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At this stage, ⌧ is the instanton–anti-instanton separation, ! = 2a, and S0 = 8a3

3g = !3

3g is

the action of a single instanton. The e
4!3

g e�!⌧

factor in the integrand is the I-Ī long-distance

attraction and the two factors in the brackets are the fermion-correlated, ⇠ e�2!⌧ , and scalar-

correlated, ⇠ e�!⌧ , contributions. Naively, the integral over the separation in (2.8) is to be

taken from ⌧ = 0 to ⌧ = 1. It seems impossible that E0 in (2.8) can ever vanish, as the

integrand is strictly positive for any ⌧ � 0. As it stands, this is in contradiction with the

constraints of supersymmetry, and more disastrously, with the supersymmetry algebra which

demands that energy is positive semi-definite. But the story is more subtle, and one with

happy ending.
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Figure 2. The steepest descent cycles for the fermion-correlated channel vs. scalar correlated chan-
nels. The blue cycle is the naive cycle in which the separation between the instanton and anti-instanton
is interpreted as real. A result compatible with supersymmetry only comes about if we use the critical
point cycles.

As argued in [5] and formalized more recently in [27–29] in the context of resurgence and

Picard-Lefschetz theory, the integral should be thought of as an integral in the complex ⌧

plane. Since ⌧ corresponds to some field direction, its complexification is to be thought of

as the complexification of the original fields, which are to be treated by complex gradient

flow (Picard-Lefschetz) equations. Of course, the full complexified field space is infinite di-

mensional, and in principle, we have to work in the context of the Picard-Lefschetz equations

for the full theory. However, in the background of multi-instanton saddles, as concrete evi-

dence is provided in [26, 28, 29], this space usually factorizes into finite dimensional zero and

quasi-zero modes directions and infinite dimensional gaussian modes:

J full = J Gaussian ⇥ J zm ⇥ J qzm . (2.9)

In the determination of the correlated instanton–anti-instanton contribution to ground state

energy, the most important subcomponent of the thimble J full, which governs some of the

salient features of the multi-instanton configuration, is J qzm. This reduces a formidable task

of treating an infinite dimensional path integral to that of treating an interesting finite (in

this case one-) dimensional integral by Picard-Lefschetz theory and a much less interesting

infinite dimensional Gaussian integration.
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Instantons play a role in many physical problems. 
In QFT, whenever semiclassics “works”,

N=1 SUSY theories: nonperturbative superpotentials. 
N=2 SUSY theories: Seiberg-Witten curves. 
Phenomenological models of chiral symmetry breaking in QCD.

… 
Mass gap, confinement & center stability:

 QCD(adj)/SYM & deformed Yang-Mills theory on R    xS  , at small L1,2 1
L

already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”

key to understanding important physics, e.g.:

Motivation:  … really, more than half of my slides



already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”
Not merely a question of calculating exponentially suppressed effects. 
Instanton—anti-instanton (I-I*), for example, contributions have been 
found to give the leading effect in many cases. 
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“neutral bions” are particularly bizarre: they are MM* “molecules”
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,

[M
1

M
1

] ⇠ Ae�2S0e±2b , where

A ⇠
Z 1

0

dre
�Ve↵,M1M1

(r) =

Z 1

0

dre
�
✓
�2⇥ 4⇡L

g24r
+(4nf�2) log r

◆

, nf = 1 , (4.23)

where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
4

T 3

�
1� 1

a4r
+ . . .

�
,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-
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Turns out, the MM* amplitude makes sense. 
Despite the attractive-only interactions,
a “stable molecule” exists! We know from:

1. supersymmetry, exact W -> V=|W’|^2
neutral bions

magnetic bions

neutral bions
magnetic bions

“neutral bions” are particularly bizarre: they are MM* “molecules”
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we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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 - no time and no quantum fluctuations 
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Turns out, the MM* amplitude makes sense. 
Despite the attractive-only interactions,
a “stable molecule” exists! We know from:

“neutral bions” are particularly bizarre: they are MM* “molecules”
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,
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1
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, nf = 1 , (4.23)

where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
4

T 3
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1� 1

a4r
+ . . .
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,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical
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Were it not for [M
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], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,
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1

M
1

] ⇠ Ae�2S0e±2b , where

A ⇠
Z 1

0

dre
�Ve↵,M1M1

(r) =

Z 1

0

dre
�
✓
�2⇥ 4⇡L

g24r
+(4nf�2) log r

◆
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where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
4

T 3

�
1� 1

a4r
+ . . .

�
,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,

[M
1
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1

] ⇠ Ae�2S0e±2b , where
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, nf = 1 , (4.23)

where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
4

T 3

�
1� 1

a4r
+ . . .

�
,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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Turns out, the MM* amplitude makes sense. 
Despite the attractive-only interactions,
a “stable molecule” exists! We know from:

“neutral bions” are particularly bizarre: they are MM* “molecules”
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,
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1
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, nf = 1 , (4.23)

where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
4

T 3

�
1� 1

a4r
+ . . .

�
,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,
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where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
4

T 3

�
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a4r
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,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the e↵ective theory is, naively,

[M
1
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where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
4

as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
4

= a
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T 3
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,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Q
dil

=

Z

S2
1

~rA
4

· d~S . (4.24)

Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having
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Turns out, the MM* amplitude makes sense. 
Despite the attractive-only interactions,
a “stable molecule” exists! We know from:

“neutral bions” are particularly bizarre: they are MM* “molecules”
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
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center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2
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a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).
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where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x
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as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A
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we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:
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=
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1
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Note that ~rA
4

is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 ⇥ S

1 as having

– 29 –

 
J
H
E
P
0
7
(
2
0
1
1
)
0
8
2

is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = 1) [22]. However, our

theory has two interrelated di↵erences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M
2

M
2

].

Were it not for [M
2

M
2

], the two eigenvalues would end up at ⇡, corresponding to a

center broken Wilson line, ⌦ = �1. However, quite symmetrically, [M
2

M
2

] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M
1

M
1

] and [M
2

M
2

] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]
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where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of �-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

di�cult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-
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MM* ’t Hooft vertex  ~

deviation of holonomy from center2 x M action

Coulomb attraction fermion-zero mode exchange attraction

(neutral bions are responsible for  
center stability and also  cancel 
magnetic bion vacuum energy in 
SYM)

1. supersymmetry, exact W -> V=|W’|^2

Even more bizzare, the “fugacity” of the 
MM* objects is <0, ensuring E_vac = 0. 

Complexification crucial. Hypothesis that MM* lie on a different “Lefshetz thimble” from the 
perturbative vacuum - distinguished by a phase (“HTA”)…?

In semiclassics, any “lump” of 
positive fugacity lowers
vacuum energy (e.g. double 
well). In SYM, there are “lumps”
of both positive and negative 
fugacity, with equal and
opposite contributions to E_vac.

Motivation:  … no time/need to explain all-but to see QFT origin

2. analytic continuation:
   MM* “live” at complex separation



already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”

Instanton—anti-instanton (I-I*), for example, contributions have been 
found to give the leading effect in many cases. 
Ex. 1: SYM, mass gap….

Not merely a question of calculating exponentially suppressed effects. 

Motivation:  … no time/need to explain all-but to see QFT origin



already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”

Instanton—anti-instanton (I-I*), for example, contributions have been 
found to give the leading effect in many cases. 
Ex. 1: SYM, mass gap….
Ex. 2: “Resurgent” cancellations: imaginary parts due to Borel 
resummation of perturbation theory vs imaginary parts of I-I* 

high orders of perturbation theory
double-well QM, non Borel-summable:

II* contribution: 
requires analytic continuation 

 Bogomolnyi, Zinn-Justin

ambiguity of Borel sum of pert. series:

Not merely a question of calculating exponentially suppressed effects. 

Motivation:



(I think) we are far from understanding of what “defining the path 

integral on Lefshetz thimbles” means.

Complexification seems crucial. Hypothesis/dream/ is that MM* lie on a 
different “Lefshetz thimble” from the perturbative vacuum and are distinguished 
from it by a phase associated with the thimble… “like” in 1dim integrals:

space interpretation. But the end-points of this unphysical region, ✓ = 0 and ✓ = ⇡,

correspond to V+(x) and V�(x), which are physical theories. However, in the cases

studied in this work, the two potentials are related either by parity (mirror images

of one another) or a simple shift, and the path integral representation and the set of

non-perturbative saddle points associated with them are identical.

Turning on ✓ gives the analytic continuation of the bounce into a complex saddle.

These complex saddles are plotted in Fig. 14 and Fig. 23. The continuation to ✓ = ⇡

results in complex smooth saddles for the tilted DW case and complex singular saddle

for the double-SG example. One interesting aspect of the analytic continuation for the

DW system is that one can show that the monodromies associated with the solutions

are non-trivial. In fact, as p changes its phase by 2⇡, the potential V+(x) turns back

to itself, but the two complex bion solutions are interchanged. Thus, the solutions has

a monodromy of order 2, reflecting the two-fold ambiguity in the choice of the exact

solutions.

1.4 What is surprising (and what is not)?

The necessity of complexification is not surprising from the point of view of the steepest

descent method for ordinary integration. Since the path integral is a particular form

of infinitely many ordinary integrals, complexification is in fact a natural step. What

is interesting and surprising is the important new e↵ects that appear in functional

integrals.

As is well known, complexification is both a necessary and su�cient step to capture

a complete steepest descent cycle decomposition for ordinary integration. Let f(x) be

a real function, and consider an exponential type integral I(~) =
R1
�1 dx e�

1

~f(x) which

exists for ~ > 0. (We will also consider the continuation ~ ! ~ei✓.) To tackle the

integration via the steepest descent method, the first step is to complexify:

(f(x),R) �! (f(z),� 2 C) . (1.14)

Since C has twice the real dimension of R the integration is restricted to a certain

middle-dimensional cycle � in C. The standard procedure is:

I(~) =
Z 1

�1
dx e�

1

~f(x) �!
|{z}

steepest descent method

X

�

n�

Z

J�

dz e�
1

~f(z) , (1.15)

where J� is the steepest descent cycle attached to the critical point z� of f(z), i.e.,

f 0(z�) = 0 and the interval
R

[�1,1]
=

P

� n�

R

J�
=

R

�
is a sum over the homology cycle

decomposition of the pair (f(z),C) despite the fact that the original integration is over
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Decompose the original real path of integration into steepest 
descent paths, or “thimbles”, going through different saddles 
(recall phase is constant on each such contour)

All I will do is to show you a simple, yet not completely trivial, 
example supporting the need of complexification…

Motivation:



Subject/summary of talk:

N=2 SUSY QM = 4d WZ model reduced to 2d

of hidden topological angle phase di↵erence between the two distinct thimbles.

This paper is organized as follows. The reader interested in the main features of the result

will be satisfied with reading Section 2 only. There, we present the model and sketch the can-

cellation of the instanton–anti-instanton contribution to the vacuum energy described above,

stressing the importance of integration over Lefshetz thimbles. Section 3 gives significantly

more detail on the derivation of the main result. We conclude in Section 4.

2 Basics of N = 2 supersymmetric quantum mechanics

We consider N = 2 supersymmetric (SUSY) quantum mechanics (QM). It is obtained by di-

mensional reduction of the 4D Wess-Zumino model of a single chiral superfield z and arbitrary

superpotential W (z) down to quantum mechanics. The Euclidean Lagrangian is

gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p

2(�ż✏̄2 � W 0✏1) , ��̄1 =
p

2( ˙̄z✏2 � W 0✏̄1) , (2.3b)

��2 =
p

2(ż✏̄1 � W 0✏2) , ��̄2 =
p

2(� ˙̄z✏1 � W 0✏̄2) . (2.3c)

The critical points of the superpotential, assumed nondegenerate, W 0(zi) = 0, zi, i =

1, . . . k (k = 2 for our cubic W ) are the classical minima of the bosonic potential |W 0(z)|2. It

has been known for a long time that all classical ground states remain quantum-mechanical

ground states [39] (see also Ch. 10 in [40]). To quickly review the argument, recall that

the Witten index is invariant under continuous deformations of the potential, in particular

under rescaling of the superpotential W ! �W . Taking first � ! 1, the theory is well ap-

proximated by k distinct SUSY quantum harmonic oscillators. In a harmonic approximation,

quantizing the system on the left and the right well, we obtain

HL,R = |⇧z|2 + (±2a)2|z|2 + (±2a)(a†1a
†
2 + a1a2) , (2.4)

1As opposed to field theory, the Grassmann fields do not represent separate particles, but instead endow a

2D quantum particle at (x, y) with a spin degree of freedom, which is spin 1
2 ⌦ 1

2 because of N = 2 structure.
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where a†i , ai (i = 1, 2) are fermion creation/annihilation operators. The harmonic ground

states on the left well and right well are given by

|L,0ib ⌦ (| ""i + | ##i) , |R,0ib ⌦ (| ""i � | ##i) , (2.5)

both of which are bosonic, and there are no fermionic partners. Fermionic states involving

| "#i, | #"i are excited states. Since in a supersymmetric theory, all positive energy states

are Bose/Fermi paired by supersymmetry, and states can only ascend/descend in Bose/Fermi

pairs, the two bosonic ground states can never be lifted. Thus the Witten index is nonzero

(IW = 2) and supersymmetry is unbroken. Further, none of the classical ground states can

be lifted by perturbative or nonperturbative (instanton or multi-instanton) e↵ects, thus they

all remain true ground states of the full quantum theory.

Di↵erence between N = 1 and N = 2 QM, and a puzzle: Note the sharp contrast

between N = 1 supersymmetry, with real superpotential W (x) and the N = 2 theory with

holomorphic superpotential W (z), e.g.

W (x) =
k+1Y

i=1

(x � xi) vs. W (z) =
k+1Y

i=1

(z � zi) (2.6)

In the N = 1 case, the harmonic zero energy ground states in any two consecutive harmonic

wells are always alternating, if one is bosonic, the other is strictly fermionic. Consequently,

since a Bose-Fermi paired zero energy state can happily move up simultaneously, in N = 1

supersymmetry, lifting happens generically. In the N = 2, this is never the case. All harmonic

grounds states are either fermionic or bosonic, and hence, the zero energy levels can never be

lifted. Consequently, if the number of critical points is k, the Witten index is,

|IW | = k (mod 2) N = 1,

|IW | = k N = 2. (2.7)

The lifting of the harmonic zero energy states cannot happen perturbatively, but may happen

non-perturbatively. In the N = 1 case, this provides the k low-lying states with energies

⇠ e�2S0/g (where S0/g is the instanton action) or zero. Strictly, the energies of low lying levels

arise from a multi-instanton e↵ect, and not an instanton. On the other hand, in the N = 2

case, instantons and multi-instantons seem to do nothing. This is the curious incident that

we would like to understand by semi-classical methods, instead of relying on supersymmetry.

Our hope is to learn something important about the nature of the semi-classical method,

which is more widely applicable than the supersymmetric techniques.

2.1 The curious incident of instantons in N = 2 QM, and the necessity of thim-

bles

Although the non-lifting of the zero energy grounds states in N = 2 QM is well known,

it may at first appear strange to someone not familiar with the constraints of (extended)
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Witten index=number of critical points of W(z)
E_vac=0, as opposed to N=1 SUSY QM: well known.

four real supercharges
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of hidden topological angle phase di↵erence between the two distinct thimbles.

This paper is organized as follows. The reader interested in the main features of the result

will be satisfied with reading Section 2 only. There, we present the model and sketch the can-

cellation of the instanton–anti-instanton contribution to the vacuum energy described above,

stressing the importance of integration over Lefshetz thimbles. Section 3 gives significantly

more detail on the derivation of the main result. We conclude in Section 4.

2 Basics of N = 2 supersymmetric quantum mechanics

We consider N = 2 supersymmetric (SUSY) quantum mechanics (QM). It is obtained by di-

mensional reduction of the 4D Wess-Zumino model of a single chiral superfield z and arbitrary

superpotential W (z) down to quantum mechanics. The Euclidean Lagrangian is

gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p

2(�ż✏̄2 � W 0✏1) , ��̄1 =
p

2( ˙̄z✏2 � W 0✏̄1) , (2.3b)

��2 =
p

2(ż✏̄1 � W 0✏2) , ��̄2 =
p

2(� ˙̄z✏1 � W 0✏̄2) . (2.3c)

The critical points of the superpotential, assumed nondegenerate, W 0(zi) = 0, zi, i =

1, . . . k (k = 2 for our cubic W ) are the classical minima of the bosonic potential |W 0(z)|2. It

has been known for a long time that all classical ground states remain quantum-mechanical

ground states [39] (see also Ch. 10 in [40]). To quickly review the argument, recall that

the Witten index is invariant under continuous deformations of the potential, in particular

under rescaling of the superpotential W ! �W . Taking first � ! 1, the theory is well ap-

proximated by k distinct SUSY quantum harmonic oscillators. In a harmonic approximation,

quantizing the system on the left and the right well, we obtain

HL,R = |⇧z|2 + (±2a)2|z|2 + (±2a)(a†1a
†
2 + a1a2) , (2.4)

1As opposed to field theory, the Grassmann fields do not represent separate particles, but instead endow a

2D quantum particle at (x, y) with a spin degree of freedom, which is spin 1
2 ⌦ 1

2 because of N = 2 structure.
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BPS (anti)instantonsThe BPS equations which give an (anti-)instanton solution are

ż = ±W 0 . (3.3)

This equation is solved by

z = ⌥a tanh(at) . (3.4)

We will call the solution with the upper sign an instanton, and the one with the lower

sign an anti-instanton. The instanton solution breaks half of the supersymmetries (2.3). In

particular, an instanton background is invariant under SUSY with parameters ✏̄1 = ✏2, ✏̄2 =

�✏1, but under the remaining SUSY transformations with ✏ = ✏̄1 = �✏2 and ✏̃ = ✏̄2 = ✏1, the

fermionic fields become

��1 = �2
p

2ż✏̃ , ��̄1 = �2
p

2 ˙̄z✏ , (3.5)

��2 = 2
p

2ż✏ , ��̄2 = �2
p

2 ˙̄z✏̃ . (3.6)

The fermions depending on ✏ and ✏̃ can be, respectively, combined into two-component spinors,

omitting the Grassmann factors of ✏, ✏̃:

⇠ = N

 
ż

� ˙̄z

!
, ⇠̄ = N

 
ż
˙̄z

!
. (3.7)

where we introduced a normalization factor N (it is easily seen that N2 = 3/(8a3) for unit-

normalized fermions). The fermions ⇠ and ⇠̄ are respective zeromodes of the Weyl operator

D and its hermitean conjugate

D = @t +

 
0 W 00(z)

W 00(z) 0

!
, D† = �@t +

 
0 W 00(z)

W 00(z) 0

!
. (3.8)

Thus, an instanton always has two zeromodes of opposite chirality (in accordance with the

index theorem, dimKerDD† � dimKerD†D = 0 for any background). This has important

consequences in what follows, allowing zero modes to get lifted by perturbative e↵ects.

3.1 Strategy and guide to calculation

In this section we will calculate the two contributions to the instanton–anti-instanton ampli-

tude [IĪ]. The two contributions that need to be calculated are

• The fermion correlated amplitude [IĪ]F (Top of Fig. 1),

• The Yukawa-scalar-exchange correlated amplitude [IĪ]Y (Bottom of Fig. 1).

The most important part of [IĪ]F amplitude calculation is that the instanton fermion

zeromode is lifted by the presence of the anti–instanton. We therefore must carefully compute

the lowest mode of the fermion operator in the instanton–anti-instanton background. The

way we do this is by applying the standard degenerate perturbation theory. In short the
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Main part of talk:



To rephrase: 

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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the lowest mode of the fermion operator in the instanton–anti-instanton background. The

way we do this is by applying the standard degenerate perturbation theory. In short the
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I
I*

two fermion zero modes each  

  take “a” real (plot for a=1)

I,I*: tunnelling between minima;

Understand E_vac = 0 from next-order semiclassics.
Upshot: 

after all, the far away I* will lift the zero modes of I (and v.v.): 

Goal: 
It’s not completely trivial. {Relation to motivation: complexification!}

Main part of talk:

(with opposite “chirality” from 4d p.o.v.)



Understand E_vac = 0 from next-order semiclassics.Goal: 
To rephrase: Why I-I* ‘events’ do not contribute to E_vac? 

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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after all, the far away I* will lift the zero modes of I (and v.v.): 
Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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Yukawa squared =

The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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combining the two

where ei⇡ is the relative phase between the two thimbles, J1 and J2—an example of a hidden

topological angle [26]. Therefore, the vacuum energy (2.8) vanishes:

E0 / 4!3I1 + gI2 = 4!3(1 + ei⇡)I1 = 0 . (2.18)

Remarkably, the two contributions not only have the opposite sign, but are of the same

order in g and cancel exactly! How did this happen? Crucial to the cancellation was the

exponential suppression e�2!⌧ in the case of fermion-correlated event and e�!⌧ in the case

of scalar-correlated event. The critical points of both integrals are at Re(⌧1,2!) / � log g.

However the integrand at the critical point of I1 and I2 integrals contain e�2!⌧1 / g2 and

e�!⌧2 / g, so that although I1 started initially as lower order in g, the exponential suppression

due to fermion exchange forced the integral I1 to contain an extra factor g compared to the

integral I2.

We find this incredible conspiracy nothing short of remarkable. It gives compelling evi-

dence that a general principle of evaluating higher order semiclassical contributions by treating

their quasi-moduli via Picard-Lefschetz theory is the correct and necessary procedure.

The relative hidden topological angle among saddles is a universal feature seen in a broad

class of supersymmetric and non-supersymmetric theories. In all cases studied so far, this

phase di↵erence arises from the integration over di↵erent thimbles Ji in the complex plane,

whose contributions have a relative factor of ei⇡. For example, in N = 1 supersymmetric

QM, the real cycle and complex cycle (associated with a real saddle and complex saddle)

di↵er by ei⇡, while in non-supersymmetric QM with nf fermion field the relative phase is

einf⇡. These factors may lead to either constructive or destructive “interference” between the

contributions of di↵erent saddles. In field theory, the cleanest example is given by comparing

the contributions of the magnetic bion vs. neutral bion cycle in QCD(adj) with nf flavors of

fermions. There, the relative phase is ei(4nf�3)⇡ which, for positive integer nf , is always ei⇡

[15, 41]. This overall sign is of physical significance, and reflects the fact that neutral bions

induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.

We will now proceed to show explicitly how the contributions I1 and I2 to (2.8) arise.

3 Computation of I-

¯

I contributions to the ground state energy

In this Section, we analyze in detail the IĪ contributions starting from the Lagrangian (2.1).

Instantons are solutions of the BPS equation

ż = ei↵W 0 . (3.1)

Generically there will be no instantons for arbitrary value of ↵. We will consider the case of

the double well potential, with the superpotential already given after Eq. (2.1)

W (z) =
z3

3
� a2z . (3.2)
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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( )

both come with same sign:
how to cancel? 

notice: 
(omitting the nonzero mode  

I and I* determinants)

entire story rests on
relative factor - 
somewhat hard calculation

Yukawa squared =

y-

different orders in g!

- gives *negative* E_vac
- at small I-I* separation - all the above is nonsense

Two issues:
Main part of talk:



supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)

– 13 –

where ei⇡ is the relative phase between the two thimbles, J1 and J2—an example of a hidden

topological angle [26]. Therefore, the vacuum energy (2.8) vanishes:

E0 / 4!3I1 + gI2 = 4!3(1 + ei⇡)I1 = 0 . (2.18)

Remarkably, the two contributions not only have the opposite sign, but are of the same

order in g and cancel exactly! How did this happen? Crucial to the cancellation was the

exponential suppression e�2!⌧ in the case of fermion-correlated event and e�!⌧ in the case

of scalar-correlated event. The critical points of both integrals are at Re(⌧1,2!) / � log g.

However the integrand at the critical point of I1 and I2 integrals contain e�2!⌧1 / g2 and

e�!⌧2 / g, so that although I1 started initially as lower order in g, the exponential suppression

due to fermion exchange forced the integral I1 to contain an extra factor g compared to the

integral I2.

We find this incredible conspiracy nothing short of remarkable. It gives compelling evi-

dence that a general principle of evaluating higher order semiclassical contributions by treating

their quasi-moduli via Picard-Lefschetz theory is the correct and necessary procedure.

The relative hidden topological angle among saddles is a universal feature seen in a broad

class of supersymmetric and non-supersymmetric theories. In all cases studied so far, this

phase di↵erence arises from the integration over di↵erent thimbles Ji in the complex plane,

whose contributions have a relative factor of ei⇡. For example, in N = 1 supersymmetric

QM, the real cycle and complex cycle (associated with a real saddle and complex saddle)

di↵er by ei⇡, while in non-supersymmetric QM with nf fermion field the relative phase is

einf⇡. These factors may lead to either constructive or destructive “interference” between the

contributions of di↵erent saddles. In field theory, the cleanest example is given by comparing

the contributions of the magnetic bion vs. neutral bion cycle in QCD(adj) with nf flavors of

fermions. There, the relative phase is ei(4nf�3)⇡ which, for positive integer nf , is always ei⇡

[15, 41]. This overall sign is of physical significance, and reflects the fact that neutral bions

induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.

We will now proceed to show explicitly how the contributions I1 and I2 to (2.8) arise.

3 Computation of I-

¯

I contributions to the ground state energy

In this Section, we analyze in detail the IĪ contributions starting from the Lagrangian (2.1).

Instantons are solutions of the BPS equation

ż = ei↵W 0 . (3.1)

Generically there will be no instantons for arbitrary value of ↵. We will consider the case of

the double well potential, with the superpotential already given after Eq. (2.1)

W (z) =
z3

3
� a2z . (3.2)
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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( )
Yukawa squared =
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Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to
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along the path. It is easy to see that in both cases this corresponds to integrating on the line
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2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.
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Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.
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4!3

g e�!⌧

factor in the integrand is the I-Ī long-distance

attraction and the two factors in the brackets are the fermion-correlated, ⇠ e�2!⌧ , and scalar-

correlated, ⇠ e�!⌧ , contributions. Naively, the integral over the separation in (2.8) is to be

taken from ⌧ = 0 to ⌧ = 1. It seems impossible that E0 in (2.8) can ever vanish, as the

integrand is strictly positive for any ⌧ � 0. As it stands, this is in contradiction with the
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⌧

i⇡
⌧

log(2!3/g) log(4!3/g)

[IĪ]F [IĪ]Y

Naive cycle

Figure 2. The steepest descent cycles for the fermion-correlated channel vs. scalar correlated chan-
nels. The blue cycle is the naive cycle in which the separation between the instanton and anti-instanton
is interpreted as real. A result compatible with supersymmetry only comes about if we use the critical
point cycles.
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quasi-zero modes directions and infinite dimensional gaussian modes:

J full = J Gaussian ⇥ J zm ⇥ J qzm . (2.9)
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of treating an infinite dimensional path integral to that of treating an interesting finite (in

this case one-) dimensional integral by Picard-Lefschetz theory and a much less interesting

infinite dimensional Gaussian integration.
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parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields
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2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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fermion exchange



supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧
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d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
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QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
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In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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where ei⇡ is the relative phase between the two thimbles, J1 and J2—an example of a hidden

topological angle [26]. Therefore, the vacuum energy (2.8) vanishes:

E0 / 4!3I1 + gI2 = 4!3(1 + ei⇡)I1 = 0 . (2.18)

Remarkably, the two contributions not only have the opposite sign, but are of the same

order in g and cancel exactly! How did this happen? Crucial to the cancellation was the

exponential suppression e�2!⌧ in the case of fermion-correlated event and e�!⌧ in the case

of scalar-correlated event. The critical points of both integrals are at Re(⌧1,2!) / � log g.

However the integrand at the critical point of I1 and I2 integrals contain e�2!⌧1 / g2 and

e�!⌧2 / g, so that although I1 started initially as lower order in g, the exponential suppression

due to fermion exchange forced the integral I1 to contain an extra factor g compared to the

integral I2.

We find this incredible conspiracy nothing short of remarkable. It gives compelling evi-

dence that a general principle of evaluating higher order semiclassical contributions by treating

their quasi-moduli via Picard-Lefschetz theory is the correct and necessary procedure.

The relative hidden topological angle among saddles is a universal feature seen in a broad

class of supersymmetric and non-supersymmetric theories. In all cases studied so far, this

phase di↵erence arises from the integration over di↵erent thimbles Ji in the complex plane,

whose contributions have a relative factor of ei⇡. For example, in N = 1 supersymmetric

QM, the real cycle and complex cycle (associated with a real saddle and complex saddle)

di↵er by ei⇡, while in non-supersymmetric QM with nf fermion field the relative phase is

einf⇡. These factors may lead to either constructive or destructive “interference” between the

contributions of di↵erent saddles. In field theory, the cleanest example is given by comparing

the contributions of the magnetic bion vs. neutral bion cycle in QCD(adj) with nf flavors of

fermions. There, the relative phase is ei(4nf�3)⇡ which, for positive integer nf , is always ei⇡

[15, 41]. This overall sign is of physical significance, and reflects the fact that neutral bions

induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.

We will now proceed to show explicitly how the contributions I1 and I2 to (2.8) arise.

3 Computation of I-

¯

I contributions to the ground state energy

In this Section, we analyze in detail the IĪ contributions starting from the Lagrangian (2.1).

Instantons are solutions of the BPS equation

ż = ei↵W 0 . (3.1)

Generically there will be no instantons for arbitrary value of ↵. We will consider the case of

the double well potential, with the superpotential already given after Eq. (2.1)

W (z) =
z3

3
� a2z . (3.2)

– 9 –

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange
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connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)

– 6 –

( )
Yukawa squared =

Main part of talk:

Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)
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should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which
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by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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Z
d⌧ e

4!3
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At this stage, ⌧ is the instanton–anti-instanton separation, ! = 2a, and S0 = 8a3

3g = !3

3g is

the action of a single instanton. The e
4!3

g e�!⌧

factor in the integrand is the I-Ī long-distance

attraction and the two factors in the brackets are the fermion-correlated, ⇠ e�2!⌧ , and scalar-

correlated, ⇠ e�!⌧ , contributions. Naively, the integral over the separation in (2.8) is to be

taken from ⌧ = 0 to ⌧ = 1. It seems impossible that E0 in (2.8) can ever vanish, as the

integrand is strictly positive for any ⌧ � 0. As it stands, this is in contradiction with the

constraints of supersymmetry, and more disastrously, with the supersymmetry algebra which

demands that energy is positive semi-definite. But the story is more subtle, and one with

happy ending.

i⇡
⌧

i⇡
⌧

log(2!3/g) log(4!3/g)

[IĪ]F [IĪ]Y

Naive cycle

Figure 2. The steepest descent cycles for the fermion-correlated channel vs. scalar correlated chan-
nels. The blue cycle is the naive cycle in which the separation between the instanton and anti-instanton
is interpreted as real. A result compatible with supersymmetry only comes about if we use the critical
point cycles.

As argued in [5] and formalized more recently in [27–29] in the context of resurgence and

Picard-Lefschetz theory, the integral should be thought of as an integral in the complex ⌧

plane. Since ⌧ corresponds to some field direction, its complexification is to be thought of

as the complexification of the original fields, which are to be treated by complex gradient

flow (Picard-Lefschetz) equations. Of course, the full complexified field space is infinite di-

mensional, and in principle, we have to work in the context of the Picard-Lefschetz equations

for the full theory. However, in the background of multi-instanton saddles, as concrete evi-

dence is provided in [26, 28, 29], this space usually factorizes into finite dimensional zero and

quasi-zero modes directions and infinite dimensional gaussian modes:

J full = J Gaussian ⇥ J zm ⇥ J qzm . (2.9)

In the determination of the correlated instanton–anti-instanton contribution to ground state

energy, the most important subcomponent of the thimble J full, which governs some of the

salient features of the multi-instanton configuration, is J qzm. This reduces a formidable task

of treating an infinite dimensional path integral to that of treating an interesting finite (in

this case one-) dimensional integral by Picard-Lefschetz theory and a much less interesting

infinite dimensional Gaussian integration.
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along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields
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2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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1.⇤ An infinitely long homogeneous cylindrical conductor of radius R is placed in an external

electric field E

0

that is uniform and perpendicular to the cylinder axis at large distances. Find:

1. The potential everywhere in space and sketch the equipotential surfaces..

2. The surface charge density.

3. The total charge of the cylinder.

2. An electric charge q is placed a distance d away from the center of a conducting sphere with

zero total charge. Find the potential outside the sphere and the charge density on its surface using

the methods of images.

3. Two grounded spherical conducting shells of radii a and b (a < b) are arranged concentrically.

The space between the shells carries a charge density ⇢(r) = kr

2

. Write down and solve the ap-

propriate equations for the potential in the three distinct regions of space, applying the relevant

boundary conditions. For the regions r < a and r > b the current result can be obtained without

explicit calculation (but you can still do it); explain how this is done and check that it verifies the

result of your calculations.

4. Consider the system formed by an infinite grounded conducting plane in the xy plane and an

electric dipole located a distance d above it, oriented at an angle ✓ with respect to the z axis. Find

the surface charge density � induced on the conducting plane.

5. Show that the quadrupole moment is independent of the choice of origin if the charge and dipole

moment vanish. (Notice that this works all the way up the hierarchy, i.e. the lowest nonvanishing

multipole moment is always independent of the origin.)

6. Show that:

1. The electric field of a dipole (a “perfect dipole”, i.e. an object consisting of two point like

opposite charges)

~

d can be written as

~

E(~r) =

1

4⇡✏

0

1

r

3

h
3(

~

d · ˆ~r)ˆ~r � ~

d

i
.
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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where ei⇡ is the relative phase between the two thimbles, J1 and J2—an example of a hidden

topological angle [26]. Therefore, the vacuum energy (2.8) vanishes:

E0 / 4!3I1 + gI2 = 4!3(1 + ei⇡)I1 = 0 . (2.18)

Remarkably, the two contributions not only have the opposite sign, but are of the same

order in g and cancel exactly! How did this happen? Crucial to the cancellation was the

exponential suppression e�2!⌧ in the case of fermion-correlated event and e�!⌧ in the case

of scalar-correlated event. The critical points of both integrals are at Re(⌧1,2!) / � log g.

However the integrand at the critical point of I1 and I2 integrals contain e�2!⌧1 / g2 and

e�!⌧2 / g, so that although I1 started initially as lower order in g, the exponential suppression

due to fermion exchange forced the integral I1 to contain an extra factor g compared to the

integral I2.

We find this incredible conspiracy nothing short of remarkable. It gives compelling evi-

dence that a general principle of evaluating higher order semiclassical contributions by treating

their quasi-moduli via Picard-Lefschetz theory is the correct and necessary procedure.

The relative hidden topological angle among saddles is a universal feature seen in a broad

class of supersymmetric and non-supersymmetric theories. In all cases studied so far, this

phase di↵erence arises from the integration over di↵erent thimbles Ji in the complex plane,

whose contributions have a relative factor of ei⇡. For example, in N = 1 supersymmetric

QM, the real cycle and complex cycle (associated with a real saddle and complex saddle)

di↵er by ei⇡, while in non-supersymmetric QM with nf fermion field the relative phase is

einf⇡. These factors may lead to either constructive or destructive “interference” between the

contributions of di↵erent saddles. In field theory, the cleanest example is given by comparing

the contributions of the magnetic bion vs. neutral bion cycle in QCD(adj) with nf flavors of

fermions. There, the relative phase is ei(4nf�3)⇡ which, for positive integer nf , is always ei⇡

[15, 41]. This overall sign is of physical significance, and reflects the fact that neutral bions

induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.

We will now proceed to show explicitly how the contributions I1 and I2 to (2.8) arise.

3 Computation of I-

¯

I contributions to the ground state energy

In this Section, we analyze in detail the IĪ contributions starting from the Lagrangian (2.1).

Instantons are solutions of the BPS equation

ż = ei↵W 0 . (3.1)

Generically there will be no instantons for arbitrary value of ↵. We will consider the case of

the double well potential, with the superpotential already given after Eq. (2.1)

W (z) =
z3

3
� a2z . (3.2)

– 9 –

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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( )
Yukawa squared =

Main part of talk:

Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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At this stage, ⌧ is the instanton–anti-instanton separation, ! = 2a, and S0 = 8a3

3g = !3

3g is

the action of a single instanton. The e
4!3

g e�!⌧

factor in the integrand is the I-Ī long-distance

attraction and the two factors in the brackets are the fermion-correlated, ⇠ e�2!⌧ , and scalar-

correlated, ⇠ e�!⌧ , contributions. Naively, the integral over the separation in (2.8) is to be

taken from ⌧ = 0 to ⌧ = 1. It seems impossible that E0 in (2.8) can ever vanish, as the

integrand is strictly positive for any ⌧ � 0. As it stands, this is in contradiction with the

constraints of supersymmetry, and more disastrously, with the supersymmetry algebra which

demands that energy is positive semi-definite. But the story is more subtle, and one with

happy ending.

i⇡
⌧

i⇡
⌧

log(2!3/g) log(4!3/g)

[IĪ]F [IĪ]Y

Naive cycle

Figure 2. The steepest descent cycles for the fermion-correlated channel vs. scalar correlated chan-
nels. The blue cycle is the naive cycle in which the separation between the instanton and anti-instanton
is interpreted as real. A result compatible with supersymmetry only comes about if we use the critical
point cycles.

As argued in [5] and formalized more recently in [27–29] in the context of resurgence and

Picard-Lefschetz theory, the integral should be thought of as an integral in the complex ⌧

plane. Since ⌧ corresponds to some field direction, its complexification is to be thought of

as the complexification of the original fields, which are to be treated by complex gradient

flow (Picard-Lefschetz) equations. Of course, the full complexified field space is infinite di-

mensional, and in principle, we have to work in the context of the Picard-Lefschetz equations

for the full theory. However, in the background of multi-instanton saddles, as concrete evi-

dence is provided in [26, 28, 29], this space usually factorizes into finite dimensional zero and

quasi-zero modes directions and infinite dimensional gaussian modes:

J full = J Gaussian ⇥ J zm ⇥ J qzm . (2.9)

In the determination of the correlated instanton–anti-instanton contribution to ground state

energy, the most important subcomponent of the thimble J full, which governs some of the

salient features of the multi-instanton configuration, is J qzm. This reduces a formidable task

of treating an infinite dimensional path integral to that of treating an interesting finite (in

this case one-) dimensional integral by Picard-Lefschetz theory and a much less interesting

infinite dimensional Gaussian integration.
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the two “Lefshetz thimbles”

Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals
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and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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fermion exchange

Imaginary part,          
change of relative sign (one vs. two “massive propagators”)
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by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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1.⇤ An infinitely long homogeneous cylindrical conductor of radius R is placed in an external

electric field E

0

that is uniform and perpendicular to the cylinder axis at large distances. Find:

1. The potential everywhere in space and sketch the equipotential surfaces..

2. The surface charge density.

3. The total charge of the cylinder.

2. An electric charge q is placed a distance d away from the center of a conducting sphere with

zero total charge. Find the potential outside the sphere and the charge density on its surface using

the methods of images.

3. Two grounded spherical conducting shells of radii a and b (a < b) are arranged concentrically.

The space between the shells carries a charge density ⇢(r) = kr

2

. Write down and solve the ap-

propriate equations for the potential in the three distinct regions of space, applying the relevant

boundary conditions. For the regions r < a and r > b the current result can be obtained without

explicit calculation (but you can still do it); explain how this is done and check that it verifies the

result of your calculations.

4. Consider the system formed by an infinite grounded conducting plane in the xy plane and an

electric dipole located a distance d above it, oriented at an angle ✓ with respect to the z axis. Find

the surface charge density � induced on the conducting plane.

5. Show that the quadrupole moment is independent of the choice of origin if the charge and dipole

moment vanish. (Notice that this works all the way up the hierarchy, i.e. the lowest nonvanishing

multipole moment is always independent of the origin.)

6. Show that:

1. The electric field of a dipole (a “perfect dipole”, i.e. an object consisting of two point like

opposite charges)

~

d can be written as

~

E(~r) =

1

4⇡✏

0

1

r
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h
3(
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d · ˆ~r)ˆ~r � ~
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)

– 6 –

Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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where ei⇡ is the relative phase between the two thimbles, J1 and J2—an example of a hidden

topological angle [26]. Therefore, the vacuum energy (2.8) vanishes:

E0 / 4!3I1 + gI2 = 4!3(1 + ei⇡)I1 = 0 . (2.18)

Remarkably, the two contributions not only have the opposite sign, but are of the same

order in g and cancel exactly! How did this happen? Crucial to the cancellation was the

exponential suppression e�2!⌧ in the case of fermion-correlated event and e�!⌧ in the case

of scalar-correlated event. The critical points of both integrals are at Re(⌧1,2!) / � log g.

However the integrand at the critical point of I1 and I2 integrals contain e�2!⌧1 / g2 and

e�!⌧2 / g, so that although I1 started initially as lower order in g, the exponential suppression

due to fermion exchange forced the integral I1 to contain an extra factor g compared to the

integral I2.

We find this incredible conspiracy nothing short of remarkable. It gives compelling evi-

dence that a general principle of evaluating higher order semiclassical contributions by treating

their quasi-moduli via Picard-Lefschetz theory is the correct and necessary procedure.

The relative hidden topological angle among saddles is a universal feature seen in a broad

class of supersymmetric and non-supersymmetric theories. In all cases studied so far, this

phase di↵erence arises from the integration over di↵erent thimbles Ji in the complex plane,

whose contributions have a relative factor of ei⇡. For example, in N = 1 supersymmetric

QM, the real cycle and complex cycle (associated with a real saddle and complex saddle)

di↵er by ei⇡, while in non-supersymmetric QM with nf fermion field the relative phase is

einf⇡. These factors may lead to either constructive or destructive “interference” between the

contributions of di↵erent saddles. In field theory, the cleanest example is given by comparing

the contributions of the magnetic bion vs. neutral bion cycle in QCD(adj) with nf flavors of

fermions. There, the relative phase is ei(4nf�3)⇡ which, for positive integer nf , is always ei⇡

[15, 41]. This overall sign is of physical significance, and reflects the fact that neutral bions

induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.

We will now proceed to show explicitly how the contributions I1 and I2 to (2.8) arise.

3 Computation of I-

¯

I contributions to the ground state energy

In this Section, we analyze in detail the IĪ contributions starting from the Lagrangian (2.1).

Instantons are solutions of the BPS equation

ż = ei↵W 0 . (3.1)

Generically there will be no instantons for arbitrary value of ↵. We will consider the case of

the double well potential, with the superpotential already given after Eq. (2.1)

W (z) =
z3

3
� a2z . (3.2)
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In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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   I and I* are never on top of each other: complex separation

Integrating over the *entire* (…?) thimble gives E_vac = 0!

Yukawa squared =
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Comments/Results:

Main part of talk:
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induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.
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¯
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W (z) =
z3

3
� a2z . (3.2)
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fermion exchange
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Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)
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Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)
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2!3

g
, (2.12)
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4!3

g
, (2.13)
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@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)
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I1 =
g2

16!7
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I2 = � g

4!4
=
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g
(ei⇡I1) , (2.17)
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equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial. {Relation to motivation: complexification!}

N=2 SUSY QM = 4d WZ model reduced to 2d, Witten index=0

Found that complexifying the quasi-zeromode crucial. I and I* “live” a 
complex & large separation apart; consistent next-to-leading order semiclassics. 

IFinal slides:



Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial. {Relation to motivation: complexification!}

N=2 SUSY QM = 4d WZ model reduced to 2d, Witten index=0

Found that complexifying the quasi-zeromode crucial. I and I* “live” a 
complex & large separation apart; consistent next-to-leading order semiclassics. 

All was done to I-I* order… not immediately clear how to proceed to higher 
orders. 

Comments:

Showed that “quasi-zeromode” complexification crucial; notice that this is just 
one direction in field space (the most relevant for this case!).

I

Suggests that complexification of path integral important. 

status: “theoretical experiment”  
                   in search of a theory…

finite dimensional thimbles (lattice)? 
mathematics? 

Solving analogous puzzles in SW theory harder… but worthwhile, beyond QM?

Magnetic and neutral bions in SYM can be seen to emerge in a similar way, at 
(generally) complex separations. (Recall SYM is only SUSY w/out scalars…YM)

Final slides:


