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Introduction

from WMAP

e An almost scale invariant, adiabatic, Gaussian primordial fluctuation
predicted by inflation is in good agreement with CMB data.

e A tantalizing upper bound on the energy density during inflation:

V ~ M3y ~ (101°Gev)* e, H ~ 101*GeV.

The relevant energy scale is close to the scale where stringy physics
becomes important.
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e Studies focused mainly on the power spectrum: primordial non-Gaussian
fluctuations predicted by inflation are typically too small.
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String Inflation

A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):
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Flux compactification: stabilizes moduli and generates warped throats.



Warped throats:

D3

e Help flatten the potential, though some degree of fine-tuning is still
needed : usual n problem.

e Reheating and suppression of gravitational wave production.

Barneby, Burgess, and Cline
Kofman and Yi

Chialva, GS, and Underwood
Frey, Mazumdar, and Myers



DBI Inflation [Silverstein and Tong]

e Different regime: higher derivative terms enforce a casual speed limit.

Soer = d*zv/—g [T\/l —¢?)T+V(p)—T

where T = T3h(¢$)* with T3 = D3 tension, h(¢) is the warping factor.
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e Distinctive signatures: Alishahiha, Silverstein, and Tong

See also: Chen
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— Large Non-Gaussianties with a characteristic shape of ((x,(k,Cks):

_ 1
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The numerical coefficient of v2 in fx7 is 0.32. [Chen, Huang, GS]

2
INL ~ 7 v

— Modified ‘“consistency relation’ :
h
L

¢~ T

e More generally: by varying ~, one can interpolate between slow roll
(v ~ 1) to DBI inflation (v >> 1) including intermediate regime (v = 1).

Inflation in this general setup is robust. Shandera and Tye



Our Results

General analysis for an arbitrary action of the form:

1

_ 1/ 4 2 _ 1w
S = E/d T —g[Mle—I—QP(X, ?)] X = Eg“ Ou@Oy ¢

Our results are applicable to the intermediate regime, as well as in
extracting subleading (but potentially observable) non-Gaussianities.

We obtain all known shapes of non-Gaussianities plus more.

Laboratory for testing the dS/CFT proposal Strominger
[Larsen, van der Schaar, Leigh]; [Maldacena]; [Larsen, McNees]; [van der Schaar]

(fiey o Sies)

[Bousso, Maloney, Strominger] . ..

2R€<Ok10k20k3>/

HZ(_2R€<OKZOKZ>,)

Maldacena, astro-ph/0210603
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The General Setup

Consider an action of the form:

§=_ [ d*ay=gIMZR +2P(X, )

whose Gaussian perturbations have been considered by Garriga and Mukhanov.

Define the energy E and the sound speed cg as
E = 2XPx —P

2 P x
’ Px+2XPxx

C

Friedman equation and the continuity equation

3Mp%H2 = E
E = —-3H(E+4+ P)

For a Lagrangian with standard kinetic term: P(X,¢) = X — V(¢) and
hence ¢s = 1. For DBI action, c¢s = 1/7.



e Generalized slow roll parameters:
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e Generalized slow roll parameters:

H XPx
€E — —— _ = ,
H2 ~ My H?
€
n o — GH’
Cs
s = .
CsH

e [ he non-Gaussianities that we found depend on 5 parameters:
c;2, €, m s, and \/X (to be defined).

Potentially observable when these parameters are sufficiently large.



Non-Gaussianities

Primordial power spectrum:

¢
P
(CkyCko) ~ 67 (K1 + kz)ﬁ

Non-Gaussianity contains potentially more info because of its shape:

(CkyCkolks) = (27)363 (k1 + ko + k3) F(K1, K2, K3)

Scaling and symmetries imply that F(kq, Ko, K3) is a symmetric, homo-
geneous function of degree —6.

Primordial non-Gaussianities come from cubic terms in the Lagrangian.
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where inflaton ¢ and metric h;; are dynamical variables, N and N* are
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It is useful to work in the ADM metric formalism:
ds? = —NZ?dt? + hy;(dz" + N'dt)(dz’ + N7dt)

where inflaton ¢ and metric h;; are dynamical variables, N and N* are
Lagrange multipliers.

Focus on scalar perturbations. In the comoving gauge:
5¢ =0 hzg — a262<5ij

with ¢ being the gauge invariant scalar perturbation which remains
constant outside horizon. Calculations greatly simplified.

To obtain the cubic terms: we plug the metric ansatz into the La-
gragian, and substitute the Lagrangian multipliers N and Nt with the
solutions to their equations of motion.

To compute the effective action to order O(¢3), we need only the
solutions of N and N* to order O(). Maldacena



e The solution to the equation of motion for scalar perturbation ((¢, k)
at quadratic order gives the power spectrum.

e [ he primordial non-Gaussianities are:

(C(t, k1)((t, ko)((t,k3)) = —2/ dt’ ([C (¢, k1)C (¢, ko) (t, K3), Hint (P)])

where H;,;(t) is the cubic Hamiltonian for the scalar perturbation (.



e The solution to the equation of motion for scalar perturbation ((¢, k)
at quadratic order gives the power spectrum.

e [ he primordial non-Gaussianities are:

(C(t, k1)((t, ko)((t,k3)) = —’L/ dt’ ([C (¢, k1)C (¢, ko) (t, K3), Hint (P)])

where H;,;(t) is the cubic Hamiltonian for the scalar perturbation (.

A lot of pain and sweat . ..



Shape of Non-Gaussianities

F(ky, ko k3) = (2m)*(PS)?

1
13 X (A)\—I_AC_I_AG_I_A?]_I_AS)
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1 20\ 3k2k2k2
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and K = k) +ka+ k3, == XPx +2X?Pyx, A\=X?Pxx+ 2X3Pxxx.



Experimental Bound

e WMAP ansatz for the primordial non-Gaussianities

() = ¢(@) = ShnL(G(@)? — (@)

here (4(x) is purely Gaussian with vanishing three point functions.

e T he size of non-Gaussianities is measured by the parameter fy in the
above ansatz. Current experimental bound is

—58 < fyr, <134 at 95% C.L.

Future experiments can eventually reach the sensitivity of fy; < 20
(WMAP) and fyr S5 (PLANCK).
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e WMAP ansatz for the primordial non-Gaussianities

() = ¢(@) = ShnL(G(@)? — (@)

here (4(x) is purely Gaussian with vanishing three point functions.

e T he size of non-Gaussianities is measured by the parameter fy in the
above ansatz. Current experimental bound is

—58 < fyr, <134 at 95% C.L.

Future experiments can eventually reach the sensitivity of fy; < 20
(WMAP) and fyr S5 (PLANCK).

e However, the experimental bound depends on the shape of F'(k1, ks, k3).

Creminelli, Nicolis, Senatore, Tegmark, and Zaldarriaga



e Due to the symmetry and scaling property of F(kq,ko,k3), all info
about the shape can be viewed by plotting [Babich, Creminelli, Zaldarriaga]

F(1, ko, k3)k3k3

e For the WMAP ansatz:

2 k3 + k3 + k3
F(Kky1, ko, k3) ~ fyp (Pg)” 25 252

3,3,3
kTk5k3




Siow Roll Limit

Maldacena
Seery and Lidsey

e Slow roll inflation predicts non-Gaussianties of order fyr ~ e < 1, which
is too small to be observed.

e The relevant shapes are F'(k1, ko, k3) ~ I k3A(k1,k2,k3) where
Ae = — (—Zk3+ > kk2+ ZkaQ) ,
Z#J Z>]
n (1 3
T 2N RS
c2 (8%: 7’)

An



e T he shape of A¢ is

Similar shape for Ay.

e [ he shapes of slow roll inflation look similar to that of the WMAP
ansatz: peak at the "squeeze |imit".
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Consisteny Relation for Non-Gaussianities

Maldacena

e In the "squeeze triangle limit": one momentum mode is much smaller
than the other two:

k3 < k1,k2 K1~ —Kkp

e During inflation, the comoving Hubble scale decreases with time. The
long wavelength mode k3 crosses the horizon much earlier than the
other two modes kq, k»>.

e After horizon crossing, the long wavelength mode k3 acts as background

whose effect is to introduce a time variation at which kq 5> cross the
horizon.

(Ck1CkoCks) ~ (Ck3C-k3)

<Clek2> ~ (ns 1)

dIn k3k3



DBI Limit
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e Non-Gaussianities are generically quite large
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e Non-Gaussianities are generically quite large

1
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e T he shape of non-Gaussianities vanishes in the squeeze triangle limit
k3 < k1,ko. This is required by Maldacena’'s consistency relation:
F(ky, ko, k3)kik3 ~ns—1 ~ e

This contradicts that the non-Gaussianities are large, unless the shape
vanishes in the squeeze limit.



e [ he shape of non-Gaussianities for DBI inflation

L7 v, |
<Z5 .0.#
R AZAZLAZ RS
Y T e N s

o,
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S
L
e e

e Peak at the equilateral triangle limit.

e F'(kq,k»o,k3) vanishes in the squeeze limit: higher derivative interactions
favor correlations between modes with comparable wavelengths.
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e [ he Gaussianities are not multiplied by any slow roll parameter, so can
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to the consistency relation of Maldacena.



More Shapes

e Another shape of potentially large non-Gaussianities:

1 2\ 3k2ksk3
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Gruzinov

e [ he Gaussianities are not multiplied by any slow roll parameter, so can
be potentially large. The shape also vanishes in the squeeze |imit due
to the consistency relation of Maldacena.

e For DBI inflation, A, vanishes but it should be possible to construct
realistic models where this shape is large.



e [ he shape looks similar to the DBI inflation




Relative Sizes

e For general shapes, fy is defined in the equilateral triangle limit:
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Relative Sizes

e For general shapes, fyy is defined in the equilateral triangle limit:

. 5 (1 2)
N = _Q<é_1_f> :
. 35 (1

INL = o3 <c§_1> ’

e _ Sbe

fnp = “362

- 5N

Ing = _Eéa

s _ 385s

fnp = 5402

e If the sound speed is sufficiently small

£<an

it is possible to observe the slow roll shapes A¢, Ay. This can be realized
in DBI inflation, consistent with current experimental bound on cs.
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Choice of Vacuum

e [ here have been some friendly debates on whether the initial state of
inflation can deviate from the Bunch-Davies vacuum.

e A different perspective: We investigate whether there are pronounced
effects of non-standard vacua to be observed in non-Gaussianities.

e [ he quantum state of inflaton is
1H
\/4663]{'3

where C and C_ satisfy the normalization condition |Cy|?—|C_|? = 1.
Bunch-Davies vacuum corresponds to ¢y =1, C_- = 0.

up, = u(r, K) = (C (1 + ikesT)e KT 4 O (1 — ikesT)e™osT)



e Two potentially observable contributions A, and A. due to deviation
from Bunch-Davies vacuum. The size of the non-Gaussianities are:
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e Two potentially observable contributions A, and A. due to deviation
from Bunch-Davies vacuum. The size of the non-Gaussianities are:
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N = _536(0—)(0—2 —1- E)
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e More importantly, the shapes are very distinctive:




e [ hese shapes are peaked at the " folded triangle” limit:

k1 = ko + k3

for arbitrary ko and k3.

e A feature not shared by other sources of non-Gaussianities, potentially
more pronounced than modulation in power spectrum.



dS/CFT

Strominger

e Unlike AdS/CFT, the dS/CFT proposal suffers from many objections:
absence of supersymmetry, no concrete string example, and other con-

ceptual issues.

e Nevertheless, it is useful to recast problems in (approximate) dS space
in terms of a dual 3D CFT as the results are sometimes a consequence

of the underlying symmetries.

e [ he two point functions and three point functions of the inflaton f are
related to the correlators of the CFT operators by the following

(ff—k)'

(ficy o fis)

1
B 2R€<Oko_k>/
2Re<ok10k20k3>/

Maldacena



e In conformal field theory, the two point and three point correlation
functions are constrained by conformal symmetry.

1

OO ~ g

1

OXOMO@) ~ AL AL A

e For A ~ 3, the two point function on the CFT gives the correct scaling
for the powers spectrum. [Larsen, McNees];[van der Schaar]

e \We are testing whether conformal symmetries can determine the uni-
versal shapes of non-Gaussianities.



Summary

Observational signatures and non-Gaussianities of general single field
inflation.

Size and Shape of non-Gaussianities depend on 5 parameters:

6;276777737)\/2
By varying these parameters, can recover all known shapes and more.

Deviation from Bunch-Davies vacuum can lead to pronounced signa-
tures in non-Gaussianities.

Interesting to see whether the dS/CFT proposal can shed light on the
universality of the shape of non-Gausianities. This will be very useful
especially for multi-field inflation.



T hank You



