On the mixed 0-form/1-form anomaly: pouring the new wine into old bottles

Erich Poppitz

with Andrew Cox and F. David Wandler 2106.11442 + work (in progress) since ...

- importance of symmetries in QFT
- new developments !

this talk

"[GKKS+]" mixed 0-form/1-form anomaly "new" vs "old"...

- 't Hooft anomalies since 1980's: e.g. Seiberg dualities, preons

- higher-form/discrete: Gaiotto, Kapustin, Komargodski, Seiberg 2014-...

this talk: theories with 1-form center symmetry + 0-form discrete

1. pure 4d YM, any G, $\theta = 0$ or π

parity: at $\theta = 0, \pi$ only $\hat{P}_{\pi} = \hat{V}_{2\pi} \hat{P}_{0}$

2. 4d N=1 SYM, any G, or G(adj) with n_f massless Weyl, or...

discrete chiral symmetry: $Z_{2c_2n_f}$ for $G = SU(N) : U(1) \rightarrow Z_{2n_fN}$

$$\hat{X}_{\mathbb{Z}_{2n_{f}N}^{(0)}} = e^{i\frac{2\pi}{2n_{f}N}\hat{Q}_{5}} =$$

conserved non-gauge invariant U(1) charge

 $= e^{i\frac{2\pi}{2n_fN}\int d^3x\hat{j}_f^0} \hat{V}_{2\pi}^{-1}$

 $\hat{Q}_5 = \int d^3x \hat{J}_5^0 = \int d^3x \hat{j}_f^0 - 2n_f N \int d^3x \hat{K}^0$

this talk: theories with 1-form center symmetry + 0-form discrete

1. pure 4d YM, any G, $\theta = 0$ or π

parity: at $\theta = 0, \pi$ only

2. 4d N=1 SYM, any G, or G(adj) with n_f massless Weyl, or...

discrete chiral symmetry: $Z_{2c_2n_1}$

$$\hat{X}_{\mathbb{Z}_{2n_f}^{(0)}N} = e^{i\frac{2\pi}{2n_fN}\hat{Q}_5} = e^{i\frac{2\pi}{2n_fN}} = e^{i\frac{2\pi}{$$

mixed 't Hooft anomaly of 1-form center symmetry/0-form discrete usually seen in Euclidean path integral after gauging center...

 $\hat{P}_{\pi} = \hat{V}_{2\pi}\hat{P}_{0}$

$$e^{irac{2\pi}{2n_fN}\int d^3x\hat{j}_f^0}\hat{V}_{2\pi}^{-1}$$

this talk: mixed anomaly in Hilbert space on torus

why?

- desire to understand a new observation from different view points

- lattice is usually a torus
- this study reveals connections to "old" work, perhaps somewhat unknown/unappreciated - last but not least: allows for simple understanding of anomaly, e.g. w/out " $\mathscr{P}(B^{(2)})$ "

twisted Hilbert space at any size torus

Hamiltonian was particularly useful in 2d, see work w/ Anber 1807, 1811: 2d charge-N Schwinger model w/ similar anomaly: exact degeneracies of all states in Hilbert space on circle (later called 'universes' ...)

- main result: anomaly has immediate consequences for spectrum of H: exact degeneracies of "electric flux" states in appropriately
 - N.B.: different from the 'topological order' (e.g. Z_2 in superconductors), where torus degeneracy only in "topological scaling limit," neglecting tunnelling

this talk: mixed anomaly in Hilbert space on torus OUTLINE

- **1.** mixed 0-form/1-form anomaly in torus (T^3) Hilbert space "•**old bottles**": 1980's+... T^3 "femtouniverse" w/ twists "new wine": anomaly interpretation
- 2. consequence for spectrum of \hat{H} : exact degeneracies of "electric flux" states at any size T^3
- 3. implications for infinite volume phases, semiclassics, and connection to Euclidean discussions

Will skip derivations - see Cox, Wandler, EP, 2106.11442, nicely explained! and focus on discussing the implications (mostly on example of SU(N) at $\theta = \pi$)

winding Dirac surface of "'t Hooft loop" a:trup -> e'n trup

lattice: unit center vortex in 0-3 plane

quantizing in fixed \vec{m} background = in spatial 2-form flux gauging $Z_{N}^{(1)}$

turned on static topological 2-form Z_N gauge background in 1-2 plane [Kapustin,Seiberg '14]

"old bottles"

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes +... calculate \overrightarrow{e} , \overrightarrow{m} -flux states energies E(L) on T^3 , study confinement... Witten '82, '00: use for $tr(-1)^{F}$ - center-symmetry: $\hat{T}_{l, l=1,2,3}$ act on winding loops $\hat{T}_l \hat{W}_k \hat{T}_l^{-1} = e^{i\frac{2\pi}{N}\delta_{kl}} \hat{W}_k$

- all eigenvectors of \hat{H} also labeled (states with different \overrightarrow{e} - action of boundary conditions on T^3

> \overrightarrow{m} (mod N) ... discrete magnetic flux

- \hat{T}_l commute with Hamiltonian, generate 1-form $Z_N^{(1)}$; \hat{T}_l eigenvalues $e^{i\frac{2\pi}{N}e_l} \in Z_N$

by
$$Z_N$$
 "electric flux" \overrightarrow{e}
of winding Wilson loops)
eigenvalues of \widehat{T}_l , generating 1-form Z_N
 \overrightarrow{e} (mod N) ...
discrete electric flux

"old bottles"

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes +... calculate \vec{e} , \vec{m} -flux states energies E(L) on T^3 , study confinement... Witten '82, '00: use for $tr(-1)^{F}$

- center-symmetry: $\hat{T}_{l, l=1,2,3}$ act on winding loops $\hat{T}_l \hat{W}_k \hat{T}_l^{-1} = e^{i \frac{2\pi}{N} \delta_{kl}} \hat{W}_k$ - \hat{T}_l commute with Hamiltonian, generate 1-form $Z_N^{(1)}$; \hat{T}_l eigenvalues $e^{i\frac{2\pi}{N}e_l} \in Z_N$

$$\hat{T}_l | \psi_{\overrightarrow{e}} \rangle = | \psi_{\overrightarrow{e}} \rangle e^{\frac{2\pi i}{N}(e_l - \frac{\theta}{2\pi})n}$$

boundary conditions on T^3

$$\overrightarrow{m}$$
 (mod N) ...
discrete magnetic flux

't Hooft: center-symmetry generator n_l "along" \overrightarrow{m} has fractional $T^3 \rightarrow G$ winding #

eigenvalues of \hat{T}_l , generating 1-form Z_N

 \overrightarrow{e} (mod N) ... discrete electric flux

"old bottles"

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes +... calculate \vec{e} , \vec{m} -flux states energies E(L) on T^3 , study confinement... Witten '82, '00: use for $tr(-1)^{F}$

SU(N) YM at $\theta = \pi$

 $\hat{T}_{j} \hat{P}_{\pi} = e^{\frac{2\pi i}{N}m_{j}} \hat{P}_{\pi} \hat{T}_{j}^{\dagger}$

"new wine": anomaly! [Cox, Wandler, EP '21]

't Hooft: center-symmetry generator "along" \overrightarrow{m} has fractional $T^3 \rightarrow G$ winding

SU(N) massless QCD(adj)

SU(N) YM, take e.g. $\vec{m} = (0,0,1)$ at $\theta = \pi$ $[\hat{T}_3, \hat{H}_{\theta=\pi}] = 0 , \quad [\hat{P}_{\pi}, \hat{H}_{\theta=\pi}] = 0 , \quad \hat{T}_3 \hat{P}_{\pi} = e^{i\frac{2\pi}{N}} \hat{P}_{\pi} \hat{T}_3^{\dagger} \longrightarrow \hat{T}_3 \hat{P}_0 = \hat{P}_0 \hat{T}_3^{\dagger}$ $\hat{P}_{\pi}: |E, e_3\rangle \rightarrow |E, 1 - e_3 \pmod{N}$ for all E

VS. $\theta = 0$

deformed dihedral D_N (2N elements)

SU(N) YM, take e.g. $\vec{m} = (0,0,1)$ at $\theta = \pi$ $\hat{P}_{\pi}: |E, e_3\rangle \rightarrow |E, 1 - e_3 \pmod{N}$ for all E **algebra:** e_3 and $1 - e_3$ (mod N) states degenerate at $\theta = \pi$ at any size torus odd N: $e_3 = \frac{N+1}{2}$ mapped to itself at $\theta = \pi$, "global inconsistency"

even N: no state mapped to itself, all states doubly degenerate!

THIS IS GENERAL:

any YM at $\theta = \pi$, if center of even order, $Sp(2k + 1), E_7, Spin(2k)$: double degeneracy; if center of odd order: global inconsistency (no anomaly on T^3 : Sp(2k), Spin(2k + 1))

- (at $\theta = 0$, e_3 and $-e_3$ (mod N) states degenerate, $e_3 = 0$ mapped to itself)

deformed algebra was seen on $R^3 \times S^1$ by GKKS [SU(2) "partially gauged"]

with no apparent 't Hooft flux (\vec{m}) ??

...but algebra deformation seen only on "fractional" monopole ops

as well as Aitken, Cherman, Unsal '18 in semiclassical SU(N) dYM ($R^3 \times S^1$)

van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:

$$E(\theta, e_3) = -\frac{Ce^{-\frac{8\pi^2}{g^2N}}}{Lg^4} \cos\left(\frac{2\pi}{N}e_3 - \frac{\theta}{N}m_3\right)$$

fractional instantons on $T^3 \times R$ split perturbative degeneracy of lowest electric flux energies

A tale of two semiclassical limits dYM, $R^3 \times S^1$, $\Lambda LN \ll 2\pi$ Unsal, Yaffe '08 + $\rho_{vac}(k,\theta) = \frac{c}{I^4} e^{-\frac{8\pi^2}{Ng^2}} \cos(\frac{2\pi k}{N} - \frac{\theta}{N})$

van Baal, femtouniverse $L \ll \Lambda^{-1}$

$$E(\theta, e_3) = -\frac{Ce^{-\frac{8\pi^2}{g^2N}}}{Lg^4} \cos\left(\frac{2\pi}{N}e_3 - \frac{\theta}{N}m_3\right)$$

fractional instantons on $T^3 \times R$

accident or...?

vs. $\theta = 0$

monopole-instanton gas $R^3 \times S^1$

COMMENT 3.1:

van Baal, femtouniverse $L \ll \Lambda^{-1}$ femtouniverse $|k\rangle = \hat{T}_{3}^{k}|0\rangle, k = 0,...,N-1$ no magnetic flux $\langle k | \text{tr} \hat{F}_{12} \hat{W}_3 | k \rangle = 0$ \hat{T}_3 broken classically $\langle k | \operatorname{tr} \hat{W}_3 | k \rangle \neq 0$ \hat{T}_3 restored by fractional instantons then $|e\rangle \sim \sum e^{i\frac{2\pi ke}{N}}|k\rangle$ have er

A tale of two semiclassical limits Unsal, Yaffe '08 +

- dYM on $R \times T^2 \times S^1$, with \overrightarrow{m} through T^2 (along S^1) [after Unsal 2020+...]
 - changing T^2 from $\ll \Lambda^{-1}$ to $\gg \Lambda^{-1}$, keep $L(S^1) \ll \Lambda^{-1}$
- symmetries realized identically in two limits, but semiclassical objects different dYM
 - $|k\rangle = \hat{T}_{3}^{k}|0\rangle, k = 0,...,N-1$ magnetic flux $\langle k | \operatorname{tr} \hat{F}_{12} \hat{W}_3 | k \rangle \neq 0$
 - \hat{T}_3 broken classically by flux (w/ adjoints ... Wandler EP '22
 - \hat{T}_3 restored by "M" and "KK"

nergies ~
$$e^{-\frac{8\pi^2}{g^2N}}\cos(\frac{2\pi e}{N}-\frac{\theta}{N})$$

SU(N) YM, take e.g. $\vec{m} = (0,0,1)$ at $\theta = \pi$

Exact degeneracy at finite volume?

 $\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$

0-2 0-22

- two vacua (P)

5:0

- two distruct domain walls (lines!) ["double-string confinement"... Anber, Tin et al 2015]

SU(N) YM, take e.g. $\vec{m} = (0,0,1)$ at $\theta = \pi$

Exact degeneracy at finite volume?

SU(2) dYM: $R \times T^2 \times S^1$, large- T^2 , small $S^1 + m_3 = 1$ dYM SU(2), $\Lambda L_{S^1} \ll 2\pi, \theta = \pi$ $V(\mathbf{r})$

= $(\#)((+(-)^{W_3}))$ -> no tunnelling even at finite volume: A+B =0 when $m_3 = 1$

 $\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$

0-2

0-22

- two vacua (P)

5:0

- two distruct domain walls (lines!)

What about "real" infinite- T^3 world ?

focus on even N: no state mapped to itself, all states doubly degenerate!

expect uniqueness of infinite volume limit, no directional dependence due to b.c. in gapped theory

- confinement: $\theta = 0$ expect $e_3 = 0$ flux to have finite E at $L \to \infty$, others $E_{flux} = \sigma L$
 - $\theta = \pi e.g. |e_3 = 0\rangle$ and $|e_3 = 1\rangle$ states of finite E at $L \to \infty$ clustering: if center preserved, parity must be broken:

|0>, 1> parity breaking vacua as in dYM,..., lattice [Kitano et al 2021]...?

SU(N) YM, take e.g. $\vec{m} = (0,0,1)$ at $\theta = \pi$

What about "real" infinite-T³ world ?

focus on even N: no state mapped to itself, all states doubly degenerate!

no confinement?

$\theta = \pi e.g. |e_3 = 0\rangle$ and $|e_3 = 1\rangle$ states of finite E at $L \to \infty$ clustering: if parity preserved, center must be broken, still double degeneracy

Explicit example: take 4d Georgi-Glashow $SU(2) \rightarrow U(1)$ with triplet Higgs with $v \gg 1/L$; long-distance free CFT, on T^3 with flux $\vec{m} = (0,0,1)$. Double degeneracy at $\theta = \pi$ for any L: $|\langle \text{tr} \hat{F}_{12} \hat{\phi} \rangle| = 2\pi v/L^2$ (two signs of flux mix by 't H.-P. monopole tunnelling), $\langle tr \hat{W}_3 \rangle = \pm 2$ (can't tell the latter apart at infinite volume)

 $\hat{T}_3\hat{P}_{\pi} =$

The Euclidean connection ?

 $Z[k_3, m_3] \equiv \operatorname{tr}_{\mathscr{H}_{\theta=0,m_3}^{\text{phys.}}}(e^{-\beta \hat{H}_{\theta=\pi}})$

twist by $\hat{T}_{3}^{k_{3}}$ - path integral configurations

at $\theta = \pi$

vs. $\theta = 0$

$$e^{i\frac{2\pi}{N}}\hat{P}_{\pi}\hat{T}_{3}^{\dagger} \qquad \bullet \quad \hat{T}_{3}\hat{P}_{0} = \hat{P}_{0}\hat{T}_{3}^{\dagger}$$

$$deformed \qquad dihedral \quad D_{2N}$$

$$\hat{T}_{3}^{k_{3}}$$
)

w/
$$Q_{top.} = \frac{k_3 m_3}{N} + n$$
, summed over n .

The Euclidean connection ?

The Euclidean connection ?

$$Z[k_3, m_3] \equiv \operatorname{tr}_{\mathscr{H}_{\theta=0,m_3}^{phys.}}(e^{-\beta \hat{H}_{\theta=\pi}})$$

$$Z[k_3, m_3] = Z[-k_3, m_3] e^{i\frac{2\pi}{N}k}$$

solution: $Z[k_3, m_3] = e^{i\frac{\pi}{N}k_3m_3} \Xi$

w/
$$\Xi(k_3) = \Xi(-k_3)$$

e.g. the two degenerate fluxes of van Baal's = TQFT, w/ $\Xi = e^{-\beta E_{\text{vac}}} 2 \cos \frac{\pi k m_3}{N}$

COMMENT 7:

Discrete chiral symmetry study proceeds similarly. Strongest constraints for SU(N): N-fold degeneracy of all electric flux states on T^3 at any L, here, anomaly: "confinement -> chiral breaking"

[constraints from $Z_k^{(0)}$ -gravity (Cordova, Ohmori '19), assuming gap, are stronger for $G \neq SU(N)$... due to smaller rank centers]

Studied mixed 0-form/1-form anomaly: "new" vs "old"- Hilbert space w/ twist

main result:

Quantization in discrete \overrightarrow{m} background implies exact degeneracies between \overrightarrow{e} -flux states, due to deformed symmetry algebra, at any finite size torus.

Symmetry realizations in \overrightarrow{m} backgrounds imply that semiclassics in different regimes related... details may be of interest? **Degeneracies** in \overrightarrow{m} background may be useful for lattice? **Other symmetries and anomalies?**

Set up offers a relatively simple understanding of this type of anomaly.

