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Lecture 3.

D-branes extremal and nonextremal, and where they go bad.

Concepts introduced:

• BPS branes, and the no-force condition

• D-branes as probes

• nonextremal D-branes

• Gregory-Laflamme instability

• the Black Hole Correspondence Principle

• where Schwarzschild black holes go bad

• where BPS D-branes go bad

• singularities and what to do about them
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Here we study BPS Dp-brane spacetimes, with symmetry

SO(1, p)× SO(9− p). In string frame, solutions are

dS2 = Hp(r)
−1

2

(
−dt2 + dx2

‖

)
+Hp(r)

+1
2dx2
⊥

eΦ = Hp(r)
1
4
(3−p)

C01···p = gs
−1Hp(r)−1

(1)

Function Hp(r) is harmonic; it satisfies ∂2
⊥Hp(r) = 0,

Hp = 1 +
cpgsNp`s7−p

r7−p cp ≡ (2
√
π)(5−p)Γ

[
1
2
(7− p)

]
(2)

Function Hp would still be harmonic if 1 were missing. Asymptotically

flat part of geometry would be absent for this solution (see later in

Lecture).

Double horizon of Dp-brane geometry occurs at r = 0 in isotropic co-

ords. In every case except D3-branes, singularity at r = 0 as well.

Hence, for Dp-branes with p 6= 3, singularity is null. (Only D6 naked.)

D3-brane maximal analytic extension nonsingular. Near-horizon D3-

brane spacetime is AdS5 × S5.
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BPS Dp-brane Penrose diagrams:

Extremal D3

Hori
zo

n

Extremal
Dp, p=3/
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No-force condition for BPS branes

In fact, BPS multi-centre solutions are also allowed because the equation

for Hp, ∂2
⊥Hp = 0, is linear (this is exact, not an approximation!)

Hp = 1 + cpgsNp`s
7−p∑

i

1

|x⊥ − x⊥ i|7−p
; (3)

Physical reason this works is that parallel BPS branes of same kind are

in static equilibrium: repulsive gauge forces cancel against attractive

gravitational and dilatonic forces. Neutral equilibrium.

Consider making an array of Dp branes.

Take limit −→ linear

density of branes. ...
......
...

Linear density of p-branes per unit length in string units becomes num-

ber of (p+ 1)-branes, in T-dual picture: Np+1 = Np/(R/`s).

Worldvolume directions are already isometry directions, so in reducing

along a worldvolume direction of a Dp-brane we get Np−1 = Np.
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Dp-branes as probes

Consider what happens when probe Dp-brane spacetime, using another

Dp-brane. Treat probe as “test” brane, i.e. ignore backreaction. Very

good approximation provided that N , the number of branes sourcing

spacetime, is large.

Action of a flat probe brane in a SUGRA background has two pieces,

Sprobe = SDBI + SWZ (4)

which are, to lowest order in derivatives,

SDBI = −
1

gs(2π)plp+1
s

∫
dp+1σe−Φ

√
−detP

(
Gαβ +

[
2πFαβ +Bαβ

])
SWZ = −

1

(2π)plp+1
s

∫
P exp (2πF2 +B2 ) ∧

⊕
n
Cn

(5)

where σ are worldvolume coordinates and P denotes pullback to world-

volume of bulk fields. [More details in TASI notes.]
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We had for SUGRA background fields

dS2 = H
−1

2
p

(
−dt2 + dx2

‖

)
+H

+1
2

p dx2
⊥

eΦ = H
1
4
(3−p)
p

C01···p = gs
−1H−1

p

Fix worldvolume reparametrisation invariance: set static gauge

Xα = σα̂ α = 0, . . . p (6)

Take 9− p transverse scalar fields Xi to be functions of time only,

Xi = Xi(t) i = p+ 1 . . .9 (7)

Denote transverse velocities as vi,

vi ≡
dXi

dt
(8)

Now we can compute pullback of metric to brane.

P (G00) = (∂0X
α)(∂0X

β)Gαβ + (∂0X
i)(∂0X

i)Gij

= G00 +Gijv
ivj = −H−

1
2

p +H
+1

2
p ~v2 ;

P

(
Gαβ

)
= H

−1
2

p

(9)
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Next ingredient we need is determinant of metric. To start, notice that

−detP(Gαβ)(~v = ~0) = H
−1

2
(p+1)

p (10)

so that √
−detP(Gαβ) = H

−1
4
(p+1)

p

√
1− ~v2Hp (11)

Putting this together with expression for dilaton and R-R field, obtain

SDBI + SWZ =
1

(2π)p+1gs`sp+1

∫
dp+1σ

[
−H−1

p

√
1− ~v2Hp +H−1

p

]
(12)

From this action, learn that position-dependent part of static potential

vanishes, as it must for a supersymmetric system.

In addition, can expand out this action in powers of transverse velocity.

To lowest order,

Sprobe =
1

(2π)p+1gs`sp+1

∫
dp+1σ

[
1
2
~v2 +O(~v4)

]
(13)

Metric on moduli space, which is coefficient of vivj, is flat. This is in

fact a consequence of having sixteen supercharges preserved by static

system.
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Nonextremal branes

In string frame and with a Schwarzschild-type radial coordinate r, SUGRA
fields of Dp-branes can be written as

dS2 = Dp(r)
−1

2

(
−K(r)dt2 + dx2

‖
)

+Dp(r)
1
2

(
dr2

K(r)
+ r2dΩ2

8−p

)
(14)

where

Dp(r) = 1 + ζcpgsN

(
`s

r

)7−p
K(r) = 1−

(
rH
r

)7−p
(15)

Other fields are

eΦ = Dp(r)
(3−p)/4 (16)

C01...p =
1

ζ gsDp(r)
(17)

Change in harmonic function due to nonextremality is codified∗ in pa-
rameter ζ ∈ [1,0]:

ζ =

√√√√1 +

[
rH

7−p

2cpgsN`s7−p

]2

−
[

rH
7−p

2cpgsN`s7−p

]
(18)

∗Don’t worry about R-R field as ζ → 0; constant is not gauge-invariant
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If make this spacetime by boosting with parameter β, relation is

ζ = tanhβ (19)

Two horizons, at r = rH , r = 0. Causal structure? Inner horizon is

singular, so Penrose diagram in (t, r) plane is that of Schwarzschild.

ADM mass per unit p-volume and charge are

τ ≡
Mp

(2π)pVp
=

(rH/`s)7−p

cpgs2 (2π)p `sp+1

[
cosh2β +

1

(7− p)

]

N =
(rH/`s)

7−p

cpgs
[coshβ sinhβ]

(20)

BPS bound and cosmic censorship say τ ≥ |N/gs|.
Hawking temperature and Bekenstein-Hawking entropy are

TH =
(7− p)

4πrH coshβ

SBH =
Ω8−p

4G10−p
rH

8−p coshβ
(21)

Extremal solution has double horizon, and zero Bekenstein-Hawking en-

tropy SBH. Hawking temperature TH of extremal brane is also zero.
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Gregory-Laflamme instability

Important instability of nonextremal p-branes was discovered by GF.

Simplest example of this phenomenon occurs for neutral objects.

Consider first a neutral black

string in d+1 dimensions.

Translation-invariant solution is

(d dimensional Schwarzschild)×R.

Horizon radius r̂H, and mass per unit length 2πR

Mstring

R
∼
r̂d−3
H

Gd
S ∼

r̂d−2
H

Gd
(22)

Question: is this thing stable?

Do perturbation theory around the translation-invariant background.

Discover tachyonic mode!

Thus, this black string is unstable.

Later on, people found a potential endpoint for evolution of instability.
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Consider also an array of d+1-dimensional black holes, spaced by a

distance 2πR. [Array has to be infinite in order to get a static solution.]

Roughly, this solution ’per unit 2πR’ is d+1-dimensional black hole.

Or compactify this all on circle of radius R; compare localised black

hole (roughly BH of d+1) with translation-invariant black string.

Array: horizon radius rH, and

Marray

R
∼
rH

d−2

Gd+1
(23)

Relation between R, rH , r̂H chosen to give same mass per unit length as

translation-invariant black string: Marray = Mstring so that

rH
d−2 ∼ r̂d−3

H R (24)

Work in microcanonical ensemble, – appropriate for fixed energy (mass)

of system. Consider entropy. Physics point: entropy ∝ area, so array

of black holes has different entropy than black string – spheres scale

differently than cylinders.
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For array, approximately

S ∼
rH

d−1

Gd+1
(25)

So need to find which configuration has biggest entropy:

Sarray

Sstring
∼
rH

d−1

Gd+1

Gd

r̂d−2
H

(26)

Now use Gd+1 ∼ Gd ×R, to find

Sarray

Sstring
∼
rH

d−1

R r̂d−2
H

(27)

and using mass equality relation rH
d−2 ∼ r̂d−3

H R gives

Sarray

Sstring
∼
(
R

r̂H

)1/(d−1)

∼
(
R

rH

)1/(d−2)

(28)

So array has biggest entropy for large R, in particular for R→∞. Thus
uncompactified translation-invariant black string always unstable. Then,
argument goes, in d+ 1 dim it becomes black hole array, which is then
unstable (via similar mechanism as Jeans instability) to becoming one
ginormous black hole. Black string stable for small R.
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But what actually happens for large R??
Turning the translation-invariant black string into the array would re-
quire uncovering singularity! Nakedness! Horowitz-Maeda proved that
cannot happen in finite affine parameter – using arguments very simi-
lar to original singularity theorems of Penrose. Weaker argument that
cannot happen in infinite affine parameter...

Conjectured that endpoint is

instead a lumpy black string!

Interplay with breakdown of

no-hair theorems in higher-d.

Gubser-Mitra conjecture (in AdS context), also Reall (AF): spacetimes
have classical tachyonic instability iff have thermodynamic instability.

Interesting to ask: is the transition ’first-order’ or ’second-order’?
(Compact case: sizes � `P so effectively ∞ system ⇒ OK.)

Question of endpoint being investigated with state-of-art numerics by
Choptuik’s group at UBC. But see also Barak Kol hep-th/0206220.
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Original GF paper was entitled

“Black Strings and p-Branes Are Unstable”.

Horrors! Are all uncompactified SUGRA p-brane spacetimes of string

theory rubbish?? What about BPS branes?

Nope. Several ways to see this. Two are:

1. Tachyonic mode disappears in extremal case; length scale of insta-

bility goes to infinity as nonextremality parameter goes to zero.

2. BPS branes are protected by Bogomolnyi bound. What could a BPS

brane break up into? Dp-brane has conserved charge. E.g. if uncom-

pactified BPS D1-brane wanted to break up into array of D0-branes,

it would be out of luck because D0’s and D1’s do not occur in same

theory. If D1 were wrapped on a circle, there would be a regime (R<`s)

in which we should more properly describe it in the T-dual theory, i.e.

as a D0. In this case configuration is still stable, of course.

We did not have time to discuss branes of low codimension (give rise

to IR problems – logarithmic and linear potentials). But domain walls

separating different vacua of a theory will be stable even if they are

neutral, because it would cost an infinite amount of energy for them to

break up. So no Gregory-Laflamme for them.
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When SUGRA goes bad: the Black Hole Correspondence Principle

SUGRA actions we met yesterday describe low-energy approximations

to string theory. Appropriate for situations where corrections are small.

String theory has two expansion parameters which encode corrections to

the lowest-order action, namely sigma-model loop-counting parameter

α′ and string loop-counting parameter gs. Since α′ ≡ `s2 is dimensionful,

need to fold in measure of spacetime curvature to get a dimensionless

parameter, e.g. `2sR. For string loop corrections need gseΦ.

Basic idea behind Correspondence Principle: stringy/braney degrees of

freedom take over when SUGRA goes bad.

Neutral black holes

dS2
d = −

[
1−

(
rH
r

)d−3
]
dt2 +

[
1−

(
rH
r

)d−3
]−1

dr2 + r2dΩ2
d−2 (29)

where

rH
d−3 =

16πGdM

(d− 2)Ωd−2
∼ gs

2`s
d−2M (30)
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Note: if fix mass M and radius r in units of `s, then metric becomes
flat as gs → 0.

SUGRA black hole solution breaks down in sense of the Correspondence
Principle when curvature invariants at horizon are O(`s). Physical rea-
son: horizon (not singularity) signals existence of black hole. Using
horizon also gives rise to sensible answers which fit together in a coher-
ent fashion under duality maps.

Curvature invariant nonzero for neutral black hole: RµνλσRµνλσ∼ r−4
H so

breakdown of SUGRA occurs when

rH ∼ `s (31)

Thermodynamic temperature and entropy of black hole scale as

TH =
(d− 3)

4πrH
SBH =

Ωd−2rH
d−2

4Gd
(32)

so Hawking temperature at correspondence point is TH ∼ 1/`s.

Q: What replaces SUGRA when SUGRA fails?
A: Follow the quantum numbers!
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Simplest string theory object which carries only mass quantum number
is closed fundamental string. Other motivations: Occam’s razor, and
lack of involvement of gs in correspondence point.

Expectations? Black holes and stringy/braney states typically do not
have identical entropy for all values of parameters; rather, transition
between black hole and string degrees of freedom occurs at Correspon-
dence Point. Existence of a correspondence point for every system
studied is a highly nontrivial fact about string theory and the degrees
of freedom that represent systems in it in different regions in parameter
space.

To finish neutral BH example, need statistical entropy of closed string
states due to large degeneracy at high mass. Standard result in pertur-
bative string theory; see GSW or Polchinski book. Assume that gs � 1
so can use free spectrum computation; this assumption will be justified
a posteriori.

Using relation between oscillator number N and mass m, `s2m2 ∼ N
have at leading order for large m the degeneracy

dm ∼ em`s (33)
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Quantity 1/`s is Hagedorn temperature. Above Hagedorn temperature,
canonical ensemble is in fact no longer well-defined. This happens
because partition function diverges,

Z =
∫ ∞

0
dmem`se−m/T →∞ above T = 1/`s (34)

At Hagedorn temperature, excited string becomes very long and floppy;
single long string dominates thermal ensemble. Boltzmann entropy of
string state is

Sstring = log(dm) ∼
m

`s
(35)

Matching masses at correspondence point for general Schwarzschild ra-
dius

M ∼
rH

d−3

gs2`sd−2
∼ m (36)

yields the general entropy ratio

SBH

Sstring
∼

rH
d−2

gs2`sd−2

gs
2`sd−3

rH
d−3

∼
rH
`s

(37)

So indeed, crossover from black hole to string state indeed happens at
rH ∼ `s. And BH dominates for large mass, while string dominates at
small mass.
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Justifying previous assumption about string coupling at correspondence

transition point: Since entropy at correspondence is S ∼ m`s, and `sm ∼√
N , we get S ∼

√
N . Also, S ∼ `sd−2/Gd ∼ 1/gs

2. So gs ∼ N−
1
4 at

transition. This is indeed weak coupling since N is very large.

More work has been done on physics of transition between the black

hole and string state.

This river runs deeper! Conservative direction to run matching argument

says: string state will collapse to a black hole when it gets heavy enough.

Radical direction to run argument is other way: correspondence principle

says endpoint of Hawking radiation for a Schwarzschild black hole is a

hot string. Hot string then subsequently decays by emitting radiation

until get bunch of massless radiation. (An interesting fact about this

decay of a massive string state in perturbative string theories is that

spectrum is thermal, when averaged over degenerate initial states.)

Overall, picture of decay of Schwarzschild BH in string theory is consis-

tent with expectations that a truly unified theory should not allow loss

of quantum coherence. [TASI notes: other NS-NS cases.]
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For R-R charges, what happens? Here, energy above extremality ∆E
can be carried by either open or closed fundamental strings – as long as
they are close to the D-branes. Open and closed strings have different
equations of state and different entropy. Again, assume weak string
coupling; this assumption can be justified a posteriori. For open strings,
free massless gas

∆Eopen ∼ N2
p VpT

p+1 Sopen ∼ N2
p VpT

p ⇒ Sopen(∆Eopen) (38)

while for closed strings, equation of state is

Sclosed ∼ `s∆Eclosed (39)

Find: open strings dominate for near-extremal BH, closed strings dom-
inate for nearly-neutral BH.

In terms of advances in precise computations of black hole entropy,
most important examples of application of correspondence principle are
systems with two or more R-R charges. This is case both for BPS and
near-BPS black holes. Physics calculation shows crucial fact: for these
systems, scaling works in such that there is no special correspondence
point – exact comparisons can be made to weak-coupling stringy/braney
calculations for black holes of any horizon radius. We will discuss spec-
tacular success of these microscopic calculations in Lecture 4.
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Where BPS Dp-branes go bad

dS2 = Hp(r)
−1

2

(
−dt2 + dx2

‖

)
+Hp(r)

+1
2dx2
⊥

eΦ = Hp(r)
1
4
(3−p)

C01···p = gs
−1Hp(r)−1

(40)

where

Hp = 1 +
cpgsNp`s7−p

r7−p (41)

Ricci scalar is nonzero:

RG = −1
4
(p2 − 4p− 17) (∂rHp)

2H
−5

2
p (42)

Since the harmonic function Hp ∼ rp−7 near r = 0, have

RG ∼ r
5
2
(7−p)

(
rp−8

)2
∼ r

1
2
(3−p) (43)

Blows up at r = 0 for big branes p > 3. Similarly for RµνRµν, RµνλσRµνλσ.

Dilaton behaves differently:

eΦ = H
1
4
(3−p)
p ∼ r−

1
4
(7−p)(3−p) (44)

This blows up at r = 0 for small branes, i.e. for p < 3.
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(For p = 3, recall from Lecture 2 that curvature and dilaton are both

boring.)

p<3 curv p>3 curv

p<3 dil

p>3 dil

Note interesting fact: if asymptotically flat part of geometry is removed,

i.e. lose 1 in harmonic function Hp, then behaviour of both curvature

and the derivative of dilaton becomes monotonic. This turns out to be

a crucial SUGRA fact in context of Dp-brane gravity/gauge correspon-

dences of [IMSY].
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Singularities

Does string theory always fix singularities by smoothing them out?

[Horowitz-Myers]: not always!

Some singularities are so bad they should be thrown away altogether.

Prototypical example is negative-mass Schwarzschild geometry. Since

M<0, horizon is absent, so singularity is naked. If singularity were

smoothed out by stringy phenomena, resulting finite-sized blob would be

an allowed object with overall negative mass. It would then destabilise

vacuum - via pair production, for example. Upshot: negative-mass

Schwarzschild geometry is a figment of classical physicist’s imagination.

Important note: whether a spacetime geometry is singular depends on

dimension of SUGRA theory it is embedded in. Some spacetimes singu-

lar in lower-d are nonsingular when lifted to higher-d. For understanding

possible resolution of singularities in terms of basic stringy objects like

D-branes, best dimension to do singularity analysis is d=10, which is

dimension in which D-branes naturally live. Generally more confusing

to try to do analysis directly in lower dimensions. Also, need to be sure

that any operation you do in SUGRA also makes sense in string theory.
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