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1 Motivation for Error Analysis

Experimentalists have a great responsibility in the physical sciences. They are respon-
sible for proving or disproving a physical theory, measuring parameters of importance,
and discovering phenomena that can be characterized. For all of these responsibili-
ties, the experimentalist also must ensure that what he says is justified. In a nutshell,
he must always know how well he knows what he knows.

In addition, experimentalists want to be efficient and make the most of their lab
time. The statistical uncertainty in any experiment can always be characterized by
repeating the experiment. Of course, if you had to repeat the same experiment 1000
times just to figure out the uncertainty in your result, you’d spend years trying to
measure the density of water or acceleration due to gravity. By employing select
tools from the field of statistics, experimentalists can make good estimates of the
uncertainties in their experiments without having to perform them thousands of times.
Furthermore, the statistical tools allow the experimentalist to justify the quality of
his data and the confidence in his results.

2 Statistics and Measurement

One of the tenets of experimental science is repeatability. This means that if you
run two iterations of an experiment, and you follow the same procedure, you should
get the same result. A question you may ask is: What is meant by the “same” result?
Are some pairs of numbers more equal than others? Clearly, we don’t expect a result
to be exactly equal. No quantity can be measured exactly, so there is a problem in
definition here. We can define quantities like c or µ0 exactly, but by doing so, they
cannot be measured. So, since a quantity cannot be measured exactly, how do we
describe our measurements?

2.1 Random Variables

A random variable is a function, X, that generates a numerical measurement, x, from
an outcome state, ζ, of a random experiment1 [1, p.84]. This can be equivalently

1By random experiment, I mean an experiment with some random component, which means all
experiments, really. The outcome state, ζ is a formal method of assigning results to a number. For
example, in coin-flipping you can assign ζ(heads) = π and ζ(tails) = 55.32, but any two unique
numbers are just as valid. If the measurement is number of heads, the function X(ζ) simply has to
map π → 1 and 55.32 → 0.
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written as
x = X(ζ). (2.1)

If we want to describe the behavior of the measurement, x, we can consider the
probability that the measurement will lie within some specified range of measurement
values. If the probability is significant for a small range of values, we can say that the
measurement is precise. How can we characterize these probabilities? We can use the
probability distribution function2 (PDF), fX(x), for the measurement x of random
variable X.

To provide an analogy to quantum mechanics, the PDF is similar to the magnitude
of the wavefunction. You can’t determine the probability of an electron being at a
particular position, but you can evaluate the probability of the electron being in one
half of a potential well. Similarly, since you can’t measure physical quantities exactly,
you can’t determine the probability of the measurement being some x0. However,
you can evaluate the probability of the measurement being in some range [x0, x1] by
integrating the PDF over the bounds.

P (x ∈ [x0, x1]) =

∫ x1

x0

fX(x) dx. (2.2)

As an example, suppose you are measuring current with an analog picoammeter.
The problem is that the reading is fluctuating, so even though the scale allows you
to read to very high precision, such a reading wouldn’t be appropriate. Ruling out
systematic error, one can define a random variable to describe the reading of the pi-
coammeter. The PDF of the random variable should completely describe the statistics
of the measurement. So, the probability of measuring between 1.0000 and 1.0001 pA
may be very small, but the probability of measuring between 0.99 and 1.01 pA may
be significant (P ∼ 70%).

Random variables can be difficult to characterize because a measurement is de-
scribed by a curve instead of a single number. Fortunately, the curves can usually be
reduced to 2 parameters that describe the measurement equally well. For measure-
ments, the PDF is usually peaked about a mean, µ, with breadth characterized by a
variance, σ2.

fX(x) ⇐⇒ [µ, σ2] ⇐⇒ µ± σ (2.3)

This is where the notion of the uncertainty of a measurement comes from. Our
measurement can be written as x = µ±σ, but to be able to use such parameters, the
shape of the PDF must be known at least approximately. Of course, the magnitude of
the uncertainty is somewhat arbitrarily determined. By convention, the uncertainty
is generally quoted so that the probability you will measure a value of x ∈ [µ−σ, µ+σ]
is 68%.

2Also known as probability density function
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So in our picoammeter example, suppose we find that the needle lies within 0.99
and 1.01 pA about 70% of the time. Thus, a reasonable measurement of the current
would be I = 1.00± 0.01 pA.

2.2 Probability Distribution Functions

2.2.1 Gaussian Distribution
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Figure 2.1: Gaussian distribution with µ = 0, σ = 1 and 68% confidence region
shaded.

The Gaussian or normal distribution is probably the most common kind of error
statistic that you will find in the lab. Any process which is being affected by a
multitude of random effects which are essentially averaged into your result has a
Gaussian probability distribution [2, p.27]. It usually the “default” PDF that you
assume for your measurement. There is good reason for this choice. It is easy to work
with mathematically, many other distributions approach the Gaussian distribution in
common limiting cases, and it is qualitatively reasonable. The distribution is given
by

f(x) =
1

σ
√

2π
exp

(−(x− µ)2

2σ2

)
, (2.4)

where x is the measured value, µ is the mean, and σ is the standard deviation of
the PDF. The Gaussian distribution is so common that it was the choice for the
uncertainty convention of 68%. An uncertainty of one standard deviation is consistent
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with 68% probability as shown below
∫ µ+σ

µ−σ

1

σ
√

2π
exp

(−(x− µ)2

2σ2

)
dx = erf

( 1√
2

)
≈ 0.6827. (2.5)

2.2.2 Poisson Distribution
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Figure 2.2: Poisson distribution with µ = 5 and ∼ 70% confidence region shaded.

The Poisson distribution is another common probability distribution that you may
encounter in the lab. The Poisson distribution is most easily understood as a limiting
case of the binomial distribution where the number of possible events is large, but
the probability of any one of them happening is very small. If you were to count the
number of successes (events) in a period of time, the distribution of counts adheres
to the Poisson distribution. The number of events must be non-negative, and the
number of events must be an integer, so the Poisson distribution is only defined for
non-negative integers. However, a continuous distribution can be defined using special
functions. The Poisson distribution is given by

fn =
e−µµn

n!
f(x) =

e−µµx

Γ(x + 1)
, (2.6)

where n is the number of counts, x is the interpolated number of counts, µ is the
mean value of counts and Γ is the Euler gamma function. An interesting feature
of the Poisson distribution is that there is no freedom in the standard deviation or
variance of the distribution. If we calculate the variance we find that

σ2 = 〈(x− µ)2〉 =
∞∑

n=0

e−µµn

n!
(x− µ)2 = µ. (2.7)
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In other words, the variance is equal to the mean, and so the standard deviation of
the Poisson distribution is

√
µ. The probability of obtaining x ∈ [µ−√µ, µ +

√
µ] is

also quite close to ∼ 70%, so it is reasonable to state the uncertainty of a counting
measurement to be µ ± √µ. This also means that you need to increase 2 orders of
magnitude to reduce relative error by 1 order of magnitude, which makes precision
measurements very time consuming.

As an example, suppose you have a chunk of radioactive material with a substantial
half-life and you wish to count the decays from the sample to calculate the half-life,
or the source intensity. What we have is a large number of possible events (i.e. every
single atom decaying simultaneously!) but a very small probability for an individual
event occuring. In 10 minutes, suppose you count 294 “beeps” on your detector.
Assuming 100% detector efficiency, you can estimate the decay rate as

λ =
294±√294

600s
= 0.490± 0.029 s−1. (2.8)

An important note is that as µ gets large, the Poisson distribution is well approxi-
mated by a Gaussian distribution with σ =

√
µ. In fact, the two are nearly indis-

tinguishable for µ > 10. So, for the purposes of analysis, using Gaussian statistics is
desirable for large µ since it is simpler than using Poisson statistics.

2.2.3 Lorentzian Distribution
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Figure 2.3: Lorentzian distribution with µ = 0, Γ = 1, and ∼ 70% confidence region
shaded.
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The Lorentzian distribution is slightly less common, but has some usage in the
undergraduate lab. It is suitable for describing the probability distribution of resonant
absorption (Mössbauer Effect) versus energy or the distribution of reaction cross
section versus energy for a nuclear reaction [2, p.31].

The Lorentzian probability distribution function is given by

f(x) =
1

π

Γ/2

(x− µ)2 + (Γ/2)2
, (2.9)

where x is the measured value, µ is the mean value, and Γ is the full width half
maximum3. The Lorentzian distribution is different than the Gaussian and Poisson
distributions because it falls into the class of infinite-variance distributions. If you
calculate the variance of the distribution, you will find that it diverges. However,
∼ 70% of the distributions area is contained within Γ of the peak as shown below

∫ µ+Γ

µ−Γ

1

π

Γ/2

(x− µ)2 + (Γ/2)2
dx =

2 tan−1(2)

π
≈ 0.7048. (2.10)

As an example, suppose you perform a nuclear resonance measurement and find the
FWHM of the absorption peak is 1 eV, then the absorption peak energy can be quoted
to ±1 eV with 70% confidence.

3 Quadrature and Error Analysis

The ideas of error propagation were introduced in first year as a set of rules to follow
when performing operations on data with errors. Unfortunately, there wasn’t much
justification for using these rules and all we knew was that they worked. Here, I will
outline a general method of finding out how to determine the propagation of errors
[2, p.39].

We can define variance of a random variable by the ensemble average of the square
of the deviation from the mean,

σ2
u = 〈(ui − ū)2〉. (3.1)

The square root of variance is the standard deviation. The uncertainty in a quantity
is assumed to be its standard deviation, σu, which is at least true for Gaussian error
statistics. We will use these ideas of variance and standard deviation to derive the
rules of quadrature.

3The full width half maximum (FWHM) is the width of the distribution at half its peak value.
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3.1 Functions of One Variable

Suppose that you have a measured quantity u and you wish to find the uncertainty
in a calculated quantity x = f(u).

σ2
x = 〈(xi − x̄)2〉 (3.2)

Uncertainties in u are directly related for the uncertainties in x, so we Taylor expand
the function, f(ui) about the mean ū to find

f(ui) = f(ū) + (ui − ū)fu(ū) +
1

2
(ui − ū)2fuu(ū) + · · · . (3.3)

Rearranging and assuming the errors are small, we drop all terms of quadratic or
higher order to find

xi − x̄ = (ui − ū)fu(ū) +
1

2
(ui − ū)2fuu(ū) + · · ·

xi − x̄ ' (ui − ū)fu(ū). (3.4)

If we use this linear approximation to calculate the variance of x, we find

〈(xi − x̄)2〉 ' 〈fu(ū)2(ui − ū)2〉
' fu(ū)2〈(ui − ū)2〉

σ2
x ' fu(ū)2σ2

u

⇒ σx ' |fu(ū)|σu. (3.5)

Thus, the uncertainty in the calculated quantity is simply scaled by the slope of
the calculating function at the mean. This makes sense intuitively as it’s the same
principle of operation for electronic amplifiers, and the SQUID.

3.2 Functions of Two Variables

The concepts used for one variable dependence can also be used for multivariable
dependence. Suppose we have two measured quantities, u, and v, and a calculated
quantity x = f(u, v).

We can perform the same expansion as before to obtain

f(ui, vi) = f(ū, v̄) + (ui − ū)fu(ū, v̄) + (vi − v̄)fv(ū, v̄) + · · · (3.6)

xi − x̄ ' (ui − ū)fu(ū, v̄) + (vi − v̄)fv(ū, v̄). (3.7)
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Using this result to calculate the variance of x, we find

〈(xi − x̄)2〉 ' 〈((ui − ū)fu(ū, v̄) + (vi − v̄)fv(ū, v̄))2〉
' 〈(ui − ū)2fu(ū, v̄)2〉+ 〈(vi − v̄)2fv(ū, v̄)2〉

+〈2(ui − ū)(vi − v̄)fu(ū, v̄)fv(ū, v̄)〉
σ2

x ' σ2
ufu(ū, v̄)2 + σ2

vfv(ū, v̄)2 + 2σ2
uvfu(ū, v̄)fv(ū, v̄), (3.8)

where the term σ2
uv is called the covariance of u and v and is defined as

σ2
uv = 〈(ui − ū)(vi − v̄)〉. (3.9)

If the two measured quantities are perfectly uncorrelated, or completely indepen-
dent, then the covariance of the two quantities is zero. On the other hand, if the
two measured quantities are perfectly correlated, then the covariance is the geometric
mean of the variances of u and v.

We will assume that all quantities are independent, so all covariances are zero.
Now, the variance of the calculated quantity can be found to be

σ2
x ' σ2

ufu(ū, v̄)2 + σ2
vfv(ū, v̄)2. (3.10)

Let’s try to recover the quadrature rules that we already know.

Let f(u, v) = u± v.

σ2
x ' σ2

u + σ2
v

⇒ σx '
√

σ2
u + σ2

v . (3.11)

Let f(u, v) = u · v.

σ2
x ' σ2

uv̄
2 + σ2

v ū
2

σ2
x

ū2v̄2
' σ2

u

ū2
+

σ2
v

v̄2

⇒ σx

x̄
'

√
σ2

u

ū2
+

σ2
v

v̄2
. (3.12)

Let f(u, v) = u/v.

σ2
x ' σ2

u

v̄2
+

σ2
v ū

2

v̄4

σ2
xv̄

2

ū2
' σ2

u

ū2
+

σ2
v

v̄2

⇒ σx

x̄
'

√
σ2

u

ū2
+

σ2
v

v̄2
. (3.13)
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3.3 Functions of n Variables

If extended to n independent variables, we can approximate the uncertainty in a
calculated quantity in exactly the same way as outlined for one and two variables.
Supposing that x = f(U), where U = (u1, u2, . . . , un), it can be shown that the
variance in x is approximately

σ2
x '

n∑
i=1

σ2
ui

(
∂f

∂ui

)2

Ū

. (3.14)

4 Data Fitting

In the laboratory, there are three major tasks which accompany most experiments.
They are calibration, verification, and characterization. All of these tasks in-
volve reducing the data we collect and meticulously characterize with uncertainty to
a set of parameters. The purposes of the three tasks are different with respect to the
goals of the data analysis.

A calibration requires that you try to find a relation between physical quantities
and numerical output so that if you get an output, you can determine the physical
quantity with confidence.

A verification requires that you test a model against your data and check whether
the model appropriately describes the physical measurements you have made. In this
case you must find a way of determining whether a model is invalid.

A characterization requires that you use a model to measure a characteristic of a
phenomena or thing through the model’s parameters. In this case you must find a
way to quote this characteristic precisely with confidence and ensure the model is
valid for your data.

4.1 The Method of Maximum Likelihood

Most fitters work in a conceptually simple way. They attempt to minimize or maxi-
mize some metric of fit goodness through a set of model parameters. At the extrema,
the model parameters identify a curve of best fit.

For least-squares fitting, the fitter will try to find the least sum of squared deviation
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from the fit curve. The function that it would minimize is

L(A) =
N∑

i=1

(f(A, xi)− yi)
2, (4.1)

where A = (a1, a2, . . . , aM) is a vector of M parameters for the model f(A, x), and
(xi, yi) are the N collected data points. So, now you know how a least squares fitter
works, in principle. As it turns out, least-squares is a reasonable (but not great)
metric for fitting, but why is this so?

The method of maximum likelihood provides a solid foundation for choosing an
appropriate metric function for your data [2, p.180]. Suppose that you have a set of
data, and you know what the PDFs are for every single data point, and you wish to
fit this data to a curve. What exactly do you want the fit to indicate or accomplish?
It is reasonable to suggest that the most probable curve is the best curve.
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Figure 4.1: An illustration of maximum likelihood.

As illustrated in Fig. 4.1, for each xi, the fit curve has a corresponding f(A, xi),
which which in turn has a corresponding probability density with respect to the data
point (xi, yi). The total likelihood of the curve is the product of all the probability
densities for each data point evaluated where the fit curve intersects xi,

L(A) =
N∏

i=1

Pi(f(A, xi)). (4.2)
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Notice that this likelihood function isn’t restricted to any kind of PDF function.
Each data point could have different statistics and it would work just as well. It is
a very general method of judging the goodness of fit. Typically, the logarithm of
the likelihood is taken instead of just the likelihood because the likelihood becomes
vanishingly small for large numbers of data points. As well, probability densities
are normalized so that each peak value is 1 and a perfect fit corresponds to a log
likelihood of 0. The result is negated and multiplied by 2 so that maximum likelihood
corresponds to a minimization of a metric. The result is

L(A) = −2 log(L̄(A)) = −2 log
( N∏

i=1

P̄i(f(A, xi))
)

(4.3)

L(A) =
N∑

i=1

−2 log(P̄i(f(A, xi))). (4.4)

Note that the scripted L(A) is used for likelihood, L̄(A) is used for peak normalized
likelihood and L(A) is used for metric.

4.1.1 Metric for Gaussian Distribution

If we assume that all data points exhibit Gaussian error statistics, then we arrive at a
nice form of the fitting metric. Using Eq. (4.4), and substituting the peak normalized
Gaussian PDF for Pi, we find

L(A) =
N∑

i=1

−2 log
(
exp

(−(f(A, xi)− yi)
2

2σ2
i

))
(4.5)

L(A) =
N∑

i=1

(f(A, xi)− yi)
2

σ2
i

(4.6)

= χ2(A). (4.7)

So the metric that should be minimized for a fit with gaussian distributed errors is
the χ2.

4.1.2 Metric for Poisson Distribution

We can arrive at a metric for data with Poisson error statistics by following the same
recipe as above. One problem is that the maximum of the Poisson distribution cannot
be solved analytically, so the normalization is difficult. However, we know that the
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Poisson distribution approaches the Gaussian distribution in the limit of large µ, so
we can estimate the maximum probability density with

Pmax ≈ 1√
2πµ

µ À 1. (4.8)

However, for small µ, there must a correcting factor which approximates the deviation.
The following equation was found to be a good approximation to within 0.1%

Pmax ≈ 1√
2πµ

+
1

60
µ−3/2. (4.9)

So, substituting the peak normalized poisson distribution into Eq. (4.4) we find,

L(A) '
N∑

i=1

−2 log

[
eyiy

f(A,xi)
i

Γ(f(A, xi) + 1)( 1√
2πyi

+ 1
60

y
−3/2
i )

]
(4.10)

' 2
N∑

i=1

[
log(Γ(f(A, xi) + 1)) + log

( 1√
2πyi

+
1

60
y
−3/2
i

)

− yi − f(A, xi) log(yi)

]
. (4.11)

If yi À 1, then the metric approaches χ2 where all the uncertainties are σi =
√

yi.

4.1.3 Metric for Lorentzian Distribution

The metric for Lorentzian error statistics is calculated in the same way as before.
The Lorentzian distribution is easily normalized, and the metric is found to be

L(A) =
N∑

i=1

−2 log

(
(Γ/2)2

(f(A, xi)− yi)2 + (Γ/2)2

)
(4.12)

= 2
N∑

i=1

[
log((f(A, xi)− yi)

2 + (Γ/2)2)− log((Γ/2)2)
]
. (4.13)

4.2 Calculating Uncertainty in Parameters

Presumably, we have all the tools needed to generate a fit curve to data. We’d
certainly be able to come up with the parameter vector A if we had a set of (xi, yi)
and a model function f(A, x) by minimizing one of the metrics. Furthermore, a
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minimum must exist since all the metrics are bounded from below by 0. However,
parameters are not meaningful unless we can quote an uncertainty to them.

Calculating uncertainty in parameters can be quite difficult, particularly if the
model function is nonlinear and has many parameters. Certain assumptions are made
about the behavior of parameters which simplify the analysis. First, all functions can
be approximated as linear in their parameters over small deviations of the parameters.
Second, all parameters are uncorrelated and independent.

A detailed derivation of the following results are available in the cited references
[2, p.122]. The covariances of the parameters are related to the metric through the
matrix equation

ε = α−1 where εij = σ2
ij, αij =

1

2

∂2L

∂ai∂aj

∣∣∣∣
A0

, (4.14)

L is the metric, A0 are the parameters of minimum L, and i, j ∈ [1,M ] where M is the
number of parameters in the model. The matrix α is known as the curvature matrix
as it describes the curvature of the metric surface along every pair of coordinates
in parameter space. The matrix ε is known as the error matrix since it contains
estimates of uncertainty for all the parameters.

Fortunately, finding a precise approximation of the second derivatives of the metric
is easy using finite differencing, and matrix inversion is a simple task given a computer.
So, the error matrix can be determined without much effort.

To get an idea of what we are finding from the curvature matrix, we consider
an idealized case of perfectly uncorrelated parameters. If perfectly uncorrelated, we
expect that the covariances of the parameters are all zero. So, our error matrix is
diagonal in variances. Thus, the curvature matrix must also be diagonal and we have
the set of equations,

1

2

∂2L

∂a2
i

∣∣∣∣
A0

=
1

σ2
i

, i = 1 . . . M (4.15)

where σ2
i is the variance of parameter ai, not the uncertainty of data point yi.

Since we are evaluating a function near a minimum, we can approximate the func-
tion as parabola for small perturbations. With the curvatures given in the above
equations, and integrating twice we find that

L(a10 , . . . , ai, . . . , aM0) =
(ai − ai0)

2

σ2
i

+ L(A0). (4.16)

A convention for the error in a parameter is the change in the parameter that increases
the χ2 by 1 from the minimum. Clearly, if we substitute |ai − ai0| = σi, we find that
the metric increases by 1.
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4.3 The Quality of a Fit

The goodness of a fit is a term used to describe the operation of a fitter, the quality of
a fit is a term used to describe how well the parameters model the data, and whether
you can state confidence in your results.

There are several basic checks for the quality of a fit. The first is to check if the
minimum metric you found was an appropriate size. For Gaussian statistics, a general
rule is that

χ2(A0)

N −M
≈ 1, (4.17)

where N is the number of data points and M is the number of parameters. The same
rule applies to Poisson data as long as most of the data points correspond to more
than 10 counts.

You can also check the χ2 cumulative distribution function for your value of χ2.
The cumulative distribution function tells you the probability that if you repeat the
experiment, that you will get a higher χ2. If your fit is high quality, then you’d expect
that there would be about an equal chance of getting a higher χ2 versus a lower χ2.
If you’ve artificially inflated your errors, then you’d expect to get a higher χ2 much
more often. Conversely, if your model doesn’t fit, you’d expect to get a lower χ2 every
time. If the χ2 cumulative distribution function is within [5%, 95%], the fit is usually
deemed to be acceptable, unless there are other reaons why it is may be suspect. One
note is that the χ2 test doesn’t tell you if your model is correct, it can only tell you if
it wrong. For example, you may fit data to a quadratic and it would have acceptable
χ2, but it may also be acceptable for a fit to an exponential function.

The second check is to look at the residuals. If you see a clear pattern in the
residuals, then you may need to reconsider your model or check for systematic er-
rors. Typically, if there is a striking pattern in the residuals, the metric will not be
an acceptable value. If you find yourself with a pattern in the residuals, but with
an acceptable metric, you have likely overestimated your errors because it is quite
unlikely that the pattern in the residuals is coincidental. For example, if you fit a
thermocouple calibration curve, nonlinear terms will likely be present, and they will
be visible in the residuals of the fit curve. The residuals of a fit should be randomly
distributed about zero with ∼ 70% of the data points within quoted uncertainty of
zero.

A third check is to look at how the fit parameters change as you fit different sections
of the data set. If your model accurately describes the data over the entire range,
then the fit parameters you obtain for different sections of the data set should all
agree within uncertainties. This technique is particularly effective at investigating
errors arising from instrument behavior.
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5 The Advanced Physics Lab Fitter

5.1 Introduction and Principles of Operation

The advanced physics lab fitter has been based upon the principles in the previous
sections. So, in theory, anyone who has a grasp of the material can build their own
fitter, or better yet, help to improve the operation of the current fitter. The fitter
operates in MATLAB and has a graphical user interface to shield the user from the
tedium of handling command line options.

The fitter works under the principle that a set of measurements should be orga-
nized by variable. So, if we take a set of measurements of temperature and voltage,
the voltage measurements can be given a name, say volt and the temperature mea-
surement can be given a name, say temp. This is opposed to an analysis system that
works under the principle that measurements should be organized by data point.

Every set of data must be represented in the workspace as an N × 2 matrix. By
convention, the first column is always the measurement and the second column is
always the uncertainty. This is consistent with the idea that a measurement is not
meaningful without an uncertainty. Another note is that to be able to fit or plot two
variables, they must have the same number of rows.

So, suppose we perform an experiment and collect 3 data points of temperature
and voltage, (280± 1 K,−0.45± 0.03 mV), (290± 1 K, 0.04± 0.06 mV), and (300±
1 K, 0.66± 0.07 mV).

These data should be defined in your workspace with two matrices,

temp =




280 1
290 1
300 1


 and volt =



−0.45 0.03
0.04 0.06
0.66 0.07




The software is broken into two parts that work independently. There is the Data
Preview and Browser and the Fitting Tool. The Data Preview and Browser is
executed with the command databrowser. The Fitting Tool is executed with the
command fitter(x,y), where x and y are the data corresponding to the x and y
axes respectively.
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Figure 5.1: The Data Preview and Browser.

5.2 Data Preview and Browser

Upon running the command databrowser, you are presented with the interface shown
in Fig. 5.1. There is one large pair of plot axes, three panels of buttons and edit boxes,
and a toolbar at the top of the window.

The Data Selection panel allows you to select data from your workspace and
using the dropdown menus and plot them against each other using the Preview
Data button.

The Plot Options panel allows you to change the appearance of the plot. You
can add labels to the axes and a title using the edit boxes and show or hide the error
bars with the checkboxes. You will need to use the Preview Data button to show
changes in error bar visibility.

The Plot Actions panel allows you to print or fit the data on the plot. To print
a formatted plot which will fit nicely into a standard black lab book, click the Print
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Plot button. Do not use the print button in the toolbar. You must have a preview
of your data visible to print. To fit all of the data points that are visible within the
limits of the preview plot, click the Fit Visible Data button and an instance of the
Fitting Tool will be opened with the visible data.

Data can be selected for fitting by changing the view of the data. This can be
accomplished by using the zoom and pan tools from the toolbar. The zoom in
tool is activated by clicking on the button with the positive magnifying glass. The
zoom out tool is activated by clicking the button with the negative magnifying glass.
pan tool is activated by clicking the button with the white hand. All tools can be
deactivated by clicking on their respective buttons a second time (they toggle). They
are used by clicking and dragging on the plot.

A sample of a labelled preview plot is shown in Fig. 5.2.

Figure 5.2: Sample labelled data preview.
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Figure 5.3: The Fitting Tool.

5.3 Fitting Tool

Upon running the command fitter(x,y) or clicking the Fit Visible Data button
in the Data Preview and Browser, you are presented with the interface shown in
Fig. 5.3. There are two pairs of plot axes, three panels of buttons and edit boxes, and
a toolbar at the top of the window.

The large top axes displays a plot of the data, the fit curve, and whatever plot
annotation is generated. The smaller bottom axes displays a plot of the fit residuals
if they are available. Upon opening the Fitting Tool, there are no residuals since no
fit has been attempted.

The Fitter Options panel allows you to change the important parameters of the
fitter. The Model Function Handle edit box requires the name of the model
you wish to fit. Each function is specified by a unique string such as “linear” or
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Figure 5.4: Successful fit using the Fitting Tool.

“quadratic”. A whole library of functions is available and their specifications are
outlined in Appendix B. The Display Equation edit box can be filled with a LATEX
equation such as “y = a 1 + a 2 x” which is displayed on the plot as an annotation
after a fit has been made. This field is optional. The Error Statistics popup menu
allow you to select the kind of probability distribution function that best describes the
uncertainties in all the data points. The options are Gaussian, Poisson, Lorentzian,
and None (blind least squares). The Fitter Initial Value edit box contains a series
of numbers that tells the fitter where in parameter space to start its search. The input
corresponds to an initial value of parameter vector A specified by a list of numbers
separated by either spaces or commas with the ith number corresponding to ai.

The Plot Options panel allows you to change the appearance of the plot with the
same options as the Data Preview and Browser.

The Plot Actions panel allows you to preview fits, print plots, and execute the
fitter. The Preview Fit button will calculate and display a curve generated from
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the fitter initial values. It will also calculate the residuals to the data points and the
metric with the given parameters. This feature is useful in finding a good initial value
for the fitter or to manually perform a fit. The Print Plot button will generate a
nicely formatted plot, which will fit nicely into a black lab notebook. Do not use
the print button in the toolbar since it will print the panels and buttons, which are
unpleasant. The Run Fitter button will execute the fitting routine with the data
that has been provided through the user interface. While fitting, the action buttons
will be greyed out and disabled. The buttons are enabled once the fitter is complete.
If there is an error, the fitter will try its best to recover and tell you what went wrong.

A sample of a successful fit using the Fitting Tool is shown in Fig. 5.4.

5.4 Your First Fit: A Walkthrough

To get you up and running, we have a detailed walkthrough of a typical calibration
fit. The data was taken from Example 7.1 of Bevington [2, p.119-121]. As quoted
from the text,

A student measures the difference in output voltage between the two junc-
tions of a thermocouple for a temperature variation in the sample junction
from 0 to 100◦C in steps of 5◦C. The measurements are made on the 3 mV
scale of an analog voltmeter, and the fluctuations of the needle indicate
that the uncertainties in the measurements are approximately 0.05 mV
for all readings.

There are no quoted errors for temperature. By document convention, all command
code is displayed in fixed width font surrounded by a box. For example:

a = a.*b + inv(c) - d + meshgrid([0:0.01:0.4],[-3:-0.01:-3.4]);

Step 1: Get your data into MATLAB.

You will first need to get the data from your lab book into the computer. The
easiest way to do this is to create text files corresponding to each variable with
filenames indicating the variable name.

In Fig. 5.5, we have used notepad to create two text files each with two columns
of numbers corresponding to measurement and error. The measurement is al-
ways in the first column. You can use spaces, tabs, a single comma, or a
combination of these delimiters to separate the columns.
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Figure 5.5: Creating text files for data variables.

Save these files into your MATLAB working directory. If in doubt, place them
in C:\MATLAB7\work\, which is the default working directory. It is convenient
to organize your work by experiment, so a directory per experiment is good
practice, although not necessary.

Now, launch MATLAB if it is not already open. MATLAB can automatically
read and parse the text files you’ve created, so type the commands:

load temp.txt

load volt.txt

These commands will create two variables in your workspace called temp and
volt with the data that you have entered. To save the workspace as one file so
that you can easily recall all your data, type the command:

save thermocouple.mat

This command will save a workspace file containing all of your workspace vari-
ables to your working directory with the filename thermocouple.mat. If you
close MATLAB and start again, you can recall your saved workspace with the
command:

load thermocouple.mat
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Step 2: Select your data to fit using the Data Preview and Browser4.

With variables in your workspace, you can select what data you wish to fit with
the Data Preview and Browser. To open this tool, type the command:

databrowser

This will bring up a window as shown in Fig. 5.1. Select your X variable and
Y variable from the two popup menus. In this example, select temp as the X
variable and volt as the Y variable. Preview your data by clicking the Preview
Data button. You must preview your data to be able to fit it, since the browser
selects visible data points to send to the fitter. You can also label the data with
a title and axes labels.

You can use the zoom and pan tools in the toolbar to change the plot view.
This is how you select data to fit. If you want to fit the whole data set, this
isn’t necessary as the axes limits are chosen to suit the data set.

Figure 5.6: Previewed and labelled data.

4You can skip this step by running the command fitter(temp,volt) if you’re sure you want
to fit the entire data set
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A labelled data set and preview plot is shown in Fig. 5.6. Once you’re happy
with the visible data, click the Fit Visible Data button to open the Fitting
Tool. Titles and axes labels are also sent to the fitter, so that you don’t need
to type them in again.

Step 3: Fit your data using the Fitting Tool.

The Fitting Tool will be opened by the Data Preview and Browser. If you had
clicked the Fit Visible Data button in Fig. 5.6, a new window will open as
shown in Fig. 5.7.

Figure 5.7: Initial fitting tool window.

To select a fit equation, refer to the standard function library in Appendix B.
Each equation is identified by a string called a function handle. Enter your
equation function handle into the Model Function Handle edit box. For this
example, we will use the “quadratic” equation.

You may optionally add a LATEX style expression for the equation which will
be displayed on the plot if you wish. Enter the expression into the Display
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Equation edit box.

Select the data statistics with the Error Statistics popup menu. Most lab
data is assumed to have a Gaussian distribution, only choose other statistics if
you know that they are justified.

You must specify initial values for each parameter so that the fitter knows where
to start its search. Enter initial values as a single line of space or comma sepa-
rated numbers corresponding to each parameter a1 . . . aM into the Fitter Initial
Value edit box. You can preview your initial values by clicking the Preview
Plot button. A preview plot with initial values (a1, a2, a3) = (−1, 0.03, 0.0002)
is shown in Fig. 5.8

Figure 5.8: Preview of a quadratic fit curve with [a1, a2, a3] = [−1, 0.03, 0.0002].

To run the fitter, click the Run Fitter button. It will run the Levenberg-
Marquardt gradient search algorithm through parameter space to find a mini-
mum value of the metric. The results are presented on the plot as soon as the
fitter completes executing. The best fit plot of this data is shown in Fig. 5.9.

27



Parameter errors are estimated and displayed with the parameters in the anno-
tation box. Residuals are shown in the lower set of axes.

Figure 5.9: Best fit of thermocouple data.

If you want to print the fit, click the Print Plot button and it will open a print
dialog and format a nice plot that will fit into your lab book.

5.5 Fitting Arbitrary Functions: A Walkthrough

The power of this fitting environment is that you can define your own fitting functions,
which can be as simple or complex as you like. The fitter will theoretically work with
functions with as many parameters that you wish to throw at it, and can generate a
fit as long as you can create a MATLAB function that satisfies the basic requirement
that if you give it a parameter vector, and data vector it will return a vector of
identical dimension of the data vector with the results of the function.
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For example, if you want to fit to a curve,

y = f(A, x) = a1x
2 sin(a2x) + a3 (5.1)

you must create a MATLAB function that will perform the operation,




y1

y2
...

yN


 =




f(A, x1)
f(A, x2)

...
f(A, xN)


 . (5.2)

Step 1: Write your mathematical function as a MATLAB function.

MATLAB functions are defined with M-files, which are collections of MATLAB
commands with a function wrapper. For example, consider the M-file for the
quadratic model.

function y = quadratic(a,x)

y = a(1) + a(2)*x + a(3)*x.^2;

The function is in the familiar f(A, x) format, where a is the parameter vector
and x is the data vector.

The only issue in writing your mathematical function in MATLAB is when
MATLAB tries to use its matrix operations. Consider the following commands:

y = (x + 1) / x;

y = (x + 1) * x;

y = (x + 1)^2;

At first glance you may think these are okay, but there is a problem. MATLAB
thinks that x is a matrix, so what does the first line really mean?

The first line means: Take matrix X and add 1 to every element, then matrix
multiply the result with X−1.

The second line means: Take matrix X and add 1 to every element, then matrix
multiply the result with X.

The third line means: Take matrix X and add 1 to every element, then matrix
multiply the result with itself (matrix exponent).

Not quite what you expected? To get the desired behavior, there are MATLAB
operators that work element-by-element. To make an operation element-by-
element, prefix the operator with a period. i.e. (x*y → x.*y), (x/y → x./y),
(x^2 → x.^2). These operations calculate zij = xijyij, zij = xij/yij, and
zij = xij

2, respectively.
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Figure 5.10: Sample fit using a custom function.

If one of the operands is a 1×1 matrix, it is treated as scalar, so isn’t necessary
to use the element-by-element operators. The following commands require no
modification:

y = x + 1

y = x + a(3);

y = a(4) * x;

MATLAB’s built in functions work element-by-element, so sin(x) calculates
zij = sin(xij). The same applies to basic functions like cos, exp, log, besselk,
etc.

So, for our example,

y = f(A, x) = a1x
2 sin(a2x) + a3 (5.3)

the equivalent MATLAB function would be:

function y = myfitmodel(a,x)

y = a(1) * x.^2 .* sin(a(2)*x) + a(3);
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Be sure to remember to finish lines with semicolons, otherwise you’re going to
get a huge mess in your command window because the fitter will run this
function several thousand times, and every time the function runs, MATLAB
will display the result matrix.

Save your function as <function name>.m in the working directory to give
the fitter access to your function. Your function’s function handle is simply
the function name. So, we would save this example as myfitmodel.m and the
function handle is “myfitmodel”.

Step 2: Use your function in the fitter.

Once you’ve created your custom function, use it like any library function by
using the appropriate function handle in the Fitting Tool. A fit of the example
function in Step 1 with some fabricated data with Gaussian error is shown in
Fig. 5.10.

A An Introduction to MATLAB

MATLAB is an abbreviation for Matrix Laboratory. It was originally written as an
“easy to use” extension of the LINPACK and EISPACK linear equation and eigen-
value solving systems by Cleve Moler. Now it is one of the most popular technical
computing environments in the world and is used throughout the sciences and engi-
neering.

The basic philosophy of a MATLAB user is:

Everything is a matrix.

This is different than other technical computing environments such as Mathematica or
Maple where everything is an expression, or you have to deal with a mish-mash of both
data and expression. MATLAB is excellent for data analysis because its operation
is based almost entirely in the manipulation of numerical data, not mathematical
expressions.

The usage of MATLAB is based around the workspace. The workspace can be
thought as local memory on your workstation where your data resides. When you
load data from a file, or input it manually, the data resides in the workspaces as a
variable. A variable is a matrix with some variable name that you can define that
can be passed to functions or combined with other variables.
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Figure A.1: The MATLAB desktop environment.

When you launch MATLAB you will be presented with an interface called the
desktop environment as shown in Fig. A.1. It lets you look at what’s in your
workspace, shows your command history, and gives you access to the command line.
You will need to use the command line to load data into your workspace and to
perform manipulations on them.

We begin a simple example of the use of the command line. Commands and
variables are case-sensitive (volt not the same as VoLt) and all commands must be
followed by the enter key. Consider the following commands:

a = 1

b = [1, 2, 3]

c = [4, 5, 6]’

d = [1, 2, 3; 4, 5, 6]

The first line creates a new variable in the workspace called a and assigns it a 1×1
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matrix with single element of value 1.

The second line creates a 1× 3 row matrix called b with elements
(
1 2 3

)
.

The third line has a matrix definition with an apostrophe. The apostrophe means
transpose. So, the effect on this command is that we create a 3 × 1 column matrix

called c with elements




4
5
6


.

The fourth line uses a semicolon in the matrix definition. This means “new row”.

So, the command creates a 2× 3 matrix called d with elements

(
1 2 3
4 5 6

)
.

After running each command, MATLAB will display the result. If you want to
make the commands “silent”, follow the command with a semicolon, such as:

c = [4, 5, 6]’;

It is also useful to know how to extract data from matrices. MATLAB has a clever
operator to aid in extracting data called the colon (:) operator. The colon operator
can be thought as defining a span of indices. If you use the colon operator alone, it
means all indices, if you specify boundaries, it means all the values within that range
of indices. Consider the following commands:

a = x(2,3)

b = x(:,1)

c = x(2:4,2:6)

Assume X is a 6× 6 matrix.

The first line assigns the value of x23 (row 2, column 3) to variable a.

The second line assigns a vector of all rows of X at column 1 to variable b.

The third line assigns a matrix consisting of rows 2 to 4 and columns 2 to 6 to
variable c.

Practical operations may involve removing offset from data or changing error due
to systematics:

volt(:,1) = volt(:,1) - 2.30;

volt(:,2) = 2*volt(:,2) + 0.01;
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B The Function Library

B.1 Polynomials

constant y = a1

proportional y = a1x

linear y = a1 + a2x

quadratic y = a1 + a2x + a3x
2

cubic y = a1 + a2x + a3x
2 + a4x

3

quartic y = a1 + a2x + a3x
2 + a4x

3 + a5x
4

quintic y = a1 + a2x + a3x
2 + a4x

3 + a5x
4 + a6x

5

poly6 y = a1 + a2x + a3x
2 + a4x

3 + . . . + a7x
6

poly7 y = a1 + a2x + a3x
2 + a4x

3 + . . . + a8x
7

poly8 y = a1 + a2x + a3x
2 + a4x

3 + . . . + a9x
8

poly9 y = a1 + a2x + a3x
2 + a4x

3 + . . . + a10x
9

B.2 Exponentials and Logarithms

exponential y = a1 exp(a2x)

transientpos y = exp(a1(x− a2)) + a3

transientneg y = − exp(a1(x− a2)) + a3

powerlaw y = xa1

powerlawconst y = xa1 + a2

logarithm y = a1 log(x + a2) + a3
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B.3 Peak and Background

gaussian y = a1 exp
(−(x− a2)

2

2a2
3

)
+ a4

gaussianlinear y = a1 exp
(−(x− a2)

2

2a2
3

)
+ a4 + a5x

gaussianquadratic y = a1 exp
(−(x− a2)

2

2a2
3

)
+ a4 + a5x + a6x

2

lorentzian y =
a1

π

a3/2

(x− a2)2 + a2
3/4

+ a4

lorentzianlinear y =
a1

π

a3/2

(x− a2)2 + a2
3/4

+ a4 + a5x

lorentzianquadratic y =
a1

π

a3/2

(x− a2)2 + a2
3/4

+ a4 + a5x + a6x
2

Need to look through experiments to

find more functions to add to the function library.

Any suggestions?
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