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new “generalized ’t Hooft anomaly matching” 
                  Gaiotto, Kapustin, Komargodski, Seiberg,Willett … 2014- 

thought anomaly matching was set in stone since ca. 1980  
“0-form” anomalies played major role in, say, “preon” models 
(1980’s), Seiberg dualities (1990’s)
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[10] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling
constants and their dynamical applications II, SciPost Phys. 8 (2020) 002
[arXiv:1905.13361] [INSPIRE].

[11] M.M. Anber, Self-conjugate QCD, JHEP 10 (2019) 042 [arXiv:1906.10315] [INSPIRE].

[12] S. Bolognesi, K. Konishi and A. Luzio, Gauging 1-form center symmetries in simple SU(N)
gauge theories, JHEP 01 (2020) 048 [arXiv:1909.06598] [INSPIRE].
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[6] Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies and deconfinement in
quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].

[7] Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral
symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].

[8] Z. Wan and J. Wang, Higher anomalies, higher symmetries and cobordisms I: classification
of higher-symmetry-protected topological states and their boundary fermionic/bosonic
anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl. 4 (2019) 107
[arXiv:1812.11967] [INSPIRE].
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impossible to review! related (to the subject of talk) important recent work

  anomalies of global symmetries revealed by turning on 

  background gauge fields for global symmetries, 

  compatible with their faithful action

  (interpret some as “gauging higher-form symmetry”)



  narrow this talk’s subject to: 

theories with a broken   global symmetry
and unbroken   center symmetry

ℤ(0)
N

ℤ(1)
N′�

“confining theories with domain walls” (DW)

 YM (QCD) at  θ = π

QCD(adjoint) with     massless Weyl, if…nf ( = 1,2,3,...5)

QCD-like (vectorlike) coupled to axion

e.g.:



DW

quark

antiquark

bulk, vacuum 1bulk, vacuum 2
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antiquark

confining string 
linearly rising potential 

confinement 
= area law for fundamental  
   Wilson loop
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on the DW: string “melts” 
no energy cost to separating  
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= perimeter law for fundamental Wilson loop
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antiquark

confining string 
linearly rising potential 

on the DW: string “melts” 
no energy cost to separating  
quark and antiquark 
= perimeter law for fundamental Wilson loop

DW

antiquark



- 3d CS theory (TQFT) ‘lives’ on DW - of SYM via M-theory

[Gaiotto et al… 2014-]

[Acharya, Vafa, late 1990s]

explanations of quark liberation on DW somewhat formal 

- connection to mixed “CP (or � ) - �  ” anomaly ℤ(0)
N ℤ(1)

N′�
NEW: QFT, not string

[Soo-Jong Rey, 1997; Witten, 1997;… more recently, e.g. Hsin, Lam, Seiberg  2018]

- MQCD picture of confining (F-) strings ending on D-(M-) walls 



explanations of quark liberation on DW somewhat formal 

[Soo-Jong Rey, 1997; Witten, 1997;… more recently, e.g. Hsin, Lam, Seiberg  2018]

heuristic monopole/dyon picture -> nothing condenses on wall, so flux spreads

- MQCD picture of confining (F-) strings ending on D-(M-) walls 

monopoles 
condense

dyons 
condense

DW



explanations of quark liberation on DW somewhat formal 

[Soo-Jong Rey, 1997; Witten, 1997;… more recently, e.g. Hsin, Lam, Seiberg  2018]

The projection of η to the x3 − ρ plane can be described explicitly as a closed curve

that is built by joining together four pieces. (1) Start near x3 = −∞, ρ = ∞. In a vacuum

with vw = 1, vary ρ from ∞ to −∞. (2) Near ρ = −∞, vary x3 from −∞ to +∞, going

to a vacuum with vw = e2πi/n. (3) Near x3 = +∞, vary ρ from −∞ back to +∞. (4)

Finally, near ρ = +∞, vary x3 from ∞ back to −∞, going back to the starting point.

In step (1), we begin at very large v and with w near zero; this corresponds to being

very near (v, w) = (a, 0) with very large positive a. We then, while remaining on S,

interpolate to ρ = −∞, which means small v and large w. This is done at x3 = −∞, so we

are on Σ with vn = t = eρ, and also with vw = 1. After varying ρ in this way, one ends up

very near (v, w) = (0, a) with large positive a. In step (2), v and w remain fixed. In step

(3), one starts at large w, small v, and by varying ρ one interpolates to small w, large v, on

a curve with vn = eρ = w−n, vw = e2πi/n. This brings us to very near (v, w) = (ae2πi/n, 0)

with a real and positive. In step (4), v and w remain fixed again. Thus, the one-brane η,

starting very near (a, 0), ends very near (ae2πi/n, 0), and hence (for t0 = an) has the same

endpoints as C. Existence of such an η, lying entirely on S and with t always real and

positive, completes the proof that the QCD string can end on the domain wall.

By further consideration of the curve η, it can be proved that if S is invariant under

the U(1) symmetry (as it must be to agree with QCD), then there is a point in S at which

v = w = 0. In other words, there is a point in S at which the chiral symmetries are all

restored.

Heuristic Interpretation

S.-J. Rey [28] has suggested an intuitive interpretation 12 of this result in terms of

’t Hooft’s concept of oblique confinement [46] According to this idea, QCD confinement

arises from condensation of somewhat elusive “QCD monopoles.” More generally, there

are n possible confining phases, the condensed object being a dyon, that is a bound state

of a QCD monopole and k quarks, for 0 ≤ k ≤ n− 1.13

If one adiabatically increases the QCD theta angle by 2π, analogy with the abelian

case [47] suggests that a monopole picks up an electric charge and becomes a dyon, and

more generally that a bound state of a monopole with k quarks is transformed to a bound

12 I would like to thank him for giving me permission to summarize the argument here.
13 Notice that the quarks in question, like the QCD monopoles themselves, are somewhat elu-

sive, since the theory of pure super Yang-Mills theory without chiral multiplets does not have

dynamical quarks as elementary fields.
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BRANES AND THE DYNAMICS OF QCD

Edward Witten1

School of Natural Sciences, Institute for Advanced Study

Olden Lane, Princeton, NJ 08540, USA

A brane configuration is described that is relevant to understanding the dynamics of

N = 1 supersymmetric Yang-Mills theory. Confinement and spontaneous breaking of a

discrete chiral symmetry can be understood as consequences of the topology of the brane.

Because of the symmetry breaking, there can be domain walls separating different vacua;

the QCD string can end on such a domain wall. The model in which these properties can

be understood semiclassically does not coincide with supersymmetric Yang-Mills theory

but is evidently in the same universality class.

June, 1997

1 Research supported in part by NSF Grant PHY-9513835.

Witten

- MQCD picture of confining (F-) strings ending on D-(M-) walls 

heuristic monopole/dyon picture -> nothing condenses on wall, so flux spreads



is there a framework in QFT, where we can understand  
DW-deconfinement in a theoretically controllable way? 

it is nice to have a more concrete physical picture



it is nice to have a more concrete physical picture

 - difficult on  …R4

 - possible on   - a weak coupling realization of     R3 × S1

confinement and a nonperturbative semiclassical study of the 
vacuum is trustable! [Unsal, +…, 2007-]

 entails having a theory of confinement

is there a framework in QFT, where we can understand  
DW-deconfinement in a theoretically controllable way? 



deconfinement on DWs was found in 2015 (Anber, Sulejmanpašić, EP) via 
honest semiclassical analysis of QFT - before relation to anomaly 
inflow understood - explain and extend  in this talk

is there a framework in QFT, where we can understand  
DW-deconfinement in a theoretically controllable way? 

it is nice to have a more concrete physical picture

 - difficult on  …R4

 - possible on   - a weak coupling realization of     R3 × S1

 entails having a theory of confinement

confinement and a nonperturbative semiclassical study of the 
vacuum is trustable! [Unsal, +…, 2007-]



SU(N) QCD(adjoint) with     massless Weyl = SYMnf = 1

- a broken   global symmetry

- unbroken   center symmetry

ℤ(0)
2N

ℤ(1)
N

with a mixed 
0-form/1-form anomaly

   for brevity - and elegance - narrow further talk’s subject:

stress that story I will tell does not require SUSY

however, SUSY will help streamline the presentation… 
… adjoint QCD, deformed YM, axion …



2. SYM: brief reminder of symmetries and ’t Hooft anomaly

3. Compactification on  - scales, and semiclassicsℝ3 × 𝕊1

- EFT and symmetries

- EFT vacua and DWs

- (de)confinement and DWs

4. Conclusions
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I. Introduction
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, so 

ℤ(1)
N

SYM: brief reminder of symmetries and ’t Hooft anomaly



λa
α
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α = 1,2 (SL(2,ℂ))

chiral symmetry

center symmetry Wk(C) → e
2πik

N Wk(C)

ℤ(0)
2N λ → eiα λ

𝒟λ → eiα2NQtop 𝒟λ α =
2π
2N

, so 

ℤ(1)
N continuum topological charge, tr(t^a t^b)=1/2 

lattice definition leading to it 

gauging center: 

lattice:

intersecting center vortex background: 
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’t Hooft anomaly revealed by gauging

�  using a 2-form �  gauge fieldℤ(1)

N ℤN

   = ’t Hooft fluxes in 1-2 and 3-4

Qtop = mm′�(1 −
1
Nc

)

SU(N) + massless adjoint Weyl fermion

SYM: brief reminder of symmetries and ’t Hooft anomaly

 = intersecting thin center vortices



mixed center/chiral ’t Hooft anomaly
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2πik

N Wk(C)

ℤ(0)
2N λ → eiα λ

𝒟λ → eiα2NQtop 𝒟λ α =
2π
2N

, so 

background 

gauging Qtop = mm′�(1 −

1
Nc

)

ℤ(1)
N

—>

𝒟λ → ei2πQtop 𝒟λ = e
i2π
N 𝒟λℤ(0)

2N :breaks

SU(N) + massless adjoint Weyl fermion
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2N → ℤ(0)
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∧
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∧
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∧
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N

IR - match anomaly in “Goldstone mode”   : DWs!ℤ(0)
2N → ℤ(0)
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background 
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twisted chiral b.c. in one direction of �M4∮
2NA(1)

2π
= 1

 chiral broken phase - domain 1-wall �  appearsM3 ∈ M4

IR - match anomaly in “Goldstone mode”   : DWs!ℤ(0)
2N → ℤ(0)

2

S4d =
i2π
N ∫

M̂4,∂M̂4=M3

NB(2)

2π
∧

NB(2)

2π

hence,  no confinement on DW…

=  4d inflow action for 3d CS    = candidate DW theorySU(N)−1
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i2π
N ∫
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2NA(1)

2π
∧
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2π
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S4d =
i2π
N ∫

M̂4,∂M̂4=M3

NB(2)

2π
∧

NB(2)

2π 4d inflow on DW

=  4d inflow action for 3d CS    = candidate DW theorySU(N)−1

IR - match anomaly in “Goldstone mode”   : DWs!ℤ(0)
2N → ℤ(0)

2

5d inflow -     S5d =
i2π
N ∫

M5,∂M5=M4

2NA(1)

2π
∧

NB(2)

2π
∧

NB(2)

2π

     deconfinement on DW  
  + DW CS - semiclassically…

rest of talk - 

SYM: brief reminder of symmetries and ’t Hooft anomaly

twisted chiral b.c. in one direction of �M4∮
2NA(1)

2π
= 1

 chiral broken phase - domain 1-wall �  appearsM3 ∈ M4

reveal   



SYM: compactification on  - scales, and semiclassicsℝ3 × 𝕊1

NLΛ ≪ 1small-�  semiclassical limitL

� and �  fixed  (NOT 3d � -fixed as �  )g2
4d(

1
NL

) ≪ 1 L g2
3d =

g2
4d

L
L → 0

Cartan �  weak (no charges!) at energy �  U(1)N−1 ≪ mW (mW ≫ Λ)

weak coupling + nonperturbative: confinement, � , etc…χSB

[Unsal 2007-, +…]

(generic, large class of non-SUSY theories at small-L; here: SYM)

holonomy: higgsing at � :  �mW =
1

NL
SU(N) → U(1)N−1



SYM: compactification on  - scales, and semiclassicsℝ3 × 𝕊1

due to �  locally 4d 
“remembers” 4d properties: anomalies, symmetries…

NLΛ ≪ 1

mass gap & confinement due to the proliferation of instanton-like 
objects - magnetic bions in SYM/QCD(adj)

- a locally-4d nontrivial generalization of  Polyakov confinement!   

describe using a 3d EFT valid at length scales  ≫ NL

(using EFT+SUSY will help avoid many interesting details)

[Unsal]



SYM: compactification on  - EFT and symmetriesℝ3 × 𝕊1

Cartan gluons only, dualize

g2

4πL
ϵμνλ∂λ ⃗σ = ⃗F μν

compact, unit cell of  Γweight(SU(N))

⃗σ = ⃗σ + 2π ⃗w p

∮
C∈ℝ2

d ⃗σ = 2π ⃗λ

weight = Cartan 
charges inside C

What are the electric fluxes on the lowest tension (BPS) 
k-walls? 

“dual photons” are compact scalars, can have extra �  
monodromies across walls 

2π ⃗w k

SYM: compactification on  - EFT vacua and DWsℝ3 × #1

already in 1501.06773

Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫m·�̂��e(⌃)+i ⌫⌫⌫e·�̂��m(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃ d2�iB̂BB

i

and �̂��e(⌃) =
R
⌃ d2�i⇧̂⇧⇧

i

. Here, i = 1, 2, 3 denotes spatial directions, B̂BB
i

is the magnetic field

operator, and ⇧̂⇧⇧
i

—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫m·�̂��e(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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dual photon plane

3 vacua - 1,2,3
broken discrete chiral symmetry
(preserve center symmetry 
 120 degree rotn + w_k shift) 

2
1

3

two dual photons - contour plot of bion-induced potential

periodicities: 
w1, w2: weight vectors of SU(3)  

- magnetic bions - QCD(adj)/SYM with SU(3) gauge group:

1. dynamical abelianization
2. weak coupling: g = 4d gauge coupling frozen at 1/NL

3. relevant d.o.f. at distances >> NL: “dual Cartan gluons”

Summary of “confinement on R x S ”, size of circle- L: 

dYM: pure YM with particular double-trace “deformation”
         or adjoint fermions of mass ~ O(1)/(NL)

We study SU(N) in the regime
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫m·�̂��e(⌃)+i ⌫⌫⌫e·�̂��m(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃ d2�iB̂BB

i

and �̂��e(⌃) =
R
⌃ d2�i⇧̂⇧⇧

i

. Here, i = 1, 2, 3 denotes spatial directions, B̂BB
i

is the magnetic field

operator, and ⇧̂⇧⇧
i

—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫m·�̂��e(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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2
3

- magnetic bions - QCD(adj)/SYM with SU(3) gauge group:

inside,
H
C

d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g
2

2L
����(2)(x), hence QQQ = g

2

2L
���

and so the monodromy becomes
H
C

d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZNc it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡1(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡1(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡1(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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in semiclassical regime extremize classical 
action with monodromy around Wilson loop:

2

Kink 

e
i
2

H
C A(3)

� winds by 2⇡

R

FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the

correct monodromy, composed of two domain walls. The dot

and cross represent probe quarks a distance R apart. The

maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C A). For an SU(2) funda-

mental representation, we need to compute the expecta-
tion value of W (C, 1

2 ) ⇠ exp( i
2

H
C A(3))= exp( i

2

R
S B(3)).

Here A(3) is the (electric) gauge field in the Cartan di-
rection, B(3)=dA(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C, 1

2 ) ⇠ e�⌃strRT , with string tension ⌃str propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained

by numerically minimizing, via Gauss-Seidel relaxation, the

action (1) with the correct monodromies. The lattice has

spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical

logR growth of the transverse separation from the model of

Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e�md). Thus, S ⇠ MmT (R + d) + MmTRe�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

LF = M
h
i�̄�̄µ@µ� +

m cos �

2Mnf �1
[(��)nf + h.c.]

i
. (2)

We omitted, for brevity, a summation over the nf flavor
indices in the kinetic term and a product over the flavor
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the

correct monodromy, composed of two domain walls. The dot

and cross represent probe quarks a distance R apart. The

maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C A). For an SU(2) funda-

mental representation, we need to compute the expecta-
tion value of W (C, 1

2 ) ⇠ exp( i
2

H
C A(3))= exp( i

2

R
S B(3)).

Here A(3) is the (electric) gauge field in the Cartan di-
rection, B(3)=dA(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C, 1

2 ) ⇠ e�⌃strRT , with string tension ⌃str propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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by numerically minimizing, via Gauss-Seidel relaxation, the

action (1) with the correct monodromies. The lattice has

spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical

logR growth of the transverse separation from the model of

Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e�md). Thus, S ⇠ MmT (R + d) + MmTRe�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

LF = M
h
i�̄�̄µ@µ� +

m cos �

2Mnf �1
[(��)nf + h.c.]

i
. (2)

We omitted, for brevity, a summation over the nf flavor
indices in the kinetic term and a product over the flavor
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Figure 1: Wen’s “IQH” spatial lattice

1 The Hamiltonian setup and “edge” modes

e
iA4L = e

ik 2⇡
N

L
pert.,3d
eff ⇠ g

2

L
(@µ~�)

2 + ...

tr⌦p ! e
2⇡ip
N tr⌦p

Wen [1] proposes the following spatial lattice construction. Fermions represented

by creation  
†
x,w and annihilation  x,w operators obeying the usual anticommutation

relations have the Hamiltonian given below. See Fig. 1 for a picture.

The w-direction has Lw sites labeled w = 0, ...Lw � 1. We slightly generalize and

include arbitrary hopping amplitudes, tx̂, tŵ, td̂ on the x, w, and d (diagonal) links. We

assume that these are real and write the hopping phases explicitly, according to Wen’s

figure. The Hamiltonian is:

H =
X

x

Lw�1X

w=0

h⇣
tx̂ e

�i⇡2+i⇡w
 

†
x+1,w x,w + h.c.

⌘
� t 

†
x,w x,w

i

+
X

x

Lw�2X

w=0

⇣
tŵ  

†
x,w+1

 x,w + td̂ e
i⇡w
 

†
x,w x+1,w+1 + h.c.

⌘
. (1.1)
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long distance theory, perturbative:

SU(3) root/weight lattices

∂x ⃗σ ∼ ⃗E y, ∂y ⃗σ ∼ − ⃗E x



SYM: compactification on  - EFT and symmetriesℝ3 × 𝕊1

Cartan gluons only, dualize

g2

4πL
ϵμνλ∂λ ⃗σ = ⃗F μν

compact, unit cell of  Γweight(SU(N))

⃗σ = ⃗σ + 2π ⃗w p

g2

4πL
∂μ

⃗ϕ = ⃗F μ4

⟨ ⃗ϕ ⟩ = 0 ⟨TrΩk
F⟩ = 0↔

ΩF → e
2πi
N ΩF

  “zero-form” center (along  )ℤ(0),c
N 𝕊1

∂x ⃗σ ∼ ⃗E y, ∂y ⃗σ ∼ − ⃗E x

∂x
⃗ϕ ∼ ⃗B y, ∂y

⃗ϕ ∼ − ⃗B x

ΩF = Pe
i ∮

𝕊1
A4dx4
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Cartan gluons only, dualize

g2

4πL
ϵμνλ∂λ ⃗σ = ⃗F μν

compact, unit cell of  Γweight(SU(N))

⃗σ = ⃗σ + 2π ⃗w p

g2

4πL
∂μ

⃗ϕ = ⃗F μ4
∂x ⃗σ ∼ ⃗E y, ∂y ⃗σ ∼ − ⃗E x

∂x
⃗ϕ ∼ ⃗B y, ∂y

⃗ϕ ∼ − ⃗B x

ℤ(0),c
N : ⃗ϕ → 𝒫 ⃗ϕ

𝒫 = sα1
sα2

. . . sαN−1

  = product of  Weyl reflections 
        w.r.t all simple roots  
𝒫

⃗α k

  “zero-form” center (along  )ℤ(0),c
N 𝕊1

⟨ ⃗ϕ ⟩ = 0 ⟨TrΩk
F⟩ = 0↔

ΩF → e
2πi
N ΩF
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⃗σ = ⃗σ + 2π ⃗w p ⟨ ⃗ϕ ⟩ = 0 ⟨TrΩk
F⟩ = 0↔

ΩF → e
2πi
N ΩF

ℤ(0),c
N : ⃗ϕ → 𝒫 ⃗ϕ

𝒫 = sα1
sα2

. . . sαN−1

  = product of  Weyl reflections 
w.r.t all simple roots  
𝒫

⃗α k

ℤ(0),c
N :
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⃗σ = ⃗σ + 2π ⃗w p

ΩF → e
2πi
N ΩF

ℤ(0),c
N : ⃗ϕ → 𝒫 ⃗ϕ

𝒫 = sα1
sα2

. . . sαN−1

  = product of  Weyl reflections 
w.r.t all simple roots  
𝒫

⃗α k

ℤ(0),c
N :

⃗x = ⃗ϕ + i ⃗σ chiral superfield

  “zero-form” centerℤ(0),c
N

ℤ(0),c
N : ⃗ϕ → 𝒫 ⃗ϕ

⃗σ → 𝒫 ⃗σ

⟨ ⃗ϕ ⟩ = 0 ⟨TrΩk⟩ = 0↔

for non-SUSY, see Anber, EP 1508.00190
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F⟩ = 0↔

  “zero-form” centerℤ(0),c
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⃗x = ⃗ϕ + i ⃗σ

ℤ(0),c
N : ⃗ϕ → 𝒫 ⃗ϕ

⃗σ → 𝒫 ⃗σ

  chiral symmetryℤ(0)
N

ℤ(0)
N : ⃗σ → ⃗σ +

2π
N

⃗ρ

chiral intertwined with   would-be 
magnetic center of dual photons, broken 
by monopole-instantons

U(1)N−1

ei ⃗α k⋅ ⃗σ λλ λλ → e
i2π
N λλ( )
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EFT

weights of R
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gab = δab + …

simply   kinetic term∼ trCartan F2
4d
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nonperturbative superpotential   m ∼
1
L

e− 4π2

g2

L = M ∂μxagab∂μx*b −
Mm2

4
∂W( ⃗x )

∂xa
gab ∂W( ⃗x *)

∂x*b

W =
N

∑
a=1

e ⃗α a⋅ ⃗x ⃗α N = − ⃗α 1 − … − ⃗α N−1

gab = δab + … M ∼
g2

L
∼ mW

( W = X1 + X2 + . . . + XN−1 +
1

X1X2 . . . XN−1
, Xi = e ⃗α i⋅ ⃗x i )
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  “zero-form” center unbrokenℤ(0),c
N
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monodromies across walls 

2π ⃗w k

SYM: compactification on  - EFT vacua and DWsℝ3 × #1

already in 1501.06773

Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫m·�̂��e(⌃)+i ⌫⌫⌫e·�̂��m(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃ d2�iB̂BB

i

and �̂��e(⌃) =
R
⌃ d2�i⇧̂⇧⇧

i

. Here, i = 1, 2, 3 denotes spatial directions, B̂BB
i

is the magnetic field

operator, and ⇧̂⇧⇧
i

—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫m·�̂��e(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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We note that in the abelian confinement regime the size of the dual circle eS1 on which the
eigenvalues reside is equal to 1/L, which grows linearly with Nc, while the separation of the
eigenvalues remains fixed, 2⇡/(LNc) ⇠ O(N0

c ). This is in sharp contrast with the non-abelian
confinement regime and the ordinary large-Nc limit. In the latter, 1/L = O(N0

c ) and the
separation between eigenvalues is 2⇡/(LNc) ⇠ O(N�1

c ), forming a dense set in perturbation
theory. In the latter case, since 2⇡/(LNc) ⌧ ⇤, all the low momentum modes are strongly
coupled, and the eigenvalues are uniformly distributed over the unit circle. At the critical
point in the weakly coupled regime, the uniform separation between eigenvalues exhibits a
jump into a non-uniform one, by opening a “gap” on top of the usual one. As one increases
cm the gap continues to grow, as shown in Figures 6,7, and 8 for SU(4), SU(5), and SU(10),
respectively. In particular, we did not observe, in the semi-classical regime, an instability
towards partial center-symmetry breaking phases, similar to those found in deformed Yang-
Mills theory and massive QCD(adj), [7, 28], see Ref. [29] for a review.

There is one more interesting issue that appears in the large-Nc limit. The density
of states of large-Nc gauge theories is expected to exhibit an exponential growth, ⇢(E) ⇠

e�
⇤
E = eE/TH , where �⇤

⌘ TH is the Hagedorn temperature. This idea is related to the
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Figure 1: Wen’s “IQH” spatial lattice

1 The Hamiltonian setup and “edge” modes

e
iA4L = e

i 2⇡N

Wen [1] proposes the following spatial lattice construction. Fermions represented

by creation  
†
x,w and annihilation  x,w operators obeying the usual anticommutation

relations have the Hamiltonian given below. See Fig. 1 for a picture.

The w-direction has Lw sites labeled w = 0, ...Lw � 1. We slightly generalize and

include arbitrary hopping amplitudes, tx̂, tŵ, td̂ on the x, w, and d (diagonal) links. We

assume that these are real and write the hopping phases explicitly, according to Wen’s

figure. The Hamiltonian is:

H =
X

x

Lw�1X

w=0

h⇣
tx̂ e

�i⇡2+i⇡w
 

†
x+1,w x,w + h.c.

⌘
� t 

†
x,w x,w

i

+
X

x

Lw�2X

w=0

⇣
tŵ  

†
x,w+1

 x,w + td̂ e
i⇡w
 

†
x,w x+1,w+1 + h.c.

⌘
. (1.1)

A “chemical potential” t has been included for later use. The x-direction is assumed

to be periodic and will be taken infinite, allowing us to Fourier transform

 x,w =

⇡Z

�⇡

dk

2⇡
e
ikx

 ̃k,w , (1.2)
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All vacua have ⟨φ⟩ = 0. The dual photon field σ has nontrivial expectation value:

⟨σ⟩k =
2πk

N
ρ , (2.9)

⟨Xa⟩k = ⟨eαa·x⟩k = ei
2πk
N , a = 1, . . . N,

⟨W ⟩k ≡ Wk = Nei
2πk
N .

We introduced the notation Xa ≡ eαa·x (such that X1X2 . . . XN = 1, to be used in some

discussions below, following [40, 41]), a set of N fields which are single-valued on the Cartan

torus and do not allow for describing nonvanishing monodromies. We also denoted the

expectation value of the superpotential in the k-th ground state by Wk. The N vacua (2.9)

are interchanged by the action of the spontaneously broken Z(0)
2N → Z(0)

2 symmetry (2.6),

while the Z(1),S1L
N symmetry is unbroken.14 The 1-form Z(1),R3

N symmetry is also unbroken

in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form

discrete chiral and center symmetries, and the vacuum structure. We show this in the

simple case of SU(3) SYM on figure 3.

As usual, there are domain walls (DW) connecting the various discrete vacua. A DW is

a static configuration on R3 connecting two vacua. While a more appropriate name would

be a “domain line” (as their worldvolume is two-dimensional), we continue to call them

DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫m·�̂��e(⌃)+i ⌫⌫⌫e·�̂��m(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃ d2�iB̂BB

i

and �̂��e(⌃) =
R
⌃ d2�i⇧̂⇧⇧

i

. Here, i = 1, 2, 3 denotes spatial directions, B̂BB
i

is the magnetic field

operator, and ⇧̂⇧⇧
i

—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫m·�̂��e(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫m·�̂��e(⌃)+i ⌫⌫⌫e·�̂��m(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃ d2�iB̂BB

i

and �̂��e(⌃) =
R
⌃ d2�i⇧̂⇧⇧

i

. Here, i = 1, 2, 3 denotes spatial directions, B̂BB
i

is the magnetic field

operator, and ⇧̂⇧⇧
i

—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫m·�̂��e(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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(a) The energy density of a “double-string”
confining configuration composed of two de-
generate BPS DWs in SU(3) SYM. The quark
and antiquark have weights ±w1 of the fun-
damental representation. The string is embed-
ded in vacuum 1, see (2.9), while inside the
double-string the fields have the values of vac-
uum 0. Distances are measured in units of the
Compton wavelength of the heaviest dual pho-
ton. Similar double string configurations con-
fine fundamental quarks for any number of col-
ors.

(b) Deconfinement of a quark/antiquark pair
on the DW, shown here for SU(2) SYM. This
configuration can be thought of as the double
string configuration on the left “opened up”.
Vacuum 0 is on the top and vacuum 1 — on the
bottom. As the tensions of the BPS DWs ab-
sorbing a quark’s electric flux are equal, there is
no distance dependence of the quark-antiquark
pair’s energy, as shown on figure 14. As in the
figure on the left, the plot here shows the en-
ergy density.

Figure 1. Confinement in the bulk and deconfinement on the wall. Section 5 explains how these
pictures are obtained.

A recent parallel development is the realization that deconfinement of quarks on the

DWs in SYM is a manifestation of “discrete anomaly inflow”, due to the newly discov-

ered mixed 0-form/1-form symmetry discrete ’t Hooft anomalies [24–26]. The mixed 0-

form/1-form anomalies imply that in theories with such anomalies, DWs occurring due

to 0-form discrete symmetry breaking have a nontrivial structure on their worldvolume.

Such DWs have recently received some attention [27–36]. The nontrivial DW physics is

usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on

R3 × S1 at small LNΛ using semiclassical tools. Our hope is that the results obtained in

the calculable regime, generalizing [19] to arbitrary N and k will help elucidate various still

ill understood properties of the domain walls, of their junctions, and of confining strings.
2A k-wall connects vacua k units apart, see (2.9). Ref. [19] considered in some detail only k = 1 DWs.
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3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes
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electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
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⌃ d2�iB̂BB
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and �̂��e(⌃) =
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. Here, i = 1, 2, 3 denotes spatial directions, B̂BB
i

is the magnetic field

operator, and ⇧̂⇧⇧
i

—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫m·�̂��e(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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(a) The energy density of a “double-string”
confining configuration composed of two de-
generate BPS DWs in SU(3) SYM. The quark
and antiquark have weights ±w1 of the fun-
damental representation. The string is embed-
ded in vacuum 1, see (2.9), while inside the
double-string the fields have the values of vac-
uum 0. Distances are measured in units of the
Compton wavelength of the heaviest dual pho-
ton. Similar double string configurations con-
fine fundamental quarks for any number of col-
ors.

(b) Deconfinement of a quark/antiquark pair
on the DW, shown here for SU(2) SYM. This
configuration can be thought of as the double
string configuration on the left “opened up”.
Vacuum 0 is on the top and vacuum 1 — on the
bottom. As the tensions of the BPS DWs ab-
sorbing a quark’s electric flux are equal, there is
no distance dependence of the quark-antiquark
pair’s energy, as shown on figure 14. As in the
figure on the left, the plot here shows the en-
ergy density.

Figure 1. Confinement in the bulk and deconfinement on the wall. Section 5 explains how these
pictures are obtained.

A recent parallel development is the realization that deconfinement of quarks on the

DWs in SYM is a manifestation of “discrete anomaly inflow”, due to the newly discov-

ered mixed 0-form/1-form symmetry discrete ’t Hooft anomalies [24–26]. The mixed 0-

form/1-form anomalies imply that in theories with such anomalies, DWs occurring due

to 0-form discrete symmetry breaking have a nontrivial structure on their worldvolume.

Such DWs have recently received some attention [27–36]. The nontrivial DW physics is

usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on

R3 × S1 at small LNΛ using semiclassical tools. Our hope is that the results obtained in

the calculable regime, generalizing [19] to arbitrary N and k will help elucidate various still

ill understood properties of the domain walls, of their junctions, and of confining strings.
2A k-wall connects vacua k units apart, see (2.9). Ref. [19] considered in some detail only k = 1 DWs.
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pair’s energy, as shown on figure 14. As in the
figure on the left, the plot here shows the en-
ergy density.
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DWs in SYM is a manifestation of “discrete anomaly inflow”, due to the newly discov-

ered mixed 0-form/1-form symmetry discrete ’t Hooft anomalies [24–26]. The mixed 0-

form/1-form anomalies imply that in theories with such anomalies, DWs occurring due

to 0-form discrete symmetry breaking have a nontrivial structure on their worldvolume.

Such DWs have recently received some attention [27–36]. The nontrivial DW physics is

usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on

R3 × S1 at small LNΛ using semiclassical tools. Our hope is that the results obtained in

the calculable regime, generalizing [19] to arbitrary N and k will help elucidate various still

ill understood properties of the domain walls, of their junctions, and of confining strings.
2A k-wall connects vacua k units apart, see (2.9). Ref. [19] considered in some detail only k = 1 DWs.
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(b) Deconfinement of a quark/antiquark pair
on the DW, shown here for SU(2) SYM. This
configuration can be thought of as the double
string configuration on the left “opened up”.
Vacuum 0 is on the top and vacuum 1 — on the
bottom. As the tensions of the BPS DWs ab-
sorbing a quark’s electric flux are equal, there is
no distance dependence of the quark-antiquark
pair’s energy, as shown on figure 14. As in the
figure on the left, the plot here shows the en-
ergy density.
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A recent parallel development is the realization that deconfinement of quarks on the

DWs in SYM is a manifestation of “discrete anomaly inflow”, due to the newly discov-

ered mixed 0-form/1-form symmetry discrete ’t Hooft anomalies [24–26]. The mixed 0-

form/1-form anomalies imply that in theories with such anomalies, DWs occurring due

to 0-form discrete symmetry breaking have a nontrivial structure on their worldvolume.

Such DWs have recently received some attention [27–36]. The nontrivial DW physics is

usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on

R3 × S1 at small LNΛ using semiclassical tools. Our hope is that the results obtained in

the calculable regime, generalizing [19] to arbitrary N and k will help elucidate various still

ill understood properties of the domain walls, of their junctions, and of confining strings.
2A k-wall connects vacua k units apart, see (2.9). Ref. [19] considered in some detail only k = 1 DWs.
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sorbing a quark’s electric flux are equal, there is
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pair’s energy, as shown on figure 14. As in the
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usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on

R3 × S1 at small LNΛ using semiclassical tools. Our hope is that the results obtained in

the calculable regime, generalizing [19] to arbitrary N and k will help elucidate various still
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1.2 Summary of results

1. We numerically study the classical k-wall solutions for 2 ≤ N ≤ 9. We find that k-

wall solutions are smooth, with the variations of the fields within the validity of the

effective theory at ΛNL ≪ 1. Details of our numerical studies of DWs are given in

section 4. Further, we find that, generally, their worldvolumes carry both electric and

magnetic fields, whose profiles we determine.3 The occurrence of magnetic fields on

the DW worldvolume is due to the nature of magnetic bions — the nonperturbative

objects responsible for confinement and the expulsion of electric flux from the vacuum.

In effect, magnetic bions create a nonlinear coupling between electric and magnetic

fields. This coupling is absent only for an SU(2) gauge group.

We find that, for SU(N) with N > 2, magnetic fields are absent only on a finite

number of k = N
2 BPS walls. We argue that six of these, if N is divisible by 4 (two

solutions, for N even but not divisible by 4) carry no magnetic fields, and determine

the electric fluxes they can carry. Furthermore, see appendix A, these “magnetless”

solutions can always be expressed in terms of one function, essentially the analytic

SU(2) DW solution.

2. Focusing on the lowest-tension BPS DWs, we find numerical confirmation, see sec-

tion 4, of the known result [37, 40] that there are
(N
k

)
BPS walls between SYM vacua

k units apart.4 Our new result is a determination of the electric fluxes carried by the

different BPS k-walls. The
(N
k

)
BPS k-walls carry Cartan subalgebra electric fluxes

whose values fall in one of two groups:5

2π

(
wi1 + . . .+wik −

k

N
ρ

)
, there are

(
N − 1

k

)
such walls, (1.1)

2π

(
wj1 + . . .+wjk−1 −

k

N
ρ

)
, there are

(
N − 1

k − 1

)
such walls. (1.2)

Here the numbers (i1, . . . , ik) are to be taken all different, ranging from 1 to N − 1;

likewise all (j1, . . . , jk−1) are different.6 The above spectrum of BPS k-wall fluxes is

invariant under k → N − k up to reversal of the overall sign of the electric flux (a

parity transformation, as in [45]).

3. We use the results (1.1), (1.2) for the BPS k-wall fluxes to give a microscopic picture

of the deconfinement of quarks on DWs. General discrete anomaly inflow arguments

and the properties of the worldvolume TQFT lead to the conclusion that the 1-form

Z(1)
N center symmetry is broken on the DW worldvolume, hence quarks should be

3To avoid confusion, we stress that the total magnetic flux carried along a DW is zero.
4There is a vast literature on various aspects of DWs in SYM; an incomplete list is [29, 30, 39, 41–45].
5See the main text for a detailed explanation. Here we note that ρ is the Weyl vector and wj , j =

1, . . . , N − 1, are the fundamental weights of SU(N).
6For k = 1, the set (1.2) consists of a single wall carrying flux − 2πρ

N , hence the number of k = 1 walls

is N .
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Let’s call any BPS soliton that connects two vacua k units apart in the σ-space a

k-wall. It is easy to show that any k-wall in SU(N) is equivalent, up to a sign and the

addition of a constant vector, to one that starts from a vacuum of the unit cell that is

equivalent to the origin. Among these, we found that the boundary conditions that admit

BPS solutions are given by

⎧
⎪⎨

⎪⎩

i2πw⃗i1 + · · ·+ i2πw⃗ik−1 → ik
2π

N
ρ⃗

i2πw⃗ii + · · ·+ i2πw⃗ik → ik
2π

N
ρ⃗

(4.12)

where w⃗j are the fundamental weights and the sets ij in each case are different num-

bers taken from 1, . . . , N − 1. Since there are only N − 1 different fundamental weights,

equation (4.12) implies that the total number of k-walls in SU(N) is

(
N − 1

k − 1

)
+

(
N − 1

k

)
=

(
N

k

)
. (4.13)

This counting of BPS solutions agrees with the previously known result [40].

Although this pattern was originally noticed using the method detailed in section 4.2,

where we manually check whether the theoretical and numerical first derivatives match

for each case, in order to determine the BPS-ness of a solution, we later develop a more

efficient method to test this formula for a large number of cases. For each N and each k,

we first compute all the solutions to the second order equations with boundary conditions

k units apart. Then we compute their numerical energy, using the method described in

section 4.2.2. We plot all of their energy together, along with the theoretical minimal energy

of a BPS solutions, given by equation (4.10). Since all non-BPS solutions have energy that

are larger than the BPS energy, it is easy to tell from such plot which boundaries give rise

to BPS solutions. We check this for all N and k up to N = 8. So far, all results conform

to our hypothesis. We show an example for SU(6) and k = 3 in figure 7.

Furthermore, as described in section 3, we found that the group of the sum of k or

k− 1 number of fundamental weights has a special property with respect to the zero-form

ZN center symmetry, lending further support to the argument that this equation gives all

possible boundaries for BPS solitons.

4.3.2 Reversed direction of electric fields

For N < 5, the qualitative behaviour of the BPS dual photons in the DWs are the same:

every dual photon starts at a vacuum at negative infinity, increases abruptly at a kink,

reaches an inflection point and quickly starts decreasing, and then plateaus to a second

vacuum (or the other way around: starts from a higher vacuum and decreases through a

kink to a lower vacuum). A good example of this is the SU(3) case shown in figure 5. In

particular, every dual photon has one inflection point, for N < 5.

However, there appears to be a change starting at N = 5. Here, with seemingly no

discernible patterns on the associated boundary conditions, some of the BPS solutions

have some components of its dual photon possessing three inflection points. This means
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1.2 Summary of results

1. We numerically study the classical k-wall solutions for 2 ≤ N ≤ 9. We find that k-

wall solutions are smooth, with the variations of the fields within the validity of the

effective theory at ΛNL ≪ 1. Details of our numerical studies of DWs are given in

section 4. Further, we find that, generally, their worldvolumes carry both electric and

magnetic fields, whose profiles we determine.3 The occurrence of magnetic fields on

the DW worldvolume is due to the nature of magnetic bions — the nonperturbative

objects responsible for confinement and the expulsion of electric flux from the vacuum.

In effect, magnetic bions create a nonlinear coupling between electric and magnetic

fields. This coupling is absent only for an SU(2) gauge group.

We find that, for SU(N) with N > 2, magnetic fields are absent only on a finite

number of k = N
2 BPS walls. We argue that six of these, if N is divisible by 4 (two

solutions, for N even but not divisible by 4) carry no magnetic fields, and determine

the electric fluxes they can carry. Furthermore, see appendix A, these “magnetless”

solutions can always be expressed in terms of one function, essentially the analytic

SU(2) DW solution.

2. Focusing on the lowest-tension BPS DWs, we find numerical confirmation, see sec-

tion 4, of the known result [37, 40] that there are
(N
k

)
BPS walls between SYM vacua

k units apart.4 Our new result is a determination of the electric fluxes carried by the

different BPS k-walls. The
(N
k

)
BPS k-walls carry Cartan subalgebra electric fluxes

whose values fall in one of two groups:5

2π

(
wi1 + . . .+wik −

k

N
ρ

)
, there are

(
N − 1

k

)
such walls, (1.1)

2π

(
wj1 + . . .+wjk−1 −

k

N
ρ

)
, there are

(
N − 1

k − 1

)
such walls. (1.2)

Here the numbers (i1, . . . , ik) are to be taken all different, ranging from 1 to N − 1;

likewise all (j1, . . . , jk−1) are different.6 The above spectrum of BPS k-wall fluxes is

invariant under k → N − k up to reversal of the overall sign of the electric flux (a

parity transformation, as in [45]).

3. We use the results (1.1), (1.2) for the BPS k-wall fluxes to give a microscopic picture

of the deconfinement of quarks on DWs. General discrete anomaly inflow arguments

and the properties of the worldvolume TQFT lead to the conclusion that the 1-form

Z(1)
N center symmetry is broken on the DW worldvolume, hence quarks should be

3To avoid confusion, we stress that the total magnetic flux carried along a DW is zero.
4There is a vast literature on various aspects of DWs in SYM; an incomplete list is [29, 30, 39, 41–45].
5See the main text for a detailed explanation. Here we note that ρ is the Weyl vector and wj , j =

1, . . . , N − 1, are the fundamental weights of SU(N).
6For k = 1, the set (1.2) consists of a single wall carrying flux − 2πρ

N , hence the number of k = 1 walls

is N .
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and the properties of the worldvolume TQFT lead to the conclusion that the 1-form
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N center symmetry is broken on the DW worldvolume, hence quarks should be

3To avoid confusion, we stress that the total magnetic flux carried along a DW is zero.
4There is a vast literature on various aspects of DWs in SYM; an incomplete list is [29, 30, 39, 41–45].
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to be all taken  
different 
from 1…N-1

these are ALL BPS k-walls;  
arguments (initially, numerics!)

distinct BPS k-walls

and

SYM: compactification on  - confinement and DWsℝ3 × 𝕊1

What are the electric fluxes on the lowest tension 
(BPS)k-walls? 

 in 1909.10979 w/ Cox,Wong 



new story: the electric fluxes BPS DWs carry & relation to  
confinement in the bulk and deconfinement on the wall…

SYM: compactification on  - confinement and DWsℝ3 × 𝕊1
Quark Deconfinement - Microscopic Picture

c

vacuum k=0vacuum k=0

vacuum k

● Monodromy obviously satisfied.
● Both sides are BPS walls by flux formula.
● All BPS walls have same tension: deconfinement!

any representation of N-ality q=1,…,N-1 has �  as a weight ⃗w q
there exist BPS k-walls of fluxes appropriate to absorb charge �  ⃗w q

-> perimeter law on k-walls for any representation quarks 

    (deconfined weight due to BPS walls “wins”)



Anomalies, vacuum structure, confinement and 
deconfinement on DWs are intertwined, in intricate ways.

Studied a weakly-coupled semiclassically tractable example 
of the implications of anomaly inflow for the 0-form/1-form 
anomalies.  

Physical picture appealing, comforting, based on our detailed 
understanding of the “double-string” confinement 
mechanism on � .  

Applies also to various non-SUSY YM (� ), QCD(adj),…  
No time to go into detail, but whenever there is an anomaly, 
confinement due to a double-strings (DWs of same tension, as in SYM).

R3 × S1

θ = π

(e.g. axion domain walls w/ Anber 2001.03631) 

Conclusion I: 



Conclusion I1 (wish list): 

1. Symmetry/anomaly often not enough to fix the DW “worldvolume 
TQFT”.  In the case at hand (we) only understand the TQFT on the 
k=1 walls. For k>1 DWs on �  open… related to combinatorics 
of fluxes?

R3 × S1

2. All other gauge groups - with or without center - also tractable at 
small-L. Repeat… worldvolume TQFTs?



Conclusion I1I (wish list): 

3. Solutions reveal that DWs also carry magnetic fields - 
no net magnetic flux; due to nonlinear coupling of “ � ” due 
to magnetic/neutral bions 

⃗E , ⃗B
BPS Domain Walls - Numerical Solutions

After running algorithm: SU(3) example, k=1

distance across DW in units of �m−1

∂x ⃗σ ∼ ⃗E y∂x
⃗ϕ ∼ ⃗B y

numerically, then analytically found:  

                  “magnetless” solutions only for k=N/2 walls in SU(N-even)



Conclusion IV (wish list): 

showed “magnetless” solutions only for k=N/2 walls in SU(N-even)

out of the �  BPS � -walls( N
N/2) k = N/2

only 2 magnetless walls if N not divisible by 4 

only 6 magnetless if N divisible by 4  
(further, all can be constructed from

analytic  SU(2)-wall solution!)

k ↔ N − k(�  rotation:                   walls, reversal of worldvolume flux)π

3. Solutions reveal that DWs also carry magnetic fields - 
no net magnetic flux; due to nonlinear coupling of “ � ” due 
to magnetic/neutral bions 

⃗E , ⃗B



Conclusion IV (wish list): 

showed “magnetless” solutions only for k=N/2 walls in SU(N-even)

k ↔ N − k
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out of the �  BPS � -walls( N
N/2) k = N/2

only 2 magnetless walls if N not divisible by 4 

only 6 magnetless if N divisible by 4  
(further, all can be constructed from

analytic  SU(2)-wall solution!)

3. Solutions reveal that DWs also carry magnetic fields - 
no net magnetic flux; due to nonlinear coupling of “ � ” due 
to magnetic/neutral bions 

⃗E , ⃗B

(�  rotation:                   walls, reversal of worldvolume flux)π



Conclusion V (wish list): 
4. An excursion to �  

CS and other arguments (eg Hsin, Lam, Seiberg  2018) imply “anyonic” nature of 
deconfined quarks on DWs (braiding).  In our 2d DW worldvolume setup 
braiding not visible, as quarks have to pass through each other.

ℝ4?

our discussion, ignoring � -coordinate dependence x4, 𝕊1

in reality, our DWs are wrapped and our q’s localized on �𝕊1

our �  is small but finite, and theory weakly coupled at all scales: hope?𝕊1

… describe without 3d duality!

line in



heavy “baryon” in SU(3) SYM “Color field,” Mark Rothko


