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Resonance gaps and slow sound in three-dimensional phononic crystals: Rod-in-a-box paradigm
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We introduce a rod-in-a-box model for acoustic resonators. For resonators small compared to the acoustic
wavelength, an elastostatic equilibrium approximation yields closed-form expressions for their frequency-
dependent effective masses and moments of inertia. The low-frequency bands and gaps are recaptured by an
intuitive 6 × 6 matrix eigenvalue equation, yielding a band structure within 2.3% agreement with the finite-
element method. Our model is generalized to complex dumbbell-shaped resonators, revealing a dense collection
of flat “slow sound” bands near the resonance band gap.
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Phononic crystals are periodic composites of elastic mate-
rials, extensively studied for sound wave engineering [1–20].
Rapid and accurate fabrication of three-dimensional (3D)
phononic crystals has been achieved through advances in
additive manufacturing [21–26]. Conventional nonresonant
phononic crystals require large feature sizes compared to
acoustic wavelengths to provide sonic control. This is imprac-
tical at audible frequencies. Local resonators, which typically
consist of dense cores surrounded by an elastically soft ma-
terial and encapsulated by a hard shell, overcome this scaling
problem and facilitate deep subwavelength manipulation of
sound [27–30]. In this Letter, we introduce a simple physical
model that accurately recaptures the low-frequency phononic
modes of a medium with complex multiple coupled local res-
onances. This model offers physical insight into the coupling
of resonators with internal translational and rotational degrees
of freedom. Resulting applications of subwavelength “sound
engineering” include noise mitigation in thin films, acoustic
collimation, and sonic imaging.

The effective inertia-spring tensor (EIST) model [31] re-
captures the salient mechanical responses of a locally resonant
acoustic medium. The low-frequency response of coupled res-
onators is often dominated by a small number of macroscopic
variables. Those responsible for the coupling between res-
onators are referred to as the shell variables {Xi}. The internal
degrees of freedom, called core variables, can be represented
by frequency-dependent terms in an effective inertia tensor
mi j . In a linear elastic medium, there is a general linear map
from the shell displacements to the generalized forces, which
we refer to as the spring tensor ki j . It governs the interaction
among spatially separated resonators in the phononic crystal.
It depends on the lattice arrangements, the wave vector K,
and the shell geometry, but is insensitive to the interior of the
resonators. Together, the mode spectrum of a periodic array
of coupled resonators is described by a generalized form of
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Newton’s second law:

mi j (ω)Ẍ j = −ki j (K)Xj . (1)

In elastic systems, force is a dynamic quantity described by
an external stress tensor, whereas acceleration is a kinematic
quantity specified by length and time measurements. The con-
cept is extended to harmonically driven resonators. Without
prior knowledge of the interior structure of a resonator, an
observer tabulates such a ratio at each frequency, yielding a
frequency-dependent effective inertia.

The predominant degrees of freedom of a rigid body
are translations and rotations in orthogonal directions. In
three dimensions, the low-frequency response of a resonator
is dominated by six effective inertial quantities, which are
its effective masses and principal moments of inertia in
three orthogonal directions. The complete collection of ef-
fective inertial quantities constitutes the effective mass tensor
mi j (ω).

In general, the effective inertia tensor gains a pair of
nonzero off-diagonal elements, when symmetry is broken, as
depicted in Fig. 1(a). The resonator consists of a rigid box
of mass ms uniformly distributed along its left sidewall, and
transverse moment of inertia Is about its center of mass. All
other walls are assumed to be massless. The box is coupled
to a thin uniform interior rod of mass mc and transverse
center-of-mass moment of inertia Ic, through a pair of iden-
tical massless springs [32] of spring constant κ/2. The linear
(angular) displacements of the shell and the core are denoted
by xs (φs) and xc (φc), respectively. The connecting points
of the springs are separated by a distance 2d , individually
located at (a + d ) and (a − d ) from the center of rotation
of the box. The box is harmonically driven by an external
force fbe−iωt and external torque τbe−iωt . The extensions of
the upper ε+ and lower ε− springs, for small φs and φc, are
expressed in terms of the mechanical variables of the box and
the rod:

ε± = −xs + (a ± d )φs + xc ∓ dφc. (2)
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FIG. 1. (a) A rigid box is coupled to an interior rod via a pair
of massless springs. The masses of the rod and box are limited
to and evenly distributed over the dark shaded regions. The shell
and the core oscillate translationally and rotationally. The resonator
is harmonically driven by an external force and an external torque
about the box center of mass. (b) A 3D radially symmetric resonator
consists of a dense and stiff core, embedded in an elastic material, en-
capsulated by a spherically annular stiff shell. The core and the shell
are treated as rigid bodies. The interstitial elastic material is approx-
imated as a massless elastic spring under elastostatic equilibrium.

All components oscillate at the driving angular frequency ω

in the steady state:

msẍs = (κ/2)(ε+ + ε−) + fbe−iωt , (3a)

Isφ̈s = −(κ/2)[(a + d )ε+ + (a − d )ε−] + τbe−iωt , (3b)

mcẍc = −(κ/2)(ε+ + ε−), (3c)

Icφ̈c = (κd/2)(ε+ − ε−). (3d)

By Eqs. (3c) and (3d), the mechanical variables of the core
can be expressed in terms of those of the shell. These are
substituted into Eqs. (3a) and (3b) to yield a generalized form
of Newton’s second law,(

m11(ω) m12(ω)
m21(ω) m22(ω)

)(
ẍs

φ̈s

)
=

(
fbe−iωt

τbe−iωt

)
, (4)

where the components of the symmetric effective inertia ten-
sor mi j (ω) are

m11(ω) = ms
(
ω2

∗,t − ω2
)
/
(
ω2

0,t − ω2
)
, (5a)

m12(ω) = m21(ω) = −mcaω2
0,t/

(
ω2

0,t − ω2
)
, (5b)

m22(ω) = Is
(
ω2

∗,r − ω2
)
/
(
ω2

0,r − ω2
) − am12(ω). (5c)

The distance between the spring connecting points mea-
sures the torsional spring constant for rotational oscillation
κr = κd2. ω∗,t ≡ (κ/mc + κ/ms)1/2 denotes the zero-mass
frequency of translational resonance, typically associated with
the normal mode of the resonator. ω0,t ≡ (κ/mc)1/2 denotes
the resonant frequency of translational resonance, which is the
normal mode frequency when the resonator shell is spatially
fixed. The effective mass diverges at the resonant frequency,
because a tiny displacement of the shell corresponds to sub-
stantial motion of the core. The characteristic frequencies
for rotational resonance are defined similarly: ω∗,r ≡ (κr/Ic +
κr/Is)1/2 and ω0,r ≡ (κr/Ic)1/2 [33].

For a lattice of resonators in a background composed of
linear elastic materials, there is a general linear map between

FIG. 2. Spring tensor component k11(K) is plotted for the
nearest-neighbor approximation in Eq. (6) and numerical plane-
wave expansion solution for R/asc ≈ 0.4924, b/asc ≈ 0.3032, λ =
23.10 kPa, and μ = 15.38 kPa.

the generalized forces acting on the resonators and the gener-
alized displacements of the resonator shell. This is referred
to as the spring tensor ki j . It describes the net forces and
torques acting on a resonator, depending on the separation
and relative motion of other resonators in the structure. For
a periodic array of resonators, it is conveniently expressed in
terms of Fourier components of the generalized displacement
field, labeled by the wave vector K.

The wave-vector dependence of the spring tensor can be
roughly expressed by a nearest-neighbor approximation [34].
For illustration, we consider a lattice of spherical resonator
shells of common radii R in a simple cubic lattice of lattice
constant asc. Suppose the resonator centered at the origin
displaces from the equilibrium by Xsx̂. By discrete transla-
tional symmetry, a resonator centered at r displaces at a phase
difference eiK·r relative to central resonator. The relevant elas-
tic strain at r′ on the surface of the central resonator can
be estimated by their relative displacement Re[(eiK·r − 1)Xs],
divided by the distance, r − 2r′ · r̂, between the points on the
surfaces of the adjacent spheres connected by a line parallel
to r. For longitudinal (transverse) disturbance in an isotropic
elastic background defined by Lamé constants λ and μ, the
strain is multiplied by λ + 2μ (2μ) to yield the stress. The
elastic force acting on the central resonator, arising from
the relative motion with the adjacent resonator, is estimated
by an integral (over the primed variable) of the approxi-
mate stress on the surface of the central scatterer. Ignoring
cross interactions, we add up the independent elastic forces
due to relative motion with the six nearest neighbors at r =
±ascx̂,±ascŷ,±ascẑ to obtain the nearest-neighbor approxi-
mation of the spring tensor component k11(K),

k11(K) ≈ (4πR2/b){(λ + 2μ)[1 − cos (Kxasc)]

+μ[2 − cos(Kyasc) − cos(Kzasc)]}, (6)

where b = −2R[1 + (asc/2R) log(1 − 2R/asc)]−1 ranges
from 0 to 2asc depending on the size and separation of the
resonators. The wave-vector dependence of other spring
tensor components can be estimated by symmetry arguments
or similar analyses. The actual spring tensor is evaluated
numerically by plane-wave expansion or a finite-element
method, which includes forces from more distant resonators.
For illustration, the spring tensor component k11(K) is
plotted in Fig. 2, for a simple cubic lattice of rigid spherical
resonators occupying 50% by volume in a background of
open-cell foam. The nearest-neighbor approximation closely
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resembles the wave-vector dependence of the full spring
tensor.

For a 3D phononic crystal, the low-frequency response
is described by a 6 × 6 Hermitian, positive-definite spring
tensor. Intuitively, when a resonator shell at the origin rotates
by 	sẑ, the resonator at r = ax̂ simultaneously experiences a
force in the y direction and a torque in the z direction. The
intricate coupling of the translational and rotational modes
between spatially separated resonators is delineated in the
spring tensor. Except at high-symmetry K points [31], the ef-
fective inertia tensor and spring tensor are not simultaneously
diagonalizable. In the EIST model, between the resonant
frequencies and zero-mass frequencies, the effective inertia
tensor is negative definite, while the spring tensor is positive
definite. Consequently, the eigenvalue problem (1) admits no
real solution in ω. In other words, the simultaneous nega-
tivity of effective masses and moments of inertia signifies a
resonance-based phononic band gap.

A typical resonator consists of a dense and stiff core,
surrounded by a layer of light and elastically soft material,
encapsulated by a stiff shell [27,28]. Over the acoustic fre-
quency range of interest, the core and shell behave as rigid
bodies with negligible shape deformation. The macroscop-
ically defined linear and angular displacements of the core
and shell are the predominant degrees of freedom. In con-
trast, the strain in the interstitial deformable material is not
negligible. Nevertheless, we can approximate the light, soft
medium as a massless spring that satisfies an elastostatic equi-
librium. This is accurate when the relevant dimensions of a
resonator are very small compared to the elastic wavelength.
This rigid core-shell approximation (RCSA) was previously
applied [31,35] to 2D cylindrically symmetric resonators to
accurately recapture the out-of-plane translational, in-plane
translational, and rotational resonances.

Here, we extend the RCSA analysis to a three-dimensional
spherically symmetric resonator [Fig. 1(b)]. The dense spher-
ical core of radius R1 and mass density ρc is embedded in a
spherically annular layer of isotropic, linear elastic foam of
Lamé parameters λ and μ. The resonator is capped by a stiff
shell of inner radius R2, outer radius R3, and density ρs. Radial
symmetry requires that the translational or rotational motion
of the core only couples to the same type of motion of the
shell in the same direction. The 6 × 6 inertia tensor mi j (ω) is
diagonal, with m11(ω), m22(ω), and m33(ω) being the effective
masses, and m44(ω), m55(ω), and m66(ω) being the effective
moments of inertia.

When the core displaces from equilibrium by Zcẑ and the
shell by Zsẑ, the displacement field in spherical coordinates
u(r) = ur (r) cos θ r̂ + uθ (r) sin θ θ̂, with R1 < r < R2, satis-
fies elastostatic equilibrium under the boundary conditions
u(R1/2) = Zc/sẑ = Zc/s(cos θ r̂ − sin θ θ̂). In the absence of an
external body force, the stress tensor is divergence free and
the displacement components {ur, uθ } satisfies a set of coupled
second-order linear differential equations [36]. The boundary-
value problem is solved in terms of elementary functions. The
elastic force acting on the core/shell is calculated by surface
integrals of the stress tensor on {r = R1/2}. The translational
equations of motion of the core and the shell can be mapped
to a rod-in-a-box model (a = 0) in Eqs. (3a) and (3c), with
the mass of the shell ms = (4π/3)ρs(R3

2 − R3
1), the mass of

FIG. 3. The phononic band diagram of a bcc lattice of the spher-
ical steel-cellulose resonators in foam background is evaluated, in
the irreducible Brillouin zone, for the EIST model in Eq. (1) and
FEM benchmark. The maximum percentage error is 2.32%. The
normalized density of states confirms the complete acoustic band gap
from 337 to 621 Hz.

the core mc = (4π/3)ρcR3
1, and the linear spring constant κ

[37]. The result is readily applied to the widely cited, locally
resonant sonic material [27], composed of centimeter-sized
lead ball bearings, coated by a 2.5-mm layer of soft sili-
cone. Our RCSA result predicts a resonant frequency f0,Liu ≡√

κ/mc/(2π ) ≈ 380.9 Hz [38], which matches the transmis-
sion dip and opening of phononic bad gap at 380 Hz (see
Fig. 1 in Ref. [27]).

The rotational resonance is studied by a similar elastostatic
equilibrium analysis [39]. The rotational equations of motion
of the core and the shell can be mapped to a rod-in-a-box
model (a = 0) in Eqs. (3b) and (3d): Is = (8π/15)ρs(R5

2 −
R5

1), Ic = (8π/15)ρcR5
1, and κr = 8πμR3

1R3
2/(R3

2 − R3
1).

We consider spherical resonators arranged in a body-
centered-cubic (bcc) lattice of spacing abcc = 21/3 cm. The
materials of the dense core, interstitial elastic medium, and
stiff shell are, respectively, steel, open-cell foam, and cellu-
lose, occupying 10%, 20%, and 20% by volume. Material
constants are provided in Table 1 of Ref. [35]. By the re-
sults of RCSA, the characteristic frequencies are expressible
in terms of rational functions of the lengths and elastic
constants of the resonator. In this specific case, we cal-
culate the resonant frequency f0,t ≡ ω0,t/(2π ) ≈ 320.0 Hz
and zero-mass frequency f∗,t ≡ ω∗,t/(2π ) ≈ 635.3 Hz for
translational resonance, as well as resonant frequency
f0,r ≡ ω0,r/(2π ) ≈ 364.9 Hz and zero-mass frequency f∗,r ≡
ω∗,r/(2π ) ≈ 476.0 Hz for rotational resonance.

The mode spectrum is calculated in the EIST representa-
tion (1). The phononic band diagram and normalized density
of states are plotted in Fig. 3. The eigenfrequencies agree
with the finite-element method (FEM) numerical benchmark
within 2.32% throughout the irreducible Brillouin zone. There
is a complete phononic gap from 337 to 621 Hz, overlapping
with the frequency interval where the effective masses and
moments of inertia are simultaneously negative. The first six
bands below the resonant frequencies are associated with the
in-phase translational and rotational oscillations in three or-
thogonal directions of the steel ball and the cellulose shell. In
contrast, the next six bands above the zero-mass frequencies
correspond to the antiphase oscillations. The 13th band opens
at 3700 Hz. The phononic gap of nearly 60% from the sixth
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FIG. 4. The resonator consists of a dumbbell-shaped shell with
two interior masses. The axial translational and rotational resonances
are mapped to the two-masses-in-a-box model. Because of the off-
center positions of the interior masses, lateral translation and rotation
are intricately coupled. The internal couplings are represented by the
two-rods-in-a-box model.

to seventh band is caused by local resonances of individ-
ual resonators, and is likely very tolerant to small random
displacements of the equilibrium positions of identical res-
onators. On the other hand, the gap between the 12th and 13th
band arises from Bragg scattering of the periodic array and
is likely to contain localized states of sound with positional
disorder.

Our methodology is readily generalized to more com-
plex resonator architectures. A dumbbell-shaped resonator has
multiple coupled resonances, which reveal a dense collection
of flat bands near its resonant frequencies. Such “slow sound”
modes may be effective in trapping and absorbing sound in
a thin film [40–42]. The compound resonator in Fig. 4(a)
is formed by connecting two spherical core-shell resonators,
separated by 1 cm, with a rigid handle of radius (1/3)R3. One
of the steel balls is assumed to be 2% denser to reflect natural
variations in manufacturing. Axial translation and rotation,
which are decoupled from the lateral motion by azimuthal
symmetry, are mapped to a two-masses-in-a-box model of
Fig. 4(b). In contrast, the lateral translation and rotation are
intricately coupled, represented by off-diagonal effective in-
ertia terms in a two-rods-in-a-box model of Fig. 4(c). In a
generalization of Eqs. (5a)–(5c), the effective mass is

m33( f ) = mdb + mc1 f 2
0,t1

f 2
0,t1 − f 2

+ mc2 f 2
0,t2

f 2
0,t2 − f 2

, (7)

where mc1 = (4π/3)ρc1R3
1 ≈ 7.940 mg, mc2 = 1.02mc1,

mdb ≈ 0.5449 mg [43]. With the same geometry of the
interstitial foam, the same set of spring constants applies, and
thus f0,t1 = f0,t ≈ 320.0 Hz and f0,r1 = f0,r ≈ 364.9 Hz. The
second core is assumed to be 2% denser, so that the associated
frequencies reduce by approximately 1%: f0,t2 ≈ 316.9 Hz
and f0,r2 ≈ 361.3 Hz.

The dumbbell resonators are arranged with dumbbell axes
oriented vertically in a tetragonal lattice with a square base of

FIG. 5. The band diagram of a tetragonal lattice of the dumbbell
resonators is plotted in the irreducible Brillouin zone, for the EIST
model in Eq. (1) and FEM benchmark. The band diagram is zoomed
in at the lower edge of the band gap, containing dense collections of
phononic flat bands, sandwiched between the resonant frequencies.

1 cm and height 2 cm. A striking feature of the band diagram
in Fig. 5 is the emergence of dense collections of phononic flat
bands, between the translational resonant frequencies ft1 <

f < ft2 and the rotational resonant frequencies fr1 < f < fr2.
Since the group velocity of a wave packet is equal to the
K-space gradient of the dispersion relation, these flat bands
correspond to “slow sound modes” in three dimensions. Their
occurrences can be inferred from the effective inertia tensor.
For example, the axial effective mass m33( f ) has three positive
branches. At a given wave vector K, each positive branch
yields an eigenfrequency by Eq. (1), which corresponds to
a phononic band when evaluated throughout the irreducible
Brillouin zone. The first branch ( f < f0,t2 ) is the in-phase
translational oscillation of the shell and both cores. Over the
third branch ( f0,t1 < f ), the shell oscillates in antiphase rela-
tive to both cores. There is a narrow branch between the two
resonant frequencies ( f0,t2 < f < f0,t1) that the shell is almost
stationary while the two cores are in antiphase. Similar anal-
yses apply to other translational and rotational modes. The
canceling antiphase forces of the dense cores in the dumbbell
resonator cause reactive flat bands between the two resonant
frequencies.

In conclusion, we have shown the efficacy of a simple, intu-
itive, rod-in-a-box representation of complex local resonators
in a 3D elastic medium. This reveals large resonance gaps,
distinct Bragg gaps, and remarkable slow sound modes in the
low-frequency acoustic spectrum. These may prove invaluable
in noise mitigation and sculpting audible sound using thin
coatings of absorbing, resonant elastic materials.
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rial constants are taken from footnote 8 in Ref. [27].

[39] When the core rotates from equilibrium 	sẑ and the shell by
	sẑ, the displacement field in spherical coordinates u(r) =
uφ (r) sin θ φ̂, with R1 < r < R2, satisfies elastostatic equilib-
rium under the boundary conditions u(R1/2) = R1/2	c/s sin θ φ̂.
The second-order linear boundary-value problem governing
uφ (r) is solved in terms of elementary functions. The torque
acting on the core/shell is determined by a surface integral of
the moments generated by the stress field on {r = R1/2}.

[40] A. Chutinan and S. John, Phys. Rev. A 78, 023825 (2008).
[41] S. Eyderman, A. Deinega, and S. John, J. Mater. Chem. A 2,

761 (2014).
[42] S. Foster and S. John, J. Appl. Phys. 120, 103103 (2016).
[43] The remaining nonvanishing effective inertia com-

ponents of the dumbbell resonator are m44( f ) =
Ix,db + Ic1 f 2

0,r1

f 2
0,r1− f 2 + Ic2 f 2

0,r2

f 2
0,t2− f 2 + a2

4
(

mc1 f 2
0,t1

f 2
0,t1− f 2 + mc2 f 2

0,t2

f 2
0,t2− f 2 ), m66( f ) =

Iz,db + Ic1 f 2
0,r1

f 2
0,r1− f 2 + Ic2 f 2

0,r2

f 2
0,t2− f 2 , and m15( f ) = a

2 (
mc1 f 2

0,t1

f 2
0,t1− f 2 − mc2 f 2

0,t2

f 2
0,t2− f 2 ),

where m33( f ) = m11( f ) = m22( f ), m44( f ) = m55( f ),
m15( f ) = m51( f ) = −m24( f ) = −m42( f ), Ic1 = (2/5)mc1R2

1,
Ic2 = 1.02Ic1, Is,x ≈ 21.00 mg mm2, and Is,z ≈ 7.512 mg mm2.
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