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Abstract

This work reviews present knowledge of double-diffusive convection at low
Prandtl number obtained using direct numerical simulations, in both the
fingering regime and the oscillatory regime. Particular emphasis is given to
modeling the induced turbulent mixing and its impact in various astrophys-
ical applications. The nonlinear saturation of fingering convection at low
Prandtl number usually drives small-scale turbulent motions whose trans-
port properties can be predicted reasonably accurately using a simple semi-
analytical model. In some instances, large-scale internal gravity waves can be
excited by a collective instability and eventually cause layering. The nonlin-
ear saturation of oscillatory double-diffusive convection exhibits much more
complex behavior. Weakly stratified systems always spontaneously transition
into layered convection associated with very efficient mixing. More strongly
stratified systems remain dominated by weak wave turbulence unless they are
initialized into a layered state. The effects of rotation, shear, lateral gradients,
and magnetic fields are briefly discussed.
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1. INTRODUCTION

Double-diffusive convection loosely refers to the nonlinear outcome of a class of multicomponent
buoyancy-driven instabilities taking place in dynamically stable fluids when the density depends
on two different components that diffuse at different rates. Dynamical stability in this context
requires that the density (prior to the development of the instability) be horizontally invariant and
increase in the direction of gravity, thus ruling out standard overturning convection, baroclinic
instabilities, and gravity currents. The unequal diffusivities of the two components become a
necessary condition for instability.

Double-diffusive convection can take different forms depending on the sign of the mean gradi-
ents of each individual component of the density. This review focuses on two cases: (a) fingering
convection, which occurs when the slowly diffusing component is unstably stratified and the
rapidly diffusing one is stable, and (b) oscillatory double-diffusive convection (ODDC), which
occurs when the slowly diffusing component is stably stratified and the rapidly diffusing one is un-
stable. For simplicity, in this review, I refer to the rapidly diffusing component as temperature and
to the slowly diffusing one as composition, even though any results presented would apply equally
well to isothermal cases where density depends on the concentration of two distinct chemicals
instead.

The best-known examples of double-diffusive convection in geophysics take place in the Earth’s
oceans, where the density of water depends both on temperature and on salinity. Fingering in-
stabilities and oscillatory double-diffusive instabilities were in fact first discovered in physical
oceanography (Stern 1960) and have been studied in depth in this context (Turner 1974, 1985;
Radko 2013). Other examples of naturally occurring geophysical double-diffusive convection
have been found in geothermally active lakes and inland seas (Wüest et al. 2012), in the con-
text of mushy layers (e.g., Worster 1997), or multicomponent flows through porous media (Nield
1968).

Despite their differences, all these geophysical examples share a common feature, namely, that
the Prandtl number Pr (the ratio of the kinematic viscosity ν to the thermal diffusivity κT —
more generally, the ratio of ν to the diffusivity of the rapidly diffusing component) is of order
one or larger: Pr is of O(1) for standard gases, O(10) for water, and exceeds 104 for magmas.
As such, most investigations of double-diffusive convection to date have focused on the high-Pr
regime.

By contrast, the limit where Pr � 1 or even Pr → 0 has received much less attention. It is
nevertheless relevant for liquid metals where Pr ∼ 10−3–10−1 (with application to metallurgy and
planetary interiors) and in the hot dense plasmas found in stellar interiors where Pr ∼ 10−9–10−5.
In both cases, Pr is small because κT is strongly enhanced relative to ν by electron conduction
in liquid metals and by photon transport in stellar interiors. The ratio τ of the compositional to
thermal diffusivities is also small for the same reasons. Unfortunately, physical experimentation in
the low-Pr parameter regime is either extremely difficult or effectively impossible, which is why
any progress in this area had to wait until three-dimensional (3D) direct numerical simulations
(DNSs) of double-diffusive convection became routinely possible. In the past 10 years, however,
advances in supercomputing have revolutionized the field. By solving the exact governing equa-
tions of fluid dynamics and by giving access to the entire spatiotemporal structure of each field
(velocity, temperature, and composition), DNSs have become a most powerful tool for numerical
experimentation.

I now review very briefly some of the pertinent properties of fingering convection and ODDC
at high Pr before describing recent progress in studying double-diffusive convection at low Pr
using DNSs.
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Figure 1
Illustration of (a) the fingering instability and (b) the oscillatory double-diffusive instability.

1.1. Fingering Convection

The driving mechanism for the fingering instability is illustrated in Figure 1a, assuming that
increasing the solute concentration C also increases density. When a small parcel of fluid from
the warm and high-C upper layers is displaced downward, its temperature rapidly equilibrates
with its surroundings via diffusion, but its concentration does not. Cooling gradually causes the
density within the parcel to increase until it exceeds that of the local background, at which point
the parcel proceeds to sink further. An optimal parcel size is required for this process to occur: If
it is too large, thermal diffusion does not have time to take place before the buoyancy force pushes
the parcel back up; if it is too small, viscosity suppresses the instability. Across most of parameter
space (i.e., high and low Pr), typical fingering structures have width of order (Stern 1960)

d =
(κTν

N 2

)1/4
, 1.

where N is the local buoyancy frequency associated with the temperature field only. The fingering-
unstable region of parameter space is relatively large, especially when the diffusivity ratio τ =
κC/κT (where κC is the compositional diffusivity) is low (see Section 2).

After saturation, fingering convection usually takes the form of thin, more or less laminar tubes
of high-C material flowing down and low-C fluid flowing up. However, one of the more remarkable
high-Pr properties of fingering convection is its propensity to excite secondary instabilities on
scales much larger than the basic finger scale. These include the development of large-scale
internal gravity waves (Stern 1969) and of thermocompositional staircases (Stern & Turner 1969),
i.e., stacks of well-mixed convective layers separated by stably stratified fingering interfaces. The
staircases are robust when they form and can be horizontally coherent over huge distances. They
are commonly observed in laboratory experiments (Krishnamurti 2003), as well as in the ocean
(Tait & Howe 1968, 1971). Their presence can increase the turbulent heat and compositional
fluxes across the fingering region by several orders of magnitude above that of small-scale fingering
convection (Schmitt et al. 2005).

1.2. Oscillatory Double-Diffusive Convection

The basic instability associated with ODDC takes the form of an unstable gravity wave (Walin
1964). In the absence of a background temperature gradient, the compositional gradient alone is
stabilizing and any initial perturbation would generate a stable oscillation in the form of internal
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gravity waves (see Figure 1b). The destabilizing temperature gradient, however, causes a suffi-
ciently small oscillating parcel of fluid to cool down or warm up via diffusion at the peaks and
troughs of its motion, respectively. Under the right conditions, this can gradually enhance the
amplitude of the oscillation. The size of the parcel must be optimally chosen for the instability to
proceed. It has been shown to be O(d ), as in the fingering case (Walin 1964, Kato 1966, Baines &
Gill 1969).

In contrast with the fingering instability, however, the region of parameter space that is linearly
unstable to ODDC (in the manner described above) at high Pr is too small to be of any practical
relevance (see Section 2) because viscosity has a strong damping effect on the necessarily small-
scale oscillations. Despite this, thermohaline layering associated with ODDC is nearly ubiquitously
observed in the Arctic (Timmermans et al. 2008) and in geothermally active lakes (Wüest et al.
2012) even when all the system parameters lie well outside the linearly unstable range, suggesting
that other destabilizing mechanisms may be at play (e.g., see Veronis 1965, Huppert & Moore
1976, Proctor 1981, Radko 2016). These so-called diffusive staircases have very stable interfaces
that are almost entirely quiescent. As in the fingering case, they are also extremely robust and can
be coherent over huge distances. The rate of heat and compositional transport across the staircase
is typically limited by the diffusive fluxes across each interface and, as such, is much smaller than
for fingering interfaces but not negligible since the interfaces are very thin.

As I demonstrate in this review, the dynamics of double-diffusive convection (fingering con-
vection and ODDC) at low Pr are sometimes similar to, and sometimes notably different from,
those arising at high Pr. The crucial difference between the two regimes can be understood by
noting that whereas viscous diffusion is significant on the scale of d (i.e., the finger scale or the
basic ODDC scale) when Pr � 1, it is usually negligible when Pr � 1. As such, inertial terms
tend to dominate the system dynamics at low Pr, with all the possible consequences that this
may imply. In what follows, I therefore review very recent progress in our understanding of
double-diffusive convection in the low-Pr limit (i.e., roughly speaking, from Pr ≤ 0.3 down to
Pr → 0). The linear stability analysis of Section 2 is included by way of introducing the model
setup as well as for completeness. Section 3 provides a synthetic summary of recent works on
fingering convection at low Pr, whereas Section 4 describes parallel progress on the study of
low-Pr ODDC. I then present various applications of these findings to planetary science and
stellar astrophysics in Section 5 and very briefly discuss in Section 6 the effects of additional
physical processes such as rotation, shear, magnetic fields, lateral gradients, and finite-amplitude
instabilities.

2. LINEAR STABILITY OF THERMOCOMPOSITIONAL
DOUBLE-DIFFUSIVE CONVECTION

A commonly adopted model setup for the study of double-diffusive convection with application to
geophysics or astrophysics [where the turbulent scale O(d ) is expected to be orders of magnitude
smaller than the size of the unstable region] is one that minimizes the effect of boundaries as
much as possible by considering triply periodic perturbations to linearly varying temperature and
composition profiles (e.g., Baines & Gill 1969, Shen 1995, Radko 2013). Since the root mean
square velocity of the turbulent flow is also usually very small compared to the local sound speed,
it is customary to use the Boussinesq approximation for weakly compressible gases (Spiegel &
Veronis 1960), which can be used to study double-diffusive convection not only in liquids but
also in the Earth’s atmosphere, as well as in stellar and planetary interiors. Consistent with this
approximation is the use of a linearized equation of state, where temperature and composition
perturbations, denoted by T and C , respectively, are linearly related to the density perturbations ρ.
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The governing equations for double-diffusive convection are

ρm

(
∂u
∂t

+ u · ∇u
)

= −∇ p − ρgez + ρmν∇2u, 2.

ρ

ρm
= −αT + βC , ∇ · u = 0, 3.

∂T
∂t

+ u · ∇T +
(

dT0

dz
− dTad

dz

)
w = κT ∇2T , 4.

∂C
∂t

+ u · ∇C + dC0

dz
w = κC∇2C , 5.

where ρm is the mean density of the region considered, u = (u, v, w) is the velocity field, p is the
pressure perturbation, g is the gravitational acceleration, α and β are related to derivatives of the
equation of state, dT0/dz and dC0/dz are the assumed background temperature and composition
gradients, respectively, and dTad/dz = −g/c p is the adiabatic temperature gradient (and c p is
the specific heat at constant pressure). Assuming that the vertical extent of the region considered
is small, we simplify the problem by taking ρm, g, α, β, dT0/dz, dC0/dz, dTad/dz, and all the
diffusivities to be constant.

An appropriate choice of nondimensionalization is one where d is used as the unit length, d 2/κT

is used as the unit of time, d |dT0/dz − dTad/dz| is the unit temperature, and (α/β)d |dT0/dz −
dTad/dz| is the unit composition (e.g., Radko 2013). The nondimensional governing equations are
then

1
Pr

(
∂u
∂t

+ u · ∇u
)

= −∇ p + (T − C)ez + ∇2u, ∇ · u = 0,

∂T
∂t

+ u · ∇T ± w = ∇2T ,
∂C
∂t

+ u · ∇C ± w

R0
= τ∇2C , 6.

where all quantities are now implicitly nondimensional. The ± signs in the temperature and
composition equations correspond to the signs of dT0/dz−dTad/dz and dC0/dz, respectively, and
are therefore all that differentiate the fingering convection equations (+ case) from the ODDC
equations (− case). We see that three model parameters

Pr = ν

κT
, τ = κC

κT
, and R0 =

α

∣∣∣∣ dT0
dz − dTad

dz

∣∣∣∣
β| dC0

dz |
7.

now explicitly appear. The density ratio R0 is a measure of the effective stratification of the
system, with R0 = 1 being neutrally stratified with respect to standard overturning convection:
dρ0/dz = −α(dT0/dz − dTad/dz) + β dC0/dz = 0 when R0 = 1.

The linear stability of the system of Equation 6 was studied by Baines & Gill (1969). In a
periodic domain, normal modes of the instability are of the form exp(il x + imy + ikz + λt),
where all quantities are now nondimensional. The growth rate λ satisfies the cubic equation
λ3 + a2λ

2 + a1λ + a0 = 0, where

a2 = (1 + Pr + τ )|k|2,

a1 = (τ + Pr + τPr)|k|4 ± Pr
L2

|k|2
(
1 − R−1

0

)
, 8.

a0 = τPr|k|6 ± PrL2 (
τ − R−1

0

)
,

where k = (l , m, k) is the total nondimensional wave vector, and L = √
l2 + m2 is the correspond-

ing horizontal wave number. The ± signs in Equation 8 refer to fingering convection (+) and
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ODCC (−), as in Equation 6. The fastest-growing modes are always vertically invariant (Radko
2013). In addition, (a) the fingering system is double-diffusively unstable provided 1 < R0 < τ−1,
with R0 > τ−1 being linearly stable, and (b) the ODDC system is double-diffusively unstable
provided 1 < R−1

0 < Pr+1
Pr+τ

, with R−1
0 > Pr+1

Pr+τ
being linearly stable. This immediately reveals one

of the most remarkable properties of the low Pr limit, namely, the dramatic increase in the range
of inverse density ratios that are linearly unstable to ODDC, from a maximum value of order 1.1
for water (Pr 	 7, τ 	 0.01) to O(Pr−1) when Pr ∼ τ � 1.

In both cases, the nondimensional horizontal wave number of the fastest-growing mode is
typically of order 1/2 across most of the instability range, except when the density ratio approaches
marginal stability, in which case it drops to zero. Dimensionally, this implies that the width of the
fastest-growing eigenmode is O(10d ). Note that an interesting characteristic of these eigenmodes
is that they are exact nonlinear solutions of the governing equations.

The growth rate λmax and horizontal wave number Lmax of the fastest-growing modes of in-
stability usually need to be found numerically and have been computed by Schmitt (1983) for a
wide range of Pr, τ , and R0 for the fingering case. However, simple analytical approximations
can be found in the limit where Pr ∼ τ � 1, relevant for both astrophysical systems and liquid
metals. Brown et al. (2013) studied the fingering case and showed that three different asymptotic
limits exist depending on the reduced density ratio, rf = (R0 − 1)(τ−1 − 1)−1, which maps the
fingering-unstable region of parameter space onto the unit interval:

� If rf � Pr, τ � 1, then λmax = √
Pr − Pr

√
1 + Sc−1 + · · · .

� If Pr, τ � rf � 1, then λmax = Pr
√

Sc−1

rf
− Pr

√
1 + Sc−1 + · · · .

� If rf → 1, then λmax = 2PrSc−1
[

1−rf
3 + · · ·

]3/2 [
1 − 1+Sc−1

3 (1 − rf ) + · · ·
]−1

.

Here, Sc−1 = τ/Pr = κC/ν is the inverse Schmidt number, assumed to be of order one. Mirouh
et al. (2012) analyzed the ODDC case, where the appropriate reduced inverse density ratio is now
ro = (R−1

0 − 1)( Pr+1
Pr+τ

− 1)−1. In the limit of small Pr and small τ , with Pr ∼ τ , they showed that
the real part of the growth rate of the fastest-growing modes λR,max scales with Pr and that the
horizontal wave number Lmax remains of order one. Letting λR,max = Prλ̂, and Lmax = L̂, they
showed that λ̂ and L̂ asymptotically satisfy the following equation:

λ̂ = 1 − ro − 3L̂4(1 + Sc−1)
4L̂2

, 9.

where

L̂4 =
√

8ro + 1 − (2ro + 1)
2(1 + Sc−1)

.

To go beyond linear theory in the low-Pr parameter regime, numerical simulations are
paramount. Thanks to the model setup adopted, the set of equations listed in Equation 6 can
be efficiently evolved in time using high-performance pseudo-spectral algorithms (e.g., Traxler
et al. 2011b). When τ � 1, high resolution is crucial to resolve the thin compositional boundary
layers that develop. For this reason, it may be tempting to work with 2D instead of 3D simulations
(e.g., Denissenkov 2010, Moll et al. 2016). However, although this strategy works quite well at
high Pr, inasmuch as the outcome of 2D and 3D simulations is often qualitatively similar (Stern
et al. 2001), the same is not usually true at low Pr (Garaud & Brummell 2015; although see Moll
et al. 2016). For this reason, I now limit the discussion about the nonlinear evolution of low-Pr
fingering convection and ODDC to results obtained with 3D simulations only.
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c

Figure 2
(a,b) Snapshots of the temperature and composition perturbations in a three-dimensional (3D) direct numerical simulation (DNS),
where Pr = τ = 0.01 and R0 = 5. (c) Measured and predicted compositional Nusselt number in all 3D DNSs available to date. Data
presented are collected from Traxler et al. (2011a), Brown et al. (2013), and Radko & Smith (2012), as well as new data (P. Garaud,
unpublished data). The solid lines are from the model of Brown et al. (2013), with K = 7.

3. NONLINEAR SATURATION OF FINGERING CONVECTION

3.1. Saturation of the Basic Instability

The first comprehensive 3D numerical experiments of low-Pr fingering convection were pre-
sented by Traxler et al. (2011a) and later extended by Radko & Smith (2012) and Brown et al.
(2013). Numerical constraints limit achievable values of Pr and τ to 10−3 or greater. With the
exception of one particular corner of parameter space discussed below (see Section 3.2.2), the
fingering instability nearly always saturates into a statistically stationary, weakly turbulent state of
homogeneous small-scale fingering convection (see Figure 2a,b). The turbulent Reynolds num-
bers achieved after saturation are very moderate [at most a few hundreds for Pr ∼ τ ∼ O(10−1)
and very low R0] and decrease for lower Pr and τ or higher R0. The typical horizontal size of
the fingers is reasonably well approximated by the predictions from linear theory (Traxler et al.
2011a).

3.1.1. Numerical estimates of turbulent mixing after saturation. Given the selected model
setup, the mixing efficiency of fingering convection can easily be measured using the thermal and
compositional Nusselt numbers, defined here as

NuT = 1 − 〈wT 〉 and NuC = 1 − R0

τ
〈wC〉, 10.

respectively, where the chevrons 〈·〉 denote a volume and time average over the entire domain, once
the system has reached a statistically stationary state. NuT and NuC can be interpreted as the ratio
of the effective to microscopic diffusivities of potential temperature and composition, respectively.
It can be easily shown that in this model setup, 〈wT 〉 = −〈|∇T |2〉 and R−1

0 〈wC〉 = −τ 〈|∇C |2〉,
which implies that NuT ≥ 1 and NuC ≥ 1.

The numerical experiments of Traxler et al. (2011a) and Brown et al. (2013) show that NuT

is always low, about 30 at most for Pr, τ ∼ 0.3, and R0 → 1, rapidly dropping to 1 as Pr and τ

decrease or R0 increases. This is consistent with the notion that significant thermal diffusion is
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required for fingering to develop in the first place. On the other hand, NuC can be relatively large
depending on the selected parameters (see Figure 2c).

3.1.2. Semi-analytical models. Attempts to construct simple models for turbulent transport by
fingering convection at low Pr date back to the 1970s and 1980s in the astrophysical literature.
Notable works are those of Ulrich (1972) and Kippenhahn et al. (1980), who both proposed on
dimensional grounds that NuC−1 = K/R0τ , where K is a nondimensional constant. These models
are still used in most stellar evolution computations, even though they do not adequately capture
the high-R0 cutoff for linear stability. Denissenkov (2010) proposed an improved model where
NuC −1 = K 1−R0τ−1

τ (R0−1) , which is consistent with the scalings of Ulrich (1972) and Kippenhahn et al.
(1980) for intermediate R0, but correctly accounts for the linear stability cutoff. It must, however,
break down as R0 → 1.

More recently, Brown et al. (2013) studied the question of the saturation of the fingering
instability at low Pr, attributing it to the development of secondary shear instabilities between
upward and downward fingers. Their work closely follows that of Radko & Smith (2012) in the
geophysical context, but makes a few additional simplifications that enable them to obtain simple
semi-analytical estimates for NuT and NuC as functions of the model parameters Pr, τ , and R0:

NuC − 1 = K 2λ2
max

τ L2
max(λmax + τ L2

max)
and NuT − 1 = K 2λ2

max

L2
max(λmax + L2

max)
, 11.

where λmax and Lmax are the growth rates and horizontal wave numbers of the fastest-growing
fingering modes (see Section 2), and K is a universal constant of order unity to be determined.
By universal, it is implied that one should be able to explain all the available data using the same
value of K . In this model, the turbulent flux ratio γ is

γ = 〈wT 〉
〈wC〉 = R0

τ

NuT − 1
NuC − 1

= R0
λmax + τ L2

max

λmax + L2
max

, 12.

which is independent of K . This formula recovers exactly the prediction of Schmitt (1979). Brown
et al. (2013) found that their model was in very good (although not perfect) agreement with all the
data available for K = 7, for Pr and τ as low as 0.01, as long as τ ≤ Pr (see Figure 2c). With more
recently available data at lower Pr, this statement remains correct, although the model now tends
to overestimate NuC somewhat systematically by a factor of ∼2 for the lowest available values of
Pr and τ (∼0.003). The model is also not quite as good when τ > Pr, suggesting that K may
depend on the Schmidt number (although why this is the case remains to be determined). The
τ > Pr region of parameter space does not appear to be physically relevant, however.

3.2. Large-Scale Secondary Instabilities

As discussed in Section 1.1, fingering convection in geophysical systems is prone to the develop-
ment of secondary large-scale instabilities leading to the excitation of internal gravity waves and
to the formation of thermocompositional staircases. Since transport through staircases is signif-
icantly enhanced compared with that of homogeneous fingering convection, assessing whether
secondary instabilities are also excited at low Pr is of paramount importance. These types of insta-
bilities have been successfully studied in geophysics using mean-field theory. The terminology is
loosely used here to describe models that study the evolution of structures on scales much larger
than individual fingers via spatiotemporal averaging, using simple parameterizations to account
for the effects of the small scales. I now briefly summarize this technique and then review the
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Perturbations in fluxes

Large-scale
perturbations

Perturbations in local
density ratio

F tot (R
–

, Pr, τ)T,C

T
–
,C
–

R
–

Figure 3
Illustration of positive feedback loops in mean-field instabilities. Large-scale perturbations in temperature
and composition perturb the local density ratio, expressed nondimensionally as R̄ = (1 + ∂ T̄ /∂z)(R−1

0 + ∂C̄/

∂z)−1. This modulates NuT and γ and therefore also the total double-diffusive fluxes of temperature F tot
T

and composition F tot
C . In a positive feedback loop, the divergence or convergence of the perturbed fluxes

enhances the original perturbations.

results of its application to low-Pr fingering convection. Note that it is also directly applicable to
ODDC.

3.2.1. Mean-field theory. The equations for the evolution of structures on large scales are

1
Pr

(
∂ū
∂t

+ ū · ∇ū + ∇ · R
)

= −∇ p̄ + (T̄ − C̄)ez + ∇2ū, ∇ · ū = 0, 13.

∂ T̄
∂t

+ ū · ∇T̄ + ∇ · FT ± w̄ = ∇2T̄ ,
∂C̄
∂t

+ ū · ∇C̄ + ∇ · FC ± w̄

R0
= τ∇2C̄ , 14.

where the overbar denotes a suitable average (e.g., an ensemble average or a horizontal average)
and where

R = uu, FT = uT , and FC = uC 15.

are the specific Reynolds stress, the temperature flux, and the compositional flux, respectively.
Within the context of geophysical fingering convection, various models have been proposed to
express R, FT , and FC in terms of the large-scale fields ū, T̄ , and C̄ and their derivatives, and each of
these models gives rise to a distinct set of nonlinear mean-field equations whose stability can then be
studied using standard techniques. Despite their differences, mean-field models generally exhibit
two main types of instabilities (in the absence of lateral gradients): (a) the collective instability (Stern
1969, Holyer 1981), which excites internal gravity waves, and (b) the γ -instability (Radko 2003),
which causes vertical layering and ultimately the formation of thermocompositional staircases.

Traxler et al. (2011b) recently showed that the collective instability and the γ -instability can
simply be viewed as different unstable modes of the same mean-field equations. Each mode cor-
responds to a particular positive feedback loop between large-scale perturbations and their effects
on double-diffusive fluxes (see Figure 3). To construct their closure model, Traxler et al. (2011b)
neglected the effects of Reynolds stresses. They assumed FT = FT ez = −(NuT − 1) ∂ T̄

∂z ez and
FC = γ −1FT , where NuT and γ depend only on the fluid properties Pr, τ , and the local density
ratio R̄. The latter is given by R̄ = 1+∂ T̄ /∂z

R−1
0 +∂C̄/∂z

and therefore varies when large-scale temperature

and compositional perturbations are present. The functions NuT (R̄) and γ (R̄), for given Pr and
τ , are assumed to be known.

Combining this closure model for R, FT , and FC with Equations 13 and 14 yields a set of
mean-field equations that have a trivial solution: a state of homogeneous fingering convection in
which T̄ = C̄ = ū = 0, so that R̄ = R0, FT = 1 − NuT (R0), and FC = FT /γ (R0). Linearizing
the mean-field equations around this state (assuming that the large-scale perturbations have small
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amplitudes) yields a set of linear partial differential equations with constant coefficients. As for the
basic instability, normal mode solutions exist and take the form q̄ = ˆ̄q exp(il x + imy + ikz + �t),
where � is the solution of a cubic equation. The coefficients of that cubic, which can be found in
equation 2.13 of Traxler et al. (2011b), depend on the wave number k, Pr, τ , and R0 of course, but
also on the mixing properties of the background state, namely, Nu0 = NuT (R0) and γ0 = γ (R0),
as well as A1 = R0

dγ −1

dR and A2 = R0
dNuT

dR , where the derivatives are evaluated at R = R0.
When the average in Equations 13 and 14 is interpreted as a horizontal average, the model

of Traxler et al. (2011b) recovers the γ -instability theory of Radko (2003). Indeed, in that case,
w̄ = 0 by mass conservation, and the momentum equation reduces to ∂ū/∂t = Pr∇2ū so that any
horizontal mean flow must decay viscously. The remaining mean-field equations are

∂ T̄
∂t

= −∂ F tot
T

∂z
and

∂C̄
∂t

= −∂ F tot
C

∂z
, 16.

where F tot
T = FT − 1 and F tot

C = FC − τ R−1
0 are the sum of the turbulent and diffusive fluxes

of temperature and composition, respectively. Radko (2003) showed that these equations exhibit
instability when the total flux ratio γtot = F tot

T /F tot
C is a decreasing function of the density ratio.

When this is the case, an interesting phenomenon occurs whereby even though the turbulent
fluxes of temperature and composition are individually both down gradient, they combine to act
antidiffusively. As such, the γ -instability suffers from an ultraviolet catastrophe, which is regu-
larized on scales that approach the basic instability scale (where the assumed flux laws no longer
apply; see Traxler et al. 2011b). The horizontally invariant γ -instability modes are precursors to
layering and therefore are often called layering modes.

When the average in Equations 13 and 14 is instead interpreted as an ensemble average, and
the 3D structure of the normal modes is retained, the model of Traxler et al. (2011b) also captures
the dynamics of the collective instability (Stern 1969, Holyer 1981) as a distinctively different
positive feedback loop. As clarified by Radko (2013), the collective instability can be viewed as a
turbulent version of the ODDC instability and excites large-scale internal gravity waves. Indeed,
the turbulent compositional flux in fingering convection is always larger than the turbulent heat
flux (e.g., γ < 1). If NuT � 1 and NuC � 1, then the turbulent flux is a significant component
of the total flux. As a result, the unstably stratified component becomes the fastest diffusing one,
a situation that exactly reproduces ODDC, albeit from a turbulent perspective.

The predictions of Traxler et al. (2011b) agree very well with high-Pr numerical experiments
(Stellmach et al. 2011), both for the γ -instability and for the collective instability, as long as the
typical wavelength of the mean-field mode exceeds five or more wavelengths of the basic fingering
instability. These experiments therefore provide further empirical justification for the assumptions
made in constructing the closure model above.

3.2.2. Application to low–Prandtl number fingering convection. The theory of Traxler et al.
(2011b) applies in all generality to both high- and low-Pr fingering convection and ODDC. In the
low-Pr limit, the semi-analytical flux laws proposed by Brown et al. (2013) can be used to estimate
FT and FC (using Equations 11 and 12) and then to systematically analyze the stability of spatially
homogeneous fingering convection to large-scale mean-field instabilities across parameter space.
Results were presented by Garaud et al. (2015) in the context of applications of fingering convection
to stellar astrophysics but are of course more generally applicable to liquid metals as well. They
are illustrated in Figure 4. One of the most important findings of this investigation is that the
γ -instability, responsible for the excitation of layering modes, is never active in low-Pr fingering
convection (see also Traxler et al. 2011a). This is because turbulent fluxes always remain relatively
small, so the total flux ratio γtot (which controls the development of the γ -instability; see above) is
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Figure 4
Results of the mean-field theory analysis for four sets of input parameters. In each panel, the color represents the logarithm of the
growth rate of a growing mode (white represents decaying modes). The vertical wave number k is plotted on a linear x-axis, and the
total horizontal wave number L is plotted on a logarithmic y-axis, giving the results their appealing flower-like shape (Traxler et al.
2011b). The bulbs are modes with L ∼ O(1), which are basic fingering modes. When unstable, the γ -modes would appear as modes
with L � 1 for a wide range of k, but are clearly absent here. The leaves, when present, are the collective instability modes. The
collective instability disappears for Pr, τ < 10−3, and for a larger reduced density ratio rf = (R0 − 1)(τ−1 − 1)−1.

close to the diffusive flux ratio γdiff = R0τ
−1. Because γdiff increases linearly with the density ratio,

this situation is stable to the γ -instability.
In contrast, the collective instability can be active, but only for a sufficiently low density ratio

and relatively large Prandtl number (Pr ∼ 10−3 or more, which precludes stellar applications, but
could be relevant for liquid metals); again, this is because the instability requires relatively large
turbulent fluxes to take place. The typical scale of the collective modes varies widely with input
parameters, but the fastest-growing ones are typically O(10d ) or O(100d ) and have l ∼ m ∼ k.
When the collective instability does take place, it excites gravity waves that can grow to relatively
large amplitude and cause local inversions in the density profile as they break (see Figure 5). These
inversions appear to cause layering in a manner consistent with the original prediction of Stern
(1969) (see also Stern & Simeonov 2002) in the context of oceanic fingering. The layers are formed
with a vertical wave number similar to that of the waves that created it, and are horizontally coherent
over long distances. The local density gradient is strongly negative (i.e., stably stratified) in the
interfaces that separate these layers but nearly neutral within the layers, which are mixed by layer-
scale overturning convective eddies. The overall rate of turbulent transport increases somewhat
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Figure 5
Snapshots of the compositional perturbations in a three-dimensional direct numerical simulation with Pr = 0.1, τ = 0.03, and
R0 = 1.1, taken (a) after saturation of the basic instability but before the onset of the collective instability, (b) once the collective
instability has grown to a significant amplitude, and (c) after strong breaking events have led to the formation of layers. The
horizontally averaged density profiles of panels b and c are shown in panel d. Adapted from Garaud et al. (2015).

when the gravity waves form but increases much more significantly once layered convection sets
in. Whether layers have a tendency to merge once they have formed remains to be determined.

4. NONLINEAR SATURATION OF OSCILLATORY DOUBLE-DIFFUSIVE
CONVECTION

As discussed in Section 2, low-Pr ODDC typically develops naturally from the basic linear instabil-
ity, in stark contrast with the high-Pr regime. In this section, for simplicity, I focus on presenting
the results of studies of nonlinear ODDC within the linearly unstable range, 1 < R−1

0 < Pr+1
Pr+τ

(see
Section 6 for additional effects).

4.1. Saturation of the Basic Instability

The dynamics of ODDC-unstable systems after saturation bear very little resemblance with the
properties of the fastest-growing ODDC modes (Mirouh et al. 2012). Saturation appears to pro-
ceed through nonlinear wave–wave interactions that promote the emergence of new oscillatory
modes that are no longer vertically invariant but are instead much more inclined; their vertical
scale becomes O(10d ), and their horizontal scale is now much larger (usually domain scale in most
simulations). Their oscillation frequency is correspondingly reduced. The precise nature of this
wave–wave interaction remains to be determined (Moll et al. 2016).

Under the adopted triply periodic model setup, both turbulent fluxes of temperature and
composition must be positive when nonlinear ODDC is statistically stationary, because in that
limit 〈wT 〉 = 〈|∇T |2〉 and R−1

0 〈wC〉 = τ 〈|∇C |2〉. They are now related to the respective Nusselt
numbers via

NuT = 1 + 〈wT 〉 and NuC = 1 + R0

τ
〈wC〉. 17.

Mirouh et al. (2012) reported experimental measurements of the turbulent temperature flux in
nonlinear ODDC just after saturation of the basic instability. An empirical fit to the data shows
that they can be modeled by the formula

〈wT 〉 = NuT − 1 = (0.75 ± 0.05)Sc0.25±0.15 1 − τ

R−1
0 − 1

(1 − ro), 18.
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Figure 6
(a) Temperature Nusselt number as a function of the reduced inverse density ratio ro, for Pr = τ values of 0.3 (red ), 0.1 ( green),
0.03 (blue), and 0.01 (orange). The data points are from Mirouh et al. (2012), and the lines correspond to the model of Equation 18.
(b) Variation of the total inverse flux ratio γ −1

tot with ro. The data points are from Mirouh et al. (2012) and the lines can be deduced from
the model of Equations 18 and 19. The large symbols mark simulations that eventually show spontaneous layering. Note how they all
lie on the decreasing part of the γ −1

tot curves.

for Pr and τ ranging from 0.01 to 0.3, and for a reduced inverse density ratio ro = (R−1
0 −1)( Pr+1

Pr+τ
−

1)−1 ranging from 0.01 to about 0.8. The formula must clearly break down as R−1
0 → 1 and should

be discarded in that limit. The turbulent flux ratio γ can be estimated using an extension of the
theory of Schmitt (1979) applied to ODDC and yields (Mirouh et al. 2012)

γ = 〈wT 〉
〈wC〉 = R0

λR,max + L2
max

λR,max + τ L2
max

· (λR,max + τ L2
max)

2 + ω2
max

(λR,max + L2
max)2 + ω2

max
, 19.

where λR,max and ωmax are the real and imaginary parts of the growth rate of the fastest growing
mode, respectively, and Lmax is their corresponding horizontal wave number. The compositional
Nusselt number and the inverse total flux ratio can then be easily calculated from NuT and γ

using NuC = 1 + R0〈wT 〉/γ τ and γ −1
tot = τ R−1

0 NuC/NuT . Figure 6 shows both models in
comparison with the data; the fit is adequate, although not perfect, across the parameter space
explored. Whether it still holds for much lower values of Pr and τ remains to be determined.

4.2. Beyond the Saturation of the Basic Instability

Until recently, very little was known about the behavior of low-Pr ODDC beyond the saturation
of the basic instability. Models proposed in the astrophysical literature assumed that it would either
always remain in a state dominated by small-scale turbulence (Stevenson 1977, Langer et al. 1983)
or take the form of layered convection (by analogy with observations of nonlinear ODDC in
geophysics) with either a single interface (Stevenson 1982) or a density staircase (Stevenson 1985,
Spruit 1992, Chabrier & Baraffe 2007, Leconte & Chabrier 2012, Spruit 2013).

However, as discovered by Rosenblum et al. (2011) using DNSs, ODDC can exhibit all of these
phenomena beyond the saturation of the basic instability, depending on the regime considered.
Ubiquitous spontaneous layering is observed in the less stably stratified cases (R−1

0 closer to one),
whereas the more stably stratified ones (R−1

0 closer to marginal stability) continue to undergo
some form of weak wave turbulence, with further transfer of energy to larger scales after satura-
tion. This dichotomy between low- and high-R−1

0 systems is illustrated in Figure 7. Rosenblum
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Figure 7
Illustrative simulations of oscillatory double-diffusive convection for Pr = τ = 0.03 in (a) the weakly stratified case (R−1

0 = 1.5) and
(b) the strongly stratified case (R−1

0 = 5). In each panel, the lines represent the turbulent fluxes of temperature (solid lines) and
composition (dotted lines), whereas the images are representative snapshots of the compositional perturbations. In both panels, the fluxes
grow exponentially, saturate briefly, and then continue to grow on a longer timescale. In panel a, the growth is significant and stepwise,
each successive step corresponding to the formation and then merging of convective layers until only one remains. In panel b, the
growth is much milder and is associated with the gradual coarsening of the dominant gravity waves. The low-R−1

0 snapshot is in a
temporary two-layer state, with two turbulent interfaces and high-amplitude perturbations. By contrast, the high-R−1

0 snapshot is in a
statistically stationary state, with small-amplitude but large-scale gravity waves that are strongly inclined towards the horizontal.
Adapted from Mirouh et al. (2012).

et al. (2011) concluded that a quantitative model of ODDC must contain (a) a criterion to deter-
mine which outcome to expect, (b) a model for layered ODDC, and (c) a model for nonlayered
ODDC.

4.2.1. Spontaneous layer formation in oscillatory double-diffusive convection. Rosenblum
et al. (2011) showed that layering in ODDC arises from the same γ -instability mechanism known
to cause layering in high-Pr fingering convection (see Section 3.2.1) (Radko 2003). The mean-field
equations applied to horizontally invariant perturbations are the same for ODDC and fingering
convection (because the term ±w̄ in Equation 14 is zero by mass conservation), so the γ -instability
proceeds in exactly the same way, provided that the total flux ratio γtot is a decreasing function
of the density ratio R0 (or, equivalently, that γ −1

tot is a decreasing function of R−1
0 ). As shown in

Figure 6, all the simulations where dγ −1
tot

d R−1 < 0 do indeed transition to layered convection (see
Section 4.2.2).

Using their empirically derived flux models (i.e., Equations 18 and 19) to inform the mean-field
equations, Mirouh et al. (2012) were able to predict the growth rate of layering modes with any
given vertical wave number k, for a range of parameters Pr, τ , and R−1

0 . The predictions fit the
observed growth rates of layering modes in selected simulations remarkably well for sufficiently
small wave numbers (e.g., see Figure 8a). More generally, Mirouh et al. (2012) also identified the
region of parameter space prone to spontaneous layering. The results are shown in Figure 8b
and reveal that the critical inverse density ratio below which the γ -instability takes place increases
significantly as τ and Pr decrease, suggesting that the latter may be quite common at low Pr and
low τ .
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Figure 8
(a) Amplitude as a function of time of the initial three-layer mode observed in the simulation with Pr = τ = 0.03 and R−1

0 = 1.5 shown
in Figure 7 (solid orange line), compared with the prediction from the γ -instability theory using experimentally determined
measurements of FT and γ (solid blue line), the prediction from the γ -instability theory using the flux laws for FT and γ given in
Equations 18 and 19 (dashed red line), and the amplitude above which layered convection sets in (horizontal dashed gray line). (b) Contour
plots of the critical reduced inverse density ratio for layering (top) and the critical inverse density ratio for layering (bottom) as a function
of Pr and τ . Adapted from Mirouh et al. (2012).

4.2.2. Layered convection at low R−1
0 . Layering following the development of the γ -instability

proceeds as follows. The exponential growth of the layering modes gradually weakens the back-
ground density stratification. Eventually, inversions in the density profile locally appear, at which
point layered convection sets in (Rosenblum et al. 2011, Mirouh et al. 2012). The layer height is
initially equal to the wavelength of the dominant layering mode, which turns out to be between
30d and 50d across most of the parameter space studied. As in the layered fingering case described
in Section 3.2.2, the horizontally averaged density profile is close to neutrally stratified in the
convective layers and is stably stratified within the interfaces, thus taking the form of a staircase.
Convective eddies span each layer and mix them efficiently in a manner somewhat reminiscent
of Rayleigh–Bénard convection between stress-free parallel plates. The analogy rapidly breaks
down, however, as the interfaces between each layer are not rigid but can instead be viewed as
thin and very mobile material surfaces that support the propagation of high-amplitude interfacial
gravity waves and are occasionally pierced by strong updrafts or downdrafts. This is in striking
contrast with observations of layered ODDC in the geophysical context, where the interfaces are
quiescent and flat, and invalidates prior models for layered convection at low Pr that assumed that
interfacial transport is diffusive (Spruit 1992, Leconte & Chabrier 2012).

In addition, spontaneously emerging staircases in low-Pr ODDC are not in equilibrium. In the
DNSs shown in Figure 7 (see also Supplemental Video 1), as in all cases seen to date (Wood
et al. 2013), the layers always proceed to merge until only one is left in the domain (at which
point the mergers necessarily cease). The merger timescale seems to depend on their separation
as well as on the global system parameters, but the cause of the mergers remains to be determined.
Whether this ubiquitous coarsening process is an inherent property of layered convection in
ODDC, or whether it is partially related to the model assumptions (i.e., Boussinesq approximation
and periodic perturbations) or the parameters selected, also remains to be determined.

Turbulent fluxes in the layered phase can be orders of magnitude larger than in the nonlayered
phase and increase with each layer merger (see Figures 7 and 9a). Wood et al. (2013) quantified
the transport of temperature and composition in layered ODDC using DNSs. They found that the
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Figure 9
Variation of (a) NuT and (b) γ −1

tot with RaH Pr, R−1
0 , Pr, and τ in all simulations exhibiting spontaneous layering available to date. Data

taken from Wood et al. (2013).

thermal Nusselt number scales with the Rayleigh number based on the dimensional layer height
H as

NuT − 1 = f (R−1
0 , τ )(RaH Pr)1/3, 20.

where

RaH =
(

H
d

)4

=
αg

∣∣∣ dT0
dz − dTad

dz

∣∣∣ H 4

κT ν
,

and where f (R−1
0 , τ ) is a function that depends weakly on R−1

0 and τ (to be precise, its dependence
is too weak to identify unambiguously from the available data) but takes values around 0.1 for Pr
and τ between 0.01 and 0.3 and for R−1

0 between 1 and 2. The scaling NuT − 1 ∝ (RaH Pr)1/3

is not entirely surprising. The dependence of NuT − 1 on Ra1/3
H recovers the scaling derived on

dimensional grounds by Turner (1965) for the transport of heat across a single sharp diffusive
interface. The dependence on RaH Pr accounts for the fact that viscosity is not expected to play
any role on the scales associated with the thermal interface at low Pr and confirms one of the
central predictions of Spruit’s (1992, 2013) models.

Wood et al. (2013) also found that γ −1
tot in layered ODDC has a complex dependence on all

input parameters, as well as on the layer height. In each simulation, γ −1
tot increases gradually with

each merger and asymptotes to a constant that seems to depend more sensitively on R−1
0 and Sc

than on τ . This constant likely represents the value of the total inverse flux ratio across a single
interface in an infinite domain, which had been estimated to be equal to γ −1

tot = τ 1/2 in high-Pr
layered double-diffusive convection by Linden & Shirtcliffe (1978). However, Wood et al. (2013)
and Moll et al. (2018) found that this high-Pr model does not apply in low-Pr staircases (where
it would largely underestimate γ −1

tot ), which is not surprising given the turbulent nature of the
low-Pr interfaces compared with the laminar high-Pr ones. This calls for a revision of many of the
previously proposed models for layered convection at low Pr (e.g., Stevenson & Salpeter 1977,
Spruit 1992, Leconte & Chabrier 2012), which all rely on γ −1

tot = τ 1/2 to estimate the compositional
flux through an interface.

4.2.3. Oscillatory double-diffusive convection at high R−1
0 . In the more stably stratified case,

layers cannot form spontaneously from the γ -instability because γ −1
tot increases with R−1

0 . Instead,
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nonlinear ODDC remains in a state of weak wave-dominated turbulence and, as shown by Moll
et al. (2016), the turbulent fluxes are always fairly weak (both temperature and compositional
Nusselt numbers remain of order unity). Interesting dynamics nevertheless take place, in which the
nonlinear interactions between the waves appear to drive an inverse energy cascade to larger scales.
Once a statistically stationary state has been reached, most of the energy becomes concentrated
in a few dominant gravity-wave modes. These typically span the entire computational domain
horizontally and have a vertical wavelength between 30d and 50d , regardless of the domain size
or aspect ratio.

In some cases, significant energy is channeled into horizontally invariant shearing modes that
interact with the waves in a manner reminiscent of relaxation oscillations (Paparella et al. 2002,
Moll et al. 2016). The term shearing mode here is loosely used to describe any horizontally
invariant mode. These are not naturally excited by the linear ODDC instability, so their growth
must necessarily arise from the nonlinear interaction between gravity waves. Once a shearing
mode reaches a significant amplitude, however, it becomes detrimental to the ODDC instability
and suppresses the waves that generated it. The shear then decays viscously, and the wave field
gradually recovers, at which point the cycle repeats. When present, this interaction is associated
with significant intermittency in the overall transport rates of both temperature and composition.
This phenomenon is not ubiquitous, however. In many cases, the shearing modes never acquire
significant energy, and the dynamics remain dominated by large-scale gravity waves at all times.

5. ASTROPHYSICAL APPLICATIONS OF LOW-Pr DOUBLE-DIFFUSIVE
CONVECTION

Having outlined what is currently known from theory about double-diffusive convection at low Pr,
I now turn to its applications to astrophysics (see, for instance, Copley et al. 1970 for metallurgical
applications). The importance of double-diffusive convection in this context was first reviewed
by Spiegel (1969). He summarized various possible impacts of both fingering convection and
ODDC across stellar astrophysics and established the close relationship between ODDC and the
phenomenon already known in this context as semiconvection (see also Schwarzschild & Härm
1958, Kato 1966). Until recently, however, the study of double-diffusive mixing in stars and planets
remained on the fringe, perhaps because standard stellar and planetary models (which ignore it)
were so successful in explaining most available observations.

This has changed dramatically in the past 10 years. Planetary science has been revolutionized by
the development and implementation of new technologies for detection and remote sensing of exo-
planets, as well as the various NASA missions to our own Solar System’s giant planets. Stellar astro-
physics has similarly undergone a recent transformation with the development of asteroseismology
(which directly probes the internal structure of stars) together with high-precision spectroscopy.
In all cases, new data have come to light that present significant challenges to standard theories of
planetary and stellar structure and evolution, often revealing the need for improved thermocom-
positional mixing models. Astrophysicists have therefore turned to double-diffusive convection to
see if it may explain some of the discrepancies between models and observations. This question is
pertinent since double-diffusive mixing should be ubiquitous in stars and planets. As reviewed in
Section 2, the range of density ratios unstable to fingering convection is 1 < R0 < τ−1, while the
range of inverse density ratios unstable to ODDC is 1 < R−1

0 < Pr+1
Pr+τ

. In regions of the interiors of
giant planets where hydrogen is in metallic form, one finds that Pr ∼ τ ∼ 10−2, while in the stably
stratified regions of stellar interiors, we have Pr ∼ τ � 10−5. This implies that a very slightly
unstable compositional gradient can destabilize a stable thermal stratification, and a very slightly
unstable thermal gradient can destabilize a stable compositional gradient.
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Compositional gradients in astrophysics can be helium concentration gradients in a hydrogen-
rich plasma or gradients of various species of higher atomic weight (often referred to as metallicity
in stellar astrophysics) within a hydrogen–helium mixture. Stable compositional gradients are
ubiquitous in stars because the majority of nuclear reactions are fusion reactions that increase
the mean atomic weight of the material and usually take place in the core. By contrast, unstable
compositional gradients are less common but can arise through a few unusual nuclear reactions
that decrease the mean atomic weight, in off-center burning, or through the accretion of material
at the surface of the star. In the remainder of this section I discuss some of the impacts of the
findings reported in Sections 3 and 4 on a few selected problems in astrophysics.

5.1. Fingering Convection (Thermohaline Convection) in Stars

Fingering convection is commonly referred to as thermohaline convection in astrophysics (even
though the slowly diffusing component is not salt). One of the earliest applications of fingering
convection discussed in stars takes place during their evolution on the red giant branch (RGB).
Ulrich (1972) noted that the nuclear reaction 3He + 3He → 4He + p + p is one of the rare
reactions that decreases the mean atomic weight per particle. It is known to take place on the
outskirts of the hydrogen-burning shell in RGB stars and gradually causes the development of an
unstable compositional gradient above the shell. Fingering convection then develops and can mix
material from the shell upward. If it is sufficiently strong, the mixed layer ultimately spans the
entire stable region between the burning shell and the outer convection zone, bringing products
and by-products of nuclear reactions to the surface. Charbonnel & Zahn (2007) first put forward
this effect to explain some of the peculiar abundance changes observed by Gratton et al. (2000)
in stars climbing up the RGB. They used the abundance data to calibrate traditional models for
mixing by fingering convection (see Section 3.1.2) and found that the model of Ulrich (1972) could
indeed explain the observations. In an interesting twist, however, that model tends to overestimate
mixing measured in DNSs by two orders of magnitude (Brown et al. 2013), which suggests that
some yet unaccounted for effect (such as rotation, layering, magnetic fields, or shear) must be
present to substantially enhance mixing by fingering convection in RGB stars.

Unstable compositional gradients can also develop from the accretion of high-metallicity ma-
terial on the surface of a star. This phenomenon was originally proposed in the context of mass
transfer in binaries stars (e.g., Stothers & Simon 1969, Stancliffe et al. 2007) but has recently
gained a lot of interest in the search for extrasolar planets. During the process of forming an
exoplanetary system, it is quite common that one or more planets may fall into a star and pollute
its surface with heavy elements. One may therefore wonder whether this could be the explanation
for the observed correlation between a star’s surface metallicity and its likelihood of having planets
(Fischer & Valenti 2005). However, as pointed out by Vauclair (2004), the unstable compositional
gradient would drive fingering convection and drain the accreted material deep into the interior
of the star. This shortens the surface residence timescale of chemical tracers of planetary impact
down to a few hundred thousand years or less (Garaud 2011), showing that the statistically higher
metallicity of planet-bearing stars must be of primordial origin.

5.2. Oscillatory Double-Diffusive Convection (Semiconvection)
in Planets and Stars

ODDC and its nonlinear manifestations (usually referred to as semiconvection in stellar astro-
physics) are thought to occur in compositionally segregated giant planets and in core-convective
main sequence stars, as well as in more evolved high-mass stars.
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Stevenson was the first to realize and study the importance of ODDC in the evolution of
giant planets. He found that there are (at least) two regions where stable compositional gradients
and therefore ODDC can be found. The first is located at a pressure of about 1 Mbar, where
helium can condense into droplets and rain into the interior. Stevenson & Salpeter (1977) noted
that convection is likely partially inhibited by the strong helium gradient that forms in the He
rain region, and drew the analogy with ODDC. Limitations on the transport of heat across
this region can delay the global cooling of the planet, an effect that may be a possible cause of
the unexpectedly high luminosity of Saturn (Stevenson & Salpeter 1977, Fortney & Hubbard
2003). The second region with strong compositional gradients is the interface between the central
core (composed of water, silicates, iron, etc.) and the hydrogen/helium envelope. Although this
compositional gradient may be strong enough to inhibit regular convection, Stevenson (1982)
argued that double-diffusive convection could gradually erode the core over time. He estimated
the erosion rate, arguing that a fraction γ −1

tot of the total convective energy can be used to mix
heavy elements upward into the envelope. Using the high-Pr estimates for γ −1

tot = τ 1/2 (Linden &
Shirtcliffe 1978), Guillot et al. (2004) showed that the erosion of Jupiter’s core would be almost
complete after 5 Gyr, whereas that of Saturn would only be partial. These results are consistent
with present estimates of the core sizes of both planets but should be revisited given the more recent
findings of Wood et al. (2013) and Moll et al. (2018) for low-Pr layered convection. Compositional
gradients near the core can also regulate the transport of heat, which in turn affects the thermal
evolution of the planet (Stevenson 1985; Chabrier & Baraffe 2007; Leconte & Chabrier 2012,
2013).

In stellar interiors, ODDC usually takes place in compositionally stable regions, located at the
outskirts of convective cores, that have formed either because the core has retreated over time
or because weak nuclear burning takes place outside the core (e.g., reviewed in Merryfield 1995).
Mixing beyond the convective core has important consequences for stars, as it can continually
provide them with more fuel, thus prolonging the duration of core-burning phases of stellar
evolution. The ultimate size of the core of a star also controls its post–main sequence evolution
in sometimes dramatic fashion, especially for high-mass stars (Stothers & Chin 1968, Lauterborn
et al. 1971, Langer & Maeder 1995, Straniero et al. 2003, Sukhbold & Woosley 2014). As shown
by Moore & Garaud (2016), ODDC in this context always lies in the regime that is unstable to
layering. Furthermore, the rate of transport by layered convection is so efficient that it rapidly
homogenizes the entire semiconvective layer, which then becomes part of the convective core.
Moore & Garaud (2016) thus established that the extent of the convectively mixed core is ultimately
more accurately estimated using the Schwarzschild criterion than the Ledoux criterion. Recent
asteroseismic data generally confirm this finding (Deheuvels et al. 2016) and further suggest the
existence of substantial mixing beyond the edge of the convective zone.

6. NEW PHYSICS AND FUTURE WORK

Previous sections of this review focused on describing the nonlinear dynamics of double-diffusive
convection at low Pr as they arise from infinitesimal perturbations. The effects of rotation, shear,
lateral gradients, and magnetic fields were all neglected, as was the possibility of finite-amplitude
instabilities. However, they are likely very significant in astrophysical applications, and it is worth
reviewing, at least very briefly, what is known to date about their impact on low-Pr double-diffusive
convection.

The effects of shear on fingering convection and ODDC are nontrivial. Sufficiently strong
shear can naturally drive shear instabilities that entirely dominate the double-diffusive dynamics
of the system. Weak shear, on the other hand, can interact in complex ways with the developing
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Figure 10
Illustrative snapshots of the compositional perturbations in three different direct numerical simulations. (a) Rotating oscillatory
double-diffusive convection (ODDC) at Pr = τ = 0.1, Ta∗ = 10, and R−1

0 = 1.25, showing the presence of a domain-scale vortex that
strongly enhances double-diffusive transport. Adapted from Moll & Garaud (2017). (b) Intrusions formed as a result of compensating
lateral gradients of temperature and composition at Pr = τ = 0.3 and R0 = 5. Adapted from Medrano et al. (2014). (c) Layered ODDC
formed by finite-amplitude instability at Pr = τ = 0.03 and R−1

0 = 7.87. Simulation from Moll et al. (2018).

double-diffusive instabilities and either promote them or suppress them (e.g., see Linden 1974,
Radko 2016, at high Pr). Whether this is the case at low Pr remains to be determined. Similarly, very
little is known about the interaction between double-diffusive convection and magnetic fields. It is
worth noting that magnetic fields themselves can indirectly affect the buoyancy of a parcel of fluid
and therefore play a role analogous (but not identical) to composition in driving double-diffusive
instabilities in thermally stratified but chemically homogeneous plasmas (Hughes & Weiss
1995).

Rotation also has nontrivial effects on the dynamics of double-diffusive convection (Pearlstein
1981). These are relatively mild in the linear regime (where rotation merely stabilizes modes that
are not invariant in the direction of rotation) but become very substantial beyond the saturation of
the basic instability. At low Pr, the influence of rotation can be quantified by the modified Taylor
number Ta∗ = 42d 4/κ2

T (where  is the rotation rate) introduced by Moll & Garaud (2017),
which happens to be a relatively good estimate of the inverse-square Rossby number of the tur-
bulent flow around the time of saturation of the basic instability. If Ta∗ � 1, the system dynamics
remain relatively unaffected by rotation. If Ta∗ � 1, rotation significantly influences transport,
sometimes reducing it, and sometimes enhancing it compared with nonrotating cases. Most no-
tably, it can suppress the formation of layers in ODDC (and therefore quench transport) but can
also cause the emergence of domain-scale vortices within which transport is greatly enhanced (see
Figure 10a), in both fingering convection and ODDC (Moll & Garaud 2017; S. Sengupta &
P. Garaud, unpublished manuscript). A comprehensive theory of rotating double-diffusive con-
vection at low Pr remains to be developed.

Lateral gradients of temperature and composition can occur even if the background density
profile is horizontally invariant, as long as they are density compensating. When this is the case,
a new mode of double-diffusive instability emerges that is unstable at all density ratios (in both
fingering and ODDC cases). Holyer (1983) presented the theory behind this small-scale intrusive
mode and Medrano et al. (2014) explored the theory in the context of low-Pr systems, both linearly
and nonlinearly using DNSs (see Figure 10b).

Finally, although I have focused on describing the nonlinear dynamics of low-Pr double-
diffusive convection as they arise from infinitesimal perturbations, other outcomes can be achieved
if finite-amplitude perturbations are applied to the system, in particular, if these force the latter
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into a layered state (Veronis 1965, Huppert & Moore 1976, Proctor 1981, Zaussinger & Spruit
2013). In this case, statistically stationary layered double-diffusive convection can be achieved
even in cases that are not prone to any large-scale instabilities, both in fingering convection (any
density ratio) and in ODDC (at high inverse density ratio). Moll et al. (2018) present a preliminary
study of finite-amplitude layering in low-Pr ODDC (see Figure 10c). Their findings bear many
similarities but also some differences with the high-Pr layered ODDC observed in geophysics. At
large values of R−1

0 (where layers cannot form through the γ -instability), the interfaces are much
more quiescent, and transport across the interface is essentially diffusive. The interfaces thicken
relative to the layer size as R−1

0 increases, but the total inverse flux ratio γ −1
tot remains relatively

independent of R−1
0 . Both of these results are similar in the high-Pr regime. Interestingly, however,

it appears that γ −1
tot 	 Pr+1

Sc+1 instead of τ 1/2 found at high Pr (Linden & Shirtcliffe 1978). This finding
may have significant implications for planetary structure and evolution models, as discussed in
Section 5.

SUMMARY POINTS

1. Double-diffusive convection at low Pr is important in stellar and planetary astrophysics
and in metallurgy. It differs significantly from the high-Pr regime.

2. Mixing in low-Pr fingering convection can be modeled using simple semi-analytical
physically motivated prescriptions, and large-scale instabilities are rare.

3. ODDC in weakly stratified systems spontaneously evolves into layered convection
through the γ -instability. The thermocompositional staircases that form in that case
are less stable than at high Pr, and transport is very efficient. Mixing in strongly stratified
systems is essentially negligible unless layered convection can be mechanically triggered.

FUTURE ISSUES

1. A model for the saturation of ODDC should be constructed.

2. A better quantitative understanding of transport in layered convection in ODDC at both
low and high R−1

0 is needed.

3. The effects of rotation, shear, lateral gradients, magnetic fields, and finite-amplitude
instabilities should be investigated and likely matter in astrophysical applications.
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