Computational complexity of the landscape, open
string flux vacua, D-brane ground states,

multicentered black holes, S-duality, DT /GW
correspondence, and the OSV conjecture

Frederik Denef

University of Leuven

Banff, February 14, 2006

F. Denef and M. Douglas, hep-th/0602072 + work in progress with G. Moore



Fun with fluxes

Frederik Denef

University of Leuven

Banff, February 14, 2006

F. Denef and M. Douglas, hep-th/0602072 + work in progress with G. Moore



Outline

Computational complexity of the landscape

The landscape of open string flux vacua and OSV at large giop

A general derivation of OSV



Ok even if this is the right measure,
what can we do with it?



Computational complexity of the landscape



Basic landscape problem: matching data

E.g. cosmological constant in Bousso-Polchinski model:
AN) = —No + g N' N/

with flux N € ZX. Example question: IN : 0 < A(N) < ¢ ?

Can be extended to more complicated models, other parameters, ...



Basic complexity classes

NP
complete
@ NP

> P = yes/no problems solvable in polynomial time (e.g. is ni X m = n3?,
primality)

red. in pol.
time

» NP = problems for which a candidate solution can be verified in
polynomial time (e.g. subset sum: given finite set of integers, is there
subset summing up to zero?)

» NP-hard = loosely: problem at least as hard as any NP problem, i.e. any
NP problem can be reduced to it in polynomial time.

» NP-complete = NP N NP-hard (e.g. subset-sum, 3-SAT, traveling
salesman, n x n Sudoku, ...)

So: if one NP-complete problem turns out to be in P, then NP = P.
Widely believed: NP # P, but no proof to date (Clay prize problem).
Therefore: expect no P algorithms for NP-complete problems.



Complexity of BP

Clear: BP € NP
Bad news: BP is NP-complete
Proof: by mapping version of subset sum to it.

Intuition: exponentially many local minima for local relaxation
AN; = £y, already for gjj = gidj;:

|AA| = i1+ 2N¥| > gi.

= any |A| < ming gx/2 is local minimum, but if € < ming gy, still
very far from target range.

Simulated annealing: add thermal noise to get out of local minima
and gradually cool.

~» converges to Boltzmann distribution, so will always find target
range, but only guaranteed in time exponential in K + loge.



Prospects for solving NP-hard problems

» Parallel processing? (P) X
» Classical polynomial time probabilistic algorithms? (BPP) X
» Polynomial time quantum computing? (BQP) X

» Other known physical models of computation? X



Sharp selection principles based on optimization

But we have HH measure
P ~exp(1/L)!

\

P

Example: HH measure selects smallest positive A with
overwhelming probability. = No need to match data, just find and
predict.

Problem: finding minimal A(N) in BP is even harder than
NP-complete! (is in DP, i.e. conjunction of NP and co-NP)



Caveats and indirect approaches

NP-completeness is asymptotic, worst case notion. Particular
instances may turn out easy. Cryptographic codes do get
broken.

String theory may have much more (as yet hidden) structure
and underlying simplicity than current landscape models
suggest. ~» extra motivation to find this.

As in statistical mechanics, one could hope to compute
probabilities on low energy parameter space without need for
exact construction of corresponding microstates.

Already without dynamics, number distribution estimates
together with experimental input could lead to virtual
exclusion of certain future measurable properties. [Douglas et al]
As about 20,000 Google hits note: We are humans, not
computers!



String vacuum factory, A.D. 2024

For the time being: other applications of techniques developed for
analyzing the landscape?



The landscape of open string flux vacua
and OSV at large g;,



OSV for D4

Consider a D4-brane wrapped on a divisor P = p”D4 and define

— 0, A
Zosv(¢0’¢A) — Z Q(q07 qA) e 210 qo—2ndAga
q0,9A

where Q(qo, ga) is index of BPS states with DO-charge g and
D2-charges ga.

[Ooguri-Strominger-Vafa] conjectured:
ZOSV(¢07 ¢A) ~ ZtOP(Av t) ZtOP()‘7 t)
with substitutions:

2r 4 —iph/2 4 A
e P T



Relation to flux vacua

BPS states realized as single smooth D4 wrapped on P with U(1)
flux F turned on and N pointlike (anti-)D0 branes bound to it:

aa=Da-F,  q=—N+F?/2+x(P)/24
where x(P) = P3 + ¢ - P = Euler characteristic P.
Susy condition [MMMS]:
F*% =0

~» puts constraints on divisor deformation moduli, freezing to
isolated points for sufficiently generic F [MGM, S et al] ~» open
string flux vacua

Because in general H?(P) > H?(X), there are many different
(F, N) giving same (qo, ga). Each sector gives moduli space
Mp p n of divisors deformations + DO0-positions, and

Q(qo, qa) = Z X(Mp F n)

F,N<qo,qa



Superpotential and NV = 1 special geometry structure

R

F20 =0 & W} =0 with

Wi (z) = /r 9

with dl'(z) C P(z) Poincaré dual to F.

Deformation moduli space Mp has N = 1 special geometry
structure [Lerche-Mayr-Warner].

= Problem of counting open string flux vacua formally almost
identical to counting closed string flux vacua.



Closed string landscape




Open string landscape

Same form =- same techniques applicable.



Evaluation Z,,, at small ¢°

In continuum approximation for sum over F (< large |qo| approx.
& small |¢°| approx.): Zos, can be evaluated as Gaussian
boson-fermion integral with Q-symmetry, giving:

x(P) _ ¢?

Zon ~ R(Mp) ()0 e B T),

with “differential geometric Euler characteristic”

™

1
LUMp) = / det R,
Mp

and R curvature form of natural Hodge metric on Mp.

singular = not at all obvious that
¢ (1P3+ ! P)/|Aut|
= = |- —0C> - u
X Xtop 6 12 2 ’

but comparison results [Shih-Yin] for T® and T2 x K3 indicate it is!



Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ° — 0 approximation, for any compact
Calabi-Yau, and any (very ample) divisor P!

Note:

» Only polynomial part of Fip survives when #° — 0.

» Agreement somewhat surprising, given A\ ~ 1/¢° — oo and
topological string series a priori only asymptotic A — 0
expansion.

Main conclusion:

You can't escape the landscape!



How to understand osv more generally?




A general derivation of OSV



Physical interpretation and regularization of 2.,

Suitable topologically twisted theory of D4 on S x P, with S!
Euclidean time circle of circumference (3 localizes on BPS
configurations, i.e.

ZD4(ﬂ7gS7 B + IJ7 C07 C2) -

ZQ (F,N:B+iJ)e 2\ Z(F,N;B+iJ)|+2mi(F—B)-G+2mi[- N+ 3(F-B)?+%]Co
F,N

where Gyg11 =: Cog A dt/3. Then formally

0
2/705V((rz5 ] q)) = ZD4‘6:0)3207COZ/QSO,CQ:I(D,J:OO
= Y Q(F, Ny e 2 F2n N R ]
F.N

Zp4 has better convergence properties than Z,s, (which diverges
everywhere), so this is also a good regularization.



S-duality

Now do following chain of dualities:
» T-dualize along time circle: maps the D4 into a Euclidean D3.
» S-dualize: preserves D3.
» T-dualize back to D4.

In OSV limit this maps the background into

1

p/gl=0 C= e C=0 B =06 J=|G|J=o.
0

Under these dualities Zp4 should be invariant or transform as a

modular form. This descends to the following formal equality:

(P) 2 us 2 i

Zow = (¢O)e 0 (5 %) SO Q(F, Nye HENERIEEOF

F,N



Dominant contributions

So we had

us 2 i
Zo = (e BUEE) Y a(p e BOMEIROS
F,N

We take as usual Re ¢® < 0 (this is the case for usual black hole
saddle points in inverse Fourier transform of Z,).

The leading contribution comes from pure D4 (N, F) = (0,0)
because N > 0, F2 < 0 on susy configurations [There is actually one “bad"

positive susy F2 mode, but this disappears in regularized version; alternatively, work at fixed g4)
Note: in #° — 0 limit this immediately (!) reproduces our previous
result, provided Q(0,0) = x(Mp) = x(Mp), and w =1 — by.

= Black hole entropy formula at large —qo, including infinite
series of 1/|qo| corrections, is direct consequence of S-duality!

Corrections determined by states with highest qo, i.e. small (N, F)
excitations of pure D4.



Spacetime realization of D4

Unlike high (N, F) states, pure D4 is not a spherically symmetric
black hole, but D6 — D6 two-centered bound state [D].

Pure D4 with “inert” flux pulled back from ambient X:
D6[S;] @ ® D6[S2]

where D6[S] = single D6-brane with flux F = S turned on.

= Quor = (€% — e2)(1 + ©/12), i

@ps=P, Qp2=P-S, Qpo=

where

1
PP+c-P)+ZP-S?

24( 2

P=S -5, 5:&;&.

= charges of D4 on P with flux F = S turned on. v/

Wrapping D6 r times gives qo ~ P3/24r? in large P limit, much
smaller than maximal gg. ~ strongly suppressed in Zsy.



Spacetime realization of D4 + “small” excitations
For e.g. ga = 0, one needs N — F2/2 > x(P)/24 ~ P3/24 to get
spherically symmetric black hole solution. Hence in limit
P3/¢° — —o0

only surviving contributions to Z,s, look like:

but now more generally with pure D6 + flux replaced by
D6-D2-DO0 + flux (higher r D6 can again be shown to contribute
at go < P3/r? = asymptotically vanishing contribution).

BPS states of D6-D2-DO0 system considered in physics by
[lgbal,Nekrasov,Okounkov,Vafa], [Dijkgraaf-Verlinde-Vafa], presumably
counted by Donaldson-Thomas invariants.



Counting D6-D2-D0 BPS states

» For suitable stabilizing value of B-field, D6+D2+4D0 counted
by Donaldson-Thomas generating function

Zpr(g,v)= Y. Nopr(nB)g"v’
n,BEH(X)

where 3 is homology class of D2 defects in D6 and n
holomorphic Euler characteristic of D2 and DO defects.

» Sufficiently large B-field needed to bind DQ’s to D6.
Contribution from DO0's alone (3 = 0) is 2}, conjectured by
[Maulik-Nekrasov-Okounkov-Pandharipande] to equal M(q)fX(X),
with M(q) = I],(1—q")".

» D6-D2 (with induced D0) bound states do not need B-field,
counted by reduced Zp,; = ZDT/Z,%T.



Counting D6 — D6 bound states

Schematically:
Ziot = L ZgT Z/DT,l Z/DT,2
Factors resp.:
» L = Landau degeneracy from D6 — D6 e/m spin;
L={(Q1, @) =P3/6+c- P/12 = x(Mp), corrections for
excitations unimportant in P3/¢% — oo limit.
» It turns out that in the supergravity solutions, depending on
B, mobile DQ's either bind to D6 or to anti-D6, so only one
contribution from degree 0.

» remaining contributions come from all possible D6-D2 and
anti-(D6-D2) bound states.



Computing Z..,

Thus, in limit x(P)/¢° ~ (P® + c2 - P)/¢° — —o0, keeping P/¢°
possibly finite but large, after some work:
Zas = X(Mp) (69) 0 M(e27/9) X0 & i ()
T i 2 27rl i
% Z Py (®+i5) Z/DT[_eZW/¢O “oP—=5(o+ 5)]
Se5+H(X)

_ 0 I Pp42mi(d4is
XZbT[_e 2w /¢ 7e¢0 ¢0( ! )]

[recall P=5; — S, and S = (51 + $2)/2).



DT-GW correspondence and OSV

[INOV] (phys.) [MNOP] (math.) conjectured relation between
Zhrlg = e, v] = 2, [\, v] = exp FLy [, v], recently clarified
by [DVV], which applied to our formula for 2.4, gives

Zosy = X(MP) (¢0)1_b1 M( 2ﬂ/¢0)_X( )e 24¢0X(P)

% Z e¢0(¢+15 ZG [ 27_”/¢0 e¢0P (¢+/5)]
Sef+H2(X)

27l'l
X Zgyy[2mi /g%, e T B )]

agrees with and refines OSV conjecture.

Note:
» for “small black holes”, P3 =0, so when x(P)/¢° — oo,
P/¢° — 0o, so we cannot take clean limit keeping instantons.
~ explains some “problems” with small black holes.

» Must be dual to [Gaoitto-Strominger-Yin] picture through
[Dijkgraaf-Vafa-Verlinde].



A lesson for the landscape?

(S-)duality to fight computational complexity?
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