

by Amanda Peet

Thanks to:

RADCLIFFE INSTITUTE FOR ADVANCED STUDY HARVARD UNIVERSITY

THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

rough outline of talk

basic ideas

- powers of ten
- accountability: experiment
- incompatibility of GR and QFT IP string theory

pesky puzzles

- patterns in quark and lepton spectrum why ?
- unification ?
- supersymmetry ?
- composition of universe dark matter & energy = ?
 modern string theory
 - extra dimensions of space
 - big bang or big crash?
 - spacetime as *emergent*
 - D-branes
 - AdS/CFT

basic idea

Discerning Patterns

- Physicists want to cover a lot of ground, i.e. find principles that *always* work – in *heaps* of different situations.
- We want to explain origin and structure of fundamental matter + forces, from sub-atomic to cosmological scales.

- Smallest distance imaginable: million-billion-billionbillion-th of a centimetre.
- Biggest distance imaginable: ten billion billion billion cm.

Accountability: experiment, particle-style

Accountability: experiment, particle-style

Accountability: experiment, cosmology-style

<u>A Theoretical Emergency</u>

- Twin pillars of 20th century experimental physics: quantum and relativistic theory, fundamentally incompatible. Oops!!
 - Need new theory that:-
 - predicts sensible physics in extreme regimes, like birth of universe and black holes (no "infinity" answers!);
 - is internally consistent (no mathematical anomalies!);
 - unifies, explains patterns/differences.
- *Unique* theory which may do all this is **SUPERSTRING THEORY**.

String Theory: Basic Idea

- All 'particles' matter and force-carriers (e.g. electron, quark, photon) are really tiny vibrating *superstrings*, or "strings".
- Forces described solely by splitting and joining of strings.
 Smooth process.

- If assume strings are basic stuff, gravity comes out automatically. (Particle theory can't do that!)
- String is simplest complication needed to solve puzzles.

pesky puzzles

Similarities and Differences in Particle Zoo

• Two kinds of fundamental matter seen, so far:

- Leptons:
$$(e, v_e), (\mu, v_{\mu}), (\tau, v_{\tau})$$

- **–** Quarks: (u, d), (c, s), (t, b)
- Four fundamental forces seen, so far:

Force name	Gravi- tational	Electro- magnetic	Weak nuclear	Strong nuclear
Carrier particle?	graviton	photon	W+, W-, Z	gluon
Felt by leptons?	✓	✓ / X	✓	X
Felt by quarks?	✓	✓	✓	✓
Range?	infinite	infinite	sub-nuclear	nuclear
Strength now?	weakest	weak	weaker	strong

Unification

- Fundamental "constants" describing strengths of forces are *not* actually constant, but vary with energy:
 - Strong nuclear gets weaker at higher energy;
 - electromagnetic, weak nuclear, gravity all get stronger.
- Variation effect involves:-
 - relativity: high-speed weirdness,
 - quantum behaviour: tiny-ness weirdness.
- Extrapolating up suggests unification at ultra-high energy, maybe up near 100,000 billion billion billion degrees.
- *Extreme* Physics!
 - Beginning of universe;
 - inside black holes.

(Relativity)

- Einstein is famous. Not many people know why!
- In early 1900s, he published amazing theories of relativity. Basically, relativity is high-speed weirdness.
- Speed of light is fundamental speed limit. Nothing faster!
- When something gets up to a good fraction of the speed of light, ordinary rules no longer apply:
 - velocities don't add simply;
 - pumping in more energy gives diminishing returns, and hit fundamental barrier at speed of light;
 - objects look shrunken in direction of motion;
 - moving clocks look to be running slow.

(Quantum Behaviour)

- Everyday objects have definite properties, e.g. size, speed. Mathematical idealization! Only valid if object is heavy and slow. In real life, *quanta*, not particles.
- Sometimes behave like pointy things, sometimes like wavy things. Tiny-ness weirdness.
- Every quantum has fundamental jitter. Jitter frequency controlled by energy of quantum. Can never turn off quantum jitter even at absolute zero temperature!
- Jitter causes tradeoffs: Heisenberg uncertainty principle. e.g. tradeoff in precision on weight *vs*. timing.
- Can have as many quanta as you like, but each costs huge energy price: *Energy* = (*mass*)× (*lightspeed*)². Just 1 gram converts into explosive energy of ~21,468 tonnes of TNT!

Matter vs. Forces

How does a physicist tell particles apart?

 By mass and [intrinsic] spin, which are *only* labels invariant under space-time symmetry.

- Two major types of particles:-
 - matter: spin ¹/₂ (fermions),
 - interaction-transmitter: spin 0,1,2 (bosons).
- Supersymmetry: theoretical boson-fermion pairing.
 - Logical extension of known symmetries of Nature.
 - Useful for helping explain unsolved puzzles!
- Supersymmetry broken now: no sparticles seen yet.

Super-particles

- Massive hunt underway for super-particles.
- Discoverers would get Nobel Prizes! ③
- Super-particles may be discovered in particle accelerator frontiers, and affect astrophysics & cosmology too.

Particle	Super-partner		
leptons, quarks	sleptons, squarks		
Higgs	Higgsino		
photon, Ws, Z, gluons	photino, Wino, Zino, gluino		
graviton	gravitino		

Evolution of Universe

• At beginning:

- incredibly hot tiny universe;
- no atoms, protons or neutrons: no binding possible;
- quarks and leptons interchangeable;
- all interactions same, and of same strength.
- Soon afterwards universe inflated very fast, particle creation. Leftover radiation: now stretched out, "CMB".

Composition of Universe

Survey stuff of universe through gravity effects. CMB, supernovae sense different effects.

modern string theory

Extra Dimensions of Space

• Theories incorporating this idea go back over 80 years, but string theory is new in *requiring* more dimensions.

- Big ant can walk in only one direction the circular dimension is just curled up so small it goes unnoticed.
- Tiny ant would think twig surface is *two*-dimensional.
- State-of-the-art experiment says:
 - if we're allowed in, extra dimensions must be $< 10^{-17} cm$
 - if only gravity is allowed in, they must be < 0.15mm</p>

What Caused the Big Bang?

- (Children are smart! When an adult says, "God made the universe.", the child asks, "Then who made God?!".)
- String theory gives new options for creating the initial tiny fireball that expanded to eventually create Earth+us.
- Imagine car crash
 (with eyes, ears shut) →
- Brane crash?

Where Will the Greeks' Quest End?

• If we keep looking deeper and deeper, will there be endless layers of the onion?

- For particle accelerators, more \$ gives better resolution.
- For string acccelerators, it's different! Even theoretically, we already know: more money helps *only up to a point*.
 - At ultra-high energy, string resolution gets bad again!
 - Extra energy just pumps up size of string probe.
- Minimum sensible distance ~ "string scale".
- So there may be no need to look for anything deeper.

Spacetime as Quantum and Dynamical

- Spacetime was thought of as merely the playing field of particles and forces.
- But in string theory, we can smoothly
 - tear the fabric of space, change its topology;
 - change the number of dimensions of space.
- So spacetime as a fundamental idea is probably doomed!
- Big fat space-time must be emergent, *dynamically* how?
- Some of the remaining, intriguing questions:
 - Why does time run forwards?
 - Was there anything before the Big Bang?
 - Should quantum theory be applied to the whole universe?
 - Is our universe a lucky cosmological accident or unique?

D-branes (new in 1995)

- Strings not the only extended objects in string theory!
- D-brane := hypersurface where open strings end.

- Carries generalization of electric charge ("R-R").
- Gravitational fields (+etc.!!) living in D=9+1 bulk.
- Gauge fields (+etc.!!) living in d=p+1 worldvolume.

AdS/CFT (new in Dec.1997)

- Taking "decoupling limit", i.e. special low-energy limit, of system of N Dp-branes ⇒ massive simplifications.
- Open string theory on branes ⇒ simple gauge *field theory*, specifically n=4 <u>supersymmetric Yang-Mills</u>.
- Closed string theory in bulk ⇒ near-core region of bulk <u>supergra</u>vity spacetime, plus stringy corrections in [interior of] near-core bulk SUGRA spacetime.
- Stunning new duality, i.e. equivalence, between gravitational stringy system and SYM field theory. *Explicit, computable* example of emergent gravity. Spacetime classical only as N→∞ and g→0.
- p=3 is "AdS/CFT", $p\neq3$ cases more tricky. \odot

Where to Learn More

Where to Learn More

Where to learn more

www.physics.utoronto.ca/~peet/online/
www.physics.utoronto.ca/~peet/online/general.html

