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After decades of effort, numerical relativists can now
simulate the inspiral and merger of two black holes orbiting
each other. That computational triumph has come none too
soon—physicists are on the verge of detecting gravitational
waves for the first time, and at long last they know what to
look for.

Black holes are strong-field objects whose properties are
governed by Einstein’s theory of gravitation—general relativ-
ity. A black hole is a region of spacetime that cannot commu-
nicate with the external universe. The boundary of that re-
gion defines the surface of the black hole, called the event
horizon. Isolated black holes are remarkably simple. They are
described by analytic solutions to Einstein’s equations and
are uniquely parameterized by just three quantities: their
mass M, spin J, and charge Q. Since charged objects in space
are rapidly neutralized by the surrounding plasma, one usu-
ally assumes Q = 0 for real astrophysical black holes.

Stellar-mass black holes, which have masses from sev-
eral to several tens of solar masses (M⊙), can form when mas-
sive stars exhaust their nuclear fuel and undergo collapse.
They were first identified in binary x-ray sources in our
galaxy, accreting gas from normal stellar companions. Spin-
ning stellar-mass black holes accreting from disks of magnet-
ized plasma may also trigger gamma-ray bursts (GRBs). Dur-
ing the early history of the universe, highly massive and
supermassive black holes likely formed from smaller seed
black holes and grew by a combination of mergers and gas
accretion. The cores of nearly all nearby bulge galaxies, in-
cluding our own Milky Way, harbor a supermassive black
hole with a mass between 106 and 109 M⊙. Supermassive black
holes are believed to be the central engines powering quasars
and active galactic nuclei (AGNs), the most energetic sources
of electromagnetic radiation currently known. Black holes, it
seems, are making their presence felt all over the universe.

Spacetime ripples
Binary black holes are among the most promising sources of
gravitational radiation. General relativity describes gravita-
tional waves as ripples on the background curvature of
spacetime that propagate at the speed of light. In some ways
they are like water waves traveling on an otherwise smooth
sea. Unlike water waves, however, gravitational waves are
not motions of material particles but ripples in the fabric of
spacetime itself. According to general relativity, the orbit of
a binary system decays in three phases, as shown in figure 1,
due to the loss of energy and angular momentum carried
away by gravitational waves. Radio observations of the
Hulse–Taylor binary pulsar confirmed that such losses occur
at the rates predicted by general relativity—a discovery for

which Russell Hulse and Joseph Taylor Jr were awarded the
Nobel Prize in Physics in 1993. But gravitational waves have
yet to be detected directly.

That should change with the Laser Interferometer Grav-
itational-Wave Observatory (LIGO) in the US, VIRGO in Italy,
and similar ground-based detectors elsewhere, which can ob-
serve waves with frequencies of 10–1000 Hz. The target date
for the Advanced LIGO–VIRGO network to become opera-
tional is 2015, at the completion of the latest upgrades (see
PHYSICS TODAY, December 2010, page 31). Prime candidates
for generating detectable radiation are binary black holes
whose constituents each have masses of 10–50 M⊙. Since grav-
itational-radiation emission causes orbital eccentricity to
decay, those binaries will be in tight, circular orbits when the
dominant gravitational wave frequencies—twice the bina-
ries’ orbital frequencies—pass through the LIGO–VIRGO
window. Thus the detectors will be able to measure gravita-
tional waves generated in the last minutes of the binary in-
spiral; they will also observe radiation emitted during the
merger and during the ringdown phase, in which the merged
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Figure 1. Coalescence of a compact binary. The loss of en-
ergy and angular momentum via the emission of gravitational
radiation drives compact-binary coalescence, which proceeds
in three different phases. The strongest gravitational-wave sig-
nal, illustrated here as the gravitational-wave amplitude h, ac-
companies the late inspiral phase and the plunge and merger
phase; for that part of the coalescence, post-Newtonian and
perturbation methods break down, and numerical simulations
must be employed. (Adapted from ref. 3.)



black hole relaxes to its final, stationary equilibrium state.
Physicists do not have a precise handle on the rate at which
LIGO–VIRGO will detect black hole coalescences; estimates
range from 0.4 to 1000 events per year.

The Laser Interferometer Space Antenna (LISA) is being
considered as a space-based detector that will observe grav-
itational waves at frequencies of 10−4 through 10−1 Hz, lower
than those seen by the ground-based interferometers. Such
waves are emitted by coalescing binaries with at least one in-
termediate-mass or supermassive black hole. Models predict
that LISA will detect 3–300 events per year arising from bi-
naries with total masses in the range of 103–106 M⊙ and with
redshifts as great as 15, in which case the gravitational radi-
ation was emitted more than 13 billion years ago. Even now,
tantalizing optical observations suggest that such binaries do
indeed form in AGNs and quasars.

An understanding of how binary black holes coalesce is
crucial for the construction of theoretical gravitational wave-

form templates to be used in so-called matched-filtering data
analysis. Those templates will increase the likelihood of a de-
tection and provide physical interpretations of detected signals.
Moreover, a comparison of observed and theoretical gravita-
tional waveforms can serve as a test of general relativity in the
strong-field regime: As in high- energy physics, collisions pro-
vide a powerful means of probing the nature of an interaction.

But solving the binary-coalescence problem in general rel-
ativity has proven to be quite challenging. Analytic post-
 Newtonian expansions in v2/c2, where v is the black hole speed
and c is the speed of light, determine the early inspiral phase,
and black hole perturbation methods can treat the final ring-
down of the merged remnant. But the late inspiral phase—as
well as the plunge and merger phase, where the wave ampli-
tude is largest—requires a numerical simulation, and that
poses complications. Black holes contain physical spacetime
singularities, regions where the gravitational tidal field (cur-
vature) becomes infinite. It is crucial, but hardly easy, to choose
a computational technique that avoids encountering those sin-
gularities. Moreover, most of the computational resources are
usually spent resolving the strong-field region near the holes,
yet the waves, which represent small perturbations on the
background field, must be extracted in the weak, far-field re-
gion. So the numerical scheme must successfully cope with the
problem of vast dynamic range. Finally, different formulations
of Einstein’s equations behave very differently when imple-
mented numerically, and we numerical relativists had to find
suitable formulations that generate stable solutions.

Numerical relativity
The usual form of Einstein’s equations elegantly unites space
and time into a single entity, spacetime. But in order to follow
the evolution of a system starting at some initial time, we
need to undo that unification and split spacetime back into
space and time.1–3 That is, we need to cast Einstein’s equations
into a form appropriate for solving a so-called initial-value
or Cauchy problem. Carrying out such a 3 + 1 decomposition
of Einstein’s equations results in a set of equations that con-
strain the gravitational fields at every instant of time, and a
set of equations that evolve the fields in time. To obtain a com-
plete solution, we first construct initial data, consistent with
the constraint equations, that describe the solution at an ini-
tial instant of time. Then we determine the subsequent time
development by solving the evolution equations.

The structure of the 3 + 1 decomposition is familiar from
Maxwell’s equations, which similarly consist of a set of con-
straint equations for the electric (E) and magnetic (B) fields, 

                  
(1)

and a set of evolution equations,

            
(2)

where ρ and j are, respectively, the charge and current 
densities. Here and throughout we have set c = 1.

It is always possible to write the magnetic field as a curl
of a vector potential A, that is B = ∇ × A, so that the constraint
CB = 0 is satisfied identically and the evolution equations take
the form
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Box 1. The 3 + 1 decomposition
In the flat spacetime of special relativity, the proper interval 
ds between two nearby points xa = (t, x1, x2, x3) = (t, xi) and
xa + dxa = (t + dt, xi + dxi) is given by the “spacetime Pythagore-
an theorem” as ds2 = −dt2 + (dx1)2 + (dx2)2 + (dx3)2 = Σa,b ηabdxadxb,
where the only nonvanishing components of the Minkowski
metric tensor ηab are the diagonal ones: ηab = diag(−1, 1, 1, 1).
The interval measures proper time when it is less than zero 
(that is, dτ 2 = −ds2) and proper distance when it is greater than
zero.

In general relativity, where spacetime is curved, the metric
tensor takes a more general form gab, and the proper interval
becomes ds2 = Σa,b gabdxadxb.

In a 3 + 1 decomposition, the spacetime is foliated into spa-
tial slices of constant coordinate time t, as shown in the figure.
The timelike unit vector na is normal to each slice, whereas the
vector ta connects points with the same spatial coordinates x i

on neighboring slices separated by dt. The lapse function α
determines the advance of proper time along na between
neighboring slices, whereas the shift vector βi determines the
shift of spatial coordinates with respect to where they would be
if they were determined simply by following na. The spacetime
displacement vector dxa connects the point A, with spatial coor-
dinates x i at time t, to the point B, with spatial coordinates
xi + dx i at time t + dt.

The proper interval can again be computed from the 
spacetime Pythagorean theorem, which yields the 3 + 1 
decomposition, 

ds2 = −α2 dt2 + Σi,j γij (dxi + βidt)(dxj + βjdt).

Here γij is the spatial metric that measures distances within each
spatial slice.
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Here ϕ is an arbitrary gauge function. Assuming charge con-
servation, ∂ρ/∂t = −∇ · j, equation 3 implies

                                           
(4)

If the constraints are satisfied initially, then they will be sat-
isfied at all times.

A well-known 3 + 1 decomposition of Einstein’s equa-
tions is the ADM formulation, named after Richard
Arnowitt, Stanley Deser, and Charles Misner.4 The resulting
equations are similar to Maxwell’s equations 1 and 3 and
form a set of coupled, multidimensional partial differential
equations. Instead of E and A, the fundamental variables are
a spatial metric tensor γij that measures distances within a
slice of constant time t, and a tensor called the extrinsic cur-
vature Kij that is related to the time derivative of γij—just as
E is related to the time derivative of A. Instead of a gauge
function ϕ, a lapse function α and a shift vector βi appear in
the ADM equations. The lapse and shift functions represent
the coordinate freedom in general relativity. For a geometric
interpretation, see box 1.

In electromagnetism, the  leading-order radiation field
scales with the time derivative of the source’s dipole moment
d; that is A ∝ ḋ/r, where r is the distance to the source. In gen-
eral relativity, the leading-order contribution to gravitational
wave radiation scales with the second time derivative of the
source’s quadrupole moment. The amplitude h of that space-
time perturbation measures the fractional change in the sep-
aration of two nearby, free test particles. The anticipated sensi-
tivity of Advanced LIGO–VIRGO is a mind-boggling h = 10−23.

Unlike Maxwell’s equations, however, Einstein’s equa-
tions are nonlinear, and so they introduce a new set of phe-
nomena and challenges. Simulations have employed various
strategies to solve the equations. In  finite- difference applica-
tions, the spacetime continuum is represented as a discrete
lattice or grid, and all partial derivatives are approximated as
the differences between the values of functions on neighbor-
ing grid points. In spectral or pseudospectral techniques, all
functions are expanded in terms of a complete set of basis
functions—for example, Chebyshev polynomials—and the
initial equations are recast as equations for the expansion 
coefficients.

Those methods alone enabled simulators to solve a num-
ber of important problems. One class is initial data problems,
or solutions to the constraint equations. Various groups have

obtained, for example, solutions that provide snapshots of a
black hole or neutron star binary in a quasi-stationary, circu-
lar orbit. (For a review, see reference 3.) Another class consists
of spacetimes obeying spherical or axial symmetry, restric-
tions that reduce the number of dynamical degrees of free-
dom and simplify the equations. 

The simulations of an axisymmetric head-on collision of
two black holes represented a milestone achievement.5 They
revealed the geometric structure of the merging horizons and
showed that only about 0.1% of the total mass of the black
holes is radiated away in the collision as gravitational
waves—that’s much less than the upper limit of 29% allowed
by Stephen Hawking’s area theorem and much less than was
later found to be emitted from black holes that merge follow-
ing a quasi-circular inspiral. Another important discovery
was the existence of critical phenomena in gravitational col-
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Box 2. A reformulation of Maxwell’s equations
Absent the term ∇(∇ · A), Maxwell’s equations (see equation 3 in
the text) could be combined into a wave equation for A. One
could go into the Coulomb gauge and demand ∇ · A = 0, but an
alternative way to eliminate the offending term—one that also
maintains gauge invariance—is to define Γ ≡ ∇ · A as a new
independent variable. Maxwell’s equations then take the form

(2a)

The evolution of Γ is given by

(2b)

where we have used the constraint equation for E in the final
equality. We leave it as an exercise to show, using equations 2a
and 2b, that any violations in the constraint CE now satisfy the
wave equation

(2c)

instead of being constant in time as in text equation 4.
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Figure 2. Black hole orbital trajectories. The plot at the top
left shows the centers of the individual horizons (red and
black) of two equal-mass, rapidly spinning black holes under-
going binary inspiral and merger. Also shown, at the end of
the inspiral, are the horizons of the individual black holes and
(in blue) the newly formed common horizon. The plot at the
bottom shows the real part of the dominant quadrupole
mode of the emitted gravitational-wave amplitude h; the
blowup reveals details of the end of the merger and of the
ringdown phase during which the merged black hole settles
down to its final equilibrium state. Here r is the distance to
the source. Distances and times are normalized by the initial
total mass of the binary M, and Newton’s gravitational con-
stant and the speed of light have been set equal to 1. In
those geometrized units, a solar mass is 4.95 μsec or 1.48 km.
(Adapted from ref. 16.)
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lapse.6 Other simulations tracked the collapse of rotating neu-
tron stars and of clusters of collisionless matter, as well as the
head-on collisions of those objects.

Given those successes and others, it seemed like a small
step to relax the assumptions of spherical or axial symmetry
and to simulate the realistic inspiral and merger of binary
black holes in quasi-circular orbits. The advance of gravita-
tional-wave detectors added urgency to the need for such
simulations, so in the mid 1990s NSF funded a grand chal-
lenge project to accelerate code development. It soon became
evident, however, that the relaxation of symmetry intro-
duced a new set of unexpected difficulties. When simulations
evolved all three spatial dimensions—even for weak gravita-
tional fields in vacuum—they developed numerical instabil-
ities and crashed after only short integration times. The out-
come was even more dire for black holes.

A series of advances
Thanks to progress on a number of fronts, numerical rela-
tivists have overcome the problems encountered in the early
simulations. The first important step involved the reformu-
lation of Einstein’s equations.

Starting with the ADM equations, for example, one can
generate an equivalent set of equations by introducing new
variables that absorb derivatives of some of the original vari-
ables and by adding multiples of the constraints to the evo-
lution equations. It turns out that some formulations behave
much better than others when implemented numerically. The
fact that reformulating the equations should have any effect
at all may seem puzzling, since all manipulations involve
mathematical identities—a solution to one set of equations is
automatically a solution to any other. But one way to under-
stand how a reformulation can help is to recognize that
adding multiples of the constraint equations, for example, af-
fects the mathematical character of the equations. In particu-
lar, some formulations satisfy criteria that guarantee stable or
otherwise well- behaved solutions, while others do not.1 Per-
haps more intuitively, numerical simulations do not yield
exact solutions: Round-off errors will lead to the constraints
not being satisfied. Those constraint violations behave differ-
ently in different formulations and can grow unstably.

Maxwell’s equations readily illustrate how changing the
formulation can alter the behavior of constraint violations.
Equation 4 demonstrates that in the standard formulation, a
nonzero constraint, once it has developed during a numerical
simulation, will persist. In box 2 we reformulate Maxwell’s
equations so that constraint violations satisfy a wave equa-
tion instead of equation 4 and can propagate away.

Reformulations of Einstein’s equations work in a similar
way. Successful applications include the Baumgarte-Shapiro-
Shibata-Nakamura formulation7 and the generalized har-
monic formulation.8 With BSSN it soon proved possible to
simulate coalescing binary neutron stars,9 which, at least ini-
tially, do not contain any singularities. Simulating black
holes, however, necessarily requires careful handling of their
interior spacetime singularities. One approach invokes black
hole excision, whereby the interior of a black hole is removed
from the computational mesh. That surgery is justified phys-
ically since, by definition, the black hole interior cannot affect
the exterior. An alternative approach exploits so-called
 moving- puncture coordinates, imposed by adopting special
criteria for the lapse and shift functions defined in box 1. The
spatial slices simulated with those coordinates never reach
the spacetime singularity, so there is no need for black hole
excision.

Other computational advances have contributed to the

successful simulation of black hole mergers. Recent numeri-
cal work on parallel computers employs high-order approx-
imation methods and adaptive mesh refinement (that is,
nested grids with adjustable resolution) to meet the demands
inherent in the problem.

After decades of effort and anticipation, the combination
of the above techniques enabled the first successful simula-
tions of binary black hole inspiral and merger, first by Frans
Pretorius and shortly after by Manuela Campanelli and col-
leagues and by John Baker and colleagues.10 The announce-
ment of the simulations generated great excitement and
opened the door to the exploration of physical and astrophys-
ical consequences of black hole mergers.

Waves, recoils, and spin flips
Among the first results from simulations of binary black hole
mergers were gravitational waveforms, such as shown in fig-
ure 2, that could be used in building theoretical templates for
gravitational-wave searches. Those real waveforms bear a
somewhat surprising similarity to earlier, qualitative
sketches, at least for binaries with a high degree of symmetry.
Some genuine surprises emerged, though, for asymmetric bi-
naries with unequal masses, misaligned spins, or both.

One surprise surfaced in connection with the recoil of a
merged binary. The recoil itself is to be expected when the bi-
nary is asymmetric. To understand why, consider a spinning,
S-shaped lawn sprinkler with its two curved arms. Each arm
emits water, and hence linear momentum, in a tangential di-
rection; that’s what makes the sprinkler spin. If both arms
emit water at the same rate, the loss of linear momentum
from each of the two arms cancels, and the sprinkler feels no
net force. Suppose, though, that one arm emits water at a
greater rate than the other. The loss of linear momentum no
longer cancels, and a net force and an acceleration of the cen-
ter of mass are the results. If such a lawn sprinkler were

Figure 3. Evidence of a spin flip? The radio galaxy NGC 326
displays X-shaped radio jets that appear to have changed di-
rection suddenly. One possible explanation of the sudden
change is that a merger of black holes led to a flip in the spin
of the black hole emitting the jets. (Image from National Radio
Astronomy Observatory/Associated Universities Inc, observers
Matteo Murgia and colleagues.) The inset (courtesy of the
Space Telescope Science Institute) shows the innermost jets,
formed from the most recent emission.
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placed into outer space, its center of mass would describe a
circle. Now imagine slowly increasing the flow of water. That
would lead to the center of mass describing an outward spi-
ral. Finally, if the water were suddenly shut off, the sprinkler
would coast in some direction in its orbital plane.

A similar effect exists for binary black holes. Each com-
panion in the binary is constantly accelerated and emits lin-
ear momentum in the form of gravitational waves. For sym-
metric binaries, the emissions from the two companions
cancel each other, but for asymmetric binaries they do not.
Moreover, as the binary orbit decreases, the black holes’
speed, acceleration, and emission of linear momentum in-
crease. Therefore, during the inspiral of an asymmetric bi-
nary the center of mass describes an outward spiral. The
process ends when the binary merges, leaving the remnant
with a recoil motion.

Recoil was first simulated for nonspinning black holes
with unequal masses.11 Consistent with earlier post-Newton-
ian estimates, those simulations found a maximum recoil
speed of about 175 km/s, achieved for binaries whose black
holes had a mass ratio of about 0.36. The surprise is that for
spinning black holes, the recoil speeds can be much larger:
For equal-mass binaries in which the black hole spins have
large and antialigned components in the orbital plane, recoil
speeds can exceed 4000 km/s.12 That high value has important
astrophysical consequences because it exceeds the escape
speed from even the largest galaxies. According to the pop-
ular model of hierarchical structure formation, large galaxies
form by the successive mergers of smaller ones. As they
merge, the supermassive black holes they host also merge. If
those supermassive black hole mergers were to routinely re-
sult in recoil speeds exceeding the escape speeds from the
remnant galaxies, the number of bulge galaxies containing
supermassive black holes would be smaller than is inferred
from observations. That issue already has triggered a number
of cosmological investigations. The key question is the like-
lihood of mergers that result in very large recoil speeds. Even
for a random spin distribution, the likelihood is probably
small. Moreover, several studies suggest that interactions
with ambient gas tend to align the black hole spins with the
binary’s orbital angular momentum and thereby reduce the
resulting recoil speed.13

Black hole spin affects binary mergers in other interest-
ing ways. If one neglects the angular momentum emitted by
gravitational radiation, the spin of a merger remnant is the
sum of the two progenitor black hole spins and the binary’s
orbital angular momentum just prior to merger. The remnant
spin may therefore point in a direction different from those

of its progenitors. Such a change in spin may have observable
consequences, since current theory holds that radio jets from
radio galaxies are emitted along the spin axis of black holes
at the centers of those galaxies. Indeed, some radio jets dis-
play an X-shaped pattern, such as shown in figure 3, which
suggests that the spin of the black hole powering the jets
flipped at some point in the past.

Immediate challenges
Simulations have far to go before they completely survey dif-
ferent black hole mass ratios and spins. Exploring that mul-
tidimensional parameter space remains a daunting task, but
it is of crucial importance if physicists are to assemble the
waveform templates needed for  matched- filtering data
analysis. New international collaborations aim to extend the
quality and scope of the simulations and to facilitate the in-
corporation of theoretical waveforms into data analysis—all
in time for the first gravitational-wave detections. The NINJA
(Numerical Injection Analysis) team is assembling wave-
forms from various groups and using them to test search
 algorithms. The NRAR (Numerical-Relativity and Analytical-
Relativity) collaboration is stitching together post-
 Newtonian and numerical waveforms to provide the best-
calibrated template families covering the largest parameter
space of binary masses and spins.

To appreciate some of the challenges, consider the mass
ratio. Current computational resources lack the capability to
simulate binaries with mass ratios smaller than about 10−2.
 Extreme-mass-ratio inspirals with mass ratios less than about
10−5 can be handled analytically by applying black hole per-
turbation theory, which employs gravitational  radiation-
 reaction forces to drive the inspiral. Such systems, which in-
clude stellar-mass black holes in orbit about supermassive
black holes, may form in galaxy cores and provide sources of
low- frequency gravitational waves for LISA. But neither
post- Newtonian methods nor perturbation theory provide
sufficiently accurate waveform templates for the
 intermediate-mass-ratio inspirals that may arise when inter-
mediate-mass black holes spiral into supermassive black
holes.

A comprehensive survey of black hole mergers will also
inform cosmologists’ understanding of structure formation.
The coalescence of massive and supermassive black holes is
triggered by the merger of their host galaxies. Galaxy merg-
ers can drive the hierarchical buildup of large-scale structure
in the early universe. Meanwhile, the shock heating and ac-
cretion of ambient gas by a coalescing binary can generate
appreciable electromagnetic radiation. That situation raises

Figure 4. Coalescence in gas. Shown is a
snapshot from a simulation of equal-mass,
nonspinning black holes immersed in a cir-
cumbinary gaseous disk. Blue regions are
empty; lighter shades of warm colors indi-
cate higher density. Tidal torques from the
binary carve out a hollow in the disk, but
some gas spirals into the hollow and ac-
cretes onto the inspiraling black holes. Pre-
cursor electromagnetic radiation from the
gas precedes the merger and peak gravita-
tional-wave signal, and aftermath radiation
is generated as the disk fills in the hollow
and gas is steadily accreted onto the black
hole remnant. (Simulation by Brian Farris,
Yuk Tung Liu, and Stuart Shapiro.)
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the exciting prospect of a near-simultaneous detection of
electromagnetic and gravitational waves from a binary
merger. The observation of electromagnetic radiation could
confirm putative binary mergers, and the radiation itself
could serve as a probe of the gas in galaxy cores and the
physics of accretion. 

With the binary coalescence problem in vacuum under
control, numerical relativists are already turning to environ-
mental issues as the next challenge. Meeting that challenge
requires solving Einstein’s equations together with both the
equations of relativistic magnetohydrodynamics to evolve
the magnetized plasma and the equations of radiation trans-
port to follow the emitted photons. Both black hole recoil and
mass loss due to gravitational waves have important effects
on the accreting gas. Preliminary relativistic simulations pro-
vide rough estimates of electromagnetic precursor and after-
glow radiation from mergers in large, gaseous clouds or cir-
cumbinary disks;14 see figure 4. Multiwave instruments such
as the Large Synoptic Survey Telescope now being planned
should be able to monitor that transient emission.

Binary neutron stars and binaries comprising a black
hole and a neutron star also show promise as sources of grav-
itational waves. In fact, relativistic simulations of binary neu-
tron stars achieved success before those of binary black
holes,9 in part due to the absence of initial spacetime singu-
larities. Not so with black hole–neutron star binaries, which
pose the combined computational challenges of relativistic
matter and singularities.15

When two neutron stars coalesce, the possibility exists
that the merged stars will have a mass exceeding the maxi-
mum mass allowed for a single neutron star, about 2–3 M⊙.
When that happens, the fate of the system depends on its
mass. High-mass systems undergo prompt collapse to black
holes; low-mass systems form differentially rotating (that is,
not rigidly rotating) hypermassive stars whose delayed col-
lapse after many periods is triggered by magnetic fields,
gravitational-wave emission, or both. A neutron star coalesc-

ing with a stellar-mass black hole is tidally disrupted prior to
merger, as shown in figure 5; a neutron star plunging into a
supermassive black hole is swallowed whole.

Both neutron-star and black hole–neutron star binaries
are candidate sources of short duration, high-energy GRBs.
The disk that forms from the debris around the spinning rem-
nant gives rise to magnetic fields and outflows collimated
along the rotation axis; those can power a GRB. Alternative
GRB models posit hypermassive neutron stars, among other
possibilities. Relativistic simulations model the various sce-
narios and explore the exciting possibility of a simultaneous
detection of gravitational waves and a GRB from the same
cosmic source.

Many of the computational hurdles of simulating black
hole mergers have been overcome. But work has just begun
to extract gravitational waveforms and electromagnetic sig-
natures in advance of their detection and to determine how
likely are the events that generate that radiation and what are
their cosmological impacts. In the years ahead, the job will be
aided by advances in computer hardware, improved simula-
tions, and highly anticipated observational data.
We gratefully acknowledge NSF and NASA for their research support.

The online version of this article includes videos of the simulations that
produced figures 4 and 5.
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Figure 5. A neutron star–black hole encounter. The panels
show four instants of the tidal disruption of a neutron star by a
black hole in a binary system. The black hole has a mass three
times that of the neutron star; neither object is spinning. The
bulk of the matter is captured by the black hole, with only
about 4% remaining in a disk. Color coding indicates varying
densities; green regions are densest, blue regions are least
dense. Clocks in the lower right-hand corners of the panels
track the simulation’s progress. (Simulation by Zachariah Eti-
enne and colleagues; see ref. 15.)


