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Charged bosons in a doped Mott insulator: Electronic properties of domain-wall solitons
and meron vortices

Mona Berciu and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 11 April 1997!

We demonstrate from first principles that when a charge carrier is added to a spin-1/2 antiferromagnetic
Mott insulator in either a one- or two-dimensional lattice, the self-consistent, Hartree-Fock ground state
consists of a magnetic soliton texture with a doubly degenerate electronic level at the center of the Mott-
Hubbard charge gap. This model is appropriate to systems with weak interchain or interlayer magnetic cou-
plings in which long-range antiferromagnetic order is observed in the absence of charge carriers~doping!.
These magnetic solitons mediate the destruction of the magnetic order as the charge carrier concentration is
increased. In a one-dimensional lattice with nearest-neighbor hoppingt, on-site Coulomb repulsionU, and
self-consistent, antiferromagnetic moment amplitudeS, we find that a charged,fermionic, magnetic domain
wall soliton with a weakly ferromagnetic core, centered between two sites, has lower Hartree-Fock energy than
a corresponding charged quasiparticle in one of the Mott-Hubbard bands. However, forUS/t.2, this soliton
is unstable to the formation of a lower energy charged,bosonicdomain wall soliton, centered on a single site.
For US/t, 2, both of the above solitons are charged bosons. The self-consistent structure of these solitons
exhibits no rotation of the local magnetic moments, but only a local suppression of the local moment amplitude
in the vicinity of the hole. In the absence of doping, charge neutral domain wall solitons exhibit spin rotation
within their core region. The equilibrium core sizer is determined by the degree of magnetic anisotropy. The
ferromagnetic core soliton exhibits a pair of nondegenerate near-midgap electronic states. The antiferromag-
netic core soliton exhibits a pair of nondegenerate electronic states that are symmetric about the midgap energy
and that merge into the continuum as the anisotropy effects are made small and the soliton core radiusr
becomes very large. The two-dimensional antiferromagnetic Mott insulator exhibits analogous behavior to the
one-dimensional model. This analogy is precise for a 2D antiferromagnet exhibitingspin flux. For the undoped
Mott insulator, the ferromagnetic core meron vortex~‘‘lotus flower’’ configuration of local magnetic moments!
exhibits a doubly degenerate electronic midgap state in the continuum model and is the analog of the 1D
neutral domain wall soliton. We demonstrate that a hole added to the 2D system can form a charged bosonic
collective excitation, in which the spin background around the hole forms aplanar vortexwith local antifer-
romagnetic correlations at infinity and vanishing local-moment amplitude at the core of the soliton.
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I. INTRODUCTION

The occurrence of the high-Tc superconductivity1 in lay-
ered perovskite materials has sparked broad interest2 in the
quantum properties of magnetically correlated electron s
tems. At low temperature all parent compounds exhibit
antiferromagnetic Mott-Hubbard charge gap.3 As charge car-
riers are introduced by doping, this long-range antiferrom
netic ~AFM! order disappears, leading to a metallic pha
with striking non-Fermi-liquid properties.4,5 Superconductiv-
ity emerges from this unconventional metal as the system
cooled. The development of a microscopic model of this
conventional metal is one of the outstanding issues in qu
tum many-body theory.6

The magnetic behavior of underdoped high-Tc supercon-
ductors is consistent with strong antiferromagnetic Heis
berg exchange within the CuO2 planes and weak
anisotropy, which favors in-plane AFM order. Long-ran
AFM order at finite temperature is sustained by an interpl
Heisenberg exchangeJ' , which is 2–5 orders of magnitud
weaker than the intraplane exchange interactionJ. However,
semiclassical spin-wave theory7 is insufficient in describing
this system when it is doped with charge carriers. With
spin-wave theory, the in-plane AFM correlation lengthj
diverges exponentiallyj/a;exp(J/kBT) as the temperature
570163-1829/98/57~16!/9521~23!/$15.00
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is lowered in the purely two-dimensional~2D! system. 3D
magnetic order occurs at a Ne´el temperature
kBTN;J'(j/a)2, wherea is the 2D lattice constant. This
however, is inconsistent with the observed insensitivity
TN to changes in the interplane coupling.8,9 Substitution of
ions that decrease the interplane coupling or changes in
interplane spacing itself lead to a negligible change inTN .
This suggests thatTN is driven largely by a 2D effect. In-
deed, in the presence of a smallXY anisotropy,DJ, of the
in-plane exchange interaction, it is plausible that the 2D c
relation lengthj diverges at a finite Kosterlitz-Thouless10

transition temperatureTKT.0. In this case, an infinitesima
J' between planes could drive a transition to a 3D orde
AFM at a temperatureTN only slightly larger thanTKT . The
observed insensitivity ofTN to J' is then quite natural.

Another surprising experimental feature of high-Tc super-
conductors is that hole doping is much more detrimenta
the long-range AFM order than substitution of Cu21 by non-
magnetic ions such as Zn21. The reduction of the Ne´el tem-
perature with doping is accompanied by a reduction of
local magnetization amplitude, or a magnetic twist near
holes. The measurements show that there is a large l
modification of the magnetic properties near the localiz
holes, and that up to 100 Cu sites are affected by the p
ence of a single hole.8
9521 © 1998 The American Physical Society
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9522 57MONA BERCIU AND SAJEEV JOHN
Our hypothesis is that upon doping, charge carriers
cloaked by mobile magnetic vortex solitons with electron
energy levels near the center of the Mott-Hubbard char
transfer gap. This is analogous to the behavior of the o
dimensional compound polyacetylene, with doping. In b
polyacetylene and high-Tc superconductors, doping is ac
companied by the emergence of a midinfrared absorp
band in the optical conductivity.11,12

In this paper we show that the scenario described ab
and the detailed analogy with polyacetylene, can be preci
realized using a recently introduced13 variant of the AFM
ground state of the undoped material. We refer to this var
as thespin-fluxstate of the AFM. This state differs from th
standard spin-density-wave~SDW! description of the AFM
only in that the one-electron wave functions which constit
the spin-flux SDW exhibit a 2p rotation of the internal co-
ordinate frame of the electron~described by three Eule
angles! as the electron encircles any elementary plaquett
the two-dimensional lattice. It was shown14 that in the pres-
ence of thespin flux, the ground-state energy of the mea
field AFM is lower than in the absence of the spin flux, for
large range of doping concentration and on-site Coulo
repulsion strengthU. In our view, quantized spin flux is a
new quantum degree of freedom for a many-electron syst
corresponding to a hidden ‘‘law of nature.’’ This law of na
ture is hidden in models, such as the Hubbard model,
neglect the finite range of the screened Coulomb interac
between the electrons. However, by including neare
neighbor Coulomb repulsion effects, it is possible for int
nal electric fields in the many-electron system to prom
internal spin rotation of an electron as it encircles a clo
path. It was shown previously13 that dynamical generation o
spin flux in this manner is accompanied by the nucleation
a pair of magnetic skyrmion structures in the AFM bac
ground. The presence of these spin-flux-carrying skyrmi
leads to a lowering of the average local magnetic mom
amplitudeS, thereby lowering the overall many-electron e
ergy relative to the conventional Ne´el state.

In a recent paper15 we suggested that when charge carri
are added to the antiferromagnet described above, new t
of magnetic solitons textures appear, which lead to furt
disordering of the magnetic background. While it is energ
cally favorable for a single charge carrier to nucleate anon-
spin-flux-carryingskyrmion~conventional spin polaron! and
thereby occupy a state deep into the Mott-Hubbard cha
transfer gap, in the presence of many charge carriers
entropically favorable for such spin polarons to dissoci
into pairs of merons~vortexlike solitons!. This in turn may
lead to the quantum analog of a Kosterlitz-Thoule
transition10 characteristic of 2D systems. As the charge c
rier concentration increases, the Kosterlitz-Thouless tra
tion temperatureTKT rapidly decreases, eventually drivin
the Néel temperatureTN to zero.

Above the transition temperatureTKT , the merons should
dictate the behavior of the system. Using a simple continu
model we showed15 that the ferromagnetic-core merons ha
a doubly degenerate localized level at the midgap of
Mott-Hubbard gap. This is consistent with the emergence
a broad midinfrared optical absorption band with dopin
indicating the existence of electronic levels deep within
gap. Furthermore, since the merons are mobile and the
re
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is localized in their core, they contribute to the charge tra
port. Our study indicates that these charged merons
bosons. As such, it is natural to expect non-Fermi-liquid
havior from such charge carriers in the normal phase of hi
Tc superconductors for temperaturesT.Tc .

In addition to a quantum plasma phase of meron vortic
at special charge carrier concentrations merons may f
ordered arrays such as stripes and domain wall lines.16 These
states may suppress superconductivity at specific dop
fractions.17 It has been noted earlier that in models that co
pletely neglect the long-range part of the electron-elect
Coulomb repulsion, there is a a tendency for charge carrie
in an antiferromagnet to phase separate.18 The incorporation
of realistic Coulomb interactions, however, tends to frustr
such phase separation. In our model, nearest-neighbor C
lomb repulsion plays a crucial role in the generation of s
flux and the subsequent stabilization of meron-vortex s
tons. In this sense our model provides a specific, microsco
mechanism for the frustration of phase separation, which
turn may be central to the emergence of superconductivit18

We begin with a detailed study of the one-dimension
analogs of the two-dimensional merons. These are dom
walls on an AFM chain. We show, using a simple continuu
approximation, that the corresponding 1D domain walls a
2D merons have similar electronic spectra. The advantag
the one-dimensional study is that it is much more simple
perform self-consistent calculations on the lattice. Moreov
the 1D results may be directly relevant for the 3D high-Tc

superconductors. High-Tc cuprates such as YBa2Cu3O7 and
its close relatives have quasi-one-dimensional CuO ch
structures. Unlike other classic one-dimensional quant
spin chains,19 which exhibit 3D AFM order at temperature
on the order of 1 K, the CuO chains reveal AFM ordering
temperaturesTN2

;10–80 K. Experiments measuring the d

resistivity,20 the infrared and optical conductivity,21 and the
penetration depth in untwinned crystals22 and ceramics23

have revealed large anisotropies between thea direction
~perpendicular to chains! and theb direction ~parallel to
chains!. These results suggest that substantial currents
carried along the chains in both the normal and superc
ducting states. The source of superconducting condensa
the chains has not yet been elucidated. On the other han
is known24 that in RBa2Cu3O61x compounds ~R5rare
earth! at low temperatures (T,TN2

), there is a magnetic

state in which not only the planes, but also the chains, h
AFM order, with large ordered magnetic moments. It is po
sible that pairs of 1D charged domain walls are relevan
superconductivity on these chains.

Consider a strongly interacting quasi-two-dimension
electron gas described by the tight-binding Hamiltonian,

H52(̂
i j &
s

t i j ~ais
1 aj s1H.c.!1(

i j
Vi j ninj , ~1.1!

whereais
1 creates an electron at sitei with spin s, t i j is the

hopping amplitudes from sitej to sitei on the square lattice
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n̂i[(s51
2 ais

1 ais , and Vi j is the Coulomb interaction. Fo
nearest-neighbor hopping (t i j 5t0) and purely on-site Cou
lomb repulsion (Vii [U), this reduces to the Hubbard mode
In order to capture the effects of spin rotation during t
process of electron hopping, we retain thenearest-neighbor
Coulomb repulsion (Vi j 5V). It is convenient to define the
bilinear combination of electron operatorsL i j

m[aia
1 sab

m aj b ,
m50,1,2,3, for iÞ j , as well as the on-site operato

SŴ i5 1/2aia
1 sW abaib and Q̂i5n̂i5aia

1 sab
0 aib . Heres0 is the

232 identity matrix andsW [(s1,s2,s3) are the usual Paul

spin matrices. The quantum expectation value^ & of the SŴ i

andQ̂i operators in mean-field theory signifies the prese
of spin- and charge-density, while those of theL i j

m operators
are associated with charge currents (m50) and spin current
(m51,2,3). In the spin-flux model,13,14 we adopt the ansat
that there is no charge current in the ground stateL i j

0 50 but
circulating spin currents exist and take the for
L i j

a 5 (2t0 /V) iD i j n̂a , a51,2,3, whereuD i j u5D for all i and
j , and n̂ is a unit vector. In order to keep this article se
contained, we briefly recapitulate the derivation of the s
flux from the above mean-field considerations.

Using the Pauli spin-matrix identity,12 sab
m (sa8b8

m )*
5daa8dbb8, it is possible to rewrite the electron-electro

interaction terms as follows: ninj52ni2
1
2 L i j

m(L i j
m)1

if iÞ j , andni↑ni↓5ni2(SŴ iSŴ i1
1
4 Q̂iQ̂i). Using the Hartree-

Fock factorization, L i j
m(L i j

m)1→^L i j
m&(L i j

m)11L i j
m^L i j

m&*
1^L i j

m(L i j
m)1&22^L i j

m&^L i j
m&* , we obtain the mean-field

Hamiltonian,

HMF52t(̂
i j &

aia
1 Tab

i j aj b1H.c.1U(
i

ni↑ni↓ . ~1.2!

Here, Tab
i j [(dab1 iD i j n̂•sW ab)/A11D2 are spin-dependen

SU(2) hopping matrix elements defined by the mean-fi
theory, andt5toA11D2. In deriving Eq. ~1.2! we have
dropped constant terms that simply change the zero of
ergy in Eq.~1.1! as well as terms proportional to( ini that
simply change the chemical potential.

The on-site interaction term can be rewritten in the~exact!
form

U(
i

ni↑ni↓52U(
i

SŴ i•SŴ i2
U

4(
i

Q̂i Q̂i1U(
i

n̂i .

~1.3!

The approximation for this term is obtained by maki
the usual mean-field factorizations keeping the expecta
values of the fluctuation terms. These fluctuation terms w
play an important role in the self-consistent magnetic soli
energies in the 1D model. We write

SŴ i•SŴ i52SŴ i•^SŴ i&1^SŴ i
2&22^SŴ i&

2

and

Q̂iQ̂i52Q̂i^Q̂i&1^Q̂i
2&22^Q̂i&

2.
e

e

n

d

n-

n
ll
n

Finally, denoting the expectation value of the spin at t

site i by SW i5^SŴ i& and the number of electrons~density of
charge! by Qi5ni5^Q̂i&, we obtain the mean-field Hubbar
Hamiltonian,

H5Hel1Hconst,

where

Hel52t (
^ i j &,ab

~ai ,a
† Tab

i j aj ,b1H.c.!

2U (
i ,a,b

ai ,a
† ~SW i•sW a,b!ai ,b1

U

2(
i ,a

~12Qi !ai ,a
† ai ,a

~1.4!

and

Hconst5U(
i

~SW i
21 3

4 Qi
22 1

2 Qi !, ~1.5!

whereSW i5
1
2 ^âi ,a

† sW abâi ,b& andQi5^âi ,a
† âi ,a& must be calcu-

lated self-consistently.
It was shown previously14 that the ground state energ

depends on the rotation matricesTi j only through the
plaquette matrix productT12T23T34T41[exp(in̂•sWF). Here,
F is the spin flux that passes through each plaquette andF
is the angle through which the internal coordinate system
the electron rotates as it encircles the plaquette.

We use the ansatz that a spin flux ofF5p penetrates each
plaquette, i.e.,T12T23T34T41521 around each plaquette
This means that the one-electron wave functions are for
to be antisymmetric aroundeach of the elementary
plaquettes of the square lattice. This uniform spin-flux ph
may be regarded as an alternative mean-field ground sta
the Hubbard model, which describes spin-dependent sca
ing and the resulting many-body correlations.

We emphasize, however, that this mean field is a ‘‘fa
ground state’’25 at finite doping, analogous to the ‘‘fals
vacuum’’ in early models of quantum chromodynamics.26 In
the presence of charge carriers this mean field is unstab
the proliferation of topological fluctuations~magnetic soli-
tons!, which eventually destroy the LRO. In this sense, o
model goes beyond simple mean-field theory.

We begin by presenting the self-consistent results for
1D lattice model using the above mean-field factorization
the on-site interaction term. These results are recaptured
ing a simple continuum approximation. We show that th
continuum model can be mapped onto the correspond
continuum model of domain walls in polyacetylene.27 From
an energetic point of view, isolated domain walls in a qua
one-dimensional magnet and single vortices in a quasi-t
dimesional magnet have linearly and logarithmically dive
gent creation energies, respectively. Consequently, th
solitons must be created in pairs in a real system.

Our study of the 2D spin-flux model demonstrates a str
ing correspondence between the spectra of the domain
solitons and polarons of the 1D system, with merons a
skyrmions, respectively, of the 2D system. This analogy
facilitated by the relativistic one-electron dispersion relatio
of the 2D spin-flux model. These calculations lend suppor
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9524 57MONA BERCIU AND SAJEEV JOHN
a physical picture of the 2D CuO planes in which skyrmi
fluctuations reduce the magnitude of the ordered local A
magnetic moment at low doping. With increased doping,
charged spin polarons may lower their energy by form
bound meron-antimeron pairs. With further doping, the
meron pairs dissociate through a Kosterlitz-Thouless tra
tion into a quantum liquid of free merons,28 which destroy
the long-range order. The time scale for electronic exc
tions across the Mott-Hubbard charge gap is very small c
pared to the time scale of magnetic fluctuations so tha
well-defined, instantaneous Mott-Hubbard gap structure
ists even within the spin-liquid phase.

The charged merons are mobile planar vortex configu
tions of the spin background. We demonstrate that they
spinless bosons. Charge transport mediated by bos
meron vortices exhibits highly non-Fermi-liquid behavi
and non-Drude behavior in the low-frequency conductivi
Also, the midgap states of such carriers are consistent
the appearance of the broad midinfrared band upon dop

II. QUASI-ONE-DIMENSIONAL AFM CHAIN

For intuition purposes, we first consider the electro
structure of topological defects in a 1D antiferromagnet w
long-range order~LRO!. This LRO is induced by the mag
netic interaction of electrons in the chain with other electro
in the 3D crystal in which the chain is embedded.

The Hamiltonian of the 1D chain with nearest-neighb
hopping contains no nontrivial closed loops through wh
spin flux can penetrate. Therefore, we setTi j 51 in this
model. For a half-filled chain, we setQi51, since we do not
consider charge-density-wave states.

Our model 1D Hamiltonian becomes

Hmf52t(
i ,s

~ âi ,s
† âi 11,s1âi 11,s

† âi ,s!

2U (
i ,a,b

âi ,a
† ~SW i•sW a,b!âi ,b1U(

i
~SW i

211/4!,

~2.1!

where SW i5(21)( i 11)SeW z and eW z is a unit vector of some
arbitrary direction. The value ofS is determined self-
consistently.

The electronic part of the undoped AFM mean-fie
Hamiltonian consists of two electronic bands characteri
by the dispersion relations

Ek
c/v56Aek

21~US!2, kP~2p/2a,p/2a#,

whereek522t cos(ka) anda is the lattice constant.
Each of these levels is doubly degenerate, correspon

to spin ‘‘up’’ and spin ‘‘down’’ degrees of freedom: if the
wave function corresponding to spin up is concentra
mainly at the odd sites, then the degenerate wave func
corresponding to spin down is concentrated mainly at
even sites, and vice versa~see Appendix A!. At half-filling,
all the states in the valence band (Ek

v,0) are occupied,
while all the states in the conduction band (Ek

c.0) are
empty. The two bands are separated by a Mott-Hubb
charge gap of magnitude 2US.
e
g
e
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A. Self-consistency of the antiferromagnetic background

The LDOS~local density of states! projected onto siten
and spin directions, is defined in terms of the one-electro
Green’s function:

rns
0 ~E!5sgn~E!

1

p
Im Gss

0 ~n,n;E!. ~2.2!

It is shown in Appendix A that

rns
0 ~E!5

sgn~E!@E1~21!nsUS#

pA@E22~US!2#@~US!214t22E2#
~2.3!

for US<uEu<A(US)214t2 and 0 otherwise.
The total number of states per site per spin direction

each one of the bands can be calculated by integrating
LDOS over the corresponding ranges of energies. The res
are shown in Table I.

Here,

S05
US

2N(
k

1

Ek
. ~2.4!

In the ground state, at half-filling, there is one electron p
site:

Qn5E
v band

dE„rn↑
0 ~E!1rn↓

0 ~E!…51.

Also, the spin at each site is given by

Sn
z5

1

2Ev band
dE„rn↑

0 ~E!2rn↓
0 ~E!…5~21!~n21!S0 ,

Sn
x50, Sn

y50.

This mean-field solution is made self-consistent, by
quiring that the resulting spinSo in Eq. ~2.4! is equal to the
assumed spin amplitudeS.

SinceEk depends only onS2, we can see thatthe ground
state is doubly degenerate: both1S and2S satisfy Eq.~2.4!
and give rise to self-consistent ground states that differ fr
each other only through the fact that all the spins are flipp
from one ground state to the other one.

From Fig. 1~a!, we can see that the dependence ofS on
U/t is as expected. In the weak interaction limitU/t!1, S
→0. The electrons have the same probability of spin up
down at any site~see table, forS→0); the gap is closed and
the electronic band is very broad (4t), showing that the elec-
trons move freely~are delocalized! along the chain. In the
strong interaction limitU/t@1, S→ 1

2 . The bands become
very thin @A(US)214t22US→2t (t/US)#, showing that

TABLE I. Number of states per site, per spin direction, in t
valence and conduction bands.

# states
n5even

s5↑
n5even

s5↓
n5odd
s5↑

n5odd
s5↓

*c banddErns
0 (E)5 1

2 1S0
1
2 2S0

1
2 2S0

1
2 1S0

*v banddErns
0 (E)5 1

2 2S0
1
2 1S0

1
2 1S0

1
2 2S0
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the electrons are strongly localized each at one site, e
having its 1

2 spin in theOz direction. The AFM structure is
energetically favorable since it allows a lowering of the e
ergy by virtual hopping of electrons on their neighbori
sites.

B. The energy of the antiferromagnetic background

Since all the states of the valence band are occupied
energy of the AFM mean-field ground state is simply giv
by

Egs52(
k

Ek
v12NU~S21 1

4 !, ~2.5!

whereS5S0 in Eq. ~2.4!. The magnitude of the ground-sta
energy per site, in units oft, is plotted in Fig. 1~b! as a
function of U/t ~the full line!. For comparison, the valu
predicted by the exact solution29 of the 1D Hubbard model is
also shown~dotted line!. The following features can be ob
served: in theU/t→0 limit ~noninteracting electrons!, the
energy of the ground state has, indeed, the expected v
Egs/2Nt→2 (4/p). In the strong interaction limitU/t→`,
the energy of the ground state goes to zero as expected~since
in this limit every site is single occupied!. The asymptotic
value of our mean-field energy is found to be given
Egs/2Nt→22(t/U) @see dashed line in Fig. 1~b!#. It is well

FIG. 1. ~a! MagnitudeS of the spin at a site as a function ofU/t,
in the AFM mean-field background.~b! Energy per site~in units of
t) of the AFM mean-field background as a function ofU/t ~full
line!. The dotted line shows the prediction of the exact Lieb-W
solution of the Hubbard model. The dashed line shows
asymptotic behaviorE/2Nt→22t/U.
ch

-

he

lue

known that in this limit, the Hubbard model is equivalent
an AFM Heisenberg model30, with a coupling constant
J5 4t2/U, and that its ground state energy per site31 should
be Egs/2Nt→2 (J/t) ln2522.77(t/U). This confirms that
our mean-field method is a good starting point, from whi
to incorporate fluctuation corrections that lower the energ

C. Neutral domain wall solitons

A sharp-boundary soliton is a domain wall consisting o
simple juxtaposition of two halves of the chain found in t
two mean-field ground states~see Fig. 2!. We treat this case
in some detail, since it serves as ‘‘reference case’’ for m
general extended solitons. Also, analytic calculations
possible and one can gain insight into the charge, spin,
statistics of such solitons.

The Green’s functions for the Hamiltonian of the shar
boundary soliton can be calculated analytically~see Appen-
dix B!. We summarize our results below.

In addition to the two Mott-Hubbard bands of the AFM
mean-field background, there are also four nondegene
discrete levels appearing in the gaps. Two of them oc
inside the Mott-Hubbard gap (uEu,US),

E↑
152t1A~US!21t2.0,

E↓
251t2A~US!21t2,0

and the other two occur in the two external ga
@ uEu.A4t21(US)2#:

Ẽ↑
151t1A~US!21t2.0,

e

FIG. 2. ~a! A sharp boundary soliton created by juxtaposition
regions found in the two AFM mean-field ground-states.~b! The
electronic structure of the sharp boundary soliton consists of
spin-paired bands and four discrete nondegenerate levels within
gap. In the largeU/t limit, the two strongly localized electrons
occupying the gap levels corresponds to the two spins bordering
sharp boundary.
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Ẽ↓
252t2A~US!21t2,0.

The spin projections for these nondegenerate levels
indicated in Fig. 2~b!. This soliton preserves charge
conjugation symmetry: for each level of energyE and spins
there is another level of energy2E and spin2s.

The spatial probability of localization on each of the
four discrete levels is given by~see Appendix B!:

ufs~n!u25
1

2A11l22
@Al2112l#N~n!, ~2.6!

wherel5US/t, and

N~n!5N~2n21!5H n if n>0 is even

n11 if n>0 is odd.

Using the LDOS for the sharp-boundary chain,rns
s (E),

derived in Appendix B, it follows, by straightforward inte
gration, that

E
2A~US!214t2

2US

dE„rn↑
s ~E!1rn↓

s ~E!…5122ufs~n!u2.

Since there are exactly two discrete levels forE,0, this
equation can be rewritten as

E
2`

0

dE„rn↑
s ~E!1rn↓

s ~E!…51. ~2.7!

This shows that although the electronic structure
changed in the presence of the soliton, at half-filling all t
electrons will occupy levels withE,0 ~lowest energies
available! and the sharp-boundary soliton is charge neut
there is an average of one electron per site, exactly as in
ground state.

It is apparent from the above discussion that two localiz
states split off from each of the two bands and that there
an even number of states in the band after the creation of
sharp boundary soliton. The undoped soliton has all the
els withE,0 occupied. Since the valence band has an e
number of states, half of which are spin up and half of wh
are spin down, the contribution of the band to the total spi
zero. There are also the two down spins that occupy
discrete levels. It follows that the total spin of the neut
soliton is an integer multiple of\.

The sharp-boundary soliton provides a reference s
from which we calculate self-consistent soliton structures
the absence of anisotropy, the sharp-boundary soliton is
stable. Self-consistency for this reference state occurs on
the limit of U/t→`.

In order to test the self-consistency of the soliton,
calculate the expectation value of the spin at every site,
compare it with the initial parameters. The evaluation of
corresponding integrals cannot be done analytically, exc
for the two sites near the boundary. It can be shown that
band contribution to these expectation values is exactly z

1

2E2A~US!214t2

2US

dE„rn↑
s ~E!2rn↓

s ~E!…50, if n521,0.
re
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This means that the entire contribution to the spin of th
two sites comes from the two electrons in the occupied
levels. The total spin at sites21 and 0 is given by@see Eq.
~2.6!#

S~21!5S~0!52
US

2A~US!21t2
.

In the largeUS/t limit this approaches2S51/2, and the
picture becomes self-consistent. In this limit, the wave fu
tions of the gap levels are very strongly localized near
boundary, and the two spins from the gap levels may
identified with the spins on either side of the boundary@see
Figs. 2~a! and 2~b!#. This excitation is a boson, made up
two electrons occupying the gap levels.

The excitation energy necessary to create a sh
boundary soliton is given by the difference between the s
ton energy and the AFM background energy. This differen
has two components, one coming from differences betw
expectation values of the electronic partHel , and one com-
ing from differences between the constants partHconst @see
Eqs. ~1.4! and ~1.5!#. For the sharp-boundary parameteriz
tion, the difference between the corresponding values
Hconst is zero, so that the excitation energy is given by

Eexc
s 5(

ns
E

2`

0

dEEDrns~E!

5(
ns

E
2A~US!214t2

2US

dEEDrns~E!1E↓
21Ẽ↓

2 .

~2.8!

Here,

Drns~e!5rns
s ~E!2rns

o ~E!5
1

p
sgn~E!Im@Gss

s ~n,n;E!

2Gss
o ~n,n;E!#

represents the difference in the LDOS between the sh
boundary soliton and the AFM background. This integral
evaluated numerically as a function ofUS/t in Fig. 3. As

FIG. 3. Excitation energy~in units of t and measured with re
spect to the AFM mean-field background! of the sharp-boundary
soliton, as a function ofUS/t. The dotted line shows the asymptot
value predicted by the Heisenberg model withJ54t2/U.
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expected, the energetic cost of exciting a sharp-bound
soliton decreases asUS/t→`; in this limit, the electrons are
strongly localized and the interactions between them bec
very weak. From the equivalent Heisenberg model~valid in
this limit!, we know that the cost of exciting a shar
boundary soliton must be 2JS25J/252t2/U ~a pair of anti-
parallel spins becomes parallel, andS51/2 in this limit!. The
dashed line in Fig. 3 shows this asymptotic value, in agr
ment with our mean-field theory.

As in the case of Bloch walls that separate domains
ferromagnetism in conventional materials32 such as iron, the
AFM domain wall described above has an equilibrium thic
ness determined by the crystalanisotropyeffects on the local
magnetic moment orientation. For the isotropic tight-bindi
Hamiltonian~1.1!, the neutral sharp-boundary soliton is u
stable to relaxation into a gradual boundary in which
local moments in the core of the soliton rotate slowly fro
one AFM mean field at plus infinity to the other degener
AFM mean field at minus infinity. Indeed, in the isotrop
model, the minimum Hartree-Fock energy is realized wh
the soliton core radius approaches infinity. Nevertheless,
present a detailed study of the electronic structure of
neutral domain wall of the soliton. This provides a referen
point for describingstable, chargeddomain wall solitons.
The charged solitons have a finite equilibrium core rad
that is determined by the subgap electronic structure
they induce, rather than anisotropy in the magnetic excha
interactions.

Consider the local magnetic moments of the exten
neutral soliton on one sublattice~sublatticeA!. We allow
these magnetic moments to slowly rotate from one AF
state, ~with SW 52SeW z , for instance!, to the second AFM
state, (SW 5SeW z) in the (x0z) plane. Thex direction is along
the chain, and the rotation is characterized by an angleun
describing the expectation value of the spin at a siten:
SW n5S(cosuneWx1sinuneWz). The angleun varies from2 (p/2)
to (p/2) asn goes from2` to 1`, and is described by the
ansatzun5 (p/2)tanh@(n10.5/r)#, where r is the soliton
core radius~in units of a). Here, the soliton is centered be
tween the sites21 and 0, as in the case of the shar
boundary soliton.

Due to the symmetry of the problem, the rotation of t
second sublattice~sublatticeB! is described by the sam
angleun . However, we are free to choose the sense of ro
tion. For the case that spins on the two sublattices rotat
the same sense@see Fig. 4~a!#, we obtain

SW n5S„~21!bncosuneW x1~21!nsin uneW z… ~2.9!

with b51. In this case the spins remain locally antiparal
everywhere along the chain, we call this excitation anAFM-
core soliton.

The second possibility is when the spins on the two s
lattices rotate in opposite senses@see Fig. 4~b!#. In this case
we use formula~2.9! except with the choiceb50. In this
case spins in the core of the soliton become parallel and
call such an excitation aFM-core soliton.

The corresponding mean field Hamiltonian is given by
ry
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Hel
b 52t(

^ i , j &
~x i

†x j1H.c!2US(
i

x i
†
„~21!bicosu isx

1~21! isin u isz…x i , ~2.10!

wherex i
†5(âi↑

† âi↓
† ).

Hconst has the same expression as in Eq.~1.5! and has
exactly the same value as in the mean-field ground state c
since the magnitude of the spin at each site remainsS and
there is one electron per site.

The Green’s function associated with Eq.~2.10! is evalu-
ated using Dyson’s equation, with the sharp-boundary s
ton as a reference case.

We write

Hel
b 5Hel

s 1Vb,

whereHel
s is the electronic part of the Hamiltonian of th

sharp-boundary soliton.Vb is a potential localized near th
core of the soliton, on a region characterized by the c
radius of the soliton. This potential is diagonal in the s
space, but not in the spin space. The Dyson equations fo
Green’s functions are given by

Gss8
b

~n,m;E!5dss8Gss
s ~n,m;E!

1(
ps9

Gss
s ~n,p;E!Vss9

b
~p!Gs9s8

b
~p,m;E!.

~2.11!

Here, we have used the fact thatGs is diagonal in spin
space. Once the values ofGss8

b (n,n;E) are known at any
site n, we can calculate physical quantities such as
LDOS, the excitation energy of the soliton and the expec
tion value of the spin at various sites~see Appendix B!.

D. Electronic states in the gap

In the presence of a sharp-boundary soliton, four el
tronic levels split from the valence and conduction band, a
become localized levels in the gap. For extended solitons,
number of such gap levels and their energies vary as a fu
tion of the soliton core radius. In Figs. 5~a! and 5~b! we plot
the electronic spectrum~bands and discrete levels! as a func-
tion of the soliton core radius for the two types of soliton
for a fixed value of the Mott-Hubbard gapUS/t.

FIG. 4. ~a! Structure of an AFM-core soliton. The spins on th
two sublattices rotate from one mean-field ground state to the o
one, preserving the local antiferromagnetic correlations.~b! Struc-
ture of the FM-core soliton. The spins on the two sublattices ro
in opposite directions, creating a ferromagnetic region in the cor
this soliton.
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9528 57MONA BERCIU AND SAJEEV JOHN
In the r→0 limit, both solitons show the same structur
as the sharp-boundary soliton. However, asr increases, the
behavior of the two spectra is very different. For the FM
core soliton, more and more levels split off from both ban
and go deeper into the gaps. For the AFM-core soliton
tendency is opposite: the gap levels go toward and eventu
reenter the bands. These different behaviors can be un
stood if we analyze ther→` limit. In this limit, an AFM-
core soliton is practically indistinguishable from the grou
state, because the rotation angle between spins on neigh
ing unit cells goes to zero. Therefore, the electronic struc
should become identical with that of the ground state, wh
consists only of the two bands. This is exactly the behav
seen in Fig. 5~a!. On the other hand, in the presence of
FM-core soliton withr→`, all the chain is in the core re
gion, which is a perfect FM state. The electronic structure

FIG. 5. ~a! The lower half of the electronic spectrum of a
AFM-core soliton, as a function of the soliton core radiusr. In the
limit r→0, there are two discrete levels. In the limitr→`, this
soliton becomes indistinguishable from the mean-field backgrou
As the soliton core radiusr increases, the discrete levels reenter
bands.~b! The lower half of the electronic spectrum of a FM-co
soliton, as a function of the soliton core radiusr. In the limit r
→0, there are two discrete levels. In the limitr→`, the entire
chain becomes ferromagnetic and the spectrum consists of two
tinuum bands, the valence band corresponding toE
P@2US22t,2US12t#. Here g5@4t21(US)2#1/2 and l 5@ t2

1(US)2] 1/2.
,

-
s
e
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er-

or-
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h
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a FM state can be easily calculated, and it is seen that
made up of two bands with energies E
P@2US22t,2US12t# and EP@US22t,US12t#, the
lower ~valence! band consisting of nondegenerate levels w
spins in the direction of the FM spins (1Ox direction, in this
case!, while the upper~conduction! band consists of nonde
generate levels with spins in the opposite direction. T
shows that asr increases, the initial AFM bands containin
doubly degenerate levels with up and down spins in theOz
direction will spread out into the broader FM bands w
spins in theOx direction. This spreading of the bands asr
increases is shown in Fig. 5~b!.

The most interesting gap levels are the pair of levels cl
est to the midgap, because these levels accommodate
doping electrons or holes. In Fig. 6 we show the behavior
one of these levels (E.0) for different values ofUS/t, as a
function of r. There are two distinct types of behavior an
two different regimes for the FM soliton. IfUS/t,2, the
level reaches the midgap, while ifUS/t.2 the level goes to
some nonzero value asr→`. This is consistent with the
band structure of the FM state. This state has an inner gap
energiesEP@2US12t,US22t#, which is consistent with
the fact that if US/2t.1, the gap level goes to
6(US22t)Þ0. If US/2t,1, the gap is closed in the FM
core. Therefore the gap level goes toE50 asr increases.

E. Excitation energies of the neutral solitons

We now evaluate the total density of states~DOS! and the
excitation energy of the solitons. IfHel

s and rs(E) are the
Hamiltonian and total density of states, respectively, of
sharp-boundary soliton, then the difference between the t
densities of states of the chain with an extended soliton
the chain with a sharp-boundary soliton is given by33

Dr~E!5rb~E!2rs~E!5
1

p
Im

d

dE
ln det@12VbGs~E!#.

~2.12!

d.

n-

FIG. 6. The energy of the near midgap (E.0) level for the
undoped FM- and AFM-core soliton, forUS/t51, 3, and 6, as a
function of the soliton core radius. For the FM-core soliton th
level approaches the midgap, while for the AFM-core soliton
approaches the band edge. ForUS/t,2, the FM-core soliton level
reaches the midgap. ForUS/t.2, this level goes toUS22t, the
band edge of the FM valence band.
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57 9529CHARGED BOSONS IN A DOPED MOTT INSULATOR: . . .
Since Vb has nonzero matrix elements only for a fini
range of sites, the determinant can be calculated in the
spin basis, and is equal to the determinant of the finite reg
with non-vanishing matrix elements ofVb. Introducing the
function

F~E!5 Im$ ln@det~12VbGs~E!!#%, ~2.13!

the variation of the DOS is given by

Dr~E!5
1

p

d

dE
F~E!. ~2.14!

The difference between the energies of the ground state
Hel

s andHel
b can be expressed in terms ofF(E):

DEgs5E
occ states

EDr~E!dE52
1

pEocc states
F~E!dE.

~2.15!

In writing the last equality, we made use of the fact that
chemical potentials of both Hamiltonians are equal~m50 in
both undoped cases!. In the undoped case there is no cont
bution to the excitation energy coming fromHconstpart, since
it has the same value for the extended solitons as for
ground state. For the doped case, the gap levels that
occupied~or empty! have to be taken into account as wel

The total excitation energy relative to the uniform AF
background is given by

Eexc52
1

pEocc states
F~E!dE1Eexc

s ~2.16!

whereEexc
s is given in Eq.~2.8!. For a fixed value ofUS/t,

the typical variation ofEexc with r is shown in Fig. 7~a!. In
the r→0 limit, both the FM-core and AFM-core soliton
behave identically and their excitation energies equal tha
the sharp-boundary soliton. Asr increases, the excitatio
energy of the AFM-core soliton decreases, since asr→` this
soliton merges into the AFM background. On the other ha
the excitation energy of the FM-core solitons increases w
r, since as the core size increases, more spins become p
lel instead of antiparallel.

The instability of the neutral domain wall soliton is
general characteristic of 1D systems. As in the class
theory of Bloch walls separating domains of magnetizat
in a ferromagnet, a stable finite-core-size soliton can exis
crystal anisotropy energies are included in the model. N
ertheless, the importance of these domain walls is appa
For a doped system it is energetically more advantageou
pay the cost of creating a domain wall and lower the to
energy by allowing the doping electron~hole! to occupy a
deep gap level than it would be to let the doping elect
~hole! occupy the first available level in the conduction ban
In the next section, we identify two types of charged solito
on the lattice with different spin and statistics from conve
tional charge carriers in a metal. The lowest-energy char
soliton, which is centeredon a site, appears to be a spinle
bosonic excitation. A charged soliton which is centeredbe-
tweentwo sites has higher energy and appears to be anun-
stablespin-1/2 fermion forUS/t.2, whereas forUS/t,2 it
has the character of a spinless boson.
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III. CHARGED DOMAIN WALL SOLITONS

By adding the energy of the first available gap level of
undoped FM/AFM-core soliton to the total excitation ener
of the undoped FM/AFM-core soliton, we obtain a first es
mate of the excitation energy of a doped FM/AFM-core so
ton. The typical dependence with the core radius of this
ergy ~in units of t), for a givenUS/t, is shown in Fig. 7~b!.
This offers plausibility to the idea that a charged FM-co
soliton is stable at a finite-core radius. It suggests that
doped soliton excitation energy is indeed less thanUS
@which is the energetic cost of placing the electron~hole! on
the first available level in the conduction~valence! band, in
the absence of the soliton#. However, this elementary consid
eration is not self-consistent. Adding an electron~hole! on
the first available level in the gap~i.e., in a localized state!
modifies the expectation values of the spin in the core of
soliton. In order to get a self-consistent model, we proceed
follows. We start with the initial parameters of an undop
soliton and calculate the corresponding Green’s functions~in
the way described in the previous section!. The expectation
values of the spin of the corresponding doped soliton at v

FIG. 7. ~a! Excitation energies~in units of t and measured with
respect to the AFM mean-field background! of the undoped FM-
core soliton and AFM-core soliton, as a function of the soliton co
radiusr. HereUS/t55. In the absence of magnetic anisotropy t
1D neutral domain wall is unstable; the minimum energy occurs
r→`. ~b! Excitation energies~in units of t and measured with re
spect to the AFM mean-field background! of a doped FM/AFM-
core soliton, as a function of the soliton core radiusr. This estimate
is obtained by adding the energy of the level occupied by the d
ing electron~hole! to the excitation energy of the undoped solito
For US/t55, a stable, charged FM-core soliton exists atr/a52.
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9530 57MONA BERCIU AND SAJEEV JOHN
ous sites are obtained by integrating, over the correct ra
of energies, the trace of the imaginary part of the Gree
function at that site multiplied by thesW operator~in spin
space!. This yields a new set of spin expectation valu
Once these new parameters are obtained, the next iter
begins, and the process continues until it converges to a
consistent solution.

A. Self-consistent charged solitons

Remarkably, the self-consistent, Hartree-Fock, struct
of the charged soliton does not exhibit spiral twist of t
magnetic background as suggested by the structure of
extended neutral solitons. Instead, the charged soliton
sists of a collinear spin alignment in which the magnitude
the local magnetic moment is suppressed within the sol
core. Using the procedure described above, we calculate
self-consistent shape, electronic spectra, and excitation e
gies of the charged solitons. For both self-consistent s
tions, the magnitude of the spin along the chain becom
zeroSn

x50, while the spin perpendicular to the chain is su
pressed in the core of the soliton. The vanishing of the co
ponent parallel to the chain has a simple interpretation. In
neutral soliton, the main contribution to the spin parallel
the chain was given by the electron on the deepest occu
gap level, and it is exactly this level that becomes em
upon hole doping.

The two self-consistent charged solitons are depicted
Fig. 8. The magnitude of the spin perpendicular to the ch
is well approximated bySn

z5Stanh(n10.5/r) for a doped
soliton centered between two sites, andSn

z5Stanh(n/r) for a
doped soliton centered at a site. In Fig. 9~a! we plot the
self-consistent soliton core radius for both solitons as a fu
tion of US/t. In the largeUS/t limit, the localization length
of the gap levels is very small and accordingly the solit
itself is very small. In the smallUS/t limit, the bound levels
are more extended, and the solitons are large. For large
tons, a continuum approximation that we discuss in the n
section recaptures the lattice results, and there is no dis
tion between the two types of solitons. This can be seen f
Figs. 9~b! and 9~c!. In Fig. 9~b! we plot the excitation ener
gies of the two types of solitons~in units of t, and defined
with respect to the undoped AFM mean-field background! as
a function ofUS/t. In the smallUS/t limit, the two excita-
tion energies are practically equal@and very well approxi-
mated by the value ofUS/A2t predicted by the continuum
model ~dotted line!#. In the intermediate and largeUS/t re-
gimes the size of the soliton becomes comparable to the
tice constant. In this case the doped soliton centered at a
is energetically favorable to the doped soliton centered
tween sites. For any value ofUS/t, the excitation energy o
both types of solitons is less thanUS, the energetic cost o
simply adding the doping electron~hole! on the first avail-
able level in the conduction~valence! band. This suggest
that charged solitons must appear automatically on the c
upon doping.

In Fig. 9~c! we plot the lower half of the electronic spect
of the two types of solitons~these doped solitons have di
crete levels only in the internal gap, and they have the us
charge-conjugation symmetry!. The doped soliton centere
at a site has only a doubly degenerate level at the midgap
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any value of US/t. Using symmetry arguments, it is easy
see that this level is empty~or doubly occupied! for the hole
~electron! doped soliton. The spectrum of the doped solit
centered between two sites is more complicated:
US/t,2, there are only two nondegenerate levels symme
with respect toE50, which go to zero asUS/t→0. Since
the soliton is doped, these levels are either both occupie
both empty. ForUS/t.2, a new pair of nondegenerate le
els splits off the inner band edges and becomes localiz
The spin projections of these nondegenerate gap levels
similar to those of the sharp-boundary soliton: the two low
levels support down spins~more generally, spins pointing in
the same direction as the expectation values of the spin a
two sites near the center of the soliton!, while the two upper
levels have the opposite projection. The appearance of
second pair of gap levels has important consequences
lated to the spin of such a soliton. We discuss this is
below.

B. Spin of the charged soliton

The doped soliton centered at a site is a boson. This
be seen from its electronic spectrum: all the states in
continuum bands are spin paired and filled, while the dou
degenerate midgap level is either empty or doubly occup
This means that the total projection of the spin perpendicu
to the chain is zero. Therefore this soliton is a charged bos

FIG. 8. ~a! The self-consistent spin distribution of a doped so
ton centered between sites. Here,US/t51.2. The magnitude of the
spin is suppressed in the core of the soliton, due to the localiza
of the doping particle in the core.~b! Same as~a! for doped soliton
centered at a site.
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In the smallUS/t limit this is confirmed by the continuum
model ~see next section!. The fact that the total spin of th
doped soliton is zero can be seen also from Fig. 8~b!. By
symmetry, the sum of the spins to the left of the core mus
equal and opposite to the sum of the spins to the right of
soliton, giving a vanishing total spin.

The situation of the doped soliton centered between s
is more complicated. ForUS/t,2, this soliton is a boson
because it has the same type of electronic structure as
other soliton. On the other hand, forUS/t.2, this soliton is
a fermion. Since a new nondegenerate level splits from
lower band edge, this lower discrete level is occupied by
electron. While this level was still in the valence ba
(US/t,2) its spin was delocalized over the whole cha
Therefore it did not contribute to the spin of the soliton. A
this level goes deeper and deeper into the gap, the co
sponding wave function becomes well localized in the c
of the soliton, and the 1/2 spin it carries becomes the spi
the soliton. Another way to understand the fermionic char
ter of this soliton for largeUS/t is to start from the undoped

FIG. 9. ~a! Soliton core radius of a self-consistent doped solit
centered at a site~full line! and centered between sites~dashed
line!, as a function ofUS/t. ~b! The excitation energies~in units of
t) of the self-consistent doped soliton centered between sites~full
line! and centered at a site~dashed line!, as a function ofUS/t. For
US/t,2, the soliton core radii are large and the two solitons
come indistinguishable, giving excellent agreement with the c
tinuum model~dotted line!. ForUS/t.2, the soliton radius is com
parable to the lattice constant.~c! Electronic spectra of the self
consistent doped solitons as a function ofUS/t. The soliton
centered at a site has a doubly degenerate midgap level for allUS/t.
For US/t,2, the soliton centered between sites has a pair of n
degenerate levels which go towards the midgap asUS/t decreases.
For US/t.2, a second pair of nondegenerate levels split from
bands.
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sharp-boundary model analyzed previously, and dope it.
have argued that in the strongly localized limit, the two ele
trons occupying the two discrete levels withE,0 of the
sharp-boundary soliton contribute equally to the spins of
two sites bordering the center of the soliton. The total spin
the undoped soliton is an integer multiple of\. As we re-
move one of these electrons, in order to get a doped sol
centered between sites, the magnitude of the spin at the
sites bordering the center decreases by half, leaving behi
total spin of 1/2.

The bosonic charged soliton centered on a site is energ
cally favored and it can lower its energy further by quantu
mechanical hopping along the chain. Since the structure
this soliton is unchanged~in the largeUS/t limit ! as the hole
moves, this type of soliton is very mobile and its total ener
is lowered by an amount of the order oft as it moves. The
doped soliton centered between two sites is a charged
mion. This soliton, however, is relatively immobile, sinc
motion requires changes in the magnitudes of the spins e
for largeUS/t.

C. Charge density of the doped solitons

In the previous sections, we simplified the eigenva
spectrum of the charged solitons by neglecting the cha
density term in the mean-field Hamiltonian~1.4!. A self-
consistent treatment of the charge density leads to a los
~charge conjugation! symmetry of the soliton eigenvalu
spectrum aboutE50. However, the general conclusion
concerning the charge and the spin of the solitons rem
the same as discussed earlier. In order to take into cons
ation this extra charge localized in the core of the soliton,
use the Hamiltonian~1.4! to describe the doped system. Th
self-consistent calculations once again yield two types
doped solitons.

Although the charged soliton centered at a site contin
to have a doubly degenerate gap level, the charged soli
centered between sites has only nondegenerate gap le
However, their spectra are no longer symmetric with resp
to E50. Instead, this symmetry manifests in a more sub
way. LetHel

hole be the Hamiltonian of a hole-doped solito

defined by the parametersSW n andQn512Drn , andHel
electron

the Hamiltonian of an electron-doped soliton defined by
parameters2SW n andQn511Drn . ~This is exactly the type
of correspondence expected in systems with char
conjugation symmetry.! It is straightforward to prove that if
fhole(n) is a spinor such thatHel

holefhole(n)5Efhole(n), then
the spinorfelectron(n)5(21)nfhole(n) satisfies the equation
Hel

electronfelectron(n)52Efelectron(n). In other words, the
electronic spectrum of the hole-doped soliton is obtained
reflection with respect toE50 from the electronic spectrum
of the electron-doped soliton.

This loss of symmetry of the electronic spectrum mak
the problem of determining the Fermi level nontrivial.
turns out that the chemical potential remains fixed at zero
was the case for the undoped soliton. In other words, fo
hole ~electron! doped soliton all the 2N21 (2N11) occu-
pied states~whereN is number of unit cells of the chain! are
belowE,0. This symmetry guarantees that the ‘‘shapes’’
the self-consistent electron- and hole-doped solitons are
same. The spin distribution is not greatly modified by t
charge term. The tanh function still gives a good fit, and

-
-
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9532 57MONA BERCIU AND SAJEEV JOHN
soliton core radii have the same qualitative behavior as in
previous case. The electronic spectra of the hole-doped
tons centered between sites and centered at one site
shown in Figs. 10~a! and 10~b! ~the spectra of the corre
sponding electron-doped solitons are obtained by reflec
with respect toE50). All the gap levels of the doped solito
centered between sites are nondegenerate, while the gap
els of the doped soliton centered at a site are doubly de
erate.

From Fig. 10~a!, we can see that the doped soliton ce
tered at a site remains a charged boson, since only le
belowE50 are occupied. For a hole-doped soliton cente
at a site, only the valence-band levels are occupied and t
is no possibility of a localized spin. For the electron-dop
soliton centered at a site, all the degenerate gap levels
doubly occupied, and once again there is complete spin
cellation.

For the doped soliton centered between sites, we see a
two distinct behaviors. For a hole-doped soliton centered
site, we see from Fig. 10~b! that belowUS/t51 there are no
gap levels withE,0. Therefore only the levels of the va
lence band are occupied and this doped soliton must b
boson. ForUS/t.1, a discrete level splits off the band edg
of the valence band and becomes a bound state, carryi

FIG. 10. ~a! Electronic spectrum of a hole-doped soliton ce
tered at a site including charge redistribution effects, as a func
of US/t ~diamonds!. All gap levels are doubly degenerate. The lin
show the approximate values found in the largeUS limit. All levels
below the midgap are occupied.~b! Same as~a! for a hole-doped
soliton centered between sites. All gap levels are nondegene
The spectra of the corresponding electron-doped solitons are
tained by inversion with respect toE50.
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1/2 spin that makes this soliton a fermion. Similarly, t
electron-doped soliton centered between sites is seen to
fermion for US/t.3, where there are three occupied g
levels, and a boson belowUS/t,3, where there are fou
occupied gap levels.

In the largeUS/t limit, we find a simple analytic expres
sion to describe the approximate position of the discrete
els of these solitons. For the hole-doped soliton centered
site, the positions of the two doubly degenerate gap lev
are well approximated byE5A(US)21t26t, while for the
hole-doped soliton centered between sites, the two le
near the midgap are at6t while the two upper levels are a
A(US)21t26t @see dotted lines in Figs. 10~a! and 10~b!#.

The total energies of the self-consistent electron- a
hole-doped solitons are shown in Fig. 11~a!. The resulting
excitation energy of the hole-doped solitons~lower line!,
which is lower than the excitation energy of the electro
doped solitons~the upper line!, is an artifact of our Hamil-
tonian that does not contain a term describing Coulomb
traction between the electrons and the positive backgro
nuclei. This artificially favors a hole-doped soliton. A
electron-doped soliton costs more energy, in this oversim
fied model, because the extra repulsive energy due to ha
more electrons is not compensated by attraction between

n

te.
b-

FIG. 11. ~a! Excitation energies~in units of t) of static hole- and
electron-doped solitons centered at a site, as a function ofUS/t,
with no compensating positive background.~b! Excitation energies
~in units of t) of static doped solitons centered at a site~full line!
and centered between sites~dashed line!, as a function ofUS/t,
with a uniform, compensating positive background. The solito
centered at a site can move freely along the chain, and there
their actual energy is lowered by an amount 2t relative to the static
soliton.
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extra electron and the nuclei. The contribution of a neut
izing positive background may be estimated by simply t
ing the average between the excitation energies of the h
doped soliton and the electron-doped soliton. This is sho
in Fig. 11~b! for the two types of doped solitons. The impo
tant observation about Fig. 11~b! is that the average energ
of the electron- and hole-doped soliton centered at a s
exceedsUS. However, it should be remembered that th
soliton can lower its energy by an amountt by quantum-
mechanical hopping motion along the chain@this is one unit
on the vertical scale of Fig. 11~b!#. This additional mobility
for the charged soliton centered on a site makes it energ
cally favorable compared to the soliton centered betw
sites.

The increase in the excitation energy of the doped solit
when the charge terms are included is partly an artifact of
purely on-site Coulomb repulsion of the Hubbard model. F
an electron-doped soliton centered at a site, the extra elec
is basically localized on top of another electron, and t
costs an enormous amount of energy. A more realistic mo
should consider a longer-range Coulomb interactions as
as a more realistic model for the positive background cha
of the nuclei.

IV. CONTINUUM MODELS

The properties of lattice solitons, which we have d
scribed so far, can be elegantly recaptured by means
continuum model. The appropriate continuum model is c
structed in such a way that the local antiferromagnetic c
relation between nearest-neighbor sites is treated exactly
fluctuations from one unit cell~consisting of two spins! to
another have slow spatial variations. This also provide
foundation for constructing the appropriate continuum mo
for the two-dimensional antiferromagnet~described in Sec
V! where the lattice model is very cumbersome.

One of the difficulties of a discrete model is that t
eigenequationsHf(n)5Ef(n) are recurrence relations. I
the continuum model, these recurrence relations are repl
by differential equations, which in turn have analytical so
tions. The simplest continuum approximation consists of
panding the dispersion relations near the Brillouin-zone e
k056p/2a. If we expand the free-electron dispersion re
tions ek52t cos(ka) near this point, we get the approxima
valueek522ta(k2k0). Changing the reference point from
k50 to k5k0 in the reciprocal space, we can write

ek →
k→k0

22tak52tai
d

dx
.

The hopping Hamiltonian can then be approximated by~see
Appendix A!

Hke52(
k

Fk
†S 0 22tak

22tak 0 D Fk

5E dx F†~x!S 22taitx

d

dxDF~x!. ~4.1a!

In what follows, the Pauli matricessx,y,z are associated to
the spin space, while the Pauli matricestx,y,z are associated
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to the site space. HereF(x) is a four-component spinor de
scribing the two components of electron spin on each of
two lattice sites constituting a unit cell. Similarly, the inte
action part of the Hamiltonian becomes

Hint5E dxF†~x!F2U•S SW 1~x!•sW 0

0 SW 2~x!•sW D
1

U

2
@12Q~x!#GF~x!, ~4.1b!

whereSW 1(2) is the expectation value of the spin at the s
1~2! of the unit cell located atx, andQ(x) is the charge at a
site.

In the undoped case, we can use the same parametriz
as for the discrete case.Q(x)51 for both the AFM-core and
the FM-core solitons. However,

SW 1~x!5S„cos@u~x!#eW x1sin@u~x!#eW z…,

SW 2~x!5S„~21!bcos@u~x!#eW x2sin@u~x!#eW z….

For an AFM-core soliton, we chooseb51, whereas for the
FM-core soliton we chooseb50. Hereu(x) describes the
direction of the local spin with respect to the chain axis. T
continuum Hamiltonian for the AFM/FM-core soliton i
given by

H5E dxF~x!†H 22taitx

d

dx

2USAtz~sin uAsz1cosusx!J F~x!, ~4.2!

where A51 for the AFM-core soliton andA5tz for the
FM-core soliton.

The electronic structure of the mean-field, AFM bac
ground states@u(x)56p/2# of this Hamiltonian is made up
of two bands whose dispersion relations a
Ek

(6)56A(US)214a2t2k2, and a Mott-Hubbard gap o
magnitude 2US. In the presence of a soliton, the angleu(x)
describes the rotation between the two ground states, an
characterized by a soliton core radiusr. We choose

u~x!5
p

2
tanhS x

r D . ~4.3!

Introducing the dimensionless variables,

z5x
US

2at
, e5

E

US
, and rc5r

US

2at
,

the soliton spectrum is obtained by solving the eigenva
problem,

H 2 i tx

d

dz
2tz„sin u~z!sz1A cosu~z!sx…J f~z!5ef~z!,

~4.4!

where u(z)5 (p/2)tanh(z/rc). Unlike the lattice model, in
which there are two independent parametersUS/t andr/a,
here we have just one parameterrc .
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A. AFM-core soliton

Since the AFM-core soliton Hamiltonian commutes w
the operatorP5txsy , the eigenfunctionsf(z) can be cho-
sen to be eigenfunctions ofP as well. SinceP251 andP is
hermitian, its eigenvalues are61. We perform a unitary
transformation withU5exp@2i (p/4) tysy# such thatP be-
comes diagonal, i.e.,U21PU5tz . Labeling the eigenvalue
of tz by s561, we obtain the differential equation for th
new two-component functionh(z)5Uf(z):

F2 isy

d

dz
2@cosu~z!sx1sin u~z!sz#Gh~z!5seh~z!.

~4.5!

This shows that if there is a level with the quantum numb
(e,s) there is another level with the quantum numbe
(2e,2s), as expected for charge-conjugation invarian
Clearly, the discrete levels on either side of the midgap h
different parities. We can see from the structure of Eq.~4.5!
that the levels are nondegenerate, since there is no m
that anticommutes with all three Pauli matrices.

Using the method presented in Ref. 13, we numerica
evaluate the gap structure. There are only two levels in
gap, with energies varying from 0 to the band edges, asrc
varies from zero to infinity. In Fig. 12 we present a compa
son between the results of the continuum model with tha
the discrete AFM-core soliton model for various values
US/t. In the largerc limit the agreement is very good fo
many choices ofUS/t. For smallrc values, the agreement i
best whenUS/t is small as expected, since for a givenrc ,
smallerUS/t values correspond to biggerr/a values.

The excitation energy of the continuum AFM soliton
similar to that of the lattice AFM soliton. The band contr
bution to the total soliton energy varies slowly withrc , leav-
ing the main contribution to the discrete levels. For the u
doped soliton, only the discrete level withE,0 is occupied,
and the energy of this level decreases asrc increases. As the
soliton expands, its excitation energy diminishes, until it b
comes indistinguishable from the AFM mean-field bac
ground.

FIG. 12. Dependence of the energy of the discrete gap leve
rc5rUS/2at, predicted by the continuum model~full line!, and by
the discrete models withUS/t51, 2, and 6, for an AFM-core soli-
ton.
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B. FM-core soliton

Since the FM-core soliton Hamiltonian commutes w
the operatorP5txsx ~with eigenvalues61), the eigenfunc-
tions f(z) can be chosen such that they are eigenfuncti
of P as well. We perform a unitary transformation wit
U5exp@2i (p/4) tysx# such thatU21PU5tz . Once again,
labeling the eigenvalues oftz by s561, we obtain the dif-
ferential equation for the new two-component functi
h(z)5Uf(z):

F2 issx

d

dz
2@cosu~z!sx1s sin u~z!sz#Gh~z!5eh~z!.

~4.6!

For the FM-core soliton~unlike the AFM-core soliton!,
the matrix sy anticommutes with the Hamiltonian. There
fore, if there is a statef with the quantum numbers (e,s),
then there is another statesyf with the quantum numbers
(2e,s) as expected by charge-conjugation invariance. A
other difference is that for the FM-core soliton, levels wi
energies in the different halves of the gap have the sa
parity ~instead of opposite parity for AFM soliton!. Using the
same argument as before, there are no degenerate dis
levels, except ate50. This is verified by numerical calcula
tions. Numerically, we find only a doubly degenerate leve
e50, and the corresponding wave function is given by

hs~z!5CS 1

2 i D expS 2E
0

z

dz8„sin u~z8!1 is cosu~z8!…D ,

s561. ~4.7!

Here,C is a normalization constant.

C. Self-consistent theory of the doped soliton
in the continuum model

In the case of doped solitons, a self-consistent solution
the spin degrees of freedom is possible if we takeQ(x)51.
The self-consistent solution of the discrete case sugges
parametrization of the formSW 1(x)52SW 2(x)5S tanh(x/r)eWz.
It turns out that with this parametrization, the continuu
model has a simple analytical solution. In fact, it maps o
the continuum polyacetylene model.27 The total ‘‘elec-
tronic’’ Hamiltonian is given by

Hel5E dxF†~x!H 22taitx

d

dx
2UStzsztanh

x

rJ F~x!.

~4.8!

Using the dimensionless variables defined earlier, the
genvalue problem reduces to

H 2 i tx

d

dz
2tanhS z

rc
D tzszJ f~z!5ef~z!. ~4.9!

Using the fact that the Hamiltonian commutes withsz , and
introducing the quantum numbers @defined by
szfs(z)5sfs(z)], Eq. ~4.9! reduces to a pair of two-
component equations:

n
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H 2 i tx

d

dz
2s tanhS z

rc
D tzJ fs~z!5efs~z!,s561.

~4.10!

This equation can be written in a more familiar form if w
perform a rotation byp/2 about theOy axis in the site space
This rotation is implemented by the matr
U5exp@2i(p/4)ty#. The rotated HamiltonianH5U†HelU
and the rotated wave functioncs(z)5U†fs(z) satisfy the
equation

H 2 i tz

d

dz
1s tanhS z

rc
D txJ cs~z!5ecs~z!. ~4.11!

For s51, this equation is identical to the correspondi
equation for charged solitons in polyacetylene@Eq. ~7! from
Ref. 27#. From Eq. ~4.11! we can see tha
c21(z)5tzc11(z). Therefore, fors521 we obtain the
same spectrum.

The above considerations demonstrate that the spec
of this doped soliton is identical to the spectrum of the so
ton in polyacetylene. In the polyacetylene case, the spin
trivial degree of freedom and consequently each level is d
bly degenerate. The soliton structure induces phase shif
the band wave functions and, therefore, the calculation of
excitation energy of the doped FM-core soliton follows e
actly the same steps described in Ref. 27. This yields
result that the doped soliton is stable whenrc51 or
r/a52t/US. In this particular case, the spectrum of the so
ton is made up of a doubly degenerate level at the mid
plus the two bands. The soliton excitation energy is given
US/A2. The results of the continuum model are in go
agreement with the results of the lattice model in the sm
US limit @see Figs. 9~a! and 9~b!#.

It is straightforward to verify that this calculation is sel
consistent with respect to the expectation value of the s
The band wave functions are given by

c11,k~z!5S uk~z!

vk~z!D and c21,k~z!5S uk~z!

2vk~z!D ,

where the detailed expressions foruk(z) and vk(z) in the
caserc51 are given in Ref. 27. Explicitly, we have eve
solutions,

uk~z!1 ivk~z!5A2

L

1

11 ik
@k coskz2tanhz sin kz#,

uk~z!2 ivk~z!5A2

L
iA12 ik

11 ik
sin kz,

and odd solutions,

uk~z!1 ivk~z!5A2

L

1

11 ik
@k sin kz1tanhz coskz#,

uk~z!2 ivk~z!5A2

L
~2 i !A12 ik

11 ik
coskz.

Here, the dimensionless wave vectork>0 is measured in
units of US/2at.
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Rotating these wave functions back to the initial repres
tation, we obtain the band wave function:

f11,k* ~z!5
1

A2
@uk* ~z!2vk* ~z!,0,uk* ~z!1vk* ~z!,0#,

~4.12!

f21,k* ~z!5
1

A2
@0,uk* ~z!1vk* ~z!,0,uk* ~z!2vk* ~z!].

The wave functions of the two midgap levels are given b

f11,B* ~x!5
1

2Ar cosh~x/r!
~21,0,2 i ,0!,

~4.13!

f21,B* ~x!5
1

2Ar cosh~x/r!
~0,i ,0,1!.

In the doped soliton, all the levels in the valence band
occupied, and the midgap levels are either empty or dou
occupied. Therefore, the only contribution to the expectat
value of the spins comes from the band. Using these w
functions, the expectation value of the spin in thez direction
is given by

Sz~z!5 1
4 ^tzsz&band5

1
4 (

s,k
fs,k* ~z!tzszfs,k~z!

52(
k

Re@uk* ~z!vk~z!#5S tanh~z!, ~4.14!

where S5 (1/2L) (k @US/A(US)214a2t2k2# and L52Na
is the length of the chain. This demonstrates the s
consistency, since we have shown previously that the m
nitude S satisfies this condition~recall the self-consistency
equation for the AFM mean-field background!. The expecta-
tion values for the spin in thex andy directions are zero.

It is straightforward to verify that this doped soliton ha
no spin, but carries the charge of the doping electron~hole!.
For each energy level in the band, there are an equal num
of eigenfunctions with up (s511) and down (s521) spin
sz . Since all the levels in the band are occupied, the to
spin is zero. On the other hand, the doped soliton ha
charge6e, which is localized in the core region with a prob
ability density given by that of the midgap level. For a hol
doped soliton only the valence band is occupied and
expectation value of the probability~charge! density is given
by

r~x!5(
k,s

fs,k* fs,k52(
k

~ uuku21uvku2!

5
1

aF12
1

2 cosh2~x/r!
•

tan21p ~ t/US!

p ~ t/US! G . ~4.15!

The total charge~in units of the electron charge! at one site is
given byQ(x)5ar(x). The total number of electrons in th
chain is given by

E
2L/2

L/2

r~x!dx52N2
2

p
tan21S p

t

USD ,
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whereL52Na is the length of the chain andN is the num-
ber of unit cells. In the limitUS/t→0 ~weak coupling!, this
goes indeed to 2N21, as expected for one extra hole.

V. TWO-DIMENSIONAL ANTIFERROMAGNET:
ELECTRONIC STRUCTURE OF MERON VORTICES

In this section we demonstrate the analogy between
domain walls and polarons, and 2D merons and skyrmio
respectively, in the continuum approximation. In order
keep the article self-contained, we review the main points
the derivation of the 2D continuum Hamiltonian.

As discussed in Sec. I, we assume that the 2D lat
Hamiltonian is given by Eq.~1.4!. The mean-field back-
ground consists of antiferromagnetically aligned local m
netic moments whose Hartree-Fock energy has been low
by the inclusion of uniform spin flux. This is expressed fo
mally by setting the product of the electron hopping matric
T12T23T34T41521 around any elementary plaquette. W
choose the simplest spin-independent gauge in wh
Ti j 521 for one link of each plaquette, butTi j 51 for the
remaining three links. The spectrum is independent of
choice of the gauge. For undoped solitons we chooseQi51
and, since we are interested only in the electronic spectra
drop the constant terms.

We introduce an eight-component annihilation opera
f(rW) for up- and down-spin electrons at the four sites of
square unit cell located atrW, and the corresponding eigh

component Bloch operatorfkW5N21/2( rWe
2 ikW rWf(rW). Here N

is the number of unit cells and the sum is performed over
the unit cells.kW is restricted to the first Brillouin zone, whic
in this case is defined bykxP@2p/2a, p/2a#, kyP
@2p/2a , p/2a#. In terms of the Bloch operators, the Ham
tonian can be rewritten as

H5(
kW

fkW
1

@ekx
ax1eky

ay1Ub#fkW , ~5.1!

whereek522t coska, a is the lattice constant, andax ,ay
andb are 838 matrices whose structure is dependent on
choice for the mean-field parametersTi j andSW i . Explicitly,14

ax5S 0 ~T12!1 0 0

T12 0 0 0

0 0 0 ~T34!1

0 0 T34 0

D 52gz^ tx^ I ,

~5.2a!

ay5S 0 0 0 T41

0 0 ~T23!1 0

0 T23 0 0

~T41!1 0 0 0

D 5gx^ tx^ I ,

where we chooseT12521, T235T345T4151. HereI is the
232 identity matrix in the spin space, andgW andtW are two
sets of 232 Pauli matrices describing hopping in thex andy
directions, respectively. We will use thesW Pauli matrices to
describe the internal spin-space of the electron. These m
ces appear in the interaction term,
D
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b5S SW 1sW 0 0 0

0 SW 2sW 0 0

0 0 SW 3sW 0

0 0 0 SW 4sW

D , ~5.2b!

whereSW i describes the expectation value of the spin at thi
site of the unit cell.

In the AFM mean-field reference state we haveb5Stzsz
~assuming that the spins are oriented in thez direction!, and
the dispersion relations are given by

EkW56A~ekx

2 1eky

2 !1~US!2. ~5.3!

Due to the relativistic form of the dispersion relations, t
Fermi surface at half-filling (EF50) collapses to the four
corner points of the Brillouin zone,kWo5@6(p/2a),
6(p/2a)]. The continuum approximation consists, as in t
1D case, in linearizing the electron-dispersion relations ab
one of these isolated Fermi points, by replacing cos(kia) with
(ki2ki

o)a→2 ia] i , i 5x,y.
Using the dimensionless variablesx→x (US/2at),

y→y (US/2at), andE→ (E/US), the Schro¨dinger equation
becomes

F iax]x1 iay]y1
1

S
bGc~rW !5Ec~rW !. ~5.4!

As in the case of the domain walls in one dimension, th
are two distinct types of meron-vortex configurations in tw
dimensions. For a meron with an AFM core we may para
etrize the interaction matrixb by the relations

SW 152SW 25SW 352SW 45Sn̂. ~5.5!

Here,

n̂5@sin u~r !cos~mf!,sin u~r !sin~mf!,cosu~r !!

plays the role of a plaquette director field, around whi
there are four antiferromagnetically correlated local m
ments. For the FM-core meron, the required parameteriza
is given by

SW15SW35Sn̂,
~5.6!

SW 25SW 452S~ n̂22n̂z!.

Here, m is the vortex winding number and we choose t
angle u(r )52 tan21(r /r) for r ,r and u(r )5 (p/2) for
r .r. The angle of the plaquette director field with respect
thez axis varies from 0, in the core of the meron, top/2, in
the asymptotic region, as shown in Fig. 13.

It is straightforward to see that the two merons have
same asymptotic structure, but their cores are very differ
while for the AFM-core soliton the spins are antiferroma
netically aligned on each unit cell and rotate slowly in t
same direction as the plaquette vector, for the FM-core s
ton spins on the two sublattices rotate in opposite directio
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such that they become parallel~ferromagnetic! in the core of
the soliton. With these parametrizations we have

b5Stzsin u~r !@cos~mf!sx1sin~mf!sy#

1SAtzcosu~r !sz5SAtzU
1~rW !szU~rW !, ~5.7!

where U(rW)5eiu(r )Asy/2eimfsz/2. Here, A51 for an AFM-
core meron, whileA5tz for a FM-core meron.

In polar coordinates, the kinetic energy terms reduce

iax]x1 iay]y5e2 i ~f/2! azF iaxS ] r1
1

2r D1 iay

]f

r Gei ~f/2! az,

whereaz52gz . With this choice, the threea matrices sat-
isfy the cyclic algebra@a i ,a j #5 i e i jkak . We introduce a
radial wave function h(r ), defined by
f(rW)5ei (ax1msz12l )f/2h(r )/Ar , to obtain the radial Schro¨-
dinger equation,

F iax] r1
ay

r S m

2
sz1l D1Atzs~r !Gh~r !5eh~r !.

~5.8!

Here, s(r )[e2 iuAsy/2sze
iuAsy/2 and l is an angular mo-

mentum quantum number. Since we are using the dimens
less variablesr→r (US/2ta) and E→e5 E/US, the only
independent parameter isr (US/2ta), as in the 1D case
Since the meron does not carry additional spin flux, o
integer values ofl are allowed. The solution of this equatio
can be simplified by noting that the plaquette parity opera
P[tzgy commutes withHr . It follows that the eigenfunc-
tions ofHr can be labeled according to the eigenvalues ofP,
which we denote ass1561. Introducing the unitary matrix
U15ei (p/4) gxtz, and noting theU1

1PU15gz , the trans-
formed radial equation becomes

FIG. 13. The 2D analog of the neutral domain wall is a mer
texture depicted as a lotus-flower configuration of the local direc

field n̂(rW). As n̂(rW) varies smoothly from one unit cell to the nex
it makes a half-covering of the unit sphereS2. If the meron is
doped, all the components of the spin perpendicular to the p
become zero, and therefore the magnitude of the spin vanish
the core of the charged meron vortex.
n-

y

r

H 2 is1tx] r1
ty

r S m

2
sz1l D 1Atz~szcosu1sxA sin u!J h

5Eh. ~5.9!

For either the FM-core or AFM-core solitons, ifh is an
eigenfunction of Eq.~6! with quantum numbers (E,s1 ,l ), it
follows that syh is another eigenfunction with quantum
numbers (2E,2s1 ,2l ). Therefore the spectrum is alway
symmetric aboutE50. For the AFM-core soliton (A5I ), it
follows that txh is another eigenfunction with quantum
numbers (2E,2s1 ,l ). As a consequence, thel Þ0 levels
of the AFM-core solitons are doubly degenerate whereas
l 50 levels are nondegenerate. For the FM-core soli
(A5tz), the statetyszh is another eigenfunction with quan
tum numbers (E,2s1 ,l ). As a consequence, all of the leve
of the FM-core soliton are doubly degenerate. We can
that for l 50 the structure of the levels and the quantu
numbers associated with them are analogous to the 1D c
In the AFM structure, for every state labeled by quantu
numbers (E,s1) there is another state (2E,2s1). In the FM
structure, for every state (E,s1) there is another state
(2E,s1).

Numerical calculations also give a very similar gap stru
ture, as shown in Fig. 14. The AFM-core meron has t
nondegenerate gap levels with opposite parity, which go
wards the midgap asr (US/2at)→0 and towards the band
edges in the limitr (US/2at)→`. The FM-core meron has

r

e
in

FIG. 14. ~a! Electronic gap structure of the FM- and AFM-cor
2D merons as a function of the continuum parameterrUS/2at, as
predicted by the continuum model.~b! Electronic gap structure o
the FM- and AFM-core 1D domain walls as a function of the co
tinuum parameterrUS/2at, as predicted by the continuum mode
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9538 57MONA BERCIU AND SAJEEV JOHN
a doubly degenerate level at the midgap. This close similar-
ity between the 1D and 2D structures can be seen for o
magnetic textures as well. In particular, the 2D skyrmi
structure is analogous to the 1D polaron. The 1D pola
may be regarded as a bound pair of domain wall solitons

FIG. 15. ~a! A pair of charged merons with the winding numb
m51 and m521. The AFM mean-field background is distorte
only over a finite region.~b! Creation of the backbone of a horizon
tal charged stripe.~c! Meron crystal corresponding to the hole co
centrationd51/8. This configuration may be responsible for t
suppression of superconductivity in some compounds, at this
centration.
er

n
d

the 2D skyrmion is topologically equivalent to a bound p
of merons @see Fig. 15~a!#. For the skyrmion we choose
u(r )52 tan21(r /r) and for the polaron we choos
u(x)52 tan21(x/r). In this case, a truly FM core does no
exist, since atr 50(x50) the arrangements of the spins of
unit cell is the same as that of a unit cell in the asympto
region, except that all spins are flipped. In the asympto
region we have an AFM arrangement. This means that in
core we have an AFM arrangement as well. Consequently
can setA51 in Eq. ~5.9!. All the symmetries of the Hamil-
tonian remain as for the meron~domain wall!, and in the
large r (US/2at) limit the band structure is basically th
same. It consists of two nondegenerate levels that go tow
the band edges. In the smallr (US/2at) limit, the levels
cross over and go towards the opposite band edge, instea
going towards the midgap@see Figs. 16~a! and 16~b!#.

Finally, we discuss the nature of the charged meron,
tained by doping the 2D antiferromagnet with a hole. In an
ogy with the charged domain wall soliton in 1D we expe
that the local magnetic moment amplitude in the core of
meron will be suppressed. The undoped meron has a ‘‘lo
flower’’ structure~see Fig. 13!. It resembles a planar vorte
in the plaquette director field in the asymptotic region. In t
core region, the plaquette vector points in a direction perp
dicular to the 2D plane. In analogy with the doped 1D so
ton, we assume that the effect of doping the 2D meron
simply to remove the components of spin perpendicular
the plane, and the ‘‘lotus flower’’ is reduced to a plan
vortex in which the local moment amplitude vanishes in t
core region. Remarkably, for this charged meron-vortex c
figuration, it is possible to obtain an analytic solution for t

n-

FIG. 16. ~a! Electronic gap structure of the FM- and AFM-cor
2D skyrmion as a function of the continuum parameterrUS/2at, as
predicted by the continuum model.~b! Electronic gap structure o
the FM- and AFM-core 1D polaron as a function of the continuu
parameterrUS/2at, as predicted by the continuum model.



s
a

e
on
a
t
p
o
n
n

e
e
c

s

o
pe
ag
b
in

ol
air
g
b

um
a

iv

ti-

a

la
th
ag

re
2D
ga
e
th
.

airs
ture

a
e-
rre-
is

d by
ion
gap

ap
n-

de-

ior

rm

tal
ns
ll
f
gy
ll

ter-
p
on-
e-

ig.

is

are
ds

red
e

a
er-

es
rant
m

k-

57 9539CHARGED BOSONS IN A DOPED MOTT INSULATOR: . . .
midgap electronic structure. We set cosu[0 and we take the
same ‘‘doped’’ parameterization sinu5tanh(r/r). It is
straightforward to show that the meron radial equation ha
doubly degenerate midgap level, whose wave functions
given, up to a normalization constant, by

h* ~r !5Ar sech~r /rc!~1,0,21,0! if s151
~5.10a!

and

h* ~r !5Ar sech~r /rc!~0,1,0,21! if s1521.
~5.10b!

The midgap levelsf(r ); @h(r )/Ar # have exactly the sam
form as the midgap levels of the doped, 1D, FM-core solit
For the doped, vortex soliton, the gap states are empty
the valence-band continuum states are fully occupied. I
straightforward to verify that these occupied states are s
paired, as was the case for the charged domain wall in
dimension. As a result, the charged vortex soliton carries
net spin, and behaves as a bosonic excitation in the 2D a
ferromagnet.

VI. DISCUSSION AND CONCLUSIONS

We have investigated the effect of a hole on the antif
romagnetic ground state of the 1D and 2D Hubbard mod
with a half-filled band, using self-consistent Hartree-Fo
theory. For the 1D case, we have considered two type
domain walls~FM-core and AFM-core solitons! and showed
that at half-filling such walls are unstable in the absence
anisotropy. Nevertheless, a host of discrete levels ap
within the Mott-Hubbard gap in the presence of these m
netic textures. Upon doping, a hole can lower its energy
occupying the deepest available gap level, thereby stabiliz
the domain wall. We found two self-consistent charged s
tons. The stable doped soliton, centered at a site, has a p
doubly degenerate midgap levels and is a mobile char
boson. The second solution is doped-soliton centered
tween sites. This is a charged boson forUS/t,2, but be-
comes an immobile charged fermion asUS/t.2. These re-
sults were recaptured using a very simple continu
approximation, which led to a self-consistent model of
doped soliton~a charged boson!, with a pair of midgap lev-
els. These solitons may be relevant to the superconduct
observed on the CuO chains of some cuprates,20–23 such as
YBa2Cu3O7, which are known to have antiferromagne
cally ordered chains at low temperatures.24

In the 2D case, we started from aspin-fluxAFM mean-
field ground state. Such a state appears if electrons h
antiperiodic wave functions~due to a rotation by 2p of their
spins! as they encircle any elementary plaquette of the
tice. The relativistic one-electron dispersion relations in
presence of the spin flux facilitated the description of m
netic textures. We showed a one-to-one correspondence
tween the electronic spectra of 1D and 2D magnetic textu
In particular, the analog of the 1D doped domain wall is a
doped meron vortex. The meron vortex has a pair of mid
levels, and is a mobile charged boson. The appearanc
merons provides possible explanations for some of
anomalous features of the normal state of the cuprates
a
re
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the system is doped, bound meron-antimeron vortex p
should appear. As the doping is increased or the tempera
is raised, these vortex pairs may dissociate through
Kosterlitz-Thouless unbinding transition. Although this d
stroys the magnetic long-range order, short range spin co
lations remain very strong. The non-Fermi-liquid behavior
a consequence of the fact that the charge is transporte
bosons, while the midinfrared band in the optical absorpt
spectrum may be accounted for by absorption on the mid
levels. In the doping region relevant to high-Tc superconduc-
tivity, the quantum liquid of merons gives rise to a midg
impurity band of significant bandwidth. As the doping co
centration increases further, the staggered magnetization
creases~due to the suppression in the core of the meron!, the
Mott-Hubbard gap closes, and normal liquid-Fermi behav
appears.

At low temperatures, merons may also combine to fo
charged stripes. In Fig. 15~a! we show a pair of merons with
winding numbers11 and21. In Fig. 15~b! we show several
merons starting to create the ‘‘backbone’’ of a horizon
charged stripe. By ‘‘squeezing’’ each other, the mero
lower their energy, and form AFM domains. Domain wa
solitons in 2D ~charged stripes! have been the subject o
intense study,16 and it was predicted that their lowest-ener
configuration corresponds to ‘‘empty walls,’’ in which a
midgap states are empty. In a recent paper,34 it was argued
that populated walls should be favorable in the strong in
action limit. This type of wall has a fraction of the midga
states occupied, and therefore contributes to electrical c
duction. Also, it is easy to construct hole rich and hole d
pleted regions.18 A particularly striking configuration con-
sisting of a crystalline lattice of merons is depicted in F
15~c!, for a doping concentrationd51/8 per site. For this
doping, it has been observed that superconductivity
suppressed.35 Neutron scattering ford51/8 also reveals a
magnetic superstructure in which the charge carriers
localized.17 The stability of various configurations depen
on temperatures, hole concentration, andUS/t.

It is useful to extend our theory to describe the orde
and~quantum! liquid phases of merons in the doping regim
pertinent to high-Tc superconductivity. This may provide
microscopic basis for the observed non-Fermi-liquid prop
ties of the normal state of the doped Mott insulator.
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APPENDIX A: GREEN’S FUNCTIONS
IN THE MEAN-FIELD AFM BACKGROUND STATE

The Hamiltonian describing the mean-field AFM bac
ground is given by Eq.~2.1!. It is useful to introduce the
spinor fields x i

†5(âi↑
† âi↓

† ) and the Bloch operators
xk

( i )5N21/2(xexp(2ikxi)xx
(i) . Herexi52na1( i 21)a is the

position of the sitei 51,2 of thenth unit cell. The sum is
performed over all theN unit cells. Using the four-
component operatorsFk

†5(xk
(1)†xk

(2)†), the electronic part of
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9540 57MONA BERCIU AND SAJEEV JOHN
the mean-field Hamiltonian can be expressed as

Hel5(
k

Fk
†S USsz ek

ek 2USsz
DFk .

The sum is performed over the first Brillouin zon
2p/2a,k<p/2a andek522t cos(ka).

We introduce the conduction- and valence-band opera
(xk

c1 ,xk
v1)5Fk

†U, where

U5S 0 2ak
~2 ! 0 ak

~1 !

ak
~1 ! 0 2ak

~2 ! 0

0 ak
~1 ! 0 ak

~2 !

2ak
~2 ! 0 2ak

~1 ! 0

D ,

ak
(6)5A 1

2 (17US/Ek), and Ek5Aek
21(US)2. The Hamil-

tonian can be expressed as

Hel5(
k

Ek~xk
c1xk

c2xk
v1xk

v!.

Therefore, the conduction band has doubly degenerate le
described by the dispersion relationEk

c5Ek while the va-
lence band has doubly degenerate levels described
Ek

v52Ek . The bands are separated by the Mott-Hubb
gap of magnitude 2US opened at the Fermi point
(ko56p/2a). Finally, the one-electron band wave functio
are given by

Cks8~m,s!5^msucks8
† u0&

5
ds,s8e

ikma

AN
~ak

~sem!em1ak
~som!om!,

Vks8~m,s!5^msuvks8
† u0&

5
ds,s8e

ikma

AN
~ak

~2sem!em2ak
~2som!om!.

Here em51 if m is an even number and 0 ifm is an odd
number, andom512em .

1. Green’s function

The matrix elements of the Green’s function in the si
basis space are given by

Gss8
0

~m,n;E![^msuĜ0~E!uns8&5ds,s8

3(
k

FCks~m,s!Cks* ~n,s!

E2Ek2 ih

1
Vks~m,s!Vks* ~n,s!

E1Ek2 ih G .
Substituting the band wave functions and performing

sum over the Brillouin zone, we obtain the following expre
sions for the Green’s functions of the chain in the grou
state.

~a! If m andn are both even or both odd, then
rs

els

by
d

-

e
-
d

Gss
0 ~m,n;E!

5@E1~21!nsUS#

3H 2 i um2nue2um2nuf~2t2 sinh 2f!21 if uEu<US

iei um2nuf~2t2 sin 2f!21 if US<uEu<g

e2um2nuf~2t2 sinh 2f!21 if g<uEu.

~b! If m andn have different parities, then

Gss
0 ~m,n;E!

5H i um2nu21e2um2nuf~2t coshf!21 if uEu<US

2 iei um2nuf~2t sin f!21 if US<uEu<g

2e2um2nuf~2t sinh f!21 if g<uEu.

The anglef.0 is defined by

f5H sinh21~A~US!22E2/2t ! if uEu<US

sin21~Ag22E2/2t ! if US<uEu<g

sinh21~AE22g2/2t ! if g<uEu

andg5A4t21(US)2.

APPENDIX B: GREEN’S FUNCTION
OF THE SHARP-BOUNDARY SOLITON

In order to obtain a sharp-boundary soliton we must
the chain, flip all the spins of one of the halves, and th
paste the two halves back together. We calculate, below,
Green’s functions at each stage.

1. Green’s functions for a semi-infinite chain

LetHel be the Hamiltonian for the mean-field AFM back
ground state, andGss8

0 (n,m;E) the corresponding Green’
function. In order to find the Hamiltonian for half of thi
chain, we cut this chain between sites21 and 0. Assuming
that the two halves of the chain do not interact, the Ham
tonian for the chain with the cut is36,37Hel

h 5Hel1Vh , where
the potentialVh describing the cut is chosen such that

^nsuHel
h un8s8&50

if n, n8 are on different sides of the cut, and

^nsuHel
h un8s8&5^nsuHelun8s8&

if n, n8 are on the same side of the cut.
The requiredVh is given by

^nsuVhun8s8&52^nsuHelun8s8&

if n,n8 are on different sides of the cut and vanishes oth
wise.

SinceHel is diagonal in the spin space, all the other o
erators are diagonal in the spin space. Therefore, Dys
equation for the chain with the cut is
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Gss
h ~n,m;E!5Gss

0 ~n,m;E!1 (
n8,m8

Gss
0 ~n,n8;E!

3^n8suVhum8s&Gss
h ~m8,m;E!.

Suppose that we first calculate the Green’s function
the right-hand side of the chain,n,m,m8>0. In this case, the
only nonvanishing term in the sum corresponds ton8521,
m850 and ^21suVhu0s&5t. Then, Dyson’s equation ca
be solved and we find the Green’s function for the right-ha
side of the chain:

Gss
hR~n,m;E!5Gss

0 ~n,m;E!

1t
Gss

0 ~n,21;E!Gss
0 ~0,m;E!

12tGss
0 ~0,21;E!

,

wheren>0, m>0.
The Green’s function for the left-hand side of the chain

calculated in the same way. We also flip the spins of t
half, which means changingUS→2US in all expressions.
We will denote byG̃ss

0 (n,m;E) the Green’s function ob-
tained as a result of this substitution. Then, the Green’s fu
tion for the left-hand side of the chain is given by

Gss
hL ~n,m;E!5G̃ss

0 ~n,m;E!1t
G̃ss

0 ~n,0;E!G̃ss
0 ~21,m;E!

12tG̃ss
0 ~21,0;E!

wheren,0, m,0.
Thus, we can define the Green’s function for the two d

connected halves of the chain:

Gss
h ~n,m;E!5H Gss

hR~n,m;E! if n>0, m>0

Gss
hL ~n,m;E! if n,0, m,0

0 otherwise.

2. Green’s function for the sharp-boundary chain

In order to obtain the Green’s function for the shar
boundary chain, we have to reconnect the two halves of
chain by subtracting the potentialVh added previously.

Dyson’s equation for the Green’s function of the sha
boundary soliton is

Gss
s ~n,m;E!5Gss

h ~n,m;E!2tGss
h ~n,0;E!Gss

s ~21,m;E!

2tGss
h ~n,21;E!Gss

s ~0,m;E!.

This equation can be solved exactly and one obtains the
lowing results.

~a! If n,m>0, then,

Gss
s ~n,m;E!

5Gss
hR~n,m;E!

1t2
Gss

hR~n,0;E!Gss
hL ~21,21;E!Gss

hR~0,m;E!

Fs~E!
.

~b! If n>0, m,0, then,
r

d

s

c-

-

-
e

-

l-

Gss
s ~n,m;E!52t

Gss
hR~n,0;E!Gss

hL ~21,m;E!

Fs~E!
.

~c! If n,0, m>0, then,

Gss
s ~n,m;E!52t

Gss
hL ~n,21;E!Gss

hR~0,m;E!

Fs~E!
.

~d! If n,m,0, then,

Gss
s ~n,m;E!

5Gss
hL ~n,m;E!

1t2
Gss

hL ~n,21;E!Gss
hR~0,0;E!Gss

hL ~21,m;E!

Fs~E!
.

Here,

Fs~E!512t2Gss
hR~0,0;E!Gss

hL ~21,21;E!.

3. Density of states for the sharp-boundary soliton

a. Densities of states in the gaps:
zEz<US and zEz>[(US)214t2]1/2

The appearance of discrete states in the gap is relate
the existence of poles in the Green’s functions. From
expression of Green’s functions for the sharp-boundary s
ton, one can see that such poles appear at the energiE
satisfying the conditionFs(E)50. Since this condition is
spin dependent, it is apparent that the direction of the spi
well defined~and unique! on each one of these levels.

Using the above Green’s functions, four discrete lev
appear in the gaps. Their energies are given in Sec. II C.
spin projections for these nondegenerate levels are also
cated. Clearly, charge-conjugation symmetry is preserv
For each level of energyE and spins there is a level of
energy2E and spin2s.

The LDOS can now be calculated by using the identit

1

Fs~E!
5 lim

h→0

1

Fs~E2 ih!

5P
1

Fs~E!
1 ip(

roots

d~E2E0!

u dFs~E!/dE uE0

,

whereE0 are the simple roots of the equationFs(E)50, i.e.
the energies of the discrete levels.

The LDOS is proportional to the imaginary part of th
Green’s function. This yields the following expressions f
the LDOS.

In the internal gapuEu<US,

rns
s ~E!5

1

2A11l22
@Al2112l#N~n!@ds,↑d~E2E↑

1!

1ds,↓d~E2E↓
2!#.

In the external gapsuEu>A(US)214t2,
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rns
s ~E!5

1

2A11l22
@Al2112l#N~n!@ds,↑d~E2Ẽ↑

1!

1ds,↓d~E2Ẽ↓
2!#.

Here,l[US/t and

N~n!5N~2n21!5H n if n>0 is even

n11 if n>0 is odd.

b. Densities of states in the bands: US<zEz<[(US)214t2]1/2
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