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Abstract. Chirped dielectric laser mirrors offer a general so-
lution for broadband feedback and dispersion control in fem-
tosecond laser systems. Chirped mirrors developed for mode-
locked solid-state lasers, femtosecond parametric oscillators,
chirped pulse amplification systems and pulse compressors
are introduced. Basic theoretical and design considerations
are also presented.
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One of the main trends of laser physics today is ultrafast
laser technology. Recent research on high-power semicon-
ductor laser diodes and solid-state laser materials with a broad
fluorescence emission band has paved the way for compact,
reliable, broadly tunable all-solid-state continuous wave (cw),
picosecond (ps) and femtosecond (fs) pulse laser sources.
One approach is based onTi:sapphire (Ti:S) [1], which
can be efficiently pumped by the frequency-doubled output
of AlGaAs diode-pumped neodymium lasers. Alternatively,
the direct diode pumping of colquiriite laser-active materi-
als such asLiCaAlF6:Cr3+ (Cr:LiCAF) [2], LiSrAlF6:Cr3+
(Cr:LiSAF) [3], and LiSrGaF6:Cr3+ (Cr:LiSGAF) [4] be-
came feasible by the use of enhanced mode-matching schemes
[5] or AlGaInPsemiconductor lasers with “improved” beam
quality operating near670 nm[6]. The latter approach might
offer greater simplicity, efficiency, compactness, and cost
effectiveness. The importance of these features for wide-
ranging applications needs no explanation. These advances
in laser technology offered the possibility of constructing
laser oscillators generating optical pulses in the sub-20-fs
regime by using different mode-locking techniques such as
self-mode-locking of the laser [7].

Because of the dominant role of soliton-like pulse shaping
in ultrashort-pulse solid-state lasers [8], femtosecond-pulse
generation relies on net negative, i.e. anomalous, intracavity
group-delay dispersion (GDD). Solid-state gain media always
introduce a certain amount of frequency-dependent positive
(normal) dispersion in the cavity, which must be balanced as

well. Until recently, Brewster-angled prism pairs [9] built into
the laser cavity were the only low-loss sources of broadband
negative GDD. In prism-pair-controlled broadband lasers,
a major limitation to ultrashort-pulse generation originates
from the variation of the intracavity GDD with wavelength.
The principal source of this higher-order dispersion, however,
was found to be the prism pair [10, 11]. If the lasers are op-
erated in the vicinity of zero GDD, the spectra of sub-20-fs
pulses from prism-pair-controlled oscillators are asymmetric
with a broad shoulder [10] or are double peaked [8, 11] de-
pending on whether the soliton-like pulses are, respectively,
third- or fourth-order dispersion limited. This deviation from
the ideal sech pulse spectrum causes a weak but significant
pedestal in the time domain, the length of which may substan-
tially exceed the pulse duration defined as the full width at
half maximum (FWHM) intensity. This degradation in pulse
quality may be unacceptable in a number of spectroscopic
applications requiring high temporal resolution. An addition-
al problem in the time domain is the increased sensitivity
of the pulse width to the cavity and prism alignment. Cav-
ity mirror alignment changes the position of the resonator
axis and thus the glass path through the prisms. Hence any
small cavity realignment calls for subsequent readjustment
of the prism positions and orientation to restore the origin-
al pulse width and the corresponding spectrum. This makes
“turn-key” operation and thus the integration of these devices
in complex systems [e.g. chirped pulse amplification (CPA)
systems, opto-electronic data processing systems] extreme-
ly difficult. Furthermore, the minimum prism separation sets
a constraint on the resonator length and, in turn, the size and
repetition rate of femtosecond-pulse solid-state laser oscilla-
tors.

Continuous wave, ps, and fs lasers contain optical coat-
ings as important functional elements, e.g., high reflectors
(HR), output couplers (OC), and antireflection (AR) coatings.
These optical elements are based on the interference phe-
nomenon of light. Their theoretical analysis generally relies
on the well-known scattering matrix formalism [12, 13] de-
rived from the Maxwell equations. Laser performance strong-
ly depends on the quality of optical coatings: the high reflec-
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tors should approach the ideal100% reflectance at the op-
eration wavelengths in order to minimize intracavity losses;
the output coupling has to be set to specific values to ensure
optimum operation. In broadband mode-locked or broadly
tunable laser systems, broadband intracavity and extracavity
mirrors covering possibly the whole fluorescence spectrum of
the laser active medium are needed; the reflectivity of such
mirrors is not determined solely at the operation wavelengths
but at the pump wavelength(s) as well.In the particular case
of femtosecond laser systems, all the coatings must also be
designed for phase characteristics to prevent the pulse shape
from undesirable distortion.

In the case of high reflectors, a combination of materi-
als with the highest refractive-index ratios (nH/nL) is usually
preferred since the higher the ratio, the higher the theoreti-
cal reflectance and bandwidth of standard quarterwave stacks.
Among its competitors, theTiO2/SiO2 pair has the highest
ratio over the near-infrared spectral range [14]. In the pro-
duction of a high-density coating with low scattering and
absorption losses, ion-based technologies could be advanta-
geous [15]. However, the total number of layers is strictly
limited by the relatively high stress in such coatings, which
does not allow the deposition of dielectric mirrors formed by
a relatively high number of thick layers in the near infrared.
At the optical coating laboratory of the Research Institute
for Solid State Physics, Budapest, Hungary, a BAK 550 box
coater supplied with an ESQ 110 electron beam gun (prod-
ucts from Balzers AG) is used for depositing laser optical
coatings. Our unconventional coating deposition technology
(called reactive electron beam deposition under reduced oxy-
gen pressure), results in relatively high density optical coat-
ings of theTiO2/SiO2 andTa2O5/SiO2 material pairs with
low absorption and scattering losses. For details on all of
these, see [14]. In the case ofTi:sapphire lasers, for instance,
the useful bandwidth of our low-dispersion quarterwave mir-
rors made ofTiO2/SiO2 is limited to approximately180 nm
around800 nm[14]. In addition to the high-order dispersion
existing in prism-pair-controlledfs laser systems, the band-
width of low-dispersion dielectric mirrors forming the laser
cavity appeared to be the main limiting factor for obtaining
optical pulses below10 fs, directly from a laser oscillator.

The problem of designing broadband dielectric mirrors
for sub-10-fs or broadly tunable femtosecond solid-state laser
systems is twofold. First, the mirrors have to havecontin-
uous high reflectivity over a broad spectral rangewithout
any drop in reflectivity regardless of wavelength. Second, the
mirrors have to exhibit asmooth, possibly negative varia-
tion of the group delay vs. frequency function over the whole
operation range, allowing femtosecond mode-locked opera-
tion of the laser. It is worth mentioning here that these two
requirements can be fulfilled by properly designed metallic
mirrors; however, their reflectivity is considerably lower than
that of a dielectric mirror and therefore they usually cannot
be used as intracavity broadband mirrors in femtosecond laser
oscillators. Previously proposed solutions to extend the high
reflectivity range of dielectric mirrors, such as (i) deposition
of low-pass (high-pass) stacks as a single coating [16], and
(ii) deposition of multilayer stacks with variation of thick-
ness in arithmetic or geometric progression [17], do not meet
the above-mentioned requirements (for details of all of these,
see [14, 18–20]). Briefly, all of the previously used broad-
band dielectric mirrors exhibited rapid change of the reflected

phase at specific wavelengths in the high-reflectivity zone of
the broadband mirrors, causing resonant losses [18] and ex-
tremely strong high-order dispersions [19, 20] around these
wavelengths, thus preventing their use in broadly tunable
femtosecond oscillators [14].

In this paper we discuss a novel technology for ultrashort-
pulse generation that uses what have become known as
chirped dispersive dielectric mirrors, or chirped mirrors[21,
22]. These special laser mirrors, which are potentially free
from all the drawbacks listed above, can be used for broad-
band feedback, intracavity and extracavity dispersion con-
trol. In the following, special laser mirror designs exhibiting
high reflectivity and negative GDD over broad frequency
ranges are shown. The design technique, deposition technol-
ogy, and quality control permit higher-order contributions
to the mirror phase dispersion to be kept low or to be cho-
sen such that high-order phase errors introduced by other
system components (e.g., the gain medium, prism pairs) are
cancelled. By replacing conventional thin-film optics (and
prism pairs in most of the cases), these novel devices made
a Kerr-lens mode-locked, solid-state lasers more feasible.
These lasers deliver nearly bandwidth-limited7.5-fs pulses
from Ti:sapphire lasers [23–25] around0.8µm, and sub-
20-fs pulses fromCr:LiSAF andCr:LiSGaF[26, 27] lasers at
around840 nm. In addition, the use of chirped mirrors sim-
plifies the cavity design and permits the construction of com-
pact, reliable, high-output-power (and high-repetition-rate)
sub-20-fs sources as well. Further applications of chirped
mirrors that have already been accomplished include, for
example, using them for broadband feedback and disper-
sion control in broadly tunable cw, ps, and fs solid-state
lasers [28] and parametric oscillators [29, 30]; broadband
third- and fourth-order dispersion control in pulse compres-
sion schemes used in CPA systems [31–33]; or in white-light-
continuum compression experiments [34] supporting pulses
below5 fs [35, 36].

First we present theoretical considerations of the oper-
ation of chirped dielectric laser mirrors. We point out the
analogy between the holography of wave packets in a vol-
ume medium [37] and our chirped mirrors. Based on our
theoretical considerations, formulae are presented that can be
efficiently utilized to synthesizegraded-indexdielectric mir-
rors with prescribed dispersion properties. Next we deal with
chirped mirrors consisting of alternatediscretelayers ofTiO2
andSiO2; we present general and particular design consid-
erations for different application problems and we also dis-
cuss in detail the method of construction. Representative dis-
persive mirror designs developed for different femtosecond-
pulse solid-state lasers, parametric oscillators, CPA systems
and pulse compressors are then shown. By computing the
electric-field distribution inside the dielectric mirrors (built of
discrete layers) as a function of the wavelength, we derive
their dispersive properties from the wavelength dependence
of the penetration depth of the incident optical field in accor-
dance with our theoretical considerations. There are some im-
portant technological issues that must be taken into account
during the design of chirped mirrors: reflection losses and
sensitivity to deposition errors. Based on our atomic-force-
microscopy (AFM) and reflectivity measurements, reflection
losses at chirped mirrors made by different technologies are
compared. The second technological issue that must be men-
tioned is the fact that dispersive properties of chirped mir-
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rors exhibit a relatively high sensitivity to deposition errors
in the layer thickness. This technological problem could be
efficiently eliminated by developing rapid, accurate, inexpen-
sive methods for dispersion measurement on laser mirrors.
Measured GDD versus wavelength functions of accomplished
dispersive mirrors are presented. These data were obtained by
using different interferometric arrangements combined with
a spectrograph [38, 39]. Finally, some typical applications of
chirped mirror technology are presented.

1 Theory

As a starting point, an analogy betweenchirped dielectric
laser mirrorsandone-dimensional (1D) phase-volume holo-
grams written by two counter-propagating (chirped) laser
pulses [37] is established. We show that chirped mirrors can
be regarded as artificial, 1D holograms exhibiting extreme-
ly high, sudden refractive-index modulations and relative-
ly small overall thicknesses. In femtosecond laser cavities,
the most important requirement is to have minimum losses
in the cavity over the whole operation range; this require-
ment can be fulfilled by properly designed (chirped) dielectric
mirrors only. However, in pulse stretcher and compression
schemes developed for CPA systems [31–33], or in white-
light-continuum compression experiments [34–36], proper
dispersion control over the whole spectrum is of primary im-
portance. In the latter case, one can tolerate considerably
higher losses than in intracavity applications. One of the pos-
sible promising solutions for the problem of pulse stretching
and compression in CPA systems was recently presented by
Loiseaux et al. [40], who used a pair ofchirped transmission
gratingsplaced perpendicularly to each other to provide an
almost linear time delay versus frequency function.

The main disadvantage of volume holograms written by
short light pulses is their low diffraction efficiency because of
the low refractive-index modulation, the high bias exposure,
and the short physical length of the interference pattern. It is
worth mentioning that the experimental realization of the idea
of pulse shaping in phase-volume holograms has been recent-
ly performed by Hill and Brady [41] for instance. However,
the reflectivity of the phase-volume hologram can be consid-
erably increased by dispersing the frequency components in
space for recording the interference pattern, which is called
spectral holography[37, 42]. The potential applications of
spectral holography for broadband dispersion compensation
have been presented in [37, 42]. In Sect. 1.2, we briefly con-
clude the main results in connection withbroadband disper-
sion compensationand time-reversal of femtosecond laser
pulsesand mention our preliminary experimental results on
phase conjugation in a photorefractive medium [43]. Sect. 1.3
presents analytical formulae derived from the analogy be-
tween chirped mirrors and volume reflection holograms. The
formulae can be used tosynthesize graded-index chirped mir-
rors with prescribed dispersion properties. Though these for-
mulae do not directly result in high-reflectivity laser mirrors
built of discrete layers, they do help us to gain a better under-
standing of the operation of chirped mirrors, and they do pro-
vide a route towards starting designs made of discrete layers
and physically correct coating design specifications for fur-
ther optimization. Note, however, that these graded-index (or

rugate) chirped mirrors could also be manufactured via differ-
ent, state-of-the-art optical coating deposition techniques.

1.1 Holography of wave packets

In the following, we show that the interference pattern formed
by two counter-propagating (Gaussian) pulses exhibiting dif-
ferent chirp parameters are capable of forming “chirped mir-
rors” in a holographic (or photorefractive) medium with the
assumption that the local change in the refractive index is pro-
portional to the exposure in the phase-volume hologram. If
one of the pulses (reference) is chirp free (i.e., dispersion free;
τ(ω) is constant at anyx position), the interference pattern
records the temporal structure (chirp) of the signal pulse in
the spatial domain. After recording such an interference pat-
tern in a volume holographic medium, the chirp of the signal
pulse is almost perfectly compensated when it is reflected on
the corresponding (spatially chirped) hologram, i.e., a nearly
ideal graded index chirped mirrorfor dispersion compensa-
tion is constructed.

The following calculations are based on the theoretical pa-
per by Mazurenko [37]. Our calculations are restricted, how-
ever, to investigating the one-dimensional spatial structure of
the recorded phase-volume hologram in the particular case
in which the hologram is written by two counter-propagating
laser pulses.

Let us consider two Gaussian light pulses, one of them
being dispersion free and the other being linearly chirped,
with dimensionless (linear) chirp parametersa1= a 6= 0 and
a2= 0. The time-dependent electric field of the pulses can be
written as

Ek(t)= E0,k exp

(
− t2

2T2
k

)
cos

(
ω0t+ak

t2

T2
k

)
, (1)

whereTk is defined as the half width at 1/e maximum in-
tensity time duration,E0,k is the electric field amplitude of
thekth light pulse (k= 1,2), andω0 is the (common) central
frequency of the two pulses.

We investigate a practical situation in which the two light
pulses exhibit the same∆ω spectral bandwidth. With the
notation T0 for the transform-limited pulse duration (T0 =
1/∆ω), the pulse durationTk and the group-delay dispersion
(GDD= ∂2ϕ/∂ω2) parameter,Dk, of thekth light pulse can
be expressed as

Tk = T0

(
1+4a2

k

)1/2= T0

(
1+ D2

k

T4
0

)1/2

, (2)

Dk = 2akT2
0 =

2akT2
k

1+4a2
k

. (3)

We consider the particular case in which the two pulses are
propagating in opposite directions along thex axis (in one
dimension). The temporal and spatial dependences of the
electric field can be written as

E1(t, x)= E1

(
t− x

c

)
and E2(t, x)= E2

(
t+ x

c

)
. (4)
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The time-averaged intensity distribution along thex axis,
P(x), can be calculated as

P(x)=
∞∫
−∞

[
E1

(
t− x

c

)
+ E2

(
t+ x

c

)]2

dt . (5)

After expansion we obtain

P(x)=
∞∫
−∞
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(
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c

)2+ E2

(
t+ x

c

)2

+2E1

(
t− x

c

)
E2

(
t+ x

c

)]
dt . (6)

By transforming thet variable inside the integral in the first
two terms we get

P(x)=
∞∫
−∞

[
E1(t)

2+ E2(t)
2
]

dt

+2

∞∫
−∞

E1

(
t− x

c

)
E2

(
t+ x

c

)
dt . (7)

We can transform thet variable also in the second integral
of (7):

P(x)=
∞∫
−∞

[
E1(t)

2+ E2(t)
2
]

dt

+2

∞∫
−∞

E1(t)E2

(
t+ 2x

c

)
dt . (8)

The second integral in (8) is the convolution of the electric
field functions defined in (1):

K(x)=
∞∫
−∞

E1(t)E2

(
t+ 2x

c

)
dt = [E1(t)∗E2(−t)

]∣∣∣∣−2x/c
.

(9)

In (9) the∗ sign denotes convolution.
To calculate the convolution in (9) we take the Fourier

transform of theEk electric field functions. Then we multiply
the Fourier transforms and take the inverse Fourier transform
of the product. This procedure is well known from convolu-
tion theory. The Fourier spectra of the two pulses are com-
posed of positive and negative frequency components. If we
take the product of the two spectra, cross-products of the
negative and positive components can be neglected in practi-
cal cases. Finally, we come to the following formula:

K(x)= 1

4
E0,1E0,2T0

√
π

(
1+4a2

1+a2

)1/4

exp

(
− x2

c2T2
0 (1+a2)

)

×cos

(
2k0x− ax2

c2T2
0 (1+a2)

−ϕ
)
, (10)

wherek0 denotes the central wave number corresponding to
central frequencyk0= ω0/c andϕ is a constant phase factor.
The result shows that the length of the interference pattern is
L = cT0

√
(1+a2)/2 and the modulation of the interference

pattern is described by a Gaussian function. Periodicity of the
fringes at positionx can be described by the corresponding
wave numberkK (x), which is calculated as the first derivative
of the argument of the cosine function:

kK (x)= 2

(
k0− ax

c2T2
0 (1+a2)

)
. (11)

This equation shows that the wave number of the inter-
ference pattern is a linear function ofx. Here we recall
that the Bragg condition for reflection is fulfilled at posi-
tion x when the wave number of the Bragg grating (i.e., the
phase-volume hologram written by the interference pattern) is
kK (x)= 2|kP| = 2ω/c, whereω denotes the angular frequen-
cy of the electric field. Calculating the wave number of the
electric field as the function ofx corresponding to the chirped
optical pulse at timet = 0, we obtain

kP(x)= k0− 2a x

c2T2
0 (1+a2)

. (12)

Supposing that the pulse exhibits a relatively strong linear
chirp (a� 1), we obtain:

kK (x)= 2

(
k0− 1

a

x

c2T2
0

)
and kP(x)= k0− 1

2a

x

c2T2
0

.

(13)

If all the frequency components are assumed to be reflect-
ed at the position where the Bragg condition is fulfilled, (13)
shows the following: the phase-volume hologram written by
the interference pattern of the two counter-propagating puls-
es fully compensates the dispersion of the linearly chirped
pulse when the chirped pulse is reflected on the corresponding
phase-volume hologram.

It is worth mentioning that the same result could have
been obtained without any restriction on the chirp parame-
ter a if the Gaussian reference pulse had been replaced with
an (ideal) Dirac delta pulse in (9).

Finally, let us summarize our results from Sect. 1.1. In
principle, it is possible to record a 1D phase-volume holo-
gram compensating the linear (or higher-order) chirp of any

Fig. 1. Arrangement for dispersion compensation and time reversal of fem-
tosecond pulses by means of femtosecond holography
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broadband laser pulse if we are able to provide a dispersion-
free reference pulse of high enough bandwidth for the
recording. The structure ofthe recorded phase-volume holo-
gram preserves the dispersive features of the chirped pulse,
converting itsτ(ω) function to the spatial domain. When
a chirped pulse is reflected on the corresponding phase-
volume hologram, its dispersion is compensated and we
obtain a practically dispersion free, i.e. transform limited,
reflected pulse.

In order to obtain a time-reversed replica of the signal
pulse, the signal pulse must be replaced by a dispersion-
free read-out pulse, as shown in Fig. 1. The arrangement
might well be suited for dispersion compensation in CPA
systems, in which the temporal spread of the (i) stretched,
then (ii) time-reversed, and finally (iii) amplified seed pulses
can be easily (iv) compensated by using the pulse-stretching
elements.

1.2 Femtosecond spectral holography

Spectral holography [37, 42] may be considered as a temporal
analog of traditional spatial-domain Fourier-transform holog-
raphy. In traditional holography the spatially patterned signal
beam is recorded as a set of fringes as a result of interference
with a spatially uniform reference beam. When illuminating
the hologram with a uniform read-out beam, we reconstruct
either the real or conjugate image of the original signal beam,
depending on the geometry. In the time domain, the reference
is (an ideal) short pulse with a broad, regular spectrum. The
signal is a shaped pulse with a frequency-dependent phase
and amplitude, i.e., a complex amplitude function. During
holographic recording in a “2-f” system, the complex am-
plitude of each spectral component of the signal pulse is
recorded. When illuminating the spectral hologram, we recall
either a real or a time-reversed (conjugate) copy of the signal
pulse, also depending on the geometry.One of the possible
applications of spectral holography is full dispersion com-
pensationsince the time-reversed (conjugated) signal pulse is
transformed back to its original temporal (and spatial) shape
when passed through the same apparatus that caused its tem-
poral (and spatial) distortion (see Fig. 1). It is worth noting
here that when we measure the dispersion of an optical ele-
ment (e.g., the solid-state gain medium) using the technique
termedspectrally resolved white-light interferometry[38],
and design a chirped dielectric mirror for dispersion compen-
sation, we practically do the same: we record the interference
pattern of a signal and reference beam in the frequency do-
main (using a white-light source, not a mode-locked laser;
see Sect. 2.4 for details), and then we retrieve the phase vs.
frequency function corresponding to the medium by process-
ing the spectrally resolved interference pattern recorded on
a CCD camera. With this information, we make a coating de-
sign with the same dispersive properties that we measured
over the wavelength range of interest, but with opposite sign
(dispersion compensation), not forgetting the technological
limitations.

In spectral holography, one of the crucial questions is how
to provide a chirp-free, short reference pulse with a broad,
regular spectrum for the recording. In CPA systems, a proper-
ly shaped seed pulse might well be suited for such purposes.
In pulse-compression schemes developed for compression of

white-light continuum, subsequent recording of spectral holo-
grams with narrow band reference and signal pulses with
adjustable time difference between the two pulses (and ad-
justable exposure time) might be the solution to the problem.

Because of certain technological limitations on realiz-
able index profiles and the overall layer thickness existing
in current optical thin-film technology, we considered alter-
native holographic solutions for broadband dispersion con-
trol in femtosecond CPA systems and in experiments dealing
with white-light-continuum compression. Furthermore, opti-
cal thin-film devices such as chirped mirrors are not capable
of following the dynamic spatial and/or temporal changes in
the systems mentioned above that call for subsequent read-
justment of these systems to restore the optimal dispersion
and thus the pulse width of such systems. One of the pos-
sible solutions of this last problem is to use dynamic (spec-
tral) holography, i.e., using photorefractive media instead of
conventional holographic media for spectral holography. Re-
cently, some promising preliminary experiments to this end
were performed by Danailov et al. [43].

1.3 Fourier-transform synthesis of chirped mirrors

Bearing in mind the analogy between phase-volume reflec-
tion holograms and chirped mirrors discussed in Sect. 1.1,
let us briefly recall our previous results published in detail
in [22].

Optical coating designers widely use the Fourier-transform
technique for designing graded-index optical filters, often
known as rugate filters, with prescribed spectral properties.
These works are based on the papers of Sossi and Kard, who
showed that [44–46]

1

2

∞∫
−∞

d ln[n(x)]
dx

exp(ikx)dx= Q(k) exp[iΦ(k)] , (14)

wheren(x) is the refractive index,k= 2π/λ is the wave num-
ber in air, andx is twice the optical distance from the center of
the inhomogeneous layer to physical positionz:

x= 2

z∫
0

n(u)du . (15)

In (14), Q(k) is an appropriate function of the desired re-
flectance or transmittance. Using partial integration and
a Fourier transform, one can derive

ln
[

n(x)

n0

]
= i

π

∞∫
−∞

Q(k)

k
exp{i[Φ(k)−kx]} dk , (16)

whenn(∞)= n(−∞)= n0, andQ(k) andΦ(k) are even and
odd functions ofk, respectively.

In general, optical coating design techniques based on
(16) differ in the choice ofQ(k) andΦ(k) [44–52], which
are usually termed Q function and phase factor, respective-
ly. A variety of techniques exist because a simple, “universal”
Q function and phase factor have not been found. However,
different approximate formulae have been successfully ap-
plied in the case of a smooth refractive-index dependence. It
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has been revealed thatdistortions in the Fourier transforma-
tion originate from neglecting the multiple internal reflections
in (14) (see[50, 51]), the effect of which is striking in the case
of dielectric structures consisting of discrete layers with high
refractive-index ratios (nH/nL). In Sect. 1.1, the analogy be-
tween 1D volume reflection holograms and chirped mirrors
was established. In general, we can say thatby controlling
the amplitudes and phases of the gratings with various spatial
frequencies forming the reflection hologram, one may con-
trol the amplitude and phase of each spectral component in
a diffracted optical signal.

In the field of optical interference coatings, however, the
phase factor for optical coating design has not usually been
considered by designers because the phase change on reflec-
tion is rarely specified for these optical devices. Later on, it
was recognized that solutions of rugate filter synthesis prob-
lems depend greatly on the choice of the phase factor [47–
49, 52, 53]. Since the phase shift on reflection was found
not to be uniquely connected with the amplitude reflectance
modulus [52], it could be efficiently utilized to modify the
refractive-index profile without affecting the spectral perfor-
mance.

In [22], our goal was to find a general formula to help us in
designing high-performance dielectric high reflectors for dis-
persion control in femtosecond lasers, i.e. mirrors with pre-
scribed dispersion properties. Taking into account the analogy
between optical coatings and reflection holograms, we chose
the Q function and phase factor as the amplitude and phase of
the complex amplitude reflectance,r(k), respectively:

Q(k)= |r(k)| , (17a)
Φ(k)= ϕr(k) , (17b)

whereϕr(k)= arg[r(k)].
In spite of its approximate nature, (16) supplemented with

(17a, b) were the main results of [22]. It was demonstrated
that the formulae were well suited for constructing chirped
dielectric rugate mirrors with preset phase and amplitude
characteristics.

In a number of papers [47, 51, 52], it has been shown that
if one introduces a linear phase

Φ(k)=∆x k, (18)

in (16) it results in a displacement∆x of the refractive-index
profile along thex axis. By differentiating with respect tok,
we can write (18) in the form of

∆x= dΦ(k)/dk , (19)

which is thetime-shifting theorem of Fourier analysis. Previ-
ously, the theorem was successfully exploited to significantly
reduce the optical thickness of synthesized rugate filters and
control the shape of the refractive-index variation without
affecting the spectral performance [47, 48, 53]. In [53], a gen-
eral formula for the numerical calculation of the “optimal”
phase function corresponding to the given design goal of re-
flectance versus wavelength (or wave number) function has
been presented, which results in thinner rugate filters or low-
er index contrast than alternatives that arbitrarily constrain the
phase.

We recall that the frequency dependent group delay (τ)
upon reflection from a mirror is calculated in a similar man-
ner:

τ = dϕr(ω)/dω, (20)

whereϕr(ω) is the frequency-dependent phase change on re-
flection, andω= ck is the angular frequency of the incident
electromagnetic wave. In order to relate (19) to (20), we cal-
culated the increase in the group delay (τDP) upon reflection
corresponding to the displacement of the refractive-index pro-
file, e.g., a dielectric mirror, simply by dividing the increase in
the optical pathx by c, the speed of light in vacuum:

τDP= 2∆x/c . (21)

Here we would like to comment on (16) in connection
with graded-index reflective structures, using some simple
physical terms. First,nonzero reflectivity at wave numberk
(or at wavelengthλ= 2π/k) calls for sinusoidal modulation
in the logarithmic refractive-index profile along thex axis
with a periodicityλn(x) = λ/2, corresponding tokn(x) = 2k.
Notice that the first term within the integral in (14), which
can also be written in the form ofn′(x)/n(x), stands for the
reflectance amplitude due to Fresnel reflection at positionx
inside the inhomogeneous dielectric layer. The expression de-
scribes the change in the index divided by the average index,
which can be derived from the classical Fresnel formula. For
higher reflectances, higher amplitude modulations, i.e. high-
er Fresnel reflections, are required, andthe modulation for
a given value of the amplitude reflectance is inversely propor-
tional to wave numberk. It also follows from (14) thatmirrors
with broad reflectance bands and phase factors set to ze-
ro, i.e., dispersion-free mirrors, require high refractive-index
modulations over very short optical distances, which leads to
physically unrealizable solutions. It is worth mentioning here
that this constraint on the refractive-index modulation is anal-
ogous to the maximum intensity limit in pulsed laser amplifier
systems for avoiding nonlinear effects such as self-focusing.
The former problem can be solved by spatially “chirping”
the frequency components of the mirrors (chirped mirrors),
while the latter one can be efficiently eliminated by tempo-
rally “chirping” the frequency components of the pulse (CPA,
or chirped pulse amplification systems). Note, however, that
using dielectric mirrors at oblique angles of incidence for
s-polarized light, one can increase the effective refractive-
index modulation and thus the reflectivity band of standard
dielectricλ/4 or chirped mirrors (see Sect. 2.5.2).

In the following, we present as an example a chirped di-
electric mirror design, the structure of which is derived from
(16). Dispersive and spectral properties of the design are
calculated with the classic scattering matrix multiplication
technique [12, 13] and compared to their prescribed values.

We define a second order phase factor,Φ(k) as the func-
tion wave number, i.e. a second-order phase shift on reflection
[see (17b)] written in the following form:

Φ(k)= d0+d1(k−k0)+d2(k−k0)
2 . (22a)

Furthermore, we define the Q functionQ(k), i.e. the modulus
of the complex amplitude reflectance [see (17a)], as a Gaus-
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Fig. 2. Refractive index profile of a chirped graded-index dielectric mirror
design constructed by the use of Fourier transform [22]

sian function:

Q(k)= exp
[
− (k−k0)

2

2σ2

]
. (22b)

Calculating the frequency-dependent displacement∆x(k) of
the refractive profile along thex axis using (19), one obtains:

∆x(k)= d1+2d2(k−k0) , (23)

or equivalently, using (21):

τDP(k)= 2
d1+2d2(k−k0)

c
, (24)

which is a linear function of the wave number, thus the angu-
lar frequency of the incident electromagnetic field.

Equation (23) shows that the different spatial frequency
components are shifted linearly along thex axis as a func-
tion of k, i.e. the second-order phase term in (22a) results
in a chirped dielectric rugate structure, as shown in Fig. 2.
The parameters that we used during its computations with

Fig. 3. Specified (dashed) and computed (continuous line) reflectance of
chirped graded-index mirror shown in Fig. 2

Fig. 4. Specified (dashed) and computed (continuous line) group delay of of
chirped graded-index mirror shown in Fig. 2

(16) were:k0= 2π/0.4µm−1, which corresponds to our se-
lected mirror central wavelength of0.8µm; σ = 1.4µm−1;
d1= 0 rad; d2= 0µm; d3= −0.589µm2. The refractive in-
dex of the surrounding medium has been set ton0 = 1.8.
To obtain high enough reflectances, we multiplied the right-
hand side of (16) by a factor of 8. With the method published
by Southwell [54, 55],the refractive-index profile shown in
Fig. 2 can be converted to a two-index solution by taking into
account dispersion of the coating materials as well.The two-
valued refractive-index profile obtained after the conversion
can be used as an initial design for further refinement, which
will be discussed later in detail.

In Fig. 3, the computed reflectance of the chirped struc-
ture is presented along with the prescribed reflectance val-
ues. It is worth noting that the structure exhibits practical-
ly 100% reflectance from wave numbers of6.35µm−1 to
9.35µm−1, which correspond to wavelengths of0.989µm
to 0.671µm, respectively. Calculating the group delay intro-
duced by the chirped mirror by using (20), the result of which
is shown in Fig. 4, we have found that the group delay de-
creases monotonously with frequency (or wave number) over
most of the high reflectivity band of the mirror. The mir-
ror exhibits nearly constant GDD over the6.5–9µm−1 wave
number range corresponding to the wavelength range from
1.0 to 0.7µm. We note that a constant group delay ofτ0= 2×
6.388µm/(0.3×10−9 m/s) = 42.583 fs has been added to
the prescribed group-delay values. The calculated group de-
lay vs. wave number function of the chirped structure slightly
differs from the specified linear function; however, the design
can be utilized as a starting design for further refinement after
the conversion method mentioned above has been used.

2 Design of chirped mirrors consisting of discrete layers

In this section, first we describe how to obtain an initial de-
sign consisting of discrete layers from the formulae presented
in Sect. 1.3: viz. we summarize the conversion methods pre-
sented in [54, 55]. Then we assume that we have an initial
design either obtained by the use of Fourier transformation
and the conversion procedure or by using other designs pre-
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sented elsewhere for further optimization [21, 28, 56]. Our
aim is to find the best solution for a certain application prob-
lem, bearing in mind the constraints on the parameters set
by the technology (e.g., the refractive indices of available
coating materials, the upper and lower limits on the thick-
ness of the individual layers, the maximum overall thickness
of optical coating), all of them depending on the technology
utilized for coating deposition. Not losing the generality, we
restrict our treatment to the simplest practical case, in which
the (chirped) laser mirrors are built of alternate discrete layers
of a high-index (TiO2) and a low-index (SiO2) materials.

2.1 Conversion of graded-index chirped mirror structures to
discrete layer realizations

We thought that it might be interesting to present the chrono-
logical development of chirped mirrors leading to the first
designs consisting of nearly quarterwave layers ofTiO2 and
SiO2 [21, 56]. First, we investigated the dispersive properties
of dielectric structures derived from the formulae in Sect. 1.3,
and described by the following equation:

n(x)=√nHnL exp
{

ln
√

nH

nL
exp

(
− x2

2σ2

)
×sin

[
x(k0+c1k0x)

]}
. (25)

In (25),nH andnL denote the maximum and minimum values
of the refractive-index profile function such thatn(x)MAX =
nH = 2.3 andn(x)MIN = nL = 1.45, according to the actu-
al upper and lower limits of the refractive indices available;
x is defined as the optical distance similar to (15) (with-
out the multiplication factor 2);σ denotes the width of the
Gaussian envelope function;k0 denotes the wave number cor-
responding to our selected central wavelength (λ0) fulfilling
the Bragg conditionk0= 2k, wherek= 2π/λ, andc1 is a lin-
ear (spatial) chirp parameter. With the parametersσ = 21/2

andc1=±0.02, we obtained increasing or decreasing group-
delay functions with the frequency depending on the sign of

Fig. 5. Computed group delay vs. wavelength functions of positively
(dashed) and negatively chirped (continuous line) graded-index profiles de-
scribed in the text. Thedotted curvecorresponds to the discrete valued
index profile shown in Fig. 6

Fig. 6. Refractive index profile of a discrete valued chirped dielectric mir-
ror obtained by replacing the sin(kx) function with a sign[sin(kx)] function
in (25)

the spatial chirp parameterc1 as shown in Fig. 5. We assumed
the refractive indices on both sides of the dielectric structure
be equal tonave= (nHnL)

1/2. The group delay functions were
calculated by using the scattering matrix method [12, 13] after
dividing the structure into 2048 sub-layers, which were as-
sumed to have uniform refractive indices. As can be seen
in the figure, the group-delay functions exhibit a positive or
negative slope vs. wave number (frequency), depending on
the sign of the spatial chirp. However,with some superim-
posed oscillatory behavior. We found that the amplitude of
this oscillatory behavior is connected with parameters such
as the shape and width (σ) of the envelope function, the chirp
parameter (c1) and the amplitude of the refractive-index mod-
ulation. It is worth mentioning here that a similar effect was
observed by Southwell [57] in the case of (non-dispersive) ru-
gate filters as well, in which the oscillation was considerably
reduced by aproper choice of the apodization function. It fits
well with our previous theoretical calculations: when super-
Gaussian or rectangular apodization functions were used, the
oscillatory behavior was found to be even more pronounced.
It will be shown later that the same behavior of the disper-
sive properties was observed in the case of chirped dielectric
mirrors consisting of discrete layers.

Next we investigated similar structures consisting of near-
ly quarterwave-thick layers with appropriately chosen refrac-
tive indices similar to that shown in Fig. 6, i.e., the sin(x)
function in (25) was replaced by a sign[sin(x)] function
and the refractive-index modulation was kept constant with-
in a nearly quarterwave layer. The corresponding group delay
vs. wave number function is plotted in Fig. 5 with dots. This
gives practically the same curve obtained for the continuous-
ly varying refractive-index profile determined by (25) with
similar construction parameters. The group delay is comput-
ed for beam propagation to the direction of negative optical
distances.

It must be pointed out thatby reversing the order of the
deposition of the layer sequence(or the direction of the in-
coming beam),we reverse the slope of the group delay vs.
wave number (frequency) functionof the chirped dielectric
mirror structure, and the following condition is approximately
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fulfilled:

τR

∣∣∣∣∣
k0−∆k

≈ τ
∣∣∣∣∣
k0+∆k

, (26)

whereτR denotes the group delay vs. wave number function
of the spatially mirrored structure. In practice, it means that
an initial chirped mirror design exhibiting a negative GDD
can be easily converted to another design exhibiting a posi-
tive GDD of the same absolute value by revising the layer se-
quence, even in the case of chirped mirrors exhibiting a two-
valued refractive-index profile.In principle, for example, it
would be possible to stretch and compress a bandwidth-
limited laser pulse to its original shape by properly designed
chirped mirrors when the pulse first hits the structure from
the right-hand side (for stretching) and then from the left-
hand side (for compression). This feature directly follows
from (16) and (19) previously presented in [22]. Subsequent-
ly, similar “bulk chirped Bragg reflectors” for light-pulse
compression and expansion were proposed by Tournois and
Hartemann [58].

Let us mention here that if we assume we do not have
a lower limit to the layer thickness, the refractive-index pro-
file shown in Fig. 6 can be directly converted to a solution
consisting of alternate layers of high- and low-index coating
materials (such asTiO2 andSiO2) exclusively with the use
of the first conversion formula presented below. The formula
shows that when two-layer materials with small enough opti-
cal thickness (e.g., 0.1 in λ/4 units) relative to the operation
wavelength (λ) are mixed, the composite layer exhibits an ef-
fective refractive index between the refractive indices of the
two pure layer material, depending on their physical thick-
ness ratio. In (27),ni is the refractive index of thei th (nearly
quarterwave) layer anddH anddL denote the physical layer
thicknesses of the elementary sublayers [54]:

n2
i =

n2
HdH+n2

LdL

dH+dL
. (27)

Practical realization of such structures depends on the accu-
racy in the thickness measurement of the coating deposition
technology applied.

In general, we prefer optical coating designs consisting
of nearly quarterwave layers for technological purposes (e.g.,
minimizing stress in the coating, thickness control accuracy).
Using the results published in [54, 55], it is possible to convert
structures consisting ofN layers of different refractive indices
(such as shown in Fig. 6) into a two-index solution consist-
ing of 2N layers: we must convert all layers into HL (or LH)
equivalents by using the following equations for the physical
layer thicknessesdi,H anddi,L

di,H = n2
i −n2

L

n2
H−n2

L

di , (28a)

di,L = di −di,H , (28b)

Alternative methods of constructing two-index realization
may also be based on the recent work of Tournois [58]. It
is worth pointing out that in [58], two basic solutions were
proposed: (i) chirped Bragg reflectors consisting of halfwave
stacks (i.e., halfwave chirped mirrors), and (ii) chirped Bragg

reflectors consisting of quarterwave stacks (i.e., quarterwave
chirped mirrors). In the former case, thin layers of thickness
ti � λ are immersed in a medium of a different refractive in-
dex. The thicknessti of the i th layers permits one to adjust
the modulus of the elementary reflection coefficientr i in ac-
cordance with the formula presented in Ref. [58]. The stack is
called halfwave because the optical distance between two ad-
jacent thin layers isλ/2. However, when thin-film deposition
technology is concerned, the halfwave stack solution causes
serious technological problems, such as mentioned above: the
relatively small thickness of the low refractive index layers
compared to the high index components considerably increas-
es theinternal stressof the coating; stress of this nature easily
destroys a coating consisting of a large number of layers. In
addition to the standard (nearly quarterwave stack) chirped
dielectric mirrors with which we usually work, a combination
of quarterwave layers and the thin layers mentioned above has
been proposed in [58].

In order to show the powerfulness and the weakness
of the Fourier-transform technique and the conversion rou-
tine described above, we present a chirped mirror design
developed for full dispersion compensation in the white-
light continuum compression experiment described in [35].
Briefly, the estimated group delay dispersion of the white-
light continuum is∼= 380 fs2 at 600 nm and decreases to∼= 220 fs2 at 1µm [35]. In order to compensate the nonlinear
chirp of the continuum, chirped dielectric mirrors exhibiting
high reflectivity and negative GDD with superimposed nega-
tive TOD from600 nmto 1200 nmwere developed with the
design method described above. We introduced a quadratic
spatial chirp parameterc2 to (25), and modified the envelope
function in order to obtain index modulation best fitting the
conversion routine parameters:

n(x)=√nHnL exp
{

a
k0

k
ln

√
nH

nL
exp

(
− x4

2σ4

)
×sin

[
x(k0+c1k0x+c2k0x2)

]}
, (29)

where n(x)MAX = nH = 2.315 and n(x)MIN = nL = 1.45,
k0= 2×2π/0.8µm−1 corresponding to our selected cen-
tral wavelength of800 nm, σ = 5.49µm, c1 = 0.05 and
c2 = −0.002 are dimensionless linear and quadratic spatial
chirp parameters,a= 1.35 is a dimensionless amplitude mod-
ulation factor. In Fig. 7, the refractive-index profile obtained
from (29) is shown. First, the graded-index structure was
converted to a step-index equivalent whose refractive-index
profile is shown in Fig. 8. Second, the step-index profile was
converted to a two-index equivalent (Fig. 9) by using (28a, b).
It is worth mentioning here that the conversion routine results
in a very interesting structure: the highest index modulations
in the step-like index profile are converted to aλ/4 stack
of high- and low-index materials, whereas the lowest mod-
ulations are converted toλ/8 stacks exhibiting practically
zero reflectivity at wavelengthλ, as shown in Fig. 9. Between
these two extremes, the optical thickness of the alternating
high- and low-index layers gradually changes, resulting in
a smoothly varying coupling coefficient over the layer struc-
ture. Note that partial reflectances at layer interfaces of aλ/4
stack meet in phase, resulting in a high overall reflectivity,
whereas in aλ/8 stack they meet in anti-phase resulting in
a low overall reflectivity. Computed group-delay functions
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Fig. 7. Refractive index profile of an ultra-broadband gradient chirped di-
electric mirror corresponding to (29). The mirror was developed for full dis-
persion compensation in the white-light continuum compression experiment
described in [35]

Fig. 8. Refractive index profile of the step-index equivalent of the graded-
index profile shown in Fig. 7

and reflectance vs. wavelength functions of the graded-index
structure, the step-index structure, and the two-index equiv-
alent are plotted in Figs. 10 and 11. As one would expect,
the graded-index structures exhibit nearly ideal reflectance
and group delay functions and the step-index equivalent still
shows a very similar spectral response, in spite of the high
partial reflectances at the layer interfaces. The two-index
equivalent, however, is far from being an ideal solution to our
application problem because of some resonant features oc-
curring in both the reflectance and the group-delay spectrum.
Additionally, the structure still requires impedance-matching
layers at the substrate–coating and air–coating interfaces.
After a computer optimization process, described in Sect. 2.2,
however, it was possible to eliminate the resonant structures
in both the reflectance and group delay functions (see Figs. 12
and 13). Oscillations in the group-delay function has been
efficiently reduced by depositing two similar chirped mirror
designs with slightly shifted central wavelengths and using
them in pairs (see Fig. 13). As a preliminary experimental re-

Fig. 9. Optical thickness coefficients of the two-index HL equivalent layers
corresponding to the step-index profile shown in Fig. 8. Note that the high-
est amplitude index modulations are converted basically toλ/4 stacks while
the lowest index modulations correspond toλ/8 stacks

Fig. 10. Computed group delay vs. wavelength functions of the index pro-
files shown in Fig. 7 (continuous line), Fig. 8 (dashed line) and Fig. 9
(dotted line)

Fig. 11.Computed reflectance vs. wavelength functions of the index profiles
shown in Fig. 7 (continuous line), Fig. 8 (dashed line) and Fig. 9 (dotted
line)
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Fig. 12. Computed reflectance vs. wavelength function of the two-index
equivalent after adding impedance mathing layers at the substrate/coating
and coating/air interfaces and after computer optimization

Fig. 13. Computed group delay vs. wavelength function (continuous line)
of the two-index equivalent after adding impedance mathing layers at the
substrate/coating and coating/air interfaces and after computer refinement.
Combination of two such chirped mirrors with slightly shifted central wave-
lengths results in lower oscillation in the overall group delay function (see
dashed line)

sult, 6-fs pulses were obtained in the experiment described
in [35] with the exclusive use of 4 pieces of dispersive mir-
rors. A typical measured autocorrelation trace is shown in
Fig. 14.

2.2 Computer optimization of the design

There is a practical problem in connection with the Fourier-
transform technique described above: the dielectric layers
are deposited on a substrate, e.g., on BK7 glass (nS∼= 1.51)
or fused silica (nS∼= 1.45), whose refractive indices do not
fit the average value of the two coating materials used for
evaporation. By way of contrast, the situation is even worse
on the opposite side: the refractive index of air is 1.0. In
the case of graded-index (e.g., chirped graded-index) struc-
tures, the problem can be efficiently diminished by the use
of quintic matching layers, which is described in [59]. In

Fig. 14.Measured interferometric autocorrelation trace of a white-light con-
tinuum being compressed merely by 4 pieces of ultra-broadband dispersive
chirped mirrors (see the experiment described in [35])

the case of chirped mirror structures consisting of nearly
quarterwave layers, however, it was difficult to find an ex-
act analytical solution to the problem. Practically, it is an
impedance-matching problem that we usually face when de-
signing AR coatings or dichroic mirrors that are transparent
for the pump wavelengths. A straightforward way of solv-
ing the problem is properly choosing the optical thickness of
a limited number of top and bottom (impedance-matching)
layers of the design. In practice,numerical optimization pro-
cedures were usedin order to obtain suitable solutions of
different application problems.

Numerical procedures are widely used for optical coating
design. For a review on these, see the paper by Dobrowol-
sky and Kemp [60]. Most of the optimized coating designs
are obtained by using the so-called simplex method [60];
however, for theinitial global search, slower but more effi-
cient algorithms such asgeneralized simulated annealing[61,
62] or thegenetic algorithm(GA) [63] are proposed. Nev-
ertheless, the efficiency of each of the methods mentioned
above strongly depends on theproper choice of the tar-
get function and the performance (or merit) function. Ad-
ditionally, one has toproperly define the parameter space
where the best solution of a specific application problem
must be foundin accordance with the technology to be
used for the coating deposition. In the following, this pa-
rameter space is called thesearch space. In general, it is
a 2N-dimensional space, whereN is the number of layers in
the system to be synthesized. One solution of the problem
(a coating design) is described as a 2N-dimensional vector
X = {(t1,n1), (t2,n2), . . . , (tN,nN)}, whereti andni repre-
sent the thickness and the refractive index of thei th layer of
the system, respectively. To obtain realistic solutions, the re-
fractive indices and the thickness must satisfy the following
constraints:nL < ni < nH, and 0< ti < tMAX for eachi value,
wherenH andnL correspond to the highest and lowest refrac-
tive indices available. Without going into detail and referring
to some previous work [21, 56], we define below two gen-
eral performance functionsfor the amplitude and the phase
properties, which are denoted asMR, andMGDD, respective-
ly. In practice, we have always had to find a compromise
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between the tolerances corresponding to the amplitude (δR)
and the dispersive (δDGDD) properties, whose overall value
must be minimized by any of the optimization methods men-
tioned above. The performance functions are defined by the
following equations:

MR(X)= 1

p

p∑
j=1

{[
R(λj )− ROPT(λj )

] /
δRj

}2
, (30)

MGDD(X)= 1

p

p∑
j=1

{[
DGDD(λj )

−DGDD,OPT(λj )
]/
δDGDD, j

}2
, (31)

where R(λj ) and ROPT(λj ) are the calculated and desired
reflection values, respectively, of the actual layer structure
(fully described by vectorX) at wavelengthλj . Similar-
ly, DGDD(λj ) and DGDD,OPT(λj ) are the calculated and
desired group-delay dispersion (DGDD = δ2ϕ/δω2) values
at wavelengthλj . Here ϕ(ω) denotes the phase change
upon reflection from a dielectric mirror at frequencyω. For
oblique angles of incidences,R(λj ), ROPT(λj ), DGDD(λj )
and DGDD,OPT(λj ) should correspond to the actual and de-
sired reflectivities and the calculated and desired group-delay
dispersion functions for s- or p-polarized light, respectively.
The novelty of our construction method is in the use of the
merit function defined by(31); to the best of our knowledge,
this has never been used before the publication of[21, 56]for
optical coating designs.Let us comment on why the GDD
vs. frequency (or wavelength function) is usually preferred
compared to the phase vs. frequency [ϕ(ω)] or group delay
(τ = ∂φ/∂ω) vs. frequency functions. Operation of a fem-
tosecond laser depends on the intracavity GDD rather than
the round-trip time in the cavity, as discussed in Sect. 1.
Upon reflection of the laser light from a (chirped) mirror,
a constant group delay changes the round-trip time by only
a few femtoseconds, which is very small compared to the
whole round-trip time of a (usually1-m to 2-m long) lin-
ear or ring cavity. Fixing the desired value of the group
delay at a certain wavelength, we restrict the number of pos-
sible solutions, if they exist at all. However, using additional
performance functions corresponding to higher-order deriva-
tives of theϕ(ω) function, such as the third-order dispersion
(TOD= ∂3ϕ/∂ω3), could be advantageous in some specific
cases.

2.3 A numerical example

As an example [21, 56], let us take one of our first designs,
which were obtained by optimizing the layer thickness of
an initial, spatially chirped and randomized mirror structure
consisting of 42 alternate discrete layers ofTiO2 and SiO2
with optical thickness aroundλ/4. In this particular case, we
worked with 42 D vectors only, since the refractive-index val-
ues of the individual layers were not changed during the opti-
mization process. The refractive-index profile of the structure
is shown in Fig. 15. It was obtained after several optimization
processes with different target functions according to the dis-
persive properties of previous solutions. The corresponding
optical layer thicknesses are given in the figure caption and

Fig. 15.Two valued refractive-index profile of a chirped dielectric laser mir-
ror designed for full dispersion compensation in a mode-lockedTi:sapphire
laser. Optical thickness coefficients of the design are [56]:
S | 0.87L 1.14H 1.58L 0.98H 1.18L 1.45H 0.75L 0.96H 1.57L 0.85H 0.73L
0.84H 1.45L 0.85H 1.31L 0.69H 1.30L 1.29H 0.69L 1.30H 0.81L 1.07H
1.25L 0.67H 0.81L 0.96H 1.35L 0.88H 1.03L 1.09H 0.62L 0.66H 0.87L
1.12H 0.62L 1.21H 0.63L 0.43H 0.93L1.07H 0.78L 0.16H | A.
S: substrate,nS= 1.51; A: air, nA = 1.0; H and L: quarterwave layers of
TiO2 andSiO2, respectively, atλ= 790 nm, nH = 2.315,nL = 1.45

Fig. 16. Computed group delay dispersion of the chirped mirror design
shown in Fig. 15

in [56]. The design was developed for full dispersion control
in a femtosecond pulseTi:sapphire laser [64]. Enhanced ver-
sions of the chirped mirror design shown in Fig. 15 were used
in the experiments described, for example, in [23, 35, 64, 65].
The mirror exhibits high reflectivity and a nearly constant
negative GDD of−41±5 fs2 over a wavelength range from
720 nmto 890 nm; the computed GDD of the design is shown
in Fig. 16. The structure still shows the increasing multilayer
period toward the substrate, hence we call it a chirped mirror,
even though the variation is far from what we can consider
regular spatial chirp.

If the electric-field distribution inside this chirped mirror
is computed as a function of the wavelength, as shown in
Fig. 17a, it can be seen that the penetration depth (and thus the
group delay) increases approximately linearly with the wave-
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Fig. 17a,b. Computed elec-
tric-field distribution as a func-
tion of wavelength in (a) the
chirped dielectric structure
shown in Fig. 7 and in
(b) a 44-layer low disper-
sion dielectric mirror con-
sisting of alternating quar-
terwave layers ofTiO2 and
SiO2

length over the720-nmto 890-nmrange. For the electric-field
calculations, the results presented in [66] were used. The
figure also gives clear evidence of the high reflectivity of
the mirror, as indicated by the disappearance of the optical
field at the substrate-coating interface (penetration depth 8).
For comparative purposes, the electric-field distribution in-
side a traditional, low-dispersion dielectric mirror consisting
of 44 alternate quarterwave layers ofTiO2 andSiO2 and cen-
tered at770 nmis depicted in Fig. 17b. The penetration depth
and thus the group delay is smallest at the central wave-
length of the quarterwave mirror and symmetrically increases
with the detuning. This behavior results in quarterwave mir-
rors having a positive third-order dispersion (TOD) [14]. It is
clear that if one compares the electric-field distributions cor-
responding to the chirped mirror and the quarterwave mirror,
chirped multilayer coatings have the potential for extending
the bandwidth of standard low-dispersion quarterwave mir-
rors. We note here that ultra-broadband chirped dielectric
laser mirrors “must” have a certain positive TOD as well
because of the same physical reason. This is why the useful
range of the design presented in Sect. 2.1 is narrower than its
high reflectivity range(see Figs. 12 and 13).

The maximum achievable negative GDD of chirped mir-
rors is limited by the maximum group-delay difference that
can be obtained between the extremes of the reflectivity
range. This in turn relates to the optical thickness of the
coating. A simple approximate expression for the maximum
achievable group-delay difference was presented in [21]:

∆τmax= 2(tchirped− tqw)

c
, (32)

where tchirped is the optical thickness of the chirped mir-
ror andtqw is that of a standard quarterwave high reflector
(R> 99.5%) consisting of the same pair of alternating layer
materials. In simplified physical terms: the required high re-
flectivity of the dispersive mirror calls for a minimum optical
thickness oftqw, and only excess layers can introduce an ap-
preciable frequency-dependent group delay around the center
of the high-reflectivity band. If we assume the group delay

to vary approximately linearly with frequency over the high-
reflectivity range, the corresponding upper estimate for the
GDD is simply given by the ratio of∆τmax to the mirror
bandwidth∆ω. For the specific case ofTiO2−SiO2 mirrors
centered around0.8µm, we have approximatelytqw = 4µm
(21 quarterwave layers) yielding approx.∆τmax= 27 fs for
our 8-µm-thick structures, which is in reasonable agreement
with the results presented in [21]. With the number of layers
fixed, ∆τmax scales linearly with the chosen central wave-
length of the dispersive mirror. For a selected operating wave-
length,∆τmax and thus the magnitude of broadband negative
GDD can be increased only by increasing the number of lay-
ers, this number being limited by scattering and absorption
losses due to structural defects and impurities in the deposited
layers, respectively [14].

2.4 The effect of deposition errors

In this section, we assume that we ended up with a design
consisting of alternate discrete layers of high-index (H) and
low-index (L) materials after the optimization process. Before
deposition of such a structure, the following questions arise.
Can the design tolerate the inaccuracies in the layer thickness
(and the refractive indices) appearing during the deposition
process? If the answer is no, can we make a better design ex-
hibiting lower sensitivity for deposition errors? Alternatively,
can we improve the control of thickness/refractive index in
our evaporation plant? In order to demonstrate the impor-
tance of these questions, we analyse the chirped mirror struc-
ture shown in Fig. 15. We calculated the average deviation
of GDD from its theoretical value when each layer thick-
ness was varied by±1% of the corresponding quarterwave
layer:∆ti = ±0.0025λ0/ni . In our example, the reference
wavelength isλ0= 775 nmand the refractive indices ofTiO2
and SiO2 are nH = 2.315 andnL = 1.45, respectively. Dis-
persion data were calculated for the wavelength range of720
to 890 nm. The result is shown in Fig. 18. The striking fea-
ture of the plot is that dispersion ofthe design is extremely
sensitive to deposition errors: for some layers the deviation
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Fig. 18.The effect of deposition errors on the GDD vs. wavelength function
of the chirped mirror design shown in Fig. 15

from the prescribed dispersion value is, on average, as high as
15 fs2, which is approximately30% of the prescribed value.
It is mentioned that the estimated variation of the layer thick-
nesses is a realistic value in our model; this estimated value
can be applied for most evaporation plants. We do not need
to mention that we were extremely fortunate with the dis-
persive properties of the chirped mirrors used for our first
experiments; see [21, 64]. How can one improve the situ-
ation? The answer is, first, by a better design that exhibits
a lower sensitivity to the deposition errors. Here we refer to
the recent work by Greiner [67], who developedrobust op-
tical thin film designs that are insensitive to the variation of
layer parametersby applying different search strategies. The
design methods described in [67] can be adapted to our appli-
cation problem as well. Second, the situation can be improved
by applying enhanced thickness control during the evapora-
tion. The final solution to the problem, however, is based on
the development of highly accurate methods for dispersion
measurement on laser mirrors[38, 39]. In the following, we
briefly introduce our dispersion measurement apparatus and

Fig. 19a,b. Spectrally resolved white-light in-
terference fringes recorded on a CCD, when
pairs of (a) chirped mirrors with a pure nega-
tive quadratic phase and (b) chirped mirrors
with negative GDD and superimposed positive
TOD are placed in one arm of a Michelson in-
terferometer illuminated by a tungsten halogen
lamp [38]

present representative GDD data corresponding to elements
of a mirror-dispersion-controlled (MDC)Ti:S oscillator [68].

Generally, the apparatus we use is a Michelson interfer-
ometer [38] illuminated by a white-light source (tungsten
halogen lamp). We place a low-dispersion gold mirror in the
“reference” arm and the chirped dielectric mirror to be meas-
ured in the “sample” arm. When one of the mirrors is tilted
around a horizontal axis and the other mirror is vertical, hor-
izontal interference fringes are generated by each spectral
component of the white-light source at the exit plane of the in-
terferometer. A transmission grating and an achromatic lens
are used to create the spectrally dispersed image of a ver-
tical section of the superimposed “white-light” interference
fringes on a CCD array; the section is created by a verti-
cal slit. The interference patterns corresponding to different
wavelengths are linearly dispersed in the horizontal direction,
as shown in Fig. 19.

In the case of Fig. 19a, a pair ofchirped mirrors developed
for full dispersion control in a mode-lockedTi:S oscilla-
tor [21, 23, 56, 64, 68] were placed in the “sample” arm of the
interferometer. To record the image shown in Fig. 19b, how-
ever, a pair of chirped mirrors developed for aprism pair
chirped mirror compressor[25, 33, 38] exhibiting negative
GDD with a superimposed positive TODwas used.

The period of the interference fringes in the vertical direc-
tion is proportional to the wavelength when ideal flat mirrors
are used for the measurement. If the mirror in the sample arm
were to have no phase dispersion, the vertical pixel positions
corresponding to the same phase difference, e.g., minima and
maxima, would be a linear function of the wavelength [38].
Because of the second-order phase shift of one sample mir-
ror (a) and the second-order phase shift with superimposed
positive third-order dispersion of the other mirror (b) we were
able to record the images shown in Fig. 19.

By storing and computer-processing the spectrally re-
solved interference pattern detected on the CCD, we can
easily obtain the group delay and GDD versus wavelength
functions of the sample mirrors within a few minutes by using
a personal computer.
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Fig. 20. Schematic laser setup of a mirror-dispersion-controlled KLMTi:S
laser [68]

As an example, we present the measured GDD versus
wavelength functions of some chirped mirror pieces used to
build a MDC Ti:S laser pumped by a Millennia (Spectra-
Physics, Inc.) laser at the Advanced Photon Research Cen-
ter of the Japan Atomic Energy Research Institute (Ibaraki,
Japan) [68]. Figure 20 illustrates the schematic laser setup.
The laser exhibits a standard linear cavity [64, 65] compris-
ing a 2.1 mm long (optical path)Ti:S crystal (Crystal Sys-
tems,α= 6 cm−1) whose dispersion is compensated by seven
reflections from chirped mirrors in one round-trip. M1 and
M2 are standard quarterwave mirrors that are transparent for
the pump wavelength (alternatively, these pump mirrors can
be replaced by curved chirped mirrors since these too are
transparent for the pump wavelengths and have similar dis-
persive properties to those of the flat chirped mirrors). Meas-
ured GDD functions of the chirped mirror pieces are plotted
in Fig. 21. We use four reflections from mirror M4 (dotted
curve), two reflections from M5, and one reflection from M3.
The overall GDD originating from these chirped mirrors is
also plotted in Fig. 21 (continuous line). It is seen that the
overall GDD of the chirped mirrors is a nearly constant func-
tion from 740 to 860 nm, i.e., by measuring the GDD vs.
wavelength functions of each chirped mirror piece after the

Fig. 21. Measured GDD vs. wavelength functions of the chirped mirror
pieces used for building the sub-10-fs Ti:S oscillator shown in Fig. 20

deposition with high accuracy, and by proper selection of
the mirrors, it is possible to realize a nearly optimum GDD
vs. wavelength function for most of the application problems
mentioned above [23–25,35, 36, 64, 65, 68].

2.5 Defining the target function for different application
problems

Let us continue dealing with the design ofchirped mirrors de-
veloped for modelocked femtosecond pulse solid-state laser
oscillators and parametric oscillators, when chirped mirrors
provide exclusively the negative dispersion in these cavi-
ties, i.e., we continue our treatment with mirror-dispersion-
controlled oscillators [23, 24, 26, 27, 29, 56, 64, 65].

2.5.1 Low-loss chirped mirrors for a sub-20-fs Cr:LiSAF and
Cr:LiSGaF lasers. In order to design a compact laser set-
up comprising only chirped mirrors for intracavity dispersion
compensation [27, 56], precise knowledge is required of the
dispersion data not only of the dispersive mirrors [38, 39]
but also of the laser active materials utilized. During our
studies, however, we were unable to find dispersion data on
some laser-active materials, e.g.,Cr:LiSGaF; alternatively,
the dispersion data we found in the literature did not fit our
measured data in some other cases, e.g., in the case of the
Cr:LiSAF crystal. Moreover, we observed strong dependence
of the measured GDD on the doping concentration and/or
the supplier of the crystal [69]. We mention the striking situ-
ation we faced when we started dealing withmodelocked
MDC Cr:LiSAF lasers. In Fig. 22, measured GDD vs. wave-
length functions are plotted for10-mm long LiSAF crystals
with differentCr doping concentrations: (i)0.8% (Lightning
Optical Corporation), (ii)2.0% (Strathclyde University, Glas-
gow). The crystal dispersion was measured at the Brewster
angle for extraordinary rays by the method described in detail
in [69]. It can be seen that the measured GDD vs. wavelength
function considerably depends on the doping concentrations.

Fig. 22. GDD vs. wavelength functions plotted for2-mm by 5-mm long
LiSAF crystals with differentCr doping concentrations: (i)0.8% (Lightning
Optical Corporation), (ii)2.0% (Strathclyde University, Glasgow). Disper-
sion of the crystals was measured at the Brewster angle for extraordinary
rays. The calculated values correspond to the Sellmeier formula (see [3])
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This dependence could also be derived from the Kramers–
Kronig relation. For comparative purposes, the calculated
GDD values corresponding to the Sellmeier formula present-
ed in [3] are plotted as well. Since the pulse duration of
mode-locked solid-state lasers depends strongly on the intra-
cavity overall negative GDD, which is related to their soliton-
like pulse-shaping mechanism, thenumber of reflections from
the chirped mirrors and their nominal GDD/reflection value
have to be chosen in accordance with the actual dispersion
of other intracavity elements such as the laser active medi-
um [27]. Accordingly, the target function defined by (31)
must be derived as

DGDD,OPT(λj )= −(DGDD,MEAS(λj )+|∆DGDD,RES|)
m

,

(33)

wherem is the (integer) number of reflections from chirped
mirrors in the cavity per round-trip,DGDD,MEAS(λj ) is the
measured overall (positive) GDD vs. wavelength function of
other cavity elements, and∆DGDD,RES is the absolute value
of the optimum overall (negative) GDD for mode-locked op-
eration.

With precise information on the dispersion ofCr:LiSAF
and Cr:LiSGaF crystals obtained by measuring their phase
shift vs. wavelength functions in the frequency domain [69],
we were able to construct compact MDC laser oscillators
delivering sub-20-fs pulses directly from the laser oscilla-
tors [27], which are suitable for direct diode pumping.

Whendefining the search space and the target function,
an additional important technological issue is the reflection
losses on the chirped mirrors. In a diode pumped, mode-
locked fs solid-state laser, the reduction of the reflection
losses in the cavity is of primary importance. Let us recall that
the optical quality of substrates is described by the rms (root-
mean-square) roughness (σ). According to [70] (and assum-
ing a wavelength-independent reflection delay ofτ = 1 fs),
the reflection losses (∆Rσ ) of high reflectors corresponding
to a rms surface roughnessσ can be described by the follow-
ing formula at wavelengthλ:

∆Rσ (λ)=
(

4πσ

λ

)2

. (34)

The results of (34) are the following. (i) The scattering
losses decrease towards the longer wavelengths. (ii) A low-
er surface roughness (originating from the higher quality of
the substrates or from the higher density of the deposited lay-
ers) reduces the scattering losses. In connection with (i), we
recall that in chirped dielectric mirrors intended for intracav-
ity use, the group-delay increases towards the longer wave-
lengths. Furthermore, it was shown in [14] thatin dielectric
high reflectors, reflection losses are proportional to the re-
flection delayat a certain wavelength when the same coating
materials and deposition technology are used for each reflec-
tor. Accordingly, the wavelength-dependent reflection losses
at chirped (or any other dispersive) mirrors can be written as

∆R(λ)=∆Rσ (λ) τ(λ) . (35)

As a result, reflection losses at chirped mirrors can be
minimized by (i) reducing the surface roughness (σ) of the
chirped mirrors and (ii) reducing the maximum value of the

reflection delay. The first possibility was experimentally test-
ed by depositing dielectric high reflectors with different coat-
ing materials and deposition technologies, the result of which
is demonstrated in Fig. 23a,b.By properly choosing the sub-
strates, the coating materials and the technology for coating
deposition, we were able to considerably decrease the sur-
face roughness of our mirrors.Further technical details on
the coating deposition technology are available in [14]. The
maximum value of the GDD vs. wavelength function is trad-
ed off against the bandwidth of the mirror, as follows from the
definition of the GDD:

DGDD= dτ

dω
∼= ∆τ

∆ω
. (36)

In other words, a certain amount of positiveDGDD,MEAS in
the cavity [see (33)] calls for a minimum negative GDD orig-
inating from the chirped (or Gires–Tournois [26]) dielectric
mirrors for dispersion compensation. The reflection losses at

Fig. 23a,b.Atomic Force Microscopy measurements on chirped laser mir-
rors using different coating materials and technologies for coating de-
position. The lower grain size results in lower scattering losses of the
mirrors
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Fig. 24. Measured GDD vs. wavelength function of chirped mirrors de-
signed for sub-20-fs Cr:LiSAF andCr:LiSGaF lasers [27]

the mirrors, however, can be reduced by reducing the over-
all group delay on reflection, which can be minimized at the
expense of the reduced bandwidth (∆ω). For the experiment
described in [27], chirped mirrors exhibiting a GDD per re-
flection of∼=−80 fs2 from 800 to 900 nmwere constructed.
The measured GDD vs. wavelength function of the mirrors
is shown in Fig. 24. Both of ourCr:LiSAF and Cr:LiSGaF
lasers both delivered sub-20-fs pulses from an extremely
compact mirror-dispersion-controlled cavity capable of direct
diode pumping [27].

2.5.2 Ultra-broadband chirped mirrors for broadly tunable
femtosecondTi:S lasers and pulse compression experiments.
One of the main practical complication factors in connection
with using broadly tunable cw, ps and fs laser systems is the
lack of ultra-broadband, low-loss dielectric high reflectors for
feedback in these systems. Fluorescence bands of broadband
laser active materials such asTi:S [1] are usually covered
by several low dispersion quarterwave mirror sets that must
be replaced when these lasers are tuned out of the (relative-
ly narrow) reflectance band, which complicates the practical
application of these or similar laser systems, such as OPOs.

Recently, we succeeded in solving the problem by devel-
oping ultra-broadband chirped mirrors (UBCM) for a broadly
tunable cw and ultrafastTi:S laser [28]. The main difference
during its design compared to previous designs was that we
required a high transmittance at the pump wavelengths, i.e.,
ROPT(λj )= 0 in (30), and we allowed a higher tolerance in
(31).

Figure 25 shows the calculated transmittance of one of
our present state-of-the-art UBCMs. A high reflectivity (R>
99%) from 660 to 1060 nmwas obtained for normal inci-
dence by computer optimization that covers most of the flu-
orescence band of theTi:S. The mirrors are designed for
high transmission (T> 90%) at the pump wavelengths of488
and 514 nm in order to test the UBCMs in a fsTi:S laser
system (Coherent MIRA 900) pumped by a multiline8.0 W
Ar+-laser (Coherent Innova 400).

This specific design is built up of alternating layers of
SiO2 andTiO2 as the low- and high-index materials, respec-
tively, with optical thicknesses varying around a quarter of
800 nm, corresponding to our selected wavelength regime.

Fig. 25.Transmittance (solid line) and group delay (dashed line) of an ultra
broadband CM vs. wavelength. Optical thickness coefficients of the design
are [71]:
S | 1.31L 1.70H 1.43L 0.66H 1.55L 1.45H 1.04L 1.20H 1.14L 1.32H 1.47L
0.99H 0.97L 1.17H 1.46L 1.15H 1.18L 1.11H 1.09L 1.08H 1.11L 1.33H
1.19L 0.91H 1.11L 0.96H 1.05L 0.83H 0.93L 1.11H 1.01L 0.98H 0.85L
0.90H 0.79L 0.99H 0.80L 0.93H 0.96L 0.60H 0.69L 1.09H 0.97L 0.41H
0.59L 1.35H 0.90L 0.10H | A.
S: substrate,nS= 1.51; A: air, nA = 1.0; H and L: quarterwave layers of
TiO2 andSiO2, respectively, atλ= 790 nm, nH = 2.315,nL = 1.45

The Optical thickness coefficients of the design are listed
in the figure caption [71]. The theoretical smooth variation
of group delay vs. frequency of the UBCM’s is plotted in
Fig. 25. We verified the dispersive properties of the chirped
mirror coatings after the deposition process by using the
white-light interferometric technique described in [38]. These
mirrors were designed to have an average negative GDD of
−50 fs2 and a positive TOD of+75 fs3 around800 nm to
ensure nearly ideal dispersive conditions for mode-locked op-
eration. The considerable extension of the high reflectivity
range of the CMs was achieved at the expense of a slightly
higher fluctuation in the negative GDD, which, however, does
not affect the formation of pulses longer than50 fs.

In order to demonstrate the performance of the UBCMs,
we replaced all mirrors, except the output coupler (OC) but
including the dichroic pump mirror, by UBCMs in ourTi:S
laser. TheTi:S laser is continuously tunable from681 to
1013 nmin cw operation with only one change of the output
coupler (OC). The wavelength dependence of the cw output
power is similar to the one in mode-locked operation (Fig. 26)
with a maximum of1.34 Wat770 nm. The wavelength range
of cw operation agrees quite well with the calculated high-
reflectivity range of the UBCMs.

Figure 26 shows the measured output power over the tun-
ing range (693 nmto 975 nm) in mode-locked operation. The
plotted output power was measured with the pulse duration
kept constant at about85 fs. In practice, we were not able to
observe any decrease in the laser output power when using
the UBCMs instead ofλ/4-stack standard type mirrors. The
intracavity negative GDD required for mode-locked opera-
tion is provided by a standard Brewster-angled prism pair
and the UBCMs. This hybrid solution is necessary since the
negative GDD of practicable UBCMs is too low to compen-
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Fig. 26. Output power (dots) and pulse duration (dashed line) of the
fs-Ti:sappire laser using ultra-broadband chirped mirrors. For intracavity
dispersion control, a standard Brewster-angled prism pair made of SF10
glass was used in a Coherent MIRA 900 laser with a prism separation of
60 cm [28]

sate for the positive material GDD of the20-mm-long Ti:S
crystal used in our laser setup.The hybrid dispersion-control
system combines the advantages of the CM approach, which
allows higher-order dispersion compensation for relatively
long crystals, and the continuous variation of the GDD by the
prisms[25].

Recent results show that in combination with prism pairs,
the presented ultra-broadband chirped mirrors [28] with prop-
erly chosen third- and fourth-order dispersion functions are
well suited for white-light continuum compression below
5 fs [35, 36].

In order to take an example for dispersion control up to
the fourth order, we present the computed transmittance and
group delay functions of an ultra-broadband chirped mirror
design composed of three different layer materials in order to
minimize reflection losses. The mirrors were required to be
transparent around532 nmand to have high reflectivity over
most of the fluorescence band ofTi:sapphire. The computed
transmittance vs. wavelength and group delay vs. wavelength
functions are plotted in Figs. 27 and 28. The ultra-broadband
chirped mirror exhibits negative GDD, positive TOD and pos-
itive FOD (= ∂4ϕ/∂ω4) around800 nm, as shown in the fig-
ure. Combination of such mirrors with prism pairs results in
a nearly constant overall negative GDD in the laser cavity, or

Fig. 27. Transmittance of a three-component ultra broadband CM vs. wave-
length developed for a broadly tunableTi:sapphire laser

Fig. 28. Group delay of a three-component ultra broadband CM vs. wave-
length developed for a broadly tunableTi:sapphire laser

a nearly ideal group delay vs. wavelength functions in hybrid
white-light-continuum compression schemes.

One can use all of the dielectric mirrors at oblique angles
of incidence in extra-cavity broad spectrum laser applica-
tions, such as in pulse-compression schemes. It is well know
from thin-film theory [13] that the effective refractive indices
of the layers also depend on the angle of incidence and the
polarization of light:

ns,eff= n cosθ , (37a)

np,eff= n

cosθ
, (37b)

wheren andθ denote the refractive index of thei th layer and
the angle of refraction in thei th layer, andns andnp stand
for the effective refractive indices for s- and p-polarized light,
respectively. In effect, it results in broader reflectance bands
and higher reflectivities for s-polarized light and narrower re-
flectance bands and lower reflectivities for p-polarized light
in case of standardλ/4 stacks [13]. A recent study on broad-

Fig. 29. Reflectance of a three-component ultrabroadband CM vs. wave-
length computed for s-polarized light (continuous line) and p-polarized light
(dashed line) at oblique incidence (θ = 45◦)
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Fig. 30. Group delay of a three-component ultra broadband CM vs. wave-
length computed for s-polarized light (continuous line) and p-polarized light
(dashed line) at oblique incidence (θ = 45◦)

band high-reflection multilayer coatings at oblique angles of
incidence were recently published by Popov et al. [71]. In
Figs. 29 and 30, we compare the reflectivity and group- delay
vs. wavelength functions of the latest three-component design
for s- and p-polarized light.

Comparing the reflectance bands, we find that the high-
reflectivity range of the dielectric chirped mirror is extend-
ed for s-polarized light and reduced for p-polarized light, as
with λ/4 stacks. With respect to the group delay vs. wave-
length functions we find the following: the group delay ex-
hibits a higher modulation for oblique incidence for both
polarizations that must be a problem in pulse-compression
experiments. During our previous studies, however, we found
that this oscillation can be considerably reduced by computer
optimization. Additionally, it is worth pointing out that the
group delay and thus the reflection losses could take a low-
er value for s-polarized light, which might be important in
intracavity applications.

2.5.3 Third- and fourth-order dispersion compensation by
means of chirped dielectric laser mirrors in a sub-10-fs
Ti:sapphire laser. In the previous section, we mentioned
thatchirped mirrors exhibiting negative GDD, positive TOD,
and positive FOD[28, 33, 38] are suitable for balancing the
TOD and FOD of laser cavities comprising prism pairs for
intracavity dispersion control. In order to demonstrate the
powerfulness of this combination, we present the recent re-
sults of Kärtner et al. [25], who worked with a self-starting,
KLM Ti:sapphire laser comprising a prism pair in combi-
nation with some of our chirped mirrors for intracavity and
extracavity dispersion control. Figure 31 shows the measured
GDD versus wavelength function of the chirped mirror we
provided for the experiment. According to his test results, the
laser delivers approximately7.4-fs pulses directly from the
Ti:Soscillator, which competes with the best results obtained
with the mirror-dispersion-controlledTi:sapphire ring oscil-
lator recently reported by Xu et al. [24]. The hybrid laser is
pumped by a multi-lineAr-ion laser with an output power
of 5.5 W. With a3% output coupler, the mode-locked output
power of the laser is120 mW. The laser utilizes a broadband

Fig. 31. Measured GDD vs. wavelength function of a chirped mirror man-
ufactured for higher-order dispersion control in a self-starting, soft aperture
KLM Ti:S laser delivering sub-10-fs pulses directly from the oscillator [25]

Fig. 32. Measured spectrum of aTi:sapphire laser comprising a prism pair
in combination with chirped mirrors for intra- and extracavity dispersion
control

semiconductor saturable absorber mirror (SESAM) as a start-
ing mechanism for soft-aperture KLM action. Besides the
chirped mirrors with negative GDD and higher-order disper-
sion, a FS prism pair with prism separation of41 cmwas used
for intracavity dispersion compensation of a2.5-mm-long
Ti:sapphire crystal. The bandwidth of the laser was limited
by the finite bandwidth of the standard input couplers on the
short wavelength side. It is worth pointing out that in this lin-
ear cavity the positive GDD (and positive TOD) introduced
by the Ti:S crystal is approximately twice as much as that
in the case of the ring oscillator developed by Xu et al. [24].
Nevertheless, this higher amount of positive TOD was effi-
ciently compensated by balancing the negative TOD of the
prism pair and the positive TOD of the chirped mirrors in this
experiment. Figures 32 and 33 show the measured spectrum
and interferometric autocorrelation traces of thisTi:S laser.

2.5.4 Chirped mirrors for an optical parametric oscillator
working in the infrared.Continuing our work with fs OPOs
employing chirped mirrors for intracavity dispersion com-
pensation [29], recently we managed to manufacturechirped
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Fig. 33. Measured interferometric autocorrelation trace of the hybrid
Ti:sapphire laser

mirrors with negative GDD and negative TOD[30]. The dis-
persive properties of the chirped mirrors were tailored to fit
the dispersive properties of a2-mm-long KTP crystal used
for parametric wave generation. The wavelength dependence
of the (absolute value of the) GDD of the KTP crystal and
of the chirped mirror is shown in Fig. 34. The OPO is syn-
chronously pumped by130-fs to 170-fs pulses from a Coher-
ent MIRA 900Ti:sapphire laser. The OPO generates nearly
transform limited50 fspulses with a time–bandwidth product
below 0.5. Tuning of this device requires only the variation of
the pump pulse wavelength and the cavity length. Over a tun-
ing range of100 nm, the pulse duration is less than half the
pump pulse length [30].

Note added

After submission of this paper, two papers became available
dealing with exact coupled-mode theory for multilayer inter-
ference coatings with arbitrary strong index modulations [72]
and introducing “double” chirped mirrors [73]. Both papers

Fig. 34. Wavelength dependence of the absolute value of GDD of the
KTP crystal and of the chirped mirror developed for an optical parametric
oscillator working in the infrared spectrum [30]

present valuable results that might help in solving the prob-
lems originating from the approximate nature of the Fourier-
transform method described in Sect. 1.3.

3 Conclusion

Chirped dielectric laser mirrors for broadband feedback, in-
tracavity and extracavity dispersion control have been in-
troduced. The design technique, deposition technology, and
quality control permit higher-order contributions to the mirror
phase dispersion to be kept at low values or to be chosen such
that high-order phase errors introduced by other system com-
ponents (e.g., the gain medium, prism pairs) are cancelled.
By replacing conventional thin-film optics (and prism pairs
in most of the cases) these novel devices made it feasible to
build Kerr-lens mode-locked, all-solid-state lasers delivering
nearly bandwidth-limited sub-10-fs pulses fromTi:sapphire
lasers around0.8µm, and sub-20-fs pulses fromCr:LiSAF
andCr:LiSGaFlasers around840 nm. Further applications of
chirped mirrors that have been accomplished were discussed:
for broadband feedback and dispersion control in broadly tun-
able cw, ps and fs solid-state lasers and parametric oscillators,
broadband third-order (and fourth-order) dispersion control
in pulse compression schemes used in CPA systems; or in
white light continuum compression experiments supporting
pulses below5 fs. Basic theoretical and design considerations
were also presented.
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22. R. Szip̋ocs, A. Kőházi-Kis: Proc. SPIE2253, 140 (1994)
23. A. Kasper, K.J. Witte: Opt. Lett.21, 360 (1996)
24. L. Xu, Ch. Spielmann, F. Krausz, R. Szipőcs: Opt. Lett. 21, 1259
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