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Quantum Electrodynamics near a Photonic Band Gap: Photon Bound States and Dressed Atoms
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It is shown that in dielectrics exhibiting a complete photonic band gap, quantum electrodynamics pre-
dicts the occurrence of bound states of photons to hydrogenic atoms. When the atomic transition fre-
quency lies near a photonic band edge, the excited atomic level experiences an anomalous Lamb shift
and splits into a doublet. One member of this doublet exhibits resonance fluorescence whereas the other
level is dressed by the emission and reabsorption of near-resonant photons whose amplitude decays ex-

ponentially from the vicinity of the atom.

PACS numbers: 71.55.Jv, 32.80.—t, 42.50.—p

Electromagnetism is the fundamental force governing
much of the low-energy phenomena of atomic, molecu-
lar, and condensed-matter systems. Any alteration of
this fundamental force will have important observable
consequences in molecular quantum electrodynamics. In
a periodic array of nondissipative high dielectric constant
scatterers of size and spacing comparable to the wave-
length of light it is possible to controllably alter the
energy-momentum relation of photons by the creation of
a gap in the total photon density of states over a narrow
frequency range. In this paper, we describe the quantum
electrodynamics of a single atom placed within such a
dielectric when the first-excited to ground-state transi-
tion of the atom lies in or near the photonic band gap.
In particular, we demonstrate the existence of a novel
state of the excited atom coupled to the electrodynamic
vacuum of the dielectric in which the atomic level is
dressed by its own radiation field. The resulting eigen-
state of the coupled system has an energy within the pho-
tonic band gap and consists of radiation from the atom
which is exponentially localized in the vicinity of the
atom. The radiated photon may tunnel many lattice con-
stants of the dielectric host before being reabsorbed by
the atom. This state is stable with respect to single-
photon spontaneous emission but is subject to very slow
decay by multiphoton spontaneous emission. This
photon-atom bound state is the quantum electrodynamic
analog of an electron-impurity-level bound state which
occurs in the gap of a semiconductor. Near the photonic
band edges, the atom is resonantly coupled to photons
with vanishing group velocity. This strong coupling leads
to a quantum electrodynamic splitting of the atomic level
into a doublet exhibiting an anomalous Lamb shift. One
level retains the photon-atom bound state and lies within
the gap whereas the other level is shifted out of the gap
and exhibits resonance fluorescence.

Systematic attempts to modify the quantum electro-
dynamic vacuum experienced by an atom date back to
the early ideas of Kleppner.! Here it was suggested, and
subsequently observed,? that by placing an atom in a
small metal cavity the resulting modification of the pho-
ton density of states would be directly observable in the
corresponding rate of spontaneous emission. For such an
effect to be readily observable, the size of the cavity must
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be comparable to the wavelength of emitted radiation
and resistive losses in the walls of the enclosure must be
minimized. An alternative possibility was more recently
suggested® and implemented* in the microwave-fre-
quency regime by Yablonovitch using a lossless periodic
dielectric microstructure. For a dielectric material with
refractive index 3.5 containing an fcc lattice of spherical
air cavities a complete photonic band gap has been ob-
served when the volume fraction of the high dielectric
material is approximately 0.15. For a frequency range
spanning about 6% of the gap center frequency propaga-
ting electromagnetic modes are absent in all directions.

This latter result has a number of important conse-
quences. It first provides both a guide and a proof of
feasibility of the experimental observation of the strong
localization of photons.>”7 As in the case of electron lo-
calization in an amorphous semiconductor, any small de-
viation of the dielectric lattice from perfect periodicity
will induce strongly localized electromagnetic modes in
the gap region. In all previous experimental studies of
optical transport in strongly scattering dielectrics,®'°
emphasis has been placed on disorder rather than order.
Numerous wave-interference phenomena such as
coherent backscattering,'!"'* fluctuation, and memory
effects!>~!® have been observed but no true localization.
The importance of short-range order in the observation
of strong localization of photons has been emphasized
elsewhere.” Second, the occurrence of a gap or pseudo-
gap in the photon density of states dramatically affects
the quantum electrodynamics of radiation-molecule in-
teractions. Important questions concerning the nature of
resonant energy transfer between molecules placed in
such a dielectric have been raised.!® In order to clarify
the microscopic consequences of strong localization of
photons, we consider in detail the properties of a hydro-
genic atom within such a photonic material.

For the purpose of discussion we introduce a simple
model Hamiltonian for electromagnetic waves in a
three-dimensional periodic dielectric. The photon disper-
sion relation wy is chosen to be isotropic and satisfy the
transcendental equation

4ncos(kL) = (1+n)2cos[(2na+b) w/cl
—~(1—n)%cosl@na—b)a/cl. )
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The photon energy hw; obtained by solving this equa-
tion is in fact the exact solution of the scalar wave equa-
tion in one dimension,

-V —(0¥cDe(x)p=(0¥cH¢, 0))

with dielectric constant e(x) =X =-cu(x —mL),
where u(x)=n?—1 for |x| <a and zero otherwise.
Here n is the refractive index of the scatterer, a is its ra-
dius, and 2a +b=L is the lattice constant. To complete
the definition of the electromagnetic properties of the
dielectric, we assurne that the normal modes are plane
waves of the form n;.keik"/\/_ where Q is the volume of
the dielectric sample and the polarlzatlon vectors satisfy
the transversality condition S¢=1nfxnis =8, —kik;. By
symmetrizing wy given in (1) to all dlrectlons in k space,
we produce photonic band gaps at the spheres |k| =mx/
L, m=1,2,3,. This procedure artificially increases
the true phase space available for photon propagation
near a band edge and the corresponding density of states
becomes singular. In a real three-dimensional crystal,
the gap is highly anisotropic. We defer a discussion of
quantitative corrections to our model near a band edge
since it leads to qualitatively correct physics. The
dispersion relation (1) exhibits many features of the ob-
served as well as computed band structure in 3D. For
example, an approximate value of the optimum high-
refractive-index volume fraction for the creation of a
large band gap follows from a simple argument. The
dielectric “potential” u(x) has the analog of a Mie reso-
nance when precisely a quarter wavelength (2zc/wn)/4
fits into the diameter 2a. A “Mie” resonance here is
defined as a minimum in the transmission coefficient.
On the other hand, a Bragg scattering resonance occurs
when w/c =n/L. The condition that both the Bragg and
Mie resonance occur at the same frequency is the condi-
tion that the volume filling fraction f=2a/L =1/2n. An
optimum of this nature has been observed experimental-
ly* and in scalar wave band structures. 2

For the special case 2na =5, Eq. (1) can be solved
analytically. @ as a function of the complex variable &
has branch-cut singularities for k =mn/L with the gap
vanishing for even values of m.

We consider the quantum electrodynamics of a hydro-
genic atom which is minimally coupled to the radiation
field defined by Eq. (1). The Hamiltonian for the cou-
pled system may be written as H=H jiom+ H g+ Hint
+ H, where

Haom+ Ha=p*/2m+ V(l‘)‘f'% hwkaﬂ}au ,

3
Him=(e/mc)p- Alt) +(e}2mc?)A?,

and Hy=(6m/m)p*2m is a mass-renormalization
counterterm for an electron of observable mass m. We
assume bare atomic eigenstates with energies E,,
n=0,1,2,.... In the electric dipole approximation we
neglect the electron coordinate r dependence of the vec-
tor potential in the evaluation of any matrix elements.

An approximate eigenstate of the Hamiltonian (3) in
the one-photon sector of the entire Hilbert space may be
determined by introducing a trial wave function

lw =3 o1+ X i [10am), @

where |kA;n) denotes a state in which there is a single
photon in mode kA and the atom is in its nth-excited
state. In the state |n) the atom has been excited and the
photon absorbed. For a single photon of energy Aoy
=F,—E,, the dominant coefficients in the wave-
function expansion are ¢, and y/«” All other coefficients
are higher order in an expansion in the fine-structure
constant a=e?/4reqhc. If we consider electron-mass re-
normalization to order @, the approximate Schrédinger
equation, H|y)=E|y), can be expressed as a set of
coupled equations for the expansion coefficients:

(E = En)on =53 1e™ o puvi + 22 K, (52)
m kxl m
and

(E~E,—ho)yi 272-120 ke ™ % Pugs - (5b)
Here K,,IE(n [p22m|1), pu=(nlp|D, and n=(/
200 Q) ! /2. Also we have chosen units in which the vac-
uum speed of light c=1.

The amplitude w(") may be eliminated by substituting
(5b) into (5a). If we then neglect the amplitudes ¢, ex-
cept the dominant one ¢;, we obtain an approximate ei-
genvalue equation for the energy E of the coupled atom-
radiation field:

): I pin |E —E)g(E—E,), (6a)

2
E—E=—%—
T enteghm?

where
¢®)=["ak k0 (E/h—0) "', A=me/h.  (60)

Here we have used the mass-renormalization counter-
term to cancel the linearly divergent part of the sum over
k. Following Bethe?! we introduce a cutoff A in the pho-
ton wave vector since photons of energy higher than the
electron rest mass mc? probe the relativistic structure of
the electron wave packet.?? The standard nonrelativistic
perturbation-theory result?! for the Lamb shift of the
level E; follows by setting E =FE in the right-hand side
of (6a) and solving for E. If the atomic level E, lies in
the allowed spectrum Ay, the integral over k is inter-
preted as a principal value. More generally, we may con-
sider exact solutions of Egs. (6) for the complex variable
E. The function g(E) has branch-cut singularities at en-
ergies in the allowed electromagnetic spectrum and care
must be taken in defining the multivalued function. In
particular, the phenomenon resonance fluorescence ap-
pears as a solution to Egs. (6) in the lower half of the
complex E plane on the second Riemann sheet. Analytic
continuation to this second sheet is obtained by evaluat-
ing lim¢— og(E +ie) for real E and letting £ be a gen-
eral complex number in the resulting expression. For
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real E in the vicinity of E, this means

E—E;=(e 2/67r260hm2){ 20 | pin J2E —E)P(g(E—E,)) —in|pil|E foAdkkzw,:za(E/h —wk)} )

Here we have chosen Ep=0 and P denotes principle
value.

This eigenvalue equation always has a solution for
some real value of E which lies in the photonic band gap
as depicted graphically in Fig. 1 provided E is in or near
the gap. Here we have chosen the refractive index
n=1.082 yielding a gap center frequency wo=nr{(1+n)
x¢f2nL and relative gap width Aw/wo=0.05. The nu-
merical solution of Eq. (7) was facilitated by use of the
known dipole matrix elements p;, for discrete and con-
tinuum states of hydrogen.?* This solution corresponds
to a bound state of the photon to the atom and occurs
despite the weakness of the minimal-coupling interaction
(3) because of the resonant interaction between the radi-
ation field and the atom. In Fig. 2 we plot the Lamb
shift, and the tunneling distance (localization length) of
the bound photon as E; varied from being just below the
gap to just above the gap. This is done for E; corre-
sponding to the 2p),; state as well as the 2.5/, state of
hydrogen.

Near the upper and lower band edges an additional
strong-coupling effect arises from the resonant interac-
tion of the atom with photons whose group velocity
dwi/dk vanishes. It follows that when E; is close to a
band edge, and provided | p1o|? is nonzero, the quantum
electrodynamic interaction is sufficiently strong to split
the atomic level into a doublet. This is apparent from
the graph of Fig. | since the function E —E intersects
the real part of the photon propagator at two energies.

It is straightforward to verify from Eq. (7) that for the
vacuum case wj =ck the single complex solution on the

4.0 - T T

.4.0 ‘y ! !
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wbL/7C
FIG. 1. The right-hand side of Eq. (7) measured in units of
hawo as a function of wlL/mc, for w=E/h near or within the
band gap. The dotted lines mark the lower and upper band
edges.
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second Riemann sheet (negative imaginary part for E)
describes the correct single-photon spontaneous emission
rate 1/z; from the Lamb-shifted level E. In particular,
1/7y=2|ImE |. Near a band edge of the dielectric ma-
terial it is instructive to analytically estimate the corre-
sponding solutions, We consider an “effective-mass” ap-
proximation to the dispersion relation (1) for k=ko
=gx/L. Near the upper band edge w., wr=w.+Ak
—ko)? For special case b =2na,

o= {2,,_005-1 u_z_:gn_]
4na 1+n2+2n
and
R — CLZ .
2a(1+n)%sin(4naw./c)

The imaginary part of the left-hand side of (7) is singu-
lar for E— hw,. Using perturbation theory to estimate
the nonsingular parts we obtain

ime? v | ko |7 dk
———— | pwol?E{ | — - ,
6nleghm? (0% dok | he, =£

®

E—E{=-—

where
Ei=(e¥6nteshm?) Zo Ipin |2(E—E,)P(g(E,—E,))
—

is the standard Lamb shift. To study band-edge behav-
ior, we choose E|=#hw, and substitute the effective-
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FIG. 2. The Lamb shift for the 2p1/; state (solid line) and
the 2S5y, state (dash-dotted line) measured in units of wo
within the band gap. Here w=E/h. At the band edge the
Lamb shift for the 2pis; state reaches a finite value. The local-
ization length &/L within the band gap (dashed line) is also
shown.
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mass expression for @y in (8). This gives
z3=(—jaf3) | p1o/m |*(ko/w.) *(dw) ~ 12

for the complex variable z=(E — hw.)/h o, which mea-
sures the anomalous part of the Lamb shift and the rate
of spontaneous emission. Using the definition z¥2=|z |
xe¥92 for the complex variable z=|z|e’®, 0<©
< 2x, we find two solutions of Eq. (9). The solution at
© =7 corresponds to the photon-atom bound state within
the photonic band gap whereas the solution for
©=— /3 (on the second Riemann sheet) lies within the
allowed electromagnetic spectrum.

Since the anomalous Lamb shift described by Eq. (9)
for the case of hydrogen affects the odd-parity 2p,/, state
and not the even-parity 25/, state, relative shifts of this
nature may be detectable using microwaves.?* Restoring
correct dimensions to Eq. (9) we see that the right-hand
side is simply a|p1o|%/3m2%c2=10"% multiplied by nu-
merical factors of arder unity which may depend on the
refractive index n. For the isotropic model described by
Eq. (1), the splitting of the 2py/, level is larger than the
ordinary Lamb shift of the 25/ level because the ex-
ponent of z is . This exponent, however, depends sensi-
tively on the dimension 4, of the phase space occupied
by band-edge photons of vanishing group velocity. We
have overestimated this phase space by assuming that
dwy/dk vanishes over the entire sphere | k| =z/L. For a
real dielectric crystal in three dimensions with an al-
lowed point-group symmetry the band edge occurs at
certain points along the Bragg planes of the lattice. For
scalar waves such as electrons the locus of points for
which |dwy/dk| =0 has dimension dp=0. This would
be true, for instance, in a many-valley semiconductor
crystal for which the bottom of the conduction band
occurs at the center of a Bragg plane. The vector nature
of the electromagnetic wave modifies this picture and the
phase space near a band edge is enlarged. It was argued
previously’ using the nearly-free-photon approximation
for Bragg scattering that the photonic band edge actual-
ly lies on a circle of finite radius on the Bragg plane.
This suggests that dg =1 in a real photonic crystal as op-
posed to dp =0 for scalar waves or dz =2 for the isotro-
pic model of Eq. (1). In three dimensions, the photonic
density of states p(w) at a band edge w. behaves as
(@w—a.)" """ for o= w.. This argument suggests
that for a general photonic band structure with band-
edge dimension dj, the exponent of z in Eq. (9) becomes
(1+dp)/2. For the case dg =1, the left-hand side of Eq.
(9) is of the form z/Inz and it follows that the anomalous
splitting of the 2py/; level given by z=(E — ke )/ ho,. is
of order 10 ™7, This is comparable to the ordinary Lamb
shift of the 25, level,

In summary, we have shown using a simple model of
photonic band structure that atomic and molecular spec-
troscopy in a dielectric with a photonic band gap is qual-
itatively modified from its nature in vacuum. For an iso-
lated atom in the band gap of the dielectric, single-

photon spontaneous emission is inhibited and a quantum
electrodynamic bound state of the photon to the atom is
formed. Near a band edge, the dressing of the atom by
photons with a finite effective mass becomes strong
enough to split the atomic level by an observable
amount. This splitting occurs in the absence of any
external radiation field. For a collection of atoms in the
dielectric we anticipate that transfer of excitation energy
between atoms at energies within the gap will occur by
tunneling rather than propagating photons and that the
atoms will form a narrow photonic impurity band within
the dielectric. The presence of such a narrow impurity
band formed by gas of impurity atoms in such a dielec-
tric may be relevant to cooperative phenomena such as
laser action within this new class of photonic materials.
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