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Ok even if this is the right measure, 
        what can we do with it?



Computational complexity of the landscape



Basic landscape problem: matching data

ε

Λ0

E.g. cosmological constant in Bousso-Polchinski model:

Λ(N) = −Λ0 + gijN
iN j

with flux N ∈ ZK . Example question: ∃N : 0 < Λ(N) < ε ?

Can be extended to more complicated models, other parameters, ...



Basic complexity classes

P

     NP
complete

     NP
    hard

NP

red. in pol.
    time

I P = yes/no problems solvable in polynomial time (e.g. is n1 × n2 = n3?,
primality)

I NP = problems for which a candidate solution can be verified in
polynomial time (e.g. subset sum: given finite set of integers, is there
subset summing up to zero?)

I NP-hard = loosely: problem at least as hard as any NP problem, i.e. any
NP problem can be reduced to it in polynomial time.

I NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling
salesman, n × n Sudoku, ...)

So: if one NP-complete problem turns out to be in P, then NP = P.
Widely believed: NP 6= P, but no proof to date (Clay prize problem).
Therefore: expect no P algorithms for NP-complete problems.



Complexity of BP

Clear: BP ∈ NP

Bad news: BP is NP-complete

Proof: by mapping version of subset sum to it.

Intuition: exponentially many local minima for local relaxation
∆Ni = ±δki , already for gij ≡ giδij :

|∆Λ| = gk |1± 2Nk | > gk .

⇒ any |Λ| < mink gk/2 is local minimum, but if ε � mink gk , still
very far from target range.

Simulated annealing: add thermal noise to get out of local minima
and gradually cool.

 converges to Boltzmann distribution, so will always find target
range, but only guaranteed in time exponential in K + log ε.



Prospects for solving NP-hard problems

I Parallel processing? (P)×
I Classical polynomial time probabilistic algorithms? (BPP)×
I Polynomial time quantum computing? (BQP)×
I Other known physical models of computation? ×



Sharp selection principles based on optimization

But we have HH measure
Λ ∼P     exp(1/  ) !

Example: HH measure selects smallest positive Λ with
overwhelming probability. ⇒ No need to match data, just find and
predict.

Problem: finding minimal Λ(N) in BP is even harder than
NP-complete! (is in DP, i.e. conjunction of NP and co-NP)



Caveats and indirect approaches

I NP-completeness is asymptotic, worst case notion. Particular
instances may turn out easy. Cryptographic codes do get
broken.

I String theory may have much more (as yet hidden) structure
and underlying simplicity than current landscape models
suggest.  extra motivation to find this.

I As in statistical mechanics, one could hope to compute
probabilities on low energy parameter space without need for
exact construction of corresponding microstates.

I Already without dynamics, number distribution estimates
together with experimental input could lead to virtual
exclusion of certain future measurable properties. [Douglas et al]

I As about 20,000 Google hits note: We are humans, not
computers!



For the time being: other applications of techniques developed for
analyzing the landscape?



The landscape of open string flux vacua

and OSV at large gtop



OSV for D4

Consider a D4-brane wrapped on a divisor P = pADA and define

Zosv (φ0,ΦA) =
∑
q0,qA

Ω(q0, qA) e−2πφ0q0−2πΦAqA

where Ω(q0, qA) is index of BPS states with D0-charge q0 and
D2-charges qA.

[Ooguri-Strominger-Vafa] conjectured:

Zosv (φ0,ΦA) ∼ Ztop(λ, t) Ztop(λ, t)

with substitutions:

λ → 2π

φ0
, tA → −ipA/2 + ΦA

φ0



Relation to flux vacua

BPS states realized as single smooth D4 wrapped on P with U(1)
flux F turned on and N pointlike (anti-)D0 branes bound to it:

qA = DA · F , q0 = −N + F 2/2 + χ(P)/24

where χ(P) = P3 + c2 · P = Euler characteristic P.

Susy condition [MMMS]:
F 2,0 = 0

 puts constraints on divisor deformation moduli, freezing to
isolated points for sufficiently generic F [MGM, S et al]  open
string flux vacua

Because in general H2(P) � H2(X ), there are many different
(F ,N) giving same (q0, qA). Each sector gives moduli space
MP,F ,N of divisors deformations + D0-positions, and

Ω(q0, qA) =
∑

F ,N⇔q0,qA

χ(MP,F ,N)



Superpotential and N = 1 special geometry structure

P

Γ

F (2,0) = 0 ⇔ W ′
F = 0 with

WF (z) ≡
∫

Γ(z)
Ω

with ∂Γ(z) ⊂ P(z) Poincaré dual to F .

Deformation moduli space MP has N = 1 special geometry
structure [Lerche-Mayr-Warner].

⇒ Problem of counting open string flux vacua formally almost
identical to counting closed string flux vacua.



Closed string landscape

.



Open string landscape

Same form ⇒ same techniques applicable.



Evaluation Zosv at small φ0

In continuum approximation for sum over F (⇔ large |q0| approx.
⇔ small |φ0| approx.): Zosv can be evaluated as Gaussian
boson-fermion integral with Q-symmetry, giving:

Zosv ≈ χ̂(MP) (φ0)1−b1 e
− 2π

φ0

�
χ(P)
24
−Φ2

2

�
.

with “differential geometric Euler characteristic”

χ̂(MP) ≡ 1

πn

∫
MP

det R,

and R curvature form of natural Hodge metric on MP .

singular ⇒ not at all obvious that

χ̂ = χtop = (
1

6
P3 +

1

12
c2 · P)/|Aut|,

but comparison results [Shih-Yin] for T 6 and T 2 × K3 indicate it is!



Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in φ0 → 0 approximation, for any compact
Calabi-Yau, and any (very ample) divisor P!

Note:

I Only polynomial part of Ftop survives when φ0 → 0.
I Agreement somewhat surprising, given λ ∼ 1/φ0 →∞ and

topological string series a priori only asymptotic λ → 0
expansion.

Main conclusion:

You can’t escape the landscape!



How to understand osv more generally?



A general derivation of OSV



Physical interpretation and regularization of Zosv

Suitable topologically twisted theory of D4 on S1 × P, with S1

Euclidean time circle of circumference β localizes on BPS
configurations, i.e.

ZD4(β, gs ,B + iJ,C0,C2) =∑
F ,N

Ω(F ,N;B+iJ) e−
β
gs
|Z(F ,N;B+iJ)|+2πi(F−B)·C2+2πi [−N+ 1

2
(F−B)2+ χ

24
]C0

where C2q+1 =: C2q ∧ dt/β. Then formally

Zosv (φ0,Φ) = ZD4|β=0,B=0,C0=iφ0,C2=iΦ,J=∞

=
∑
F ,N

Ω(F ,N) e−2πΦ·F−2πφ0[−N+ 1
2
F 2+ χ

24
].

ZD4 has better convergence properties than Zosv (which diverges
everywhere), so this is also a good regularization.



S-duality

Now do following chain of dualities:

I T-dualize along time circle: maps the D4 into a Euclidean D3.

I S-dualize: preserves D3.

I T-dualize back to D4.

In OSV limit this maps the background into

β′/g ′s = 0, C ′
0 = − 1

C0
, C ′

2 = 0, B ′ = C2, J ′ = |C0|J = ∞.

Under these dualities ZD4 should be invariant or transform as a
modular form. This descends to the following formal equality:

Zosv = (φ0)we
− 2π

φ0

�
χ(P)
24
−Φ2

2

� ∑
F ,N

Ω(F ,N) e
− 2π

φ0 (−N+ F2

2
)+ 2πi

φ0 Φ·F



Dominant contributions

So we had

Zosv = (φ0)we
− 2π

φ0

�
χ(P)
24
−Φ2

2

� ∑
F ,N

Ω(F ,N) e
− 2π

φ0 (−N+ F2

2
)+ 2πi

φ0 Φ·F

We take as usual Re φ0 < 0 (this is the case for usual black hole
saddle points in inverse Fourier transform of Zosv ).

The leading contribution comes from pure D4 (N,F ) = (0, 0)
because N ≥ 0,F 2 ≤ 0 on susy configurations [There is actually one “bad”

positive susy F2 mode, but this disappears in regularized version; alternatively, work at fixed qA]

Note: in φ0 → 0 limit this immediately (!) reproduces our previous
result, provided Ω(0, 0) = χ(MP) = χ̂(MP), and w = 1− b1.

⇒ Black hole entropy formula at large −q0, including infinite
series of 1/|q0| corrections, is direct consequence of S-duality!

Corrections determined by states with highest q0, i.e. small (N,F )
excitations of pure D4.



Spacetime realization of D4

Unlike high (N,F ) states, pure D4 is not a spherically symmetric
black hole, but D6− D6 two-centered bound state [D].

Pure D4 with “inert” flux pulled back from ambient X :

D6[S  ]2D6[S  ]1

where D6[S ] = single D6-brane with flux F = S turned on.

⇒ Qtot = (eS1 − eS2)(1 + c2/12), i.e.:

QD4 = P, QD2 = P · S , QD0 =
1

24
(P3 + c2 · P) +

1

2
P · S2

where

P = S1 − S2, S =
S1 + S2

2
.

= charges of D4 on P with flux F = S turned on. X

Wrapping D6 r times gives q0 ∼ P3/24r2 in large P limit, much
smaller than maximal q0.  strongly suppressed in Zosv .



Spacetime realization of D4 + “small” excitations

For e.g. qA = 0, one needs N − F 2/2 > χ(P)/24 ∼ P3/24 to get
spherically symmetric black hole solution. Hence in limit

P3/φ0 → −∞

only surviving contributions to Zosv look like:

but now more generally with pure D6 + flux replaced by
D6-D2-D0 + flux (higher r D6 can again be shown to contribute
at q0 . P3/r2 ⇒ asymptotically vanishing contribution).

BPS states of D6-D2-D0 system considered in physics by
[Iqbal,Nekrasov,Okounkov,Vafa], [Dijkgraaf-Verlinde-Vafa], presumably
counted by Donaldson-Thomas invariants.



Counting D6-D2-D0 BPS states

I For suitable stabilizing value of B-field, D6+D2+D0 counted
by Donaldson-Thomas generating function

ZDT (q, v) =
∑

n,β∈H2(X )

NDT (n, β)qnvβ

where β is homology class of D2 defects in D6 and n
holomorphic Euler characteristic of D2 and D0 defects.

I Sufficiently large B-field needed to bind D0’s to D6.
Contribution from D0’s alone (β = 0) is Z0

DT , conjectured by
[Maulik-Nekrasov-Okounkov-Pandharipande] to equal M(q)−χ(X ),
with M(q) =

∏
n(1− qn)n.

I D6-D2 (with induced D0) bound states do not need B-field,
counted by reduced Z ′DT ≡ ZDT/Z0

DT .



Counting D6− D6 bound states

Schematically:
Ztot = LZ0

DT Z ′DT ,1Z ′DT ,2

Factors resp.:

I L = Landau degeneracy from D6− D6 e/m spin;
L = 〈Q1,Q2〉 = P3/6 + c2 · P/12 = χ(MP), corrections for
excitations unimportant in P3/φ0 →∞ limit.

I It turns out that in the supergravity solutions, depending on
B, mobile D0’s either bind to D6 or to anti-D6, so only one
contribution from degree 0.

I remaining contributions come from all possible D6-D2 and
anti-(D6-D2) bound states.



Computing Zosv

Thus, in limit χ(P)/φ0 ∼ (P3 + c2 · P)/φ0 → −∞, keeping P/φ0

possibly finite but large, after some work:

Zosv ≈ χ(MP) (φ0)1−b1 M(e2π/φ0
)−χ(X ) e

− 2π
24φ0 χ(P)

×
∑

S∈P
2
+H2(X )

e
π
φ0 (Φ+iS)2Z ′DT [−e2π/φ0

, e
π
φ0 P− 2πi

φ0 (Φ+iS)
]

×Z ′DT [−e−2π/φ0
, e

π
φ0 P+ 2πi

φ0 (Φ+iS)
]

[recall P = S1 − S2 and S = (S1 + S2)/2].



DT-GW correspondence and OSV

[INOV] (phys.) [MNOP] (math.) conjectured relation between
Z ′DT [q = e iλ, v ] = Z ′GW [λ, v ] ≡ expF ′GW [λ, v ], recently clarified
by [DVV], which applied to our formula for Zosv gives

Zosv ≈ χ(MP) (φ0)1−b1 M(e2π/φ0
)−χ(X ) e

− 2π
24φ0 χ(P)

×
∑

S∈P
2
+H2(X )

e
π
φ0 (Φ+iS)2Z ′GW [−2πi/φ0, e

π
φ0 P− 2πi

φ0 (Φ+iS)
]

×Z ′GW [2πi/φ0, e
π
φ0 P+ 2πi

φ0 (Φ+iS)
]

agrees with and refines OSV conjecture.

Note:
I for “small black holes”, P3 = 0, so when χ(P)/φ0 →∞,

P/φ0 →∞, so we cannot take clean limit keeping instantons.
 explains some “problems” with small black holes.

I Must be dual to [Gaoitto-Strominger-Yin] picture through
[Dijkgraaf-Vafa-Verlinde].



A lesson for the landscape?

(S-)duality to fight computational complexity?


	Computational complexity of the landscape
	The landscape of open string flux vacua and OSV at large gtop
	A general derivation of OSV



