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Pulses in cables 
 
References: 
H.J. Pain: The Physics of Vibrations and Waves, 5th ed., Wiley 2002, Chapter 7 (Waves in Transmission 
lines) 
T. R. Kuphaldt: Lessons in Electric Circuits, Volume II AC, Chapter 14 (Transmission Lines) 
http://www.ibiblio.org/obp/electricCircuits/AC/AC_14.html 
 
Introduction 
 
Standard AC and DC circuit theory assumes that the speed of propagation of information in a 
circuit is infinite.  If a change occurs anywhere in the circuit, then the rest of the circuit 
instantaneously reacts to that change.  In reality pulses do not actually travel even as fast as 
speed of light c in cables, but are reduced by a factor which is related to the physical properties 
of the cable insulator.   
       
The ideal transmission line 
 
Transmission lines are discrete ladder-like networks of inductors (L) and capacitors (C) capable 
of storing and transmitting electric and magnetic energy.  The basic unit of an ideal transmission 
line is an LC element of length dx and zero electric resistance (see Figure 1).  
 

Figure 1 
 
 
 
  
 
 
 

a) Basic unit of an ideal transmission line b) an ideal transmission line 
    
Analyses of the rates of change for both current I and voltage V take into account the self 
inductance of the element (L0dx) and its capacitance (C0dx) 
 

 
;    (1a) 
 
 

This leads to the wave equations for voltage and current:  
 
     
      (1b) 
 
 
 
      (1c) 
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The velocity of wave propagation is defined as 
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We can integrate the voltage drop along an infinitesimal unit of length dx:    
 
A solution is:             (2a) 
 
where the subscript + means the positive direction of wave propagation. 
 
 
        (2b) 
 
 
 
Z0 is called the characteristic impedance of the line. 
 
Coaxial cables           
          Figure 2 
  
Consider two conductor cables, separated by a dielectric 
material (Figure 2) with a continuous distribution of LC elements. 
Inductance per unit length can be written as: 
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where R1 and R2 are the radii of the inner and outer conductors, 
respectively; μ is the magnetic permeability of the dielectric. 
 
Capacitance per unit length is given by: 
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   (3b) where ε is the permittivity of the dielectric. 

 

It can be verified that: 2
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Knowing the velocity of signal travel in a certain coaxial cable, we can accurately calculate the 
travel time of an electrical signal along a given length.  
 
A useful visual analogy of a pulse traveling in the cable is that of a wave moving along a rope. 
We shall see that the action of the pulse at the end of the cable has a strong analogy with what 
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happens at the fixed end of an oscillating rope, suggesting that the math might be similar. 
In the laboratory we shall see these effects by using pulses of duration ~10-8 seconds = 10ns, 
since this corresponds to a “length” of ~3m.  
“Pulse length” is the real physical length of the pulse in the cable, so we can use the “length” of 
the pulse in either time units or length units. 
 
The load effect  
 
When a pulse travels along a cable and comes to an open end of the cable, it will reflect back 
and become an identical pulse moving in the opposite direction.  This is illustrated in Figure 3.  
 

 
 
 
 
 
 
 
 

      
  Figure 3 Pulse reflections (open end) 
 
Assume the end is terminated by a load of impedance Z. If we take into account the two 
opposite directions of wave propagation (+, -), we may write a boundary condition at Z: 
 

 
Which can be combined with:  
 
 

We can now define the reflection and transmission coefficients: 
 
  (4) 
 
 
 
The situation presented in Figure 3 corresponds to a reflection coefficient r = 1.0  
If we replace the circuit at the end by a short circuit, no voltage can ever appear at the end and 
the pulse must reflect back with the opposite polarity r = -1.  This is illustrated in Figure 4: 
 

 
 
 
 
 
 
 
 
                                   

Figure 4 Pulse reflections (short circuit) 
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Given these two extreme cases, it is plausible to assume that for some intermediate value of 
resistance at the end, the reflection coefficient r = 0.  In that case, there is no difference 
between putting that value of resistance there and adding another piece of cable of infinite 
length. In both cases as far as the first piece of cable is concerned, the pulse disappears.  This 
value of resistance is referred to as Z0, the characteristic impedance of the cable, which we 
defined before (Equation 2b). For our cable Z0 is about 50Ω. 
Assuming only resistive impedance (R) terminating the cable, it is reasonable to use the 
simplified expression: 
 
       (5) 
 
 
Voltage and current are π/2 out of phase in space and time. A standing wave is formed in a 

short-circuited transmission line of length
4

)12(


n  when the signal is a sinusoidal wave. At the 

end of the line voltage will be zero and current will be maximum. The total energy propagation 
will be zero. 
 
Signals are not propagated without losses. Attenuation is the most visible defect of any cable: 

 
 
    (6) 
 
 

Attenuation is also a function of signal frequency and cable length  :  
    
Apparatus notes                                                                    
 
We have two pulse generators: one for the study of the transmission line (SIGLENT SDG805) 
and another one (U of T Physics) for coaxial cable studies. We also have a digital oscilloscope 
which can display the pulses. We need to connect the two together with the transmission line or 
cable on which we are going to observe the transmission of the pulses. We do this with a TEE 
piece as shown in Figure 6.                                                                    

 
Figure 6 Circuit used to study transmission lines and coaxial cables 
The TEE piece is symmetrical in all three arms. The pulse generator has an impedance of Z0 
and the oscilloscope has very large impedance. Can we safely ignore the presence of the 
oscilloscope as far as reflections go? 
You should now be able to determine what comes back to the oscilloscope for any termination 
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of the long cable, particularly for short-circuit and open-circuit cases.  As a check consider 
that any result must also be true as we increase the length of the pulses so that they overlap 
and eventually go to the DC levels on the cable.  For example, if the cable is short-circuited in 
the DC case, there can never be any potential difference in the circuit.  What will it be the case 
for an open circuit? 
 
Exercise 1: A transmission line 
 
Use the 41 LC units transmission line (TL), the unit pulse generator and power supply 
(SIGLENT SDG805). Hint: start with pulse width of 75 μs and frequency of 300 Hz.  
With no load, connect the pulse generator to TL and to Ch1 of oscilloscope using a TEE. The TL 
output will be connected to Ch2. Vary the pulse duration and frequency until you observe the 
returned pulse on both Ch1 and Ch2. Explain what each channel measures.  
 
Insert a resistive load across the end of the line. Vary R until the returned pulse cancels. This 
will be the impedance match between the source and the load (matching allows a maximum 
power transfer to the circuit). Use the MATH menu (CH1+CH2) of oscilloscope. 
Measure the delay times between the transmitted pulse and the reflected one every 5 LC units. 
Plot delay time (μs) vs. number of units, estimate the speed of pulse propagation along the line 
and compare with calculated value from Equation 1d. 
Some TL constants: C0 = 0.01 μF; L0 = 1.5 mH (these are values per LC unit). Speed of 
propagation will have units of ‘LC unit’ per second. 
 Python Requirement 1 (PHY224/324 students only): Plot the above dependencies using 
Python. Your program would output the speed of pulse propagation 
 
Exercise 2: Coaxial Cables 
Use the “U of T Physics” pulse generator with various cable lengths, terminations and pulse 
widths. You should be able to investigate the open circuit, short circuit and several resistive 
terminations. 
Measure the time of flight of the pulse and compare it to the result using the speed of light.  
Pulses do not actually travel as fast as c in the cable, but are reduced by a factor which is 
related to the dielectric constant of the insulator.   
Measure the attenuation factor of the cable. Express your answer in dB/m.  
Hint: use an open circuit so that the entire pulse is reflected. 
Find the value of Z0 for the cable.  
 Python Requirement 1 (PHY224/324 students only): Do all the analysis of coaxial cables 
from Exercise 2 using Python. 
 
Some cable constants: ε = 2.25; μ = 1 (polyethylene) 
Geometrical characteristics (radii) can be found at: bwcat.belden.com and www.amphenol.co.za 
 
This experiment was revised in 2015 by Ruxandra Serbanescu (Written in 2007 by Ruxandra Serbanescu 
and Luke Helt). Notes on transmission lines experiments were kindly provided by Prof. Nigel Edwards. 
Thanks to Larry Avramidis for assembling the transmission line.  


