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PACS. 71.10Fd – Lattice fermion models (Hubbard model, etc.).
PACS. 71.10Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger

liquid, etc.).
PACS. 75.50Ee – Antiferromagnetics.

Abstract. – We demonstrate from first principles that ferromagnetic core, meron vortex con-
figurations of the spin- 1

2
antiferromagnet in two-dimensions give rise to midgap electronic states

in the Mott-Hubbard charge gap. Merons are collective mode excitations of the antiferromagnet
and are induced by doping the system with charge carriers. They are the topological analogs of
charged bosonic domain wall solitons in one-dimension.

Doped Mott insulators [1] consisting of spin- 1
2 local moments exhibit a host of uncon-

ventional electronic, magnetic and optical properties [2]. These include non-Fermi- liquid
transport behaviour of the metallic state, quantum spin-liquid correlations in the local moment
background, and anomalous optical absorption in the mid-infrared. It has been suggested [3]
that these are intrinsic properties of an antiferromagnetic Mott-Hubbard gap in the presence
of charge carriers and that they play a central role in the occurrence of high-temperature
superconductivity. While some phenomenological pictures [4], [5] of this anomalous metal
have been introduced, a microscopic theory has yet to be formulated.

In this paper, we compute the electronic spectrum of antiferromagnetic (AFM) core—and
ferromagnetic (FM) core—meron vortices of the spin- 1

2 antiferromagnet on a bipartite, square
lattice using a simple continuum approximation. These are collective mode excitations which
dominate the low-energy charge excitation spectrum of the doped Mott insulator, giving rise to
non–Fermi-liquid behaviour. We demonstrate that the FM-core meron induces a degenerate
pair of localized electronic midgap states within the Mott-Hubbard charge gap, which are
independent of the meron core radius. Electronic excitations between the Mott-Hubbard
bands and these midgap levels may contribute to sub-gap optical absorption [6], [7]. Lattice
effects, meron-meron interactions and meron-spin-wave interactions lead to a broadening of
the midgap levels into a mid-infrared band. Translational motion of charged merons may
give rise to non-Drude behaviour in the a.c. conductivity. Merons are the two-dimensional
analogues of magnetic domain wall solitons [8], [9] in the one-dimensional antiferromagnet and
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they exhibit electronic properties analogous to domain walls in polyacetylene [10]. When the
meron is doped with a charge carrier, its structure relaxes to that of a planar antiferromagnetic
vortex with vanishing local moment amplitude in the core. We have shown that this charged
meron is a bosonic collective excitation in which the localized charge resides on the induced
midgap level.

Our model applies to quasi–two-dimensional systems such as the weakly coupled, layered,
high-Tc oxide superconductors where finite-temperature, antiferromagnetic long-range order
(LRO) is observed. It is not intended to describe a strictly two-dimensional system. Our picture
is that of an ordered antiferromagnet at zero or low doping, in which a single added hole forms
a conventional spin-polaron [11]. However, with increased doping, our numerical, Hartree-Fock
calculations [12] demonstrate that these spin-polarons are unstable to the formation of charged
meron-antimeron vortex pairs. We postulate that with further doping, these bound vortex
pairs may dissociate giving rise to a quantum spin liquid of solitons, in which magnetic LRO
is destroyed.

In our picture, spin fluctuation effects are described by the motion of these solitons and
their scattering from spin waves. The time scale of electronic excitations across the Mott-
Hubbard charge gap is very small compared to the time scale of magnetic fluctuations so that
a well-defined, instantaneous, Mott-Hubbard gap structure exists even within the spin-liquid
phase.

Consider a strongly interacting quasi–two-dimensional electron gas described by the tight-
binding Hamiltonian

H = −
∑
〈ij〉
σ

tij(c
†
iσcjσ + h.c.) +

∑
ij

Vijninj , (1)

where c†iσ creates an electron at site i with spin σ, tij is the hopping amplitude from site j

to site i on the square lattice, ni ≡
∑2
σ=1 c

†
iσciσ, and Vij is the Coulomb interaction. For

nearest-neighbour hopping (tij = t0) and purely on-site Coulomb repulsion (Vii ≡ U), this
reduces to the Hubbard model. In order to capture the effects of spin rotation during the
process of electron hopping, we retain the nearest neighbour Coulomb repulsion (Vij = V ).

It is convenient to define the bilinear combination of electron operators Λµij ≡ c†iασ
µ
αβcjβ ,

µ = 0, 1, 2, 3. Here σ0 is the 2×2 identity matrix and σ ≡ (σ1, σ2, σ3) are the usual Pauli spin
matrices. The quantum expectation value 〈 〉 of this operator in mean-field theory signifies
the presence of charge- and spin-density (i = j) and charge- and spin-current (i 6= j). In
some previous papers, we defined the spin-flux phase [13] of the 2-d Hubbard model, and we
demonstrated [14] that it has a lower Hartree-Fock ground state energy than non-flux, spiral,
magnetic states (in which only the diagonal, i = j, components of Λµij exhibit a nonzero ground
state expectation value). In the spin-flux model [13], [14], we adopt the ansatz that there is no
charge current in the ground state 〈Λ0

ij〉 = 0 but circulating spin-currents exist and take the

form 〈Λaij〉 = 2t0
V i∆ijn̂a, a = 1, 2, 3, where |∆ij | = ∆ for all i and j, and n̂ is a unit vector. We

conjecture that spin-flux is a hidden “law of nature” which is hidden in models which neglect
the non-zero range of the Coulomb interaction.

Using the Pauli matrix identity, 1
2σ

µ
αβ(σµα′β′)

∗ = δαα′δββ′ , it is possible to rewrite the

electron-electron interaction term as follows: ninj = (2 + δij)ni −
1
2Λ

µ
ij(Λ

µ
ij)
†. Using the

Hartree-Fock factorization, Λµij(Λ
µ
ij)
† → 〈Λµij〉(Λ

µ
ij)
† + Λµij〈Λ

µ
ij〉
∗ − 〈Λµij〉〈Λ

µ
ij〉
∗, we obtain the

mean-field Hamiltonian

HMF = −t
∑
〈ij〉

c†iαT
ij
αβcjβ + h.c.+ U

∑
i

c†iα(si · σαβ)ciβ . (2)
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Fig. 1. – a) The 2-d analog of the domain wall is a meron texture depicted as a lotus flower configu-
ration of the local director field n̂(r). We associate a unit cell of four sites with local moments aligned
antiferromagnetically with each n̂(r). Each plaquette exhibits a spin-flux of π (T 12T 23T 34T 41 = −1)
corresponding to a 2π rotation of the internal coordinate system of the electron as it encircles the
plaquette. This is a dynamical consequence of the nearest neighbour Coulomb repulsion. As n̂(r)
varies smoothly from one unit cell to the next, it makes a half-covering of the unit sphere S2. b) The
antiferromagnetic-core meron exhibits a pair of nondegenerate, localized, subgap electronic levels in the
2-d Mott-Hubbard charge gap. These levels (solid lines) are plotted as a function of the dimensionless
meron core radius. Both levels approach the midgap (E = 0) as the core radius ρc → 0 as well as
in the limit of small local moment amplitude (Us � t). Some higher angular momentum bound
states also appear near the upper and lower Mott-Hubbard band-edges ±Us. On the other hand, the
ferromagnetic-core meron has a doubly degenerate midgap state (dashed line) which is independent
of core radius. Finally, the nondegenerate ` = 0 states for the fluxless skyrmion are depicted with
dotted lines.

Here, T ijαβ ≡ (δαβ + i∆ijn̂ ·σαβ)/
√

1 +∆2 are spin-dependent SU(2) hopping matrix elements

defined by mean-field theory, s ≡ 1
2 〈c
†
iασαβciβ〉 is the local moment amplitude, and t =

t0
√

1 +∆2. In deriving (2) we have dropped constant terms which simply change the zero
of energy in (1) as well as terms proportional to

∑
i ni which simply change the chemical

potential. It was shown previously [14] that the ground-state energy depends only on the
plaquette matrix product (see fig. 1 a)) T 12T 23T 34T 41 ≡ exp[in̂ ·σΦ]. Here, Φ is the spin-flux
which passes through each plaquette and 2Φ is the angle through which the internal coordinate
system of the electron rotates as it encircles the plaquette. This corresponds to a new broken
symmetry in which the mean-field Hamiltonian acquires a term with the symmetry of a
spin-orbit interaction. We now proceed to demonstrate that mid-gap states may be formed
within the antiferromagnetic Mott-Hubbard charge gap within the Φ = π spin-flux phase for
the FM-core meron configuration of si.

A meron vortex in the plaquette director field n̂ is depicted in fig. 1 a). We consider a local
moment configuration {si} which follows the axis of the director within a given plaquette,
while the director field varies smoothly from one plaquette to the next in the form of a lotus
flower. As the director field rotates to an angle (θ, φ) from the z-direction, the spins on one
sublattice rotate by the same angles (θ, φ), while the spins on the other sublattice rotate to
(π − θ, π + φ). We refer to this collective excitation as an AFM-core meron. On the other hand,
it is interesting to consider an FM-core meron in which the local moments are ferromagnetically
polarized about the plaquette vector, n̂, at r = 0. As the director field, n̂, rotates to (θ, φ),
the spins on one sublattice (say sites 1 and 3) rotate to (θ, φ), whereas the spins on the second
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sublattice (sites 2 and 4) rotate to (θ, π + φ). As r →∞, θ→ π/2, leading once again to local
AFM order far from the core region. We refer to this excitation as an FM-core meron. The
evaluation of the electronic structure of both merons is facilitated by considering a mean-field
background of uniform spin-flux of π through each elementary plaquette of a 2-d square lattice.
In the absence of second-nearest-neighbour hopping a flux of π is equivalent to a flux of −π
and there is no breaking of chiral symmetry. Defining the unit cell to consist of the four
elementary sites of a plaquette (see fig. 1 a)), we introduce an eight-component electron field

operator ψ†(r) ≡ [χ+(1), χ+(2), χ+(3), χ+(4)], where χ+(j) ≡ (c†j↑, c
†
j↓) denotes up and down

spin electron creation operators. The mean-field Hamiltonian (2) may then be re-expressed in
terms of 8× 8 matrices αx, αy, and β:

HMF =
∑
k

ψ†k[εkxαx + εkyαy + (Us)β]ψk . (3)

Here, we have introduced the Fourier transform ψk ≡ N−1/2Σre
−ik·rψ(r), where N is the

number of unit cells in the square lattice, εk ≡ −2t coska, and a is the lattice constant.
The structure of the matrices αx, αy and β is determined by our choice of mean-field order
parameters 〈Λµij〉 and si. We choose the product of SU(2) matrices T ij around each elementary

square of the lattice to be minus one using a spin-independent gauge in which T ij = −1 for
one link of each plaquette, but T ij = +1 for the remaining three links (see fig. 1 a)).

In this spin-independent gauge αx = −γz⊗ τx⊗ I and αy = γx⊗ τx⊗ I contain the identity
matrix in spin-space and β = I ⊗ τz ⊗ (σ · n̂). Here, I is the 2× 2 identity matrix, γ and τ
are two sets of 2× 2 Pauli matrices describing hopping in the x- and y-directions respectively,
and σ are the usual 2× 2 Pauli matrices which act on the internal spin-space of the electron.
A detailed derivation of these matrices has been given in ref. [14]. Hereafter we drop the direct
product symbol ⊗ for convenience.

For a spatially non-varying director field n̂(r) = ẑ, the band edges of the effective one-
electron Mott-Hubbard charge gap occur at the four corners k = π

2a (±1,±1) of the reduced
Brillouin zone. Linearizing the dispersion relations in (3) about these points yields an effective
continuum Schrödinger equation Heffψ = Eψ, where

Heff = iαx∂x + iαy∂y +Aτz(σ · n̂) , (4)

where the dimensionless coordinate variables x and y are measured in units of (2ta/Us) and
the dimensionless energy E is measured in units of Us. In eq. (4) the local moments are
rigidly aligned either antiferromagnetically (if A = I), or ferromagnetically (if A = τz), with
respect the unit vector n̂(r). As a result, vorticity in the director field does not lead to intra-
plaquette phase vorticity and the resulting solitons do not carry spin-flux over and above the
background. The possibility of an FM- core soliton (A = τz) with an AFM background will
be introduced in what follows by generalizing the interaction σ · n̂ to have different structure
for the two separate sublattices.

Consider an axially symmetric magnetic texture in which the director field n̂(r) exhibits
integer µ units of vorticity: σ · n̂(r) → U†(r)σzU(r), where U(r) = eiθ(r)Aσy/2eiµφσz/2. Here
(r, φ) are polar coordinates and θ(r) is an arbitrary function of the radial coordinate with
boundary conditions θ(0) = 0 and θ(∞) = π/2 (meron) or θ(∞) = π (skyrmion). The
AFM-core solitons correspond to the choice A = I and the FM-core solitons correspond to the
choice A = τz . Using the substitution ψ = ei(αz+µσz+2`)φ/2η(r)/

√
r, the radial Schrödinger

equation becomes Hrη = Eη, where

Hr ≡ iαx∂r +
αy

r

(µ
2
σz + `

)
+Aτzσ(r) . (5)
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Here, σ(r) ≡ e−iθAσy/2σzeiθAσy/2 and ` is the angular-momentum quantum number. Since the
meron does not carry additional spin-flux, only integer values of ` are allowed. The solution
of (5) is simplified by noting that the plaquette parity operator P ≡ τzγy commutes with Hr.
It follows that the eigenfunctions of Hr can be labelled according to the eigenvalues of P ,
which we denote as s1 = ±1. Introducing the unitary matrix U1 = ei

π
4 γxτz , and noting the

U†1PU1 = γz, the transformed radial equation becomes{
−is1τx∂r +

τy

r

(µ
2
σz + `

)
+Aτz(σz cos θ + σxA sin θ)

}
η = Eη . (6)

For either the FM-core or AFM-core solitons, if η is an eigenfunction of (6) with quan-
tum numbers (E, s1, `), it follows that σyη is another eigenfunction with quantum numbers
(−E,−s1,−`). Therefore the spectrum is always symmetric about E = 0.

For the AFM-core soliton (A = I), it follows that τxσyη is another eigenfunction with
quantum numbers (E, s1,−`). As a consequence, the ` 6= 0 levels of the AFM-core solitons
are doubly degenerate whereas the ` = 0 levels are non-degenerate.

For the FM core soliton (A = τz), the state τyσzη is another eigenfunction with quantum
numbers (E,−s1, `). As a consequence, all of the levels of the FM-core soliton are doubly
degenerate.

We have solved eq. (6) for the meron configuration (µ = 1), θ(r) = 2 tan−1 (r/ρc) for r < ρc

and π/2 for r > ρc, as a function of the meron “core radius” ρc. Depicted as solid lines in
fig. 1 b) are the two nondegenerate ` = 0 states of the AFM core meron. Both states approach
the midgap E = 0 as the dimensionless parameter (Us

t
)ρc

a
→ 0. All other (` 6= 0) bound

states remain close to the Mott-Hubbard band edges. For the non–flux-carrying AFM-core
skyrmion, A = I and θ(r) = 2 tan−1 (r/ρc) for all r. In this case a non-degenerate P = 1 state
emerges from the upper band edge for large ρc and eventually joins the lower band edge as
ρc → 0. Likewise a P = −1 state moves from the lower band edge and merges into the upper
continuum. This is depicted by dotted lines in fig. 1 b). Finally, the doubly degenerate ` = 0
states of the FM-core meron are depicted as a dashed line at precisely E = 0 for all values
of ρc.

Unlike the neutral meron configurations which have a lotus flower structure, charged merons
induced by doping exhibit a planar vortex structure. This can be described by setting cos θ ≡ 0
in eq. (6), while retaining the parameterization sin θ = tanh(r/ρc). It is straightforward
to verify that eq. (6) for the doped meron has a doubly-degenerate mid-gap level, whose
wave functions are given by η†(r) =

√
r sech(r/ρc) (1, 0,−1, 0) for s1 = 1 and η†(r) =√

r sech(r/ρc) (0, 1, 0,−1) for s1 = −1. For hole doping, the gap states are empty and the
valence band continuum states are fully occupied. It is easy to verify that these occupied
states are spin-paired and that this charged vortex soliton is a bosonic collective excitation
which carries no net spin. In analogy with polyacetylene, this suggests a possible microscopic
origin for non-Fermi liquid behaviour in the doped copper-oxide superconductors through the
mechanism of charge-spin separation of the added holes.

The importance of meron configurations to the observed non–Fermi-liquid behaviour of
a doped, quasi–two-dimensional Mott-Hubbard system is determined by the free-energy of
a quantum liquid of such solitons in thermodynamic equilibrium. Our study [12] suggests
that when a hole is added to the undoped system, the energy of the extra charge carrier is
minimized if it nucleates a magnetic (skyrmion) spin-polaron and it resides in the associated
sub-gap electronic level. This is analogous to polaron formation in polyacetylene [10]. Unlike
one-dimensional polyacetylene, in which the addition of a second charge carrier leads to the
immediate dissociation of the polaron into a pair of charged, bosonic, domain wall solitons,
the two-dimensional antiferromagnet is driven by entropic as well as energetic effects. At
low doping, charge carriers remain bound in meron-antimeron configurations. It has been
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suggested [15] within the context of the long-wavelength, continuum, O(3) nonlinear σ-model
that at finite temperature, the liquid of spin-polarons may undergo a Kosterlitz-Thouless [16]
type of phase transition into a (quantum) Coulomb plasma of free merons. It is important to
re-examine this possibility in the presence of spin-flux and charged, bosonic merons. These
topological effects are distinct from previously considered [17] spin-wave renormalization ef-
fects. A microscopic derivation [18] of the O(3) σ-model from the Hubbard model, further
suggests that this phase transition may be driven by increased doping even at fixed tempera-
ture. The effect of clothing the doping electrons (or holes) with merons leads to a pinning of the
chemical potential near the center of the Mott-Hubbard charge gap. It leads to the emergence
of an impurity band near E = 0 as the system is doped accompanied by a quantum liquid of
merons in which long-range AFM order is absent. Behaviour of this type as well as evidence
for charge-spin separation is observed in angle-resolved photo-emission experiments [19]-[21].
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