
Phy489 Lecture 6 



Reminder about invariant mass: 
A system of n particles has a mass defined by                            where        
is the total four momentum of  the system 
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This mass is invariant regardless of whether the particles are correlated in 
some way. If they represent the final state particles in some decay:                                

For a scattering process                                           ,                                  
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In the CM frame where                this becomes   
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= (m1 + m2 + .....+ mn )
2c 2 at threshold where   

 

! p 1 = ! p 2 = .....= ! p n = 0

 

A!C1 + C2 + .......+ Cn MINV (final state particles) = MAthen 



A brief aside about the LHC 
A proton is not a fundamental particle, so high energy (14TeV) 
collisions between protons are not really collisions between two 
protons, but rather collisions between the constituents of the 
protons, the quarks and gluons (sometimes collectively referred 
to as partons) each of which carries some fraction x  of the total 
proton energy and momentum. 

Since the colliding partons (qq, qg, gg) typically carry different fraction of the momentum 
of the two protons, the parton-parton collision is NOT typically in the CM frame, nor is 
the CM energy of this collision 14TeV.  



 LHC pp collisions continued 
For the pp system we have a (square of the) centre-of-mass energy of 

At large energies (relevant for LHC), we can ignore the first two terms since                            

For the parton-parton system let’s assume that the constituents involved in the fundamental 
collision each carry only a fraction the total proton momentum: call these fractions x1 and x2. 
The four momenta of the two colliding partons are then x1p1 and x2p2 and the total four 
momentum of the system is x1p1+x2p2. The corresponding invariant  

represents the square of the effective centre-of-mass energy of the parton-parton collision.   

Here    is the square of the center-of-mass energy of the pp system while    represents the 
square of the centre of mass energy of the parton-parton collision, e.g. the energy available 
for production of new particles in the final state (so, in fact, the energy scale that is probed by 
the collision).  
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More on LHC pp collisions 
So what is the average parton-parton CM energy of an LHC pp collision? 

Estimate the fraction of the proton energy and momentum which is carried by the 
individual partons. For a very rough estimate, just take peak values for quarks and 
assume qq,qg and qq collisions are equally probable: 

x̂q =
1
3
(0.2) + 1

3
(0.2) + 1

3
(0.1) = 0.17 x̂g ~ 0.05
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(0.05)(0.05) = 0.013

 ŝ = .013s ! ÊCM ! .013ECM = (0.11)(14 TeV ) " 1.5 TeV

Of course the collisions will sweep out all possible values of the effective CM energy, 
from 0-14TeV, but the bulk of the collisions will be at CM energies in the 1-2 TeV 
region (and will NOT be in the parton-parton CM frame). 

Note that this is probably not a very reliable calculation, but it illustrates the point that the average 
parton-parton centre-of-mass energy at the LHC will be significantly less than the 14TeV pp CM energy. 



Symmetries and Conservations Laws 
Please read through §4.1 and attempt some of problems 4.1- 4.7. We will not 
really discuss these issues in the lectures. 

We have come across SU(3) in the context of the original quark model. 

We will see SU(2) in the context of spin-1/2 particles and isospin. 

In general, we will not discuss group theory, or rely much on knowledge of it.  

However, discussion of the symmetry properties of the equilateral triangle in 
Griffiths §4.1 is a useful introduction to this: 

A

B C
a 

b c 

This shape is invariant under rotations of 
±120º as well as under reflections about aA, 
bB and cC. These are discrete symmetry 
transformations and along with the identity 
operation form a group.  

A circle is symmetric under arbitrary 
rotations about its centre. This is called a 
continuous symmetry. 



Symmetries: Noether’s Theorem 

Every symmetry of nature is associated 
to a conservation law, and vice versa. 

!  Translations in time        "    conservation of energy 

!  Translations in space     "     conservation of linear momentum 

!  Rotations in space          "    conservation of angular momentum 

!  Gauge transformations   "    conservation of charge 

 

! " ei#!e.g. 

Here !  is the electron wavefunction. 

Gauge transformation is “global” if ! = const, “local” if !=!(x) 

Our fundamental theories (e.g. those forming the Standard Model) are 
all based on the principle of local gauge invariance. 



A brief pause 
What are we doing ? Investigating fundamental particles and their interactions, 
which we probe experimentally through investigations of particle scattering 
processes and particle decays. Bound states also yield relevant information   
but we will skip these for the most part. What issues do we need to consider ? 

Relativistic kinematics 

Dynamics, including “internal” symmetries (quantum numbers) which differ 
for the three fundamental forces. That is, conservation laws associated  
with these symmetries. 

Spin is also conserved. We will need to deal with this as well.  

We will deal with conservation of spin (or more generally, conservation of 
angular momentum) for the remainder of this lecture and the next. The tools 
we develop during this discussion will be useful for other things as well. 



Nuclear " Decay 
The early days of nuclear " decay are described in Griffiths §1.5 

This process was initially interpreted as                   .  If this were the case, 
we would expect to see mono-energetic electrons in observations of " 
decay processes.  

See problem 3.19: for the process  A!B+C 
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Instead a spectrum is observed that has 
this value as its (high-energy) endpoint 

This dilemma lead Pauli to postulate the 
existence of a third particle in this decay  that 
was undetected (and perhaps undetectable).  

(it was either this or give up on conservation of energy). 

Fermi called this particle the neutrino. 

[We did this in the last lecture] 



Another view of this….. 

 Can also look at this issue in terms of the particle spins: 
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 In terms of spins of the particles involved this is : 

As you may know (or as we shall soon see) there is no way for a system 
of two spin-1/2 particles have a total spin of 1/2, so this process is 
forbidden by conservation of angular momentum.  
[if this is not clear to you, convince yourself after we have discussed the rules for adding 
angular momentum vectors] 

The addition of a third spin-1/2 particle to the final state (the neutrino) also 
solves this problem. [you should convince yourself of this as well, at some point] 



Angular momentum in Quantum Mechanics 

To evaluate the effects of spin and orbital angular momentum on particle 
collisions and decays, need to understand how to calculate the total angular 
momentum of a system of particles, e.g. how to add angular  momentum 
vectors. 

Brief review (see a Quantum Mechanics text if this is entirely unfamiliar). 

Spin angular momentum is quantized in half-integer units of   .  

Orbital angular momentum is quantized in integer units of   . 

QM forbids us from simultaneously specifying more than one component of    .  

The best we can do is to specify the magnitude                               and one 
component (conventionally chosen to be     ):  
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(2! +1)e.g.             possible values 

Here I am referring to the possible values that can be returned by a 
measurement of L2 and/or Lz. 

  

 

!



Intrinsic Spin 
For fundamental particles, spin is an INTRINSIC property. 

•  Fundamental fermions are all spin 1/2 (quarks and leptons) 

•  Force carriers (gauge bosons) are all spin 1 

•  Higgs boson is spin 0   

Composite particles (atoms, mesons, baryons) have a total spin J that 
has contributions from the spins of the fundamental constituents and 
from any relative orbital angular momentum:             . Here    comes 
from the combining the intrinsic spins and    represents the total orbital 
angular momentum 
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Mesons are      states with total (intrinsic) spin 0 or 1. Orbital angular 
momentum can be     = 0,1,2,….. (in integer steps) so the total spin    
can only have integer values (as we shall see). Mesons are therefore 
bosons:     

qq 
  

 

! 
J 

i.e. a measurement of                            can yield only give yield integer values for j.    

 

J 2 = j( j +1)!2

 Corresponding argument for baryons shows that they are always fermions 

[e.g. 1/2 ± 1/2] 
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[convince yourself] 



Addition of Angular Momentum Vectors 

Recall the rules for the addition of angular momentum vectors: 
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Here the symbol     is used to represent an arbitrary angular momentum 
vector (i.e. spin, orbital, or some combination thereof): 
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z components add, but magnitudes do not:  

 

Jz = J1z + J2z

Magnitude is                        where     runs from                to                
in integer steps: 
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qq L=0 (        ) "  spin 0: ", K, #, #/, D   (different quark contents) 

                        spin 1: $, K*, %, &, J/! 
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As an example: 



For states with L > 0, we have three angular momentum vectors to add 
(two spins plus one orbital angular momentum). The procedure is to add 
two and then add the third. The order does not matter, but it normally 
makes the most sense to add the two spins and then to add the orbital 
angular momentum: 

      states with L>0 " mesons with spin(s):        

 

qq 

  

 

j = ! +1
j = !
j = ! !1

(two ways: s = 0,1) 

Rules for the addition of angular momenta are well established and tabulated: 
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Clebsch Gordan coefficients 

The square of the CG coefficient gives the probability of getting a state of 
total spin j from a system consisting of two angular momentum states: 

 

j1,m1 j2,m2



Clesch Gordan Coefficients from PDG Listings 



Griffiths Example 4.3 

An electron occupies the orbital state            and the spin state                . 
What are the  possible outcomes of a measurement of     and with what 
probabilities do they occur?  

 

2,!1

 

1/2,1/2

 

J 2

Remember, z components add:  

 

m = !1+1/2 = !1/2

Magnitude (in terms of j) is either 3/2 or 5/2    [i.e.  2 ± 1/2] 
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get these coefficients from CG tables 

Actually, don’t even need to work out the possible values of j. The tables 
do this for you as well. There is a separate table for each possible j1, j2 
combination: here we need the  2 x 1/2 table 

 

j1,m1 j2,m2



Clebsh-Gordan Coefficients for 2x1/2 
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Negative sign from -3/5 in table 

Probability of measuring j = 5/2 is 2/5 
Probability of measuring j = 3/2 is 3/5 sum to 1 as required 

 

}

 

m1,m2 = !1,1/2



Additional Problems 

In the decay #++"p$+ what are the possible values of the orbital angular 
momentum quantum number,    , in the final state? 

An electron in a hydrogen atom is in a state with orbital angular momentum 
number          . If the total angular momentum quantum number is j=3/2, and 
the z component of total angular momentum is          what is the probability 
of finding the electron with                  ?  (next slides). 

See also problems 4.13, 4.14: There are similar problems on the first 
assignment, changed slightly to make them different than the problems in 
the text. 

  

 

!

 ! = 1
 ! / 2

ms = +1 / 2

4.11  

4.12  

Try these. We can discuss them next time if you have difficulties.  



An electron in a hydrogen atom is in a state with orbital angular momentum 
number           . If the total angular momentum quantum number is j=3/2, 
and the z component of total angular momentum is          what is the 
probability of finding the electron with                    ?  

 ! = 1
 ! / 2

ms = +1 / 2

4.12  

Need % x 1 Clebsch-Gordan Table (spin % +           )  ! = 1

Griffiths Problem 4.12 

Probability is thus 2/3. 


