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We examined normalized gains and preinstruction scores on the force concept inventory �FCI� for
students in interactive engagement courses in introductory mechanics at four universities and found
a significant, positive correlation for three of them. We also examined class average FCI scores of
2948 students in 38 interactive engagement classes, 31 of which were from the same four
universities and 7 of which came from 3 other schools. We found a significant, positive correlation
between class average normalized FCI gains and class average preinstruction scores. To probe this
correlation, we administered Lawson’s classroom test of scientific reasoning to 65 students and
found a significant, positive correlation between these students’ normalized FCI gains and their
Lawson test scores. This correlation is even stronger than the correlation between FCI gains and
preinstruction FCI scores. Our study demonstrates that differences in student populations are
important when comparing normalized gains in different interactive engagement classes. We suggest
using the Lawson test along with the FCI to measure the effectiveness of alternative interactive
engagement strategies. © 2005 American Association of Physics Teachers.
�DOI: 10.1119/1.2117109�
I. INTRODUCTION

The force concept inventory1 �FCI� is widely used as a
measure of student understanding of introductory mechanics.
It is usually given at the beginning and at the end of a
course.2 Students tend to score higher on the test when it is
taken the second time, following instruction. Normalized
gain G is defined as the change in score divided by the maxi-
mum possible increase

G =
postcore % − prescore%

100 − prescore%
�1�

In 1998, Hake3 published the results of an extensive survey
of class average gains for 6542 students in 62 introductory
physics courses in high schools, colleges, and universities.
Hake showed that the class average data for all courses �tra-
ditional and interactive engagement �IE�� combined, showed
no significant correlation between normalized gain and pre-
instruction scores.

The importance of Hake’s work cannot be overempha-
sized. Normalized gain provides a readily accessible, objec-
tive measure of learning in introductory mechanics.
Research3,4 demonstrates the superiority of IE methods to
traditional methods of instruction. However, we will show
that the uncritical use of G as a sole measure of relative
effectiveness of alternative IE methods across diverse stu-
dent populations may not be justified. For example, the lack
of correlation between G and preinstruction scores for
Hake’s entire data set does not mean that there is no corre-
lation between these quantities. It is possible that such cor-
relations exist for subsets of the population considered by
Hake or in other populations not included in his data set.

One of our purposes is to show that it is important to
consider differences in student populations when comparing
the normalized gains of different classes. For example, it
might be incorrect to conclude that teaching methods used in
an IE class with a normalized gain of 0.6 are necessarily

more effective than those that produce a gain of 0.3 in a
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different class. The backgrounds of the students in the two
classes could be a more important factor than the specific IE
methods used in the classes.

An independent way to probe the background of a student
population is the Lawson Classroom Test of Scientific Rea-
soning. This multiple-choice test includes questions on con-
servation, proportional thinking, identification of variables,
probabilistic thinking, and hypothetico-deductive
reasoning.5,6 The test can be used to identify a student’s rea-
soning level. Maloney showed that Lawson test score aver-
ages vary among different populations of college students.7

In his study in the calculus and algebra based physics
courses for science majors at Creighton University, nearly
2/3 of the students were rated as having reached the highest
reasoning level, while in the courses that served education
and health science majors, barely 1/3 of the students had
reached this stage. Given these results, we looked for a pos-
sible correlation between Lawson test scores and normalized
FCI gains.

In Sec. II we analyze both individual student and class
average FCI data. In Sec. III we discuss correlations between
G and scores on the Lawson test �see Appendix�. Our con-
clusions are presented in Sec. IV.

II. FCI NORMALIZED GAIN AND
PREINSTRUCTION SCORES

We analyzed individual normalized gains for students at
Loyola Marymount University �LMU�, Southeastern Louisi-
ana University �SLU�, University of Minnesota �UM�, and
Harvard University �HU�. These schools employed IE meth-
ods in courses with a significant lecture component. The size
of the student sample and the class size varied widely: 285
students in 11 classes at LMU, 86 students in two classes at
SLU, 1648 students in 14 classes at UM, and 670 students in
4 classes at HU.

The Harvard classes were taught by Eric Mazur, Michael
Aziz, William Paul, and Bob Westervelt, using the method

2
described in Mazur’s book, Peer Instruction. Peer instruc-
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tion classes consist of lectures that are divided into short
segments each of which is followed by conceptual, multiple-
choice questions. Students are first asked to answer the ques-
tion individually and report their answers to the instructor
through a computerized classroom response system or flash-
cards. When a significant portion of the class obtains the
wrong answer, students are instructed to discuss their an-
swers with their partners and, if the answers differ, to try to
convince the partners of their answer. After this discussion,
students report their revised answers, usually resulting in
many more correct answers and much greater confidence in
those answers. The class average values of G at HU are
unusually high, typically about 0.6. Peer instruction was also
used by Kandiah Manivannan at SLU.

The UM classes were taught by various instructors using
the same general approach, called “cooperative group prob-
lem solving.”8,9 The majority of the class time is spent by the
lecturer giving demonstrations and modeling problem solv-
ing before a large number of students. Some peer-guided
practice, which involves students’ active participation in con-
cept development, is accomplished using small groups of
students. In the recitation and laboratory sections, students
work in cooperative groups, with the teaching assistant serv-
ing as coach. The students are assigned specific roles �man-
ager, skeptic, and recorder� within the groups to maximize
their participation. The courses utilize context-rich problems
that are designed to promote expert-like reasoning, rather
than the superficial understanding often sufficient to solve
textbook exercises.

Of the 285 LMU students, 134 were taught by one of us
�Coletta�, using a method in which each chapter is covered
first in a “concepts” class. These classes are taught in a So-
cratic style very similar to peer instruction. The material is
then covered again in a “problems” class. The other author
�Phillips� taught 70 students in lectures, interspersed with
small group activities, using conceptual worksheets, short
experiments, and context-rich problems. The other LMU
professors, John Bulman and Jeff Sanny, both lecture with a
strong conceptual component and frequent class dialogue.

The value of each student’s normalized gain G was plotted
versus the student’s preinstruction score �see Figs. 1�a�, 2�a�,
3�a�, and 4�a��. Three of the four universities showed a sig-
nificant, positive correlation between preinstruction FCI
scores and normalized gains. Harvard was the exception.

There are, of course, many factors affecting an individu-
al’s value of G, and so there is a broad range of values of G
for any particular prescore. The effect of prescore on G can
be seen more clearly by binning the data, averaging values of
G over students with nearly the same preinstruction scores.
Binning makes it apparent that very low prescores ��15% �
and very high prescores ��80% � produce values of G that
do not fit the line that describes the data for prescores be-
tween 15% and 80%. For each university, we created graphs
based on individual data, using all pretest scores; individual
data, using only prescores from 15% to 80%; binned data,
using all pretest scores; and binned data, using only pres-
cores from 15% to 80%. Table I gives the correlation coef-
ficients, significance level, and the slopes of the best linear
fits to these graphs. Figures 1�b�, 2�b�, 3�b�, and 4�b� show
the binned data with prescores from 15% to 80%; the corre-
lation effects are seen most clearly in these graphs. The usual
measure of statistical significance is p�0.05. For LMU and

UM, the correlations are highly significant �p�0.0001�: the
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probability that G and prescore are not correlated in these
populations is �0.0001. In Sec. III we discuss a possible
explanation for the lack of correlation in the Harvard data.

We chose bins with approximately the same number of
students in each bin. Ideally, we want the bins to contain as
many students as possible to produce a more meaningful
average. However, we also want as many bins as possible.
We chose the number of bins to be roughly equal to the
square root of the total number of students in the sample, so
that the number of bins and the number of students in each
bin are roughly equal. Varying the bin size had little effect on
the slope of the fit.

Class average preinstruction scores and normalized gains
were also collected for seven classes at three other schools
where peer instruction is used: Centenary College, the Uni-
versity of Kentucky, and Youngstown State University. These
data and class average data for the 31 classes from the other
four universities are shown in Fig. 5. The correlation coeffi-
cient is 0.63 and p�0.0001. The linear fit gives a slope of
0.0049, close to the slopes in Figs. 1 and 2 and corresponds
to G=0.34 at a preinstruction score of 25% and a G=0.56 at
a preinstruction score of 70%.

We also examined data from Ref. 3. For Hake’s entire data
set, which includes high school and traditional college
classes, as well as IE college and university classes, the cor-

Fig. 1. �a� Plot of individual students’ normalized FCI gain versus prein-
struction FCI scores for 285 LMU students. Slope of best-fit line s
=0.0047, r=0.33, p�0.0001. �b� Plot of normalized FCI gains versus pre-
instruction FCI scores for LMU prescores between 15% and 80%, with
individual student data averaged within 17 bins; s=0.0062, r=0.90, and p
�0.0001. The standard errors for G range from 0.03 to 0.06.
relation coefficient was only 0.02, indicating no correlation.
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When we analyzed separately the 38 IE college and univer-
sity classes in his study, we found some correlation, although
not enough to show significance �r=0.25, p=0.1�; the slope
of the linear fit was 0.0032. We then combined Hake’s col-
lege and university data with the data we collected. Hake’s
data provided only 35 additional classes, because 3 HU
classes in Hake’s data set were also contained in our data set.
For the entire set of 73 IE colleges and universities, we
found a slope of the linear fit close to what we had found for
our collected data alone �0.0045�. The coefficient was 0.39,
significant for this size data set �p=0.0006�.

III. FCI AND SCIENTIFIC REASONING ABILITY

Recently, Meltzer published the results of a correlation
study10 for introductory electricity and magnetism. He used
normalized gain on a standardized exam, the conceptual sur-
vey of electricity �CSE�, to measure the improvement in con-
ceptual understanding of electricity. He found that individual
students’ normalized gains on CSE were not correlated with
their CSE preinstruction scores. Meltzer did find a significant
correlation between normalized gain on the CSE and scores
on math skills tests11 for three out of four groups, with r
=0.30, 0.38, and 0.46. Meltzer also reviewed other studies
that have shown some correlation between math skills and
success in physics. Meltzer concluded that the correlation

Fig. 2. �a� Plot of individual students’ normalized FCI gain versus prein-
struction FCI scores for 96 SLU students; s=0.0049, r=0.30, p=0.003. �b�
Plot of normalized FCI gains versus preinstruction FCI scores for SLU
prescores between 15% and 80%, with individual student data averaged
within 11 bins; s=0.0063, r=0.63, and p=0.04. The standard errors for G
range from 0.05 to 0.15.
shown by his data is probably not due to a causal relation
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between math skills and normalized gain and that students’
level of performance on the math test and their normalized
gains on the CSE may both be functions of one or more
“hidden variables.” He mentioned several candidates for
such variables: general intelligence, reasoning ability, and
study habits. We have come to similar conclusions regarding
the correlation between G and the preinstruction score we
found in our data set.

Piaget’s model of cognitive development may provide
some insight into differences among students in introductory
physics. According to Piaget, a student progresses through
discrete stages, eventually developing the skills to perform
scientific reasoning.12 When individuals reach the penulti-
mate stage, known as concrete operational, they can classify
objects and understand conservation, but are not yet able to
form hypotheses or understand abstract concepts.13 In the
final stage, known as formal operational, an individual can
think abstractly. Only at this point is an individual able to
control and isolate variables or search for relations such as
proportions.14 Piaget believed that this stage is typically
reached between the ages of 11 and 15.

Contrary to Piaget’s theoretical notion that most teenagers

Fig. 3. �a� Plot of individual students’ normalized FCI gain versus prein-
struction FCI scores for 1648 UM students; s=0.0023, r=0.15, and p
�0.0001. �b� Plot of normalized FCI gains versus preinstruction FCI scores
for UM prescores between 15% and 80%, with individual student data av-
eraged within 38 bins; s=0.0037, r=0.94, and p�0.0001 Standard errors
for G range from 0.03 to 0.05.
reach the abstract thinking stage, educational researchers
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have shown that many high school students, as well as col-
lege students, have not reached the formal operational
stage.15,16 Arons and Karplus claimed that only 1/3 of col-
lege students have reached the formal reasoning stage,17 and
that the majority of students either remain confined to con-
crete thinking or are only capable of partial formal reason-
ing, often described as transitional. In other studies focusing
on physics students, including the work of Maloney, similar
results have been seen.7,18–20 Formal reasoning skills are nec-

Fig. 4. �a� Plot of individual students’ normalized FCI gain versus prein-
struction FCI scores for 670 HU students; s=−0.0007, r=0.037, p=0.34. �b�
Plot of normalized FCI gains versus preinstruction FCI scores for HU
prescores between 15% and 80%, with individual student data averaged
within 22 bins; s=0.0002, r=0.04, and p=0.87. Standard errors for G range
from 0.03 to 0.09.

Table I. Correlation of the normalized FCI gains and preinstruction scores fo
correlation coefficient r, and significance level p are given for each univers

All Prescores Prescores 15% t

N Slope r p Slope r

LMU 285 0.0047 0.33 �0.0001 0.0058 0.35
SLU 96 0.0049 0.30 0.003 0.0060 0.29
UM 1648 0.0023 0.15 �0.0001 0.0039 0.23
HU 670 −0.0007 0.037 0.34 0.0001 0.008
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essary for the study of physics. For example, students who
lack the ability to understand abstract concepts will struggle
with Newton’s second law.21,22

In 2003 we began to administer Lawson’s Classroom Test
of Scientific Reasoning as well as the FCI to LMU students
to probe the relation between scientific reasoning ability and
normalized gain on the FCI. Of the 285 LMU students tested
with the FCI, 65 also took the Lawson test. We found a
highly significant, positive correlation between students’ nor-
malized FCI gains and their Lawson test scores �see Fig. 6�.
With the slope of the linear fit of 0.0069, and r=0.51�p
�0.0001�, this correlation is stronger than the correlation
between FCI gains and preinstruction FCI scores either for
these students alone �slope=0.0034, r=0.26� or in any of the
other samples. Figure 7 shows the average value of G for
each quartile in Lawson test scores. The 16 students with the
highest Lawson scores �the top quartile� had an average
Lawson score of 93% and an average G of 0.59±0.07 �stan-
dard error�, while the 16 students with the lowest Lawson
scores �the bottom quartile� averaged 48% on the Lawson
test, with an average G of 0.26±0.04.

To compare the correlation between Lawson test scores
and G with the correlation between FCI prescores and G, we
divided the 65 student sample into two groups, those with
FCI prescores �33% �N=33� and those with FCI prescores
�33% �N=32�. We then divided each of these groups into
two parts based on their Lawson test scores. Thus we ob-
tained four groups: �1� 16 students with low FCI scores �23%
average� and Lawson test scores �60% �48% average�; �2�
17 students with low FCI scores �21% average� and Lawson
test scores �60% �76% average�; �3� 15 students with high
FCI scores �45% average� and Lawson test scores �80%

vidual students and groups of students. The slope of the best-fit straight line,

All data binned Binned data, 15% to 8%

p Slope r p Slope r p

0001 0.0049 0.81 �0.0001 0.0062 0.90 �0.0001
006 0.0045 0.51 0.09 0.0063 0.63 0.04
0001 0.0026 0.78 �0.0001 0.0037 0.94 �0.0001
84 −0.0006 0.10 0.67 0.0002 0.04 0.87

Fig. 5. Graph of class average normalized FCI gain versus average prein-
struction FCI scores for all data collected in this study �N=38�; s=0.0049,
r=0.63, and p�0.0001.
r indi
ity.

o 80%

�0.
0.

�0.
0.
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�69% average�; and �4� 17 students with high FCI scores
�58% average� and Lawson test scores �80% �91% aver-
age�. The results in Table II indicate a stronger relation be-
tween G and Lawson test scores than between G and FCI
prescores. For example, we see that, even though group 3 has
a much greater average FCI prescore than group 2, group 3
has a lower average G �0.30 versus 0.44�, consistent with the
lower average Lawson test score �69% versus 76%�.

As a final test that is relevant to our discussion of the
Harvard data in Sec. IV, we examined data from the 16 stu-
dents who scored highest on the Lawson test, the top quar-
tile. In comparing FCI prescores and Lawson test scores for
these students, we found no correlation �r=0.005�. There
was also no significant correlation between G and FCI pres-
cores �r=0.1�.

Our study indicates that Lawson test scores are highly cor-
related with FCI gains for LMU students. This correlation
may indicate that variations in average reasoning ability in
different student populations are a cause of some of the
variations in the class average normalized gains that we ob-
serve. In other words, we believe that scientific reasoning
ability is a “hidden variable” affecting gains, as conjectured
by Meltzer.10

IV. CONCLUSIONS

Based on the data analyzed in this study, we conclude the
following. �1� There is a strong, positive correlation between
individual students’ normalized FCI gains and their prein-
struction FCI scores in three out of four of the populations
tested. �2� There is a strong, positive correlation between
class average normalized FCI gain and class average FCI
preinstruction scores for the 38 lecture style interactive en-
gagement classes for which we collected data, and nearly as

Fig. 6. Graph of individual students’ normalized FCI gain versus Lawson
test scores for 65 LMU students; s=0.0069, r=0.51, and p�0.0001.

Table II. Comparison of FCI prescores, Lawson test scores, and values of
the FCI normalized gain G for four groups of students described in text. �s.e.
is standard error�.

Group
Average FCI prescore

�%�
Average Lawson score

�%� Average G±s.e.

1 23 48 0.25±0.04
2 21 76 0.44±0.05
3 45 69 0.30±0.04
4 58 91 0.59±0.06
1176 Am. J. Phys., Vol. 73, No. 12, December 2005
strong a correlation between G and prescore when Hake’s
data from his 1998 study are included. �3� A sample of 65
students showed a very strong positive correlation between
individual students’ normalized FCI gain and their scores on
Lawson’s classroom test of scientific reasoning. The correla-
tion between G and FCI prescores among these students is
far less significant than the correlation between G and Law-
son test scores.

Why does the Harvard data show no correlation between
G and FCI prescores, while the other three schools show
significant correlations? And why are there variations in the
slopes? For LMU and SLU the slopes are 0.0062 and 0.0063,
respectively, whereas the UM slope is 0.0037, and the class
average slope is 0.0049. A possible answer to both questions
is that these differences are caused by variations in the com-
positions of these populations with regard to scientific rea-
soning ability. We expect that a much higher fraction of Har-
vard students are formal operational thinkers and would
score very high on Lawson’s test. We found that among the
top LMU Lawson test quartile, there is no correlation be-
tween FCI prescores and Lawson test scores, and no corre-
lation between G and FCI prescores. It is reasonable to as-
sume that a great majority of the Harvard student population
tested would also show very high scientific reasoning ability
and no correlation between scientific reasoning ability and
FCI prescore; 75% of all Harvard students score 700 or
higher on the math SAT, and math SAT scores have been
shown to correlate with formal operational reasoning.23,24 In
contrast, less than 10% of LMU’s science and engineering
students have math SAT scores �700. If scientific reasoning
ability is a hidden variable that influences FCI gains, we
would expect to see no correlation between G and FCI pres-
core for very high reasoning ability populations.

Why should there be any correlation between G and FCI
prescores for other populations in which a significant number
of students are not formal operational thinkers? When stu-
dents score low on FCI as a pretest in college, there are many
possible reasons, including the inability to grasp what they
were taught in high school due to limited scientific reasoning
ability and lack of exposure to the material in high school.
Those students whose lack of scientific reasoning ability lim-
ited their learning in high school are quite likely to have
limited success in their college physics course as well. But

Fig. 7. Comparison of average G and average Lawson Test scores for quar-
tiles of Lawson scores.
those students who did not learn these concepts in high
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school for some other reason, but who do have strong scien-
tific reasoning ability, are more likely to score high gains in
an interactive engagement college or university physics
class. We believe it is the presence of those students with
limited scientific reasoning ability, present in varying propor-
tions in different college populations, that is primarily re-
sponsible for the correlation between G and prescore that we
have observed.

What, if anything, can be done about poor scientific rea-
soning ability? One indication that remedial help is possible
is the work of Karplus. He devised instructional methods for
improving proportional reasoning skills of high school stu-
dents who had not learned these skills through traditional
instruction. He demonstrated strong improvement, both
short-term and long-term, with a great majority of those
students.25

We hope to soon have all incoming students in the College
of Science and Engineering at LMU take the Lawson test, so
that we can identify students who are at risk for learning
difficulties in physics and other sciences, and we have begun
to develop instructional materials to help these students.

We hope that other physics instructors will begin to use
1177 Am. J. Phys., Vol. 73, No. 12, December 2005
the Lawson test in their classrooms. It would be especially
meaningful if physics education researchers report interac-
tive engagement methods that produce relatively high nor-
malized FCI gains in populations that do not have very high
Lawson test scores.

It is ironic that much of the improved average gains seen
in interactive engagement classes is likely due to greatly im-
proved individual gains for the best of our students, the most
formal operational thinkers. This leaves much work to be
done with students who have not reached this stage.
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