
PHY357 Assignment 1, Due Feb 2, 2006

The first three questions have to do with decays. As discussed in class, the same decay law applies both
to the decays of fundamental particles and to the decays of radioactive nuclei. However, in a discussion of
the decay of radioactive nuclei, there can be interesting equilibrium effects, as discussed in questions 2 and
3. The remaining problems are on simple relativsitic kinematics (problem 4) and and on drawing Feynman
diagrams (problems 5 and 6).

1. Assume that some particle can decay into two different final states. There are characteristic decay
rates asscociated with each of the decays, λ1 and λ2.

(a) Derive an expression for the lifetime τ of this particle, in terms of the two decay constants.

(b) A particle that can decay into N different final states is said to have N decay modes. The
Branching Ratio or Branching Fraction for the ith decay mode is defined as the ratio of the
number of decays into the ith final state to the total number of decays. For the scenario
described above write an expression for the branching ratio into the first of the two final states.

2. Consider the situation where some target material is exposed to a source of neutrons (which for
instance can be produced from a nuclear reactor). Certain materials can absorb a neutron and
become activated, that is, subject to subsequent radioactive decay. For instance:

23
11Na + n→24

11 Na→23
12 Mg + e− + ν̄e

In a normal sample (e.g. many atoms) the depletion of the target source is negligible (there are
always enough 23

11Na atoms for the neutrons to interact with) so the rate of production of 24
11Na can

be treated as constant (assuming the reactor is operating at constant power so that the neutron rate
onto the 23

11Na is constant).

(a) As soon as the 24
11Na is produced it is subject to radioactive β-decay with a decay rate λ.

Assuming a constant production rate p of 24
11Na, write down and solve the differential equation

for the number of 24
11Na atoms at time t, assuming that there are no 24

11Na atoms present at t = 0.
What happens as t become very large ?

(b) A sample of gold (Au) is exposed to a neutron beam of constant intensity such that 1010 neu-
trons/s are absorbed in the reaction

179
79 Au + n→198

79 Au + γ

198
79 Au undergoes β-decay to 198

80 Au with a mean lifetime of τ = 3.89 days. How many atoms of
198
79 Au will be present after six days of irradiation ? What is the equililibrium number of 198

79 Au
atoms ?

Note that the technique of radio-carbon dating is based on a similar principle. It is utilizes the
radiactive decay of 14

6 C which is produced by the interaction of cosmic rays with our atmosphere
and which decays with a half-life of 5730 years. There is thus some equilibrium concentration of
14
6 C in atmospheric CO2 which is the source of biological carbon. Any living organism will carry
this equilibrium concentration of 14

6 C until death, afterwhich the 14
6 C is no longer replenished and

the fraction of 14
6 C relative to 12

6 C decreases with the characteristic liftime. This fraction can me
measured either via decays (which is not so efficient) or by mass spectroscopy.
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3. Now consider a similar case in which we again produce a radioactive state which subsequently decays
with some characteristic lifetime. However, in this case let us assume this state is produced in the
radioactive decay of some parent nucleus. Assume the decay rate of the parent is λ1 and that of the
daughter is λ2. The situation is similar to that in problem 2, except now the production rate of the
daughter state is not constant. For this scenario:

(a) Write down and solve the differential equation for the number of daughter nuclei as a function
of time. Describe the situation in the limit where:

i. λ1 >> λ2

ii. λ2 >> λ1

iii. λ1 ∼ λ2

(b) Consider the decay sequence
210
83 Bi→210

84 Po + e− + ν̄e

210
84 Po→206

82 Pb + α

If the lifetimes associated with these two decays are 7.2 days and 200 days respectively, at what
point in time is the α-particle emission maximal ?

4. A pion traveling at speed v decays into a muon and a muon anti-neutrino, π− → µ−ν̄µ. If the
neutrino emerges at 90◦ to the original pion direction, show that the muon comes off at an angle
given by tanθ = (1−m2

µ/m2
π)/(2βγ2).

5. As a simple introduction to Feynman diagrams, consider a theory in which there are only three
particles, A, B and C, and there is one fundamental interaction vertex that couples the three particles
together. Assume that these particles are their own anti-particles (then we don’t need to worry about
the arrows on the diagrams). Assume, as well, that the mass, MA, of particle A exceeds the sum of
the masses of particles B and C (MA > MB + MC). Then the lowest order process in the theory is
the decay A→ B + C.

(a) Draw the leading order and all of the next-to-leading order diagrams contributing to this process.

(b) Draw the leading-order diagrams for the scattering process AB → AB

(c) Draw the leading-order diagrams for the scattering process AA→ BB

6. Using the interaction vertices that were shown in class, write down the leading order diagrams for
the following scattering processes.

(a) e−γ → e−γ (Compton scattering)

(b) e+e− → τ+τ−

(c) e+e− →W+W−

(d) e+e− → Z0Z0
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