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We present the results of a parameter-free first-principles theory for the fine structure of the Ur-

bach optical-absorption edge in crystalline and disordered semiconductors. The dominant features

are recaptured by means of a simple physical argument based on the most probable potential-we11

analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap

optical-absorption coeScient is a consequence of multiple LA-phonon emission and absorption side-

bands that accompany the electronic transition. The fine structure of subgap absorption spectra ob-

served in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and

emission sidebands. Good agreement is found with experimental data on crystalline silicon. The

effects of nonadiabaticity in the electron-phonon interaction are calculated.

A fundamental understanding of the optical-absorption
edge in crystalline and amorphous semiconductors is a
long-standing problem in solid-state physics. A nearly
universal feature of subgap optical absorption is Urbach's
rule. ' This empirical rule states that for photon energies
h v less than the band-gap energy, the optical-absorption
coeScient takes the form

a( v) -exp [ [h v EG ( T) ]/—E„(T)j,
where EG and Eo are temperature-dependent fitting pa-
rameters. This linear exponential behavior of the absorp-
tion coeScient may extend over ranges of photon ener-
gies up to -0.5 eV corresponding to as many as five de-
cades in a. Although this rule describes the overall
features of the absorption edge, it does not account for
the fine structure that is observed experimentally. %e
show here that both the overall features of a(v) as well as
finer deviations from linearity in c-Si at finite tempera-
tures may be quantitatively accounted for by incorporat-
ing multiple acoustic-phonon and optical-phonon side-
bands.

Extensive theoretical efforts ' have provided an un-
derstanding of Urbach behavior in many materials. The
linear exponential behavior is due to short-range order in
the static (structural or impurity) or dynamic (phonon)
disorder. As was first reported by Sritrakook et al. ,

" an
electron interacting with a static Gaussian-correlated
random potential V(x) with an autocorrelation function
of the form B (x)= ( V(x)(0) ),„,= V„,exp( x /L )—
gives rise to a linear exponential one-electron density of
states (DOS) over energy ranges of experimental interest
provided the correlation length L is comparable to the in-
teratomic spacing and V, s is of the order of l eV. Such
an Urbach tail was not apparent in the screened Cou-
lomb impurity model of Halperin and Lax, B (x)
= V„,exp( —

~
x

~
/L ), for reasonable choices of L, sug-

gesting that Urbach behavior is highly sensitive to the
form of B(x). Linearity in the exponential in a(v) arises
from short-range order in a semiconductor that must be
modeled by functions B(x) of shorter range than ex-
ponential. The sensitivity of the DOS to the form and

range of the autocorrelation function has been reported
in Ref. 14. Because of the short time scale of optical-
absorption events, lattice displacements due to thermal
fluctuations (dynamic disorder) may be considered frozen
in, and thus contribute to the disorder probed by the elec-
tron.

If the dipole matrix element corresponding to an elec-
tronic transition from the valence-band tail to the
conduction-band tail depends only weakly on energy,
then the linear exponential [lnp(E) ~E) behavior of the
DOS will result in the optical-absorption coe5cient tak-
ing form (l). The constant dipole matrix element approx-
imation for indirect transitions is valid in many materials
with large static dielectric constants, ' including c-Si,
which is the focus of this paper. In a different class of
materials studied by Dow and Redfield, long-range
correlations do not give rise to a linear exponential DOS;
however, excitonic effects lead to an electron-hole overlap
matrix element that decays in a linear exponential
manner, giving rise to approximate Urbach behavior in
the absorption coefBcient.

Recent work" '" has shown that the temperature
dependence of the Urbach edge is accounted for by the
proper consideration of longitudinal-acoustic (LA) -pho-
non sidebands. At finite temperatures the nonlinear
electron —LA-phonon interaction gives rise to multiple
phonon emission and absorption sidebands that accom-
pany the optically induced electronic transition. The
physical picture is that phonons absorbed from the heat
bath are reemitted into a dynamical polaronlike potential
well that localizes the electron. As we report here, the
electron —longitudinal-optical (LO), —transverse-optical
(TO), and —transverse-acoustic (TA) -phonon interactions
also form sidebands in the absorption spectrum and are
responsible for bumps in the absorption spectrum rather
than the linear exponential absorption induced by LA-
phonon sidebands. We believe that the derivation of the
observed fine structure from a parameter-free first-
principles theory, in addition to the derivation of Urbach
behavior presented earlier, ' ' provides incontrovertible
evidence for the phonon-sideband model of the Urbach
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edge.
In this paper we present simple formulas that go

beyond previous classical potential-well results and that
capture the quantum-dynamical effects associated with
the nonadiabatic electron-phonon interaction. These for-
mula should be of use to experimentalists measuring
subgap optical absorption since they predict the exponen-
tial part of the absorption coefficient as a function of the
photon energy given a few physical parameters of the ma-
terial under study. Finally, we calculate the effects of
LO, TO, and TA sidebands on absorption spectra using
the Feynman path-integral representation of the transi-
tion amplitude.

The exponential Urbach edge arises from three funda-
mental effects that provide localized electronic
configurations on the time scale of an optical-absorption
event. These are (i) truly static potential wells arising
from impurities or structural disorder, (ii) quasistatic po-
tential wells arising from equilibrium phonon distribu-
tions, and (iii) truly polaronic wells arising from multiple
phonon absorption and emission events that are
quantum-mechanically driven by the electron. The first
two can be described by a most probable potential-well
(MPW) method. The basis of the MPW method is the es-
timation of the exponential part of the band-tail density
of states at a given energy by the probabiltiy of the most
probable potential well that can support a bound state at
this energy. The approximation follows from the aver-
aged band-tail density of states being equal to the sum
over the number of potential fluctuations capable of sup-
porting a bound state at the energy of interest times the
probability of occurrence of these well. We now consider
band-tail states that form as a consequence of static dis-
order and quasistatic ~elis due to equilibrium LA-
phonon distributions. For various sources of disorder,
the central-limit theorem implies that the probability dis-
tribution of such potential wells described by frozen-LA-
phonon coordinates q& and Fourier components of a stat-
ic random potential V(k) is given by (5.10) of Ref. 18.
Following the most probable potential method discussed
in Ref. 18, the lattice distortion energy is not included in
order to simulate the high-temperature effects of multiple
phonon absorption sidebands. Then (5.10} of Ref. 18 is
an approximation to the subgap absorption coefficient for
photons of energy E+E, , where E&,p is the zero-
temperature energy gap. This technique accurately ac-
counts for the high-temperature properties of the Urbach
edge, where the detailed nonadiabatic dynamics of the
electron-phonon interaction are less important. Howev-
er, it is not a true description of the absorption coefficient
a(v), which involves a detailed enumeration of phonon-
assisted electronic transitions rather than simply an
effective one-electron DOS.

An approximately fit to the MPW results for a pure
crystalline material (V„,=0) is obtained by considering a
single oscillator mode with energy equal to the Debye en-

ergy %coo
—=Auko in the most probable potential-well

method. Then the Urbach slope is proportional to
Eo(T)-coth(A'rug/2}. Fitting a to the MPW results
with this form of Eo yields

lna(v)- —Ihv —Es,&I/Eo(~) ~

where

Eo( T)=S„y Ezcoth(fuooP/2)/8. 4,

(2a)

(2b)
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FIG. 1. The ratio of the Urbach slope Eo calculated using
most-probable potential-well (MPW) method and the general
nonadiabatic path-integral (PI) method as a function of the
product of the electron —LA-phonon coupling constant S„,the
nonadiabaticity parameter y, and the temperature T. The finite

width of the curve is a consequence of imperfect scaling of the
ratio with respect to S„yT. The PI results are obtained with a
variational trial mass. The left inset shows the electronic band
structure of c-Si near the valence-band edge and the right inset
shows the phonon dispersion relationships of c-Si.

S„=Ed/(2Nlu ficoo}, is the dimensionless electron —LA-
phonon coupling constant, y =ficta/ea is a measure of the
nonadiabaticity of the electron-LA-phonon interaction,
and sa—:R ko/2m'.

A numerical comparison between the results of the
MPW method and the results of the calculation using the
Feynman path-integral representation of the transition
amplitude' ' reveals a discrepancy that is particularly
pronounced at low temperatures and weak electron-
LA-phonon coupling (Fig. 1). The discrepancy is due to
the MPW method not properly incorporating the nonadi-
abatic quantum dynamics of the electron-phonon system
and the possibility of the electron driving the quantum-
mechanical phonon absorption and emission processes.
Over temperature and electron-phonon coupling-constant
ranges of experimental interest, the MPW results are in
reasonable agreement with the path-integral results in the
adiabatic and small time limits, ' ' which describes the
electron localizing in static potential wells but not dig-
ging wells in the deformable lattice. We have obtained
the leading-order corrections to the Urbach slope in the
adiabatic and small time approximations in the limit of
high temperature with no static disorder (V, , =O) and
for electron-LA-phonon coupling strengths considerably
below threshold for small-polaron formation (S„y=3.5,
see Fig. 1 of Ref. 18). We find
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(fin)(P)
E0= S„y + [0.01 —0.06S„y

~ac

+0.08(S„y) ] (2.8yP) (3)

for 2Acog~ 1 and S„y(1. The first term is obtained
from the MPW method and subsequent terms are correc-
tions from the path-integral method, clearly showing that
corrections are needed to the MPW picture of the elec-
tron localizing in quasistatic potential wells arising from
equilibrium phonon distributions. The correction terms
were obtained by expanding the electron-phonon interac-
tion term in power series in the small quantities coQT& and
A'era/P, where the absorption coefficient is evaluated in

the saddle-point approximation with T& being the time at
the saddle point (see Ref. 18). The dominant terms in

coDTs and fico+ above lowest order were retained to ob-
tain the corrections. The lowest-order terms provide a

0.6S„e~,
ED= V, , + +0.02S„(iricoa)

0.09S„(iiico0)

2
~rms 'Y

(14 4er ). (4a)

for 2ficog~ 1, and

good approximation to the MPW results. The correction
terms arise from the synergetic interplay between quasi-
static thermal fluctuations and polaron formation with
the quasistatic fluctuations acting as nucleation centers
for polaron formation.

In a material with the subgap DOS dominated by
Gaussian static disorder (V„,))S„iricoa/2p) with corre-
lation length L comparable to the interatomic spacing,
the Urbach slope may be approximated by

E = ( V„,+0.19S„(fico ) [1—0.53(ilia) ) /( V„,y)+0.23(iricoa) /( V„,y )]]/(14. 4eq ) (4b)

for 2Rcog))1, where er =Pi /2—m'L . In these expres-
sions for E0, the first two terms are due to the electron lo-
calizing in static and quasistatic thermal potential wells
and the correction terms arise from the synergetic inter-
play between the static quasistatic fluctuations and pola-
ron formation.

We now discuss the effects of TO-, LO-, and TA-
phonon sidebands on subgap absorption spectra. Because
of the inability to properly treat phonon emission and ab-
sorption process by means of the MPW method, we use
the Feynman path-integral representation of the transi-
tion amplitude. In light of experimental evidence ' of
fine structure in the absorption of c-Si below the indirect
edge, we concentrate here on c-Si, in which absorption is
dominated by the valence-band tail. We consider the fine
structure below the indirect edge at —1.12 eV and inter-
pret its source as being phonon sidebands forming band
tails, rather than indirect optical transitions that occur
for energies above the indirect edge (the case studied in
Refs. 23 and 24).

The electron —LA-phonon interaction results in a shift
of the valence-band edge at I'25. In the continuum limit,
the electron —LA-phonon deformation potential is given
by AEi&=E&V.u(r), where u(r) is the lattice displace-
ment field. Thus the comparatively slow {for long-
wavelength phonons) spatial variation of the lattice dis-
placement field determines the potential felt by the elec-
tron. The picture is different for optical phonons because
the two sublattices vibrate against each other. The po-
tential felt by the electron will be determined by the local
relative sublattice displacement field u„i(r), rather than
its slow spatial modulation. Thus the long-wavelength
TO- or LO-phonon deformation potential may be ap-

proximated by

~ETO, LO ~u )~da/~ (5a)

80 I k.r
He TO LO g (Sk+Sk+Sk )

2a &x (5b)

to the Hamiltonian, which describes the electron-TO-
phonon and -LO-phonon interactions. In (5b), the pho-
non normal coordinates have been written in terms of
their longitudinal (sk=k. sk) and transverse (s„' and sk')
components.

The splitting of the valence-band edge due to TA pho-

where da-30 eV (Refs. 26 and 27) for c-Si and a is the in-

teratomic spacing. This deformation potential describes
the splitting at I 2~ of the normally degenerate light- and
heavy-hole bands.

The deformation-potential constant da is difficult to
determine experimentally; thus precise values have not
been measured. One method of obtaining d0 (Ref. 28) in-
volves the effects of carrier concentrations on Raman fre-
quencies. Long-wavelength optical phonons can create a
dynamic redistribution of holes in the light- and heavy-
hole bands. This redistribution results in a softening of
the lattice and a decrease in phonon frequencies, which
can be measured by Raman spectroscopy. Changing the
hole concentrations by doping samples also shifts Raman
frequencies. The effects of differing hole concentrations
can be determined experimentally, leaving a shift of the
Raman frequencies that can be related to do.

In terms of optical-phonon normal coordinates sk, (5a)
adds the term
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nons may be obtained through restricting a general ex-
pression linear in the strain to the symmetry of the
valence-band edge. The Hamiltonian takes the form

HTA= ,'D—„[(J»J,+J,J )E, +c.p. ],
where J is the angular momentum of the electron and

(6)

For c-Si, D„.-2.7 eV. This deformation-potential con-
stant can be obtained from cyclotron-resonance experi-
ments in uniaxially strained samples. Under stress, the
ligh- and heavy-hole bands split. The hole effective mass
can be obtained from cyclotron resonance and can be re-
lated to the deformation potential D„because the hole
dispersion relationships are a function of D„. In terms of
phonon normal coordinates, (8) adds the term

iD„. i k.r
H.-TA= g k Q16 1. VN

(10)

where Qz = (q12+ qg3 )1+(q1,1+q1,3 )2+(q1,1 +q1,2 )3, to

e;, =0.5(()u; /Br + r)u Idr; ).

is the strain. This phenomenological expression is ap-
plicable only to the states at the top of the valence band
in Si and Ge. It has been confirmed by calculations by
Kleinman, ' and describes the splitting between the
heavy- and light-hole bands. For example, consider a TA
phonon with wave vector in the [111]direction. Such a
phonon will result in strain components c, =c,=c. , =e.
at any instant in time. Upon defining an orthogonal
coordinate system with labels (1,2,3) with the quantiza-
tion along the "3"direction (chosen to be the [111]direc-
tion) (6) becomes in terms of the new coordinate system

HTA —3D„e[m, —j(j+1)]
—3D„.c, for mj =+—,', j=

—,
'

t

3D„.c. for mj=+ —,', j=—,'.
Thus the heavy-hole (m =+—,') and light-hole (m =+—,')
bands split by an amount proportional to D„.

By averaging (6) over phonon directions in the continu-
um limit of the silicon lattice, and for j=—'„ the splitting
may be approximated by

2D„.
~ETA

3
( s12+ e23+ e31 )

The lattice displacement field u(r ) can be expressed in
terms of its Fourier components by

ikr
u(r)= Xq~ &N

the Hamiltonian, which describes the electron —TA-
phonon interaction. In terms of the transverse com-
ponents of the TA-phonon normal coordinates (qI, and

qt,
'

), (10) takes the form

iD„. ikr
H, TA= g k(q1, +ql,')6

The deformation potentials are used to describe
electron- TO-phonon, —TA-phonon, and —LA-phonon
interactions and may be incorporated into the Feynrnan
path-integral formalism discussed in Refs. 16-18. The
nonlinear electron-phonon interactions will result in the
formation of multiple TA- LA-, TO-, and LO-phonon ab-
sorption and emission sidebands that accompany the
electronic transition. The TO- and LO-phonon sidebands
are degenerate. The time contour integral that appears in
this formalism must be evaluated exactly in order to
properly take into account the multiple phonon emission
and absorption processes. As is described in Refs. 16—18,
a continuum effective-mass approximation is made for
the electron and the discrete wave-vector sums appearing
in (5) and (10) are replaced by integrals with soft cutoffs
at the Brillouin-zone boundary. Experimentally obtained
dispersion relationships are used (see right inset of Fig.
1).

It is possible to obtain an analytic solution for the ab-
sorption coefficient for the case of an electron interacting
only with a static Gaussian-correlated random potential
and TO or LO phonons, in the infinite effective-mass (adi-
abatic) limit. This is a simplification of a true model for
c-Si (equilibrium LA-phonon distributions can be
modeled by a Gaussian-correlated random potential with
V, , =S„kttTficuol~2 and I.=~2mlko, see Ref. 18);
however, we present the solution here because it clearly
shows how the absorption coefficient forms as a sum over
sidebands, with each sideband contributing a Gaussian
bump to a. The calculation is identical to the trial action
method of Ref. 18, except the electron —LA-phonon de-
formation potential is replaced with the electron-LO-
phonon or —TO-phonon deformation potential (5b) and
the harmonic LA-phonon energy is replaced by

H, p
=i1rI g( Is1, I'+~'.,Is1, I')I2 .

k

%e consider only a single optical-phonon branch. In the
infinite effective-mass approximation, one obtains

a(v)= f e " fDx(r)e

—f dt expF(t), (12a)

where

and

F (t) = ,'+it (v E„,Ih —3—vl2)+I—,„,(t)+I„—,(t),
3

I;„,(t)= —
3 f dh(t 5)f dk—k exp — —+

2&oM o o go 2 fiv I [N(co,~)+ l]e " +N(co,~)e

(12b)

(12c)
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V2
—3/2

I„,(t}=—f dh(t —b,},1+
0 A'v

(12d)

It is convenient to shift the time contour integral into the lower half complex time plane by letting t = —iT+t . The
absorption coefticient becomes

2 & &2 ( T +it')co —( T+it')co
a(v) -co,f" dt'exp[( —T it—')A —( —T 2i—Tt'+t' )C+Be ' +De ' +F]

T

—[ A —( n —m )cu ItnO) l4C +F
op 0

m, n C

1 /2
g nDm

n! m!
(13a)

where

tt S»N(co»)(coo/co, p)8=
8(nt/2+as/fiv) ~

p2
C= rms

2(iricoo) (1+4et /fiv) ~

ir S»[N (co,p)+ 1](coo/co»)D=
8(ir/2+sttlfiv) ~

ir S»[2N(co»)+ 1]( co/oco»)

8(ir/2+ as /irtv)
F= —1.5—

and

~'"S.,(~o/~. ,)'
A =(Es,p

—iiiv+ 0.75A'u) /ficoo—
8(ir/2+as/Au) i

(13b)

(13c)

(13d)

(13e)

(13f}

weighted by an overall factor exp(F). Term C measured
the widening of the emission and absorption sideband
peaks as a consequence of the electron-static-disorder in-
teraction.

We have numerically evaluated the absorption
coefficient of cSi at 300 K taking into account
electron —LA-phonon, —TA-phonon, —TO-phonon, and
-LO-phonon interactions and compare this result with
the experimental data of Refs. 21 and 23 in Fig. 2. We
identify the bump at —1.06 eV as due to a LO- or TO-
phonon absorption sideband, at energy A'co, below the in-
direct edge at —1.12 eV. Reference 21 indicates that the
absorption between —1.00 and 1.06 eV is enhanced by

1 I t
1

~ t t
1

t t r

N(co, ) =1/[exp(Pirico, ) —1],

where e, is the long-wavelength optical-phonon frequen-
cy, S» ——

d ti /2a Memo, and v is the variational frequency
parameter that enters from the trial action and is chosen
to maximize (13a) for each value of the photon energy
h v. ' The time contour integral appearing in the first line
of (13a) can be evaluated exactly after expanding the first
exponentialin

-2—

0
I-
CL
Ko -4—
CA

cf
C

( hv- E~+~0
I t I I I t I a ~ I

(T it'+)cl&PP+D (T+ t)coPPt I 04 ) 08
hv(eV )

I l2

in a power series. The result is given in the second line of
(13a). With increasing photon energy, v/coo increases to
a value of the order of unity until the energy reaches the
value at which the next lower-order phonon absorption
term dominates the absorption coefficient (the kinks in
the inset of Fig. 2), where it discontinuously drops to a
value much less than 1 and then starts rising again.
Equation (13) describes the absorption of n and the emis-
sion of m phonons, which produce bumps in the absorp-
tion spectrum (see inset of Fig. 2, where n and m are
summed from 0 to 10). Terms B and D are the ampli-
tudes for phonon absorption and emission processes,

FIG. 2. Comparison of the 300-K absorption coefficient of c-
Si below the indirect edge obtained from experiment [Refs. 21
(squares} and 23 (circles}] and theory (solid line). The input
physical parameters are given in the text. The inset shows the
absorption for an electron strongly coupled to optical phonons
in the presence of static disorder, clearly displaying the optical-
phonon absorption sidebands. The inset input parameters were
chosen to give a clear presentation of the sidebands: The
electron —TO-phonon or —LO-phonon coupling S,p=72, the
optical-phonon frequency scaled by the Debye frequency,
6)cip /co{) 1 .23, and the static-disorder strength V, , /el =0.32,
where eL =A /2m I.', m * is the electron effective mass and I.
is the correlation length of the static disorder.
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TA-phonon sidebands in addition to the optical-phonon
sideband, in agreement with theory; however, the data of
Ref. 23 do not display this enhancement. The theory and
experiment start to diverge at higher photon energies due
to the theory not incorporating indirect optical transi-
tions above the indirect edge. Further measurements of
absorption at low energies and at various temperatures
would place a more stringent test on the theory.
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