
0

Relativity:
what is it, & what is it good for?

Amanda Peet
University of Toronto and

Canadian Institute for Advanced Research

Ontario Science Centre
Toronto  ON  Canada

Sunday 12th June 2005 @ 14:00EDT

http://www.physics.utoronto.ca/~peet/online/osc/



1

Outline

• Before Einstein (30%)

– Newton’s theory of gravity.

– How strong and how fast is gravity?

– Old-fashioned relativity: adding speeds.

– Problems with Newton’s theory!

• Einstein (60%)

– Einstein’s improved version: special relativity.

– Relativity of speed. Time dilation.

– “Twin Paradox”.

– GPS gizmos and general relativity.

• Beyond Einstein             (10%?)

– Black holes: theory and experiment.

– Hawking radiation.  String Theory.
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An apple drops on Newton
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• Everything in the universe attracts everything else.
All stuff in the Universe is one big happy huggy family.
(Or… you can’t get away from gravity!)

• How strong is gravity?

• Let’s look at two things that have “mass”:
they’re made of regular stuff like mud or carbon.

• Gravitational force between two things depends on:

– mass of first thing (proportional),

– mass of second thing (proportional),

– distance between them (“inverse-square”).

Gravity is four times weaker if you double the distance.

Newton’s theory of gravity
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A major problem with Newton’s gravity

• Newton’s force law doesn’t seem to say anything about
how fast gravity is.

• In fact, Newton’s theory says gravity is infinitely fast !

• So, if a wizard made our sun magically disappear (poof!),
earth would instantly stop orbiting in a circle and fling off
into outer space.

• Note: even sunlight takes 500 seconds to get to earth.

• Hey - isn’t the speed of light the fastest that’s allowed?
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What’s relativity?

• If any influence of gravity happens instantly, it’s very
hard to make any sense of cause & effect: which is which?

• Causality problem with Newton’s theory of gravity is
closely related to another idea: “relativity”.

• Let’s concentrate on
something interesting
that moves around
as time ticks by.

e.g. butterfly

• What does its movement look like in a different frame of
reference? Useful idea: relative motion.

• Suppose you go by on rollerblades; what differs for you?
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Old-fashioned relativity

• Back in the Stone Age , figuring out what happened in
another frame of reference was pretty easy:

– speeds were just added and subtracted normally;

– time was exactly the same for everybody.

• Example of relative speed: suppose that

– Honda Civic goes 50km/h south down Yonge St,

– TTC subway moves south 60 km/h faster than Honda.

– So subway goes 110km/h down Yonge St.          … right?
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Part II:Part II:

EinsteinEinstein’’ss
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Einstein’s new relativity

• More than 2 centuries after Newton, 
Einstein figured out a better - more 
accurate - version of relativity.

•

• Why is this important?

• Example: suppose Honda goes at 50% of “c”, and TTC car
goes 60% of “c” faster. Adding simply says: TTC goes at
110% of lightspeed down Yonge!  …  Einstein says: 84.6%.

Einstein: the speed of light “c”
is the fastest possible speed.

Nothing goes faster. 
Not even subatomic particles.
Gravity is no exception.

• 
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How is Einstein’s relativity different?

• Speed of light “c” is approximately

– 300,000 kilometres per second

(30 billion furlongs per fortnight)

• You can fly to Los Angeles and back 
four times in under 1 second, at that rate!

• Einstein’s newfangled relativity, “Special Relativity”,
differs noticeably from old-fashioned relativity only when
the speeds involved are a decent fraction of lightspeed.

• Human intuition is built for much lower speeds than that.

• Einstein’s relativity often seems really weird to humans:
we’re just not familiar with ultra-high-speed territory.
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What finite lightspeed means

• Light is faster than sound.
This is why we see a firework go off
before we hear it go bang.

• Now let’s turn the volume off. How long does it take from
when an explosion happens until we see that explosion?

• It is a finite time-lag, because the speed of light is finite.

– Light from our sun takes about 8 min & 20 sec to
travel 150 million km all the way to earth.

• Light taking 1 year to reach earth started out about 9,418
billion km far (scaling this to earth width, I’m as tall as     )

• Modern astrophysicists can look far back in time: they
just study very old light coming from faraway galaxies.
(From past only; no Star Trek style “time travel”!)

.
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The “Twin Paradox” setup

• Einstein is famous for quite a few things. Possibly his
most useful invention for physicists was his idea of the
thought experiment. (= cheaper than a real one…)

• Old relativity would say yes - everyone keeps same time.

• Einstein said: actually, moving clocks run slow! And if
one gets older quicker - who is it?

Let’s imagine Bart, a homebody
who stays on earth, and his
astronaut twin who rockets off
into outer space for awhile.

Question: do they age the same?

• 

*
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Time dilation

• Why did Einstein claim that moving clocks run slow?

• He figured it out by realizing that sending light-pulses
between different places in space is the only sensible way
to compare (and hence synchronize) different clocks.

• Suppose you flash light from your head to your left toe,
while you go by me on rollerblades. Then what do I see?

• Longer lightpath, same “c”  I see your clock run slower!

• (Symmetrical: you also see mine run slower.)
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• According to Einstein’s special relativity, each Bart sees
the other twin’s clock running slower than theirs.

• Now, astronaut-Bart actually
 has to accelerate, to turn around!

• We can figure out time dilation for constant acceleration
(by using calculus).

Intuitively, acceleration adds to the trip’s time dilation.
The slower the acceleration, the smaller the extra effect.

• The acceleration of astronaut-Bart also breaks the
symmetry between the twins. It gives us a reason to trust
Einstein’s theory, which says that homebody-Bart always
does age faster than astronaut-Bart.     No paradox!

Role of acceleration

< <

>

EARTH
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Testing special relativity

• Time dilation (and length contraction) can be measured
with exquisite precision in particle accelerators.
Einstein’s theory works perfectly, e.g. short-lived
subatomic particles live much longer whizzing by at
nearly lightspeed.

• Large Hadron
Collider (LHC)
being built
in Geneva,
Switzerland.
Multi-country
effort; HUGE.

• (My countries:           )
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Pillar of 20th C. physics: General Relativity

• Up near speed of light: Special Relativity says:-

– moving clocks look to be running slow;

– objects look shrunken in direction of motion;

– pumping in more energy gives ever-diminishing
returns when trying to accelerate a massive object.

• Is it possible to incorporate Einstein’s new relativity with
Newton’s old theory of gravity? … No. Need a new theory.

• Einstein’s GR: gravity becomes beautiful
unified geometrical concept: spacetime.

• Matter tells spacetime how to curve,
spacetime tells matter how to move.

• GR experimentally tested robustly;
… amusingly, Einstein didn’t care!
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GPS gizmos

• GR in your everyday life: GPS!
• 24 satellites orbiting Earth, each has

precise atomic clock. Need 3 or more
satellite radio signals to get latitude,
longitude & altitude, within few metres.

• Used in air navigation, wilderness recreation, sailing,
cars, trucks, etc. (Even can land planes on auto-pilot!)

• Satellites are in high-speed orbits, and further from
Earth where space-time is a bit less curved. Overall clocks
tick at slightly different rates than ground clocks.

• Not using SR and GR would cause navigational errors
adding up to lots of kilometres per day!

• GPS units use SR+GR every day to electronically adjust
clocks, and build Eintein’s theory into receiver chips that
find your location based on satellite radio signals.
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Black holes

• When really big stars run out of gas, gravity forces them to
collapse to Black Holes.  Other forces powerless to resist!

• Need star with mass more than about ten times sun-mass
(otherwise make neutron star or white dwarf star).

• Gravity pull of BH
weak far away,
stronger closer in.

• Event horizon: place of no return.  If fall in, can’t escape,
no matter how strong your rockets.  Distance from centre:
few km for sun-mass BH, ~1 cm for earth-mass BH.

• Inside BH, everything crushed/torn to pieces.  Very nasty
singularity at centre. (worse…  GR breaks down there!!)
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Black hole evidence

• BH are rather like vacuum cleaners; run on gravity power.

• Suck in stuff like gas & stars, which don’t want to go in;
they spit out radiation madly as spiral inward.

• Astronomers detect radiation in telescopes; can tell how
fast stuff is going (redshift) versus distance from centre.

• Very specific relationship of speed versus distance for BH,
as compared to other objects like stars.

• Evidence for BH shows

– e.g. Milky Way has BH around ten-sun mass;

– million/billion-sun mass BH @ centre of most galaxies.
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M84



22

Centaurus A
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Hawking radiation

• In mid-1970s, Hawking discovered something does get
out of black holes: radiation.

• Not same as radiation spit out by stuff in accretion disk.
Hawking radiation happens even if BH alone in universe.

• Hawking temperature very cold for astrophysical BH.
Much colder than CMB.

• Quantum weirdness allows antiparticles!

• Antiparticle has same mass & spin, but opposite charge.

• Particle and antiparticle annihilate to make pure energy

)(2 2
mcE =
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Pairs popping in and out of existence

• Quantum weirdness, via Heisenberg uncertainty
principle, allows pair to

– pop out of vacuum,

– exist as virtual particles
(for very short time),

– pop back out of existence!

• Pair-popping happens everywhere all the time.

• Relatively boring, usually.

• Unless pair straddles horizon
of BH… then one lost inside
and other escapes as radiation.
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Black hole information puzzle

• Big Problem: Hawking’s calculations said: all that ever
comes out of a black hole is radiation, depending only on
mass and angular momentum of infalling stuff.

• So we lose information about what went in?  Gone?!?

• Perhaps if we know more about quantum theory of
gravity we can explain where black hole information
went.  (Don’t want unified theory to gobble information!)
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String theory to the rescue!

• Idea: strings are basic Legos of everything in universe.

• Different vibrations of string are different ‘particles’.
Includes matter and force-carriers. Nature’s symphony!

• Includes gravity naturally, neatly and beautifully.

• In just last decade: use quantum physics of superstrings
and D-branes to compute black hole thermal properties.
Get same answer as relativity guys 25 years ago.  Success!
Also string theory gives ideas about information problem.

• Our most powerful observatories can’t see strings - yet.

= +
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The End The End ……
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Where to learn more


