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Lecture 1:

Black Holes, and the Black Hole Information Problem.

Concepts introduced:

Classical:
• d = 3 + 1 warm-up: Kerr-Newman
• event horizon, singularity, ergosphere
• Penrose diagram
• d = 2 + 1 BTZ black hole
• no-hair theorems in d = 3 + 1 c.f. d ≥ 4 + 1

Semiclassical:
• Euclidean time / Wick rotation, Rindler space
• Hawking temperature, black hole lifetime
• Reissner-Nordstrøm and AdS2×S2

• black hole thermodynamics
• entropy bounds and holography
• BH information problem
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Natural Units used throughout: ~ = c = kB = 1. Hence,

[t] = [`] = [1/m] = [1/T ] [GN ] = [`]d−2

However, we will not suppress powers of string coupling gs, string length

`s – or Newton constant GN , as relativists do.

Here we discuss only string/M theory as theory of quantum gravity.

Other approaches (loop quantum gravity, dynamical triangulations) have

trouble producing a Newtonian limit – !.

Not all massive objects are black holes. To qualify, object needs its

Schwarzschild radius larger than its Compton wavelength, or

m > mP

So electron, with me ∼ 10−23mP , does not qualify.

String theory is the highest-energy physics. In very high CM energy

collision, formation of big fat black holes is ubiquitous. High-energy

density of states of string theory is dominated by black holes. This

property makes it completely unlike any Lorentz-invariant QFT.
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CLASSICAL BLACK HOLES
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Kerr-Newman metric is general solution of d = 3 + 1 Einstein-Maxwell

action. Stationary: no t-dependence. In Boyer-Lindqvist coords

ds2 = −
∆

σ2

(
dt− a sin2 θdφ

)2
+

σ2

∆
dr2

+σ2dθ2 +
sin2 θ

σ2

[(
r2 + a2

)
dφ− adt

]2
(1)

where

σ2 ≡ r2 + a2 cos2 θ

a ≡ J/M

∆ ≡ r2 − 2G4Mr + a2 + Q2 (2)

Electromagnetic field two-form is

F2 = Q

(
r2 − a2 cos2 θ

)
σ4

dr ∧
(
dt− a sin2 θdφ

)
+Q

2ar cos θ sin θ

σ4
dθ ∧

[(
r2 + a2

)
dφ− adt

]
(3)

Roots of ∆ occur when

r± = G4M ±
√

(G4M)2 − a2 −Q2 (4)
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Common astrophysicist complaints:
Q1. Q is unphysical. Charged astrophysical black holes discharge on a
very short timescale via Schwinger pair production.
A1: Charges on all black holes discussed herein are not carried by light
elementary quanta like electrons of QED.
Q2. Astrophysical black holes formed via gravitational collapse have a
lower mass limit ∼ few solar masses. Smaller ones must be ’primordial’.
A2: We are not size-ist.

Event horizon of a stationary black hole geometry occurs where

grr →∞ (5)

Not same as gtt = 0 condition, in general. For evolving geometry, event
horizon has no definition; it is a global concept.
Although metric components blow up at horizon, this is only a coordi-
nate singularity; see this by computing curvature invariants.

RµνRµν =
4Q4[

r2 + a2 cos2 θ
]4 (6)

(For Schwarzschild, RµνλσRµνλσ = 48(G4M)2/r6.)
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Curvature invariant at horizon of a big KN black hole is weak; blowup

is at r2 + a2 cos2 θ = 0 – i.e. the physical singularity.

Ergosphere of rotating black hole is defined as region outside horizon

where

gtt = 0 (7)

Inside ergosphere,

• Since t is spacelike , energy can be negative for real particles.

• Allows energy extraction from BH – Penrose process.

• No sit-still orbits - rotate in direction of J. (Extreme frame-dragging.)

• At horizon, ΩH = a/(r2+ + a2).

J

side view top view

Ergo ErgoHor Hor J
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[Carter-]Penrose diagram gives causal structure of spacetime manifold.

Use conformal transformation to bring infinity onto the page.

Light-beams go at 45◦; timelike geodesics steeper, spacelike less so.

By tradition,

only (t, r)-plane drawn;

for d = 3 + 1 have transverse S2.

Minkowski space: −→

I
r=0

I

+

_
i

i

i+

_

0

In gravitational collapse only part of the eternal BH diagram is present;

it is matched onto a region of Minkowski space. In collapse situations

there is of course no time reversal invariance, and so the physical Penrose

diagram is not symmetric.
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For reference, here are the Penrose diagrams for deS and AdS:
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In three spacetime dimensions, Coulomb potentials are logarithmic, not

power-law. BH metrics are consequently very different.

But if have a negative cosmological constant, find well-behaved black

holes, the BTZ black holes. They are solutions of action

S =
1

16πG3

∫
d3x

√
−g

(
Rg +

2

`2

)
(8)

i.e. cosmological constant is Λ = −1/`2. The metric is

ds2BTZ = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2 +

`2r2

(r2 − r2+)(r2 − r2−)
dr2

+r2
(
dϕ +

r+r−
`r2

dt

)2
(9)

The coordinate ϕ is periodic, with period 2π.

The event horizons are at r = r±, and quantum numbers are

M =
(r2+ − r2−)

8`2G3
J =

(r+r−)

4`G3
(10)
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Now consider object with special “negative mass”:

J = 0 M = Mvac ≡ −
1

8`2G3
(11)

This animal is not a black hole; the metric becomes

ds2 = −
(r2 + 1)

`2
dt2 +

`2

(r2 + 1)
dr2 + r2dϕ2 (12)

This is AdS3 in global coordinates.

Point particles in d = 2 + 1 correspond to range

Mvac < M ≤ 0 (13)

These spacetimes have conical (naked) singularities.

Properties of d=3 gravity ⇒ BTZ spacetime is everywhere locally AdS3.

Crux is identifications, by discrete subgroup of isometry group SO(2,2).

• For |J | > 0, no singularity, but region of CTC’s (r ≤ 0).

• For |J | = 0, “singularity” at r = 0 of Taub-NUT type.

Nonsingular behaviour does not persist upon coupling to matter [BTZ].

See also lectures of N.Seiberg.
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In general, finding new SUGRA geometries very difficult – eqns of
motion nonlinear. Search aided by classical no-hair theorems – once
conserved charges of a system are determined, spacetime geometry is
unique. Essential physics:
• Specify Lagrangian, including matter couplings.
• Gravity falloffs give two conserved quantum #s: M, J.
• Gauge fields give conserved charges Qi.
• Any other matter fields have 2nd-order PDE’s in BH background.
• Must have solutions well-behaved both at infinity and at horizon.
• Not possible ⇒ uniqueness.

It is important for applicability of no-hair theorems that any black hole
singularity be hidden behind an event horizon; theorems fail in space-
times with naked singularities.

Newer results:
Emparan and Reall found new d = 4 + 1 rotating black ring solution
with toroidal horizon! Throws into doubt all uniqueness theorems in
d > 3 + 1!
Gibbons et al: uniqueness proven for static asymptotically flat space-
times, and static charged dilatonic black holes.
Will discuss p-brane story in Lecture 3 (nonuniqueness there too...).
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Consider Schwarzschild for simplicity. Asymptotically flat – see from

large-r behaviour of metric. How about near-horizon region?

Change to radial coordinate of η, proper distance, i.e. gηη = 1. Near

r = rH,

η ∼ 2
√

rH(r − rH) (14)

Also, easy to rescale time,

ω =
t

2rH
; (15)

then metric becomes

ds2 ∼ −η2dω2 + dη2 + rH
2dΩ2

2 (16)

The (η, ω) piece is in fact Rindler space.

So near-horizon region of a Schwarzschild black hole is approximately

two-dim Rindler space times a constant two-sphere. This becomes exact

in the limit M →∞.

True also for generic higher-d static BH, with transverse Sd−2.
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SEMICLASSICAL BLACK HOLES
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In QFT applications, Euclidean Feynman path integral formally iden-
tified with statistical mechanical partition function. Periodicity in Eu-
clidean time is identified as inverse temperature. Had

ds2 ∼ −η2dω2 + dη2 + rH
2dΩ2

2 (17)

Wick rotate ω. Avoid a conical singularity if

we identify Euclidean time iω with period 2π.

Euclidean BH: cigar geometry in (η, ω) −→

rrH

Since ω = t/(2rH), translating back to AF coord system gives

TH =
1

8πG4M
(18)

This is Hawking temperature of Schwarzschild black hole. Result can
easily be replicated by a multitude of other methods.

Caveat: Wick rotation unlikely to be a well-defined operation in quan-
tum gravity in general. E.g. some Lorentzian spacetimes have no
Euclidean counterpart. Also, smooth Euclidean spaces can turn into
singular Lorentzian ones upon Wick rotation.
[See Gibbons talk at Hawkingfest.]
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TH is physical temperature felt by an observer at infinity. Tempera-

ture blueshifts as approach horizon; Hawking radiated particles have

temperature TP at proper distance lP from horizon.

Additional calculable physics: BH radiates with a thermal spectrum;

gravitational backscattering on way out from horizon causes wavelength-

dependent filtering, and gives greybody factors.

Since TH ∼ 1/M , TH increases as M decreases. Result: specific heat

is negative. Physical effect: runaway evaporation of black hole at low

mass.

BH lifetime? Radiates approx. like blackbody, so luminosity is

−
dM

dt
∼ (Area) TH

4 ∼ (G4M)2−4=−2 ⇒ ∆t ∼ G2
4M3 (19)

Endpoint of Hawking radiation = ?? Correspondence Principle proposes

hot string state - see Lecture 3.

Mass of black hole with lifetime ∼ age of Universe (∼ 14 Gyr): ∼1012kg.

Schwarzschild radius about a femtometre.
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Taking a = 0 in Kerr-Newman obtain Reissner-Nordstrøm BH. Horizons

at

r± =
√

(G4M)2 −Q2 (20)

Cosmic censorship requires that singularity at r = 0 be hidden behind a

horizon, i.e.

G4M ≥ |Q| (21)

Fascinatingly, this coincides with BPS bound when Einstein-Maxwell

embedded in supergravity theory.

TH =

√
(G4M)2 −Q2

2π

(
G4M +

√
(G4M)2 −Q2

)2 . (22)

Extremal case, G4M=|Q|, has zero temperature. (Similarly for BTZ

extremal, where r+ = r−.) Stable! Related fact: specific heat at

constant charge cQ is not monotonic:

cQ > 0 for G4M − |Q| � |Q|
cQ < 0 for G4M � |Q| like Schwarzschild

(23)
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Consider extremal RN geometry, and let double horizon be at r0. Chang-
ing radial coordinate to r̂ := r − r0, metric becomes

ds2ext = −H(r̂)−2dt2 + H(r̂)2
(
dr̂2 + r̂2dΩ2

)2
(24)

where H is harmonic function

H(r̂) = 1 +
r0
r̂

(25)

Isotropic coordinates: manifest SO(3) symmetry.

Extremal black hole geometry has an additional special property. Near
horizon r̂ = 0,

ds2 = −
(

r̂

r̂ + r0

)2

dt2 +
(
1 +

r0
r̂

)2 (
dr̂2 + r̂2dΩ2

)2
→ −

r̂2

r02
dt2 +

r20
r̂2

dr̂2︸ ︷︷ ︸+ r20dΩ2︸ ︷︷ ︸
AdS2 × S2

(26)

Bertotti-Robinson.

Reissner-Nordstrøm spacetime is also asymptotically flat.
Thus, it interpolates between two maximally symmetric spacetimes.

16



No-hair theorems indicate that we know very little about a BH by look-

ing from outside. Only quantum numbers conserved because of a gauge

symmetry survive. This suggests that a black hole will possess a de-

generacy of states, and hence an entropy, as a function of its conserved

quantum numbers:

S(M, J, Q) (27)

In late 1960’s and early 1970’s, laws of classical black hole mechanics

were discovered. Striking resemblance to laws of thermodynamics.

Zeroth black hole law says that surface gravity κ̂ is constant over the

horizon of a stationary black hole.

First law is

dM = κ̂
dA

8π
+ ωHdJ + ΦedQ (28)

where ωH is angular velocity at horizon and Φe electrostatic potential.

Second law says that horizon area A must be nondecreasing in any

classical process. (Singularity theorems: horizons don’t bifurcate.)

Third law says that it is impossible to achieve κ̂=0 via a physical process

such as emission of photons.
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After doing many Gedankenexperiments, Bekenstein proposed that en-

tropy of black hole should be proportional to area of event horizon.

Hawking’s semiclassical calculation of black hole temperature

TH =
~κ̂

2π
(29)

made entropy-area identification precise by fixing the coefficient. (In

semiclassical approximation, spacetime is treated classically, while mat-

ter fields interacting with it are treated quantum-mechanically.)

BH entropy (BH stands for Bekenstein-Hawking or Black Hole) is in any

spacetime dimension d

SBH =
Ad

4~Gd
(30)

where Ad is area of event horizon, and Gd is Newton constant (di-

mensions of (length)d−2) This is a universal result for any black hole,

applicable to any theory with Einstein gravity as its classical action.

Enormous entropy: for Earth-mass BH, rH ∼ 1cm and SBH∼1066.
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Extremal RN BH has finite entropy and zero Hawking temperature. Note

that this does not imply a violation of third law of BH thermodynamics!

Contrary to beliefs of some, there is no requirement in fundamental laws

of thermodynamics that entropy should be zero at zero temperature.

(That version of the third law is just a statement about equations of

state for ordinary types of matter.)

BH entropy is 1/4 area of event horizon in Planck units. So... SBH

scales like area rather than volume! Violates our QFT intuition about

extensivity of thermodynamic entropy. Central idea behind holography.

There are several versions of holography...

Elevation to principle occurred with ’t Hooft and then Susskind.

Basic idea: since entropy scales like area rather than volume, fundamen-

tal degrees of freedom describing quantum BH are characterised by a

QFT with one fewer space dimensions and with Planck-scale UV cutoff.

AdS/CFT correspondence provides very explicit and precise example of

this idea. Details of this are to be discussed by other lecturers.
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Subtlety suppressed so far: asymptotically flat black hole cannot re-

ally be in equilibrium with a heat bath; problematic if we want to use

canonical ensemble.

Trouble is Jeans instability: even a low-density gas distributed through-

out flat spacetime cannot be static: it undergoes gravitational collapse.

Technical ways around this problem have been devised, e.g. put black

hole in a box and keep walls of box at finite temperature via proverbial

reservoir.

Why it works: the box introduces IR cutoff which gets rid of Jeans

problem. It also alters relation between black hole energy and box

boundary temperature. Results in positive specific heat for black hole.

For large box, which affects properties of spacetime as little as possible,

black hole is always entropically preferred state. For a small enough

box, hot flat space results.
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Classically, black hole horizon never gets smaller. Hawking radiation

results in loss of mass for black hole, therefore violates classical area

theorem. Worse, appears to violate second law.

On the other hand, thermal Hawking radiation contributes to entropy.

Defined generalized entropy of black hole plus other stuff such as Hawk-

ing radiation,

Stot = SBH + Sother ≥ 0 (31)

Bekenstein argued that this fixes up the second law.

In addition, Bekenstein did many Gedankenexperiments involving various

things falling into black holes. Argued for bound on entropy, given by

entropy of black hole with horizon bounding volume of interest.

Bekenstein bound is not completely general, however. Bekenstein him-

self made this clear – his bound applies only to systems with “limited

self-gravity”. System to which bound is applied must also be an entire

closed system – not an open subsystem.
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Examples of systems not satisfying bound include:

• closed FRW universe

• super-horizon region in flat FRW universe

In these situations, cosmological expansion drives overall dynamics, self-

gravity is not limited. Pick large enough volume, violate bound.

Bousso formulated a more general, covariant, entropy bound.

New ingredient in this construction: use null hypersurfaces bounded by

area A. Surfaces used are light-sheets: surfaces generated by light rays

leaving A which have nonpositive expansion everywhere on sheet.

(Recall Raychaudhuri equation for expansion θ of a bunch of null geodesics

with tangent vector field kµ if

dθ

dλ
= −

1

2
θ2 − σµνσµν − 8πTµνkµkν + ωµνωµν (32)

where λ is affine parameter, and ωµν , σµν are the shear and vorticity.)
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Bousso bound: entropy on light sheets must satisfy

S≤
A

4
(33)

Bousso bound has been rigorously proven, if certain conditions are im-

posed on entropy flux across light sheets. Conditions physically reason-

able for normal matter in semiclassical regimes, below Planck scale.

Bousso bound not general: can be violated.

However, Bousso bound holds up whenever light sheets make sense in

physical situation of interest. No known Gedankenexperiments which

violate it whilst semiclassical approximation is used self-consistently.

Think of Bousso bound as semiclassical proxy for fundamental law.

Kindergarten thermodynamics: have entropy, need quantum statistical

mechanical partition function and hence degeneracy of states.

For black hole, how to compute degeneracy of states?
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Intimately related problem: Hawking’s information paradox.

Semiclassical computation says that spectrum of Hawking radiation is

exactly thermal. This computation is apparently remarkably robust –

order one changes in Planck scale physics of quantum fields near the

horizon result in only exponentially small corrections to Hawking spec-

trum.

Suspicion: full quantum gravity will be necessary!

Loss of information happens because in falling book and vacuum cleaner

of same mass give rise to identical Hawking radiation. Closely connected

to no-hair theorems: observers at asymptotic infinity can see only long-

range hair, which is very limited.

In quantum field theory, global symmetries are possible. Black holes

gobble these up. This may not be a problem in string theory, since

there are no global symmetries, only gauge symmetries.
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String theory is a fully unified theory, including quantum gravity. There-

fore, no degrees of freedom (information) should go missing. Informa-

tion loss must therefore be an artifact of the semiclassical approxima-

tion.

As a result, information must be returned via subtle correlations of out-

going Hawking radiation particles. This point of view was espoused

early on by Don Page, Gerard ’t Hooft, Leonard Susskind,, and col-

laborators including me. Information return requires a quantum gravity

theory with very subtle nonlocality, which is apparently impossible to

see at the semiclassical level.

In the case of the AdS/CFT correspondence, there is a precise equiva-

lence between a quantum gravity setup and a quantum field theory. In

this case, it is clear that information must be returned, because quan-

tum field theories are certainly unitary. The difficulty is translated into

understanding properties of field theories in the limit of extremely strong

coupling, which is itself a very hard problem. It does, however, give a

proof of principle.
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The question of what happens to black hole information was extremely

contentious a decade ago. There was a conference at ITP on Quantum

Aspects of Black Holes in 1993, and participants believed in various

scenarios for solving the information problem. There was even a vote!

1. Hawking still believes that information is just lost in quantum gravity.

Most high-energy theorists cannot stomach this, because unitarity goes

out the window. Even so, this option usually violates energy conser-

vation, although a refinement is possible in which clustering is violated

instead.

2. Several relativists believe that all information regarding anything that

ever felt in to a black hole resides in a remnant of Planckian size. From

the point of view of an outside observer, this seems impossible from the

point of view of information theory: it takes energy to encode informa-

tion. In addition, the required density of states would be enormous, and

this is incompatible with what we know about string theory objects. It

also presents dangers if remnants are allowed to circulate in quantum

loops. Remnants have also been shown to cause trouble in the thermal

atmosphere of big black holes...
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A possibility for remnants which relativists like is the idea that they could

be baby universes. Before I was ’born’, people thought about this in Eu-

clidean space, looking for effects on the big universe via a condensate of

Planckian sized wormholes. Arguments were made that tiny wormholes

lead to no observable loss of quantum coherence in our universe. The

problem is still there in principle, however. Also, the physics depends

on selection of the wave function of the universe. Perhaps worst of all

is that it is difficult to be sure that only small wormholes exist. Keep in

mind also that caveat about Euclidean quantum gravity.

3. Information return scenario.

All but a small part of black hole spacetime near the singularity can

be foliated by Cauchy surfaces called “nice slices”. Property: both

infalling matter and outgoing Hawking radiation have low energy in

local frame of slice. Adiabatic argument shows that information return

within framework of local QFT is difficult to reconcile with existence

of nice slices. One possibility: singularity plays important – nonlocal! –

role in returning information.
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Information return champions show that this scenario can be shown to

be inconsistent only if assumptions are made about physics above the

Planck scale. An important example is is diffeomorphism invariance –

something sacrosanct to relativists.

Example Gedankenexperiment: the correlated spins. Prepare entangled

spins a and b. Let a fall into the black hole with an apparatus A capable

of measuring the spin’s z-component and sending signals. Keep the

other spin b outside the horizon with apparatus B. Wait long enough

that the information regarding the first spin comes out in hawking radi-

ation, as spin h. Now a and h are both supposed to be correlated with

b! You might think there is actually no contradiction, as it looks like a

and h are measured by different observers. But the observer outside the

black hole can now fall in, and also collect signals from A. This would

surely violate the no quantum Xerox machine theorem. The reason why

there is still no contradiction is that it would take so much energy for A

to communicate its message to B that back reaction would wreck the

black hole.
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It is not good enough to try to wait until the black hole is nearly evap-

orated to return all the information, though because it would not have

enough energy. Black holes also have a significant information retention

time; this can be seen by doing computations with entropy of entan-

glement between BH and Hawking radiation. (In the literature there is

significant confusion on entanglement entropy in black hole Gedanken-

experiments. Let me clear this up: in general, entanglement entropy

is not the statistical entropy of the black hole, although in the BH +

Hawking radiation system it is bounded above by it.)

Subtle nonlocality may end up being crucial to information return.

Makes particle theorists queasy, though – do not want to mess up known

low-energy physics. Perturbative string theory does obey cluster decom-

position... but what about nonperturbative M-theory? Possibly we will

find a subtle nondecoupling of the UV and IR in quantum gravity. Or

perhaps we will have to give up some fundamentals of quantum theory.

Either way, or if something completely different happens, it will be new

physics. Ω
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