Computational complexity of the landscape, open string flux vacua, D-brane ground states, multicentered black holes, S-duality, DT/GW correspondence, and the OSV conjecture

Frederik Denef

University of Leuven

Banff, February 14, 2006

F. Denef and M. Douglas, hep-th/0602072 + work in progress with G. Moore

ション ふぼう ふぼう ふほう うらの

Fun with fluxes

Frederik Denef

University of Leuven

Banff, February 14, 2006

F. Denef and M. Douglas, hep-th/0602072 + work in progress with G. Moore

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへで

Outline

Computational complexity of the landscape

The landscape of open string flux vacua and OSV at large g_{top}

A general derivation of OSV

(□) (□) (□) (□) (□)

Computational complexity of the landscape

Basic landscape problem: matching data

E.g. cosmological constant in Bousso-Polchinski model:

$$\Lambda(N) = -\Lambda_0 + g_{ij}N^iN^j$$

with flux $N \in \mathbb{Z}^{K}$. Example question: $\exists N : 0 < \Lambda(N) < \epsilon$?

Can be extended to more complicated models, other parameters, ...

Basic complexity classes

- ▶ P = yes/no problems solvable in polynomial time (e.g. is $n_1 \times n_2 = n_3$?, primality)
- NP = problems for which a candidate solution can be verified in polynomial time (e.g. subset sum: given finite set of integers, is there subset summing up to zero?)
- NP-hard = loosely: problem at least as hard as any NP problem, i.e. any NP problem can be reduced to it in polynomial time.
- NP-complete = NP ∩ NP-hard (e.g. subset-sum, 3-SAT, traveling salesman, n × n Sudoku, ...)

So: if *one* NP-complete problem turns out to be in *P*, then NP = P. Widely believed: NP \neq P, but no proof to date (Clay prize problem). Therefore: expect no P algorithms for NP-complete problems.

Complexity of BP

 $\mathsf{Clear:}\ \mathsf{BP}\in\mathsf{NP}$

Bad news: BP is NP-complete

Proof: by mapping version of subset sum to it.

Intuition: exponentially many local minima for local relaxation $\Delta N_i = \pm \delta_{ki}$, already for $g_{ij} \equiv g_i \delta_{ij}$:

$$|\Delta\Lambda|=g_k|1\pm 2N^k|>g_k.$$

 \Rightarrow any $|\Lambda| < \min_k g_k/2$ is local minimum, but if $\epsilon \ll \min_k g_k$, still very far from target range.

Simulated annealing: add thermal noise to get out of local minima and gradually cool.

 \rightsquigarrow converges to Boltzmann distribution, so will always find target range, but only guaranteed in time exponential in $K + \log \epsilon$.

Prospects for solving NP-hard problems

- Parallel processing? (P) ×
- Classical polynomial time probabilistic algorithms? (BPP) ×
- Polynomial time quantum computing? (BQP) ×
- Other known physical models of computation? ×

Sharp selection principles based on optimization

Example: HH measure selects smallest positive Λ with overwhelming probability. \Rightarrow No need to match data, just find and predict.

Problem: finding minimal $\Lambda(N)$ in BP is even harder than NP-complete! (is in DP, i.e. conjunction of NP and co-NP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Caveats and indirect approaches

- NP-completeness is asymptotic, worst case notion. Particular instances may turn out easy. Cryptographic codes do get broken.
- String theory may have much more (as yet hidden) structure and underlying simplicity than current landscape models suggest. → extra motivation to find this.
- As in statistical mechanics, one could hope to compute probabilities on low energy parameter space without need for exact construction of corresponding microstates.
- Already without dynamics, number distribution estimates together with experimental input could lead to virtual exclusion of certain future measurable properties. [Douglas et al]
- As about 20,000 Google hits note: We are humans, not computers!

String vacuum factory, A.D. 2024

For the time being: other applications of techniques developed for analyzing the landscape?

The landscape of open string flux vacua and OSV at large g_{top}

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへで

OSV for D4

Consider a D4-brane wrapped on a divisor $P = p^A D_A$ and define

$$\mathcal{Z}_{osv}(\phi^0,\Phi^A) = \sum_{q_0,q_A} \Omega(q_0,q_A) \, e^{-2\pi \phi^0 q_0 - 2\pi \Phi^A q_A}$$

where $\Omega(q_0, q_A)$ is index of BPS states with D0-charge q_0 and D2-charges q_A .

[Ooguri-Strominger-Vafa] conjectured:

$$\mathcal{Z}_{osv}(\phi^0,\Phi^{\mathcal{A}})\sim Z_{top}(\lambda,t)\,\overline{Z_{top}(\lambda,t)}$$

with substitutions:

$$\lambda \to \frac{2\pi}{\phi^0}, \quad t^A \to \frac{-i\rho^A/2 + \Phi^A}{\phi^0}$$

Relation to flux vacua

BPS states realized as single smooth D4 wrapped on P with U(1) flux F turned on and N pointlike (anti-)D0 branes bound to it:

$$q_A = D_A \cdot F$$
, $q_0 = -N + F^2/2 + \chi(P)/24$

where $\chi(P) = P^3 + c_2 \cdot P =$ Euler characteristic P.

Susy condition [MMMS]:

$$F^{2,0} = 0$$

 \rightsquigarrow puts constraints on divisor deformation moduli, freezing to isolated points for sufficiently generic *F* [MGM, S et al] \rightsquigarrow open string flux vacua

Because in general $H^2(P) \gg H^2(X)$, there are many different (F, N) giving same (q_0, q_A) . Each sector gives moduli space $\mathcal{M}_{P,F,N}$ of divisors deformations + D0-positions, and

$$\Omega(q_0, q_A) = \sum_{F, N \Leftrightarrow q_0, q_A} \chi(\mathcal{M}_{P, F, N})$$

Superpotential and $\mathcal{N} = 1$ special geometry structure

 $F^{(2,0)} = 0 \Leftrightarrow W'_F = 0$ with

$$W_F(z) \equiv \int_{\Gamma(z)} \Omega$$

with $\partial \Gamma(z) \subset P(z)$ Poincaré dual to *F*.

Deformation moduli space \mathcal{M}_P has $\mathcal{N} = 1$ special geometry structure [Lerche-Mayr-Warner].

 \Rightarrow Problem of counting open string flux vacua formally almost identical to counting closed string flux vacua.

Closed string landscape

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽へ⊙

Open string landscape

Same form \Rightarrow same techniques applicable.

Evaluation \mathcal{Z}_{osv} at small ϕ^0

In continuum approximation for sum over F (\Leftrightarrow large $|q_0|$ approx. \Leftrightarrow small $|\phi^0|$ approx.): \mathcal{Z}_{osv} can be evaluated as Gaussian boson-fermion integral with *Q*-symmetry, giving:

$$\mathcal{Z}_{osv} ~pprox ~\hat{\chi}(\mathcal{M}_P) \, (\phi^0)^{1-b_1} \, e^{-rac{2\pi}{\phi^0} \left(rac{\chi(P)}{24}-rac{\Phi^2}{2}
ight)}.$$

with "differential geometric Euler characteristic"

$$\hat{\chi}(\mathcal{M}_P) \equiv \frac{1}{\pi^n} \int_{\mathcal{M}_P} \det R,$$

and R curvature form of natural Hodge metric on \mathcal{M}_P .

singular \Rightarrow not at all obvious that

$$\hat{\chi} = \chi_{top} = (\frac{1}{6}P^3 + \frac{1}{12}c_2 \cdot P)/|\text{Aut}|,$$

but comparison results [Shih-Yin] for T^6 and $T^2 \times K3$ indicate it is!

Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture), matches exactly in $\phi^0 \rightarrow 0$ approximation, for any compact Calabi-Yau, and any (very ample) divisor P!

Note:

- Only polynomial part of F_{top} survives when $\phi^0 \rightarrow 0$.
- ▶ Agreement somewhat surprising, given $\lambda \sim 1/\phi^0 \rightarrow \infty$ and topological string series a priori only asymptotic $\lambda \rightarrow 0$ expansion.

Main conclusion:

You can't escape the landscape!

How to understand osv more generally?

A general derivation of OSV

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへで

Physical interpretation and regularization of \mathcal{Z}_{osv}

Suitable topologically twisted theory of D4 on $S^1 \times P$, with S^1 Euclidean time circle of circumference β localizes on BPS configurations, i.e.

$$\mathcal{Z}_{D4}(\beta, g_{s}, B + iJ, C_{0}, C_{2}) = \sum_{F,N} \Omega(F, N; B + iJ) e^{-\frac{\beta}{g_{s}}|Z(F, N; B + iJ)| + 2\pi i(F - B) \cdot C_{2} + 2\pi i[-N + \frac{1}{2}(F - B)^{2} + \frac{\chi}{24}]C_{0}}$$

where $C_{2q+1} =: C_{2q} \wedge dt/\beta$. Then formally

$$\begin{aligned} \mathcal{Z}_{osv}(\phi^{0},\Phi) &= \mathcal{Z}_{D4}|_{\beta=0,B=0,C_{0}=i\phi^{0},C_{2}=i\Phi,J=\infty} \\ &= \sum_{F,N} \Omega(F,N) \, e^{-2\pi\Phi\cdot F - 2\pi\phi^{0}[-N + \frac{1}{2}F^{2} + \frac{\chi}{24}]}. \end{aligned}$$

 Z_{D4} has better convergence properties than Z_{osv} (which diverges everywhere), so this is also a good regularization.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

S-duality

Now do following chain of dualities:

- T-dualize along time circle: maps the D4 into a Euclidean D3.
- S-dualize: preserves D3.
- ► T-dualize back to D4.

In OSV limit this maps the background into

$$eta'/g_s'=0, \quad C_0'=-rac{1}{C_0}, \quad C_2'=0, \quad B'=C_2, \quad J'=|C_0|J=\infty.$$

Under these dualities Z_{D4} should be invariant or transform as a modular form. This descends to the following formal equality:

$$\mathcal{Z}_{osv} = (\phi^{0})^{w} e^{-\frac{2\pi}{\phi^{0}} \left(\frac{\chi(P)}{24} - \frac{\Phi^{2}}{2}\right)} \sum_{F,N} \Omega(F,N) e^{-\frac{2\pi}{\phi^{0}} (-N + \frac{F^{2}}{2}) + \frac{2\pi i}{\phi^{0}} \Phi \cdot F}$$

ション ふぼう ふぼう ふほう うらの

Dominant contributions

So we had

$$\mathcal{Z}_{osv} = (\phi^{0})^{w} e^{-\frac{2\pi}{\phi^{0}} \left(\frac{\chi(P)}{24} - \frac{\Phi^{2}}{2}\right)} \sum_{F,N} \Omega(F,N) e^{-\frac{2\pi}{\phi^{0}} (-N + \frac{F^{2}}{2}) + \frac{2\pi i}{\phi^{0}} \Phi \cdot F}$$

We take as usual $\operatorname{Re} \phi^0 < 0$ (this is the case for usual black hole saddle points in inverse Fourier transform of \mathcal{Z}_{osv}).

The leading contribution comes from pure D4 (N, F) = (0, 0)because $N \ge 0, F^2 \le 0$ on susy configurations [There is actually one "bad" positive susy F^2 mode, but this disappears in regularized version; alternatively, work at fixed q_A]

Note: in $\phi^0 \to 0$ limit this immediately (!) reproduces our previous result, provided $\Omega(0,0) = \chi(\mathcal{M}_P) = \hat{\chi}(\mathcal{M}_P)$, and $w = 1 - b_1$.

 \Rightarrow Black hole entropy formula at large $-q_0$, including infinite series of $1/|q_0|$ corrections, is direct consequence of S-duality!

Corrections determined by states with highest q_0 , i.e. small (N, F) excitations of pure D4.

Spacetime realization of D4

Unlike high (N, F) states, pure D4 is *not* a spherically symmetric black hole, but $D6 - \overline{D6}$ two-centered bound state [D].

Pure D4 with "inert" flux pulled back from ambient X:

where D6[S] = single D6-brane with flux F = S turned on.

$$\Rightarrow Q_{tot} = (e^{S_1} - e^{S_2})(1 + c_2/12), \text{ i.e.:}$$
$$Q_{D4} = P, \quad Q_{D2} = P \cdot S, \quad Q_{D0} = \frac{1}{24}(P^3 + c_2 \cdot P) + \frac{1}{2}P \cdot S^2$$

where

$$P = S_1 - S_2, \qquad S = \frac{S_1 + S_2}{2}$$

.

= charges of D4 on P with flux F = S turned on. \checkmark

Wrapping D6 r times gives $q_0 \sim P^3/24r^2$ in large P limit, much smaller than maximal q_0 . \rightsquigarrow strongly suppressed in \mathcal{Z}_{osv} .

Spacetime realization of D4 + "small" excitations

For e.g. $q_A = 0$, one needs $N - F^2/2 > \chi(P)/24 \sim P^3/24$ to get spherically symmetric black hole solution. Hence in limit

 $P^3/\phi^0
ightarrow -\infty$

only surviving contributions to \mathcal{Z}_{osv} look like:

but now more generally with pure D6 + flux replaced by D6-D2-D0 + flux (higher r D6 can again be shown to contribute at $q_0 \leq P^3/r^2 \Rightarrow$ asymptotically vanishing contribution).

BPS states of D6-D2-D0 system considered in physics by [Iqbal,Nekrasov,Okounkov,Vafa], [Dijkgraaf-Verlinde-Vafa], presumably counted by Donaldson-Thomas invariants.

Counting D6-D2-D0 BPS states

 For suitable stabilizing value of *B*-field, D6+D2+D0 counted by Donaldson-Thomas generating function

$$\mathcal{Z}_{DT}(q, v) = \sum_{n, \beta \in H_2(X)} N_{DT}(n, \beta) q^n v^{\beta}$$

where β is homology class of D2 defects in D6 and *n* holomorphic Euler characteristic of D2 and D0 defects.

- ► Sufficiently large *B*-field needed to bind D0's to D6. Contribution from D0's alone ($\beta = 0$) is \mathcal{Z}_{DT}^0 , conjectured by [Maulik-Nekrasov-Okounkov-Pandharipande] to equal $M(q)^{-\chi(X)}$, with $M(q) = \prod_n (1 - q^n)^n$.
- ▶ D6-D2 (with induced D0) bound states do not need *B*-field, counted by reduced $Z'_{DT} \equiv Z_{DT}/Z^0_{DT}$.

Counting $D6 - \overline{D6}$ **bound states**

Schematically:

$$\mathcal{Z}_{tot} = L \, \mathcal{Z}_{DT}^0 \, \mathcal{Z}_{DT,1}' \, \mathcal{Z}_{DT,2}'$$

Factors resp.:

- ▶ L = Landau degeneracy from $D6 \overline{D6}$ e/m spin; $L = \langle Q_1, Q_2 \rangle = P^3/6 + c_2 \cdot P/12 = \chi(\mathcal{M}_P)$, corrections for excitations unimportant in $P^3/\phi^0 \to \infty$ limit.
- It turns out that in the supergravity solutions, depending on B, mobile D0's either bind to D6 or to anti-D6, so only one contribution from degree 0.
- remaining contributions come from all possible D6-D2 and anti-(D6-D2) bound states.

Computing \mathcal{Z}_{osv}

Thus, in limit $\chi(P)/\phi^0 \sim (P^3 + c_2 \cdot P)/\phi^0 \rightarrow -\infty$, keeping P/ϕ^0 possibly finite but large, after some work:

$$\begin{aligned} \mathcal{Z}_{osv} &\approx \chi(\mathcal{M}_{P}) \, (\phi^{0})^{1-b_{1}} \, \mathcal{M}(e^{2\pi/\phi^{0}})^{-\chi(X)} \, e^{-\frac{2\pi}{24\phi^{0}}\chi(P)} \\ &\times \sum_{S \in \frac{P}{2} + H^{2}(X)} e^{\frac{\pi}{\phi^{0}} (\Phi + iS)^{2}} \mathcal{Z}'_{DT}[-e^{2\pi/\phi^{0}}, e^{\frac{\pi}{\phi^{0}}P - \frac{2\pi i}{\phi^{0}} (\Phi + iS)}] \\ &\times \mathcal{Z}'_{DT}[-e^{-2\pi/\phi^{0}}, e^{\frac{\pi}{\phi^{0}}P + \frac{2\pi i}{\phi^{0}} (\Phi + iS)}] \end{aligned}$$

ション ふぼう ふぼう ふほう うらの

[recall $P = S_1 - S_2$ and $S = (S_1 + S_2)/2$].

DT-GW correspondence and OSV

[INOV] (phys.) [MNOP] (math.) conjectured relation between $\mathcal{Z}'_{DT}[q = e^{i\lambda}, v] = \mathcal{Z}'_{GW}[\lambda, v] \equiv \exp F'_{GW}[\lambda, v]$, recently clarified by [DVV], which applied to our formula for \mathcal{Z}_{osv} gives

$$\begin{aligned} \mathcal{Z}_{osv} &\approx \chi(\mathcal{M}_{P}) (\phi^{0})^{1-b_{1}} M(e^{2\pi/\phi^{0}})^{-\chi(X)} e^{-\frac{2\pi}{24\phi^{0}}\chi(P)} \\ &\times \sum_{S \in \frac{P}{2} + H^{2}(X)} e^{\frac{\pi}{\phi^{0}}(\Phi + iS)^{2}} \mathcal{Z}'_{GW}[-2\pi i/\phi^{0}, e^{\frac{\pi}{\phi^{0}}P - \frac{2\pi i}{\phi^{0}}(\Phi + iS)}] \end{aligned}$$

$$\times \mathcal{Z}_{GW}'[2\pi i/\phi^0, e^{\frac{\pi}{\phi^0}P + \frac{2\pi i}{\phi^0}(\Phi + iS)}]$$

agrees with and refines OSV conjecture.

Note:

- ▶ for "small black holes", $P^3 = 0$, so when $\chi(P)/\phi^0 \to \infty$, $P/\phi^0 \to \infty$, so we cannot take clean limit keeping instantons. \rightarrow explains some "problems" with small black holes.
- Must be dual to [Gaoitto-Strominger-Yin] picture through [Dijkgraaf-Vafa-Verlinde].

A lesson for the landscape?

(S-)duality to fight computational complexity?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで