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Fragility of the Schrödinger Cat 
in thermal environments
Sandip Bera , Kenny L. S. Yip  & Sajeev John *

We describe the decoherence instability of Schrödinger Cat states in the two-site Bose-Hubbard model 
with an attractive on-site interaction between particles. For N particles with onsite attractive energy 
U and hopping amplitude between sites t, Cat states exist for u ≡

UN

2t

< −1 at zero temperature. 
However, they are increasingly unstable to small thermal fluctuations as the Cat itself is increasingly 
well-defined and its components become well-separated. For any given u < −1 , the decoherence 
temperature becomes smaller for large N. The loss of off-diagonal coherence peaks in the equilibrium 
density matrix is dominated by the thermal admixture of the first excited state of the many-body 
system with its ground state. Particle number fluctuations, described in the grand canonical ensemble 
also reduce coherence, but to a lesser degree than thermal fluctuations. The full density matrix of the 
Schrödinger Cat is obtained by exact numerical diagonalization of the many-body Hamiltonian and a 
narrow regime in the parameter space of the particle number, temperature, and U/t is identified where 
small Cat states may survive decoherence in a physical environment.

The accessibility and stability of entangled quantum many-body  states1–5 is of fundamental importance in quan-
tum science and  technology6–9. Quantum  stability10 involves the maintenance of quantum coherence when the 
system is in contact with a physical environment, with which it can exchange energy. While a large variety of 
exotic quantum  states11–15 can be considered theoretically, only a small subset of such states may be accessible, 
stable, and amenable to predetermined external control and manipulation.

Controllable, macroscopic, quantum coherence is well-known in certain many-body systems near their 
ground states. These include low-temperature systems such as  superfluids16 and  superconductors17. On meso-
scopic size scales and shorter time frames, many-body quantum coherence has been studied in cold atomic 
 gases18–22 and exciton-polariton Bose-Einstein  condensates23–28. Notwithstanding these remarkable discover-
ies, the realization of coherent quantum superposition states involving large numbers of material particles has 
remained extremely  elusive29,30. The stability and controllability of quantum states involving many  qubits31, 
exhibiting quantum superposition and entanglement, is central to quantum information science and quantum 
 computing32–36.

In this article, we consider the two-site, attractive, Bose-Hubbard model, with N particles, in contact with a 
thermal environment, described by the canonical and grand canonical ensembles. Ho and  Ciobanu37 proposed 
that, at zero temperature, this system can exhibit a ground state involving a coherent quantum superposition of 
many particles on one site with many particles on the other site. When these two components of the many-body 
ground state are sufficiently well distinguished, the state is referred to as a Schrödinger  Cat38–41. The response of 
such states, at zero temperature, to small perturbations has been a subject of considerable interest in mathemati-
cal  physics42,43. At finite temperature, we evaluate the full density matrix of this system by the exact numerical 
solution of all the eigenvalues and eigenfunctions of this interacting many-body system. We identify the narrow 
range of system parameters, including onsite attractive energy U, hopping amplitude between sites t, particle 
number N, and temperature T, for which the entangled Schrödinger Cat state retains quantum coherence between 
its two components. This coherence is measured by the magnitude of the off-diagonal peaks in the system density 
matrix. We show that the more distinguished the components of the Cat state, the more rapid the loss of quan-
tum coherence between those components with small thermal fluctuations. Moreover, the larger the number of 
particles constituting the Cat state, the more susceptible it is to decoherence in a physical environment.

The article is organized as follows: In section “Many-body Hamiltonian”, we introduce the many-body, two-
site, Bose-Hubbard model and map it to an approximate, continuum, Sturm-Liouville, differential equation. We 
show that the ground state and low-lying excited states can be accurately described, under suitable circumstances, 
by a WKB approximation describing tunnelling between two minima of a double well potential. In section 
“Numerical results”, we provide an exact numerical solution for the energy eigenvalues and eigenstates of the 
original many-body Hamiltonian. This leads to an exact evaluation of the system density matrix and off-diagonal 
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coherence, as a function of temperature, in the canonical ensemble. This reveals the fragility of Cat states in the 
presence of small thermal fluctuations. In section “Particle number fluctuations”, we evaluate the full thermal 
density matrix, in the presence of an external particle reservoir, using the grand canonical ensemble. In section 
“Discussion and conclusions”, we discuss possible physical realizations and provide our conclusions.

Many-body Hamiltonian
The two-site Bose-Hubbard model describes the behavior of bosonic particles confined to two sites, labeled as 
site a and site b. The model is characterized by the Hamiltonian:

where t represents the hopping amplitude between the two sites, a† and b† are the creation operators for bosons 
at sites a and b, respectively, a and b are the corresponding annihilation operators, and na = a†a and nb = b†b 
are the associated number operators. N = na + nb is the total number operator. These operators satisfy the com-
mutation relations 

[

a, a†
]

= 1 , 
[

b, b†
]

= 1 , and 
[

a, b†
]

= [a, b] = 0.
The first term of the Hamiltonian −t(a†b+ b†a) describes the hopping of bosons between the two sites. The 

hopping strength t determines the rate at which bosons can move from one site to the other. The overall hopping 
energy scales with −tN  . The second term U2

[

na(na − 1)+ nb(nb − 1)
]

 accounts for the on-site interaction 
between bosons. U is the amplitude of on-site interaction. The sign of U determines the nature of the interaction: 
positive values correspond to repulsive interactions, where bosons tend to avoid each other, while negative values 
indicate attractive interactions, where bosons tend to cluster together. The overall interaction energy scales with 
UN2 . For the hopping term and the on-site interaction term to exert comparable influence on the bosonic system, 
we require tN to be comparable to UN2 . In other words, UN/t is a dimensionless measure of the on-site interac-
tion strength that properly scales with N.

Analytical model
The boson number operator commutes with the Hamiltonian [H,N] = 0 . Thus, energy eigenstates can be chosen 
to have a definite total number of bosons. We diagonalize the Hamiltonian in equation (1) using the orthogonal 
basis of Fock  states37,44: |�� =

∑

l �l|l� , where |l� represents the normalized quantum state |l,N − l� describing 
l bosons on site a and N − l bosons on site b. Here, l takes values from 0 to N. The coefficients �l are yet-to-be-
determined wavefunction amplitudes. After substituting this ansatz into the Schrödinger equation corresponding 
to the Hamiltonian (1), we obtain the eigenvalue equation:

where tl = t
√
(N − l)(l + 1) , Vl =

[

U
(

l − N
2

)2
+ UN

2 (N2 − 1)
]

 and E is the energy eigenvalue. This describes 
a quantum particle hopping in a one-dimensional lattice with N + 1 sites, in a potential Vl and for which the 
hopping amplitudes vary with location, with hopping toward either endpoint of the lattice becoming increasingly 
difficult. We perform numerical diagonalization of the above Hamiltonian with an orthonormal Fock state basis 
of N + 1 vectors (N bosons), using the Mathematica  software45,46. We discuss the exact numerical results later.

A more intuitive physical picture is obtained by mapping the above lattice problem to an effective continuum 
model. We show, below, that the finite difference equation (2) can be mapped to a Sturm-Liouville differential 
equation in a continuous variable, y, that ranges from 0 to N. We introduce the definition of first difference 
��
�l |l+1/2 ≡ �l+1 −�l . The above eigenvalue equation (2) can then be expressed in the form of a discrete Sturm-

Liouville problem: E�l = − �
�l

[

tl−1/2
��
�l

]
∣

∣

∣

l
+ Veff(l)�l , where Veff(l) = U

(

l − N
2

)2
− tl − tl−1 + UN

2 (N2 − 1) 
is an effective lattice potential. We extend the discrete wavefunction amplitude �l to a continuous and differenti-
able function �(y) . According to the Lagrange mean value theorem, d�dy (y = ζ ) = �l+1 −�l for some ζ in the 
open interval (l, l + 1) . Using the ansatz, ζ = l + 1/2 , the eigenvalue equation in continuum limit becomes: 

E�(y) = − d
dy

[

ty−1/2
d�(y)
dy

]

+ Veff(y)�(y) , where Veff(y) = U
(

y − N
2

)2
− ty − ty−1 + UN

2 (N2 − 1) and �(y) 
represent the effective potential and the wavefunction, respectively, in the continuum limit, where 0 ≤ y ≤ N . 
Here, ty = t

√

(N − y)(y + 1).
For convenience, we introduce the translated variable x ≡ y − N/2 , define over the symmetrical interval 

−N
2 ≤ x ≤ N

2  . The eigenvalue equation is expressed in terms of x:

where tx = t
√

N
2

(

N
2 + 1

)

− x(x + 1) can be interpreted as the reciprocal of the position-dependent effective 
mass in the continuum model.

(1)H = −t
(

a†b+ b†a
)

+ U

2

[

na(na − 1)+ nb(nb − 1)
]

,

(2)E�l = −tl−1�l−1 − tl�l+1 + Vl�l ,

(3)E�(x) = − d

dx

[

tx−1/2
d�(x)

dx

]

+ Veff(x)�(x),

(4)Veff(x) = Ux2 + UN

2

(

N

2
− 1

)

− tx − tx−1,
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Effective potential in the continuum model
We identify the critical transition by the change of concavity of Veff(x) , and map the second order differential 
equation (3) to that of a simple harmonic oscillator (SHO). The effective potential Veff(x) can be expressed in 
Taylor series about x = 0:

where α1 = N
2

(

N
2 + 1

)

 . The coefficients of all non-vanishing terms in the series are positive, except for the x2 

and x0 terms. The coefficient of x2 vanishes when UN2t (≡ u) = −
√

N
N+2

[

1+ 1
N(N+2)

]

.
For large N, the effective potential Veff(x) is simplified to

Under the simplifying condition, the coefficient of x2 changes its sign at UN2t (≡ u) = −1 . We refer to u = −1 as 
a critical point. For u ≥ −1 , Veff(x) has a single minimum at x = 0 . For u < −1 , Veff(x) exhibits a double well 
structure with a pair of local minima, symmetric about the origin. Figure 1a shows the behaviour of the effec-
tive potential for two different values of u. The effective potential at u = −0.5 , which is above the critical value, 
is shown by the blue line. The green line for u = − 1.25 is below the critical value and exhibits two separated 
minima.

When u < −1 , the double well potential minima occur at x = ±xc (see Fig. 1c). For large N, we set 
dVeff/dx(x) = 0 to determine

In the vicinity of the local minimum at xc , the effective continuum model can be approximated as a simple 
harmonic oscillator of mass mc and angular frequency ωc ( � = 1):

To complete the analogy with a SHO, we identify mc using the kinetic energy term in Eq. (3) and ωc using the 
quadratic term of Veff(x) at x = xc in Eq. (8):

By direct comparison with SHO, we estimate the ground state energy Eg ≈ (1/2)ωc relative to the potential 
minimum Veff(x = xc):

(5)

Veff(x) ≈ −2t
√
α1 +

1

2

(

N2

2
− N

)

U + t
√
α1

[

U

t
√
α1

+ 1+ 4α1

4α2
1

]

x2 + t
√
α1

[

(1+ 4α1)(5+ 4α1)

64α4
1

]

x4 + · · · ,

(6)Veff(x) ≈ Ux2 + 1

4
UN2 − tN

(

1− 4x2

N2

)1/2

≈ 1

4
UN2 − tN +

(

U + 2t

N

)

x2 + · · · .

(7)xc ≈
N

2

(

1− u−2
)1/2

.

(8)Veff(x) ≈
(

1

2
N2U + t2

U

)

+ (x − xc)
2U

(

1− u2
)

.

(9)mc ≈
1

2txc−1/2
≈ −U

2t2
,

(10)ωc ≈ 2t(u2 − 1)1/2.

(11)Eg = t(u2 − 1)1/2.

Figure 1.  Panels (a) and (b) display the characteristics of the effective potential and the ground state wave 
function, respectively, for two different values of u, one above ( u = − 0.5 or U = − 0.01 ) and one below 
( u = −1.25 or U = −0.025 ) the u critical value (u = − 1) . Here V0 = UN

2 (N2 − 1) . The other parameters used 
for this calculation are N = 100 and t = 1.0 . For u = − 0.5 , the ground state wavefunction has a single Gaussian 
peak. For u < − 1.0 , the effective potential has two local minima and the ground state wavefunction exhibits 
two Gaussian peaks. Panel (c) shows the classical turning points ( x1 and x2 ) for E = Eg (the ground state energy) 
and the location, xc , of the potential minimum. Here, the green line and blue line denote the ground state energy 
and effective potential, respectively.
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In this analogy, the ground state solution is proportional to exp
[

− (x − xc)
2/(2σ 2

c )

]

(≡ �
(0)
R (x)) , where the 

width σc ≈
√
1/mcωc  of the Gaussian peak is σc ≈ [U2

t2
(u2 − 1)]−1/4 . Similarly, the left side minimum has a 

ground state proportional to exp
[

− (x + xc)
2/(2σ 2

c )

]

(≡ �
(0)
L (x)) . Given the non-zero tunnelling amplitude 

between the minima, the ground state wave function for the double well potential can be approximated by a 
linear combination of �(0)

R (x) and �(0)
L (x) . The numerical solution of the lattice model (2) for the ground state 

wave function in the double well for u = − 1.25 is shown by the green line in Fig. 1b.
Well above critical point when u = − 1 , the ground state wave function exhibits a single Gaussian peak 

at origin. Near x = 0 , the effective continuum model can be approximated as a SHO of mass m0 and angular 
frequency ω0 . Similar to the previous analysis, by Eqs. (3) and (8), we identify

This approximate ground state wave function is proportional to exp
[

− x2/(2σ 2
0 )

]

 , with σ0 ≈ (N2 )
1/2(u+ 1)−1/4 . 

The numerical solution of lattice model (2) for the ground state wave function at u = − 0.5 is shown by the blue 
line in Fig. 1b.

A ground state in which the wave form �(0)
R +�

(0)
L  consists of distinguishable peaks at x = ±xc corresponds 

to many-body quantum state of (1) that is a superposition of a significant number of bosons on site a with the 
same significant number of bosons on site b. In what follows, we define a well-developed Schrödinger Cat state 
to be one in which the ground state probability density at x = ±xc is at least a factor of ten larger than the prob-
ability density at x = 0 . As u → −1 , from below, the two components of the “Cat state” merge and the peaks 
at x = ±xc becomes less discernible. On the other hand, for large negative u < −1 , the tunnelling amplitude 
between the two components of the “Cat” becomes negligible and we approach an “extreme Cat” state of the form 
(|N , 0� + |0,N�)/

√
2 . While such “extreme Cat” states may appear as tantalizing possibilities at zero temperature, 

we show below that they are unstable to decoherence for infinitesimally small thermal fluctuation.
So far, we have presented analytical approximations describing a single minimum in Veff(x) . We describe 

below an analytical approximation to the tunnelling amplitude between a pair of distinct local minima that 
accurately describes the ground and first excited state wavefunctions, provided we are not too close to the critical 
point u = −1.

Approximation for ground and first excited states
We apply the WKB approximation to the continuum two-site Bose-Hubbard model to estimate the energy 
separation dE10 between the ground and first excited states. For u < − 1 , the ground state and first excited state 
are even and odd superpositions, respectively, of near-Gaussian wavefunctions centered at the minima of the 
double well potential. This double well potential intersects the ground state energy at four different classical 
turning points ( ±x1 and ±x2 ), as depicted in Fig. 1c.

The WKB approximation for the ordinary Schrödinger’s equation is modified to accommodate a position-
dependent effective mass in the Sturm-Liouville problem:

Here, we introduce ǫ = 1 to keep track of the perturbation order of the WKB approximation. We begin with an 
exponential asymptotic  approximation47:

where Sn(x) is the nth order term of the phase function. Here, we only keep the phase function up to the first 
order in ǫ . We substitute Eq. (15) into Eq. (14) to obtain a sequence of equations which determines S0 and S1 : 

 where Q(x) ≡ (Veff(x)− E)/tx−1/2 . These equations are solved to yield: 

(12)m0 ≈
1

2t−1/2
≈ 1

tN
,

(13)ω0 ≈ 2t(1+ u)1/2.

(14)E� = −ǫ2
d

dx

(

tx−1/2
d�

dx

)

+ Veff(x)� .

(15)�WKB(x) ∼ exp

[

1

ǫ

∞
∑

n=0

ǫnSn(x)

]

,

(16a)
(

dS0

dx

)2

=Q(x),

(16b)2tx−1/2
dS0

dx

dS1

dx
+ tx−1/2

d2S0

dx2
+ dtx−1/2

dx

dS0

dx
=0,

(17a)S0(x) =±
∫ x

dx′
[

Q(x′)
]1/2

,
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 As a result of the position-dependent effective mass, the modified WKB wavefunction gains an additional 
amplitude modulation factor compared to the WKB wavefunction for the standard Schrödinger’s  equation47:

As shown below the extra factor does not affect the energy quantization conditions.
The WKB approximation fails near a classical turning point. Nevertheless, the effective potential can be 

linearized in the vicinity of a turning point, and the solutions to the linearized differential equation are the 
Airy functions. A global approximation can be constructed by matching the asymptotic expansions of the Airy 
functions to the WKB approximation on either side of the turning point:

where η =
∫ x2
x1

dx′|Q(x′)|1/2 is a phase angle over the classically allowed region x1 < x < x2 . The standard con-
nection formulae apply because the effective mass is regular and positive at the classical turning points. Over 
the classically forbidden region, 0 ≤ x < x1 , there is a factor of 2 with the cos η term, because of the different 
prefactors in the asymptotic expansions of the exponentially decaying Airy function Ai(x) of the first kind and 
exponentially increasing Airy function Bi(x) the second kind.

The WKB approximation for x < 0 is determined by parity. For the even-parity ground state, 
�WKB(−x) = �WKB(x) . For the odd-parity first excited state, �WKB(−x) = −�WKB(x) . These imply the 
following quantization conditions: d�WKB/dx(x = 0) = 0 for even parity states and �WKB(x = 0) = 0 for odd 
parity states. Hence, by Eq. (19), we obtain

where κ =
∫ x1
−x1

dx′|Q(x′)|1/2 is a phase angle in the non-classical region. Here, + and − represent even and odd 
parity states, respectively. The calculations are simplified by observing that tx−1/2 and Q(x) are even functions 
of x, so that their derivatives vanish at x = 0.

Finally, we estimate the energy separation between the ground and first excited states, in the weak tunnelling 
limit ( κ >> 1 ) between the two minima of the double well potential. For u < −1 , using the SHO approximation 
developed in Eqs. (9) and (10), we express the phase angle η in term of the eigenenergy E:

where ±x1 and ±x2 are the turning points. In the weak tunnelling limit ( κ >> 1 ), the solutions of (20) occur near 
the poles of the tangent function ηn ≈ (n+ 1/2)π , where n = 0, 1, 2, · · · . For the ground and low-lying excited 
states, we can write ηn = (n+ 1/2)π + δn , where δn << 1 . Therefore, tan ηn = − cot δn ≈ −1/δn = ±2eκ , or

Combining Eqs. (21) and (22), we determine the energy spacing dE10 between the ground and first excited states 
( n = 0):

In the exponent, κ , the energy parameter can be approximated by that of the ground state.

Numerical results
We have discussed the analytical expressions of xc and Eg using a continuum approximation, dE10 using the 
WKB approximation. We now compare our continuum analytical estimates with the exact numerical solution 
for the spectrum of the discrete equation (2). Solid lines in Fig. 2a depict analytical results for xc . The red dots 
are the exact numerical results. Similar comparisons are provided for the ground state energy E0 of the original 
Hamiltonian (1) and energy separation dE10 between the ground state and first excited state (see Fig. 2b and 
c respectively). Clearly, the WKB estimates are very close to the exact numerical results. The exact numerical 
solution for dE10 also indicates that dE10 decays with U/t much faster for large N than for small N (Fig. 2d). This 

(17b)S1(x) =− 1

2
ln tx−1/2 −

1

4
lnQ(x).

(18)�WKB(x) ∼
A

(

tx−1/2

)1/2
[Q(x)]1/4

exp

[

±
∫ x

dx′
[

Q(x′)
]1/2

]

.

(19)�WKB(x) ∼



















































A
�

tx−1/2

�1/2
[Q(x)]1/4

�

2 cos η exp
�

� x1
x dx′

�

Q(x′)
�1/2

�

+ sin η exp
�

−
� x1
x dx′

�

Q(x′)
�1/2

�

�

, for 0 ≤ x < x1,

A
�

tx−1/2

�1/2|Q(x)|1/4
sin

�

� x2
x dx′|Q(x′)|1/2 + π

4

�

, for x1 < x < x2,

A
�

tx−1/2

�1/2
[Q(x)]1/4

exp
�

−
� x
x2
dx′

�

Q(x′)
�1/2

�

, for x2 < x,

(20)tan η = ±2eκ ,

(21)η ≈
∫ x2

x1

dx′
[

2mc

(

E − 1

2
mcω

2
c (x

′ − xc)
2
)]1/2

= Eπ

ωc
.

(22)ηn ≈ (n+ 1/2)π ∓ 1

2
e−κ .

(23)dE10 ≈
ωc

π

[1

2
e−κ −

(

−1

2
e−κ

)

]

= 2

π
Ege

−κ .
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has important consequences for the decoherence and instability of “Cat states” consisting of a large number of 
particles, with the addition of extremely small thermal fluctuations. Figure 3a shows the energy behaviour with 
U at N = 50 . A double well potential emerges if U/t < −0.04 , its critical value. The separation, dE10 , between 
the ground state energy ( E0 ) and the first excited energy ( E1 ) decreases exponentially with |U/t|, at fixed N, for 
u < −1.0 (see Fig. 3b). The corresponding exponential decrease of dE10 with N, at fixed |U/t| is apparent in Fig. 2c. 
It is this behaviour that leads to exponentially rapid decoherence and fragility of Schrödinger Cat states.We 
plot (see Fig. 4) the square of the wave function, both above and below the critical point u = − 1.0 , for N = 50 
particles. For N even, it is convenient to introduce the translated discrete index lt ≡ l − N/2 . Figure 4a shows 
the square of ground state wave function and first excited wave function at u = −0.9 . (�1

lt
)2 is zero at lt = 0 

and has two separate maximum around the origin, whereas (�0
lt
)2 has one maximum at lt = 0 . For u < −1.0 , 

there are two Gaussian peaks in the ground state (see Fig. 4b), centered near the potential energy minima. The 
wings of these two Gaussian peaks superimpose around lt = 0 . Consequently, (�0

lt
)2 at lt = 0 is nonzero (see 

figure 4b). The first excited state of a symmetric potential is antisymmetric in nature. As a result (�1
lt
)2 is zero 

at lt = 0 . Figure 4b shows that the overlap between (�0
lt
)2 and (�1

lt
)2 at u = −1.25 . The separation between the 

two peaks becomes more pronounced with decreasing u (see Fig. 4c). Moreover, the probability densities (�0
lt
)2 

and (�1
lt
)2 become almost indistinguishable from each other. This has serious implication for the off-diagonal 

elements of the system’s thermal density matrix, which provides a measure of quantum coherence between the 
two components of the Schrödinger Cat state. For choices of u well below the critical point ( u = − 1.0 ), small 
thermal fluctuations will mix the nearly degenerate ground and first excited state. Given the close resemblance of 
(�0

lt
)2 and (�1

lt
)2 , there is nearly complete phase cancellation of the off-diagonal coherence in the density matrix 

at temperature scales corresponding to the nearly vanishing energy scale dE10 (see Fig. 3b).

Region for robust Cat state
As described above, the ground state has two Gaussian peaks for u < − 1.0 . The separation (dl) between the two 
Gaussian peaks depends on U/t and N. Figure 5 shows the behaviour of dl/N in the U/t − N plane. The upper 
dotted line represents the critical condition u = − 1.0 for the onset of the double well potential. The lower dashed 
line demarks the region where a well developed “Cat state” appears. This is defined by the condition that 

Figure 2.  Panel (a) shows the behavior of the location of the potential minimum, xc , with N at U/t = − 0.05 . 
Here, the blue dots represent the exact numerical solution of Eq. (2) and the solid red line is the approximate 
WKB analytical solution given in Eq. (7). Clearly, the WKB approximation provides an excellent estimate. For 
U/t = − 0.05 , a double well potential occurs if N > 40 . In panel (b), we compare the precise numerical results 
(blue dots) of Eq. (2) with the approximate WKB solutions (solid red lines) for the ground state energy E0 of 
the original eigenvalue equations (2) and (3). Panel (c) depicts the energy difference between the ground and 
first excited states dE10 provided by Eqs. (11) and (23). Panel (d) shows behaviour of dE10 with U/t for different 
values of N. The decay of dE10 with U/t is much faster for large N than for small N. Here, all points are obtained 
from exact numerical solution of Eq. (2).
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Figure 3.  Panel (a) shows the behavior of several low energy states with U at N = 50 . In panel (b), the 
separation ( dE10 ) between the ground state and the first excited state is discernible for U > 0 , but drops 
precipitously to zero for U < 0 . For N = 50 , the critical value of U/t is −0.04 as indicated by A in panel 3b. We 
label another two points one above (B) and the other below (C) the critical point u = − 1.0.

Figure 4.  Panels (a–c) depict the square of the ground state and first excited state wave functions for 
three different values of u. (�0)2 and (�1)2 are markedly distinct for u > −1 , the critical value (see (a)). 
Figure (b) shows the numerical results for u = − 1.25 . Now both (�0)2 and (�1)2 have a minimum point 
at lt(≡ l − N/2) = 0 , but are discernibly distinct. A further decrease in u to − 1.5 causes distinction to 
become indiscernible (see (c)). This leads to nearly vanishing off-diagonal coherence in the density matrix at 
exponentially small temperature scales.

Figure 5.  Depicted is the separation (dl) between the two Gaussian peaks (components of the Cat) in the 
ground state wave function �0 . We divided l by N to fit all results on the same scale. So, l/N ranges from 0 to 
+1 . The upper dotted line represents the locus of the critical points for which u = − 1.0 . The lower dotted line 
represents the locus of points below which our condition for a well-developed Cat state, Rcat = 0.1 , is satisfied 
(see main text).
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Rcat ≡ |�0(lt=0)|2
|�0(lpeak)|2

≤ 0.1 , where ±lpeak represent the locations of the Gaussian peaks in the double-well potential. 
Above this line, the Gaussian probability densities overlap noticeably. Below this line, the probability densities 
associated with the two components of the Cat are well-distinguished. When dl/N → 1 , the ground state 
approaches an extreme Cat state (NOON state) of the form (|N , 0� + |0,N�)/

√
2.

Density matrix and decoherence temperature
We now consider the finite-temperature density matrix for fixed N. The off-diagonal coherence peaks of this 
matrix provide a measure of the stability of Cat states to thermal fluctuations. The density matrix of this system 
is given by: ρ =

∑N
i=0 P(Ei)|�(i)���(i)| , where P(Ei) = 1

ZN
exp(−βEi) is the probability distribution, β = 1

kBT
 , 

T is the temperature and ZN is the partition function in canonical ensemble. For N bosons, the Hilbert space 
has N + 1 basis states. Therefore, the density matrix is an (N + 1)× (N + 1) matrix. The l, l′ th element of the 
matrix is given by: ρl,l′ = 1

ZN

∑N
i=0 e

−βEi�
(i)
l �

(i)
l′  . Here both l and l′ range from 0 to N. At low temperatures 

( kBT < dE10 ), the density matrix exhibits four peaks-two diagonal and two off-diagonal, dominated the ground 
state probability P(E0) . As the temperature increases, more excited states contribute to the density matrix. The 
resulting phase cancellation from the excited states leads to a decrease in the amplitudes of the off-diagonal peaks 
with temperature.  The ground state is a symmetric wave function about the point l = N/2 in the |l� ≡ |l,N − l� 
basis. At zero temperature, the density matrix has four equal peaks at four locations. The diagonal peaks in ρl,l′ 
describe “populations”, whereas the off -diagonal peaks describe “coherences”. At finite temperatures, the density 
matrix acquires contributions from the excited states, most notably the antisymmetric first excited state. For N 
even, it is convenient to introduce the translated integer index lt ≡ l − N/2 . Antisymmetry implies that the off-
diagonal coherence products �(1)

lt
�

(1)
−lt

 are negative. These contribute to phase cancellation of positive ground 
state terms �(0)

lt
�

(0)
−lt

 . As a result, the thermal admixture of the antisymmetric first excited state contributes 
significantly to decoherence of the Cat states. We consider all exact excited states together with the ground state 
in our numerical calculations.

In the off-diagonal region of the ( lt , l′t ) grid the antisymmetric excited state coherences cancel those of the 
symmetric states. Consequently, the amplitude of the off-diagonal peaks in the density matrix decrease rapidly 

Figure 6.  Panels (a–d) depict the density matrices of well-developed ( Rcat = 0.09 ) Cat states at four distinct 
temperatures for U/t = − 0.05,N = 50 ( u = − 1.25 ). In panel (a), the density matrix contains four nearly 
equal-amplitude peaks at very low temperatures T << Td,1/2 . Panels (b) and (c) depict density matrices for 
T = Td,1/2 and T = Td,1/10 , respectively. Here, Td,R is defined as the temperature where the ratio between 
the diagonal peak to the off-diagonal peak is R. The height of the off-diagonal peaks becomes smaller as 
the temperature increases. In panel (d), T >> Td,1/10 and the amplitude of the diagonal peaks is noticeably 
diminished as the peaks broaden and merge. Here, the Cat components are less separated and coherence is lost. 
Panels (e–h) exhibit the density matrix for four distinct temperatures at U/t = − 0.044,N = 50 ( u = − 1.11 ). 
Since u is close to the critical point ( u = − 1.0 ), the Cat components are not well separated ( Rcat = 0.98 ) and 
the states are referred to as weak Cat states.
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with increasing temperature as shown in Fig. 6, panels a–d. We define the decoherence temperature ( Td,1/2 ) at 
which the amplitude of the off-diagonal peak is 1/2 times the amplitude of the diagonal peak at zero tempera-
ture. More generally, we define Td,R according to the condition that ρ(Td,R)

ρ(T=0) |off-diagonal-peak = R . The ground state 
has two Gaussian peaks only if u < −1 . Below this critical value, there are four peaks in the density matrix at 
zero temperature. However, the peaks are not well separated close to u = − 1.0 . We refer to this quantum state 
for which the Cat components are not well-developed as a weak Cat state. Panels e–h of figure (6) illustrate the 
behavior of the four peaks of the density matrix with increasing temperature for the weak Cat. In this case, it is 
very difficult to distinguish between the peaks.

We now focus on Cat states with well-separated components, and Rcat ≤ 0.1 . Figure 7 illustrates the rapid 
lowering of the decoherence temperature as Cat states become better-developed and Cat components are well-
separated. The color bars in Fig. 7 depict the decoherence temperatures Td,1/2 and Td,1/10 in U/t − N plane. The 
blue dashed line represents the locus of points for which |�

0(lt=0)|2
|�0(lpeak)|2

= Rcat , takes on the value 0.1 in 7a and 7b. 
The decoherence temperature is always highest near blue dashed line but drops exponentially below it. Below 
the blue dashed line, Cat states are more well-defined with better separated components, but the separation dE10 
between the ground and first excited state becomes exponentially smaller. As a result the Cat states lose their 
coherence at exponentially low temperature.

Figure 7.  Decoherence temperatures ( Td,R ) for Schrödinger Cat states in N − U/t plane. Here Td,R is defined 
by the condition ρ(Td,R)

ρ(T=0) |off-diagonal-peak = R . In panel (a), R = 1/2 whereas in panel (b), R = 1/10 . The 
decoherence temperatures drop very rapidly as we move toward more well-developed Cat states. In panels (a) 
and (b), the blue dashed depicts the locus of points for which Rcat = 0.1 , where Rcat ≡ |�0(lt=0)|2

|�0(lpeak)|2
 . Decoherence 

temperatures are represented by the colour bar in log [kBTd,R/t] scale, where t is the hopping matrix elements 
between sites a and b. It is evident that Cat states are more robust and stable to small thermal fluctuations for 
large |U/t| and small N. This can be compared to the behaviour of dE10 in Figs. 2c and 2d. For the same values of 
|UN/(2t)|, Cat states with large N and small |U/t| exhibit lower decoherence temperatures.

Table 1.  Decoherence temperatures at t = 0.1 eV ( ≡ 1162 K) for N = 25 bosons. Clearly, the decoherence 
temperatures closely track the energy separation dE10 between the ground and first excited states. Increasing u 
values above − 1.28 will increase both Rcat and Td,R values. However, a large Rcat > 0.5 indicates that the peaks 
of the density matrix and the components of the Cat state are not distinctly different.

UN
2t (≡ u) U (meV) Rcat Td,1/10 (K) Td,1/2 (K) dE10 (K)

− 1.28 − 10.2 0.5 474 159 219

− 1.35 − 10.8 0.3 320 96.5 126

− 1.42 − 11.3 0.1 242 59.8 68.6

− 1.46 − 11.8 0.04 149 33.7 38.7

− 1.50 − 12.0 0.03 123 26.2 30.0

− 1.55 − 12.4 0.02 80.2 16.0 17.9

− 1.60 − 12.8 8.0× 10−3 48.8 9.3 10.6

− 1.65 − 13.2 4.0× 10−3 29.8 5.7 6.3

− 1.80 − 14.4 1.0× 10−3 6.4 1.2 1.3
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Decoherence temperatures a listed in Tables 1 and 2 with the choice of t = 0.1 eV for N = 25 and N = 50 , 
respectively. Clearly, decoherence occurs at lower temperature for larger values of |U/t| where the Cat states are 
more well-defined. For a given value of u < −1.0 , the loss of coherence is even more severe for large N than 
for large |U/t|. The dynamical time scales describing decoherence and thermalization may be of interest in the 
future  research48.

Particle number fluctuations
Another potential source of decoherence of the Schrödinger Cat state is through exchange of particles with a 
reservoir. We now discuss the two-site Bose-Hubbard model in the grand canonical ensemble. Here, the aver-
age particle number is determined by a chemical potential. The canonical partition function and probability 
for a particular N are given by: ZN =

∑N
i=0 exp(−

Ei−µN
KbT

) and PN = ZN/Z , respectively. The grand partition 
function is Z =

∑

N ZN.
The attractive Bose-Hubbard model (1) is physically unstable when placed in contact with a reservoir from 

which particles can enter the system. With a purely attractive, on-site Hubbard interaction, it is energetically 
favourable for an arbitrarily large number of particles to enter the system from the reservoir. This unmitigated 
accumulation of the particles is unphysical. In order the regulate this divergence, we introduce an additional 
repulsive term in the original Hamiltonian that is active when the particle number becomes very large. When N 
is not too large, the onsite attractive interaction remains dominant. The additional repulsive interaction is of the 
form α(na + nb)

γ , where α is a positive energy parameter. Equation (2) in the |l� = |l,N − l� basis, then becomes:

We numerically solve the above equation to determine all energy eigenvalues and eigenfunctions, for a large 
variety of choices of N. Figure 8a shows the behaviour of the probability distribution for different values of α 
at γ = 4 . Clearly, PN is zero in the large N limit and unlimited accumulation of particles from the reservoir is 
prevented. The value of N for which PN reaches its maximum is denoted as Nmax . Nmax depends on all other 
variables (α, γ ,U , t,µ) . We plot PN , as function of the chemical potential µ , in µ− N plane (see Fig. 8b). The 
sharp jump of the peak position ( Nmax ) for specific µ values is straightforward to interpret. PN depends on the 
behaviour of the individual energy eigenvalues, Ei with N. Figure 9 shows the behaviour of the ground and first 
excited state energies for different values of α and µ . For α = 0 , E′i(≡ Ei − µN) first increases with N and then 
decreases without bound (see Fig. 9a). As discussed, above, this situation is unphysical. With addition of the term 
αNγ ( α > 0, γ = 4 ) to the Hamiltonian, the energy eigenvalues first increase and then possibly decrease with N, 
but eventually increase without bound for sufficiently large N as shown in Fig. 9b and c. Typically, E′i has a local 
minimum near N = 0 , but a second deeper local minimum appears as a function of N for µ larger than a critical 
value (Fig. 9c). Accordingly, we see a sharp jump in Nmax as µ increases. The location of the jump depends on 
the values of α and γ . For example, when α = 4× 10−6 and γ = 4 , the critical chemical potential is µ = −1.25.

The above analysis (see Fig. 8b) provides a convenient upper cutoff in particle number in our numerical 
simulations of the grand partition function for a given parameter range. For example, if α = 4× 10−6 and γ = 4 
the upper cutoff of particle number can be chosen as 70. This upper cutoff represents the minimum value of N 
in the grand partition sum above which our numerical results are independent of the truncation of the sum over 
N. We use this simplification to calculate the average number of particles ( < N >= 1

Z

∑

N NZN ) and the root 
mean square of particle fluctuation ( δN =

√
< N2 > − < N >2 ) in the grand canonical ensemble. Figure 10a 

shows the behaviour of average number of bosons as a function of µ at U/t = −0.05 , for different values of α . 
< N > is zero for large negative values of µ . As µ increases particles are eventually admitted into the system from 
the reservoir with a dramatic increase in < N > at a critical µ value. < N > continues to increase with further 
increase in µ . The values of < N > increase with the decrease of α . For example, at µ = 0 and U/t = −0.05 , 
< N >= 36 for α = 10−5 and < N >= 55 for α = 4× 10−6 . For the same U/t, the effective potential is a double 
well with two minima for N > 40 . The corresponding density matrix in the grand canonical ensemble exhibits 
four peaks when < N > exceeds 40. For µ < 0 and α = 10−5 , Cat states do not exist. For α = 4× 10−6 , Cat 
states exist for −0.95 ≤ µ ≤ 0 . The root mean square fluctuation δN is shown in Fig. 10b and δN

<N>
 is depicted 

in Fig. 10c. As expected, δN exhibits a sharp peak near the critical value of µ . The density matrix in the grand 

(24)E�l = −tl−1�l−1 − tl�l+1 + Vl�l + αNγ �l .

Table 2.  Decoherence temperatures at t = 0.1 eV ( ≡ 1162 K) for N = 50 bosons. The decoherence 
temperatures are considerably lower than for N = 25 (Table 1).

UN
2t (≡ u) U (meV) Rcat Td,1/10 (K) Td,1/2 (K) dE10 (K)

− 1.18 − 4.7 0.45 363 118 156

− 1.20 − 4.8 0.28 286 87.1 108

− 1.25 − 5.0 0.09 116 38.8 45.6

− 1.30 − 5.2 0.03 71.5 14.9 16.9

− 1.45 − 5.8 5.0× 10−4 3.0 0.6 0.6

− 1.55 − 6.2 4.1× 10−5 0.3 5.0× 10−2 5.2× 10−2

− 1.75 − 7.0 3.0× 10−7 3.3× 10−2 3.4× 10−3 5.8× 10−4
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Figure 8.  Panel (a) shows the particle number probability distribution for three different values of α at γ = 4 . 
PN is almost zero at large N for α > 0 . The parameters used in our exact diagonalization of the many-body 
Hamiltonian and calculation of PN are U/t = −0.05, γ = 4, kBT/t = 0.1 and µ = −0.1. Panel (b) shows the 
distribution of PN in the µ− N plane. Here, PN is practically zero N > 70 . As a result, the grand partition sum 
is accurately described by keeping terms only up to N = 70 . The parameters used in panel (b) are U/t = −
-0.05, γ = 4, α/t = 4× 10−6 and kBT/t = 0.01.

Figure 9.  Ground and first excited state energies as a function of particle number for different choices of 
the repulsive energy coefficient α . Panel (a) shows the (unphysical) instability of the ground state and first 
excited state energies in the absence of regulation ( α = 0 ). Here energy decreases without bound for large 
N. For α > 0 , (panels (b) and (c)), the probability, PN , of N particles being admitted to the system from the 
reservoir tends to zero for large N. The energy eigenvalues have a global minimum at N = 0 (panel (b)) for 
small µ . But the global minimum shifts from N = 0 to finite N above a critical value of µ (panel (c)). As a 
result, there is a sharp jump in PN at the critical chemical potential. The parameters used for this simulations 
are (a) U = −0.05, t = 1, µ = −1.4, α = 0 , (b) U = −0.05, t = 1, γ = 4,α = 4× 10−6,µ = −1.4 and (c) 
U = −0.05, t = 1, γ = 4,α = 4× 10−6,µ = −1.2.

Table 3.  Particle number fluctuations are shown to cause decoherence over and above thermal fluctuations. 
Here, Tg

d,1/2 and Tc
d,1/2 are the decoherence temperatures in grand canonical and canonical ensembles, 

respectively. These decoherence temperatures correspond to a factor of 2 decrease in the height of the off-
diagonal peaks of the density matrix. The comparison to the canonical ensemble (final column) is made 
by choosing the particle number N equal to the average value < N > in the grand canonical ensemble. The 
parameters used in the simulation are U/t = −0.05, α/t = 4× 10−6, and γ = 4.

µ/t < N >

T
g

d,1/2
/t (×10−3

) Tc
d,1/2

/t (×10−3
) with N =< N >

(Grand canonical) (Canonical)

− 0.04 55.0 1.3 1.3

− 0.14 53.9 2.8 2.8

− 0.22 53.0 5.5 5.5

− 0.30 52.0 10.5 10.8

− 0.38 50.9 19.2 19.9

− 0.44 50.1 32.9 34.0

− 0.51 49.0 51.4 53.2

− 0.56 48.1 76.0 81.2
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canonical ensemble is defined as ρ̂g (l, l′) =
∑

N PN ρ̂
c
N (l, l

′) , where ρ̂c
N (l, l

′) is the N−particle density matrix in 
canonical ensemble. Here we set ρ̂c

N (l, l
′) = 0 for any l, l′ > N . We calculate the decoherence temperatures in 

the grand canonical ensemble and compare them with those in the canonical ensemble. Table 3 lists the deco-
herence temperatures Tc

d,1/2 and Tg
d,1/2 in the canonical and grand canonical ensembles, respectively. The table 

shows decoherence temperatures in the canonical ensemble are slightly higher than those in the grand canoni-
cal ensemble. As expected, particle number fluctuations lead to further decoherence of the Cat states. However, 
thermal fluctuations are considerably more destructive to the coherence of the Schrödinger Cat.

Discussion and conclusions
In summary, we have shown that Schrödinger Cat states of the two-site Bose-Hubbard model are highly 
susceptible to loss of quantum coherence when placed in contact with a physical environment. In general, the 
more distinguished the components of the Cat state, the more unstable it is to decoherence. In the model we 
studied, this arises from the near degeneracy of the symmetric and antisymmetric quantum superpositions of 
the Cat components. This illustrates the elusive nature of stable quantum entanglement involving large numbers 
of material particles.

One possible realization of Schrödinger Cat states is in ultracold atomic systems in an external magnetic 
field, in which the Feshbach resonances can be utilized to control the attractive interaction between  atoms20,49. 
A bosonic atom may be trapped spatially in nearby minima of a shallow optical trap that allows tunnelling 
between the local minima. This would require nano-Kelvin temperature scales. Another interesting possibility 
is in semiconductor quantum wells containing stable, bound electron-hole pairs. These bosonic excitations can 
couple strongly to optical cavity modes forming exciton-polaritons that have effective masses that are 10−4 to 
10−5 times the bare electron mass. In the context of photonic crystal cavity modes, it has been suggested that 
these exciton-polaritons could exhibit Bose-Einstein condensation at room  temperature50,51. When the relevant 
semiconductor quantum well is sandwiched by 3D photonic band gap materials, above and below, there are 
degenerate valleys in momentum space where the exciton polaritons may condense. In exciton systems, Feshbach 
resonances can occur without recourse to an external magnetic  field24, enabling attractive interactions between 
the exciton-polaritons. Hopping between the degenerate valleys in the momentum space may be facilitated by 
interactions with phonons in the quantum well.

The realization of stable quantum superposition states of material particles on a mesoscopic scale would be a 
significant advance in quantum science. We hope that our analysis provides useful insights into the fundamental 
challenges involved and the reasons why such quantum superpositions are particularly delicate.

Data availability
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