# **The ATLAS Liquid Argon Calorimeter**

#### Peter Krieger, University of Toronto



- Calorimeter Design/Construction
- Detector Integration Status
  & briefly....
- Testbeam Summary
- Commissioning Plans

# The ATLAS Detector at the LHC



# **The ATLAS LAr and Tile Calorimeters**



# **ATLAS EM Accordion Calorimeter**

#### Electromagnetic Barrel (EMB)

#### Electromagnetic Endcap (EMEC)





IEEE NSS Puerto Rico, Oct 26, 2005

Peter Krieger, University of Toronto

# **ATLAS Electromagnetic Barrel Calorimeter**



Detector design dictated by physics goals (high energy EM final states) e.g.  $H^0 \rightarrow \gamma \gamma, H^0 \rightarrow ZZ \rightarrow 4e, W' \rightarrow ev, Z' \rightarrow ee$ 

Accordion structure chosen to ensure azimuthal uniformity (no cracks) Liquid argon chosen for radiation hardness and speed

Peter Krieger, University of Toronto IEEE NSS Puerto Rico, Oct 26, 2005

# **Electromagnetic Barrel Calorimeter**



Peter Krieger, University of Toronto

## **ATLAS Barrel Cryostat (October 2004)**



Peter Krieger, University of Toronto

## **Barrel Toroids Ready for Barrel Calorimeter**



#### Calorimeter move to z=0 taking place today (Oct 26, 2005)

Peter Krieger, University of Toronto

# Installation of LAr Cryogenics



# The ATLAS Endcap Liquid Argon Calorimeter



# **ATLAS Hadronic Endcap Calorimeter**

LAr-Cu sampling calorimeter covering  $1.5 < \eta < 3.2$ 

#### Composed of 2 wheels per end, 32 modules per wheel





Peter Krieger, University of Toronto

# **Endcap Calorimeter Insertion into Cryostat**





# The FCal Calorimeter ( $\eta = 3.2-4.9$ )

Novel electrode structure → thin annular gaps formed by an tubes in an absorber matrix, which are filled with anode rods of slightly smaller radius Gap maintained by helically-wound radiation hard plastic fibre (PEEK) Three modules: 1 EM, 2Hadronic (ease of construction, depth segmentation)



|       | Туре | Absorber | Gap<br>(µm) | Number of<br>Electrodes |
|-------|------|----------|-------------|-------------------------|
| FCal1 | EM   | copper   | 250         | 12000                   |
| FCal2 | HAD  | tungsten | 375         | 10000                   |
| FCal3 | HAD  | tungsten | 500         | 8000                    |

matrix and rods are part of the detector 'absorber' and are composed of the same material

Peter Krieger, University of Toronto

## FCal2/3 Structure and Assembled Module



Peter Krieger, University of Toronto

# **Forward Calorimeter Assembly**





## **Forward Calorimeter Installation**



## **Forward Calorimeter Insertion**



Peter Krieger, University of Toronto



# **Endcap Cryostat Move To LHC Point 1**



Peter Krieger, University of Toronto

# **Liquid Argon Front-End Electronics**



Common readout electronics for all LAr Calorimetry

except for cold (GaAs) preamplifier for Hadronic Endcap Calorimeter

#### Installation and testing of Front-End Crates currently underway in ATLAS cavern

Peter Krieger, University of Toronto

# LAr Bipolar Signal Pulse Shaping

1000

900 800

700

600

500

400

300

200

100

90 80 70

60 -50 -20

serres noise us

30

40

50

60 70 80 90100

Naise (MeV)



physics pulse

Optimal shaping time is an optimization problem.

Pulse shape sampled every 25 ns ( eg. once / bunch crossing)

Peter Krieger, University of Toronto

IEEE NSS Puerto Rico, Oct 26, 2005

200

 $t_{p}(\Delta)$  (ns)

pileup noise L=10

pileup noise L= 105,

Porollel noise

# **Electronic Calibration**

Pulse height samples  $\rightarrow$  peak height via optimal filtering

- Optimal Filtering (OFC) coefficients E (ADC) =  $\sum a_i$  (S<sub>i</sub> PED)
- OFC calculation relies on detailed knowledge of the physics pulse shape
- Use calibration pulser: inject known current  $I_0$  to calibrate response
- But .... Calibration pulse differs from physics pulse
  - Physics pulse: triangular
  - Calibration pulse: exponential





Calibration system requires detailed knowledge of the difference between the physics and calibration pulse shapes ADC[phys]/ADC[calib] for the same initial current I<sub>0</sub>

This can be tricky.....

Procedure differs for different HEC, EM, FCal

# LAr Calorimeter Testbeam Summary

Testbeam programme (recent):

- HEC/EMEC combined (2002)
- FCal Standalone (2003)

- (Combined  $\pi$  response)
- (FCal Calibration)
- > HEC/EMEC/FCal Combined (2004) (Combined Endcap Response)
- Barrel Combined Testbeam (2004) (Combined Barrel Response)

Testbeams have served multiple purposes:

- QC/QA during detector construction
- > Initial energy scale calibration: detector resolution, linearity
- Investigation of crack/dead material effects
- Exercise ATLAS electronics chain
- > Tests of online/offline monitoring/reconstruction software

## **Calorimeter Commissioning Plans**

- Coldtesting on the surface after detector integration (complete)
- Testing (warm) in the in ATLAS Cavern
- Coldtesting in the ATLAS Cavern
- Electronic calibration, noise studies...
- Commissioning/integration of trigger/DAQ system
- Data taking with cosmic ray events begins in early 2006
  - LAr Barrel (early 2006)
  - LAr Endcaps (summer 2006)
- Commissioning with single-beams in 2007
- Commissioning with colliding beams in 2007

#### **Backup Slides for Testbeam Setups**

Peter Krieger, University of Toronto

# **Summary of Calorimeter Testbeams**

#### 2004 H8 Barrel CTB



Peter Krieger, University of Toronto

# **Barrel Combined Testbeam (ATLAS Full Slice)**

Calorimeter component: Experimental setup:

- Tile barrel modules:
  - Three radial layers (1.4  $\lambda$ , 3.9  $\lambda$  and 1.8  $\lambda$  each)
  - Total number of cells: 134
- LAr barrel module: •
  - Three radial layers + presampler (24  $X_0$  globally)
  - Total number of cells: 2031



Peter Krieger, University of Toronto

## **H8 Barrel Combined Testbeam Setup**



# **Endcap Combined Testbeam (Crack Studies)**



Forward cone ~ projective. Dead material

Same region is overlap of HEC and EMEC: loss of response



Peter Krieger, University of Toronto

# **HEC/EMEC FCAL combined test beam run**

#### **EMEC+HEC+FCAL Setup**

#### **Material studies**

3.5

3.75



η



# **HEC/EMEC Combined Testbeam (2002)**

Hadrons, electrons and muons: E(beam) = 6-200 GeV  $\eta$  = 1.6 – 1.8 90° impact angle (unlike ATLAS)

Results now published

NIM A531 (2004) 481



