Factorization and effective field theory (or How to Finesse the Strong Interactions)

Michael Luke
Department of Physics University of Toronto

Outline:

1. The problem
2. Factorization-70's \& 80's (partons)
3. Effective Field Theory - classic, modern and postmodern
4. Some applications

The Probem: How do we do physics at proton colliders at all? (i.e. Tevatron, LHC)

Colliding protons \longrightarrow Colliding quarks and gluons
i.e. top production at Fermilab:

... this is the physics we want to study
... but protons aren'† so simple ...

"Quantum Chromodynamics" (QCD)

$1 \mathrm{fm}=10^{-15} \mathrm{~m} \sim$ radius of proton

(Gross, Politzer, Wilczek - Nobel Prize, 2004) Distance

"asymptotic freedom": effective QCD CHARGE of quarks/gluons under is small at SHORT distances (large energies), large at LONG distances (low energies) nonperturbative effects
$\Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \sim \frac{1}{3} m_{\text {proton }} \quad \frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{fm} \sim r_{\text {proton }}$
(1) sets the maximum size of a hadron

1 fm

$\Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \sim \frac{1}{3} m_{\text {proton }} \quad \frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{fm} \sim r_{\text {proton }}$
(1) sets the maximum size of a hadron

1 fm

$\Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \sim \frac{1}{3} m_{\text {proton }} \quad \frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{fm} \sim r_{\text {proton }}$
(1) sets the maximum size of a hadron

1 fm

$\Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \sim \frac{1}{3} m_{\text {proton }} \quad \frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{fm} \sim r_{\text {proton }}$
(1) sets the maximum size of a hadron
(2)
 $m_{\mathrm{up}} \sim 5 \mathrm{MeV}$ $m_{\text {down }} \sim 10 \mathrm{MeV}$
$\Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \sim \frac{1}{3} m_{\text {proton }} \quad \frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{fm} \sim r_{\text {proton }}$
(1) sets the maximum size of a hadron
(2)

$m_{\text {up }} \sim 5 \mathrm{MeV}$
$m_{\text {down }} \sim 10 \mathrm{MeV}$
$\ll \Lambda_{\mathrm{QCD}}$
but Heisenberg: $\quad \Delta p \sim \frac{1}{\Delta x} \sim \Lambda_{\mathrm{QCD}} \gg m_{u, d}$

$$
\Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \sim \frac{1}{3} m_{\text {proton }} \quad \frac{1}{\Lambda_{\mathrm{QCD}}} \sim 1 \mathrm{fm} \sim r_{\text {proton }}
$$

(1) sets the maximum size of a hadron
(2)
$m_{\mathrm{up}} \sim 5 \mathrm{MeV}$
$m_{\text {down }} \sim 10 \mathrm{MeV}$

$\ll \Lambda_{\mathrm{QCD}}$

but Heisenberg: $\quad \Delta p \sim \frac{1}{\Delta x} \sim \Lambda_{\mathrm{QCD}} \gg m_{u, d}$
-> particle production! Indeterminate number of quarks in proton

So a proton looks something like this:
(9)
(Actually, it's a linear superposition of all these states ...)
... so our simple quark-level process

... so our simple quark-level process

... is buried in the muck.

How can we calculate anything without solving QCD?

A miracle occurs "Factorization"

$$
\sigma\left(p\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow t \bar{t}+X\right)
$$

(NB for simplicity, neglecting top quark decay)

$$
=\int_{0}^{1} d x_{1} d x_{2} \sum_{f} f_{f}\left(x_{1}\right) f_{\bar{f}}\left(x_{2}\right) \cdot \sigma\left(q_{f}\left(x_{1} P\right)+\bar{q}_{f}\left(x_{2} P\right) \rightarrow t \bar{t}\right)
$$

$$
+O\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{t}}\right)
$$

(Feynman, Bjorken)

A miracle occurs "Factorization"

$$
\sigma\left(p\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow t \bar{t}+X\right)
$$

(NB for simplicity, neglecting top quark decay)

$$
=\int_{0}^{1} d x_{1} d x_{2} \sum_{f} f_{f}\left(x_{1}\right) f_{\bar{f}}\left(x_{2}\right) \cdot \sigma\left(q_{f}\left(x_{1} P\right)+\bar{q}_{f}\left(x_{2} P\right) \rightarrow t \bar{t}\right)
$$

$$
+O\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{t}}\right)
$$

(Feynman, Bjorken)

A miracle occurs "Factorization"

$$
\sigma\left(p\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow t \bar{t}+X\right)
$$

(NB for simplicity, neglecting top quark decay)

$$
=\int_{0}^{1} d x_{1} d x_{2} \sum_{f} f_{f}\left(x_{1}\right) f_{\bar{f}}\left(x_{2}\right) \cdot \sigma\left(q_{f}\left(x_{1} P\right)+\bar{q}_{f}\left(x_{2} P\right) \rightarrow t t\right.
$$

$$
+O\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{t}}\right)
$$

(Feynman, Bjorken)

A miracle occurs "Factorization"

$$
\sigma\left(p\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow t \bar{t}+X\right)
$$

$$
=\int_{0}^{1} d x_{1} d x_{2} \sum_{f} f_{f}\left(x_{1}\right) f_{f}\left(x_{2}\right) \cdot \sigma\left(q_{f}\left(x_{1} P\right)+\bar{q}_{f}\left(x_{2} P\right) \rightarrow t t\right)
$$

SHORT DISTANCE: cross section for free quarks (and gluons) - can calculate in perturbation theory

LONG DISTANCE: $f_{f}\left(x_{1}\right)$: probability to find parton f with fraction x_{1} of longitudinal momentum of proton ("parton distribution function") - property of the PROTON - can't calculate ... but UNIVERSAL (can measure in another process)

The proofs of factorization are long and complicated

(and based on exhaustive analysis of Feynman diagrams ...)

Nuclear Physts B261 (1985) 104-142
© North-Holland Pubishng Company

FACTORIZATION FOR SHORT DISTANCE

 HADRON-HADRON SCATTERINGJohn C Collins

Davison E SOPER
\qquad

George Sterman
Instutue for Theoretcal Physces, State Unversty of New York, Stony Brook,
New York 11794, USA

Received 18 February 1985
(Revised 17 May 1985)
We show that factonzation holds at leading twist ine Drell-Yan cross section $\mathrm{d} \sigma / \mathrm{d} Q^{2} \mathrm{~d}$ and related inclusive hadron-hadron cross sections
We review the heunsttc arguments for factorzation, as well as the difficultues which must be
overcome in a proof We go on to give detaled arguments for the all order cancellation of soft
gluons, and to show how ths leads to factorzatio

1. Introduction

Factorization theorems [1] show that QCD incorporates the phenomenological successes of the parton model at high energy and provide a systematic way to refine parton model predictions. The term "factorization" refers to the separation of short-distance from long-distance effects in field theory The program of factorization is to show that such a separation may be carrned out order-by-order in field theoretic perturbation theory. In practice, this means analyzing the Feynman diagrams which contribute to a given process, and showing that they may be written as products of functions with the desired properties.
Such an analysis has been carried out in $\mathrm{e}^{+} \mathrm{e}^{-}$anmihilation [2-4] and deeply melastic scattering $[1,5]$. The purpose of this paper is to extend the analysis to

... but the physics is simple:

Separation of Scales

- top quark production is a shortdistance process, hadronic physics is long-distance
- hadronic physics cannot resolve details of short-distance physics hadronization is independent of details of scattering (so parton distributions are universal)

COMMENTS:

$$
\sigma\left(p\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow t \bar{t}+X\right)=\int_{0}^{1} d x_{1} d x_{2} \sum_{f} f_{f}\left(x_{1}\right) f_{\bar{f}}\left(x_{2}\right) \cdot \sigma\left(q_{f}\left(x_{1} P\right)+\bar{q}_{f}\left(x_{2} P\right) \rightarrow t \bar{t}\right)+O\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{t}}\right)
$$

- form of the factorization formula (convolution over light-cone momentum fraction) is non-trivial
- final hadronic state unspecified - sum over all of them (" + X") - probability to hadronize $=1$! "inclusive"
- subleading $\left(O\left(\Lambda_{Q C D} / Q\right)\right)$ terms ("power corrections") don't factorize in this way ... fortunately, these are small for $Q \sim 2 m_{+}$- don't generally worry about going to higher orders

More generally, multi-scale problems are complicated theoretically:

- Perturbation theory breaks down - terms in perturbation theory are enhanced by powers of $\log \left(m_{1} / m_{2}\right)$ - if ratio is large, perturbation theory breaks down even at weak coupling
- Perturbative and nonperturbative physics is hard to separate
- QCD factorization theorems and the like have power corrections proportional to the ratios of scales - need a systematic expansion to go beyond leading order
- You shouldn't use quantum gravity to calculate projectile motion!

Particle physics is full of important multi-scale problems ... i.e. GUT-scale physics, b-quark decays, Standard Model extensions ... how can we deal with this problem systematically?

We can do this in classical electrodynamics:

Physics at $r \sim L$ is complicated - depends on details of charge distribution

We can do this in classical electrodynamics:

BUT ... if we are interested in physics at $r \gg L$, things are much simpler ...

We can do this in classical electrodynamics:

... can replace complicated charge distribution by a POINT source with additional interactions (multipoles)...

Multipole expansion:

$$
V(r)=\frac{q}{r}+\frac{\vec{p} \cdot \vec{x}}{r^{3}}+\frac{1}{2} Q_{i j} \frac{x_{i} x_{j}}{r^{5}}+\cdots
$$

$q, p_{i}, Q_{i j}, \ldots$: short distance quantities (depend on details of charge distribution)
$\left\langle\frac{1}{r}\right\rangle,\left\langle\frac{x_{i}}{r^{3}}\right\rangle,\left\langle\frac{x_{i} x_{j}}{r^{5}}\right\rangle, \cdots$: long distance quantities (independent of short distance physics)
FACTORIZATION!
higher multipole moments <-> new effective interactions from "integrating out" short distance physics .. effects are suppressed by powers of L / r

Field Theory generalization: Effective Field Theory
-at low momenta p<< Λ, a theory can be described by an effective Hamiltonian where degrees of freedom at scale \wedge have been "integrated out":

$$
\boldsymbol{H}_{\text {eff }}^{=} \underbrace{\boldsymbol{H}_{i}}_{\substack{\text { Hamiltonian in } \\
\Lambda \rightarrow \infty \text { limit }}} \underbrace{\frac{\mathrm{C}_{\boldsymbol{i}}}{\boldsymbol{n}_{\boldsymbol{i}}}}_{\begin{array}{l}
\text { corrections determined by matrix elements of } \\
\text { operators } O_{i} \text { - power counting determined by } \\
\text { dimensional analysis }
\end{array}}
$$

$C_{n}{ }^{\prime}$ S : short distance quantities (in QCD: perturbatively calculable if $\Lambda \gg \wedge_{Q C D}$)
$\left\langle\mathcal{O}_{n}\right\rangle^{\prime}$ s : long distance quantities (in QCD: nonperturbative ... need to get them elsewhere)

Field Theory generalization: Effective Field Theory
-at low momenta p<< Λ, a theory can be described by an effective Hamiltonian where degrees of freedom at scale \wedge have been "integrated out":
$C_{n}{ }^{\prime}$ s : short distance quantities (in QCD: perturbatively calculable if $\wedge \gg \wedge_{Q C D}$)
$\left\langle\mathcal{O}_{n}\right\rangle^{\prime}$ s : long distance quantities (in QCD: nonperturbative ... need to get them elsewhere)

- Effective Field Theory automatically factorizes the calculation
- by keeping more terms, can work to arbitrary accuracy in $1 / \Lambda$

(1) "Classic" Effective Field Theory (4-fermi theory and the like):

- lowering cutoff - effects of virtual excitations removed from dynamics, incorporated into parameters of theory (Renormalization Group)

(1) "Classic" Effective Field Theory (4-fermi theory and the like):

- lowering cutoff - effects of virtual excitations removed from dynamics, incorporated into parameters of theory (Renormalization Group)
- at thresholds, heavy particles removed from theory ("integrated out"), effects incorporated into local operators

$$
H\left(\Lambda<m_{X}\right) \sim H\left(\Lambda>m_{X}\right)+\sum_{i} \frac{C_{1}}{M_{X}^{n_{i}}} \mathcal{O}_{i}
$$

(1) "Classic" Effective Field Theory (4-fermi theory and the like):

- lowering cutoff - effects of virtual excitations removed from dynamics, incorporated into parameters of theory (Renormalization Group)
- at thresholds, heavy particles removed from theory ("integrated out"), effects incorporated into local operators

$$
H\left(\Lambda<m_{X}\right) \sim H\left(\Lambda>m_{X}\right)+\sum_{i} \frac{C_{1}}{M_{X}^{n_{i}}} \mathcal{O}_{i}
$$

- ideally, keep lowering cutoff until only a single scale is left ... all short-distance physics is now in the coefficients C_{i} of local operators, long distance physics is in their matrix elements -

FACTORIZATION

(1) "Classic" Effective Field Theory (4-fermi theory and the like):

- classic example: K-K̄ mixing in the Standard Model (Gilman, Wise, '83)
- W, Z and successive quarks integrated out, renormalization group used to sum terms of order
$\alpha_{s}^{n} \log ^{n} \frac{m_{c}}{m_{t, W}}$

(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

Qu: how do you lower the cutoff of an EFT below the mass of a particle in the initial state? (i.e. not virtual)
(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET") - precision b quark decays provide a powerful tool to probe new physics virtually ... but QCD muddies the waters: (tssuru, wise, Gerorg, Voloshin,

(and to believe small discrepancy = new physics, need model independent predictions

- challenge for theory!)
(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

We can use usual EFT methods to integrate out physics above m_{b} - but what happens when we lower the cutoff BELOW the b mass?

(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

- unlike virtual excitations, b quark doesn't get removed from the theory ... instead, the EFT describes the low-energy dynamics of a heavy quark

(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

- unlike virtual excitations, b quark doesn't get removed from the theory ... instead, the EFT describes the low-energy dynamics of a heavy quark

Interactions in the effective theory don' \dagger deflect the worldline of the heavy quark

(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

- unlike virtual excitations, b quark doesn't get removed from the theory ... instead, the EFT describes the low-energy dynamics of a heavy quark

Interactions in the effective theory don' \dagger deflect the worldline of the heavy quark
(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

- unlike virtual excitations, b quark doesn't get removed from the theory ... instead, the EFT describes the low-energy dynamics of a heavy quark

Interactions in the effective theory don't deflect the worldline of the heavy quark

QCD: heavy quark -------> HQET: Wilson line
(2) "Classic" -> "Modern": Heavy Quark Effective Theory ("HQET")

- unlike virtual excitations, b quark doesn't get removed from the theory ... instead, the EFT describes the low-energy dynamics of a heavy quark

Interactions in the effective theory don't deflect the worldline of the heavy quark

QCD: heavy quark -------> HQET: Wilson line

- appropriate description is a classical colour charge moving with a constant velocity - "Wilson line" (timelike)
- other than this, technology is still the same
- NB: the mass, spin of the quark have become irrelevant: extra symmetry in low energy theory! (not manifest in QCD)

This field became suddenly fashionable in the 1990's ...

- heavy meson spectroscopy
- semileptonic decays (measure parameters of Standard Model - calibration)
- inclusive (sum over all hadronic states)
- exclusive (decays to specific final states - particular those with charm quarks - "Heavy Quark Symmetry")
- nonleptonic decays (lifetimes)
- rare (inclusive) decays i.e. $b \rightarrow s \gamma, b \rightarrow s \mu^{+} \mu^{-}$

All can be handled in an expansion in $\Lambda_{Q C D} / \mathrm{m}_{\mathrm{b}} \sim 1 / 10$... remarkable success over past decade or so

"Killer App": Inclusive semileptonic b->c decay:

(need to determine $b->c$ weak coupling constant $V_{c b}$)

$$
\Gamma\left(B \rightarrow X_{c} \ell \bar{\nu}\right)=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}}(0.534)\left(\frac{m_{\Upsilon}}{2}\right)^{5} \times
$$

"Killer App": Inclusive semileptonic b->c decay:
(need to determine $b->c$ weak coupling constant $V_{c b}$)

$$
\begin{gathered}
\Gamma\left(B \rightarrow X_{c} \ell \bar{\nu}\right)=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}}(0.534)\left(\frac{\boldsymbol{m}_{\Upsilon}}{2}\right)^{5} \times \\
{\left[1-0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)\right.}
\end{gathered}
$$

$O\left(\Lambda_{Q C D} / m_{b}\right): \sim 20 \%$ correction
"Killer App": Inclusive semileptonic b->c decay:
(need to determine $b->c$ weak coupling constant $V_{c b}$)

$$
\begin{gathered}
\Gamma\left(B \rightarrow X_{c} \ell \bar{\nu}\right)=\frac{G_{\boldsymbol{F}}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}}(0.534)\left(\frac{\boldsymbol{m}_{\Upsilon}}{2}\right)^{5} \times \\
\quad\left[1-0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)-0.011\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)^{2}-0.052\left(\frac{\lambda_{1}}{(500 \mathrm{MeV})^{2}}\right)-0.071\left(\frac{\lambda_{2}}{(500 \mathrm{MeV})^{2}}\right)^{2}\right.
\end{gathered}
$$

$O\left(\Lambda_{Q C D} / m_{b}\right): \sim 20 \%$ correction
$O\left(\Lambda_{Q C D}^{2} / m_{b}^{2}\right): \sim 5-10 \%$ correction

"Killer App": Inclusive semileptonic b->c decay:

 (need to determine $b->c$ weak coupling constant $V_{c b}$)$$
\begin{aligned}
\Gamma(\boldsymbol{B} \rightarrow & \left.\boldsymbol{X}_{\boldsymbol{c}} \ell \overline{\boldsymbol{\nu}}\right)=\frac{\boldsymbol{G}_{\boldsymbol{F}}^{2}\left|\boldsymbol{V}_{\boldsymbol{c}}\right|^{2}}{\mathbf{1 9 2} \boldsymbol{\pi}^{3}}(\mathbf{0 . 5 3 4})\left(\frac{\boldsymbol{m}_{\boldsymbol{\Upsilon}}}{\mathbf{2}}\right)^{5} \times \\
& {\left[\begin{array}{ll}
1 & -0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)-0.011\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)^{2}-0.052\left(\frac{\lambda_{1}}{(500 \mathrm{MeV})^{2}}\right)-0.071\left(\frac{\lambda_{2}}{(500 \mathrm{MeV})^{2}}\right) \\
& -0.006\left(\frac{\lambda_{1} \Lambda}{(500 \mathrm{MeV})^{3}}\right)+0.011\left(\frac{\lambda_{2} \Lambda}{(500 \mathrm{MeV})^{3}}\right)-0.006\left(\frac{\rho_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.008\left(\frac{\rho_{2}}{(500 \mathrm{MeV})^{3}}\right) \\
& +0.011\left(\frac{T_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.002\left(\frac{T_{2}}{(500 \mathrm{MeV})^{3}}\right)-0.017\left(\frac{T_{3}}{(500 \mathrm{MeV})^{3}}\right)-0.008\left(\frac{T_{4}}{(500 \mathrm{MeV})^{3}}\right)
\end{array}\right.}
\end{aligned}
$$

$O\left(\Lambda_{Q C D} / m_{b}\right): \sim 20 \%$ correction $O\left(\Lambda_{Q C D}^{3} / m_{b}^{3}\right): \sim 1-2 \%$ correction $O\left(\Lambda_{Q C D}^{2} / m_{b}^{2}\right): \sim 5-10 \%$ correction

"Killer App": Inclusive semileptonic b->c decay:

 (need to determine $b->c$ weak coupling constant $V_{c b}$)$$
\begin{aligned}
\Gamma(\boldsymbol{B} \rightarrow & \left.\boldsymbol{X}_{\boldsymbol{c}} \ell \overline{\boldsymbol{\nu}}\right)=\frac{\boldsymbol{G}_{\boldsymbol{F}}^{2}\left|\boldsymbol{V}_{\boldsymbol{c}}\right|^{2}}{\mathbf{1 9 2 \pi ^ { 3 }}}(\mathbf{0 . 5 3 4})\left(\frac{\boldsymbol{m}_{\boldsymbol{\Upsilon}}}{\mathbf{2}}\right)^{\mathbf{5}} \times \\
& {\left[\begin{array}{ll}
1 & -0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)-0.011\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)^{2}-0.052\left(\frac{\lambda_{1}}{(500 \mathrm{MeV})^{2}}\right)-0.071\left(\frac{\lambda_{2}}{(500 \mathrm{MeV})^{2}}\right) \\
& -0.006\left(\frac{\lambda_{1} \Lambda}{(500 \mathrm{MeV})^{3}}\right)+0.011\left(\frac{\lambda_{2} \Lambda}{(500 \mathrm{MeV})^{3}}\right)-0.006\left(\frac{\rho_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.008\left(\frac{\rho_{2}}{(500 \mathrm{MeV})^{3}}\right) \\
& +0.011\left(\frac{T_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.002\left(\frac{T_{2}}{(500 \mathrm{MeV})^{3}}\right)-0.017\left(\frac{T_{3}}{(500 \mathrm{MeV})^{3}}\right)-0.008\left(\frac{T_{4}}{(500 \mathrm{MeV})^{3}}\right) \\
& \left.-0.096 \epsilon-0.030 \epsilon_{B L M}^{2}+0.015 \epsilon\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)+\ldots\right]
\end{array}\right.}
\end{aligned}
$$

$O\left(\Lambda_{Q C D} / m_{b}\right): \sim 20 \%$ correction $O\left(\Lambda_{Q C D}^{3} / m_{b}^{3}\right): \sim 1-2 \%$ correction $O\left(\Lambda_{Q C D}^{2} / m_{b}^{2}\right): \sim 5-10 \%$ correction Perturbative: $\sim f e w \%$

"Killer App": Inclusive semileptonic b->c decay:

 (need to determine $b->c$ weak coupling constant $V_{c b}$)$$
\begin{aligned}
& \Gamma(\boldsymbol{B} \rightarrow\left.\boldsymbol{X}_{\boldsymbol{c}} \ell \overline{\boldsymbol{\nu}}\right)=\frac{\boldsymbol{G}_{\boldsymbol{F}}^{2}\left|\boldsymbol{V}_{\boldsymbol{c b}}\right|^{2}}{\mathbf{1 9 2 \pi ^ { 3 }}}(\mathbf{0 . 5 3 4})\left(\frac{\boldsymbol{m}_{\boldsymbol{\Upsilon}}}{\mathbf{2}}\right)^{\mathbf{5}} \times \\
& {\left[\begin{array}{ll}
1 & -0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)-0.011\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)^{2}-0.052\left(\frac{\lambda_{1}}{(500 \mathrm{MeV})^{2}}\right)-0.071\left(\frac{\lambda_{2}}{(500 \mathrm{MeV})^{2}}\right) \\
& -0.006\left(\frac{\lambda_{1} \Lambda}{(500 \mathrm{MeV})^{3}}\right)+0.011\left(\frac{\lambda_{2} \Lambda}{(500 \mathrm{MeV})^{3}}\right)-0.006\left(\frac{\rho_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.008\left(\frac{\rho_{2}}{(500 \mathrm{MeV})^{3}}\right) \\
& +0.011\left(\frac{T_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.002\left(\frac{T_{2}}{(500 \mathrm{MeV})^{3}}\right)-0.017\left(\frac{T_{3}}{(500 \mathrm{MeV})^{3}}\right)-0.008\left(\frac{T_{4}}{(500 \mathrm{MeV})^{3}}\right) \\
& \left.-0.096 \epsilon-0.030 \epsilon_{B L M}^{2}+0.015 \epsilon\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)+\ldots\right]
\end{array}\right.}
\end{aligned}
$$

$O\left(\Lambda_{Q C D} / m_{b}\right): \sim 20 \%$ correction $O\left(\Lambda_{Q C D}^{3} / m_{b}^{3}\right): \sim 1-2 \%$ correction $O\left(\Lambda_{Q C D}^{2} / m_{b}^{2}\right): \sim 5-10 \%$ correction Perturbative: \sim few $\%$ -> This is a PRECISION field!

Global fits:
mass of b quark to 30 MeV !

$\lambda_{1}=-0.313 \pm 0.025 \mathrm{GeV}^{2}$
$\left|V_{c b}\right|=41.78 \pm 0.30 \pm 0.08$
b-c weak coupling at \% level!

The fit also allows us to make precise predictions of other moments as a cross-check:

$$
\begin{aligned}
D_{3} & \equiv \frac{\int_{1.6 \mathrm{GeV}} E_{\ell}^{0.7} \frac{d \Gamma}{d E_{\ell}} d E_{\ell}}{\int_{1.5 \mathrm{GeV}} E_{\ell}^{1.5} \frac{d \Gamma}{d E_{\ell}} d E_{\ell}}= \begin{cases}0.5190 \pm 0.0007 & \text { (theory) } \\
0.5193 \pm 0.0008 & \text { (experiment) }\end{cases} \\
D_{4} & \equiv \frac{\int_{1.6 \mathrm{GeV}} E_{\ell}^{2.3} \frac{d \Gamma}{d E_{\ell}} d E_{\ell}}{\int_{1.5 \mathrm{GeV}} E_{\ell}^{2.9} \frac{d \Gamma}{d E_{\ell}} d E_{\ell}}= \begin{cases}0.6034 \pm 0.0008 & \text { (theory) } \\
0.6036 \pm 0.0006 & \text { (experiment) }\end{cases}
\end{aligned}
$$

(some fractional moments of lepton spectrum are very insensitive to $O\left(1 / \mathrm{m}^{3}\right)$ effects, and so can be predicted very accurately)
(C. Bauer and M. Trott)

NB: these were REAL PREdictions (not postdictions)
Hadronic physics with < 1% uncertainty!
(3) "Post-Modern": Soft-Collinear Effective Theory ("SCET")
(Bauer, ML, Fleming, Stewart, Pirjol, ...)
What is the correct EFT to describe the dynamics of a very LIGHT, ENERGETIC quark?

$$
p_{Q}=\left(p^{+}, p^{-}, p_{\perp}\right) \sim\left(Q, \lambda^{2} Q, \lambda Q\right)
$$

Why would you want to do this? lots of reasons, i.e.
(1) (original) B decays - to reduce backgrounds, often need to look at restricted regions of phase space - i.e. $b \rightarrow s \gamma$ near photon endpoint, $b \rightarrow u e \bar{\nu}$ near electron energy endpoint. HQET expansion observed to break down in this region.

jet of hadrons (large energy, low invariant mass)
(2) collider physics - hard QCD processes - Drell-Yan, jet production, event shapes, ...
(3) "Post-Modern": Soft-Collinear Effective Theory ("SCET")

What is the correct EFT to describe the dynamics of a very LIGHT, ENERGETIC quark?

(3) "Post-Modern": Soft-Collinear Effective Theory ("SCET")

What is the correct EFT to describe the dynamics of a very LIGHT, ENERGETIC quark?

Interactions with soft gluons don't deflect the worldline of the energetic quark
(3) "Post-Modern": Soft-Collinear Effective Theory ("SCET")

What is the correct EFT to describe the dynamics of a very LIGHT, ENERGETIC quark?

Interactions with soft gluons don't deflect the worldline of the energetic quark

BUT ... the quark can also emit a hard, collinear gluon
(3) "Post-Modern": Soft-Collinear Effective Theory ("SCET")

What is the correct EFT to describe the dynamics of a very LIGHT, ENERGETIC quark?

Interactions with soft gluons don't deflect the worldline of the energetic quark

BUT ... the quark can also emit a hard, collinear gluon

- get a JET of final state particles
- jet energy is large, invariant mass is parametrically smaller

$$
E_{J} \sim Q \quad p_{J}^{2} \sim \lambda Q \ll Q^{2}
$$

SCET ("soft-collinear effective theory") is an effective theory of JETS

$$
\begin{aligned}
& \text { "Soft" particles } p_{s}^{\mu}=\left(p^{+}, p^{-}, \vec{p}_{\perp}\right) \sim\left(\lambda^{2} Q, \lambda^{2} Q, \lambda^{2} Q\right) \\
& \text { "Collinear" particles } p_{c}^{\mu}=\left(p^{+}, p^{-}, \vec{p}_{\perp}\right) \sim\left(Q, \lambda^{2} Q, \lambda Q\right)
\end{aligned}
$$

```
colineargluon lllllll softgluon
colinear quark \longrightarrow - - - - soff quark
```

- need a separate field for each momentum scaling (a hallmark of "postmodern" EFT's)
- couplings are interesting, because each field "sees" the others in different ways ...
multiscale .. w/
correlated scales

Ex: qā production current:

(1) QCD

Ex: qā production current:

(2) SCET

Wilson Line

NB for processes with multiple collinear directions (i.e. multi-jet), there are separate collinear fields for each direction

The resulting SCET vertex is correspondingly complicated ...

SCET - what you get

Factorization formulas - more complex than before: discrete sum over operators becomes a convolution

(this form of factorization has been known since the 1980's, but now it is at the level of the Lagrangian of the EFT)

SCET - what you get

Factorization formulas - more complex than before: discrete sum over operators becomes a convolution

(this form of factorization has been known since the 1980's, but now it is at the level of the Lagrangian of the EFT)

SCET - what you get

Factorization formulas - more complex than before: discrete sum over operators becomes a convolution

(this form of factorization has been known since the 1980's, but now it is at the level of the Lagrangian of the EFT)

SCET - what you get

Factorization formulas - more complex than before: discrete sum over operators becomes a convolution

SCET: what you get out of it

Lots of applications:
(1) B decays .. grew out of HQET in regions of phase space where final state was restricted to be jet-like
(2) jets and collider physics - we come full circle. No "killer app" yet, but lots of directions - ex: top production, event shape distributions, jets, etc. ...

The "shape function" (parton distribution function for b quark in a meson)

$$
\begin{aligned}
& \tilde{O}(t) \equiv \bar{b}(0) P e^{\frac{i}{m_{b}}} \int_{0}^{t} n \cdot A\left(t^{\prime}\right) d t^{\prime} b(t) \\
& \text { nonlocal operator: quarks } \\
& \text { separated along light cone } \\
& f(\omega) \equiv\langle B| O(\omega)|B\rangle \\
& \text { universal distribution function }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\Gamma} \frac{d \Gamma}{d \hat{s}_{H}}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}\right)=\int \frac{2 \hat{s}_{H}^{2}\left(3 \omega-2 \hat{s}_{H}\right)}{\omega^{4}} \theta\left(\omega-\hat{s}_{H}\right) f(\omega-\underset{\text { hadronic invarian }}{\hat{\Delta}) d \omega} \\
& \text { hadronic invariant mass spectrum }
\end{aligned}
$$

in these corners of phase space, spectra are given by convolutions of short-distance functions with parton distributions

Exclusive B decays - i.e. $B \rightarrow \pi \pi$

complicated convolutions (cf. parton model)

$$
+O\left(\Lambda_{Q C D} / m_{b}\right)
$$

Short-distance QCD

subprocesses:

Long-distance form factor/wave function

Exclusive B decays - i.e. $B \rightarrow \pi \pi$

$$
A\left(\bar{B} \rightarrow M_{1} M_{2}\right)=\lambda_{c}^{(f)} A_{c \bar{c}}^{M_{1} M_{2}}+\frac{G_{F} m_{B}^{2}}{\sqrt{2}}\left\{f_{M_{2}} \zeta^{B M_{1}} \int_{0}^{1} d u T_{2 \zeta}(u) \phi^{M_{2}}(u)\right.
$$

$$
+f_{M_{1}} \zeta^{B M_{2}} \int_{0}^{1} d u T_{1 \zeta}(u) \phi^{M_{1}}(u)+\frac{f_{B} f_{M_{1}} f_{M_{2}}}{m_{b}} \int_{0}^{1} d u \int_{0}^{1} d x \int_{0}^{1} d z \int_{0}^{\infty} d k_{+} J\left(z, x, k_{+}\right)
$$

$$
\left.\times\left[T_{2 J}(u, z) \phi^{M_{1}}(x) \phi^{M_{2}}(u)+T_{1 J}(u, z) \phi^{M_{2}}(x) \phi^{M_{1}}(u)\right] \phi_{B}^{+}\left(k_{+}\right)\right\}+O\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
$$

complicated convolutions (cf. parton model)

$$
+O\left(\Lambda_{Q C D} / m_{b}\right)
$$

Short-distance QCD

subprocesses:

Long-distance form factor/wave function

Angularity Distributions in Jet production

(Lee, Hornig, Ovanesyan, 2009)

$$
\tau_{a}(X)=\frac{1}{Q} \sum_{i \in X}\left|\mathbf{p}_{i}^{T}\right| e^{-\left|\eta_{i}\right|(1-a)}
$$

Figure 1: Angularity distributions for $-2<a<\frac{1}{2}$ at $Q=\stackrel{\omega}{100} \mathrm{GeV}$, with $\mathscr{O}\left(\alpha_{s}\right)$ hard, jet, and soft functions, NLL resummation, and gapped model soft function.

$\dagger-\bar{\dagger}$ production - soft radiation and precision extraction of the top quark mass (Fleming, Hoang, Mantry,
 Stewart, 2008)

FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

FIG. 15: $\mathrm{F}\left(M_{t}, M_{\bar{t}}\right)$, the differential cross-section in units of $\sigma_{0} / \Gamma_{t}^{2}$, versus M_{t} and $M_{\bar{t}}$. The result is shown at NLL order.

Factorization for jet production

(Cheung, Freedman, ML, Zuberi, in progress)

- UV divergent phase space integrals in SCET treated consistently
- factorization studied for different jet definitions (SW, k_{T}, JADE)

FIG. 3: Phase space corresponding to two-jet events using the k_{\perp} algorithm in (a) QCD, (b) the n-collinear gluon sector, (c) the soft gluon sector, and (d) the zero-bin sector. As before, the arrows indicate integrations to infinity.

Final Comment

This is always going to be with us ... need to factorize problems for nonperturbative lattice QCD calculations as well!

- need $L>1 \mathrm{fm}$ to simulate proton - need $a<1 / Q$ to simulate shortdistance physics w/momentum Q
- extremely inefficient to simulate short-distance (perturbative) physics on the lattice!

Factorization -> do short-distance physics analytically, longdistance physics numerically with lattice spacing $a \gg 1 / Q$

Summary:

- factorization allows us to separate short-distance (interesting) physics from long-distance QCD in a model-independent way - required to make rigorous predictions
- factorization takes many forms, from the relatively simple (inclusive B decays), to the more complicated (hard QCD processes, some B decays) - the form of factorization, and its generalizations to higher orders, can be determined using effective field theory
- lots of applications ...

