresnel)
diffraction pattern of a grating [74, 262]. The fractional rephasing is analogous to higher-order Talbot fringes
[263].
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The novel method of quantum phase revival spectroscopy is deeply rooted in the laws of
quantum mechanics. By making use of the delocalization of atoms in an optical lattice and
nonequilibrium quantum dynamics induced by an interaction quench, the individual energies
of atom number states are converted into frequencies. These are observed in the resulting col-
lapse and revival dynamics. In order to distinguish the individual frequencies, a high spectral
resolution is needed which requires a long coherence time of the dynamics. The latter is exper-
imentally achieved through the accurate control and cancellation of the underlying confining
potential using the combination of a blue-detuned optical lattice and a red-detuned dipole trap.
Quantum phase revival dynamics in a multi-orbital system not only distinguishes individual
Fock states by their energies [145], but additionally allows to obtain information on the atom
number statistics based on the spectral weight of the measured frequencies. In recently de-
veloped experimental setups with single-site and single-atom resolution [142-144, 197], the
atom number statistics in an optical lattice can be accessed more directly. However, quantum
phase revival spectroscopy forms a unique probe of delocalization and quantum superposition
that can prove exceptionally helpful in the identification and analysis of complex, delocalized
quantum phases [265].

Our precision measurement has strikingly revealed the importance of multi-orbital physics
in optical lattices. While the single-orbital Bose-Hubbard model predicts energies that are
integer multiples of the interaction parameter U, we have observed characteristic, renormal-
ized energies for each Fock state as interactions promote particles to excited orbitals. The
comparison of our experimental data to an exact diagonalization including excited orbitals has
yielded excellent agreement. In a field theoretical approach, the energies of Fock states can be
expressed by an effective single-band Hamiltonian that includes a series of multi-body interac-
tions as higher-order corrections to the usual two-body contact interaction. We have extracted
the strength of the effective three- and four-body interactions from our data, showing that the
higher-order contributions are significant in leading orders and converge quickly at high orders.
It is an intriguing prospect to use the multi-body interactions demonstrated here for the simu-
lation of effective field theories. In particular, by making use of a Feshbach resonance, it might
be possible to study the breakdown of the low energy limit of a field theory when interactions
get strong or to test the Gell-Mann and Low theorem describing the evolution of eigenstates
when adiabatically switching from noninteracting to interacting eigenstates [54, 266]. Taking a
glance beyond single lattice sites, very recent studies have shown that multi-body interactions
can have significant impact on the many-body physics of lattice quantum gases [246, 267];
multi-body interactions might help in realizing novel strongly correlated quantum phases, for
example with topological order [213] or exotic ground-state properties [214]. Finally, quantum
phase revivals may not only be used for the detection of effective, but also intrinsic multi-
body interactions, which might be present or enhanced in the vicinity of Feshbach or Efimov
resonances [12].

The methods and measurements presented in this chapter make an important contribution to a
detailed understanding of the Hamiltonians that are actually realized in optical lattice systems.
The precise knowledge of interactions is a crucial input for the comparison of lattice-based
quantum simulators with many-body quantum theory. It is important in quantum computa-
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tion schemes that implement gate operations via coherent interatomic collisions [268, 269], as
well as in experiments that work towards the interaction-induced dynamical creation of spin-
squeezed or Schrodinger cat states with ultracold atoms [254, 270]. The renormalization of
lattice parameters due to interatomic interactions has been found to have a crucial role in com-
plex quantum systems such as Bose-Fermi mixtures [271]. We will discuss this case in chapters
8 and 9. Besides understanding atom number dependent interaction parameters, it is equally
important to elucidate the renormalization of the tunnel parameters in future investigations
[246, 272, 273].
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8. Interacting mixtures of bosons and fermions in optical
lattice potentials

In the context of real solid state materials, it is a crucial question to what extent impurities influ-
ence quantum phases and phase transitions. This question is so important, because impurities
can hardly be avoided in real systems and have an impact on many-body quantum phases that
is complex and often not well understood. For example, high-temperature superconductivity is
observed in materials that are intentionally doped with certain impurity atoms, but their exact
role in the mechanism responsible for superconductivity is still not settled [40]. Experimental
input on the effect of impurities is highly sought-after and ultracold atoms in optical lattice po-
tentials seem to be an ideal model system, offering the possibility to introduce impurities, for
example interacting fermions, into an otherwise almost defect free quantum system, for exam-
ple a bosonic Mott insulator. When Bose-Fermi mixtures in optical lattice potentials became
experimentally available, pioneering investigations addressed the coherence properties of the
bosons in the presence of interacting fermions [99, 100]. Those studies raised the question, in
which way the fermions influence the superfluid to Mott insulator transition that had so far only
been observed in purely bosonic systems [28]. It was found that in the presence of fermions
the Mott insulating phase was entered already at lower lattice depth, in contrast to the common
theoretical expectations [274, 275]. However, the interpretation of the data in the early exper-
iments [99, 100] remained vague, because the interaction between the bosonic and fermionic
atoms was fixed at the fairly large attractive background scattering length of agr ~ —189 ag
[104]. The only tunable parameter was the fermionic filling.

In this chapter I report on a refined study on the role of interspecies interactions in a quantum
degenerate mixture of bosonic 8"Rb and fermionic “°K in a 3D optical lattice [271]. For attrac-
tive interspecies interactions a pronounced modification of the bosonic coherence properties is
identified, which appears as a marked shift of the superfluid to Mott insulator transition towards
lower lattice depths. However, for repulsive interactions the coherence of the bosonic compo-
nent is essentially unaffected, being compatible with phase separation that already sets in at
rather weak repulsion. The theoretical analysis reveals that our data for attractive interactions
can be qualitatively understood in terms of Bose-Hubbard parameters that are renormalized by
interspecies interactions owing to the presence of higher lattice bands. The indirect evidence
for renormalized Hubbard parameters obtained here has motivated the measurements reported
in chapter 9 that provide a quantitative confirmation. A thorough discussion of the experiments
and results presented in this chapter is also given in the PhD thesis of Thorsten Best [92]. Here
the most important aspects are summarized in view of chapter 9.
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8. Interacting mixtures of bosons and fermions in optical lattice potentials

Figure 8.1.: Illustration of the matrix elements of the Bose-Fermi Hubbard model (see text).

8.1. Theoretical framework: Bose-Fermi Hubbard model

We consider a mixture of bosonic 8’Rb and fermionic 4°K atoms loaded in an optical lattice
with both species being prepared in a single spin state. Interactions among the spin polar-
ized fermions are suppressed, while interactions among the bosons and between bosons and
fermions must be considered.

It is convenient to think of this system within the framework of the single-band Bose-Fermi
Hubbard model [46, 276, 277]:

BB

g _ BN ata PN ata U s BF 3™ i

H=-J (E- A)aiaJ—J (E‘ A>cic]+T E ni(ni — 1)+ U ' M, 8.1
i, 0] i i

where a; (¢;) denotes the bosonic (fermionic) annihilation operator and n; = dldi (m; = éjéi)
the bosonic (fermionic) atom number operators, respectively. The bosonic (fermionic) tunnel-
ing parameters J® (J) and the Bose-Bose interaction energy UPP are defined as discussed in
chapter 3 (see figure 8.1). The Bose-Fermi interaction energy is given by

_ 27T7"l2a]3p

UBF / dr |wg(r)|? |wg(r) %, (8.2)

HBF
where apr is the interspecies s-wave scattering length, ugpr = mpmpg/(mp+my) the reduced
mass of the colliding boson-fermion pair and wg(r) (wr(r)) the bosonic (fermionic) Wannier
function at a lattice site. Generally, also energy offsets e? and ef of each lattice site ¢ (for
example, due to an external trapping potential) must be taken into account, but are omitted
here for simplicity.

Based on the single-band model 8.1 a variety of quantum phases have been predicted, in-
cluding charge density waves, spin-density waves [278], polaronic quasiparticles [48, 51] and
perturbed Mott insulating states [279, 280]. In limited parameter regimes even more exotic
phases are expected, such as superfluids formed by the correlated or anticorrelated flow of
composite quasiparticles (for example a fermion plus a bosonic hole) [281] and supersolid
phases [49, 282]. The prospect of realizing a supersolid phase with ultracold atoms is particu-
larly exciting, as the possible observation of supersolidity in cold Helium systems is still heav-
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Figure 8.2.: Experimental sequence to adiabatically load a Bose-Fermi mixture into a 3D op-
tical lattice. Measurements are performed at various magnetic fields, corresponding to various
interspecies scattering length app, and lattice depths ranging from 2 to 17 Elc.

ily debated [283, 284]. Extensions of the above Hamiltonian that consider a two-component
fermionic spin-mixture instead of spin-polarized fermions, have led to the prediction of en-
hanced fermion-fermion interactions mediated by Bose-Fermi interactions, which in turn may
give rise to superfluidity at high transition temperatures [285]. The direct experimental obser-
vation of mediated interactions is reported in chapter 9 [286].

For single component lattice quantum gases, such as the ones discussed in chapters 6 and
7, the description in terms of a single-band Hubbard model can capture the main physical ef-
fects in broad parameter ranges of experimental relevance [109]. In contrast, the experimental
studies on Bose-Fermi mixtures conducted so far [99, 100] and in particular the data presented
in this chapter [271] strongly suggest, that physics beyond the single-band Bose-Fermi Hub-
bard model must be considered in a realistic description. The interplay of two atomic species
enhances the roles of multi-band [242] and finite temperature effects [287] as well as physical
loss channels. Numerous theoretical investigations are directed towards a better understanding
of these effects [252, 274, 288-291].

8.2. Experimental realization

The experimental sequence aims at the adiabatic preparation of an interacting mixture of
bosonic 8’Rb and fermionic “°K in a three-dimensional optical lattice (see figure 8.2). Our
starting point is a quantum degenerate mixture of Ng = 4 x 10° rubidium and up to Np =
3 x 10° potassium atoms in their respective hyperfine ground states |F, mg) = |1,+1) and
|9/2,—-9/2), which is created by the experimental sequence outlined in chapter 5. The mixture
is stored in a crossed dipole trap (Agip, = 1030 nm) formed by elliptical laser beams to provide
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8. Interacting mixtures of bosons and fermions in optical lattice potentials

tight vertical confinement for good interspecies overlap in the presence of gravity (see section
5.3).

After the preparation of the mixture, a homogeneous magnetic field is used to address the
interspecies Feshbach resonance at Byes = 546.75 G, which has a width of 3.1 G [103, 104]
(see section 2.3.5). This allows us to tune the interspecies scattering length agr between —170
agp and +800 ag below the resonance and between —800 ag and —200 ag above the resonance.
The accuracy of the interspecies scattering length apr is determined by the magnetic field
stability and strongly varies depending on the distance from the resonance position. In the
parameter regimes of the measurements presented here, we reach an accuracy of £20 aq close
to and £0.1 ag far away from the resonance.

After 50 ms of settling time for the magnetic field, a 3D optical lattice is slowly ramped up
within 100 ms to final depths ranging between Vj,; = 2 to 17 Eye.. Different from all other
experiments reported in this thesis, the lattice wavelength used here is A,y = 755 nm. At
this "magic" wavelength the lattice depth, measured in units of the respective recoil energies
EIEL;F = h? / (2mB7p)\12&t), is equal for both species (see section 5.4). Therefore the shape of the
on-site Wannier functions is identical for 8’Rb and °K, which ensures maximum overlap of
the wavefunctions, while the tunneling rate of the bosons is slower compared to the fermions
by a factor mp/mp, which is the mass ratio. The harmonic anti-confinement of the blue-
detuned optical lattice is compensated using the dipole trap, which is kept at a constant intensity
irrespective of the lattice depth. Therefore the effective horizontal and vertical trap frequencies
slightly depend on Vi,¢: At 2 E.. they are 27 x (32,113) Hz for 8’Rb and 27 x (44,194) Hz
for “9K; at 17 Fie. they are 27 x (28, 112) Hz for 3’Rb and 27 x (31, 191) Hz for “°K.

The mixture is held in the lattice for 100 ms, which is long compared to the tunneling time for
all lattice depths used in the measurements and therefore should ensure the formation of a fully
equilibrated sample. Then all traps as well as the magnetic field are instantaneously switched
off and both the bosonic and the fermionic atom clouds undergo 18 ms of time-of-flight (TOF)
expansion. The interference pattern of the 8’Rb atoms is recorded using absorption imaging.'
From these images the interference contrast is extracted in terms of the visibility [147],

Nmax - Nmin

V= Nmax + Nmin’

(8.3)
where Ny ax denotes the total atom number in the four boxes around the first-order interference
peaks and Ny, the total atom number in the boxes that are rotated by 45 degree (see figure
8.3a). The visibility is a robust experimental measure for macroscopic phase coherence and is
discussed in detail in chapter 4. In addition, we determine the condensate fraction [292]: After
fitting and subtracting a broad Gaussian background, which corresponds to the Fourier trans-
form of the on-site wavefunctions, the eight first-order diffraction peaks as well as the central
peak are fitted by anisotropic two-dimensional bimodal Gaussians. We define the condensate
fraction as the number of atoms in the narrow feature of the bimodal Gaussians divided by the

!Also the fermionic clouds are imaged to monitor the atom number. However, apart from counting the fermion
number those images are not further evaluated.
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Figure 8.3.: (a) Time-of-flight images of the bosonic component of an interacting Bose-Fermi
mixture in a Viyy = 9 Elec deep lattice. The influence of interspecies interactions on the bosonic
interference pattern is shown in four exemplary images ranging from strong attraction to strong
repulsion. The visibility (see equation 8.3) is used to quantitatively measure the contrast of the
patterns. (b) The visibility of the bosonic component in mixtures with about Ng = 4 x 10°
87Rb and Nr = 3 x 10° “OK atoms is shown as a function of the lattice depth Vi, and the
interspecies scattering length agp. The lattice depth in units of the respective recoil energy is
identical for the bosonic and the fermionic component (A = 755 nm).

total atom number.

8.2.1. Analyzing the visibility

We probe the coherence of the bosonic component at various lattice depths and several inter-
species interactions. Three fermion numbers are chosen ranging from low (Ny =~ 0.25Np)
over intermediate (N = 0.5/Np) to high (N ~ 0.75Np) in order to identify possible effects
of the fermionic filling. The visibility analysis for the complete data set at high Np is shown
in figure 8.3b. Cuts of this plot at several fixed lattice depths are displayed in figure 8.4 to
illustrate the details.

For shallow lattices of less than 3 E\.. we find a high visibility, which stays at an almost
constant level independent of the interspecies interaction strength. At apr ~ 0 we observe a
monotonic decay of the visibility versus lattice depth compatible with the superfluid to Mott
insulator transition in a purely bosonic ®'Rb sample [147]. This is quantitatively supported
in figure 8.4 by comparison to the gray shaded lines and shows that the fermion cloud can
experimentally be tuned to full transparency for the bosons.

For small values of agr between about +30 ag we observe a symmetrical decrease of vis-
ibility that appears to be centered around apr ~ 0 within our measurement accuracy (lower
inset of figure 8.4). Initially, it has been suggested that this symmetry could be explained by
a particle-hole transformation of the fermionic operators ¢; — (—1)’63, which changes the
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Figure 8.4.: Visibility versus interspecies scattering length at four lattice depths ranging from
3 FEiec to 12 Epec for high fermion number (Np = 3 X 10%). The cuts are taken from the
full data set shown in figure 8.3b. At lattice depths larger than 3 E\¢. the visibility shows a
maximum at a position, which is consistent with agr ~ 0 (indicated by the arrow) given the
experimental uncertainties. The blue diamonds (red circles) indicate points measured above
(below) resonance, as shown in the upper inset. The gray shaded horizontal lines represent the
visibility in a purely bosonic 87Rb cloud measured for the same experimental parameters.
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sign of the Bose-Fermi interaction UPY — —UBF in the Bose-Fermi Hubbard model 8.1.
However, strictly speaking particle-hole symmetry only exists at half fermionic filling in a
homogeneous system [278]. Given the experimental robustness of the feature being rather in-
sensitive to changes of the fermion number, particle-hole symmetry can probably not explain
our observation. Recent theoretical studies employing Hartree-Fock mean field theory [290]
and dynamical mean field theory (DMFT) [291] strongly suggest that an intricate interplay
between interspecies interactions, finite temperature and underlying harmonic confinement ex-
plains the observed behavior in the regime of small agr. These studies show that Bose-Fermi
interactions lead to a redistribution of atoms in the underlying harmonic trap similar to the
situation without lattice discussed in section 2.1.5. The redistribution goes along with an ef-
fective reduction of the size of the available Hilbert space in close analogy to our observations
in attractively interacting Fermi-Fermi mixtures in a 3D optical lattice (see section 6.3 and
[122]). When bosons and fermions interact attractively, they have a strong tendency to occupy
the same lattice sites, while avoiding each other for repulsive interactions. Assuming that the
total entropy of the Bose-Fermi system stays at a constant value during the lattice loading, the
reduced Hilbert space induces an increase of the absolute temperature, that entails a significant
reduction of the bosonic coherence.

Towards both sides of the symmetry peak we observe a further decay of visibility, which
is significantly stronger for intermediate attractive than for comparable repulsive scattering
lengths. Therefore, we conjecture a fundamental difference in the underlying mechanisms on
either side. The behavior near the attractive background scattering length agg = —189 ag
is compatible with previous experimental observations [99, 100]. At even stronger attractions
(apr < —300 ag), we find a significant loss of 8’Rb atoms, which interestingly is accompanied
by an increase of visibility. This regime is discussed in the next section in more detail.

For strong repulsion, the visibility remains almost constant on a high level, slightly below
the maximal value for agr =~ 0. This indicates that bosons and fermions do not occupy the
same lattice sites in this regime. On the one hand, for moderately repulsive interactions this
behavior would be compatible with a local separation of the species as it would occur in anti-
correlated mixed phases [293] or in a supersolid [49, 282]. On the other hand, it could simply
hint at global phase separation [278, 291]. It is hard to distinguish between the two scenarios
experimentally, as only simultaneous high resolution images of the local bosonic and fermionic
occupation would provide a definite answer. Nevertheless, under the current conditions global
phase separation seems to be the more likely scenario, being promoted by the slightly different
trap shapes for the two species in the presence of gravity (see section 5.3.1). For agr > 400 ag
we observe very strong atom losses that are essentially independent of the hold time, suggesting
that they occur early during lattice loading. In this regime the mixture is held closely below
the Feshbach resonance, where the highest lying molecular level has a very low binding energy
(see section 2.3). Heteronuclear three-body processes are likely to efficiently populate the
molecular state forming a strong loss channel.

It is an important question, whether the Bose-Fermi systems prepared here are in thermal
equilibrium. We have checked this by probing the reversibility of the initial thermodynamical
change of state. To this end we slowly tune the interspecies scattering length to zero after the
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Figure 8.5.: Critical interspecies scattering lengths for the loss dominated regime at attractive
interactions. The experimentally observed loss feature of 87Rb atoms (a) is accompanied by
a simultaneous minimum in the visibility versus interspecies interaction (b), shown here for
Viat = 9 Frec and Ny = 2 x 10° fermions. (c¢) The critical interspecies interactions obtained
from bilinear fits to the visibility data are shown as a function of lattice depth. Darker colors
indicate higher fermion numbers Np. The gray shaded area shows a theoretical estimate of
the scattering length, at which bosonic three-body losses become relevant on the scale of the
experimental hold time (see main text). The inset shows a typical time-of-flight image in the
loss-dominated regime with increased visibility (Viy; = 11 Eyec and agr = —480 ag).

mixture has been prepared at a certain value of apr. Provided that enough time is given for
re-equilibration, we detect at least partial reversibility of the initial visibility decrease in the
range —200 ag < agr < 400 ag, which coincides with the regime of no or minor atom losses.
This suggests that the reduction of coherence in the given range of interactions is caused by an
adiabatic change of state, a reversible redistribution of atoms during lattice loading.

Based on the above observations, we qualitatively identify five distinct regimes: First, loss-
less coexistence in shallow lattices for all scattering lengths. For deeper lattices there are fur-
ther regimes characterized by very strong interspecies attraction, intermediate attraction, weak
interaction of either sign and strong repulsion. This classification also holds for the low and in-
termediate values of N, although the symmetric feature around apr ~ 0 is most pronounced
for the highest °K numbers.

8.2.2. Attractive interactions and on-site collapse

As described above, we observe significant losses of 8”Rb accompanied by an increase of visi-
bility for interspecies attraction beyond a critical value as shown in figure 8.5a and b. However,
we note that this increase of visibility does not go along with sharp diffraction peaks in the
time-of-flight images that would be expected for an actual condensate (see inset of figure 8.5¢).
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Nevertheless, we use the minimum in the visibility to obtain the critical value for the onset
of the loss regime. A bilinear model is fitted to the relevant part of the visibility profiles to
determine the minimum quantitatively. In figure 8.5c the resulting critical scattering lengths
are plotted versus lattice depth, including data for all fermion numbers Ny. The critical values
appear to be independent of N, which suggests that the visibility increase at strong attractions
is dominantly governed by the on-site physics.

The enhancement of losses is probably caused by the accumulation of bosonic and fermionic
density at the lattice sites. On the one hand, the attractive interspecies interactions enforce an
increased bosonic occupation on sites that are occupied by a fermion. On the other hand,
interaction-induced narrowing of the bosonic and fermionic on-site wavefunctions due to the
admixture of higher bands gives rise to an increased peak density. This is in analogy to the
modification of on-site wavefunctions observed in chapter 7 for purely bosonic samples. A
theoretical treatment of the Bose-Fermi case with attractive interactions is provided in [242].
These two effects are likely to lead to a significant increase in the three-body loss rate.

Variational model

We employ a variational harmonic oscillator model (see chapter 9 for a detailed description) to
estimate the losses that are caused by the enhanced peak density of the on-site wavefunctions.
Within this model we minimize the total on-site energy with respect to the widths op and op
of the bosonic and fermionic Gaussian density profiles for given lattice depth 1},¢, occupation
numbers and interspecies interaction apr. We find that for all experimentally relevant boson
numbers (0 < n < 5), the on-site wavefunctions collapse when a sufficiently strong attraction
apr 1s chosen; the "optimized" widths o and o approach zero. However, already the density
increase in the vicinity of this collapse gives rise to an enhancement of the bosonic three-body
loss rate N3 due to the Ny o a§6 scaling. As a practical assumption, we can consider a
site lost when N37 > 1, where 7 = 100 ms is the experimental hold time in the lattice.
In bulk measurements the three-body loss coefficient for 8"Rb has been measured to lie in
the range 5.8(1.9) x 1073% cmS/s [294]. Assuming that this value is also applicable in the
tightly confining potential of a single lattice well, occupations with more than three bosons are
expected to be lost on time scales faster than our experimental hold time even in the absence of
fermions. On the other hand, we find a ratio of lost 3'Rb to “°K atoms between three and four,
which suggests that three-body losses of two bosons together with one fermion do not play a
major role in our system in accordance with the observations in reference [99]. Consequently,
we focus our attention on sites occupied by three bosons and one fermion. For this case we use
our variational model to derive the critical scattering lengths for bosonic three-body losses at
which N37 = 1. The results agree surprisingly well with the experimentally observed onset of
the loss dominated regime (see figure 8.5c¢).

We conclude that for strong attraction the dominant process is the loss of highly occupied
sites due to the interaction-induced enhancement of the bosonic on-site density [242, 295].
The reason for the associated increase of visibility may be found in the removal of strongly
localized atoms on highly occupied sites from the system. This might cause an enhanced
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Figure 8.6.: Shift of the Mott insulator transition as a function of interspecies interaction. The
orange diamonds (blue circles) represent the experimental runs at Np = 2 X 10° = Np /2
(Np = 3 x 10° = 3Ng/4). The error bars include the fit uncertainty and the average over
typically two experimental runs. The lines show theoretical results for the transition point as
obtained by the variational model for n = 1 (solid gray line) as well as exact diagonalization
for Mott shells with n = 1 (solid green line) and n = 2 (solid red line) bosons. For agr > 0
the solid lines correspond to a phase separation scenario, while the dashed lines would corre-
spond to a scenario, in which bosons and fermions occupy the same sites. The inset shows the
behavior of the condensate fraction at apr = —295 ag (black points) and apr = 4235 ag
(green points) at Np = 2 x 10°. The black solid lines show bilinear fits to the data. The kink

determines the respective critical lattice depth Vlg?t corresponding to the transition point.

bosonic mobility due to defects and local incommensurability. The incoherent background in
the time-of-flight images is simply reduced, giving rise to a better contrast of the interference
pattern.

8.2.3. Measuring the shift of the Mott transition

In order to investigate the stability of bosonic superfluidity in the mixture, we determine the
condensate fraction of the recorded time-of-flight images as described above. Compared to the
visibility, the condensate fraction allows for a clearer quantitative determination of the transi-
tion point between the superfluid and the Mott insulating phase showing an abrupt increase.
For all scattering lengths apy and all fermion numbers, we find the condensate fraction to de-
cay monotonically towards zero when the lattice depth is increased. The critical lattice depth
Vlg’git at which the condensate fraction vanishes is regarded as the transition point. It is the kink
position of a bilinear fit model as illustrated in the inset of figure 8.6.
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Figure 8.7.: Self-consistent calculation of the deformation of on-site orbitals induced by at-
tractive interactions. Starting with a single fermion at a lattice site, an added boson feels an
attractive mean-field potential. This narrows the bosonic on-site wavefunction compared to
the noninteracting case. In turn, also the fermionic wavefunction becomes narrower. The
wavefunction deformation eventually gives rise to renormalized interaction strengths U,]i]f’ and
tunneling parameters JE 1- The procedure is repeated until convergence, see also reference
[252].

The critical lattice depth depends sensitively on the interspecies interaction strength, while a
difference between medium and high fermion numbers N = Np/2 and Ny = 3Ny /4 cannot
be discerned (see figure 8.6).> The transition point shows a significant shift by up to 10 Eyec
towards lower lattice depths for strong attractive interactions. In this regime, we expect the
bosons to move on top of an essentially homogeneous fermion background with filling one,
corresponding to a band insulator. This scenario is confirmed by recent theoretical investi-
gations [291] and supported by the experimental observation of enhanced fermionic filling at
attractive interspecies interactions [286] (see chapter 9). The underlying carpet of fermions
forms an attractive potential for the bosons that adds to the depth of the lattice potential. This
effective deepening of the lattice sites modifies the bosonic tunneling .J® and the Bose-Bose
interaction strength UBP promoting the superfluid to Mott insulator transition towards lower
lattice depths.

Figure 8.6 shows that the transition shift via renormalized Hubbard parameters is quantita-
tively supported by numerical calculations that have been carried out by Dirk-Séren Lithmann
at the University of Hamburg [238, 271]. The exact diagonalization of an on-site multi-orbital
system filled with a fermion (m = 1) and n bosons yields modified on-site wavefunctions
that are used to calculate the renormalized interaction energy (see figure 8.7). The corre-
sponding renormalized tunneling parameter is deduced from a band structure calculation at the

*For low Ng = Np /4 the assumption of a homogeneous fermion filling is probably not valid. Here, the decrease
of the condensate fraction shows a more complex behavior that cannot be captured by our bilinear fit model.
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Figure 8.8.: Double well model illustrating the accumulation of bosons on a homogeneous
fermionic background. Blue (red) balls indicate bosons (fermions).

interaction-induced effective lattice depth experienced by the bosons. It is known from accurate
Monte-Carlo simulations that the Mott transition of the n = 1 (n = 2) shell in a homogeneous
three-dimensional lattice happens at a critical ratio UBB/JB = 29.36 (UBB/JB = 49.86)
[111]. Using this result, the theoretical critical lattice depth for a given interspecies interaction
is obtained when the renormalized Hubbard parameters reach the critical ratio UBB /JB for the
Mott transition. The such derived critical lattice depths are shown in figure 8.6 both for the
n = 1 (green line) and the n = 2 (red line) shell.

The general agreement between theoretical and experimental data is remarkably good. At
around apr ~ 0 the experimental data lies slightly below the theoretical prediction for n = 1,
which indicates a systematic deviation between the kink position of the bilinear fit and the
theoretical transition point. Furthermore, finite size effects and other experimental uncertainties
(for example, the calibration of the lattice depth) might play a role. For interspecies scattering
lengths in the range —250 ag < apr < 0 ag the experimental data tends to agree better with
the n = 1 theory (green solid line), while for stronger attraction exceptional agreement with
the theory for n = 2 is found (red solid line). This brings us to the conjecture that the bosonic
filling smoothly changes from one to two, when the interspecies attraction is increased. A
double well model system with renormalized interaction parameters can be used to illustrate the
interaction-induced redistribution of bosons on top of a homogeneous fermionic background.
The accumulation process depicted in figure 8.8 can occur, if

U + 205" —2UPF <0, (8.4)

where U}?ﬁl and UBY denote the renormalized Bose-Bose and Bose-Fermi interaction strengths
for n bosons and m fermions. We note that this process is forbidden within the single-band
Bose-Fermi Hubbard model, where the left hand side equals to UB, independent of the filling
and larger than zero for repulsive Bose-Bose interactions. In contrast, exact diagonalization of
the multi-orbital system predicts that the redistribution is energetically favored for apr < —200
ap almost independent of the lattice depth [238]. This is consistent with the data of figure 8.6,

where the experiment follows the n = 2 theory below apr ~ —250 ay.

For repulsive interspecies interactions the model outlined here predicts a shift of the super-
fluid to Mott insulator transition towards deeper lattices, given the bosons move on a homoge-
neous background of fermions with filling one. However, analogous to the constant visibility
for positive scattering lengths agr observed in figure 8.4, a variation of the transition point
as a function of the interspecies interactions is not observed on the repulsive side. This again
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indicates that bosons and fermions do not occupy the same lattice sites in this regime. Re-
cent studies on Bose-Fermi mixtures of ytterbium atoms provide similar evidence for a strong
tendency to phase separation for repulsive interspecies interactions [296].

8.3. Conclusions and Outlook

In this chapter we have analyzed the coherence properties of the bosonic component in a Bose-
Fermi mixture of 8’Rb and “°K in an optical lattice. For attractive interspecies interactions
we have found a significant shift of the bosonic superfluid to Mott insulator transition towards
lower lattice depth. The remarkable agreement of the data with a numerical exact diagonaliza-
tion of a multi-orbital system suggests that this shift can be attributed to renormalized tunneling
and interaction parameters of an effective Hubbard model. On the side of repulsive interspecies
interactions, we interpret the absence of a shift of the transition point as a signature for local or
global phase separation between the bosonic and fermionic components. Additionally, we have
observed that the fermions are fully transparent to the bosons at agr = 0, which is a promising
starting point for tunable impurities [50, 293, 297]. In the vicinity (about £30 ag) of vanishing
interspecies interactions, we find a symmetric decay of visibility in the bosonic interference
patterns. Recent theoretical investigations have explained this phenomenon in terms of an en-
tropy redistribution arising from the interplay of interspecies interactions, finite temperature
and finite system size [290, 291].

It is an important message of this chapter that the application of a single-band Hamiltonian is
not sufficient to deduce and understand the complex many-body system of interacting bosons
and fermions in an optical lattice. Interactions bring multi-band effects into play, which can
lead to a significant renormalization of interaction and tunneling parameters [242, 289, 298].
Additionally, the finite entropy situation in this closed quantum system can give rise to adia-
batic heating or cooling effects [274, 287, 288] as well as an involved redistribution of atoms.
The detailed investigation of these effects will be a worthwhile challenge and help to identify
regimes, in which intriguing quantum phases, such as charge density waves [48, 282], com-
posite particles [46] and supersolidity [49, 282, 299-301], can be realized and observed. In
the next chapter we make use of quantum phase revival spectroscopy (see chapter 7) to explore
interaction effects of few-body Bose-Fermi systems on individual lattice sites.
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9. Coherent interaction of a single fermion with a small
bosonic field

Multi-component systems play a central role in quantum many-body physics. From interacting
atoms and photons to electrons and phonons, the interplay of interactions in binary mixtures
gives rise to intriguing quantum phenomena such as superradiance, BCS superfluidity or po-
laron physics [51, 302-304]. Recently, the problem of impurities embedded in an external
quantum environment has also shifted into the focus of ultracold atom experiments. For exam-
ple, fermionic spin impurities in a Fermi sea have lead to the observation of a Fermi polaron
[305, 306] and the interactions between a single ion and a Bose-Einstein condensate have been
studied [307, 308]. When such impurity systems are scaled down to the few-body regime, they
can share important properties with models for atomic nuclei [52].

In this chapter, I present the experimental study of an elementary few-body system consisting
of a single fermionic atom and a coherent field of bosonic atoms. So far, research on Bose-
Fermi mixtures in optical lattices has mainly focussed on the coherence properties of the global
quantum many-body state [99, 100, 271, 276] (see chapter 8). In the present chapter, the local
properties of miniature Bose-Fermi systems on individual lattice sites are investigated. Using
quantum phase revival spectroscopy (see chapter 7), the absolute strengths of intra- and inter-
species interactions are precisely measured as a function of the interspecies scattering length,
tuned by means of a Feshbach resonance (see section 2.3). Already moderate Bose-Fermi in-
teractions give rise to notable changes of the on-site wavefunctions, which are observed as
modifications of the Bose-Bose interaction energy [220, 240, 242, 244-246]. This is a direct
confirmation of the renormalization of Hubbard parameters that is indirectly deduced in chap-
ter 8. Furthermore, in the context of our investigations, a novel method is devised that allows
to selectively infer the mean fermionic filling within the volume, in which bosons and fermions
overlap.

9.1. Theoretical model

We start with a basic theoretical model for the quantum state relevant to this chapter and its
dynamics (see appendix E for additional details). We consider a delocalized Bose-Fermi mix-
ture in a shallow optical lattice. Then, the lattice depth is rapidly increased, suppressing both
bosonic and fermionic tunneling (J2, J¥ — 0) and freezing out the delocalized atom distri-
butions of bosons and fermions. In this setting, the eigenstates at a lattice site are given by
product atom number states |n)|m), containing n bosons (where n is an integer number) and
m fermions (where m is either O or 1) (see figure 9.1). We denote the respective eigenenergies
by E, . For a delocalized mixture, both the bosonic and fermionic component show num-
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Figure 9.1.: Few-body on-site states of a delocalized Bose-Fermi mixture. (a) In a shallow
optical lattice both the bosonic and the fermionic species are delocalized and show atom num-
ber fluctuations. The cartoon picture displays a possible result of a projection measurement
assuming an average fermionic filling of m = 0.5. Blue (red) balls indicate bosons (fermions).
(b) The local quantum state at a lattice site corresponds to coherent superpositions of bosonic
atom number states with and without a fermion with eigenenergies F,, ,, (see main text).

(@)

ber fluctuations and the corresponding on-site quantum states can be described as a coherent
superposition of bosonic atom number states both in the absence (m = 0) and the presence
(m = 1) of a fermion. We model the time evolution at a lattice site as a superposition of phase
evolutions with and without a fermion, which are governed by the eigenenergies £, o and E), 1,

() = Y cne Fro M n)|0) + dyem Pt Min) 1), 9.1)

n=0

Here, ¢, and d,, denote the probability amplitudes of finding n bosons without (/m = 0) and
with (m = 1) a fermion, respectively.

Within the single-band Bose-Fermi Hubbard model [276] (compare section 8.1) the eigenen-

ergies are given by
BB

Enm = UT nin—1)+ UBF nm. 9.2)

Here, the Bose-Bose interaction energy, UPE o app [d®r |¢p(r)|*, and the Bose-Fermi
interaction energy, UBY oc apr [ d®r |¢5(r)|?|¢r(r)|?, are independent of the bosonic and
fermionic atom numbers n and m since the model is restricted to the lowest lattice band; agp
(apr) denotes the intraspecies (interspecies) scattering length and ¢ (r) (¢r(r)) the bosonic
(fermionic) ground state orbital at a lattice site. While essential features of the resulting quan-
tum dynamics are captured by this single-orbital model, the experimentally observed dynam-
ics contain signatures that can only be explained within a multi-orbital approach. Here, the
interaction-induced deformation of on-site wavefunctions gives rise to interaction strengths
UE:]?” and UPY that explicitly depend on the number of bosons and fermions [220, 240, 242,
244-246].
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9.1. Theoretical model

9.1.1. Quantum phase revivals in a Bose-Fermi system

The interactions between the bosonic field and the fermion are encoded in the dynamics of
the on-site wavefunction |¢)gp(¢)). Quantum phase revival spectroscopy (see chapter 7) allows
to probe the corresponding interaction energies by sampling the time-dependent coherence of
the bosonic component. In an idealized picture (see section 7.2.2), the bosonic coherence is
proportional to |(vgr(t)|a|¢YBr(t))|? = |{a)(t)|?, where & denotes the annihilation operator
for a boson at a lattice site. The time evolution of the coherence is governed by the interference
of the two dynamical evolutions with and without a fermion:

2

(@) (t)]* = : (9.3)

S Cult) + Dl
n=0

where the purely bosonic contribution enters as
Cn(t) = \/mc;cn+l e_i(E'rH—l,O—En,o)t/ﬁ

and the Bose-Fermi interactions are contained in the term
Dy (t) = Vn+ 1djdp gy e Enera=Ent/h

Computing equation 9.3 further, three distinct sets of spectral contributions are identified:
[e.e]
Y GWC(t) = ERRg=Eniio— Bno— Eaviot+ Eag 94)
=0

o)

Y Di®)Du(t) = Eppy=FEnya—Eng—EBapa+ By (95)

n,n=

o

> Di(t)Cu(t) = EPE =FEni0— Eno— Eat11+ Ean (9.6)

The first set of energies (9.4) corresponds to the purely bosonic contributions of orders UBB,
2UBB | and so on, without the influence of a fermion. It exactly represents the spectral features
of the bosonic quantum phase revivals discussed in chapter 7. The second set (9.5) yields the
bosonic contributions of orders UBB, 2UBB  and so on, with the influence of a fermion. The
third set (9.6) corresponds to mixed contributions of orders |UBY|, |UBB 4 UBF|, |UBB —
UBF|,|]2UBB 4 UBY|, |2UBB — UPBF|, and so on, which appear as new strong features in the
experimental data. It is important to note that quantum phase revival spectroscopy reveals
absolute interaction energies, but does not distinguish the sign of the interactions. However,
whether Bose-Fermi interactions are attractive or repulsive, can indirectly be determined from
the interaction-induced deformation of the bosonic on-site wavefunction, which we discuss
below in detail (see section 9.2.3).
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Figure 9.2.: Quantum phase revivals in a few-body Bose-Fermi system. Suppression of odd
quantum phase revivals in a Bose-Fermi mixture at |[UBF /UBB| = 0.5 for variable fermionic
fillings: m = 0, 0.2, 0.35 and 0.5 (blue solid lines, darker color for larger 7). The right panel
displays the suppression factor s as a function of the filling mn.

9.1.2. Coherent state and single-orbital approximation

In general, the collapse and revival dynamics of the coherence as captured by equation 9.3 can
be very complex. However, we obtain a simplified analytic expression when the influence of the
Bose-Bose and the Bose-Fermi interaction on the bosonic atom number statistics is neglected,
which is justified in the limit of rather small interactions. Such conditions motivate the use
of coherent states for the bosonic field (compare chapter 7), whose probability amplitudes are
scaled by the mean fermionic atom number m according to ¢, = /1 —m elol?/2gn / v/n! and
dy = vVmelel?2qn /\/nl, where o = v/ne'® denotes the complex field amplitude with the
mean bosonic atom number 7 and initial phase ¢. With the additional assumption of single-
orbital eigenenergies following equation 9.2, we obtain the quantum phase evolution (for the
explicit derivation see E.1)

(@) (1)[2 /7 = &2 (cosWPPHM=1) 5 £1 _ 2 (1 — m)[1 — cos(UPTt/R)]} . 9.7)

Figure 9.2 illustrates these idealized dynamics for several mean fermionic fillings m. The
suppression of revivals is a striking signature for the interference between the Bose-Bose and
the Bose-Fermi phase evolution. Particularly, for the case UBY /UBP = » 4 0.5, where z is an
integer number, the suppression factor s has a simple relation to the mean fermionic filling,

s=(1—2m)?, 9.8)

shown in the right panel of figure 9.2.

9.2. Experimental realization

The experiment is performed with a quantum degenerate mixture of 1.7(3) x 10° bosonic 8"Rb
and 2.1(4) x 10° fermionic “°K atoms in their respective hyperfine ground states |F,mp) =
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Figure 9.3.: Visualization of the experimental sequence. The steps of the sequence are timed
to ensure adiabatic preparation, on the one hand, and minimal total duration to avoid heating
or atom loss, on the other hand.

|1,+1) and |9/2, —9/2). The Bose-Einstein condensate (BEC) and the Fermi cloud are held in
a pancake-shaped dipole trap (Agip = 1030 nm) with tight vertical confinement to ensure good
overlap of the two species in the presence of gravity. The BEC is quasi-pure and the Fermi
cloud has a temperature of typically 7'/Tr = 0.2, where Tf is the Fermi temperature.

The Feshbach resonance at Byes = 546.75(6) G (see section 2.3.5) is used to tune the inter-
species scattering length app between —161.2(1) ag and +134(19) ap, where ay is the Bohr
radius. We rely on the parametrization of the resonance by Simoni et al. [104] quoting a back-
ground scattering length of apg = —189 ag and a width of A = —3.1 G. In addition, reference
[104] provides both an experimental and a theoretical value for the zero crossing of the scat-
tering length at 543.3(5) G and 543.66(8) G, respectively. Using our data (see below), we have
independently determined the magnetic field at vanishing interspecies interactions. Our mea-
surements yield 543.6(2) G in excellent agreement with the theoretical value, which supports
the accuracy of this parametrization. The Bose-Bose intraspecies scattering length stays fixed
at apg = +102(2)ag [77, 235, 249].

After 25 ms of settling time for the magnetic field, a three-dimensional (3D) optical lattice
operating at A,y = 738 nm is adiabatically ramped up within 50 ms to a depth of VLB =
5.2 EB, where EB, = h?/(2mp)2,) denotes the recoil energy for 8"Rb. The lattice depth
for the fermions in units of the recoil energy for 9K, EEY_ = h?/(2mp),), is lower by
a factor of 1.50 + 0.015 (see section 5.4) such that V{ = 3.5 EY . At this lattice depth
and for all interspecies interactions used in the experiment, the bosons are expected to form a
superfluid and the fermions are delocalized (see chapter 8). The horizontal and vertical trapping

frequencies of the dipole trap in the presence of the shallow lattice are 27 x (25,94) Hz for
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9. Coherent interaction of a single fermion with a small bosonic field

87Rb and 27 x (36, 173) Hz for °K.

Then, a 3D array of coherent bosonic fields with partial fermionic filling (compare figure 9.1)
is created by rapidly increasing the lattice depth from VLB to VIE = 28.2(3) EB, (correspond-
ing to Vg = 18.8(2) EL,.) within 50 us, being slow enough to avoid populating higher lattice
bands, but fast in comparison to tunneling within the first band. The lattice jump suppresses
the tunnel coupling, freezes out the atom distributions and initiates quantum phase evolution
at each lattice site. In order to ensure a long coherence time, we reduce the dipole trap simul-
taneously with this jump to cancel the harmonic confinement in the horizontal plane, avoiding
relative dephasing of lattice sites as detailed in section 7.3.

We sample long time traces of the quantum phase evolution to achieve high spectral resolu-
tion, which provides us with detailed information on the interactions in the Bose-Fermi system.
Rather low bosonic and fermionic filling are used in the measurements to limit the number of
spectral contributions. In order to suppress three-body atom loss on sites with high occupation,
we restrict ourselves to moderate interspecies interactions and do not use higher lattice depths
Vi1 (compare chapter 8).

After variable hold times ¢ (up to 7 ms, in steps of 40 us) all trapping potentials are switched
off and the bosonic and fermionic clouds expand during 10 ms time-of-flight. Absorption
images of the bosonic interference pattern as well as the diffracted fermion cloud are recorded.
In this section we focus our data evaluation on the bosonic images, from which we derive the
coherence |(a)(t)|? by evaluating the ratio of the summed atom numbers in the central, first-
and second-order coherence peaks to the total atom number, Ncop, /Niot [43] (see section 4.2.2).
A brief, preliminary discussion of the fermion images is given at the end of this chapter (see
section 9.3).

9.2.1. Measurement of the mean fermionic filling

The experimental data reveals a modulation of the initial quantum phase revivals depending on
the interspecies interaction strength, as shown in figure 9.4a. For the first revival, we detect
three local minima with suppression factors s = 0.57(3), 0.43(3) and 0.16(2) as the attraction
is increased. The mean fermionic filling can be determined from the suppression factor by
inverting equation 9.8: m = (1 F +/s)/2, where the minus (plus) sign corresponds to m <
0.5 (m > 0.5). The resulting fermionic fillings read m = 0.12(1), 0.17(1) and 0.30(1),
respectively. Note that in all cases the minus sign has been chosen, because fermionic fillings
m > 0.5 are not expected for our experimental parameters. Qualitatively, the dynamics of the
first few revivals are remarkably well captured by the single-orbital coherent state model of
equation 9.7 as illustrated by the comparison of experimental data and theoretical simulation
in figure 9.4. For short observation times multi-orbital effects, in particular the atom number
dependence of UBB and UBY, cannot be resolved.

9.2.2. Direct observation of Bose-Fermi interactions

Quantitative information about the interactions in the Bose-Fermi few-body system is obtained
by sampling long time traces of quantum phase revivals yielding high spectral resolution, as
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Figure 9.4.: Interference of Bose-Bose and Bose-Fermi phase dynamics. (a) The measured
initial quantum phase revivals are modulated as a function of the interspecies scattering length
apr. The intraspecies scattering length app is fixed at +102(2) ag. The first revival is sup-
pressed at apr = —126(2)ag, —40(3)ap and +41(3)ap, as marked by the arrows. Black lines
indicate the traces recorded in the experiment. (b) The general structure of the experimental
data is well captured by the simple model of equation 9.7. In the simulation the bosonic filling
is kept fixed at n = 0.85 and the fermionic filling is varied according to the results extracted

from (a) (see also inset of figure 9.9). Additionally, a temporal exponential decay comparable
to the experimental data (7 = 1.1 ms) is applied.
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Figure 9.5.: High-resolution quantum phase revival traces of the Bose-Fermi system are
shown for vanishing, (a), and strong interspecies attraction, (b). For the later case, one observes
that every second revival is suppressed by an envelope (gray dashed line) that corresponds to
the spectral components of order |UBB 4 UBF|. Each data point represents a single run of the
experiment. Special care has been taken to ensure identical conditions for each run, particularly
stable atom numbers. The solid lines interpolate the data and serve as a guide to the eye.
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Figure 9.6.: Fourier spectra of time traces for vanishing, (a), and linearly increasing Bose-
Fermi attraction, (b) to (e). The contributions involving direct Bose-Fermi interactions (|U BF|,
|UBB 4+ UBY| and |2UBB + UPBY|) are highlighted by shaded ovals (solid, dotted and dashed
lines, respectively). The |[UBB 4 UBF| components are shown in the inset of panel (e) as a
function of agr. Dashed vertical lines indicate the spectral contributions of orders U BB (@
to (3)) and 2UBB (@) to () for a purely bosonic system or vanishing interspecies interactions
[249].

200



9.2. Experimental realization

displayed in figure 9.5. The trace at almost vanishing interspecies attraction (aprp= —8(6)ag)
and its Fourier spectrum (see figures 9.5a and 9.6a) show the signatures of effective multi-body
interactions observed for a purely bosonic system (see chapter 7). However, at stronger in-
terspecies attraction additional envelopes are observed to modulate the quantum collapse and
revival dynamics (see figure 9.5b). The corresponding spectra (see figure 9.6) reveal new strik-
ing features: First, prominent additional peaks that arise from direct Bose-Fermi interactions
of orders |[UBY|, [UBB + UBY| and |2UBB + UBY| and, second, a small, but significant upshift
of the Bose-Bose interaction energies of orders UBP and 2UBB,

The emerging Bose-Fermi features of orders |[UBY |, [UBB 4+ UBF| and [2UBB 4 UBF| exhibit
an almost linear dependence on app (see figures 9.6 and 9.7). Inspecting these features more
closely one observes that each of them consists of a comb of energies. This splitting arises
from an explicit boson number dependence of the Bose-Bose (UE%) and Bose-Fermi (U}?F)
interaction strengths. How many of those spectral comb teeth can be expected? We will answer
this question exemplarily for the energies of order |UBY|.

The spectral contributions that explicitly contain Bose-Fermi interaction terms are generally
given by the terms EE’EL as derived above (equation 9.6). The energies of order |UBY| are
obtained for n = n, that is

EEE, = Eny10— FEno— Ent11+ Enn 9.9

with a spectral weight of (n + 1)c} ¢ r1dnc) 11> Where ¢, d,, are defined as in equation 9.1.
Using equation 9.2 and considering an explicit atom number dependence of UBB and UPF we
obtain for the first spectral contributions:

Egy = UPY
EPY = (U3} -U3p) + 2057 —UPF (9.10)
Eyy = 3(Up —Usy) — (U} —Usp) +3U5" — 20"

and so forth. Assuming that a bosonic on-site occupation of up to n = 6 is statistically signifi-
cant (corresponding to the appearance of four peaks of order UBB, see chapter 7) we conclude
from the above equation that up to six individual components of order |UBF| are expected. A
similar reasoning shows that under the same conditions five components of order |UBB + UBY|
and four of order |2UBB + UPF| can be observed.

The separation between the individual components varies as a function of agp, which is
shown in the inset of figure 9.6e for the energies of order |UBB+UBF|. The components narrow
down for increasingly attractive interspecies interactions. In the range —150ag < app <
—100ag they cannot be resolved anymore and appear as a single peak. This narrowing is caused
by the interaction-induced changes of U,]?’],?l and UPY that can compensate each other due to
opposite signs. An accurate quantitative prediction of this behavior would require modeling
of interacting multi-body systems in a multi-orbital potential, which is a difficult problem and

"For the technical details of the numerical Fourier analysis see appendix D.
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Figure 9.7.: Summary of the spectral features in a broad range of interspecies interactions.
The peaks of nine Fourier spectra (including those of figure 9.6) are fitted by Gaussians. The
resulting positions are shown as bubbles, whose size as well as gray shading indicate the peak
height (the larger and darker, the higher). Spectral components arising from direct Bose-Fermi
interactions are highlighted by shaded areas corresponding to energies of order |UBF| (red),
|UBB — UBF| (green), |[UBB + UBF| (blue) and |2UBB + UBF| (orange). Additionally, black
dashed lines serve as guides to the eye for the energies of orders U"P and 2UBB. Note that
the three data sets between agr = —75 ag and —25 ag are measured at a slightly lower lattice
depth V7 = 26.7(3) Er%c. This explains the slight shift with respect to the other data.
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Figure 9.8.: The schematic shows that repulsive (attractive) interspecies interactions broaden
(shrink) the on-site orbitals ¢p(r) and ¢p(r) and thereby affect the Bose-Bose interaction
strengths UPP o app [ d*r [¢p(r)|*.

rarely treated in literature so far.

9.2.3. Revealing fermion-mediated Bose-Bose interactions

The notable upshift of the interaction strengths of orders UBP and 2U P observed in figure 9.6
for increasing attraction is induced by the presence of an interacting fermion. For the case of
repulsive interspecies interactions a broadening of the on-site wavefunctions ¢ (r) and ¢p(r)
is expected. Correspondingly the Bose-Bose interaction strength is effectively reduced, while
the reverse happens for attractive interspecies interactions as illustrated in figure 9.8. These
modifications are shown in detail in figure 9.9 for the highest spectral components of order
UBB and 2UBB both for negative and positive interspecies scattering length.

We note that the present effect shares similarities with the atom number dependence of
discussed for the purely bosonic system in chapter 7. However, here the mechanism is more in-
direct. We observe a modification of the collision process among bosons, although the fermion
does not take part in the actual collision. In this sense the change in the bosonic interaction
strength is mediated by the presence of a fermion.

In order to analyze the data quantitatively, we consider the individual energy terms that give
rise to the observed peaks. The highest energy of order UB® is given by the superposition of
the energy of two bosons without a fermion (see equation 9.4)

UBB

EfGo = B2o = Uy, 9.11)
and the respective energy in the presence of a fermion (see equation 9.5).
EPGy = Ean —2B11 = Up +2 (U3 - UPT). 9.12)

For vanishing fermionic filling, the first energy (equation 9.11) is observed, while at unity
fermionic filling solely the second energy (equation 9.12) would be detected. In our data, the
fermionic filling lies in the range 0 < m < 0.5 as measured above. Therefore, the energies
(equations 9.11 and 9.12) are superimposed in the spectra and the individual peaks cannot be

203



9. Coherent interaction of a single fermion with a small bosonic field

T T T T lm_ T T
Refex 0318, |
5.90 70 o oaf g
._~~~~. 01 S D
5.80 | ‘Ql.,\ 200 0 (10(;'
~ L ~~a2 agr (ay) 4
T sl Es0-E20® Py,
; | E31-Ez1-Eqq O]
- 1 1 1 1 1 1 1
5 3'10 -O‘I'Q‘ T T T T T l—
@ O‘O‘
D 3.05fF ® o -
~%.
3.00 .
E20 ® RS
2951 Epq-2Eq 4 ]
1 1 1 1

1 1 1
-150 -100 -50 0 50 100 150
Interspecies scattering length, agg (ag)

Figure 9.9.: Modification of the Bose-Bose interaction strength induced by an interacting
fermion. The highest spectral contributions of order UBB (2UBB) are shown as a function
of apr in the lower (upper) panel [Corresponding to the spectral features close to the dashed
line (D (@) in figure 9.6]. The underlying energies Fo and Ep; — 2E1 1 (E30 — E2 and
E31 — Eo1 — F1,1) cannot be resolved individually appearing as a single superposition peak
in the spectra. The dashed line shows a linear fit with a slope of s 1 = —0.46(4) Hz/ag
(s3,1 = —0.87(5) Hz/ap). Shaded areas show the shift calculated within a variational model
(see main text). It explicitly accounts for the measured values for the fermionic filling fitted
by an exponential function, m(apr) (inset). The measurement has been performed at a lattice
depth Vi3 = 28.2(3) Er%c. The data at agpr = 0 ag have been obtained in a sample without
fermions.
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resolved due to a very small spacing. Taking into account the fermionic filling as a function of
the interspecies scattering length, m(apr), the effective position of the composite peak can be
modeled as

[1 — m(apr)] ELGo + m(apr)ELGy = (9.13)

Uye +m(apr) [UST — UsE +2 (UPF —UPY)] .

Not only pure Bose-Bose interaction strengths contribute to the signal, but also the difference
in Bose-Fermi interaction energy comparing one to two bosons.

Similarly, the expressions for the highest energy of order 2UB® is derived. The contribution
without a fermion reads

E3Go = Eso— B = 3Usy — Uyy, (9.14)
and the analogous component in the presence of a fermion is given by
E3G, = B3y — oy — Ery = 3Usy +3U3" — Uy — 205" — UPF. (9.15)
The weighted superposition of the energies (equation 9.14 and 9.15) reads

[1— m(asr)] E5oo + m(asr) By, = (9.16)
3USE — Upe +m(apr) [3 (USY — Usy) — (UsT — Upy) + 3U5" —2U3F — UPF].

Using this derivation and the slopes s2 1 = —0.46(4) Hz/ag and s3; = —0.87(5) Hz/ay
extracted for the lower and upper panel of figure 9.9, a conservative upper bound for the shifts
UQB’F and UE”F is derived. Assuming a constant fermionic filling m = 0.3 and neglecting the
shift arising from 2(USY —UPY) (see equation 9.13), we obtain (8U2B7{3/6a]3p)/h R sp1/m =
—1.5(2) Hz/ay. Similarly, neglecting the shifts arising from 3U. ;?F — 2U§3F — UlBF (see equation
9.16), we can approximate (QU3}? /dapr)/h ~ (s21 + s3,1)/(3m) = —1.4(2) Hz/ag. The
variational approach introduced in the next section shows that the omission of the UBY terms
is reasonable for moderately attractive interactions in the range —125a¢ < apr < Oag.

Variational mean-field model

Precise modeling of the interaction energies in few-body systems is a demanding theoretical
problem. A multi-orbital system for the bosons and the fermion would have to be solved,
which goes beyond the scope of this work. Nevertheless, we aim at an approximate theory to
validate the observed trend in the Bose-Bose interaction strengths (see figure 9.9). To this end,
we employ a variational mean-field model, in which the on-site Hamiltonian is harmonically
approximated. Generally, the model must be taken with care, because typical errors due to the
harmonic approximation amount to more than 10 % when the absolute interaction strengths
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Figure 9.10.: Variational model for atom number dependent on-site interaction strengths UE%
and UPY . (a) The contributions to the shift with respect to UQBE [see Eq. (9.13)] are displayed as
a function of the interspecies scattering length app: UQBE — UQBE (dashed) and 2 (UQBF -U 1BF)
(dotted) and their sum (blue solid line). (b) Weighing the shift with the interaction dependent

fermionic filling m(apr) (as measured in the experiment) yields an almost linear trend (blue
solid line) for agp 2 —125 ay.

UBB and UBF are calculated (compare figure 3.2).2 However, it serves well to determine the
correct order of magnitude of the shifts of the Bose-Bose energies.

At first all energy contributions in the equations 9.13 and 9.16 are calculated as a function
of the interspecies scattering length agp. To this end we approximate the lattice site by an

isotropic harmonic oscillator potential and assign a Gaussian wavefunction to the bosons and
the fermion,

1 _r
Dharm (T: 0B) = (Jron)3? e 78 (9.17)
and
1 -z
gbgarm (I‘; JF) = 2o ) (9.18)

(Vror)3?

respectively. The full on-site Hamiltonian reads H=H B+ ﬁp + fIBF with the individual

For typical lattice depths used in experiments (below 50 Fi..) the harmonic approximation of a lattice site
typically entails large errors, because the actual on-site wavefunction in a sinusoidal lattice deviates significantly
from the Gaussian ground state wavefunction of a harmonic oscillator potential. Consequently, the interaction
energy U and even more the tunneling coupling J deviate from their actual values (see chapter 3).
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9.2. Experimental realization

terms [238]
: 3, 71 & 9gBB ’
iy = [ @i |~ g 4 Vo) + SR ar), 019
A~ ~ 2 ~
e = [ @il |- 841 ), 9.20)
Hgp = gor / d*r L ()] (r) e (r) Ps(r). 9.21)

Here, ggp = 4mh%app/mp and ggr = 2whapr/u are the Bose-Bose and the Bose-Fermi
coupling strength, respectively, and ;n = mpmp/(mp + mp) is the reduced mass. The terms
Va(r) = mbBr2 /2and Vp(r) = meFr2 /2 denote the approximate harmonic on-site poten-
tial. The respective trap frequencies are given by wp = Z@Erec /hand wp = 2\/§Erec /h,
where s and sy denote the lattice depth for the bosons and fermions in units of the respective
recoil energy (sg = 1.50sr for our experimental parameters).

According to a mean-field ansatz, the field operators in the Hamiltonian H are replaced by a
single mode of the field, given by the variational Gaussian wavefunctions

&B(r) — gbfarm(r; oB)a and &F(r) — gb}Flarm(r; o) C. (9.22)

Here, a and ¢ are the bosonic and fermionic annihilation operators, respectively (compare
section 2.1). Taking the expectation value (fI ) with respect to the general Bose-Fermi quantum
state |n)|m) with n bosons (n € N) and m (m either O or 1) fermions, the energy functional at
a certain interspecies scattering length app reads

E(TL, m, aBr; 0B, UF) -

n3h21+m3h21+n 3mw22+m mw22+
— — e S — 0‘ P 0’
Amp ol 4mp ol 4 PUETE g4 TEEOE
1 h2app 1 1 Klapp 1
nn—1) ————+n , 9.23
(n=1) == - Br 1 (02 +02)P (9.23)

where the Gaussian widths op and oy are used as variational parameters. The on-site trap
frequencies are given by wg = 2./sgEL./h and wp = 2,/spEL./h; sp (sp) denotes the
lattice depth for the bosonic (fermionic) species in units of the respective recoil energy and
sp = 1.50 - sy for the parameters of the optical lattice used here (see above).

We numerically minimize equation 9.23 to obtain the optimized widths o (n, m, agr) and

or(n, m,apr). The corresponding Bose-Bose and Bose-Fermi interaction energies per atom
pair can be calculated according to

2 K2 1
U (agr) = \[ I asp (9.24)
’ 7 mp op(n,m,app)3
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and
1 h2 aBF 1

V2 [O’B(n,m,aBF>2"‘UF(nam,aBF)QP/Q‘

With these energies we can calculate the shifts of the Bose-Bose interaction energies, given
by the squared brackets in the second row of equations 9.13 and 9.16 multiplied by m(apr).
Figure 9.10 shows the results for the highest spectral contribution of order UBB. The differ-
ence of the bosonic two-body interactions with and without a fermion, UQBf - UQ%S (dashed
line), decreases monotonically, changing signs at agr = 0. This behavior is the expected,
because the presence of an attractively interacting fermion shrinks the bosonic wavefunction
such that U;{B > U2B7(})3, while the reverse happens for repulsive Bose-Fermi interactions. The
dependence of 2 (UzBF — UPF) (dotted line) on apF is plausible as well: For repulsive inter-
species interactions the broadening of the wavefunctions is more pronounced for a fermion
and two bosons (which also interact repulsively), compared to the case of a fermion and a
single boson, such that U2BF < U 1BF. In the regime of moderately attractive interspecies in-
teractions, —|app| < app < 0, the addition of a boson leads to a broadening of the bosonic
and a shrinking of the fermionic wavefunction. However, the broader op overcompensates the
shrunk o, such that |[UPY| > |UBF|. On the other hand, for stronger interspecies attraction
apr S —|apg|, the additional narrowing of the fermionic wavefunction upon addition of a
boson dominates, and hence |UEY| < |[UPY|.

The sum of the two contributions (dashed and dotted lines) corresponds to the shift with re-
spect to U2B7(])3, shown as a blue solid line in figure 9.10a. When additionally the experimentally
observed variation of the fermionic filling m(app) is taken into account, the total shift appears
approximately linear for agr 2 —125a¢ (see figure 9.10b, blue solid line).

UPF () = (9.25)

The results of the variational mean-field model are compared to the experimental data in
figure 9.9. The vertical extent of the gray shaded areas, that denote the calculated shifts, rep-
resents the uncertainties in the experimental determination of m(app). The calculated shifts
are added to the values of Uf(])g (lower panel) and ?)Uf(])3 — UQI?(]? (upper panel), respectively,
which have been measured in a purely bosonic sample. We observe that the matching between
experimental and theoretical shifts is remarkably good. However, the agreement must be re-
garded fortuitous given the simplicity of our theory. These findings quantitatively support the
indirect evidence for a renormalization of Hubbard parameters due to interspecies interactions
discussed in chapter 8 [242, 245, 271].

9.3. Excursion: Quantum phase revival spectroscopy with fermions

It is a natural question, whether the time evolution of the Bose-Fermi few-body system also
leaves signatures in the fermionic momentum distribution. Actually, one can expect that the
quantum evolution of the spin-polarized Fermi gas is solely determined by the Bose-Fermi
interaction energy, because the fermions do not interact directly. The numerous bosonic con-
tributions observed above will not play a role. Therefore, the experimental investigation of the
fermionic component has the potential to lead to much cleaner spectra. However, what would
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Figure 9.11.: Quantum phase revival dynamics of the fermionic component in a Bose-Fermi
mixture. Exemplary momentum distributions recorded after 10 ms time-of-flight expansion
show a collapse (a) and a revival (b), which are hardly discernible with the bare eye. The
interspecies attraction is agr = —161.2(1) ag and the lattice depth Vi = 18.8(2) EL. (¢)
Evaluation of the fermionic visibility V (see equation 9.26) clearly reveals collapse and revival
dynamics arising from the interspecies interactions UPF. The kink at about ¢ = 2 ms arises due
to dephasing induced by superimposed Bloch oscillations [309] along the direction of gravity.
Therefore, the analysis is restricted to the first 1.2 ms. The baseline VV = 0 corresponds to a
homogeneously filled first Brillouin zone.

be an appropriate observable?

Experimental results

When the data for this chapter was recorded, there have been no intentions to analyze the
fermionic momentum distributions (see section 9.2 for the experimental sequence). Initially,
the images of the fermionic cloud have only served to monitor the number of fermions in each
experimental run. However, after finding an appropriate observable it has turned out that the
recorded images indeed reveal faint signals of fermionic quantum dynamics.

In principle, bosons and fermions can be expected to show similar behavior: At the time of
the collapse, bosons are maximally dephased and have a structureless momentum distribution
that is determined by the Wannier background. Upon further evolution towards the revival, the
characteristic interference pattern appears again as long-range phase coherence is reestablished.
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9. Coherent interaction of a single fermion with a small bosonic field

In analogy, a metallic state of fermions that corresponds to a partially filled first band (mean
local filling m < 1, see chapter 6 and figure 6.6) shows an interference pattern with broad peaks
in the momentum distribution (see 4.2.2) or a quasi-momentum distribution with a filling in the
center of the Brillouin zone (see 4.2.4). When the quantum evolution leads to dephasing, the
interference pattern should wash out corresponding to an homogeneously filled first Brillouin
zone.

In analogy to the observables introduced to analyze the bosonic momentum distribution, vis-
ibility and the fraction of coherent atoms (see section 4.2.2), we define the fermionic visibility
as an observable that measures the homogeneity of the filling in the first Brillouin zone:

_ g Nedges

Y =1 .
¢ 4 Ngy,

(9.26)
Here, Npyz is the total atom number in the first Brillouin zone and Ngqges counts the atom
number in the four edges as illustrated in figure 9.11b. For a homogeneously filled Brillouin
zone the ratio Negges/NBz €quals 4/9 and the fermionic visibility vanishes V = 0, while the
maximal value V = 1 is reached when the edges are empty, as expected for a metallic state
with a very low filling. A related observable is used in the PhD thesis of Tim Rom [129] to
measure the ratio of atoms in a band insulating state (compare section 3.3.3). Additionally,
theoretical studies on lattice Fermi gases have used the population at the Brillouin zone edge
to quantify nonequilibrium dynamics after an interaction quench [310].

All fermionic time-of-flight images that have been recorded alongside with the bosonic data
of the previous section are analyzed in terms of V. As shown in figure 9.11c¢ an oscillatory be-
havior is clearly discernible. The amplitude of the oscillations is relatively small, probably due
to limited overlap between the bosons and the fermions. Accordingly, the largest amplitudes
are observed when strong interspecies attraction improves the overlap between the components.
At a hold time of about 2 ms the fermionic visibility shows a pronounced kink that originates
from Bloch oscillations that are superimposed on the data due to the effect of gravity. They
slowly shift the position of the interference pattern, which is taken into account in the eval-
uation. At the time when the diffraction pattern fully rolls over a compensation is no longer
possible and the kink appears.

The first 1.2 ms of the fermionic quantum evaluation are used for spectral analysis that
is carried out in a procedure analogous to appendix D. The resulting spectra are shown in
figure 9.12a-e for attractive interspecies interactions, complementing figure 9.6 of the bosonic
analysis. Due to the shorter length of the traces the spectral resolution is reduced compared to
the bosonic data. The strongest peak can be clearly identified to correspond to the direct Bose-
Fermi interaction energy |U¥|. Plotting this frequency as a function of interspecies scattering
length apr, we obtain an almost perfectly linear trend (see figure 9.12) similar to the results in
the previous section (see figures 9.6 and 9.7).

A remarkable advantage of evaluating the fermionic momentum distributions is the absence
of the numerous bosonic frequencies, which can overlap with the Bose-Fermi peaks. This is
strikingly visible when the panels 9.12d and 9.12e are compared to the corresponding spectra
in figure 9.6. For the || peaks, in principle, a comb-like substructure is expected reflecting
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Figure 9.12.: (a) to (e) Fourier spectra of fermionic quantum phase revival traces for linearly
increasing interspecies attraction. The spectral contribution corresponding to the Bose-Fermi
interaction energy |UBF| is highlighted by shaded ovals. Dashed lines (D) to (6)) indicate the
locations of the contributions of orders PP and 2UBP that are suppressed in the fermionic dy-
namics (compare figure 9.6). (f) The experimentally measured Bose-Fermi interaction energy
|UBF| shows a linear trend as a function of agr in analogy to our findings in section 9.2.
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9. Coherent interaction of a single fermion with a small bosonic field

the dependence of the Bose-Fermi interaction energy on the bosonic occupation (see section
9.2.2). However, the individual comb-teeth cannot be spectrally resolved within the Fourier
limit and merge into a broad single peak. In addition to the dominant Bose-Fermi peak, more
spectral features are observed (particularly in panels 9.12b and 9.12d). They do not show clear
trends as a function of the interspecies scattering length and their physical origin can so far not
be identified. Further investigations with higher spectral resolution will be needed for a precise
understanding of the spectra.

Theoretical toy model

A very basic understanding of fermionic quantum phase revivals is gained by a theoretical toy
model that is based on our considerations of the previous section. Similar to the bosons, the
time-dependent momentum distribution of the fermions is given by (see section 4.2.2)

ni(k,t) = |wp(k)[> D e T @le) (1), 9.27)

where ¢; and 61 are the fermionic annihilation and creation operators for lattice site ¢, respec-
tively. As in the bosonic case, np(k,t) is crucially determined by the time-dependent coher-

ences between lattice sites <éj

¢;)(t). If all off-diagonal (i # j) elements of the single-particle
density matrix <é;r ¢;) vanish, the momentum distribution is uniform corresponding to a homo-
geneously filled first Brillouin zone. The images in figure 9.11 clearly reveal that this is not
the case in the experiment, implying finite values for off-diagonal elements, at least on a short
range. Because such short-range coherences are hard to include in a simple theoretical descrip-
tion, we resort to the Gutzwiller-type on-site wavefunction |¢pr(t)) introduced in equation
9.1. In this model wavefunction the fermionic coherences are infinitely long-range, which is

obviously an exaggeration.

With the on-site wavefunction |¢pr(t)) (identical for each lattice site), eigenenergies E;, ,,
as defined in section 9.1 and coherent states for the bosonic component, the dynamical evolu-
tion of the fermionic coherences reads

B2 = (1 — m)m - e2P(cosUPT=1) (9.28)

where m and 7 denote the mean fermionic and bosonic filling, respectively. Despite the weak-
nesses of the model this result illustrates two important features: First, the fermionic dynamics
are solely determined by the Bose-Fermi interaction energy |UBY| and its higher harmonics.
Second, the strength of the dynamics depends on the mean fermionic filling m. At vanishing
and unity filling the dynamical evolution is fully suppressed, while it is maximal at half-filling.
Nevertheless, a more accurate theory of the dynamics beyond the Gutzwiller approximation
would be highly desirable.
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9.4. Conclusion and Qutlook

Summary

In this excursion, we have presented the first observation of collapse and revival dynamics in
a fermionic lattice quantum gas. The findings were enabled by the definition of a new experi-
mental observable, the fermionic visibility f/, that is sensitive to the evolution of the fermions
after an interaction quench. In fact, the findings of this excursion come somewhat unexpected,
because the experimental sequence was initially not designed for optimal acquisition of the
fermionic data. Therefore, several aspects can be improved in future realizations: First, the
quasi-momentum distribution after Brillouin-zone mapping is likely to provide stronger and
cleaner signals than the momentum distribution recorded here. Second, the data should be
taken in the direction gravity such that the quench dynamics are not obscured by superimposed
Bloch oscillations. Third, the dynamics should be recorded in a deeper lattice to suppress relax-
ation via tunneling during the experimental observation time. These improvements are likely
to lead to a much better spectral resolution.

There are numerous applications for the methods presented in this brief excursion. The
evolution of fermionic lattice quantum gases in one- and higher dimensions has been dealt with
in many theoretical studies. It has been proposed to use nonequilibrium quantum dynamics of
fermions for the identification of quantum phases in the Hubbard model [311-313], in chains of
spin-polarized fermions with nearest- and next-nearest neighbor interactions [310, 314-316], or
in a Heisenberg chain [317, 318]. Furthermore, the quench dynamics studied here are strongly
related to questions of thermalization and equilibration in closed quantum systems [312, 315—
317, 319, 320], which have so far only been experimentally studied in a bosonic lattice system
[321]. Additionally, we envisage the potential to perform interaction spectroscopy in multi-
component fermionic mixtures [219], which might enable the detection of direct higher-body
interactions.

9.4. Conclusion and Outlook

In this chapter, we have discussed the quantum dynamics in elementary few-body systems
formed by a single fermion and a small bosonic field at the sites of an optical lattice. Quantum
phase revival spectroscopy has been demonstrated as a useful technique to measure the inter-
action energies in this system. While in the case of direct Bose-Fermi interactions an essen-
tially linear dependence on the interspecies scattering length is found, we additionally observe
how the interaction among the bosons is modified, mediated by the presence of an interacting
fermion. The detection of mediated interactions could further be improved by preparing the
bosonic quantum gas on top of a fermionic band insulator, where each lattice site is occupied
by exactly one fermion (in contrast to a mean fermionic filling m < 0.5 in the measurements
of this chapter). Under these conditions Bose-Fermi features of order |[UBY|, [UBB + UBF|,
etc. are fully suppressed and all Bose-Bose features display the full shift induced by Bose-
Fermi interactions.

Because of an interference between Bose-Bose and Bose-Fermi phase dynamics we can in-
fer the mean fermionic occupation of the mixture; intrinsically the fermionic filling is only
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detected on those lattice sites that are also occupied by bosons. This feature makes quan-
tum phase revival spectroscopy a useful tool to reveal regimes of phase separation, even if the
separation happens on a microscale between neighboring lattice sites, such as in a supersolid
[49, 282, 283]. Such a scenario could not be conclusively identified via standard in-situ imag-
ing. Generally, a detailed experimental analysis on the redistribution of atoms during lattice
loading would be highly desirable, particularly for heteronuclear mixtures (compare chapter
8). If a shallow lattice V7, is loaded at variable interspecies interactions agp, the subsequent
application of quantum phase revival spectroscopy for fixed values of Vi and apr may allow
to probe the redistribution of atoms. On the technical side, this requires fast switching of the
Feshbach field prior to the onset of the quantum evolution. Furthermore, it might be interesting
to utilize the fermions as local probes at individual lattice sites: A quantum system of bosons
could be prepared in the presence of fermions, which are tuned to transparency by a Feshbach
resonance. The fermions would not influence the formation of a bosonic equilibrium quantum
phase, but for detection they could be switched to finite interactions.

Miniature impurity systems, as the one presented in this chapter, are suited to study polaron
physics in ultracold quantum gases [51, 302-304] and form an ideal test bed for effective field
theories [220] that are highly relevant to the description of atomic nuclei [52]. Our measure-
ment technique might further enable thermometry in Bose-Fermi mixtures based on a temper-
ature dependence of the fermionic filling and allow for exact absolute measurements of two-
and higher-body interaction energies [220, 242, 244-246] in multi-component quantum sys-
tems. Furthermore, the demonstrated control of interatomic collisions, shows that Bose-Fermi
systems may qualify for applications in quantum information processing [276].
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The common theme of the experiments in this thesis is the realization, characterization and
analysis of many-body quantum states with bosons, fermions and Bose-Fermi mixtures. In all
these aspects novel approaches have been pursued to access new physics:

The aspect of realization includes a number of technical innovations. The main accomplish-
ment is the implementation of an optical lattice setup that allows for independent tuning of
tunneling, interaction and underlying harmonic confinement. This high degree of flexibility is
achieved by the combination of a blue-detuned optical lattice and a red-detuned dipole trap, for
which a number of new alignment techniques have been developed. Together with Feshbach
resonances great freedom is gained in the realization of Hamiltonians, which is utilized in all
equilibrium and nonequilibrium measurements presented in this work.

The aspect of characterization comprises two points: First, several new techniques for the
characterization of optical potentials are introduced, for example, for the calibration of the lat-
tice depth and the measurement of the anticonfinement in a blue-detuned lattice. The resulting
calibration data has been cross-checked with an accurate numerical model of the combined lat-
tice and dipole trap setup. Second, the development of quantum phase revival spectroscopy has
enabled the direct measurement of a central ingredient of many-body Hamiltonians, namely
the interaction energy of Fock states at single lattice sites. This novel atom optical technique
crucially relies on the capability to instantaneously switch from a confined to a homogeneous
lattice potential.

The aspect of analysis includes novel methods for the observation of many-body states in
the lattice. In the case of bosons, established experimental observables for the coherence of the
quantum gas (visibility and fraction of coherent atoms) are applied to detect nonequilibrium
dynamics and an analogous observable for fermions is introduced. For the identification of
equilibrium phases in fermionic spin mixtures an entirely new approach is developed: High-
field phase contrast imaging is used to record the in-situ density distribution as a function of the
external confinement. From a sequence of images, the compressibility of the lattice quantum
gas can be extracted, which allows to distinguish compressible and incompressible many-body
states.

With the above innovations it was possible to gain new insight into lattice quantum gases on
several levels: The Fermi-Hubbard model has been implemented with repulsively interacting
spin mixtures of 4°K (chapter 6). By monitoring the in-situ density distribution via phase-
contrast imaging, the compressibility of the global many-body state has become an experimen-
tal observable and revealed the formation of metallic and insulating phases. Most remarkably,
the emergence of a Mott insulating state has been detected, which has also been signaled by
a suppression of doubly occupied lattice sites in the relevant regime. In fact, the observation
of the Mott insulator has been somewhat fortuitous, because the average entropy per particle
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has been more than a factor of 2 larger than the maximally allowed value in the Mott insulator
phase of a homogeneous system. DMFT calculations have shown that the underlying harmonic
confinement induces a highly inhomogeneous entropy distribution that favors the formation of
insulating phases, because entropy is largely carried by metallic regions. Similar to previous
occasions, nature seems to play into hands of the ultracold atom physicist. The fundamen-
tal impact of entropy in finite-sized strongly interacting systems has also become evident in
attractively interacting spin mixtures. Here, the formation of spin up - spin down pairs have
been shown to reduce the local entropy capacity so drastically that the in-situ cloud size of the
mixture is forced to expand in spite of the strongly attractive interactions between the atoms.

The development of quantum phase revival spectroscopy and its application to interacting
bosonic 8"Rb atoms (chapter 7) has enabled the most precise measurements of atomic interac-
tions in optical lattices to date. With an accuracy on the per cent level, the energies of atomic
Fock states have been measured and the data reveals that Hubbard’s interaction parameter U
seizes to be the characteristic energy already at fairly moderate interactions. Interactions in-
duce virtual transitions to higher-lying lattice bands, which gives rise to individual Fock state
energies that can be understood in terms of effective multi-body interactions. These findings
show that multi-orbital effects can have a notable influence on the physics in optical lattices
and they provide crucial input for the comparison of optical-lattice quantum simulators with
many-body quantum theory.

The measurements on equilibrium Bose-Fermi mixtures (chapter 8) have systematically ana-
lyzed the role of interspecies interactions. It has been found that attractive interactions between
bosons and fermions shift the bosonic superfluid to Mott insulator transition towards lower lat-
tice depths, contrary to earlier theoretical predictions. The effective deepening of lattice sites
for bosons owing to the presence of attractively interacting fermions has been identified as the
dominant reason for this behavior. For repulsive interspecies interactions, the position of the
Mott insulator transition remains essentially unchanged hinting at rapid phase separation.

By applying quantum phase revival spectroscopy to an array of few-body Bose-Fermi mix-
tures on individual lattice sites (chapter 9), it has been possible to monitor the absolute value of
the Bose-Fermi interaction energy as a function of the interspecies scattering length. Addition-
ally, precise measurements of Bose-Bose interactions have shown that their strength indirectly
depends on the Bose-Fermi interaction. The modification of bosonic interactions is mediated
by the presence of the fermion, which points to effects beyond the single-band Bose-Fermi
Hubbard model and substantiates the indirect evidence for renormalized Hubbard parameters
in chapter 8. In addition, a novel method to measure the fermionic filling has been devised
that utilizes an interesting interference effect in quantum phase revival spectroscopy. The re-
sults confirm the hints for phase separation obtained in chapter 8. Finally, a novel evaluation
technique has allowed to transfer the principles of quantum phase revival spectroscopy to the
analysis of fermionic momentum distributions. By this, coherent fermionic quantum dynamics
after an interaction quench have been observed for the first time.
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Perspectives

Due to the diversity of the experiments in this thesis, specific outlooks are given at the end
of each chapter. These make direct connections to the contents and point out specific im-
provements and extensions. Here, I want to take a somewhat broader perspective on future
possibilities that are related to the concepts and findings of this thesis.

The future view on ultracold atoms in optical lattices is likely to be shaped by experiments
with single-site and single-atom resolution. So far, this level of control has only been achieved
in few setups with bosonic 3'Rb [142, 144]. Despite a few extra challenges, the realization
of single-site resolution with fermionic species (°Li or 4°K) will probably only be a matter of
time, given the potential gain and the impetus of the research field. Nonetheless, several of the
concepts that underlie the experiments of this thesis are likely to remain important:

(D Quantum simulation.

(@) Precision measurements of Hamiltonian parameters.
(® Accurate control of lattice potentials.

(® Nonequilibrium physics.

The concept of quantum simulation (1) is currently one of the most important driving forces
for the research field. The prospect to solve long-standing open questions of condensed-matter
physics with the help of ultracold atoms is highly appealing [125]. For example, the key to
a detailed understanding of high-temperature superconductivity might be found in the phase
diagram of a doped two-dimensional Fermi-Hubbard model [40]. In the case of success, the
impact on research and technology would be immense. Progress towards this goal can proba-
bly be made by taking the experimental studies of the Fermi-Hubbard model to the next levels.
The observation of antiferromagnetic ordering in a repulsively interacting fermionic spin mix-
ture would be the next step and open the door to the exploration of quantum magnetism with
ultracold atoms. The equivalent achievement on the side of attractive interactions would be the
observation of the BCS-BEC crossover in an optical lattice.

On approach to these goals it will be crucial to reach lower entropies. This is likely to re-
quire a whole set of measures: First, the minimization of heating rates during the experimental
sequence, for example, by reducing collisions with the background gas of the vacuum chamber
and by suppression of three-body losses and inelastic photon scattering. Second, novel cooling
schemes to reach lower temperatures inside the lattice, for example, via dimple-type trapping
geometries or active entropy removal schemes. Those techniques might profit from the inhomo-
geneous distribution of entropy revealed in the context of this thesis. Third, the identification
of intelligent paths through phase space to minimize nonadiabaticities during thermodynamic
changes of state, for example, during lattice loading or adjustment of interactions via Feshbach
resonances.

Lower entropies will also be crucial for quantum simulation with Bose-Fermi mixtures. The
experiments in this thesis have been among the first to study this intriguing hybrid quantum
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system. In contrast to the Fermi-Hubbard model, the Bose-Fermi Hubbard model is not di-
rectly resembled in real solid state systems. Nevertheless, theoretical studies have predicted
interesting zero-temperature phases in one- and two-dimensional systems, such as the forma-
tion of charge-density waves and the emergence of a supersolid. Furthermore, Bose-Fermi
mixtures may allow to investigate polaron physics [51, 295, 303, 322] where the fermions take
the role of electrons and bosons resemble the phonons. In this context, it may be possible to
observe mediated interactions by realizing an optical lattice potential that acts on the fermions,
but is invisible to the bosons. Then the bosons can serve as exchange particles and generate
an effective interaction between the fermions. Further possibilities include the simulation of
disordered Hubbard models [323] or Kondo lattice models [265].

The precise measurement of Hamiltonian parameters is a prerequisite for accurate quantum
simulation (2). When it comes to precision measurements of quantum phase transitions, it will
be crucial to quantitatively know the ingredients of the Hamiltonian that is realized in the ex-
perimental setup. The development and application of quantum phase revival spectroscopy has
been the first precision study of interatomic interactions in optical lattices revealing the impor-
tance of multi-orbital effects. Founded on our results, recent investigations have addressed the
shift of the superfluid to Mott insulator transition due to effective multi-body interactions [324]
as well as multi-orbital corrections to tunneling [325]. Further experiments will be necessary
to understand the impact of higher bands on tunneling [197, 326] and interactions [165], partic-
ularly for the case of interacting quantum many-body systems. Multi-orbital physics in optical
lattices has already become an active field of theoretical investigations [246, 252, 272].

On the frontier of multi-body interactions, it would be exciting to observe not only effective,
but also intrinsic three- and higher-body interactions. These might be enhanced close to Fes-
hbach or Efimov resonances. Effective and direct multi-body interactions play an important
role in several recent predictions of novel strongly correlated quantum phases [212, 240] with
topological order [213] or exotic properties [214, 267].

The tunability of our lattice potential has enabled new classes of experiments (3). Enhanced
control of optical lattice potentials is likely to stay on the technological forefront. Being based
on traditional experimental techniques, optical superlattices form a meaningful extension to
the usual simple cubic lattices. So far, they have only been realized in setups with bosonic
87TRb [34-36, 44], but the prospect to use them in connection with fermions is realistic and
thrilling. In addition to studies in arrays of isolated double-well systems or plaquettes, the
formation of extended many-body states in this nontrivial lattice structure can be explored. For
example, the formation of interaction-induced excited band condensates [327], the artificial
creation of antiferromagnetic order [328] or the creation of d-wave resonating valence bond
states [124, 126] are some of many interesting possibilities.

Optical lattice setups that rely on the interference of Gaussian beams are typically bound to
a harmonic confinement and a fixed lattice constant (a = \/2 with X being the wavelength of
the lattice laser). More freedom will be gained by the projection of optical dipole potentials
[264], particularly when a high-resolution objective is available [142, 144]. Here the lattice
structure is not determined by the laser wavelength, but by the projection pattern. This brings
potential landscapes with arbitrary geometry (for example, hexagonal lattices [37]) or flexible
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underlying potential (for example, a box potential) into reach and it might even be possible to
imitate condensed-matter structures beyond the level of idealized models.

The real-time control over optical potentials allows to expose many-body states nonadiabat-
ically to new Hamiltonians (4). This can give rise to unusual quantum states [137] and allow
to investigate transport and relaxation phenomena that are typically inaccessible in real quan-
tum systems [98, 321, 329]. Experimental studies on the relaxation of bosonic and fermionic
many-body states may allow to address fundamental questions of statistical physics, such as
the elusive inner workings of thermalization [251, 319, 320], and may develop into a fruitful
branch of future research [310, 315, 330].

In the past fifteen years the field of ultracold atoms has contributed to physics in several
different respects. Many experiments have been wonderfully clean and lucid realizations of
phenomena that have previously been theoretical textbook examples. Such experimental re-
sults now enter the textbooks themselves and have an enormous educational value. In recent
years, the field has set out to experimentally observe complex few- and many-body phenomena
that are also at the forefront of theoretical research - the results of this thesis make a humble
contribution at this stage of the development. Analytical modeling of the observations is mostly
impossible; the numerical validation is computationally demanding and usually complies with
measured data. It is probably not too far-fetched to take this as a sign that synthetic ultracold
quantum matter is on the verge to finding answers to unsolved and - even more exciting - to
so far unasked questions of many-body quantum physics. The "ultracold" future of quantum
magnetism, quantum disorder, nonequilibrium physics and much more is lying ahead of us...
and it will be more than thrilling to see where the field has moved in a couple of years from
now.
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A. Atomic data

A.1. Potassium data

4OK

Natural abundance 0.0117%

Mass m 39.963 999 amu

Nuclear spin 1 4

Electron gyromagnetic ratio (4 251 /2) q7 2.002 294 21(24) [331]
Electron gyromagnetic ratio (4 2P; /2) (theoretical) gy 4/3

Nuclear gyromagnetic ratio gr +0.000 176 490(34) [331]
Magnetic dipole constant (4 25, /2) A -285.7308(24) MHz [331]
Magnetic dipole constant (4 2P3 /2) A -7.59(6) MHz [331]
Ground state hyperfine splitting Vnis  1285.790(7) MHz [331]
Vacuum wavelength D1 -transition Ap1 770.108 136 5(2) nm [332]
Vacuum wavelength D»-transition Ap2  766.700 674 7(3) nm [332]
Line width D;-transition (*?K) Ip1 27 x 5.96(1) MHz [333]
Line width Ds-transition (3K) Ips 2 x 6.04(1) MHz [333]
Life time [42P; ) (*K) 26.70 ns

Life time [42P;5) (**K) 26.35 ns

Absorption cross section on Dy transition (¢& pol.) oq 2.8067 x 1079 cm?
Saturation intensity on Dy transition (oF pol.) I.:  1.752(3) mW/cm?

Triplet scattering length ar +104 ag [95]

Singlet scattering length as +174 ag [95]

Melting point T, 63°C

Boiling point T,  759°C

Vapor pressure at 25 °C Dy 2.4 x 1077 mbar
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A. Atomic data

A.2. Rubidium data

87Rb

Natural abundance 27.835%

Mass m 86.909 180 amu

Nuclear spin I 3/2

Electron gyromagnetic ratio (5 25’1 /2) g7y 2.002 331 13(20) [331]
Nuclear gyromagnetic ratio gr -0.000 995 141 4(10) [331]
Magnetic dipole constant (5 251/2) A +3417.341 306 42(15) MHz [331]
Ground state hyperfine splitting Unts  0834.682 610 904 29(9) Hz [334]
Vacuum wavelength D1 -transition Ap1 794.978 851 156(23) nm [335]
Vacuum wavelength Do-transition Ap2  780.241 209 686(13) nm [335]
Line width D -transition I'p1 2w x5.746(8) MHz [335]
Line width Ds-transition I'ps 2w x6.065(9) MHz [335]

Life time (52P; 5) 27.70 ns

Life time (52 P55) 26.24 ns

Absorption cross section on D5 transition (Ui pol.) og 2.906 693 x 1079 cm? [335]
Saturation intensity on Dy transition (o* pol.) I 1.669 33(35) mW/cm? [335]
Triplet scattering length ar +98.98(4) ag [77]

Singlet scattering length as +90.4(2) ag [77]

| = 1,mp = +1) scattering length as +102(2) ag [77, 235]
Three-body loss rate K3 5.8(1.9) x 10729 cmb/s [294]
Melting point Tnm 39°C

Boiling point T,  688°C

Vapor pressure at 25 °C py  5.22(27) x 1077 mbar
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B. "Rb and “’K in the presence of magnetic fields

In this appendix we discuss the Zeeman shifts of 8’Rb and “°K in the presence of external
magnetic fields. On the one hand, Zeeman shifts are experimentally important, because they
are used to accurately calibrate magnetic fields. On the other hand, in this thesis they have
particular relevance for high-field phase contrast imaging in the experiments of chapter 6. Here
not only the shifts in the ground state (4 25, /2), but also the excited state (4 2P3 /2) of 40K must
be considered.

B.1. Formulas

Zeeman shifts can be calculated analytically for the case of electronic angular momentum
J = 1/2 (implying a total angular momentum F' = [ + 1/2) [164]. The analytic solution is
given by the Breit-Rabi formula [336]:

A A 1 —xzsgn(A) —mpsgn(A) =1+1/2,
Ehfs Ehfs

Epr(B) = -/~ B+

BR(B) 2(2I+1)+gImFﬂB 5

dmpx 2 .
1+ 2If1 + z2 otherwise,

(B.1)
where the dimensionless variable x is related to the electronic and the nuclear Landé g-factors,

g and g7, according to

97— g1
AFEngs

The hyperfine splitting A Eygs = hA(I + 1/2) depends on the magnetic dipole constant A that

is typically given in units of a frequency. The atomic data needed to perform the calculations

for 8’Rb and “°K are provided in appendix A.

For high magnetic fields the coupling between the nuclear and the electronic angular mo-
mentum becomes negligible. In this case, which is referred to as the Paschen-Back regime,
both I and J are quantized along the direction of the magnetic field and m ; and m; are good
quantum numbers. The energies of the Zeeman states are obtained by

x

upB. (B.2)

Epg(B) = hAmimj + (gymy — grmr)upB. (B.3)

B.2. Rubidium

Figure B.1 shows the Zeeman shifts in the 8"Rb ground state manifold 525, /2 calculated with
the Breit-Rabi formula. The Paschen-Back regime is not reached for experimentally relevant
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B. 8Rb and “°K in the presence of magnetic fields
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Figure B.1.: Zeeman shifts for 8"Rb in the 525, , manifold. In the experiments of this the-
sis, only the magnetically trappable state |2,+2) and the absolute ground state |1,+1) are
used (blue lines). The Paschen-Back regime is only reached well above 1000 G, beyond the
experimentally relevant range.

magnetic fields below 1000 G. The Breit-Rabi formula offers a convenient way to precisely cal-
ibrate magnetic fields: At a fixed current in the coils the transition frequency between Zeeman
sub-states in an ultracold sample is measured via radio frequency or microwave spectroscopy.
Inversion of equation B.1 yields the corresponding magnetic field.

B.3. Potassium

In the experiments of this thesis potassium is used both in fermionic spin mixtures (|F, mp) =
19/2,—9/2) and |9/2,—7/2)) and Bose-Fermi mixtures (|9/2, —9/2) with rubidium in state
|1,+1)). The interactions are varied using Feshbach resonances located at around 200 G in the
first, and around 550 G in the second case (see section 2.3.5).

In the experiments of chapter 6 high-field phase contrast imaging is used to image the spin
mixture. The laser beam is tuned to resonance at zero field, but the image is taken at a large field
in the vicinity of the Feshbach resonance. In order to derive the effective imaging detuning,
both the shift in the ground state manifold 425, /2 and the excited state manifold 4’°p, /2 are
to be taken considered. The ground state manifold can be treated with the Breit-Rabi formula
(see figure B.2). This is not possible for the excited state because of J = 3/2, but numerical
diagonalization of the Hamiltonian shows that the Paschen-Back approximation is reasonably
accurate already above 100 G [337].

The detunings for high-field phase contrast imaging at the relevant working points are sum-
marized in table B.1 (see figure B.3 for the corresponding level scheme). In the Paschen-Back
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B.3. Potassium
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Figure B.2.: Zeeman shifts for °K in the 425, /2 manifold. Mainly the magnetically trappable
[9/2,+9/2) state and the two lowest lying states |9/2, —7/2) and [9/2, —9/2) are used in this
work (green lines). The Paschen-Back approximation is not applicable for the experimentally
relevant magnetic fields below 600 G.

regime a cycling transition between |F, mp) = |9/2,—9/2) and |11/2, —11/2) (correspond-
ing to |my,my) = | —1/2,—4) and | — 3/2, —4) in high field) can be driven according to
the selection rule Am; = 0, Am; = —1. Accordingly, the |9/2, —7/2) state has a cycling
transition with [11/2, —9/2) (corresponding to | — 1/2, —3) and | — 3/2, —3) in high field).

B(G) | Act —Ag1 | A2 — Ay
@ | 209.9 | -293 MHz | -328 MHz
@ | 215.8 | -301 MHz | -337 MHz
(® | 258.7 | -361 MHz | -403 MHz
® | 198.8 | -277 MHz | -310 MHz

Table B.1.: Shifts of the “°K spin states |9/2, —9/2) (third column) and |9/2, —7/2) (forth
column) at the relevant working points (compare section 2.3.5). All transitions shift towards
lower frequencies. Because the imaging laser is tuned to resonance at zero field, it is blue-
detuned with respect to the shifted transition.
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B. 8Rb and “°K in the presence of magnetic fields
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Figure B.3.: Shifts in the potassium 425, /2 and 42p, /2 manifolds at high magnetic fields that
are relevant to high-field phase contrast imaging. The ground state Agq and Ao are obtained
using the Breit-Rabi formula, while the excited state allows to use the Paschen-Back formula
B.3 to calculate A,y and A.s.

226



C. Thermometry of harmonically trapped Fermi gases

We determine the temperature of quantum degenerate Fermi gases by fitting a Fermi-Dirac
distribution to the recorded atom clouds. The fit model is based on the three-dimensional (3D)
Thomas-Fermi distributions that are derived in section 2.1.3. Imaging, however, integrates
along the line-of-sight and the image shows a column density. Therefore, the general Thomas-
Fermi 3D distribution (equation 2.27) must be integrated along one axis, for which the relation
[56]

/OO dx Lin(ze_x2) = ﬁLin+1/2(z) (C.1)

is helpful. Equations 2.28 and 2.29 show the Thomas-Fermi distribution in the two limiting
cases of infinite (I' — o0) and zero (1" — 0) temperature. Ideally, a fit model should capture

both limits equally. We use an interpolation between the cloud sizes o, = 4/ % and Rp, =

niZFZ (v = 2,9, 2) as suggested in reference [56]:
2kpT O, T — oo . 1+2
R? = z) — with z) = In(1 + 2), C.2
2= oz ) {RFm . £(2) (1+2, (€2

where z = /P is the fugacity, which determines the shape of the cloud and, consequently, the
degree of degeneracy.
The above relations and equation 2.27 yield the fit model

12 (22 o [ (3 + ) 1))

2
i’ (z,y) = niy e (C.3)
for the two-dimensional column density (see figure 6.4a) and
Lia (—2 exp [~ /(2)])
2D,az 2D,az RZ
’ — 4 C.4
n (z) =ngpg Dia(—2) (C4)

for azimuthally averaged data (see figure 6.4b). These profiles refer to the in-situ density
distribution. However, for ballistic expansion of a noninteracting cloud the sizes simply scale

as [56, 80]
Ro — Rabo(t) = Ra/1 + (wat)?, (C.5)

where ¢ is the duration of time-of-flight expansion. When the conditions for ballistic expansion
are fulfilled, the above models can be applied to time-of-flight images without any changes.
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C. Thermometry of harmonically trapped Fermi gases

The resulting fugacity z is converted to the dimensionless temperature via

L [~6Lig(—2) 2, (C.6)
T
which is readily derived by combining equations 2.23 and 2.24.

To ensure a reliable fitting routine we have done the following: First, before carrying out
the Fermi-Dirac fit, the data is fitted by a Gaussian. This helps to find good starting conditions
(cloud position, cloud size, peak optical density). Second, when azimuthally averaged data
is fitted, the pixels in the cloud center, which are noisy due to poor averaging, are excluded.
Third, In(z) is used as a fit parameter instead of the fugacity z. This point is essential, partic-
ularly, when cold clouds are concerned: The fugacity increases by more than three orders of
magnitude, when the temperature decreases from 7'/Tr = 0.2 to 0.1, whereas In(z) only rises
from 4 to 10. The numerical fitting routine yields more reliable results when the prospective
dynamic range of the fit parameters is limited.

Given the typical cloud sizes and the imaging noise in our setup, the reliability limit of
thermometry via Fermi-Dirac fits is reached for temperatures around 7'/T% ~ 0.10. The dif-
ferences in the wings of the cloud, which form the basis of this thermometry method, become
too marginal for lower temperatures. It is interesting to note that typical imperfections of the
imaging (out of focus imaging, finite resolution etc.) wash out the characteristics of the Fermi-
Dirac distribution and let it appear more Gaussian. Therefore, temperatures 7'/TF that are
measured on the basis of the cloud shape usually constitute a conservative upper bound.
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D. Fourier analysis of quantum phase revival traces

The long quantum phase revival traces discussed in chapters 7 and 9 are typically recorded
in steps of 40 ps with 175 £ 25 points per trace (see figure D.1a). The origin of the time axis
(t = 0) corresponds to the beginning of the lattice ramp from V7, to V1. Given the total duration
of the recorded dynamics of 7 £ 1 ms we obtain a Fourier limit on the individual frequency
components between 150 £ 25 Hz. In order to increase this resolution by a factor of two and
to smoothen the Fourier spectrum, we have devised the following processing scheme:

e The raw data points are interpolated using cubic splines. Typically, the first 30 us of
the interpolated trace are removed to account for the phase evolution that already starts
slowly during the 50 ps ramp from V7, to V7. Otherwise the stretched initial collapse and
revival cycle can lead to a distortion of the frequency analysis.

e The damping time scale of the trace is determined by fitting an exponential decay. Ac-
cording to the time scale obtained in the fit, a long exponential decay is smoothly ap-
pended to the data for times longer than the original observation time.

e The resulting curve is concatenated to its mirror image, which is obtained upon exchang-
ing times ¢ by —t. This smooth trace with doubled length is again sampled in steps of 40
us (see figure D.1b) and a numerical Fourier analysis is performed (see figure D.1c).

The advantage of this scheme is two-fold: First, by exploiting the knowledge of the initial
phase of the quantum phase revivals [|{a)(¢)|? is known to start with a maximum at ¢ = 0] the
size of the data set is legitimately doubled and thereby the Fourier limit is reduced to 75 + 15
Hz. Second, the Fourier spectrum has a smooth envelope and spectral artifacts due to sharp
cut-offs are efficiently avoided. The improvements resulting from the processing scheme can
be directly seen by comparing figure D.1c to the figure D.1d, the later being the direct Fourier
transformation of the raw data (figure D.1a).
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D. Fourier analysis of quantum phase revival traces
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Figure D.1.: Processing of quantum phase revival traces and numerical Fourier analysis. (a)
The measured data points (blue circles), which are typically spaced by 40 us, are interpolated
using cubic splines (black solid lines). (b) Typically, the first 30 us of the interpolated curve are
removed to compensate for the 50 us ramp from Vi, to Viy (crossed-out area). Furthermore, a
simple exponential decay is appended to the data for times longer than the original observation
times (see text). The resulting long interpolation curve is concatenated to its mirror image and
the resulting composite curve is again sampled in steps of 40 us (solid circles). The positions of
the original data points are shown as dashed circles. (¢) Numerical Fourier transform is applied
to these data, revealing frequencies of orders U/h and 2U/h. (d) Direct Fourier transform of
the data in (a) without further processing.
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E. Theory on Bose-Fermi quantum phase revivals

This appendix provides additional theoretical background on quantum phase revival spec-
troscopy in Bose-Fermi mixtures (see chapter 9). In order to observe quantum phase revivals
it is necessary that the bosonic component shows on-site number fluctuations. Therefore, the
(nonadiabatic) preparation sequence needs to ensure that the bosons are delocalized in the deep
lattice Vir. However, for the fermionic component one can think of two limiting scenarios that
leave the same signature in the dynamical evolution of the bosons, which we will derive below.
In the first scenario (see figure E.1a), the fermions are delocalized as well, which is assumed in
chapter 9. In the second scenario (see figure E.1b), fermions are localized, but not every lattice
site with bosons is occupied by a fermion.

For both scenarios we derive the implications for the bosonic time evolution that is contained
in the momentum distribution (see section 7.2.2)

n(k,t) = Jw(k)[> Y e ™) Gla;) (1), (E.1)
ij

assuming a homogeneous lattice with M sites. The coordinate r; = an; denotes the location
of lattice site ¢, where a = \/2 is the lattice constant and n; € 73, and the indices 7 and j run
over all sites. The bosonic momentum distribution n(k, ) is experimentally observed in time-
of-flight imaging after variable hold times ¢. The dynamics are determined by the expectation
value <&j’&j> (t) that is taken with respect to the many-body quantum state |¥(¢)). Following
the arguments of section 7.2, we assume that the global many-body state can be approximated
by a Gutzwiller-type product of decoupled on-site states

M
W)y = [ i (). (E.2)
=1

E.1. Scenario 1

In the first scenario, the fermions are delocalized. This means there is a finite probability of
finding zero or one fermion at each site. Higher occupations are not possible due to Pauli’s
exclusion principle. Therefore, we write the on-site state as a superposition of bosonic Fock
states without and with a fermion:

[i) = Z cae_iE”»Ot/h\n, 0) + d%e_iE"-rlt/h\n, 1). (E.3)

n=0
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E. Theory on Bose-Fermi quantum phase revivals

(@) Scenario 1:

(b) Scenario 2:

Figure E.1.: Schematic illustrations of the scenarios for the distribution of the fermions dis-
cussed in the main text. The shaded ovals indicate delocalization.

The eigenenergies F, ,, (see equation 9.2) are assumed to be identical for each lattice site,
because the lattice depth is typically rather uniform across the extent of the atomic clouds.
Additionally, we assume identical atom number statistics on each lattice site such that ¢, = ¢,
and de = d,, (compare section 7.2).

We focus on the dynamics of n(k, t) at the position of constructive interference, where the
interference term e %' (*i—%5) is unity [corresponding to k = (27 /a)n with n € Z3 in a three-
dimensional simple cubic optical lattice]. The dynamics at the interference peak are determined
by the time-evolution of the correlations between sites ¢ and j:

M M M
S ala) = > (wi)laladvit) + D @ie)allwit) - (@;t)lagle; t),
ij i=1 i#j
= Mala) + (M —1)*|(@) ()], (E.4)

where the sum is split into diagonal and off-diagonal terms. Equating this expression further
using equations E.2 and E.3 yields for the first summand

M(ata) = MY n (|eal? + |dnl?) (E.5)

n=1

and the factors of the second summand read

(a)(t) = Z vn+1 (Czcnﬂ e~ Fniro=Eno)t/h 4 e,y 671'(E"+1’17E"’1)t/h) ;. (E.6)

which motivates the abbreviations for the purely bosonic contribution

Co(t) = Vn + 1 clcnyr e Enrro=Eno)t/h (E.7)
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E.1. Scenario 1

and the Bose-Fermi contribution
Dy(t) = Vi + 1didy g e Enra=En)t/h (E.8)

already introduced in chapter 9 (see equation 9.3). Hence, equation E.4 can be cast in the form

2

> afa)(t)

MY 0 (Jenl? + |dnl?) + (M = 1)°
ij n=1

S Calt) + Dalt)
n=0

(M —1)?

%

(E.9)

S Cult) + Dalt)
n=0

(12 GO + DY) + Cult)DA(E) + C3(1) D),

The summand representing the diagonal terms is neglected in the second step. It only scales as
oc M compared to oc M? for the off-diagonal terms. It does not play a role for large M.

In the following, we assume that the presence of a fermion does not notably modify the
bosonic atom number statistics, which is justified in the limit of small interspecies interactions
(see also section 9.1). Accordingly, we introduce the replacement ¢,, — +/1 — m ¢, and d,, —
Vmc,. Here m = (1) is the mean fermionic filling that is identical to the probability of
finding a fermion at a lattice site (Note that m is either O or 1). With the additional assumption
¢n € R, we obtain C, — (1 — m) Cy, and D,, — m C,,, where the abbreviations C,, = C,(0)
and D,, = D,(0) are used.

Suppression of revivals

In order to specify the derivation further, we insert the single-orbital eigenenergies following
to the Bose-Fermi Hubbard model (see section 9.1)
UBB BF
Enm= 5 nin—1)+U"" nm. (E.10)

This yields for the approximate time-evolution of the correlations

Y (alag)(t) &~ (M —1)*Y" CaCy [(1—m)? +m?] e UPB(n=n)t/h
ij n,n

+ CiCh(1 — m)m e WUPPn=m)=UPT)t/h

+ CrCn(1 — m)m etiUPP A=) =U/h (g 1)
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E. Theory on Bose-Fermi quantum phase revivals

Without making any further assumptions on the exact atom number statistics of the bosonic
component (i.e. the coefficients ¢, and C,,) the scaling of the first revival as a function of the
fermionic filling 7 can be derived for UPF /UBB = 2 4 0.5 (2 € Z). Inserting this condition
and the first revival time ¢.., = h/UPB we get

Y talag ) = (M —1)° iCﬁCn (1 —m)? + M%) — 2C3Cp (1 — m)m

ij

= (M =171 —2m)* ) CiCy, (E.12)

n,n

showing the s = (1 — 2/m)? scaling of the suppression factor discussed in section 9.1.

Coherent states

In the limit of small interactions, the bosonic coefficients can be chosen to correspond to coher-
ent states ¢, = e~ "/2q" /v/nl, where 7 is the mean bosonic filling. This gives the dynamical
evolution in the single-orbital coherent state model

S afa)(t) & (N — 1)%7 2 CosUPPM=D o £1 — 9qm(1 —m)[1 - cos(UPFt/R)]}
ij
(E.13)
already introduced in section 9.1.

E.2. Scenario 2
In the second scenario, we assume that some of the M lattice sites are occupied by a fermionic

atom (i € Npr where, pr = 1,..., Npr) and the others are not (j € Dipp, where Jpg =
Npr + 1, ..., M). The Gutzwiller many-body quantum state can be ordered:

w) = [ le:@®) ] I, (E.14)

1ENBR JENBB

where the time-dependent wavefunctions for sites with a fermion are given by

(6i(8)) = > dpe Er1t M, 1) (E.15)

and those without a fermion read

|6;(1)) = cne” Frot/n, 0). (E.16)

As in scenario 1 we make the assumptions ¢!, = ¢, = /1 —mc, and d}, = d,, = VM cy.
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E.2. Scenario 2

The two kinds of occupation give rise to individual terms in the dynamical evolution. Fo-
cussing on the correlations between sites ¢ and j (compare equation E.4) the sum can be split
into four terms

M M
> (afag(t) =D (ala + D (alag)+ D (alay) +2%e | Y (alay)| . @17)
ij 1=1 ,j€NBRF 4,j€NBB 1€NBF

i#] i#j /€N

The first summand appears identically in scenario 1 and it scales oc M. The second summand
scales as oc Nip, the third as o< (M — Npp)? = Nj and the fourth as oc 2NgpNp. The
time evolution is again determined by the eigenenergies of equation E.10 and <&1de)(t) =
($i(D)afloi(t)) - (&;()]a;]6;(2)) for i # j.

Further evaluation yields that the first term is constant in time and merely counts the total
number of bosons. The evolution of the second and the third term is determined by the energies
UBB (n—n). They can interfere with the dynamics of the fourth term, which evolves according
to the energies UBB (n—n)+U BF " At the time of the first quantum phase revival t = h/ UBB
the fourth term destructively interferes with the second and the third one when the additional
condition UBF JU BB — > 4+0.5 (z € Z) is met. The modulation depth of the first revival scales
as

M + @2 M? + M? — QWXQ +m2M? — (2mM? — 2m*M?) ~ M?*(4m* —4m + 1)

2.term 3.term

4.term

= M?*(1—2m)% (E.18)

where m = Npp/M is the fermionic filling. An overall factor given by the bosonic filling 7
has been omitted for simplicity. The scaling for the suppression of the first revival is identical
to the first scenario! Full suppression is achieved when half of the lattice sites are occupied
with a fermion, m = 0.5.
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