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Multiphoton Localization and Propagating Quantum Gap Solitons in a Frequency Gap Medium
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The many-particle spectrum of an isotropic frequency gap medium doped with impurity resonance
atoms is studied using the Bethe ansatz technique. The spectrum is shown to contain pairs of quantum
correlated “gap excitations” and their heavy bound complexes (“gap solitons”), enabling the propagation
of quantum information within the classically forbidden gap. In addition, multiparticle localization of
the radiation and the medium polarization occurs when such a gap soliton is pinned to the impurity atom.
[S0031-9007(97)03751-4]
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Light localization is a classical effect predicted [1] to to weak perturbations. Our results demonstrate a clear dis-
occur in strongly scattering dielectric microstructures. Intinction, at the quantum level, between fermionic gap sys-
the context of photonic band gap (PBG) materials [2,3]tems (such as electronic semiconductors) and bosonic gap
nonclassical forms of localization such as photon-atonmsystems. In a semiconductor, propagation within the en-
bound states have been predicted [4] when the resonaatgy gap is strictly forbidden. In the bosonic gap, however,
transition frequency of an impurity atom lies within a certain nonclassical many-body gap states are allowed to
gap. This bound state is an eigenstate of the quantumropagate. This may have important consequences for the
electrodynamic Hamiltonian for a realistic PBG crystaltransmission of quantum information within a bosonic gap
exhibiting a general anisotropic photon dispersion relationmedium. Although the Bethe ansatz method made use of
In this state, a virtually emitted photon may tunnel manythe isotropic one-particle dispersion relation, qualitative
wavelengths away from the atom before being reabsorbedjmilar results may hold in a realistignisotropic PBG
leading to non-Markov memory effects [5] in collective material which also exhibits a small nonresonant Kerr
light emission from many atoms. It was recently shownnonlinearity [11].
that an effective model [6] describing both isotropic PBG  Consider the model Hamiltoniali = H, + V, where
systems and frequency dispersive media (DM) [7] doped J
with resonance atoms exhibits hidden integrability [8] andH, = w,(c* + 1/2) + [ @ wpf(a,)p(w), (1a)
is diagonalized exactly [6,8] by means of the Bethe ansatz c 2m
technique [9]. This suggests the possibility of a rich multi- dw
particle spectrum in real physical systems exhibiting a V = —\/7[ Ez(w)[P(w)ffJr + pl(w)o~]. (1b)
frequency gap, when such systems are doped with impurity ¢
atoms. Here wy, is the transition frequency of the two-level

In this paper, we demonstrate the existence of nonclagmpurity atom placed within a bosonic frequency gap
sical states of light which may be generated, for instancenedium. The spin operatorlé = (¢, 0”,0%), o= =
through the interaction of an external laser field with anc* * io” satisfy the standard commutation algebra
impurity atom placed within a polariton gap [10] of a DM. [0/, 0/] = €;x0* and act on the atomic variables of
In addition to ordinary polaritons and their bound com-the system. The operators!(w) [p(w)] create (an-
plexes (ordinary solitons) occurring outside of the gap, thauihilate) bosons of frequencw in a specific (electric
subgap spectrum of the system is shown to contain propatipole) spherical harmonic state and satisfy the alge-
gating pairs of correlated “gap excitations” and their heavybra [ p(w), pf(w’)] = 278(w — '). The integration
bound complexes (gap solitons). The individual gap excontour consists of two parts; = C- & C4, where
citations comprising the pair are correlated such that th€ - = (0, ;) andC, = (), %) correspond to the lower
probability amplitude of finding them far apart decreasesand upper branches of the medium excitations, respec-
exponentially with the ratio of their separation distance tatively. The interaction term (1b) describes emission and
the classical penetration length of the radiation into theabsorption of bosons by the atom. Here= 4w3,d?/3 is
medium. In addition to heavy gap solitons propagatinghe inverse lifetime of the excited atom in free space with
within the gap, the spectrum contains multiphoton localthe dipole transition momend, while the atomic form
ized states pinned to the atom. Under external perturbdactor z(w) contains the information about the polariton
tions a pinned gap soliton may dissociate into propagatingpectrum. Since the polariton gap persists for small
gap excitations. We evaluate the dispersion relations, th&ave vectorsk — 0, we can neglect anisotropies of the
effective masses, and the dissociation energies of quantuamderlying ionic crystal and take the dispersion relation to
gap solitons and we show that they are stable with respebie isotropic. Also, we choose units in whigh= ¢ = 1.
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In the one-particle sector of the full Hilbert space, it Q + i%¥(N + 1 — 2j) with E = QN. This also has a
is straightforward to verify [4,6,12] that whew,, lies  string structure. To avoid possible confusion in what
inside the frequency gap, one of the eigenstates of thillows we use the term “string” for solutions of BAE
Hamiltonian A describes a polariton-atom bound state.in the i space and the term “soliton” to refer to string’s
The multiparticle sector of the Hilbert space can be studiedmages in thew andk spaces.
by the Bethe ansatz technique. The Schrédinger equation In the medium, analytical continuations of the functions
(H — E)|¥y) =0 is solved exactly [6,8] due to the k(w)andh(w) inthe complex» plane depend essentially
two-polariton factorization of the multipolariton scattering. on the position of the real part of the frequency with re-
Imposing the periodic boundary conditions (PBC) on thespect to the medium gap. We start with the case when the
N-polariton wave function leads to the following set of real part ofw lies outside the gap. Let = A + in and
Bethe ansatz equations (BAE): the real partA € C. For n < A, the functionsk(w)

_ N _ andh(w) are then represented kGv) = k(A) + ink’(X)
okt 1 iB/2 [ hj —h —iB () andh(@) = h(d) + ink'(Y). Sincek'(A) = dk(A)/dA
hj +iB/2 1 hj — h +iB’ is positive for all A, NC leads now to the condition

_ _ _ h'(A) = dh(A)/dX > 0. This is met only ifA € C_.
which completely determine th&-particle spectrum of Therefore, the effective coupling is attractive only be-
the model (1a) and (1b). Heref = Y w; is the tween polaritons of the lower branch, and the soliton image
eigenenergy and; are polariton frequencies which solve qf the Bethe string is given by, = Q + %F(Q) (N +
Eqg. (2). AIS(_)L is the radius of a sphere centered at'th'e1 — 2j)andk; = K(Q) + 0(Q) (N + 1 — 2j). Here
atom on which we apply PBC and then take the limit _ _ / Ay
L — . In the case of a DM, the polariton momenta K,(Q) = Qn(Q), T(Q) = p/1(Q), 0(Q) = pLI(Q)/

k. = k(w), and “rapidities,"h _ h(w), are expressed "h'(Q)),andE = QN is the_ soliton eigenenergy. The com-
J @il P e @jh P mon real part of the polariton frequencies is found from the

as equationk(Q)) = H, which has a root lying irC— only if
B (o 2w — an H < 0. The soliton obtained is quite similar to a vacuum
k() = on(w), h(w) = o ) ond(w) (3)  soliton, and we will use the phrase “ordinary soliton” to

) o ) ~ refer to this solution, despite its inordinate behavior on dif-
with the refractive index (@) = v e(w) and the dielectric  ferent polariton branches. Polaritons of the upper branch
permeability of the mediung(w) = (0 — Qf)/(0®> —  are described by one-particle Bethe strings with real posi-
0?). Here@;, = wy, is the Lamb shifted atomic tran- tive rapidities and do not form any bound complexes. The
sition frequency. The paramete® = y/w;, appears results obtained are clearly validdf, € C- & G, where
in both the polariton-atom scattering [left-hand side ofG = (Q ,, ). If v, lies above the gapy;» € Cy, the
Eqg. (2)] and in the effective polariton-polariton coupling effective coupling, including interbranch one, becomes at-
[right-hand side of Eq. (2)] caused by the polariton-atomtractive and admits both ordinary solitons in each branch
scattering. and unusual “composite solitons” containing polaritons of

As L — o, apart from real solutions, Eq. (2) admits different branches.
complex ones, in which the rapiditi¢s are grouped into Now let us look for an image of a Bethe string, pro-
the Bethe “strings.” In this paper, we confine ourselvesvided the real parts of all the frequencies lie inside
to the case when alN rapidities are grouped into a the gap. Letw = ¢ +in and § € G. To find the
single stringh; = H + ig(N +1-2j),j=1,..,N analytical continuations of the functiongw) and i(w)
with a common real part (“carrying” rapidityll. This to the complexo space, we need first to fix an appro-
is a solution of BAE if and only if the imaginary parts Priate branch of the functiom(w). Let n(§ * i0) =
of rapidities; and corresponding momenta have the *iv(§), where »(§) = yle(¢)]. In this casek(w) =
same sign: sgr(n) [—n«'(§) + ik(€)], wherek(¢) = év(€). Also

h(w) = sgr(n)[n¢'(£) — idp(£)] where p(£) = (€ —

sgnimh;) = sgr(imk;), i=1..,N. @) owp)f&),andf(¢) = oh[ev’(#)]. Since the func-

tion k(&) is positive, NC leads to the conditiop(¢) <
This restricts possible magnitudes of polariton frequencies. It means that allowed gap excitations exist only for
w; corresponding to the string rapidities. It is easy¢ € (1), w)2). Because of a strong nonradiative relax-
to understand that the necessary condition (NC) (4ation in the medium in the vicinity of the frequen€y, ,
determines the frequency intervals, in which the effectivave focus our studies on gap states of physical interest
polariton-polariton coupling is attractive leading to boundlying in the vicinity of the atomic frequency,. The re-
many-particle complexes (quantum solitons). maining analysis is simplified by linearizing the function

In empty space, an effective photon-photon couplings (£) at the pointé = wis, ¢(€) = a(é — wy2), where
is attractive for all frequencies of physical interest, anda = f(w12).

a Bethe string in the space of rapidities is mapped to a Now we are able to map a Bethe string to correspond-
quantum soliton in the space of frequencies [13},=  ing gap excitations. We start with the simplest case of a
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two-particle stringN = 2. Its complex conjugated rapidi- approximation forg (£) in the vicinity of ¢ = wi,. The
ties,h = H + iB/2 and h* = H — i3/2, are mapped expressions obtained describe a bound complexpafirs
to the corresponding pairs of the complex conjugateddf confined gap particles (Fig. 1) with the eigenenergy
frequenciesw = ¢ + in andw™ = ¢ — in, where the
imaginary part is assumed to be positive,> 0, and
momenta,k = g + i«x(£) and k¥ = g — ik(£), where
g = —nk'(£). The real and imaginary parts of frequen-
cies are expressed in terms of the string paramefers, We will use the phrase “gap soliton” to refer to this state
w1y — B/2a andn = H/a. In the spherical harmonic of the system. Unlike an ordinary soliton, a gap soliton
formalism introduced previously [6], the real part of theis stable with respect to quite weak perturbations of the
particle momentg must be positive. Since/(¢) isnega-  system, because the dissociation enefgy, of a soliton
tive, it follows thatg = n|«x’|. Consequently only a string with / pairs into two solitons witl; andl, = [ — I, pairs
with a positive carrying rapidity? > 0, is mappedto gap s positive:U; = E\ + E — E\ = 2(8/a)l1l,. The
states of physical interest. . radial thickness of the spherical harmonic soliton pulse
The expressions obtained describe a novel, quantumd determined by the imaginary part of the momentum
correlated state of two gap excitations. Two gap particleg, corresponding to the rapidityt;. Since «(¢) is a
comprising the pair are “confined” to travel together. Theymonotonically decreasing function, the gap soliton size,
do not exist separately from each other, unlike polarltonj(m — K—l(gio)), falls with the growth of the number of

1
E” =2Y & =20nl - (B/a).  (6)
j=1

of ordinary solitons. Moreover, the confined state canno é\irsl

Since the effective coupling constant is very small,
B < 1, the linear approximation works well even for
large solitons containing many pairs. But, in this ap-
proximation, the soliton energy is independent of its mo-
mentum. For what follows it is convenient to introduce

be treated as a bound state of two polaritons from differe
branches (like a Wannier-Mott exciton in semiconductors)
because, under the conditian;, € G, the interbranch
polariton-polariton coupling is repulsive. The spatial size
ofapair,d ~ k~1(£), is nothing but the penetration length
of the classical radiation field with the frequenay = the soliton energy per particlel(o) — E}O)/ZI — Wy —

¢ € G into the medium [7]. Since the wave function of (8/2a)l, and the soliton momentum per particle,=

a single gap particle is unnormalizable, free one-particle_ "~ . (0) . .
gap states in the bosonic gap are forbidden in exactly the?!) 2;q; = (n/D3,1«'(&7)]. To estimate the first

same way that electronic propagation is forbidden in é:orrectlons to Eq. (6), we hav_e to keep the next term,
conventional semiconductor gap. However, in the case o‘r(nz/z)d’ﬂ(f)' of the Taylor Series for the func'qo/lzm(w)
bosons, the effective particle-particle coupling allows one?nd the next term in the expansion of the functib(t) at
to construct the normalizable wave function of a pair fromthe POINt = on: (&) = a(§ — o) + b(§ — o),
unnormalizable wave functions of each particle. At IargeWhere b=t (“’(}5) >0. The g)equenmegfj are then
interparticle separations, the wave function of a pair hagiven byé;, — &7 = —(b/a) (¢ — w12)* + (b/a)n?,
the form while the soliton momentum is still given iy, The term

. —(b/a) (f(-o) — w12)? leads to the first order correction to

Wiar,w) ~ expligln + x2) = k(@) v =l () e energ{/ of a motionless soliton and determines the width
where the real and imaginary parts of momenta describe,
respectively, the motion of the center of gravity and the
spatial size of a pair. The auxiliary coordinate variables
x; are analogous to spatial coordinates along an arbitrary pla
axis passing through the atom. The vicinities< 0 and
x > 0 correspond, respectively, to ingoing and outgoing
spherical harmonics of the polariton field. An angular
distribution of the field is determined by the specific —— .- F el @@ O-mmmnne b
spherical harmonic polariton state. °n Reo

Let us consider now the mapping of a string containing
an even number of particles (“even stringh, = 21, to
gap excitations. A pair of complex conjugated rapidities,
hjandh;,j = 1,...,1, is mapped to a pair of frequencies ; ;
wj = 55_0) +inandw; = J(»O) — in and corresponding

momentak; = g; + ik(£)) and ki = g; — ix(&),

2in

FIG. 1. The frequencies of the mobile six-particle gap soliton

j (open squares) which has dissociated from the pinned seven-
h th | ts of f . . féd) _ particle gap soliton. In the latter, the particle with the frequency

where the real paris o .requenCIes are givenéhy = w1, (open circle) bound to the atom and the remaining three

wiy — (B/a)(l + 1/2 — j). The upper index(0), indi-  pairs of six particles (solid circles) comprise the bound complex

cates that these expressions are derived within the line@inned to the atom.
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of the soliton band, whiléb/a)n? leads to the kinetic en- bound state of a gap soliton and a polariton in the upper
ergy contribution to the total soliton energy in the effectivebranch.
mass approximation: In summary, we have shown that the isotropic dis-
€ = 61(0) — A+ ¢2/2m;. ) per_sive medium_doped with an impu_rity atom exhib!ts
Ny o O, 8 rich many—partlcle spectrum containing hea_lvy, mobllg,
Here A; = 15(417 — 1) and m; = 5z (2; I«'(€,))>  gap solitons as well as pinned solitons. Mobile gap soli-
are the band half-width and the effective mass, whichons are highly nonclassical, quantum correlated states
increase with/. At small /, the propagating gap soliton consisting of an even number of gap particles. This sug-
bands are very narrow and solitons are very heavy angests the remarkable possibility that a bosonic frequency
even motionless a§ = 0. But the bandwidth increases gap medium, while impervious to classical linear wave
as[?, so that largel solitons are quite mobile when the propagation may allow propagation of certain correlated
momentumg becomes larger than the range of validity quantum excitations. Multiparticle gap solitons may be
of the effective mass approximation. At arbitrafythe  generated by both nonlinearly exciting an impurity atom
exact equations for the soliton parameteéfs and 1,  and Dicke superradiance from a collection of these ex-

are given by Ré(¢;,7;) = H and Imh(¢;,n;) = B(l —  cited atoms. Unlike the single excitation which can tun-
Jj + 1/2). The solution of these equations requires simplene| a distance given by the classical penetration length
numerical calculations. within the gap, the paired excitations as well as the result-

Finally, we evaluate the pinning energy of a gap solitoning heavy gap solitons can propagate freely through the
to the atom. Ink space, pinned solitons are describedgap of this harmonic medium. The Bethe ansatz solution
by odd strings with# — 0". The one-particle string, which we have presented relied on the existence of an
I =0, with H— 0" is clearly mapped to the gap state jsotropic polariton dispersion relation. In a real PBG ma-
with @ = @12 = wyp. This state is nothing but the terial, the photon dispersion relation is highly anisotropic.
polariton-atom bound state [4,6,12] in the one-particleThe propagation of quantum information within a PBG
spectrum of the system. Therefore the extra real rapiditynaterial, in this manner, would be of considerable impor-
of an odd string can be mapped to the gap state witfiance in such applications as quantum computing [14].
58”) = w1, While the remaining complex conjugated V.R. is grateful to the Department of Physics at the
pairs of rapidities are mapped to a deformed motionles&niversity of Toronto for kind hospitality and support.
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used here the term “deformed” to emphasize that th@nd the Ontario Laser and Lightwave Research Centre.
soliton frequencies now contain the extra teraB/2a
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