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Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals
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We theoretically demonstrate the population switching of quantum dots (QD’s), modeled as two-level atoms
in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC’s) by self-consistent solution
of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and
electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical
Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states
(LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population
inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population
switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the
surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic
Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting
of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also
include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by
damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the
atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population
switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is
demonstrated in three separate models of QD’s placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a
cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode
side coupled to a single-mode waveguide channel in a 2D PC.
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I. INTRODUCTION

Photonic crystals (PC’s) are artificial periodic dielectric
materials capable of localizing light, providing very strong
light-matter coupling, and enabling engineering of the elec-
tromagnetic density of states. In a photonic band gap (PBG),
light in a certain frequency range cannot propagate due to
destructive wave interference in all spatial directions [1–3].
Point and line defects in PBG materials correspond to localized
modes and waveguides of light, respectively [4,5]. Remarkable
subwavelength circuit paths for light with sharp bends and
near-perfect transmission over a broad bandwidth can be
realized in a PBG with single-mode waveguides. Moreover,
a combination of cavities and waveguides enables filtering
light with a certain frequency [6,7]. These properties enable
functional three-dimensional integrated optics [8–12].

PBG materials also enable control of spontaneous emission
of light [2]. The rate of spontaneous emission is determined by
the local density of states (LDOS) of photons (Purcell effect)
in the vicinity of the emitting atom [11,12]. In conventional
materials, the LDOS is constant or monotonically increasing
with frequency. In a PBG material, however, the LDOS
can be made orders of magnitude larger or smaller than in
conventional materials over large volumes. While LDOS’s
inside PBG’s may vanish, those near photonic band edges
can be dramatically enhanced. In other words, spontaneous
emission can be greatly inhibited and greatly enhanced within
adjacent frequency intervals in a PBG material [12].

Moreover, abrupt changes of LDOS can be combined with
very strong light-matter coupling in a PC to enable population
inversion of two-level atoms driven by external continuous
waves [12–14] and optical pulses [15,16]. When electrons are
resonantly excited by external light with the frequency ωL,
populations at ground and excited states oscillate with the
Rabi frequency, 2�, defined by dipole coupling energy of
the field to the atom. The emission spectrum exhibits three
frequency components of ωL and ωL ± 2� (Mollow triplet)
[17]. When strong coupling is combined with large contrast
of LDOS’s at ωL ± 2�, population inversion can be achieved
with low-power external light.

Previous studies of atomic population switching and inver-
sion have considered simplified models of either the atomic
response or the field electrodynamics. Initial studies [18]
demonstrate collective atomic switching for a steady-state
applied field, with an assumed LDOS profile without any
specific PBG waveguide geometry. This was then generalized
to steady-state switching of a collection of independent
inhomogeneously broadened quantum dots (QD’s) distributed
in a PBG waveguide geometry. Here electromagnetic wave
propagation in the waveguide was simulated by the finite-
difference time-domain (FDTD) method, but the atomic
response was described by a steady-state susceptibility and
an assumed LDOS profile [19]. This demonstrated the validity
of QD-population switching for optical pulse control using
realistic optical power levels and QD parameters. A more
microscopic picture of atomic Bloch vector dynamics reveals
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[15,16] a remarkable, high-contrast dynamic switching effect
with nearly complete atomic inversion long after the exciting
optical pulse has subsided. This suggests the possibility of
on-chip optical information processing and multiwavelength
channel all-optical transistor action. However, this study
utilized an assumed LDOS profile rather than an electromag-
netic reservoir resulting from a specific dielectric geometry
surrounding the QD’s.

In this paper, we provide a fully self-consistent description
of QD Bloch vector dynamics, electromagnetic wave propa-
gation, and electromagnetic LDOS. No assumption is made
about the LDOS profile in the vicinity of the QD. Instead,
the density of modes and the mode spatial profile emerge
from FDTD simulation of the wave field in specific dielectric
geometries. In our self-consistent, microscopic model, the
total electromagnetic wave field (consisting of external optical
pulses and radiation from the QD’s) acts as a driving term
for atomic Bloch vector dynamics. The quantum expectation
value of the oscillating atomic polarization, in turn, acts as a
source term for the electromagnetic field. The self-consistent
solution of these coupled Maxwell-Bloch equations reveals
important features not present in earlier treatments. The
Mollow spectrum of the radiating QD appears naturally from
the power spectrum of the radiating dipole. When one of the
Mollow sidebands is pushed into a spectral range of high
LDOS caused by the onset of slow-group-velocity modes in
the PC, radiative emission at the corresponding frequency
is enhanced. Moreover, as emitted light accumulates in the
slow modes of the waveguide cavity, stimulated emission
takes place, further amplifying emission from relevant Mol-
low components. Our self-consistent theory with coherent
feedback reveals ultrafast, high-contrast population switching
with much smaller jump discontinuities in the LDOS than
previously anticipated [12–16,18–20].

Whereas earlier studies have assumed a ratio of spontaneous
emission rates of well over 100 between the lower and upper
QD Mollow sidebands, the Maxwell-Bloch theory reveals
that similar switching effects can be achieved with LDOS
jumps of roughly a factor of 10. Physically, this occurs
because stimulated emission effectively amplifies the radiative
emission rate ratio relative to the dielectric-structure-induced
LDOS ratio between the Mollow sidebands. As a result,
QD-based population switching and control of light with
light is much more robust than previously recognized. In
particular, this suggests that our switching effect may be
accessible in present-day 2D membrane photonic crystals.
We also introduce a microscopic model for dipole dephasing
and nonradiative decay of the QD Bloch vector arising from
interaction with acoustic phonons in the PC backbone. In
the event that a polaronic cloud can form more rapidly than
the Bloch vector responds to the surrounding electromagnetic
fields, the effective transition dipole of the QD is reduced by the
Frank-Condon effect. In the event that the phonons themselves
decay by anharmonic processes, nonradiative decay occurs.

For numerical analysis of PC’s, the plane-wave expansion
(PWE) [21] and FDTD methods [22] are powerful tools
for obtaining photonic band structures and electromagnetic
field dynamics, respectively. Electrons and electromagnetic
waves satisfy the atomic Bloch [23] and Maxwell equations,

respectively. Solving these two equations self-consistently, we
can obtain time-dependent populations of electrons at ground
and excited states. We use FDTD to solve the Maxwell-Bloch
equations [24–27]. In the Maxwell-Bloch equations we do not
require any ansatz for the electromagnetic LDOS. Instead,
we simply set up structural parameters for concrete PC
geometries and place two-level atoms at specific positions. We
demonstrate that most radiative emissions can be recaptured
by the Maxwell-Bloch equations without recourse to any
phenomenological spontaneous emission decay terms.

We consider electrons in QD’s as particles in boxes with
dimensions of Lx × Ly × Lz. Energy states of QD’s are
controlled by these lengths. When electric fields are polarized
in the z direction, the transition energy between ground and
excited states depends only on Lz. In one-dimensional (1D)
PC’s, dielectric multilayer stacks are described as modulated
dielectrics in the x direction and infinite in the yz plane. In
our terminology, QD’s at x = x ′ refer to QD’s distributed in
the yz plane at x = x ′. Accordingly, we must consider the
areal density of QD’s in the yz plane. We refer to these QD
distributions as QD layers. In two-dimensional (2D) PC’s,
dielectric pillars are described as modulated dielectrics in the
xy plane and infinite in the z direction. QD’s at (x,y) = (x ′,y ′)
refer to dots distributed in the z direction at (x,y) = (x ′,y ′).
We consider the linear density of QD’s in the z direction. We
refer to these QD distributions as the QD rods.

In this paper, we consider specific 1D and 2D PC’s for the
sake of numerical convenience. More realistic architectures
suited for fabrication and optical experiments (and requiring
considerably more computational time) will be discussed else-
where. Our model systems, nevertheless, provide the correct
qualitative picture. One-dimensional PC’s are composed of
planar SiO2 layers in the air, and a QD layer is distributed
inside a SiO2 layer. The QD layer is excited by external
light propagating normal to 1D stacks. We choose 2D PC’s
composed of GaN circular rods arrayed in a square lattice in
an air background. This exhibits a large PBG for transverse
magnetic (TM) modes propagating perpendicular to the rod
axes with electric field in the z direction. To introduce a
bimodal waveguide in the 2D PC, one row of rods is completely
removed (air mode), and an adjacent row is composed of
dielectric rods with smaller radii (dielectric mode). Two guided
modes then appear inside the PBG. An LDOS jump occurs
when the dielectric mode has a cutoff frequency inside the
PBG. A QD rod is inserted in place of one rod of the dielectric
mode. The QD rod is evanescently excited by light propagation
through the adjacent air mode. We also consider a single-mode
air waveguide with a side-coupled defect consisting of a
smaller dielectric rod. A QD rod is distributed inside this
smaller dielectric rod. Here the localized defect mode is
associated with a sharp modulation of the electromagnetic
LDOS near the QD transition frequency.

This paper is organized as follows. In Sec. II, we formulate
the Maxwell-Bloch equations, including radiative emission
and phonon dephasing, and discuss computational methods
for solving this system of nonlinear equations self-consistently.
We also discuss QD energy spectra and how the electromag-
netic LDOS can be inferred from the FDTD simulation of
the wave field. In Sec. III, we present our numerical results
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for various PC model systems and discuss their interpretation.
Section IV contains our overall conclusions.

II. MAXWELL-BLOCH EQUATIONS

A. Quantum-dot Bloch equation

1. Radiative coupling without dephasing

QD’s with ground and excited states, with energies h̄ω1 and
h̄ω2, respectively, are considered as two-level atoms. We use
the Heisenberg equations of motion for the atomic operators:

dci(t)

dt
= − i

h̄
[ci(t),H ], (1)

where ci(t) = eiHt/h̄cie
−iH t/h̄, ci and c

†
i are the electron

annihilation and creation operators, respectively, at the ground
(i = 1) or excited (i = 2) state, and H = HA − d · E(t) =
h̄ωAc

†
2c2 − d0 · E(t)(c†1c2 + c

†
2c1). The annihilation and cre-

ation operators satisfy the fermionic anticommutation alge-
bra {ci,c

†
j } = cic

†
j + c

†
j ci = δij and {ci,cj } = cicj + cj ci = 0

(i,j = 1,2). HA is the Hamiltonian of the two-level atom,
ωA = ω2 − ω1 is the atomic frequency, d = −er is the electric
dipole of the atom, d0 = 〈1|d|2〉 = 〈2|d|1〉 is real, and E(t) is
the electric field. Equation (1) yields

dc1(t)

dt
= i

d0 · E(t)

h̄
c2(t) (2)

dc2(t)

dt
= −iωAc2(t) + i

d0 · E(t)

h̄
c1(t). (3)

Likewise, it follows that

dc
†
1(t)c2(t)

dt
= −iωAc

†
1(t)c2(t)

−i
d0 · E(t)

h̄
[c†2(t)c2(t) − c

†
1(t)c1(t)] (4)

dc
†
1(t)c1(t)

dt
= i

d0 · E(t)

h̄
[c†1(t)c2(t) − c

†
2(t)c1(t)]

= −dc
†
2(t)c2(t)

dt
. (5)

c
†
1(t)c1(t) + c

†
2(t)c2(t) = 1 (= const) is satisfied since

d[c†1(t)c1(t) + c
†
2(t)c2(t)]/dt = 0. We define the operators

σ1(t) = c
†
1(t)c2(t) + c

†
2(t)c1(t), σ2(t) = i[c†1(t)c2(t) − c

†
2(t)c1

(t)], and σ3(t) = c
†
2(t)c2(t) − c

†
1(t)c1(t) = 2c

†
2(t)c2(t) − 1.

Taking averages of the operators 〈σi(t)〉 = tr[ρσi(t)] =∑2
n=1〈n|ρσi(t)|n〉, where ρ is the atomic density operator,

〈c†1(t)c1(t)〉 and 〈c†2(t)c2(t)〉 indicate the populations at the
ground and excited states, respectively. Then, we obtain

d

dt

⎡
⎣ 〈σ1(t)〉

〈σ2(t)〉
〈σ3(t)〉

⎤
⎦

=
⎡
⎣ 0 −ωA 0

ωA 0 2d0 · E(t)/h̄
0 −2d0 · E(t)/h̄ 0

⎤
⎦

⎡
⎣ 〈σ1(t)〉

〈σ2(t)〉
〈σ3(t)〉

⎤
⎦ . (6)

Equation (6) is called the atomic Bloch Equation [23].
In the absence of radiative or phonon-mediated

damping or dephasing, 〈σ1(t)〉2 + 〈σ2(t)〉2 + 〈σ3(t)〉2 =
〈σ eq

1 〉2 + 〈σ eq
2 〉2 + 〈σ eq

3 〉2 = const, where 〈σ eq
i 〉 = tr[ρeqσi]

(i = 1,2,3). ρeq = e−HA/kBT /tr[e−HA/kBT ] is the density
operator in thermal equilibrium, where kB and T are the
Boltzmann factor and temperature, respectively. Then, 〈σ eq

1 〉 =
0, 〈σ eq

2 〉 = 0, and 〈σ eq
3 〉 = [e−h̄ωA/kBT − 1]/[e−h̄ωA/kBT + 1].

At zero temperature (T = 0 K), 〈σ eq
3 〉 = −1. Even at

room temperature (T = 300 K), 〈σ eq
3 〉 � −1 when ωA

corresponds to the wavelength λA = 1.5 µm. In this case,
we consider 〈σ1(t)〉2 + 〈σ2(t)〉2 + 〈σ3(t)〉2 = 1 (probability
conservation law). The electric dipole per QD is defined
by 〈d(t)〉 = −〈∂H/∂E(t)〉 = d0〈σ1(t)〉. In what follows, we
will consider the temporal oscillations of this dipole as a
source term in Maxwell’s equations. This captures aspects
of spontaneous emission and stimulated emission from the
atom as it radiates in response to an external field or in
response to previously emitted light, trapped in an optical
cavity mode near the atom. In a colored electromagnetic
vacuum, with a steplike jump in the LDOS, this stimulated
emission effectively enhances the disparity between the
spontaneous emission rates on either side of the discontinuity.
Before discussing this effect in detail, we consider the role of
additional interactions of the atom with its environment. One
of these is the coupling of the QD to lattice vibrations of the
host semiconductor. The resulting dipole dephasing effects,
together with random spontaneous emission, allow the QD
Bloch vector to explore the interior of the unit Bloch sphere
during its dynamical evolution. The state of the QD is no
longer a pure quantum state, but rather a statistical mixture.

2. Phonon dephasing with undamped phonons

We first consider the influence of undamped phonons
with infinite lifetime. Lattice vibrations interact with the QD
to induce small, rapidly fluctuating shifts in the ground-to-
excited-state transition energy and diminish the QD dipole as
it evolves in the Bloch sphere. The following Hamiltonian
includes the QD-phonon interaction [28]:

H = h̄ωAc
†
2c2 − d0 · E(t)(c†1c2 + c

†
2c1)

+
∑

q

ηq(b†qc
†
2c2 + c

†
2c2bq) +

∑
q

h̄ωqb
†
qbq, (7)

where q is the phonon wave vector, ωq is the phonon
frequency, ηq is the electron-phonon interaction coefficient,
and bq and b

†
q are the annihilation and creation opera-

tors of phonons, respectively ([bq,b
†
q] = 1). bq(t) satisfies

the Heisenberg equation of motion, dbq(t)
dt

= −iωqbq(t) −
i

ηq

h̄
c
†
2(t)c2(t) � −iωqbq(t). (Conventionally, the second term

is neglected for simplicity, although ηq is larger than
h̄ωq at a certain |q| [28].) Then, bq(t) = bqe

−iωqt (inde-
pendent boson model). Using the polaron transformation
Ĥ = eXHe−X, where X = ∑

q
ηq

h̄ωq
(b†qc

†
2c2 − c

†
2c2bq), we ob-

tain Ĥ = h̄(ωA − 	)c†2c2 − d0 · E(t)(c†1D−c2 + c
†
2D+c1) +∑

q h̄ωqb
†
qbq, where 	 = ∑

q
η2

q

h̄2ωq
is the polaron shift and
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D± = exp[±∑
q

ηq

h̄ωq
(b†q − bq)] are lattice displacement oper-

ators. Then, H = e−XĤeX is rewritten as

H = h̄(ωA − 	)c̃†2c̃2 − d0 · E(t)(c̃†1D−c̃2 + c̃
†
2D+c̃1)

+
∑

q

h̄ωqb̃
†
qb̃q, (8)

where c̃1 = e−Xc1e
X = c1, c̃2 = e−Xc2e

X = D+c2, and
b̃q = e−Xbqe

X = bq + ηq

h̄ωq
c
†
2c2. The polaron-transformed

atomic Bloch vector component operators are 〈σ̃i(t)〉 =
〈σi(t)〉 since c̃

†
1D−c̃2 = c

†
1c2 and c̃

†
2D+c̃1 = c

†
2c1. On

the other hand, e−XD±eX = exp[±∑
q

ηq

h̄ωq
(b̃†q − b̃q)] =

exp[±∑
q

ηq

h̄ωq
(b†q − bq)] = D±. The Heisenberg Equation (1)

yields

dc̃1(t)

dt
= i

d0 · E(t)

h̄
D−(t)c̃2(t) (9)

dc̃2(t)

dt
= −i(ωA − 	)c̃2(t) + i

d0 · E(t)

h̄
D+(t)c̃1(t). (10)

Then, c̃
†
1(t)c̃1(t) = c

†
1(t)c1(t) and c̃

†
2(t)c̃2(t) = c

†
2(t)c2(t) sat-

isfy

dc̃
†
1(t)c̃1(t)

dt

= i
d0 · E(t)

h̄
[c̃†1(t)D−(t)c̃2(t) − c̃

†
2(t)D+(t)c̃1(t)]

= −dc̃
†
2(t)c̃2(t)

dt
, (11)

so that c̃
†
1(t)c̃1(t) + c̃

†
2(t)c̃2(t) = 1(= const) is satisfied.

Using c̃
†
1(t) = c̃

†
1(0) − i

∫ t

0 dτ d0·E(τ )
h̄

c̃
†
2(τ )D+(τ ) and

c̃2(t) = c̃2(0)e−i(ωA−	)t + i
∫ t

0 dτe−i(ωA−	)(t−τ ) d0·E(τ )
h̄

D+(τ )c̃1

(τ ), we obtain the quantum expectation value (see
the Appendix) of the polaron-transformed atomic
deexcitation operator 〈σ̃−(t)〉 = [〈σ̃1(t)〉 − i〈σ̃2(t)〉]/2 =
〈c̃†1(t)D−(t)c̃2(t)〉:

〈σ̃−(t)〉 = 〈c̃†1(0)D−(t)c̃2(0)〉e−i(ωA−	)t

−i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄

× [〈c̃†2(τ )D+(τ )D−(t)c̃2(τ )〉
− 〈c̃†1(τ )D−(t)D+(τ )c̃1(τ )〉]

� 〈c̃†1(0)D−(t)c̃2(0)〉e−i(ωA−	)t

−i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄

× [〈D+(τ )D−(t)〉〈c̃†2(τ )c̃2(τ )〉
− 〈D−(t)D+(τ )〉〈c̃†1(τ )c̃1(τ )〉]

= 〈c̃†1(0)D−(t)c̃2(0)〉e−i(ωA−	)t

−i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄

× [eR(τ−t)−S〈c̃†2(τ )c̃2(τ )〉
− eR(t−τ )−S〈c̃†1(τ )c̃1(τ )〉]. (12)

From the viewpoint of the independent boson model,

〈D±(t1)D∓(t2)〉 = eR(t1−t2)−S , where R(t) = ∑
q

η2
q

h̄2ω2
q
[(nq +

1)e−iωqt + nqe
iωqt ] and S = R(0) = ∑

q
η2

q

h̄2ω2
q
(2nq + 1) are

phonon dynamics and the Huang-Rhys factor, respec-
tively [29]. nq = 〈b†qbq〉 = 1/[exp(h̄ωq/kBT ) − 1] is the
thermal Bose-Einstein distribution. In the above, we have
used the mean-field factorization 〈c̃†2(τ )D+(τ )D−(t)c̃2(τ )〉 �
〈D+(τ )D−(t)〉〈c̃†2(τ )c̃2(τ )〉 and 〈c̃†1(τ )D−(t)D+(τ )c̃1(τ )〉 �
〈D−(t)D+(τ )〉〈c̃†1(τ )c̃1(τ )〉.

If |�〉 = |1〉 (ground state), then c̃2(0)|�〉 = 0, whereas
if |�〉 = |2〉 (excited state), then 〈�|c̃†1(0) = 0. Therefore, in
what follows, we set 〈c̃†1(0)D−(t)c̃2(0)〉 = 0.

When inputting the δ-pulse electric field E(t) = E0δ(t)
in the absence of spontaneous emission, 〈σ̃−(t)〉 =
−i(d0 · E0/h̄)e−i(ωA−	)t [eR(−t)−S〈c̃†2(0)c̃2(0)〉 − eR(t)−S〈c̃†1(0)
c̃1(0)〉]�(t), where �(t) = 1 for t > 0 and �(t) = 0 for
t < 0. When initial states are ground and excited states,
〈σ̃−(t)〉 = i(d0 · E0/h̄)e−i(ωA−	)t eR(t)−S and −i(d0 · E0/h̄)
e−i(ωA−	)t eR(−t)−S , respectively. From 〈d(t)〉 =
−〈∂H/∂E(t)〉 = d0[〈σ̃−(t)〉 + 〈σ̃+(t)〉] = d0〈σ̃1(t)〉, the
electric dipole oscillates with e−i(ωA−	)t eR(±t)−S , and this
oscillation becomes e−i(ωA−	)t e−S after sufficient time has
elapsed [R(±t) → 0]. This means that undamped phonons
weaken the dipole oscillation but the dipole keeps oscillating.
When initial states are ground and excited states, absorption
and emission occur, respectively. Therefore, dipole oscillations
of e−i(ωA−	)t eR(t)−S and e−i(ωA−	)t eR(−t)−S correspond to
those of the absorption and emission, respectively.

We consider the spectral decomposition of the
thermal phonon dynamics g±(t) = e−i(ωA−	)t+R(±t)−S =∫ ∞
−∞ dωg±(ω)e−iωt , where g+(ω) and g−(ω) can be interpreted

as the absorption and emission line shapes due to phonon de-
phasing with undamped phonons, respectively, in the absence
of spontaneous emission.

g±(ω) = 1

2π

∫ ∞

−∞
dtei(ω−ωA+	)t+R(±t)−S

= 1

π
Re

[ ∫ ∞

0
dtei(ω−ωA+	)t+R(±t)−S

]

= e−Sδ(ω − ωA + 	)

+e−S

π
Re

{ ∫ ∞

0
dtei(ω−ωA+	)t [eR(±t) − 1]

}
(13)

with
∫ ∞
−∞ dωg±(ω) = 1. The second term on the right-hand

side of Eq. (13) can be calculated numerically by the fast
Fourier transform. g±(ω) are real and temperature dependent
and, in the absence of spontaneous emission, have a sharp peak
at ω = ωA − 	 and a broad phonon dephasing peak near ω =
ωA − 	. We define gs(ω) = [g+(ω) + g−(ω)]/2 and ga(ω) =
[g+(ω) − g−(ω)]/2, where gs(ω) and ga(ω) are symmetric and
antisymmetric, respectively, with respect to ω = ωA − 	.

We define Fa,s(t,ω) ≡ −i
∫ t

0 dτe−iω(t−τ ) d0·E(τ )
h̄

[〈c̃†2(τ )c̃2

(τ )〉 ± 〈c̃†1(τ )c̃1(τ )〉]. For Fa(t,ω), the quantity in square
brackets reduces to unity, 〈c̃†1(τ )c̃1(τ )〉 + 〈c̃†2(τ )c̃2(τ )〉 = 1,
whereas, for Fs(t,ω), the quantity in square brackets is
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〈σ3(τ )〉 = 〈c̃†2(τ )c̃2(τ )〉 − 〈c̃†1(τ )c̃1(τ )〉. It follows from Eq.
(12) and the above definitions that

〈σ̃−(t)〉 =
∫ ∞

−∞
dω[gs(ω)Fs(t,ω) − ga(ω)Fa(t,ω)]. (14)

We have used g±(ω) = gs(ω) ± ga(ω). Actually, the first term
on the right-hand side of Eq. (14) is much larger than the
second term.
dFa,s(t,ω)

dt
= −iωFa,s(t,ω)

−i
d0 · E(t)

h̄
[〈c̃†2(t)c̃2(t)〉 ± 〈c̃†1(t)c̃1(t)〉]. (15)

Introducing the notation 〈σ1(t)〉(ω)
s,a = 2Re[Fs,a(t,ω)],

〈σ2(t)〉(ω)
s,a = −2Im[Fs,a(t,ω)], we obtain

d〈σ1(t)〉(ω)
s,a

dt
= −ω〈σ2(t)〉(ω)

s,a (16)

d〈σ2(t)〉(ω)
s

dt
= ω〈σ1(t)〉(ω)

s + 2
d0 · E(t)

h̄
〈σ3(t)〉 (17)

d〈σ2(t)〉(ω)
a

dt
= ω〈σ1(t)〉(ω)

a + 2
d0 · E(t)

h̄
(18)

d〈σ3(t)〉
dt

= −2
d0 · E(t)

h̄

×
[ ∫ ∞

−∞
dωgs(ω)〈σ2(t)〉(ω)

s

−
∫ ∞

−∞
dωga(ω)〈σ2(t)〉(ω)

a

]
. (19)

It follows from the consideration after Eq. (11) that 〈σi(t)〉 =[∫ ∞
−∞ dωgs(ω)〈σi(t)〉(ω)

s − ∫ ∞
−∞ dωga(ω)〈σi(t)〉(ω)

a

]
(i = 1,2).

Equations (16)–(19) correspond to the atomic Bloch equation
including phonon dephasing in the absorption and emission
processes. A physical meaning of these equations is that we
assign a weight function g±(ω) that the transition frequency
of QD’s is shifted from ωA to ω due to phonon dephas-
ing. In the case of dynamic phonon-mediated broadening,
〈σ1(t)〉2 + 〈σ2(t)〉2 + 〈σ3(t)〉2 � 1. In other words, the QD
Bloch vector explores the interior of the unit sphere due to
phonon dephasing.

3. Damped phonons and nonradiative relaxation

Dephasing by infinitely-long-lived phonons reduces the
atomic polarization but does not cause decay of the excited QD
to its ground state. If the phonons have a finite lifetime due to
anharmonic decay to lower-frequency phonons, this provides
a microscopic mechanism for nonradiative decay. To describe
this effect, we introduce a phenomenological decay in which
the time-dependent annihilation and creation phonon operators
satisfy bq(t) = bqe

−iωqt−γq|t | and b
†
q(t) = b

†
qe

iωqt−γq|t |. From
the independent boson model, it can be shown [30] that
〈D±(t1)D∓(t2)〉 = e−�damp|t1−t2|eR̄(t1−t2)−S̄(t1−t2), where

�damp =
∑

q

η2
qγq

h̄2
(
ω2

q + γ 2
q

) (2nq + 1). (20)

R̄(t) = ∑
q

η2
q

h̄2 [(nq + 1) e−iωq t−γq t

(ωq−iγq)2 + nq
eiωq t−γq t

(ωq+iγq)2 ]�(t) +∑
q

η2
q

h̄2 [(nq + 1) e−iωq t+γq t

(ωq+iγq)2 + nq
eiωq t+γq t

(ωq−iγq)2 ]�(−t) and

S̄(t) = ∑
q

η2
q

h̄2 [ nq+1
(ωq−iγq)2 + nq

(ωq+iγq)2 ]�(t) + ∑
q

η2
q

h̄2 [ nq+1
(ωq+iγq)2 +

nq

(ωq−iγq)2 ]�(−t) = S̄+�(t) + S̄−�(−t) are the modified
phonon dynamics and Huang-Rhys factor, respectively.
Unlike in undamped phonons, the modified Huang-Rhys
factor S̄± is not real but complex. Although conventionally
t > 0 is assumed, we consider both t > 0 and t < 0 for the
discussion of absorption and emission line shapes. Then,
Eq. (12) is modified as follows:

〈σ̃−(t)〉 → −i

∫ t

0
dτe−i(ωA−	̄)(t−τ )−�damp(t−τ ) d0 · E(τ )

h̄

× [eR̄(τ−t)−S̄(τ−t)〈c̃†2(τ )c̃2(τ )〉
− eR̄(t−τ )−S̄(t−τ )〈c̃†1(τ )c̃1(τ )〉], (21)

where 	̄ = ∑
q

η2
qωq

h̄2(ω2
q+γ 2

q )
and we have used the previously

discussed properties of c̃2(0) and c̃
†
1(0). This means that

the electric dipole oscillates with e−i(ωA−	̄)t−�dampt eR̄(±t)−S̄(±t),
and this oscillation decays to zero after sufficient time has
elapsed, unlike in the case of undamped phonons. Even in the
absence of radiative spontaneous emission, the QD excitation
energy is completely dissipated via damped phonons. We
note also that the phonon damping parameters γq reduce
the polaronic frequency shift 	̄ and also restrain the Frank-
Condon transition matrix element overlap effects e−S̄± between
the polaronic excited state and ground state.

The absorption and emission line shapes due to phonon
dephasing with damped phonons become [following the same
steps leading to Eq. (13)]

g±(ω) = 1

2π

∫ ∞

−∞
dtei(ω−ωA+	̄)t−�damp|t |+R̄(±t)−S̄(±t)

= Re

[
e−S̄±

π

�damp + i(ω − ωA + 	̄)

(ω − ωA + 	̄)2 + �2
damp

]

+ 1

π
Re

{ ∫ ∞

0
dtei(ω−ωA+	̄)t−�dampt e−S̄±

× [eR̄(±t) − 1]

}
, (22)

with
∫ ∞
−∞ dωg±(ω) = 1. With increasing �damp, g±(ω) be-

comes broader. However, we need a very fine mesh of
frequencies to accurately describe the first term (sharp peak)
on the right-hand side of Eq. (22) for small �damp. In analogy
to Eq. (13),

ḡ±(ω) = 1

2π

∫ ∞

−∞
dtei(ω−ωA+	̄)t+R̄(±t)−S̄(±t)

= Re

{
e−S̄±

[
δ(ω − ωA + 	̄) + i

π
P

(
1

ω − ωA + 	̄

)]}

+ 1

π
Re

{∫ ∞

0
dtei(ω−ωA+	̄)t e−S̄± [eR̄(±t) − 1]

}
,

(23)

with
∫ ∞
−∞ dωḡ±(ω) = 1 and P being the principal value.

Using ḡs(ω) = [ḡ+(ω) + ḡ−(ω)]/2 and ḡa(ω) = [ḡ+(ω) −
ḡ−(ω)]/2, we introduce the spectral decomposition of
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〈σi(t)〉 = ∫ ∞
−∞ dωḡs(ω)〈σ̄i(t)〉(ω)

s − ∫ ∞
−∞ dωḡa(ω)〈σ̄i(t)〉(ω)

a for
i = 1,2. In analogy to Eq. (14), we introduce

〈σ̃−(t)〉 =
∫ ∞

−∞
dω[ḡs(ω)F̄s(t,ω) − ḡa(ω)F̄a(t,ω)], (24)

where F̄a,s(t,ω) = −i
∫ t

0 dτe−iω(t−τ )−�damp(t−τ ) d0·E(τ )
h̄

[〈c̃†2(τ )c̃2(τ )〉 ± 〈c̃†1(τ )c̃1(τ )〉] satisfy relations analogous
to Eq. (15):

dF̄a,s(t,ω)

dt
= [−iω − �damp]F̄a,s(t,ω)

−i
d0 · E(t)

h̄
[〈c̃†2(t)c̃2(t)〉 ± 〈c̃†1(t)c̃1(t)〉]. (25)

Introducing the notation 〈σ̄1(t)〉(ω)
s,a = 2Re[F̄s,a(t,ω)] and

〈σ̄2(t)〉(ω)
s,a = −2Im[F̄s,a(t,ω)] leads to the following ansatz

for atomic Bloch vector dynamics in the presence of phonon
dephasing with damped, finite-lifetime phonons:

d〈σ̄1(t)〉(ω)
s,a

dt
= −�damp〈σ̄1(t)〉(ω)

s,a − ω〈σ̄2(t)〉(ω)
s,a (26)

d〈σ̄2(t)〉(ω)
s

dt
= ω〈σ̄1(t)〉(ω)

s − �damp〈σ̄2(t)〉(ω)
s

+ 2
d0 · E(t)

h̄
〈σ3(t)〉 (27)

d〈σ̄2(t)〉(ω)
a

dt
= ω〈σ̄1(t)〉(ω)

a − �damp〈σ̄2(t)〉(ω)
a

+ 2
d0 · E(t)

h̄
(28)

d〈σ3(t)〉
dt

= −2
d0 · E(t)

h̄

[ ∫ ∞

−∞
dωḡs(ω)〈σ̄2(t)〉(ω)

s

−
∫ ∞

−∞
dωḡa(ω)〈σ̄2(t)〉(ω)

a

]

−�pop[〈σ3(t)〉 + 1] (29)

The first term on the right-hand side of Eq. (29) describes
radiative suppression of the atomic population in the presence
of damped phonon sidebands. However, this by itself does not
force the atomic Bloch vector to reach the ground state in
all cases in the long-time limit. It has been shown in a full
quantum theory [30] that, even in the presence of complete 3D
PBG’s, coupling to damped, finite-lifetime acoustic phonons
leads to a decay of the atomic excited-state population to
zero. In order to recapture the correct physical behavior in
our model, we introduce a phenomenological decay rate �pop,
This parameter is influenced by the polarization decay rate
�damp but may be smaller than �damp due to Frank-Condon
displacement of the excited atomic state from its ground
state due to the surrounding phonon cloud. In our numerical
studies, we choose �damp and �pop in a manner consistent with
experimental observations.

As in this case of phonon dephasing, for damped phonons,
〈σ1(t)〉2 + 〈σ2(t)〉2 + 〈σ3(t)〉2 � 1, and the QD Bloch vector
probes the interior of the unit sphere. In Eqs. (26)–(29),
radiative decay is influenced by the reduction of effective
transition dipole by phonon-mediated dephasing and the
Frank-Condon factor e−S̄± arising from polaronic shift of
the excited-state wave function. These effects are, in turn,

weakened by the finite lifetime of the phonons comprising the
polaronic cloud around the QD. Our model also provides a
mechanism for nonradiative relaxation through the parameter
�pop and the parameter �damp that is determined [see Eq. (20)]
by the electron-phonon coupling parameter nq, the phonon
dispersion ωq, and the phonon damping rates γq.

In the atomic Bloch equation, 〈σ3(t)〉 defines the nature of
population inversion. When 〈σ3(t)〉 > 0, population inversion
is achieved. In Eqs. (6), (16)–(19), and (26)–(29), E(t) includes
the input electric field Ein(t) and the electric field radiated
from the two-level atom Erad(t). Erad(t) describes spontaneous
and stimulated emission. Conventionally, the term including
Erad(t) is replaced for the phenomenological decay term
of spontaneous emission [23]. In this paper, however, no
such phenomenological decay terms are attached since we
calculate E(t) [= Ein(t) + Erad(t)] by Maxwell equations. In
this way, features of the structured electromagnetic vacuum
are automatically probed by the Maxwell-Bloch equations.
There is no need to include different phenomenological
radiative decay parameters γ± for spontaneous emission in
high- and low-density-of-states regions as done previously
[12–16,18,19]. We note, however, that spontaneous emission
in our model occurs only if the atomic dipole is activated. In our
simulation, this condition is satisfied since QD is interacting
with a strong external optical pulse. In the event that such an
external trigger mechanism is not present, it is necessary to
introduce a randomly fluctuating noise term in the equation
of motion for the atomic operators. Such a noise term has
been described previously [31] in the context of a structured
electromagnetic reservoir. Vacuum fluctuation can be replaced
by a classical noise function. In other words, it involves a
stochastic function: Evac(t) = ∑N

n=1 En cos(ωnt + �n), where
ωn is the discrete frequency and �n is the random phase.
When N → ∞, the ensemble of Evac(t) converges to zero,
〈Evac(t)〉ens = 0, because of the sum of random phases. On the
other hand, the expansion coefficient En is chosen to satisfy
that 〈Evac(t) · Evac(t ′)〉ens coincides with the underlying tempo-
ral autocorrelation of a quantum noise operator [31]. Adding
Evac(t) to E(t), we can incorporate the vacuum fluctuation in
the Maxwell-Bloch equation. Our damped phonon model with
phenomenological population decay parameter �pop provides
decay that supersedes vacuum fluctuations and allows us to
circumvent these subtleties with a simple model.

B. Maxwell equations with electric polarizations

Electromagnetic fields E(r; t) and H(r; t) satisfy the
Maxwell equations.

∇ × E(r; t) = −µ0
∂H(r; t)

∂t
, (30)

∇ × H(r; t) = J(r; t) + σ (r)E(r; t) + ε0ε(r)
∂E(r; t)

∂t
, (31)

where

J(r; t) = ∂P(r; t)

∂t
. (32)

ε0(= 8.854 × 10−12 F/m) and µ0(= 4π × 10−7 H/m) are the
permittivity and permeability, respectively, in vacuum. Here,
σ (r) is the conductivity and ε(r) is the dielectric constant

053811-6



SELF-CONSISTENT MAXWELL-BLOCH THEORY OF . . . PHYSICAL REVIEW A 83, 053811 (2011)

determined by the dielectric microstructure. J(r; t) is the
electric current density. The electric polarization P(r; t) is
defined by P(r; t) = N (r)〈d(t)〉 = N (r)d0〈σ1(t)〉, [〈d(t)〉 =
−〈∂H/∂E(r; t)〉 = d0〈σ1(t)〉]. In our self-consistent numer-
ical simulations, 〈σ1(t)〉 is determined from Eqs. (6), (16)–
(19), and (26)–(29) and the defining spectral decomposition
equations (14) and (24). N (r) is the number of QD’s per
volume and depends on the dimensionality of the specific PC
model:

N (r) =
⎧⎨
⎩

NAδ(x − x ′) (1D)
NLδ(x − x ′)δ(y − y ′) (2D)
NP δ(x − x ′)δ(y − y ′)δ(z − z′) (3D)

. (33)

In our 1D model PC, NA is the areal density of QD’s in the yz

plane at x = x ′ (QD layer). In the 2D PC, NL is the linear
density of QD’s in the z direction at (x,y) = (x ′,y ′) (QD
rod). In 3D crystals, NP is the point density or the number
of QD’s at (x,y,z) = (x ′,y ′,z′). While Eqs. (6), (16)–(19), and
(26)–(29), include E(t) = E(r′; t), Eq. (31) includes 〈σ1(t)〉 as
a source term. In other words, we obtain the time-dependent
〈σ3(t)〉 by solving the atomic Bloch and Maxwell equations
self-consistently. Maxwell equations are solved numerically
by discretization with respect to time and space, according
to the FDTD method. In this paper, we treat 1D and 2D
PC’s. While 	x/a = 1/50 and c	t/a = 1/100 in 1D PC’s ,
	x/a = 	y/a = 1/20 and c	t/a = 1/40 in 2D PC’s , where
a is the lattice constant of the PC and c is the speed of light in
a vacuum.

C. Local electromagnetic densities of states

LDOS’s are necessary for the discussion of spontaneous
emission and population inversion of QD’s in PC’s. We
describe here our method of calculating LDOS’s by the FDTD
method. We focus on the 1D and 2D TM modes. When
Jz(r,r′; t) = δ(r − r′)S(t) and σ (r) = 0.0 in Eqs. (30) and
(31), the electric field in the z direction Ez satisfies[

− ∂2

∂t2
+ c2

ε(r)
∇2

]
Ez(r,r′; t) = 1

ε0ε(r)
δ(r − r′)

∂S(t)

∂t
. (34)

In what follows we choose a Gaussian impulse
S(t) = S0e

−β(t−t ′)2
as our source in the time domain.

Fourier transforming Ez(r,r′; t) and S(t) to Ez(r,r′; ω) =∫ ∞
0 dteiωtEz(r,r′; t) and S(ω) = ∫ ∞

0 dteiωtS(t), respectively,
Eq. (34) becomes[

ω2 + c2

ε(r)
∇2

]
Ez(r,r′; ω) = −i

ω

ε0ε(r)
δ(r − r′)S(ω). (35)

S(ω) � S0
√

π/βeiωt ′e−ω2/(4β). When β = ω2
0/(4 ln 2), |S(ω =

ω0)| = |S(ω = 0)|/2. We choose ω0a/2πc = 0.5, where a is
the lattice constant. We take e−βt ′2 = 10−6.

From − c2

ε(r)∇2Ezλ(r) = ω2
λEzλ(r) and

∑
λ Ezλ(r)E∗

zλ(r′) =
V

ε(r)δ(r − r′), where ωλ and Ezλ(r) are the eigenvalues and
eigenvectors, respectively, and V is the volume, Eq. (35)
becomes

Ez(r,r′; ω) = −i
S(ω)

2ε0V

∑
λ

[
1

ω − ωλ

+ 1

ω + ωλ

]

×Ezλ(r)E∗
zλ(r′). (36)

The physical electric field amplitude is obtained from
limδ→0 Ez(r,r′; ω + iδ) = limδ→0

∫ ∞
0 dte−δt eiωtEz(r,r′; t).

This leads to a relation between the field and the local
electromagnetic density of states as follows:

Ez(r,r′; ω) = lim
δ→0

Ez(r,r′; ω + iδ)

= −i
S(ω)

2ε0V
lim
δ→0

∑
λ

[
1

ω − ωλ + iδ
+ 1

ω + ωλ + iδ

]

×Ezλ(r)E∗
zλ(r′)

= − S(ω)

2ε0V

∑
λ

π{δ(ω − ωλ) + δ(ω + ωλ)}

×Ezλ(r)E∗
zλ(r′) + i

S(ω)

2ε0V

∑
λ

{
P

(
1

ω − ωλ

)

+P

(
1

ω + ωλ

)}
Ezλ(r)E∗

zλ(r′). (37)

We have used limδ→0
1

x+iδ
= P ( 1

x
) − iπδ(x). Then, the LDOS

at r = r′ is

ρLDOS(ω; r′) = 1

V

∑
λ

[δ(ω − ωλ) + δ(ω + ωλ)]|Ezλ(r′)|2

= −2ε0

π
Re

[
Ez(r′,r′; ω)

S(ω)

]
. (38)

In the FDTD method, we apply the Gaussian impulse
Jz(r,r′; t) = δ(r − r′)S(t), detect the electric field at r = r′,
and Fourier transform it with respect to time. This is the
Ez(r′,r′; ω) in Eq. (38). In this way, we obtain the LDOS
at r = r′.

D. Quantum dots with two levels

We consider a particle-in-a-box model for the QD with the
potential energy V (x,y,z) = 0 for |x| � Lx/2, |y| � Ly/2,
and |z| � Lz/2. Otherwise, V (x,y,z) = ∞. Then, energies
and wave functions are as follows:

Enxnynz
= h̄2

2m

[(
nxπ

Lx

)2

+
(

nxπ

Ly

)2

+
(

nxπ

Lz

)2]
(39)

(nx,y,z = 1,2, . . .) and

ψnxnynz
(x,y,z) = φnx

(x)φny
(y)φnz

(z), (40)

where

φnξ
(ξ ) =

⎧⎨
⎩

√
2
Lξ

cos
(

nξ π

Lξ
ξ
)

(nξ = odd)√
2
Lξ

sin
(

nξ π

Lξ
ξ
)

(nξ = even)
(41)

for |x| � Lx/2, |y| � Ly/2, and |z| � Lz/2. Otherwise,
ψnxnynz

(x,y,z) = 0. m is the effective mass of electrons.
Although the ground state is E111, three states of E211, E121,
and E112 are considered as the excited states. In this paper, we
consider electric fields polarized in the z direction. In Eqs. (6),
(16)–(19), and (26)–(29), then, d0 · E = d0zEz = −ez0Ez.
To obtain interactions of dipoles and electric fields, z0 =
〈1|z|2〉 = 〈2|z|1〉 should be nonzero. Therefore, we take |1〉 =
ψ111(x,y,z) and |2〉 = ψ112(x,y,z). Then, z0 = (16/9π2)Lz.
When |2〉 = ψ211(x,y,z) or ψ121(x,y,z), z0 = 0.0. The transi-
tion energy is 	E = E112 − E111 = 3h̄2π2/2mL2

z = h̄ωA and
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Lz = L =
√

3π2h̄/2mωA. In this model, the transition energy
of QD’s depends only on Lz, whereas Lx and Ly do not
affect the energy gap when electric fields are polarized in the
z direction. In what follows, we consider Lx = Ly = Lz = L

(cubic model). The above situation can be realized by n-doped
semiconductor QD’s, in which an electron resides in the con-
duction band of the n-doped semiconductor. In this paper, we
choose an electron effective mass m = 0.063m0 corresponding
to n-doped GaAs QD’s, where m0 = 9.109 3826 × 10−31 kg is
the rest mass of electrons. d0z = −(16/9π2)eL, e = 1.602 ×
10−19 C, and h̄ = 1.054 × 10−34 J s. For example, when
ωA corresponds to the wavelength λA = 1.5 µm, L = 4.652
nm and |d0z| = 1.342 × 10−28 C m. The breakdown field of
GaAs is E = 4.0 × 107 V/m. In what follows, for the sake
of numerical simplicity, we use SiO2 and GaN in 1D and 2D
PC’s, respectively. The breakdown fields of SiO2 and GaN are
E = 5.0 × 108 and 1.0 × 108 V/m, respectively.

III. NUMERICAL RESULTS AND DISCUSSION

A. One-dimensional photonic crystal with a quantum-dot layer

As a diagnostic of our self-consistent Maxwell-Bloch
model, we consider a simplified 1D photonic crystal. We
consider a hypothetical 1D model PC composed of SiO2

layers in the air. [See Fig. 1(a).] Dielectric constants of SiO2

and air are ε = 2.25 and ε = 1, respectively. A thickness
of the SiO2 layers is d/a = 0.2, where a is the lattice con-
stant. We assume that ωa/2πc = a/λ = 0.403 corresponds
to λ = 1.5 µm, obtained by choosing a = 604.5 nm. Figure
1(b) shows the photonic band structure calculated with 31
plane waves by the PWE method, exhibiting the first and
second PBG’s as 0.4080 � ωa/2πc � 0.4959 and 0.8524 �
ωa/2πc � 0.9673, respectively. We consider 21 SiO2 layers:
For |x − la| � d/2 (with integer |l| � 10), ε = 2.25; other-
wise, ε = 1.0. Figure 1(c) shows the LDOS’s at x/a = 0.0
and |x|/a = 0.5 calculated by Eq. (38). Blue solid and red
dashed lines indicate the LDOS’s at x/a = 0.0 and |x|/a =
0.5, respectively. Fabry-Perot-type oscillations in the LDOS’s
result from the finite nature of the structures. As shown in
Fig. 1, LDOS’s strongly depend on positions. We focus on
LDOS’s near the first PBG. While the LDOS at x/a = 0.0
(blue solid line) is strongly enhanced near the upper edge of
the first photonic band due to the high field concentration in
the high dielectric component, the LDOS at |x|/a = 0.5 (red
dashed line) is strongly enhanced near the lower edge of the
second photonic band, where field intensity concentrates in
the low dielectric region. In what follows, we assume that a
QD layer is distributed at x/a = 0.0 and that electric fields are
polarized in the z direction. Since the QD region L is small
enough, the influence of the QD layer on the 1D LDOS can
be neglected. A single QD occupies the area L × L in the yz

direction. We consider two kinds of areal densities of QD’s in
the yz plane at x/a = 0.0. One is the case that a single QD is
distributed per area 3L × 3L, and then, NA = 1/(3L × 3L).
The other is the case that a single QD is distributed per area
L × L, and then, NA = 1/(L × L). While this would imply
that QD’s in a single layer are closely packed, an equivalent
physical realization (leading to the same effective dipole
coupling strength) corresponds to multiple layers of QD’s at

QD layer

SiO2
x

z

y

(a)

(b)

(c)

FIG. 1. (Color online) (a) Idealized 1D PC structure with 1D
LDOS jumps. Dielectric constants of SiO2 and air are ε = 2.25 and
ε = 1, respectively. The thickness of SiO2 layers is d/a = 0.2, where
a = 604.5 nm is the lattice constant. (b) Photonic band structure
for infinite 1D PC’s. First and second PBG’s occur at 0.4080 �
ωa/2πc � 0.4959 and 0.8524 � ωa/2πc � 0.9673, respectively.
(c) LDOS’s at x/a = 0.0 and |x|/a = 0.5 calculated by Eq. (38) for
a finite-size 21-layer stack. Blue solid and red dashed lines indicate
the LDOS’s at x/a = 0.0 and |x|/a = 0.5, respectively.

x/a = 0.0. We neglect the transfer of electrons to neighboring
QD’s. For L = 4.652 nm (λA = 1.5 µm), NA = 1/(3L × 3L)
and 1/(L × L) are 5.134 × 1015 and 4.621 × 1016 dots/m2,
respectively. These high areal densities of InAs QD’s have
already been fabricated experimentally [32,33].

1. Semiclassical simulation of spontaneous radiative emission

In this section we verify that our semiclassical Maxwell
Bloch equations, including incident and radiated electromag-
netic fields, recaptures the phenomenon of radiative sponta-
neous emission without recourse to any phenomenological
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(a)

(b)

(c)

FIG. 2. (Color online) (a) Spontaneous emission rate γ evaluated
by FDTD at x/a = 0.0 in 21-layer 1D PC stack of Fig. 1. ωAa/2πc =
0.3372, 0.3555, 0.375, 0.403, 0.415, and 0.45 are focused. (b) QD
population 〈σ3(t)〉 as a function of time for weak coupling NA =
1/(3L × 3L). Multiplying ct/a by a/c = 2.015 × 10−3 ps gives real
time. (c) Fourier spectrum of the emitted electric fields at ωAa/2πc =
0.3372, 0.3555, 0.3750, and 0.403 for NA = 1/(3L × 3L).

decay parameters. Our formulation describes both weak- and
strong-coupling effects.

The radiative spontaneous emission rate γ from an excited
QD is proportional to the transition frequency and the LDOS
[γ ∝ ωρLDOS(ω)] [12–14]. First, we consider NA = 1/(3L ×
3L). Figure 2(a) shows the spontaneous emission rate at
x/a = 0.0. This γ is calculated by multiplying the LDOS in
Fig. 1(c) by ω. We neglect phonon dephasing and consider
a test of our self-consistent Maxwell-Bloch equation to
describe spontaneous emission. In our semiclassical model, we
neglect quantum fluctuations in the electromagnetic vacuum.
Therefore, it is necessary to trigger the radiative emission
process by imposing a small initial polarization on the
atom. At ct/a = 0.0, we set up 〈σ1(0)〉 =

√
1 − 〈σ3(0)〉2 cos θ ,

〈σ2(0)〉 =
√

1 − 〈σ3(0)〉2 sin θ , and 〈σ3(0)〉 = 0.9 (〈σ1(0)〉2 +

〈σ2(0)〉2 + 〈σ3(0)〉2 = 1). Since 〈σ3(t)〉 does not depend
on θ , we take θ = 0. We focus on ωAa/2πc = 0.3372,
0.3555, 0.3750, 0.403, 0.415, and 0.45. Then, 4.402 nm
(ωAa/2πc = 0.45) � L � 5.086 nm (ωAa/2πc = 0.3372).
Figure 2(b) shows the spontaneous emission dynamics of
〈σ3(t)〉 as obtained by the self-consistent Maxwell-Bloch
equation for NA = 1/(3L × 3L). Multiplying ct/a by a/c =
2.015 × 10−3 ps gives real time. For example, ct/a = 5000
corresponds to t = 10.075 ps. As shown in Fig. 2(b), 〈σ3(t)〉
rapidly decays near the photonic band edge at ωAa/2πc =
0.403. On the other hand, 〈σ3(t)〉 is almost constant within
the PBG at ωAa/2πc = 0.45. Orders of fast spontaneous
emission are ωAa/2πc = 0.403, 0.3750, 0.3372, 0.3555,
0.415, and 0.45. These results coincide with magnitudes of
γ in Fig. 2(a). We detect emitted electric fields outside the
PC’s and Fourier transform them with respect to time. Then,
we obtain the Fourier spectrum of the output electric fields
|Eout(ω)| = | ∫ ∞

0 dteiωtEout(t)|. Figure 2(c) shows the Fourier
spectrum of the emitted electric fields at ωAa/2πc = 0.3372,
0.3555, 0.3750, and 0.403 in the case of NA = 1/(3L × 3L).
These frequency components have sharp peaks, and the width
of the peaks increases with larger γ .

Despite the absence of any phenomenological decay param-
eter, we accurately recapture the spontaneous emission using
our Maxwell-Bloch equations. In our model, time-dependent
electric polarizations (dipoles) act as electric current densities
[Eq. (32)], the electric current densities radiate electromagnetic
fields (dipole radiation), and the dipole radiation causes the
loss of electronic excitation energy. Therefore, 〈σ3(t)〉 transfers
to −1 (ground state).

Next, we consider NA = 1/(L × L). This provides an
effective strong-coupling regime between light and QD’s.
Figure 3(a) shows the spontaneous emission rate at x/a =
0.0 and is the same as Fig. 2(a). We focus on the same
frequencies as in Fig. 2. Figure 3(b) shows the spontaneous
emission of 〈σ3(t)〉 as a function of time in the case of
NA = 1/(L × L). As shown in Figs. 2(b) and 3(b), the
decay time in the case of NA = 1/(L × L) is faster than
that in the case of NA = 1/(3L × 3L). For example, when
focusing on ωAa/2πc = 0.3555 in Figs. 2(b) and 3(b), 〈σ3(t)〉
become mostly −1 at ct/a = 13 500 (27.2025 ps) and 1600
(3.224 ps), respectively. This is because dipole radiation is
proportional to NA, as shown in Eqs. (32) and (33). In
Fig. 3(b), moreover, 〈σ3(t)〉 at ωAa/2πc = 0.403 decays
with oscillations suggesting coherent feedback and memory
effects, unlike in Fig. 2(b). Figure 3(c) shows the Fourier
spectrum of the emitted electric fields at ωAa/2πc = 0.3372,
0.3555, 0.3750, and 0.403 in the case of NA = 1/(L × L).
Peaks in Fig. 3(c) become broader than those in Fig. 2(c)
due to strong coupling. It should be noted that in Fig. 3(c)
the Fourier spectrum at ωAa/2πc = 0.403 has two peaks.
This phenomenon is called vacuum Rabi splitting [34]. The
large LDOS at ωAa/2πc = 0.403 enhances electromagnetic
fields, and the large NA provides a large effective transition
dipole. This Rabi splitting occurs when the interaction of
QD’s and emitted electric fields is very strong. This clearly
demonstrates that our Maxwell-Bloch equations recapture
important effects relevant to QD switching in a structured elec-
tromagnetic vacuum, as described in subsequent sections of
this paper.
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vacuum 
Rabi splitting

(a)

(b)

(c)

FIG. 3. (Color online) (a) Spontaneous emission rate γ at x/a =
0.0 for 21-layer 1D stack. We focus on ωAa/2πc = 0.3372, 0.3555,
0.375, 0.403, 0.415, and 0.45. (b) QD population 〈σ3(t)〉 as a function
of time for NA = 1/(L × L). Multiplying ct/a by a/c = 2.015 ×
10−3 ps gives real time. (c) Fourier spectrum of the emitted electric
fields at ωAa/2πc = 0.3372, 0.3555, 0.3750, and 0.403 in the case
of NA = 1/(L × L). Vacuum Rabi splitting is apparent at 1D band
edge.

2. Population inversion driven by continuous waves

We now consider QD population inversion driven by
continuous electric fields polarized in the z direction. We
start with no phonon dephasing. At ct/a = 0.0, we set
〈σ1(0)〉 = 0.0, 〈σ2(0)〉 = 0.0, and 〈σ3(0)〉 = −1.0. The ex-
ternal electric field Ein = ε(eiωLt + e−iωLt ) with the laser
frequency ωL causes 〈σ3(t)〉 to oscillate with the Rabi
frequency 2�, where 2� = √

(2d0 · ε/h̄)2 + 	2
AL and 	AL =

ωA − ωL. This leads to three frequency components, ωL and
ωL ± 2� (Mollow triplet), in the radiative electromagnetic
fields [17]. We refer to the spontaneous emission rates
at ωL − 2� and ωL + 2� as γ− and γ+, respectively. In
previous studies [12,13], it was shown that the steady-state

(a)

(b)

(c)

FIG. 4. (Color online) (a) Laser and atomic frequencies
ωLa/2πc = 0.403 and ωAa/2πc = 0.406 (	ALa/2πc = 0.003 >

0) relative to the spontaneous emission band edge peak for 21-layer
1D PC stack. (b) Temporal behavior of 〈σ3(t)〉 driven by continuous-
wave optical field for weak coupling NA = 1/(3L × 3L). E0 =
2.5 × 106 V/m and 7.5 × 106 V/m are considered. (c) Temporal
behavior of 〈σ3(t)〉 driven by continuous-wave optical field for strong
coupling NA = 1/(L × L). E0 = 5.0 × 106 V/m and 1.0 × 107 V/m
are considered. Rapid radiative relaxation leads faster steady-state
saturation.

〈σ3(t)〉 becomes 〈σ3〉st = (	AL/2�)[(γ−s4 − γ+c4)/(γ−s4 +
γ+c4)], where s2 = (1/2)[1 − (	AL/2�)] and c2 = (1/2)[1 +
(	AL/2�)]. To obtain population inversion (〈σ3〉st > 0), we
require either the conditions 	AL > 0 and γ−/γ+ > c4/s4 > 1
or 	AL < 0 and γ+/γ− > s4/c4 > 1 to be satisfied. We
choose the former condition. Figure 4(a) shows the laser and
atomic frequencies ωLa/2πc = 0.403 and ωAa/2πc = 0.406
(	ALa/2πc = 0.003 > 0) in relation to the spontaneous emis-
sion peak caused by the 1D photonic band edge. Then, (ωL −
2�)a/2πc � 0.400 and (ωL + 2�)a/2πc � 0.406. 〈σ3〉st be-
comes positive when electric fields exceed the threshold value.
Ein(t) = E0 sin ωLt is input from the left side of the 1D PC.

Figure 4(b) shows the behavior of 〈σ3(t)〉 driven by
continuous waves as a function of time in the case of
NA = 1/(3L × 3L). 〈σ3(t)〉 converges to a steady-state value
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FIG. 5. (Color online) Fourier spectrum (green dashed line) of
emitted radiation showing Mollow components at ωL and ωL ± 2�

for E0 = 1.0 × 107 V/m in Fig. 4(c) relative to band-edge sponta-
neous emission peak (black solid line). ωL ± 2� are highlighted by
purple dashed circles.

with diminishing Rabi oscillations 2�. While 〈σ3(t)〉st at
E0 = 2.5 × 106 V/m is negative, 〈σ3〉st at E0 = 7.5 × 106

V/m is positive. On the other hand, while the saturation
time at E0 = 2.5 × 106 V/m is ct/a � 20 000 (40.3 ps), the
saturation time at E0 = 7.5 × 106 V/m is ct/a � 200 000
(403.0 ps).

More rapid saturation of population inversion is achieved
with strong coupling. Figure 4(c) shows the behavior of 〈σ3(t)〉
driven by continuous waves as a function of time in the case
of NA = 1/(L × L). While 〈σ3〉st at E0 = 5.0 × 106 V/m is
negative, 〈σ3〉st at E0 = 10 × 106 V/m is positive. On the
other hand, while the saturation time at E0 = 5.0 × 106 V/m
is ct/a � 4000 (8.06 ps), the saturation time at E0 = 10 ×
106 V/m is ct/a � 20 000 (40.3 ps). Therefore, strong cou-
pling of QD’s to the electromagnetic field is useful for rapid sat-
uration of population inversion. This, in turn, facilitates high-
speed all-optical information processing with QD’s in PC’s.

We next investigate signatures of the Mollow triplet when
population inversion occurs. We detect the output electric fields
on the right side of the 1D PC and Fourier transform them
with respect to time. Figure 5 shows the Fourier spectrum
(green dashed line) of the output electric fields at E0 = 10 ×
106 V/m in Fig. 4(c). ωL ± 2� are highlighted by pur-
ple dashed circles. When (ωL − 2�)a/2πc = 0.3880 and
(ωL + 2�)a/2πc = 0.4180 (2�a/2πc = 0.015), the ratio of

FIG. 6. (Color online) Steady-state values of 〈σ3(t)〉 as a function
of continuous-wave field strength E0 for various atomic frequencies in
the strong-coupling case of NA = 1/(L × L). For ωLa/2πc = 0.403,
ωAa/2πc = 0.397, 0.400, 0.403, 0.406, and 0.409 are considered.
Population switching occurs for positive dephasing 	AL > 0.

(a)

(b)

FIG. 7. (Color online) (a) Behavior of atomic polarization
|e−i(ωA−	)t eR(±t)−S | with undamped phonons for the δ-pulse electric
field as a function of time and (b) absorption (solid line) and emission
(dashed line) line shapes of QD’s in Eq. (13), respectively, for various
temperatures such as T = 4, 77, and 300 K. We choose acoustic
phonon wave-vector cutoff L = 4.953 nm (ωAa/2πc = 0.3555).

corresponding spontaneous emission rates becomes γ−/γ+ �
0.3502/0.0330 = 10.61. Remarkably, population inversion
is achieved, even with a relatively modest jump in the
electromagnetic LDOS.

In Fig. 6, we show the saturated 〈σ3(t)〉 as a function of E0

for various atomic frequencies in the case of NA = 1/(L × L).
At ωLa/2πc = 0.403, we consider ωAa/2πc = 0.397, 0.400,
0.403, 0.406, and 0.409. When ωAa/2πc = 0.397 and 0.400,
〈σ3〉st monotonically increases as a function of E0 but always
remains negative. When ωAa/2πc = 0.403, 〈σ3〉st is mostly
zero after it monotonically increases as a function of E0.
However, when ωAa/2πc = 0.406 and 0.409, 〈σ3〉st becomes
positive when E0 exceeds a threshold value. For these two
cases, the behaviors of 〈σ3〉st at ωAa/2πc = 0.406 and 0.409
are the same as those at ωAa/2πc = 0.400 and 0.397,
respectively, below the threshold values. While at ωAa/2πc =
0.406 there is a threshold value between E0 = 6.5 × 106 and
7.0 × 106 V/m, at ωAa/2πc = 0.409 the threshold occurs
between E0 = 8.0 × 106 and 8.5 × 106 V/m. In summary,
when 	AL > 0, we obtain population inversion driven by
continuous waves. The steady-state inversion 〈σ3〉st and the
threshold value increase with larger 	AL.

3. Influence of phonon dephasing

First, we consider the effects of phonon dephasing on QD
switching and inversion with undamped phonons. In Fig. 7(a),
we show the polarization behavior of |e−i(ωA−	)t eR(±t)−S |
for the δ-pulse electric field E(t) = E0δ(t) as a function of

053811-11



HIROYUKI TAKEDA AND SAJEEV JOHN PHYSICAL REVIEW A 83, 053811 (2011)

(a)

(b)

FIG. 8. (Color online) Spontaneous emission of 〈σ3(t)〉 at
ωAa/2πc = (a) 0.3555 and (b) 0.403 as a function of time for various
temperatures in the case of NA = 1/(L × L) due to phonon dephasing
with undamped phonons. T = 4, 77, and 300 K are considered.

time in the absence of spontaneous emission, as discussed in
Sec. II A 2. Figure 7(b) depicts the absorption and emission
line shapes of QD’s in Eq. (13) for various temperatures, such
as T = 4, 77, and 300 K. In the case of longitudinal acous-
tic phonons, ηq =

√
h̄q/2ρclL3(D2 − D1) exp(−q2L2/4) and

ωq = clq, where D1 and D2 are the deformation potentials
of the ground and excited states, respectively. In GaAs,
ρ = 5370 kg/m3, cl = 5110 m/s, and D2 − D1 = −9.8 eV.
For example, we choose L = 4.953 nm (ωAa/2πc = 0.3555).
In Fig. 7(a), the polarizations decay faster with higher temper-
ature and are saturated near ct/a = 1500 (3.023 ps), which
is the phonon dephasing time. In Fig. 7(b), the absorption
(solid line) and emission (dashed line) line shapes of QD’s
have sharp peaks at ω = ωA − 	 and become broader with
higher temperature. Moreover, the absorption and emission
line shapes show broad peaks in higher- and lower-frequency
regions, respectively, arising from multiple phonon absorption
and emission side bands. However, this difference of the
absorption and emission line shapes becomes smaller with
increasing temperature.

In Figs. 8(a) and 8(b), we show the spontaneous emission
dynamics of 〈σ3(t)〉 at ωAa/2πc = 0.3555 (where LDOS
is low) and 0.403 (where LDOS is large), respectively, as
a function of time for various temperatures in the case of
NA = 1/(L × L), including the effects of phonon dephasing
with undamped phonons. T = 4, 77, and 300 K are considered.
At ct/a = 0.0, we set up 〈σ3(0)〉 = −1, apply a hypothetical
strong electric field E = 1.0 × 108 sin[(ωA − 	)t] V/m at
the QD layer until 〈σ3(t)〉 = 0.9, and then turn off the field.
In Fig. 8(a), 〈σ3(t)〉 decays rapidly as the polaronic cloud

forms around the QD until ct/a = 1500 (3.023 ps). After
ct/a = 1500 (3.023 ps), the decay of 〈σ3(t)〉 proceeds very
slowly due to the dephasing of the transition dipole by
the phonon cloud and reduction of the effective transition
matrix element due to the Frank-Condon reduction of the
overlap between the excited-state and ground-state wave
functions. In the absence of phonon damping, this leads to
the unusual artifact that spontaneous emission decay is slower
at high temperatures compared to lower temperatures. At high
temperatures, there are more phonons available to contribute to
the Frank-Condon effect. However, as we show below, phonon
damping significantly restricts the Frank-Condon reduction of
the transition dipole matrix element. In Fig. 8(b), we consider
spontaneous emission in a high LDOS spectral range, and
〈σ3(t)〉 does not vary much with temperature. This is because
the radiative time scale ct/a = 800 (1.612 ps) of 〈σ3(t)〉
at ωA = 0.403 is shorter than the phonon dephasing time
ct/a = 1500 (3.023 ps). In other words, when the spontaneous
emission timescale with no phonon dephasing is shorter
than the phonon dephasing time, the radiative relaxation is
insensitive to temperature.

In practice, however, we must consider the phonon de-
phasing with damped phonons. For simplicity, the phonon
decay rate is considered constant γq = γph. A more realistic
model for phonon lifetime due to lattice anharmonicity and
the breakup of high-frequency phonons into lower-energy
phonons can be found elsewhere [30,35,36]. Typically, this
leads to a damping rate that is proportional to the phonon
frequency and strongly temperature dependent. We focus
on ωAa/2πc = 0.3555. In Fig. 9(a), we show the polariza-
tion behavior of |e−i(ωA−	̄)t−�dampt eR̄(±t)−S̄(±t)| for the δ-pulse
electric field E(t) = E0δ(t) as a function of time in the
absence of spontaneous emission, as discussed in Sec. II A 3.
Figure 9(b) depicts the absorption and emission line shapes
of QD’s in Eq. (22) at T = 77 K. γpha/c = 0.0 and 2.0 ×
10−4 are considered. γpha/c = 2.0 × 10−4 (γ −1

ph = 10.075 ps)

corresponds to �dampa/c = 1.468 × 10−4 (�−1
damp = 13.72 ps).

In experiments, the relaxation time of electromagnetic fields
radiated from excited InGaAs QD’s at T = 75 K is 11 ps [37],
which is close to �−1

damp. In Fig. 9(a), while the polarization
for γpha/c = 0.0 retains a nonzero value, on the timescale
under consideration, the polarization for γpha/c = 2.0 × 10−4

decays more rapidly to zero. In Fig. 9(b), the absorption
(solid line) and emission (dashed line) line shapes become
broader, and the peak becomes lower with increasing γph.
Figure 9(c) shows the spontaneous emission for γpha/c = 0.0
and 2.0 × 10−4 at T = 77 K in the case of NL = 1/(L ×
L). For γpha/c = 2.0 × 10−4, we consider �pop = �damp/10
(dashed line) and �pop = �damp (solid line). In the case of
damped phonons, �damp makes the dipole radiation finish
faster than in the case of undamped phonons. After that,
however, 〈σ3(t)〉 decays monotonically due to �pop. While
for �pop = �damp/10 〈σ3(t)〉 decays slowly, for �pop = �damp

it converges to −1 relatively quickly. This is quite distinct
from the case of undamped phonons where the excited state
is artificially preserved by a polaronic cloud that displaces
the excited-state wave function from the ground state for
long times. In the case of damped phonons, with increasing
temperature, while radiative decays decrease, nonradiative
decays increase.
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(b)

(c)

(a)

FIG. 9. (Color online) (a) Behavior of atomic polarization
|e−i(ωA−	̄)t−�dampt eR̄(±t)−S̄ | with damped phonons for the δ-pulse
electric filed as a function of time and (b) absorption (solid line)
and emission (dashed line) lineshapes of QD’s for γpha/c = 0.0
and 2.0 × 10−4 at T = 77 K. γpha/c = 0.0 and 2.0 × 10−4 are
considered. (c) Spontaneous emission for γpha/c = 0.0 and 2.0 ×
10−4 at T = 77 K in the case of NL = 1/(L × L). Dashed and solid
lines indicate �pop = �damp/10 and �pop = �damp, respectively. We
focus on ωAa/2πc = 0.3555.

Figure 10(a) shows the behaviors of 〈σ3(t)〉 driven by
continuous waves as a function of time at T = 300 K in
the case of NA = 1/(L × L) with dephasing by undamped
phonons. Laser and atomic frequencies are ωLa/2πc = 0.403
and ωAa/2πc = 0.406, respectively. Behaviors of 〈σ3(t)〉
in Fig. 10 are slightly distorted compared to Fig. 4(c).
(Maximum and minimum amplitudes of 〈σ3(t)〉 do not
reach 1 and −1, respectively.) While the saturated 〈σ3(t)〉
at E0 = 5.0 × 106 V/m increases with temperature, that at
E0 = 10.0 × 106 V/m decreases with temperature. Never-
theless, the temperature dependence of behaviors of 〈σ3(t)〉
is relatively small since the time period of Rabi oscillations
1/[2�a/2πc] = 66.667 (0.1343 ps) in Fig. 5 is much shorter

(a)

(b)

(c)

FIG. 10. (Color online) (a) Behavior of 〈σ3(t)〉 driven by con-
tinuous waves as a function of time at T = 300 K in the case
of NA = 1/(L × L) due to phonon dephasing with undamped
phonons. Laser and atomic frequencies are ωLa/2πc = 0.403 and
ωAa/2πc = 0.406, respectively. (b) and (c) Behaviors of 〈σ3(t)〉
driven by continuous waves as a function of time at T = 77 K
for γpha/c = 2.0 × 10−4 and �pop = �damp/10 and �pop = �damp,
respectively, in the case of NA = 1/(L × L) due to phonon dephasing
with damped phonons.

than the phonon dephasing time ct/a = 1500 (3.023 ps). On
the other hand, Fig. 10(b) shows the behaviors of 〈σ3(t)〉
driven by continuous waves as a function of time at T = 77 K
for γpha/c = 2.0 × 10−4 and �pop = �damp/10 in the case of
NA = 1/(L × L) with dephasing by damped phonons. 〈σ3(t)〉
at both E0 = 5 × 106 V/m and 10 × 106 V/m converge to
almost the same negative value. Likewise, Fig. 10(c) shows
the behaviors of 〈σ3(t)〉 driven by continuous waves as a
function of time at T = 77 K for γpha/c = 2.0 × 10−4 and
�pop = �damp in the case of NA = 1/(L × L). The saturated
〈σ3(t)〉 at E0 = 5 × 106 and 10 × 106 V/m are lifted. Clearly,
the damped phonons hinder QD population inversion.
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FIG. 11. (a) Bimodal waveguides in a 2D PC composed of GaN
circular rods in the air. The dielectric constant of GaN is ε = 5.3, and
a radius of rods is R/a = 0.3 (a = 564 nm). Two adjacent rows are
composed of air and dielectric rods with smaller radii Rd/a = 0.2.
In the FDTD method, the computational region is |x|/a � 7.5 and
|y|/a � 15.5. (b) Structure for |x|/a � 5.5 and |y/a| � 2.5. A QD
rod is placed at (x/a,y/a) = (1.0,0.0).

B. Quantum-dot response in a bimodal 2D photonic
crystal waveguide

We now consider a PC geometry closer to those discussed
for on-chip control of light flow [19]. Here the electromagnetic
LDOS experiences a sudden jump throughout the length of a
bimodal waveguide channel as the result of a cutoff in one of
the two waveguide modes. We consider a QD with transition
frequency near this LDOS jump. In Fig. 11(a), we show the
bimodal waveguide in the 2D PC’s composed of GaN circular
rods in the air. In the 2D PC’s, a dielectric constant of GaN
is ε = 5.3, and the radius of rods is R/a = 0.3, where a is
the lattice constant. Two adjacent rows of rods conduct light
in an air waveguide mode (no rods) and dielectric waveguide
mode (with rods smaller radii Rd/a = 0.2). We assume that
ωa/2πc = a/λ = 0.376 corresponds to the wavelength λ =
1.5 µm, and then, a = 564 nm. In the FDTD method, we take
the computational region for |x|/a � 7.5 and |y|/a � 15.5. A
cross symbol at (x/a,y/a) = (0.0, − 7.0) indicates the source
point of light. In this case, we need the light propagation with-
out reflections in the air waveguide. For this purpose, tapered
waveguides, in which entrance and exit become gradually
wider, are widely used [38,39]. For computational simplicity,
however, we impose the gradual conductivity near the ends
of the waveguide segment with σ (x,y)a/ε0c = 3[(|y|/a −
7.5)/7.0]2 for |x|/a � 6.5, |y|/a � 7.5, and |y|/a � 14.5
highlighted by dashed boxes. Otherwise, in the interior
of the system, σ (x,y) = 0.0. Under this condition, the
light near ωa/2πc = 0.376 can propagate without reflec-
tions. For |y|/a � 7.5, there is no absorption (conduc-
tivity). Figure 11(b) shows the structure for |x|/a � 5.5

air
waveguide dielectric

waveguide

(a)

(b)

FIG. 12. (Color online) (a) The 2D TM guided modes for bimodal
waveguide in Fig. 11. Solid and dashed lines indicate the guided
modes localized near air and dielectric regions, respectively. Shaded
regions indicate the photonic bands projected to the y direction. In
the dashed line, there is a cutoff frequency inside the PBG, although
there are no cutoff frequencies in the solid line inside the PBG.
(b) Spontaneous emission rate at (x/a,y/a) = (1.0,0.0). Laser and
atomic frequencies are ωLa/2πc = 0.376 and ωAa/2πc = 0.378,
respectively.

and |y|/a � 2.5. A QD rod is placed at (x/a,y/a) =
(1.0,0.0).

We consider the 2D TM mode with electric fields polarized
in the z direction. In Fig. 12(a), we show the 2D TM
guided modes of Fig. 11 calculated with 1661 plane waves
by the PWE method. For this calculation, a supercell is
taken for |x|/a � 7.5 and |y|/a � 0.5. Solid and dashed lines
indicate the guided modes localized near air and dielectric
waveguides, respectively. Shaded regions indicate the photonic
bands projected to the y direction. In the dielectric waveguide
dispersion, there is a cutoff frequency inside the PBG. In
the air-waveguide dispersion there is no cutoff inside the
PBG. Figure 12(b) shows the spontaneous emission rate
at (x/a,y/a) = (1.0,0.0). The spontaneous emission rate is
greatly enhanced near ωa/2πc = 0.371 since the photonic
band edge associated with the dielectric mode cutoff in
Fig. 12(a) provides a large electromagnetic density of states.
While the air waveguide is used for inputting light, the
dielectric waveguide is used to embed the QD rod possessing
the abrupt change of γ . When light propagates in the air
waveguide, the electric field is maximum at x/a = 0.0 (main
peak). The electric field also has side peaks near |x|/a = 1.0
when the row of small dielectric rods resides. We excite the QD
rod through the side peak near x/a = 1.0. Laser and atomic
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FIG. 13. (Color online) (a) Behavior of 〈σ3(t)〉 driven by
continuous waves as a function of time in the case of NL =
5 × 5/L. E0 = 1.0 × 107 and 1.75 × 107 V/m are considered.
Multiplying ct/a by a/c = 1.88 × 10−3 ps gives real time.
(b) Fourier spectrum (green dashed line) of the output electric
fields for E0 = 1.75 × 107 V/m in (a). ωL ± 2� are highlighted by
purple dashed circles. Spontaneous emission is depicted in black.
(c) Saturated 〈σ3(t)〉 as a function of E0 in the case of NL = 5 × 5/L.

frequencies are ωLa/2πc = 0.376 and ωAa/2πc = 0.378,
respectively.

1. Population inversion driven by continuous waves

As discussed in Sec. III A 2, a QD rod with high coupling
strength at (x/a,y/a) = (1.0,0.0) is necessary for a short
saturation time of 〈σ3(t)〉. When the length of a single QD
is L = 4.640 nm (ωAa/2πc = 0.378), we assume that 5 × 5
QD’s are distributed near (x/a,y/a) = (1.0,0.0) in the 2D
xy plane and that these QD’s are close packed in the z direction
with no vertical spacing between QD’s. We neglect any
transfer of electrons between QD’s. Then, the linear density
of the QD rod is NL = 5 × 5/L = 5.388 × 109 dots/m. In a
real, physical 3D system this choice in 2D can be regarded
as simply a device for simulating strong coupling. In 3D
waveguide systems, this may appear as a strongly enhanced

(a)

(b)

FIG. 14. (Color online) Fourier spectrum of input pulse Ein(t) in
the case of (a) 	ωLa/2πc = 0.001 (cT /a = 2000) and (b) 0.002
(cT /a = 1000). Black solid and blue dashed lines indicate the
spontaneous emission rate and the Fourier spectrum, respectively.
The Fourier spectrum is a Gaussian function with center frequency
ωLa/2πc = 0.376.

local electromagnetic density of states (Purcell factor) [16,20].
It could also arise from collective response of many QD’s
experiencing the same optical field. Since the area that these
QD’s occupy is approximately 25 nm × 25 nm in the 2D
xy plane, the influence of the QD rod on the 2D LDOS can be
neglected.

At (x/a,y/a) = (0.0, − 7.0) in Fig. 11(a), we excite
Ein(t) = E0 sin ωLt , where E0 is the steady-state maximum
amplitude of the main peak at (x/a,y/a) = (0.0,0.0) when
there are no QD rods in PC’s. In the FDTD method, then,
the steady-state maximum amplitude of the side peak at
(x/a,y/a) = (1.0,0.0) is approximately 0.63E0. We consider
no phonon dephasing. At ct/a = 0.0, we set up 〈σ1(0)〉 =
0.0, 〈σ2(0)〉 = 0.0, and 〈σ3(0)〉 = −1.0. Figure 13(a) shows
the behaviors of 〈σ3(t)〉 driven by continuous waves as a
function of time in the case of NL = 5 × 5/L. Multiplying
ct/a by a/c = 1.88 × 10−3 ps gives real time. For exam-
ple, ct/a = 5000 corresponds to t = 9.40 ps. While 〈σ3〉st

at E0 = 1.0 × 107 V/m is negative, 〈σ3〉st at E0 = 1.75 ×
107 V/m is positive. While the saturation time at E0 =
1.0 × 107 V/m is ct/a � 15 000 (28.2 ps), the saturation
time at E0 = 1.75 × 107 V/m is ct/a � 8000 (15.04 ps).
These time scales can be made shorter in structures that
support a high electromagnetic LDOS than that consid-
ered in our idealized 2D model systems. We investigate
the Mollow triplet by detecting output electric fields at
(x/a,y/a) = (0.0,0.0) and Fourier transforming them with
respect to time. Figure 13(b) shows the Fourier spectrum
(green dashed line) of the output electric fields at E0 =
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(a)
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FIG. 15. (a) Behavior of 〈σ3(t)〉 driven by a pulse with
	ωLa/2πc = 0.001 as a function of time in the case of NL =
5 × 5/L. The atomic frequency is ωAa/2πc = 0.376 55. Shaded
regions indicate the time pulse. An arrow indicates the value of
〈σ3(t)〉 at ct/a = 3250. (b) Behavior of 〈σ3(t)〉 at ct/a = 3250 as
a function of atomic frequencies in the case of NL = 5 × 5/L. An
arrow indicates 〈σ3(t)〉 in (a).

1.75 × 107 V/m in Fig. 13(a). ωL ± 2� are highlighted by
purple dashed circles. When (ωL − 2�)a/2πc = 0.3715 and
(ωL + 2�)a/2πc = 0.3805 (2�a/2πc = 0.0045), γ−/γ+ �
0.3221/0.01303 = 24.72. Although this contrast is not as
high as considered previously [15,16], population inversion is,
nevertheless, achieved. In Fig. 13(c), we show the saturated
〈σ3(t)〉 as a function of E0 in the case of NL = 5 × 5/L.
〈σ3〉st becomes positive when E0 exceeds the threshold value,
after it monotonically increases with E0 under the threshold
value. The threshold occurs between E0 = 1.5 × 107 V/m and
E0 = 1.75 × 107 V/m.

2. Population inversion driven by optical pulses

We now consider population inversion driven by pulses
composed of the superposition of frequency components. To
input the pulses without distortion, these frequency compo-
nents should have nearly the same group velocities. As shown
in Fig. 12(a), the dispersion relation of the air waveguide is
mostly linear near ωLa/2πc = 0.376. In Fig. 11(a), therefore,
we can input the pulses with the center frequency ωLa/2πc =
0.376 without distortion.

At (x/a,y/a) = (0.0, − 7.0) in Fig. 11(a), we excite
Ein(t) = E0e

−α(t−T )2
sin ωLt [α = (π/

√
ln 2T )2 and cT /a =

2/(	ωLa/2πc)], where E0 is the maximum amplitude of
the main peak at (x/a,y/a) = (0.0,0.0) when there are no
QD rods in PC’s. In what follows, we fix ωLa/2πc =
0.376 and E0 = 3.0 × 107 V/m. 	ωL is the full width at

(a)

(b)

FIG. 16. (a) Behavior of 〈σ3(t)〉 driven by a pulse with
	ωLa/2πc = 0.001 as a function of time in the case of NL = 1/(2L).
The atomic frequency is ωAa/2πc = 0.3760. Shaded regions indicate
the temporal pulse. An arrow indicates the value of 〈σ3(t)〉 at
ct/a = 3250. (b) Behavior of 〈σ3(t)〉 at ct/a = 3250 as a function of
atomic frequencies in the case of NL = 1/(2L). An arrow indicates
the 〈σ3(t)〉 in (a).

half maximum (FWHM) of the Fourier spectrum |Ein(ω)| =
| ∫ ∞

0 dteiωtEin(t)|. Then, Ein(t) has the FWHM c	tL/a =
(2 ln 2/π )(cT /a). In Figs. 14(a) and 14(b), we show the
Fourier spectrum of Ein(t) in the case of 	ωLa/2πc = 0.001
[cT /a = 2000 and c	tL/a = 882.54 (1.66 ps)] and 0.002
[cT /a = 1000 and c	tL/a = 441.27 (0.83 ps)], respectively.
Black solid and blue dashed lines indicate the spontaneous
emission rate and the Fourier spectrum, respectively. The
Fourier spectrum is a Gaussian function with center frequency
ωLa/2πc = 0.376. Although the maximum value of the
Fourier spectrum in Fig. 14(b) is smaller than that in Fig. 14(a),
the Fourier spectrum in Fig. 14(b) is wider than that in
Fig. 14(a). As shown later, the time pulse in Fig. 14(b) is
shorter than that in Fig. 14(a). These two pulses can propagate
in the air waveguide without reflections or distortions. As a
first illustration, we neglect phonon dephasing. At ct/a = 0.0,
we set up 〈σ1(0)〉 = 0.0, 〈σ2(0)〉 = 0.0, and 〈σ3(0)〉 = −1.0.

First, we consider an optical pulse with 	ωLa/2πc =
0.001 (cT /a = 2000) in Fig. 14(a). The FWHM of the pulse is
c	tL/a = 882.54 (1.66 ps). It becomes nearly zero by ct/a =
(13/8)(cT /a) = 3250. Figure 15(a) shows the behavior of
〈σ3(t)〉 driven by a pulse with 	ωLa/2πc = 0.001 as a
function of time in the case of NL = 5 × 5/L. The atomic
frequency is ωAa/2πc = 0.376 55. Shaded regions indicate
the temporal profile of the pulse. 〈σ3(t)〉 oscillates when the
time pulse interacts with the QD rod. After the pulse passes,
large population inversion 〈σ3(t)〉 � 1 can be achieved. An
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FIG. 17. (a) Behavior of 〈σ3(t)〉 driven by a pulse with
	ωLa/2πc = 0.002 as a function of time in the case of NL = 5 ×
5/L. The atomic frequency is ωAa/2πc = 0.3762. Shaded regions
indicate the temporal pulse. An arrow indicates the value of 〈σ3(t)〉 at
ct/a = 1625. (b) Behavior of 〈σ3(t)〉 at ct/a = 1625 as a function of
atomic frequencies in the case of NL = 5 × 5/L. An arrow indicates
the 〈σ3(t)〉 in (a).

arrow indicates the 〈σ3(t)〉 at ct/a = 3250. Figure 15(b) shows
the behavior of 〈σ3(t)〉 at ct/a = 3250 (when the exciting
pulse has subsided) as a function of atomic frequency detuning
from the pulse center frequency in the case of NL = 5 × 5/L.
An arrow indicates 〈σ3(t)〉 in Fig. 15(a). 〈σ3(t)〉 at ct/a =
3250 becomes positive for 0.3764 � ωAa/2πc � 0.3768 and
maximum near ωAa/2πc = 0.376 55. Although population
inversion can be driven by pulses, rapid radiative spontaneous
emission in our specific LDOS model causes 〈σ3(t)〉 to decay
rapidly after the pulse subsides. This could be compensated by
a rapid sequence of optical pulses separated by about 10 ps in
this oversimplified model that neglects all effects of phonons.
Alternatively, we could replace the idealized 2D architecture
with a more realistic 3D PBG waveguide architecture in which
the rate of radiative spontaneous emission is much slower in
the low density of states regime [16,20].

For comparison purposes, we consider a weak-coupling
situation. We assume that a QD rod is placed at (x/a,y/a) =
(1.0,0.0) with NL = 1/(2L). Figure 16(a) shows the behavior
of 〈σ3(t)〉 driven by pulses with 	ωLa/2πc = 0.001 as a
function of time. The atomic frequency is ωAa/2πc = 0.3760.
Shaded regions indicate the temporal pulse profile. 〈σ3(t)〉
oscillates when the pulse interacts with the QD rod. After the
pulse passes, population inversion is not achieved, although
the spontaneous emission of 〈σ3(t)〉 is very slow. Figure 16(b)
shows the behavior of 〈σ3(t)〉 at ct/a = 3250 as a function of
atomic frequency. Although 〈σ3(t)〉 becomes maximum near

(a)

(b)

FIG. 18. (a) Behavior of 〈σ3(t)〉 driven by a pulse with
	ωLa/2πc = 0.002 as a function of time in the case of NL = 1/(2L).
The atomic frequency is ωAa/2πc = 0.3760. Shaded regions indicate
the temporal pulse. An arrow indicates 〈σ3(t)〉 at ct/a = 1625.
(b) Behavior of 〈σ3(t)〉 at ct/a = 1625 as a function of atomic
frequencies in the case of NL = 1/(2L). An arrow indicates the
〈σ3(t)〉 in (a).

ωAa/2πc = 0.3760, it always remains negative for 0.376 �
ωAa/2πc � 0.377. We show below that in order to achieve
inversion with this weak coupling, a shorter pulse duration is
required.

We consider a short optical pulse with 	ωLa/2πc = 0.002
(cT /a = 1000) and strong coupling in Fig. 14(b). The FWHM
of the time pulse is c	tL/a = 441.27 (0.83 ps). This pulse
is nearly zero by ct/a = (13/8)(cT /a) = 1625. Figure 17(a)
shows the temporal behavior of 〈σ3(t)〉, driven by this shorter
pulse for NL = 5 × 5/L. The atomic frequency is ωAa/2πc =
0.3762. Shaded regions indicate the temporal pulse profile.
〈σ3(t)〉 oscillates during the pulse interaction with the QD
rod. After the pulse subsides, population inversion is achieved.
Figure 17(b) shows the behavior of 〈σ3(t)〉 at ct/a = 1625 as a
function of atomic frequency. 〈σ3(t)〉 at ct/a = 1625 becomes
maximum near ωAa/2πc = 0.3762, and 〈σ3(t)〉 is positive for
0.376 � ωAa/2πc � 0.3769. Although population inversion
can be driven by short pulses, the rapid spontaneous emission
due to strong coupling and the absence of damped phonon-
mediated dephasing in the specific LDOS model renders the
switching effect short-lived.

Figure 18(a) shows the behaviors of 〈σ3(t)〉 driven by a
short pulse with 	ωLa/2πc = 0.002 in the weak-coupling
case of NL = 1/(2L). The atomic frequency is ωAa/2πc =
0.3760. Shaded regions indicate the temporal pulse profile.
〈σ3(t)〉 oscillates as the time pulse interacts with the QD rod.
After a pulse subsides, population inversion 〈σ3(t)〉 is achieved.
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FIG. 19. (Color online) (a) Behavior of 〈σ3(t)〉 driven by a
pulse with 	ωLa/2πc = 0.002 as a function of time for various
temperatures in the case of NL = 1/(2L) including phonon dephasing
with undamped phonons. The atomic frequency is ωAa/2πc =
0.3760. T = 4, 77, and 300 K are considered. (b) and (c) Behaviors
of 〈σ3(t)〉 driven by a pulse with 	ωLa/2πc = 0.002 as a function
of time at T = 77 K for γpha/c = 2.0 × 10−4 and �pop = �damp/10
and �pop = �damp, respectively, in the case of NL = 1/(2L) including
phonon dephasing with damped phonons.

Figure 18(b) shows the behavior of 〈σ3(t)〉 at ct/a = 1625 as
a function of atomic frequencies in the case of NL = 1/(2L).
〈σ3(t)〉 at ct/a = 1625 becomes maximum near ωAa/2πc =
0.3760, and 〈σ3(t)〉 is always positive for 0.376 � ωAa/2πc �
0.377. In this case of a shorter pulse and weaker coupling, the
population inversion in Fig. 18(a) is preserved for a long time
due to slow spontaneous emission from inverted state.

We consider the influence of phonon dephasing with
undamped phonons on 〈σ3(t)〉 driven by pulses. Figure 19(a)
shows the behavior of 〈σ3(t)〉 driven by a short pulse with
	ωLa/2πc = 0.002 as a function of time for various tem-
peratures in the weak-coupling case of NL = 1/(2L). In our
model, the temperature simply sets the time scale of thermal

FIG. 20. Behavior of 〈σ3(t)〉 driven by a pulse with 	ωLa/2πc =
0.002 including phonon dephasing with damped phonons as a
function of time at T = 200 K for γpha/c = 2.0 × 10−3 and �pop =
�damp/100 in the case of NL = 1/(2L).

phonon-mediated depolarization of the atomic dipole and the
Frank-Condon reduction of the atomic transition dipole by the
polaronic cloud. The atomic frequency is ωAa/2πc = 0.3760.
Shaded regions indicate the optical pulse profile. After the
pulse subsides, 〈σ3(t)〉 at T = 77 K becomes larger than that
at T = 4 K. However, 〈σ3(t)〉 at T = 300 K is lower than those
at T = 4 and 77 K. Nevertheless, at T = 300 K, we still obtain
an effective population inversion. When the time period of Rabi
oscillations is much shorter than the phonon dephasing time,
the influence of phonon dephasing with undamped phonons is
not so large.

Figure 19(b) shows the behavior of 〈σ3(t)〉 driven by pulses
with 	ωLa/2πc = 0.002 as a function of time at T = 77 K
with phonon dephasing with damped phonons for γpha/c =
2.0 × 10−4 and �pop = �damp/10 (�−1

damp = 12.03 ps) in the
case of NL = 1/(2L). Likewise, Fig. 19(c) shows the behavior
of 〈σ3(t)〉 driven by pulses with 	ωLa/2πc = 0.002 as a
function of time at T = 77 K for γpha/c = 2.0 × 10−4 and
�pop = �damp in the case of NL = 1/(2L). Even in these cases,
the effective population inversion can be obtained. However,
for �pop = �damp, 〈σ3(t)〉 decays rapidly.

Figure 20 shows the behavior of 〈σ3(t)〉 driven by pulses
with 	ωLa/2πc = 0.002 as a function of time at T = 200 K
for γpha/c = 2.0 × 10−3 and �pop = �damp/100 (�−1

damp =
1.16 ps) in the case of NL = 1/(2L). Even in the case of
rapid decay of polarizations, large population inversion can
be obtained after the pulse subsides, provided that the Frank-
Condon effect is capable of reducing the direct population
decay rate.

C. Two-dimensional photonic-crystal waveguides with a
side-coupled defect with a quantum-dot rod

Our QD inversion and switching behavior is not limited
to waveguide cutoff geometries but also applies to other
architectures with LDOS jumps. We consider an air waveguide
with a side-coupled defect in 2D PC’s composed of GaN
rods with radii R/a = 0.3. The air waveguide is fabricated by
removing one line of rods at x/a = 0.0, and the side-coupled
defect has radius Rd/a = 0.1 and is located at (x/a,y/a) =
(2.0,0.0). Figure 21(a) shows the spontaneous emission rate at
the center of the side-coupled defect. The emission spectrum
is maximum at ωa/2πc = 0.376 and is broad since the
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FIG. 21. (Color online) (a) Spontaneous emission rate at the
center of the side-coupled defect. Laser and atomic frequencies are
ωLa/2πc = 0.382 and ωAa/2πc = 0.384, respectively. (b) Behavior
of 〈σ3(t)〉 driven by a continuous wave as a function of time in
the case of NL = 5 × 5/L. E0 = 5.0 × 106 and 7.5 × 106 V/m
are considered. Multiplying ct/a by a/c = 1.88 × 10−3 ps gives
real time. (c) Saturated 〈σ3(t)〉 as a function of E0 in the case of
NL = 5 × 5/L.

side-coupled defect is near the air waveguide. A QD rod with
the linear density of NL = 5 × 5/L is distributed at the center
of the side-coupled defect. We excite this strongly coupled
QD rod by continuous waves. Laser and atomic frequencies
are ωLa/2πc = 0.382 and ωAa/2πc = 0.384, respectively.

We input Ein(t) = E0 sin ωLt , where E0 is the steady-
state maximum amplitude at (x/a,y/a) = (0.0,0.0) of the
air waveguide when there are no side-coupled defects.
Figure 21(b) shows the behavior of 〈σ3(t)〉 driven by contin-
uous waves as a function of time in the strong-coupling case
of NL = 5 × 5/L. We consider E0 = 5.0 × 106 and 7.5 ×
106 V/m. Multiplying ct/a by a/c = 1.88 × 10−3 ps gives
real time. For example, ct/a = 5000 corresponds to t =
9.40 ps. While 〈σ3〉st at E0 = 5.0 × 106 V/m is negative,

〈σ3〉st at E0 = 7.5 × 106 V/m is positive. While the saturation
time at E0 = 5.0 × 106 V/m is ct/a � 10 000 (18.8 ps),
the saturation time at E0 = 7.5 × 106 V/m is ct/a � 4000
(7.52 ps). The pumping intensity required to achieve steady-
state population inversion is lower than in Fig. 13(a) since
electric fields are enhanced in the side-coupled defect.

In Fig. 21(c), we show the saturated 〈σ3(t)〉 as a function
of E0 in the case of NL = 5 × 5/L. 〈σ3〉st becomes positive
when E0 exceeds the threshold value, after it monotonically
increases with E0 under the threshold value. The inversion
threshold occurs between E0 = 5.0 × 106 and E0 = 6.25 ×
106 V/m

Finally, we consider switching and population inversion by
short optical pulses for the side-coupled defect architecture.
In this structure with NL = 1/(2L), however, population
inversion cannot be achieved by time pulses of E0 = 1.0 ×
107 V/m with 	ωLa/2πc = 0.002. In our numerical study,
we fix the pulse center frequency ωLa/2πc = 0.382 and inves-
tigate the atomic frequency in the range 0.382 � ωAa/2πc �
0.383. In this structure, large group velocity dispersion occurs
near the resonant frequency of the side-coupled defect due
to coupling of the defect and waveguide modes. Therefore,
input pulses are spectrally and temporally distorted as they
pass the QD region. Consequently, side-coupled defects are
less suitable for population inversion and switching driven by
short optical pulses.

IV. CONCLUSIONS

We have demonstrated population switching and inversion
in 1D PC’s and 2D PC waveguides using self-consistent
Maxwell-Bloch equations. Stimulated emission and coherent
feedback effects can be recaptured in this formulation. Sponta-
neous emission is also recaptured with no phenomenological
decay terms, provided that small initial polarization to the
atom is provided. The rate of spontaneous emission increases
with coupling strength (larger areal density) of the QD layer.
When the LDOS and the coupling strength are very large,
Rabi splitting of the QD transition appears in the Fourier
spectrum of the emitted electric field. Abrupt changes of
LDOS’s near photonic band edges enable population inversion
driven by continuous waves. As a result of coherent feedback
effects, the magnitude of this LDOS jump can be considerably
less than previously anticipated [12–16,18,19]. Input electric
fields must, nevertheless, exceed threshold values to obtain
steady-state population inversion.

In our bimodal waveguide model, one mode has nearly
linear dispersion inside the PBG, and the other guided mode
has a frequency cutoff inside the PBG, leading to an abrupt
change of the LDOS. These structures are appropriate for
population inversion driven not only by continuous waves but
also by pulses. Here pulses propagate without reflection or
distortion. A short time pulse with the FWHM of 0.83 ps and
peak electric field E0 = 3.0 × 107 V/m enables population
inversion over a broad range of QD densities. However, lower
QD densities enable long-term persistence of the population
inversion after the exciting optical pulse has passed.

For side-coupled defects in 2D PC’s, population inversion
can be achieved by continuous waves. However, side-coupled
defects are less suitable for population inversion driven by
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pulses due to pulse distortion effects as light enters and leaves
the cavity mode directly from the waveguide mode. In the case
of the bimodal waveguide channel, light is transferred between
the linear dispersion mode and the vanishing group velocity
mode by absorption and emission of light by the QD’s. This
process does not cause pulse distortion.

Phonon dephasing broadens the absorption and emission
line shapes of the QD’s. The phonon dephasing time with
undamped phonons is approximately 3 ps. When the time
scale of spontaneous emission and the time period of Rabi
oscillations are shorter than the phonon dephasing time (with
undamped phonons), the spontaneous emission and population
inversion do not depend strongly on temperature. However,
damped phonons provide a mechanism for nonradiative decay.
Physically, this may arise from lattice anharmonicities leading
to the breakup of individual phonons into two or more lower-
energy phonons. This can lead to rapid deterioration of the
QD inversion on the time scale of the phonon lifetime. On the
other hand, this form of nonradiative decay is driven by the QD
transition dipole. If dephasing effects and the Frank-Condon
overlap effect rapidly diminish the atomic polarization and the
effective transition dipole, the rate of atomic population decay
may be slow compared to the damping rate of the atomic
polarization. In this case, dynamic population switching of the
QD may survive in the presence of phonon interactions.

In this paper, we have considered electric fields polarized
in the z direction. Then, we can focus on two levels of the
ground and excited states in QD’s. Naturally, the Maxwell-
Bloch equations can be extended to 2D TE modes and 3D
PC’s. However, in 2D TE modes in which electric fields are
parallel to the 2D xy plane, there are two excited states for
the electric fields polarized in the x and y directions. In other
words, we must consider the nearly degenerate excited states
in QD’s [24]. In realistic 3D PC’s, moreover, there may be
three relevant excited states for the electric fields polarized in
the x, y and z directions [26].

The most important outcome of our self-consistent
Maxwell-Bloch theory is the ability to achieve dynamic
switching and population inversion, with short optical pulses,

using structures with considerably smaller jumps in the local
electromagnetic density of states than previously anticipated.
This is the result of coherent feedback and stimulated emission
in the high LDOS region, which effectively enhances the ratio
of emission rates between the QD Mollow components in
the high and low LDOS regions. Consequently, population
inversion may be possible in shorter waveguide segments
in 3D PBG materials and in 2D membrane PC’s where the
LDOS ratios for a bimodal waveguide are smaller due to
the background continuum of 3D optical modes. Coherent
feedback from slow-group velocity modes also leads to
memory effects in the QD, which influence the response of
the QD to a sequence of optical pulse separated by short time
intervals. In previous studies [15,16], the final inverted QD
state achieved after passage of an optical pulse was nearly
independent of initial state of the atomic Bloch vector. This was
due to the rapid rate of radiative relaxation in the high LDOS
region without coherent feedback. In our case, dephasing
and nonradiative decay by coupling to damped phonons are
required to erase the memory of the final Bloch vector (after
the pulse passes) to the initial Bloch vector (prior to pulse
arrival). These issues require more detailed consideration for
the application of our dynamic switching effect to optical
information processing by streams of optical pulses.
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APPENDIX: POLARON TRANSFORMED ATOMIC
POLARIZATION

Here we provide details of the derivation of Eq. (12).
Using c̃

†
1(t) = c̃

†
1(0) − i

∫ t

0 dτ d0·E(τ )
h̄

c̃
†
2(τ )D+(τ ) and c̃2(t) =

c̃2(0)e−i(ωA−	)t + i
∫ t

0 dτe−i(ωA−	)(t−τ ) d0·E(τ )
h̄

D+(τ )c̃1(τ ),

c̃
†
1(t)D−(t)c̃2(t) = c̃

†
1(0)D−(t)c̃2(0)e−i(ωA−	)t − i

∫ t

0
dτe−i(ωA−	)t d0 · E(τ )

h̄
c̃
†
2(τ )D+(τ )D−(t)c̃2(0)

+i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄
c̃
†
1(0)D−(t)D+(τ )c̃1(τ ) +

∫ t

0
dτ

d0 · E(τ )

h̄
c̃
†
2(τ )D+(τ )D−(t)

×
∫ t

0
dτ ′e−i(ωA−	)(t−τ ′) d0 · E(τ ′)

h̄
D+(τ ′)c̃1(τ ′). (A1)

On the other hand, since c̃
†
1(0) = c̃

†
1(τ ) + i

∫ τ

0 dτ ′ d0·E(τ ′)
h̄

c̃
†
2(τ ′)D+(τ ′) and c̃2(0) = c̃2(τ )ei(ωA−	)τ −

i
∫ τ

0 dτ ′ei(ωA−	)τ ′ d0·E(τ ′)
h̄

D+(τ ′)c̃1(τ ′),

c̃
†
1(t)D−(t)c̃2(t) = c̃

†
1(0)D−(t)c̃2(0)e−i(ωA−	)(t−τ ) − i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄
c̃
†
2(τ )D+(τ )D−(t)c̃2(τ )

−
∫ t

0
dτe−i(ωA−	)t d0 · E(τ )

h̄
c̃
†
2(τ )D+(τ )D−(t)

[ ∫ τ

0
dτ ′ei(ωA−	)τ ′ d0 · E(τ ′)

h̄
D+(τ ′)c̃1(τ ′)

]

+i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄
c̃
†
1(τ )D−(t)D+(τ )c̃1(τ ) −

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄
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×
[ ∫ τ

0
dτ ′ d0 · E(τ ′)

h̄
c̃
†
2(τ ′)D+(τ ′)

]
D−(t)D+(τ )c̃1(τ ) +

∫ t

0
dτ

d0 · E(τ )

h̄
c̃
†
2(τ )D+(τ )D−(t)

×
∫ t

0
dτ ′e−i(ωA−	)(t−τ ′) d0 · E(τ ′)

h̄
D+(τ ′) c̃1(τ ′)

= c̃
†
1(0)D−(t)c̃2(0)e−i(ωA−	)(t−τ ) − i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄

[
c̃
†
2(τ )D+(τ )D−(t)c̃2(τ )

−c̃
†
1(τ )D−(t)D+(τ )c̃1(τ )

] −
∫ t

0
dτ

∫ τ

0
dτ ′f (t,τ,τ ′) −

∫ t

0
dτ ′

∫ τ ′

0
dτf (t,τ,τ ′) (τ ↔ τ ′)

+
∫ t

0
dτ

∫ t

0
dτ ′f (t,τ,τ ′), (A2)

where

f (t,τ,τ ′) = e−i(ωA−	)(t−τ ′) d0 · E(τ )

h̄

d0 · E(τ ′)
h̄

c̃
†
2(τ )D+(τ )D−(t)D+(τ ′)c̃1(τ ′). (A3)

Using
∫ t

0 dτ
∫ t

0 dτ ′f (t,τ,τ ′) = ∫ t

0 dτ
∫ τ

0 dτ ′f (t,τ,τ ′) +∫ t

0 dτ ′ ∫ τ ′

0 dτf (t,τ,τ ′), we obtain

c̃
†
1(t)D−(t)c̃2(t) = c̃

†
1(0)D−(t)c̃2(0)e−i(ωA−	)(t−τ )

−i

∫ t

0
dτe−i(ωA−	)(t−τ ) d0 · E(τ )

h̄

× [c̃†2(τ )D+(τ )D−(t)c̃2(τ )

−c̃
†
1(τ )D−(t)D+(τ )c̃1(τ )]. (A4)

The square integral region of 0 � τ � t and 0 � τ ′ � t can
be separated into lower and upper triangular integral regions
divided by τ = τ ′.

∫ t

0 dτ
∫ τ

0 dτ ′ and
∫ t

0 dτ ′ ∫ τ ′

0 dτ correspond
to the integrals in the lower and upper triangular regions,
respectively.
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