
Higher symmetry ’t Hooft 
anomalies and domain walls

Erich Poppitz

with Mohamed Anber    

oronto

1807.00093, 1811.10642

M. Anber, Tin Sulejmanpasic, EP
1501.06773

+ many earlier related works, by us and 
by others               

Lewis & Clark College, Portland, OR

+ may revisit past work                                                   + some current thoughts



’t Hooft anomalies constrain possible IR behavior   

Motivation: nonperturbative gauge dynamics

Turns out some were missed in the 1980s:
the ones involving higher symmetries  
              - Gaiotto, Kapustin, Komargodski, Seiberg, Willett  2014 - 

Old phenomena can be seen as due to these  
new matching conditions, e.g. “Dashen phenomenon”, 
while new anomaly point of view allows  
interesting extensions in different directions!



Outline:

discrete higher form symmetries and ’t Hooft anomalies: 
2d Schwinger model/4d SYM and QCD(adj)

- simplest QFT (solvable) exhibiting them, many parallels with 4d SYM

1. probably most of the talk:

2. time permitting:
anomaly inflow, domain walls in 4d, and recovering 
some string theory results from QFT

- will present in detail different points of view on the anomaly



new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

DW) between chiral-breaking vacua in the confined low-T phase (i.e. area law in the

bulk) as observed in [9], see also [10].

We find these correspondences between high-T DW physics and low-T bulk and DW physics

quite fascinating. The matching of various anomalies and the rich DW physics uncovered

make these properties worth pointing out and pursuing further.1

This paper is organized as follows. In Section 2, we study the charge-q Schwinger model,

its discrete symmetries, its ’t Hooft anomalies, and the anomaly saturation. In Section 3,

we review the DW solution in the high temperature SU(2) SYM theory and show that the

worldvolume of the DW is a charge-2 axial Schwinger model. We also discuss the anomaly

inflow and the manifestation of the anomaly on the DW. We conclude, in Section 4, by a

discussion of the generalizations to QCD(adj) with a larger number of adjoint fermions and

a proposal to study the high-T domain walls on the lattice.

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model

Consider the charge-q vector massless Schwinger model with Lagrangian

L = �
1

4e2
fklf

kl + i ̄+(@� + iqA�) + + i ̄�(@+ + iqA+) � , (2.1)

where k, l = 0, 1 are spacetime indices, @± ⌘ @t ± @x, A± ⌘ At ± Ax, t and x are the two-

dimensional Minkowski space coordinates, q � 2 is an integer and e is the gauge coupling.

The spacetime metric is gkl = diag(+,�), and we further assume that space is compactified

on a circle of circumference L, with x ⌘ x+L. The fields  + ( �) are the left (right) moving

components of the Dirac fermion and  ̄± are the hermitean conjugate fields. Our notation

follows from that of [7] and, as in that reference, we impose antiperiodic boundary conditions

on  ± around the spatial circle.2

The major di↵erence of our discussion from that in [6, 7]—where the model (2.1) with

q = 1 was solved exactly in Hamiltonian language for arbitrary values of L (see also the

textbook [11] which emphasizes the eL ⌧ 1 limit)—is in the assumption that q > 1 and

in the corresponding global issues and discrete anomalies that arise.3 Understanding the

symmetry structure and anomalies of (2.1) is of interest from multiple points of view:

1. On its own, the charge-q vectorlike Schwinger model (2.1) is an interesting example that

provides an exactly solvable setting to study the manifestation of the recently discovered

mixed discrete 0-form/1-form ’t Hooft anomalies [4, 5].

1The spirit of the correspondences outlined resembles those found in the high-T DWs of pure Yang-Mills

theory at ✓ = ⇡ [5] but the dynamics here appears richer.
2We note that we could also follow [6] and take the fermions periodic, with no change in the results regarding

symmetry realizations and anomalies; also, the utility of Weyl fermion notation will become clear further below.
3We caution the reader against concluding that the value of q is irrelevant: we are considering a compact

U(1) theory with (light) dynamical charges with quantized charge q > 1. The theory can be probed with

nondynamical q = 1 charges. One can think of the latter as of very (infinitely) massive dynamical charges.
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U(1)  :  

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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1 The DW zero modes and the axial Schwinger model

Euclidean SU(2) adjoint fermion action taken from earlier deconfinement papers:

S = 2 tr
�
�̄(@0�+ i[a0,�])� i�̄�

j
(@j�+ i[aj ,�])

�
. (1.1)

A unit 2x2 matrix is not shown in the Euclidean time direction; j = 1, 2, 3 labels space

components and 0 labels the Euclidean time. The fermions are two-component, and � and �̄

are independent variables in Euclidean space; � = �
a ⌧a

2 where ⌧
a
are SU(2) generators, the

Pauli matrices. Similarly, a0,...3 = a
a
0,...3

⌧a

2 .

The fundamental Polyakov loop (keeping the constant mode only) is

P = e
i�a30

⌧
3

2 = diag(e
i
�a

3
0

2 , e
�i

�a
3
0

2 ) (1.2)

The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
@j�+ �

j
[aj ,�] = 0 (1.3)

�@0�̄� i[a0, �̄] + i@j �̄�
j � [aj , �̄]�

j
= 0.
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symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):
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2d U(1) Q_top!

(for 4d SU(N)… need 2 orthogonal planes…)

a Z  phase, one per 
spacetime direction 
(global symmetry)

easy to see on lattice: plaquette term in action invariant, 
fermion hopping as well, since integer charge q>1 

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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“1-form” symmetry only acts on line operators (hence name):

gauged
topological charge:

V

A ferm. ferm.

q

[similar to 4d SYM, anomaly free discrete chiral only]



new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model
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& have a mixed anomaly!

also easy(er!) to see on the lattice! Let us gauge the 1-form center symmetry:

but gauging Z_N center means                                           Q_top=k/N: 

Z_{2 N n_f}:

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)
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1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

explained! (for 2d U(1)

remember 
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1 The DW zero modes and the axial Schwinger model

Euclidean SU(2) adjoint fermion action taken from earlier deconfinement papers:

S = 2 tr
�
�̄(@0�+ i[a0,�])� i�̄�

j
(@j�+ i[aj ,�])

�
. (1.1)

A unit 2x2 matrix is not shown in the Euclidean time direction; j = 1, 2, 3 labels space

components and 0 labels the Euclidean time. The fermions are two-component, and � and �̄

are independent variables in Euclidean space; � = �
a ⌧a

2 where ⌧
a
are SU(2) generators, the

Pauli matrices. Similarly, a0,...3 = a
a
0,...3

⌧a

2 .

The fundamental Polyakov loop (keeping the constant mode only) is

P = e
i�a30

⌧
3

2 = diag(e
i
�a

3
0

2 , e
�i

�a
3
0

2 ) (1.2)

The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
@j�+ �

j
[aj ,�] = 0 (1.3)

�@0�̄� i[a0, �̄] + i@j �̄�
j � [aj , �̄]�

j
= 0.
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2d U(1) Q_top!

(for 4d SU(N)… need 2 orthogonal planes…)

for symmetries acting on links (1-form center 
symmetry), introduce plaquette-based (“2-form”) Z 
gauge field to make Z   center symmetry local 

to see the anomaly a background 2-form field suffices; 
in 2d, there is no field strength of the 2-form (no cubes!); 
introduce a Z  background phase on a single plaquette = 
“Z   center vortex” [i.e. any 2-form Z  background topological…
can move around shaded square by changing link variables]

but gauging Z_N center means                                           Q_top=k/N: 

Z_{2 N n_f}:

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].
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upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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1 The DW zero modes and the axial Schwinger model

Euclidean SU(2) adjoint fermion action taken from earlier deconfinement papers:

S = 2 tr
�
�̄(@0�+ i[a0,�])� i�̄�

j
(@j�+ i[aj ,�])

�
. (1.1)

A unit 2x2 matrix is not shown in the Euclidean time direction; j = 1, 2, 3 labels space

components and 0 labels the Euclidean time. The fermions are two-component, and � and �̄

are independent variables in Euclidean space; � = �
a ⌧a

2 where ⌧
a
are SU(2) generators, the

Pauli matrices. Similarly, a0,...3 = a
a
0,...3

⌧a

2 .

The fundamental Polyakov loop (keeping the constant mode only) is

P = e
i�a30

⌧
3

2 = diag(e
i
�a

3
0

2 , e
�i

�a
3
0

2 ) (1.2)

The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
@j�+ �

j
[aj ,�] = 0 (1.3)

�@0�̄� i[a0, �̄] + i@j �̄�
j � [aj , �̄]�

j
= 0.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

“0-form” 

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Both the chiral 0-form and center 1-form discrete symmetries, (2.2) and (2.3), are exact

symmetries of the quantum theory. However, they su↵er a ’t Hooft anomaly: gauging one of

the symmetries explicitly breaks the other so that they can not be simultaneously gauged.

Gauging the 1-form ZC
q center symmetry is most straightforward on the lattice: one introduces

a 2-form (plaquette-based) ZC
q gauge field to make the 1-form symmetry (acting on links)

local.5 In continuum language, introducing a 2-form ZC
q gauge field background is equivalent,

see discussion in [14], to turning on nontrivial ’t Hooft fluxes, known to carry fractional

topological charge T = k
q (k 2 Z) (see [16, 17], dimensionally reduced).

Now, as argued in the paragraph after eq. (2.2), under a discrete chiral Zd�
2q transforma-

tion, the fermion measure changes by a phase factor ei2⇡T . This factor is unity for integer T ,

but equals !q = e
i 2⇡q when a fractional topological charge (a nontrivial 2-form center gauge

background with k = 1) is introduced. The phase in the chiral transformation of the partition

function in the ’t Hooft flux background is the manifestation of the mixed Zd�
2q -ZC

q ’t Hooft

anomaly. This phase is renormalization group invariant—it is independent of the volume

of the spacetime torus and can also be viewed as the variation of a bulk 3d term [5, 12].

Ref. [4, 5] argued that this anomaly has to be matched by the infrared (IR) dynamics of the

theory and outlined various options for the way the matching can happen.

We show below that the Zd�
2q -ZC

q mixed ’t Hooft anomaly in the q � 2 Schwinger model

is reproduced by the IR theory in the “Goldstone” mode such that both the discrete chiral

and center symmetries are spontaneously broken. We also explicitly show that the mixed

anomaly in the q � 2 Schwinger model appears as a “central extension” of the algebra of the

operators generating the discrete chiral Zd�
2q and center ZC

q transformations, see Eq. (2.17) in

the next Section.6

2.2 The realization of the symmetries and their algebra

In this Section, we study the realization of the discrete symmetries and their ’t Hooft anomaly

in the charge-q Schwinger model (2.1), by borrowing the results of [6, 7]. As our focus is on the

symmetry realization, we shall be mostly concerned with the properties of the ground state.

Briefly, the strategy behind the first steps of the Hamiltonian solution of (2.1) in At = 0 gauge

is to explicitly solve the Weyl equation in the Ax background (this is possible in one space

dimension) and use its eigenfunctions and eigenvalues to construct Dirac sea states. To find

the physical ground state, one then imposes Gauss’ law, i.e., invariance under infinitesimal

gauge transformations. Finally, one demands that the vacuum states be eigenstates of the

large gauge transformations G : Ax ! e
ig(x)(Ax + i@x)e�ig(x), where e

ig(x)
⌘ e

i 2⇡x
L is the unit

winding number large gauge transformation.

5In two spacetime dimensions, there is no 3-form field strength associated to the 2-form ZC
q gauge field,

thus any background is necessarily topological, see e.g. [15].
6This is similar to the appearance of the CP/center anomaly in the quantum mechanical and field theory

models of [5, 12, 18]. Enhancement of the discrete symmetry group in Yang-Mills theory at ✓ = ⇡ due to

discrete ’t Hooft anomaly considerations was also discussed in [19].
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2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies
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continuum limit [13]), at least for real values of the fermion mass (of course, here the
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chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must
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that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient
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this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

“0-form” 

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the
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not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

2. Two-dimensional models closely related to (2.1) also appear within the framework of

four-dimensional gauge theories. We show in Section 3 that the axial version of the

Schwinger model (2.1) with q = 2 arises as a worldvolume theory on domain walls (DWs)

between center-symmetry breaking states in high-temperature SU(2) super-Yang-Mills

theory, i.e. Yang-Mills theory with nf = 1 adjoint Weyl fermions.

Similarly, related multi-flavor axial generalizations of (2.1) appear as worldvolume the-

ories on hot DWs in SU(2) gauge theories with nf > 1 adjoint Weyl fermions.

3. It turns out that, in all cases mentioned above, the 0-form/1-form ’t Hooft anomalies

lead to a rich structure of the DWs that is in principle amenable to lattice studies. As

opposed to the study of ✓ = ⇡ pure Yang-Mills theories, where related anomalies arise

[5, 8, 12], the sign problem does not hinder the lattice studies of these theories (in the

continuum limit [13]), at least for real values of the fermion mass (of course, here the

chiral limit will have to be approached). A proposal for such studies will be discussed

in Section 4.

2.1 Symmetries and mixed ’t Hooft anomaly

Thus armed with reasons to study the symmetries and dynamics of (2.1), we proceed to the

salient points. We begin with a discussion of the symmetries of the model (2.1). In addition

to the gauged vectorlike symmetry U(1)V , under which  ± ! e
iq↵
 ±, the model has an

anomalous global axial U(1)A symmetry:

U(1)A :  ± ! e
±i�

 ±, with anomaly free subgroup Zd�
2q :  ± ! e

±i⇡q  ± . (2.2)

Under a U(1)A transformation, the fermion measure changes by a factor of ei2q�T , where

T = 1
2⇡

R
f12d

2
x 2 Z is the integer topological charge of the gauge field; recall that we allow

probes with q = 1 and note that we temporarily adopted Euclidean notation. Thus, for

q � 2, a discrete Zd�
2q subgroup of the U(1)A axial transformations, the anomaly free discrete

chiral symmetry, survives. Under the discrete chiral symmetry  ± transform with � = 2⇡
2q ,

as also indicated on the r.h.s. of (2.2). Notice that for q = 1 there is only a fermion number

symmetry and no nontrivial chiral symmetry. The Zd�
2q symmetry (2.2) is a 0-form symmetry

as it acts on the local degrees of freedom.

A further global symmetry of the q � 2 theory is the 1-form ZC
q center symmetry. It does

not act on any local degrees of freedom, but only on line operators, as its name suggests.4 The

ZC
q 1-form center symmetry action on the Wilson loop around the spatial circle, W ⌘ e

i
H
Axdx,

is to multiply it by a Zq phase factor

ZC
q : e

i
H
Axdx ! !q e

i
H
Axdx, !q ⌘ e

i 2⇡
q . (2.3)

4This is easiest to understand on the lattice, where the global ZC
q center symmetry acts by multiplying the

unitary links representing the gauge field component in the µ̂-direction by a µ̂-dependent Zq phase factor, very

much as in (2.3). Thus, the symmetry parameter itself is a Zq valued link, or a 1-form; see [4, 14, 15] for a

variety of perspectives.
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The 0-form/1-form mixed anomaly was computed in 4d SYM by Gaiotto et al by turning 
on discrete gauge backgrounds as I showed above.  A ’t Hooft anomaly, however, 
should be a property of the theory without any backgrounds;  it does not require 
turning on fields. Continuous symmetry ’t Hooft anomalies are seen in <j j j >  three-
point global symmetry current correlators, as 1/q  poles 
[Frishman et al, Coleman et al, 1980s]. 

Expect the “same” should be true here. The anomalies should involve properties of 
the quantum operators representing the discrete symmetries. General statements are 
so far not known (to me) but examples exist: QM & 3d CS theory [Gaiotto et al] and  
2d QFT [our work] 

2
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large gauge trf. 

4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian H
F in the Ax

background and their energies are

E
F
n =

2⇡

L


Q

2
5

4
�

1

12

�
=

2⇡

L

"
1

4

✓
2n�

qcL

⇡

◆2

�
1

12

#
. (2.10)

(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

0

DW) between chiral-breaking vacua in the confined low-T phase (i.e. area law in the

bulk) as observed in [9], see also [10].

We find these correspondences between high-T DW physics and low-T bulk and DW physics

quite fascinating. The matching of various anomalies and the rich DW physics uncovered

make these properties worth pointing out and pursuing further.1

This paper is organized as follows. In Section 2, we study the charge-q Schwinger model,

its discrete symmetries, its ’t Hooft anomalies, and the anomaly saturation. In Section 3,

we review the DW solution in the high temperature SU(2) SYM theory and show that the

worldvolume of the DW is a charge-2 axial Schwinger model. We also discuss the anomaly

inflow and the manifestation of the anomaly on the DW. We conclude, in Section 4, by a

discussion of the generalizations to QCD(adj) with a larger number of adjoint fermions and

a proposal to study the high-T domain walls on the lattice.

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model

Consider the charge-q vector massless Schwinger model with Lagrangian

L = �
1

4e2
fklf

kl + i ̄+(@� + iqA�) + + i ̄�(@+ + iqA+) � , (2.1)

where k, l = 0, 1 are spacetime indices, @± ⌘ @t ± @x, A± ⌘ At ± Ax, t and x are the two-

dimensional Minkowski space coordinates, q � 2 is an integer and e is the gauge coupling.

The spacetime metric is gkl = diag(+,�), and we further assume that space is compactified

on a circle of circumference L, with x ⌘ x+L. The fields  + ( �) are the left (right) moving

components of the Dirac fermion and  ̄± are the hermitean conjugate fields. Our notation

follows from that of [7] and, as in that reference, we impose antiperiodic boundary conditions

on  ± around the spatial circle.2

The major di↵erence of our discussion from that in [6, 7]—where the model (2.1) with

q = 1 was solved exactly in Hamiltonian language for arbitrary values of L (see also the

textbook [11] which emphasizes the eL ⌧ 1 limit)—is in the assumption that q > 1 and

in the corresponding global issues and discrete anomalies that arise.3 Understanding the

symmetry structure and anomalies of (2.1) is of interest from multiple points of view:

1. On its own, the charge-q vectorlike Schwinger model (2.1) is an interesting example that

provides an exactly solvable setting to study the manifestation of the recently discovered

mixed discrete 0-form/1-form ’t Hooft anomalies [4, 5].

1The spirit of the correspondences outlined resembles those found in the high-T DWs of pure Yang-Mills

theory at ✓ = ⇡ [5] but the dynamics here appears richer.
2We note that we could also follow [6] and take the fermions periodic, with no change in the results regarding

symmetry realizations and anomalies; also, the utility of Weyl fermion notation will become clear further below.
3We caution the reader against concluding that the value of q is irrelevant: we are considering a compact

U(1) theory with (light) dynamical charges with quantized charge q > 1. The theory can be probed with

nondynamical q = 1 charges. One can think of the latter as of very (infinitely) massive dynamical charges.
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- only dynamical variable from gauge sector

(in 1spatial dim, unlike in 4d, can solve Dirac equation for any 
gauge background and explicitly build “Dirac sea” states 
obeying Gauss law; their chiral charge depends on “a”: 
anomalous)
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To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�

qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)
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4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian H
F in the Ax

background and their energies are

E
F
n =
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L


Q

2
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1
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓
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8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

0

- only dynamical variable from gauge sector

(like 4d, where we can add “CS” current tr(AdA+…) to make a 
conserved but not gauge invariant chiral charge!)

DW) between chiral-breaking vacua in the confined low-T phase (i.e. area law in the

bulk) as observed in [9], see also [10].

We find these correspondences between high-T DW physics and low-T bulk and DW physics

quite fascinating. The matching of various anomalies and the rich DW physics uncovered

make these properties worth pointing out and pursuing further.1

This paper is organized as follows. In Section 2, we study the charge-q Schwinger model,

its discrete symmetries, its ’t Hooft anomalies, and the anomaly saturation. In Section 3,

we review the DW solution in the high temperature SU(2) SYM theory and show that the

worldvolume of the DW is a charge-2 axial Schwinger model. We also discuss the anomaly

inflow and the manifestation of the anomaly on the DW. We conclude, in Section 4, by a

discussion of the generalizations to QCD(adj) with a larger number of adjoint fermions and

a proposal to study the high-T domain walls on the lattice.

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model

Consider the charge-q vector massless Schwinger model with Lagrangian

L = �
1

4e2
fklf

kl + i ̄+(@� + iqA�) + + i ̄�(@+ + iqA+) � , (2.1)

where k, l = 0, 1 are spacetime indices, @± ⌘ @t ± @x, A± ⌘ At ± Ax, t and x are the two-

dimensional Minkowski space coordinates, q � 2 is an integer and e is the gauge coupling.

The spacetime metric is gkl = diag(+,�), and we further assume that space is compactified

on a circle of circumference L, with x ⌘ x+L. The fields  + ( �) are the left (right) moving

components of the Dirac fermion and  ̄± are the hermitean conjugate fields. Our notation

follows from that of [7] and, as in that reference, we impose antiperiodic boundary conditions

on  ± around the spatial circle.2

The major di↵erence of our discussion from that in [6, 7]—where the model (2.1) with

q = 1 was solved exactly in Hamiltonian language for arbitrary values of L (see also the

textbook [11] which emphasizes the eL ⌧ 1 limit)—is in the assumption that q > 1 and

in the corresponding global issues and discrete anomalies that arise.3 Understanding the

symmetry structure and anomalies of (2.1) is of interest from multiple points of view:

1. On its own, the charge-q vectorlike Schwinger model (2.1) is an interesting example that

provides an exactly solvable setting to study the manifestation of the recently discovered

mixed discrete 0-form/1-form ’t Hooft anomalies [4, 5].

1The spirit of the correspondences outlined resembles those found in the high-T DWs of pure Yang-Mills

theory at ✓ = ⇡ [5] but the dynamics here appears richer.
2We note that we could also follow [6] and take the fermions periodic, with no change in the results regarding

symmetry realizations and anomalies; also, the utility of Weyl fermion notation will become clear further below.
3We caution the reader against concluding that the value of q is irrelevant: we are considering a compact

U(1) theory with (light) dynamical charges with quantized charge q > 1. The theory can be probed with

nondynamical q = 1 charges. One can think of the latter as of very (infinitely) massive dynamical charges.
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To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�

qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform
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8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

0

- only dynamical variable from gauge sector

DW) between chiral-breaking vacua in the confined low-T phase (i.e. area law in the

bulk) as observed in [9], see also [10].

We find these correspondences between high-T DW physics and low-T bulk and DW physics

quite fascinating. The matching of various anomalies and the rich DW physics uncovered

make these properties worth pointing out and pursuing further.1

This paper is organized as follows. In Section 2, we study the charge-q Schwinger model,

its discrete symmetries, its ’t Hooft anomalies, and the anomaly saturation. In Section 3,

we review the DW solution in the high temperature SU(2) SYM theory and show that the

worldvolume of the DW is a charge-2 axial Schwinger model. We also discuss the anomaly

inflow and the manifestation of the anomaly on the DW. We conclude, in Section 4, by a

discussion of the generalizations to QCD(adj) with a larger number of adjoint fermions and

a proposal to study the high-T domain walls on the lattice.

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model

Consider the charge-q vector massless Schwinger model with Lagrangian

L = �
1

4e2
fklf

kl + i ̄+(@� + iqA�) + + i ̄�(@+ + iqA+) � , (2.1)

where k, l = 0, 1 are spacetime indices, @± ⌘ @t ± @x, A± ⌘ At ± Ax, t and x are the two-

dimensional Minkowski space coordinates, q � 2 is an integer and e is the gauge coupling.

The spacetime metric is gkl = diag(+,�), and we further assume that space is compactified

on a circle of circumference L, with x ⌘ x+L. The fields  + ( �) are the left (right) moving

components of the Dirac fermion and  ̄± are the hermitean conjugate fields. Our notation

follows from that of [7] and, as in that reference, we impose antiperiodic boundary conditions

on  ± around the spatial circle.2

The major di↵erence of our discussion from that in [6, 7]—where the model (2.1) with

q = 1 was solved exactly in Hamiltonian language for arbitrary values of L (see also the

textbook [11] which emphasizes the eL ⌧ 1 limit)—is in the assumption that q > 1 and

in the corresponding global issues and discrete anomalies that arise.3 Understanding the

symmetry structure and anomalies of (2.1) is of interest from multiple points of view:

1. On its own, the charge-q vectorlike Schwinger model (2.1) is an interesting example that

provides an exactly solvable setting to study the manifestation of the recently discovered

mixed discrete 0-form/1-form ’t Hooft anomalies [4, 5].

1The spirit of the correspondences outlined resembles those found in the high-T DWs of pure Yang-Mills

theory at ✓ = ⇡ [5] but the dynamics here appears richer.
2We note that we could also follow [6] and take the fermions periodic, with no change in the results regarding

symmetry realizations and anomalies; also, the utility of Weyl fermion notation will become clear further below.
3We caution the reader against concluding that the value of q is irrelevant: we are considering a compact

U(1) theory with (light) dynamical charges with quantized charge q > 1. The theory can be probed with

nondynamical q = 1 charges. One can think of the latter as of very (infinitely) massive dynamical charges.

– 3 –



To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�

qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)
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To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�

qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)
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What generates 1-form center?

4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian H
F in the Ax

background and their energies are

E
F
n =

2⇡

L


Q

2
5

4
�

1

12

�
=

2⇡

L

"
1

4

✓
2n�

qcL

⇡

◆2

�
1

12

#
. (2.10)

(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson
lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the
compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
The case of supersymmetry will be looked into in more detail being the one previous researchers
have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar
charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which
are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
of the compact manifold.
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To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�
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◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)
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4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian H
F in the Ax

background and their energies are
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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1.)



To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC
q : cL ! cL+

2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta


2⇡(n�1)

L are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta �
2⇡n
L are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �mn.

2. Their U(1)V charge vanishes, but the chiral (or axial U(1)A, recall (2.2)) charge Q5, is

nonzero and depends on the holonomy of the gauge field

Q5|ni = |ni

✓
2n�

qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q5 is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃5 with integer eigenvalues

Q̃5 ⌘ Q5 +
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃5 ! Q̃5 + 2q . (2.7)

3. It is clear, however, that the operator

X2q ⌘ e
i 2⇡2q Q̃5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
2q anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X2q|ni = |ni !
n
q (!q ⌘ e

i 2⇡q ). (2.9)

– 6 –

G invariant, generates chiral 

Novel ’Exotic’ Coulomb Gases from toroidially compactified
Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain
other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on
a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by
large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in
4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their
minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson
lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the
compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
The case of supersymmetry will be looked into in more detail being the one previous researchers
have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar
charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which
are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)

Z(0)
2q

(ZC

q
)q

Z(0)C
N

↵1

↵2

!0

!1

!2

⇤NL ⌧ 1

1

To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
Axdx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a

2⇡
q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):
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1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language
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Novel ’Exotic’ Coulomb Gases from toroidially compactified
Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain
other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on
a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by
large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in
4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their
minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson
lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the
compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
The case of supersymmetry will be looked into in more detail being the one previous researchers
have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar
charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which
are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant

but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC
q , a
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q shift of cL (2.4), acts on the |ni states as

Yq|ni = |n+ 1i , (2.12)

where we introduced the Yq operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡
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For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
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8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘

X

n2Z
e
i(k+qn)✓

|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e
�iq✓. We note

also that h✓0, k0|✓, ki = �k,k0(mod q) �(✓ � ✓
0(mod2⇡

q )), with �(✓ � ✓
0(mod2⇡

q )) =
P
m2Z

e
iqm(✓�✓0).

For further use (cluster decomposition, see below), we also define the Zq Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘
1
p
q

q�1X

k=0

!
kP
q |✓, ki, P = 0, . . . , q � 1,

hP
0
, ✓

0
|P, ✓i = �P,P 0(mod q) �(✓ � ✓

0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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qand their Z   Fourier

new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

“theta vacua”
instead of one!



Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,9 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [25] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C
0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C
0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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Gauge theories and Duality
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain
other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on
a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by
large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in
4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their
minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson
lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the
compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
The case of supersymmetry will be looked into in more detail being the one previous researchers
have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar
charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which
are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)

hP 0, ✓| ̄+(x) �(x)|P, ✓i = e�i✓!�P

q
�P,P 0C

(Yq)
q = G

Z(0)
2q

(ZC

q
)q

Z(0)C
N

↵1

↵2

!0

!1

1

“central extension”of symmetry algebra, a manifestation of
mixed discrete ’t Hooft anomaly

symmetries action on clustering vacua

new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

(we explicitly constructed the q ground states; centrally 
extended algebra has no 1dim reps, it alone implies vacuum 
degeneracy)

- discrete chiral broken

- discrete E-field in each vacuum



“central extension”
manifestation of
mixed discrete
 ’t Hooft anomaly
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The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:
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0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C
0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis
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, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

phase in the chiral transform (in the center vortex bckgd) IS mixed ‘t Hooft anomaly
 phase independent on volume, RG invariant, same on all scales: UV & IR

 like for continuous symmetry ‘t Hooft anomalies must be matched by IR theory: 
- IR CFT, or 
- one or both symmetries should be broken (“Goldstone” mode), and/or
- IR TQFT

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):

Contents
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2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14
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D� ! e
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N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}
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but gauging Z_N center means                                           Q_top=k/N: 
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

now recall earlier discussion involving backgrounds and 
phases in the transforms of partition function:

How does the discrete chiral breaking we found saturate 
anomaly?



“central extension”
manifestation of
mixed discrete
 ’t Hooft anomaly

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
2⇡

N

Z

M3 (@M3=M2)

2NA
(1)

2⇡
^
NB

(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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correlation function (on R2) hei'(x)ei
H
C a

(1)
i = e

i
2⇡
N lx,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a
(1)

have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '
(0) compact scalar

(
H
d'

(0)
2 2⇡Z) shifts under the 0-form global ZN as '

0
! '

(0) + 2⇡
N
; the action remains

invariant due to a
(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a
(1) gauge field shifts under 1-form global Z(1)

N

as a
(1)

! a
(1) + 1

N
✏
(1), where ✏

(1) is a closed form with
H
✏
(1)

2 2⇡Z. The gauge invariant

observables ei' and e
i
H
a
(1)

transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! e
i
2⇡
N e

i', ei
H
a
(1)

! e
i
1
N

H
✏
(1)
e
i
H
a
(1)

= e
i
2⇡Z
N e

i
H
a
(1)
.

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)0 = 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘
H

S1
a
(1) and '(t):

SRt⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i
2⇡
N
, a vanishing Hamiltonian, and

the centrally extended algebra24 e
i'̂
e
iâ = e

i
2⇡
N e

iâ
e
i'̂; as already noted, e

iN '̂ and e
iNâ are

trivial operators. The Hilbert space, treating '̂ as coordinate, is that of N states |P i such

that ei'̂|P i = |P ie
i
2⇡P
N and e

iâ
|P i = |P + 1(modN)i.

The |P i states are the N finite volume ground states due to the breaking Z
d�

2N ! Z2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
Rt a

(1)

, which are now defects localized in x, in

the path integral. The correlation function he
i'(x)

e
i
H
C a

(1)
i = e

i
2⇡
N lx,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a
(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '
(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.

– 17 –

(relabel q->N)  consider following TQFT:

Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,9 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [25] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C
0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model
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Claim: it does and can be seen explicitly as follows 

- this is the “chiral lagrangian” of the charge q=N SM

- IR theory is empty, “chiral lagrangian”=theory with N dim Hilbert space = TQFT

- spirit similar to IR TQFT in 4d SYM with SU(N) - (canonically quantize…)
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“central extension”
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 ’t Hooft anomaly

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
2⇡

N

Z

M3 (@M3=M2)

2NA
(1)

2⇡
^
NB

(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:
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L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C
0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C
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⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis
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!
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9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.

– 8 –

new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
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canonically quantize a0=0 gauge, Wilson line and constant mode of scalar are 
QM variables,                , QM with vanishing Hamiltonian,
 has N-dim Hilbert space representing operator algebra

chiral center 

The solution of the S.M. represents an explicit derivation of IR TQFT from UV.
Can see matching of anomaly explicitly by introducing 2-form background for center.

correlation function (on R2) hei'(x)ei
H
C a

(1)
i = e

i
2⇡
N lx,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a
(1)

have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '
(0) compact scalar

(
H
d'

(0)
2 2⇡Z) shifts under the 0-form global ZN as '

0
! '

(0) + 2⇡
N
; the action remains

invariant due to a
(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a
(1) gauge field shifts under 1-form global Z(1)

N

as a
(1)

! a
(1) + 1

N
✏
(1), where ✏

(1) is a closed form with
H
✏
(1)

2 2⇡Z. The gauge invariant

observables ei' and e
i
H
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(1)

transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! e
i
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N e

i', ei
H
a
(1)

! e
i
1
N

H
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H
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N e
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H
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(1)
.

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)0 = 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘
H

S1
a
(1) and '(t):

SRt⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i
2⇡
N
, a vanishing Hamiltonian, and

the centrally extended algebra24 e
i'̂
e
iâ = e
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i'̂; as already noted, e
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iNâ are

trivial operators. The Hilbert space, treating '̂ as coordinate, is that of N states |P i such

that ei'̂|P i = |P ie
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N and e

iâ
|P i = |P + 1(modN)i.

The |P i states are the N finite volume ground states due to the breaking Z
d�

2N ! Z2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
Rt a

(1)

, which are now defects localized in x, in

the path integral. The correlation function he
i'(x)

e
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H
C a

(1)
i = e
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2⇡
N lx,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a
(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '
(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.
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fermion bilinear  ̄+ � in this theory is given by
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where µ is a normalization scale and h and e
�i
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N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
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and
⌦
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in the limit |x � y| ! 1. This, in turn, implies that
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constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
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under �Z2NA
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2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N
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Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In
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iâ
|P i = |P + 1(modN)i.

The |P i states are the N finite volume ground states due to the breaking Z
d�

2N ! Z2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
Rt a

(1)

, which are now defects localized in x, in

the path integral. The correlation function he
i'(x)

e
i
H
C a

(1)
i = e

i
2⇡
N lx,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a
(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '
(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.

– 17 –

correlation function (on R2) hei'(x)ei
H
C a

(1)
i = e

i
2⇡
N lx,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a
(1)

have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '
(0) compact scalar

(
H
d'

(0)
2 2⇡Z) shifts under the 0-form global ZN as '

0
! '

(0) + 2⇡
N
; the action remains

invariant due to a
(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a
(1) gauge field shifts under 1-form global Z(1)

N

as a
(1)

! a
(1) + 1

N
✏
(1), where ✏

(1) is a closed form with
H
✏
(1)

2 2⇡Z. The gauge invariant

observables ei' and e
i
H
a
(1)

transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! e
i
2⇡
N e

i', ei
H
a
(1)

! e
i
1
N

H
✏
(1)
e
i
H
a
(1)

= e
i
2⇡Z
N e

i
H
a
(1)
.

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)0 = 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘
H

S1
a
(1) and '(t):

SRt⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i
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“central extension”
manifestation of
mixed discrete
 ’t Hooft anomaly

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
2⇡

N

Z

M3 (@M3=M2)

2NA
(1)

2⇡
^
NB

(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].

– 16 –

Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e
�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�
2q the |P i states

transform cyclically into each other

X2q |P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC
q center symmetry

Yq |P, ✓i = |P, ✓i !
�P
q e

�i✓
. (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X2q and Yq found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,9 they

do not commute but obey the algebra

X2q Yq = !q Yq X2q (!q = e
i 2⇡q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [25] (the q-dimensional representation on the |P, ✓i

states, (2.15), (2.16), was also found there). Here, however, one of the operators Yq, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X2q, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X2q

and Yq commute classically, the discrete chiral and center symmetries Zd�
2q and ZC

q do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki

ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄+(x) �(x). The fermion bilinear has charge �2 under the Zd�
2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn
0
|�(x)|ni = �n0,n+1 C

0
e
�i 2⇡x

L , where �(x) ⌘  ̄+(x) �(x). (2.18)

The constant C
0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C
0
⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP
0
, ✓|�(x)|P, ✓i = e

�i✓
!
�P
q �P,P 0C

0
, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !q in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !q commutes with X2q and Yq.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

algebras same
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W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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background of p units of ’t Hooft flux,
H
M2

NB
(2)

2⇡ = p, we have

�Zd�
N
S2�D = i

2⇡

N

Z

M2

N(da(1) �B
(2))

2⇡
= �i

2⇡p

N
, (4.7)

as required by the anomaly (2.30).

Assuming that the Zd�

2N ! Z2 breaking pattern (4.2) holds for all k-walls, the TQFT

describing the IR k-wall physics should also be given by (4.4), as the k > 1 theory has the

same number of vacua. As noted in the paragraph after (2.30), turning on a unit ’t Hooft

flux in the bulk theory corresponds to k units of fractional U(1) flux on the k-wall, i.e.H
M2

NB
(2)

2⇡ = k, so the anomaly (2.30) is also matched.

5 k-walls in QCD(adj)

Finally, we comment on the k-walls in SU(N) QCD(adj), which is a Yang-Mills theory en-

dowed with nf adjoint Weyl fermions. As in SYM, the UV Lagrangian of this theory is

invariant under a global U(1)R axial symmetry. This symmetry, however, is anomalous and

breaks down to the anomaly-free Zd�

2Nnf
discrete chiral symmetry.26 In addition, the theory is

invariant under a global SU(nf ) symmetry, such that the adjoint fermions transform in the

fundamental representation of SU(nf ).27

Everything we said about the wall action in SYM transcends naturally to QCD(adj); the

only di↵erence is an additional factor of nf multiplying (�1)n in (2.11), which amounts to

scaling the wall tension by a trivial numerical coe�cient. The worldvolume of the k-wall is

also a 2-D QCD with gauge group U(1)⇥SU(N�k)⇥SU(k) and fermions charged under U(1)

and transforming in the bi-fundamental representation of SU(N � k) ⇥ SU(k). In addition,

as in the UV theory, the fermions transform in the fundamental representation of the global

SU(nf ).28 Under an axial U(1)R transformation  ± ! e
i�
 ± the measure transforms as in

(2.17), with J now replaced by

J ⌘ exp

"
i 2nf�(N � k)k �(N�k)

I
F

N�k

12 dx
1
dx

2

2⇡

#
, (5.1)

i.e., there is an extra factor of nf in the Jacobian. Repeating the same steps from (2.17) to

(2.19), one can easily see that there is an anomaly-free Zd�

2nfN
discrete chiral symmetry on

the DW. Similarly, it is straightforward to see that there is a mixed discrete ’t Hooft anomaly

upon turning on a p-twist of SU(N): J = e
�i

2⇡
N kp.

26The breaking of U(1)R to Zd�
2Nnf

can be easily seen from the action of U(1)R in the background of a

Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton.
27The zero-temperature theory is thought to be conformal for a range of nf (1<n

⇤
fnf<6) but the precise

value of n⇤
f is not known; see [61, 62] and [34, 35, 37] for recent lattice results and theoretical discussions,

respectively.
28As in the N = 2 case [15], for nf > 1 four-fermion terms on the k-wall worldvolume reduce the SU(nf )+⇥

SU(nf )� chiral symmetry of the kinetic terms of the worldvolume theory to the diagonal SU(nf ) of the bulk.
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[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
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⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.
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associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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correlation function (on R2) hei'(x)ei
H
C a

(1)
i = e

i
2⇡
N lx,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a
(1)

have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '
(0) compact scalar

(
H
d'

(0)
2 2⇡Z) shifts under the 0-form global ZN as '

0
! '

(0) + 2⇡
N
; the action remains

invariant due to a
(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a
(1) gauge field shifts under 1-form global Z(1)

N

as a
(1)

! a
(1) + 1

N
✏
(1), where ✏

(1) is a closed form with
H
✏
(1)

2 2⇡Z. The gauge invariant

observables ei' and e
i
H
a
(1)

transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! e
i
2⇡
N e

i', ei
H
a
(1)

! e
i
1
N

H
✏
(1)
e
i
H
a
(1)

= e
i
2⇡Z
N e

i
H
a
(1)
.

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)0 = 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘
H

S1
a
(1) and '(t):

SRt⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i
2⇡
N
, a vanishing Hamiltonian, and

the centrally extended algebra24 e
i'̂
e
iâ = e

i
2⇡
N e

iâ
e
i'̂; as already noted, e

iN '̂ and e
iNâ are

trivial operators. The Hilbert space, treating '̂ as coordinate, is that of N states |P i such

that ei'̂|P i = |P ie
i
2⇡P
N and e

iâ
|P i = |P + 1(modN)i.

The |P i states are the N finite volume ground states due to the breaking Z
d�

2N ! Z2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
Rt a

(1)

, which are now defects localized in x, in

the path integral. The correlation function he
i'(x)

e
i
H
C a

(1)
i = e

i
2⇡
N lx,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a
(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '
(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

SUMMARY SO FAR lattice-y, Hamiltonian, Euclidean path integral/bosonization (skipped) in 

charge-q 2d massless Schwinger model
discrete chiral Z_q
discrete 1-form center Z_q
mixed ’t Hooft anomaly RG invariant
matched in IR by a TQFT describing q
vacua of broken discrete chiral

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
2⇡

N

Z

M3 (@M3=M2)

2NA
(1)

2⇡
^
NB

(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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no dynamical DWs (Gaussian, vacua don’t “talk”)
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W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

SUMMARY SO FAR lattice-y, Hamiltonian, Euclidean path integral/bosonization (skipped) in 

charge-q 2d massless Schwinger model
discrete chiral Z_q
discrete 1-form center Z_q
mixed ’t Hooft anomaly RG invariant
matched in IR by a TQFT describing q
vacua of broken discrete chiral

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
2⇡

N

Z

M3 (@M3=M2)

2NA
(1)
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^
NB

(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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Figure1.TwoDWvacua(4.2)separatedbyafundamentalquarkworldline(Euclidean).Asexplained
inSection3,WcanbeviewedastheendofaconfiningstringworldsheetextendingintotheR3bulk.
Thepictureholdsinthehigh-TDWonR3⇥S1

�,associatedwithcentersymmetrybreaking.Italso
appliesinthezero-TR3⇥S1L,inthesemiclassicallycalculable⇤NL⌧1regime,wheretheDWis
associatedwithchiralsymmetrybreaking.Inboththesmall-�andsmall-Lcase,theDWworldvolume
is2-D.Inthesmall-Lcase,theNP-vacuaarerepresentedbydistinctsemiclassicalDWsolutions(N
suchsolutionsareknowntoexistfork=1),eachcarryingone-halfthefundamentalquarkflux,see
[17,57–59]fordetails.Theresemblancebetweenthesmall-�andsmall-Lcasesisbecausetherelevant
’tHooftanomaliesontheDWaresaturatedinasimilarmode.NotethatonR3⇥S1L,confinementin
theR3bulkisabelian[60],incontrasttothesmall-�case.

holdonDWbetweenchirallybrokenvacuaofsuper-YMinthecalculableregimeonR3⇥S1.
WhileaTQFTdescriptionwasnotgivenin[17],herewenotethat(4.4)canalsobeused

there,withthe0-formZNoftheTQFTbeingthe0-formcentersymmetryalongthecompact

S1(unbrokeninthebulk,butbrokenontheDW).The1-formZNisthesamebulk-R3center

symmetryasinthepresenthigh-Tdiscussion,seeFigure1foranillustration.

Continuingwiththehigh-Ttheory,inordertoseethatthetopological“chirallagrangian”

(4.4)matchesthemixedanomaly,considergaugingthe1-formcentersymmetryviathe2-

formZNgaugefieldB(2)(revertingbacktoEuclideanspaceandrearrangingfactorsofN

and2⇡in(4.4)forconvenience):

S2�D=i
2⇡

N

Z

M2

N'(0)

2⇡
^
N(da(1)�B(2))

2⇡
,(4.6)

consistentwiththegauged1-forminvariancea(1)!a(1)+�(1)andB(2)!B(2)+d�(1).Asper

ourearlierdiscussion(seeFootnote15)the1-formtransformationparameterhasquantized

flux
H
d�(1)22⇡Zand

H
B(2)=

2⇡Z
N.25Underachiraltransformation�'(0)=

2⇡
N,inthe

25
Nowthea

(1)
Wilsonloopobservablee

i
H
Ca(1)

requiresasurface⌃boundingC(C=@⌃)inorderto

preservethe1-formgaugeinvariancee
i(
H
Ca(1)�R

⌃B(2))
.ItsN-thpower,ontheotherhand,isagenuinelocal

operator,e
i(N

H
Ca(1)�H

CB(1))
,seefootnote15.
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picture reminiscent of theta=pi 2d QED
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Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-
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new “‘t Hooft anomaly” between discrete chiral symmetry and center symmetry:
the simplest example in QFT is the charge-q massless 2d Schwinger model

1.)

charge-q 2d massless Schwinger model
discrete chiral Z_q
discrete 1-form center Z_q
mixed ’t Hooft anomaly RG invariant
matched in IR by a TQFT describing q
vacua of broken discrete chiral

dynamical DWs exist

SU(N) 4d SYM 
discrete chiral Z_N
discrete 1-form center Z_N
mixed ’t Hooft anomaly RG invariant
matched in IR by a TQFT describing N
vacua of broken discrete chiral

(q— N)>

1
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similar…

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:
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M3 (@M3=M2)

2NA
(1)

2⇡
^
NB
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, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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COMPARE WITH 4D SYM

no dynamical DWsno dynamical DWs (Gaussian…)

 charge-1 probes deconfined
 (perimeter law)

fundamental probes confined 
(area law)

now, 
turn to a study of DWs here…



domain walls in 4d SYM/QCD(adj) & anomaly inflow…
- re-obtaining some stringy results

2.)

turns out some of the DW worldvolume theories are  
related to the simplest study case of QFT with mixed  
0-form/1-form ’t Hooft anomalies - our solvable 2d ex. 

physics on the high-T DW (2d) shares features of  the  
low-T theory, both bulk (4d) and DW (2d/3d)

high-T DW are a semiclassical counterpart to  
“center vortices,” field configurations thought to be 
responsible for area law of Wilson loop at low-T in pure YM 

[Greensite+…; ‘D Elia, de Forcrand;… 1998-] 

(not theoretically controllable; seen in lattice simulations) 

some further motivation:



2.) domain walls in 4d SYM/QCD(adj) & anomaly inflow…
- re-obtaining some stringy results

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.
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model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.
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i 2⇡k
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
 (“0-form”, along x )4



2.) domain walls in 4d SYM/QCD(adj) & anomaly inflow…
- re-obtaining some stringy results

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
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�A
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4
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+ 4
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�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.
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vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :
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2 such that t
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2 and
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H
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where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by
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3
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+ 4
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3
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, for �A3
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where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC
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4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the
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The DW is a solution of the equations of motion of (3.2). A DW perpendicular to
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3 is parameterized as A

DW
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2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

two vacua

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –

broken center

vacua inherits the bulk symmetries and discrete ’t Hooft anomalies [5, 8]. Our goal is to study

this in some detail and see how the ’t Hooft anomalies are saturated on the DW worldvol-

ume. We uncover a rich structure of the DWs and find an explicit connection to the Schwinger

model of the previous Section (for nf = 1) or its generalizations (for nf > 1). We begin with

the Euclidean action of SU(2) Yang-Mills theory endowed with nf adjoint Weyl fermions at

finite temperature T :

S =

Z

R3⇥S1�

1

2g2
tr (Fµ⌫Fµ⌫) + 2itr

�
�̄�̄

µ
Dµ�

�
, (3.1)

where µ, ⌫ = 1, 2, 3, 4 and the trace is normalized as tr
�
t
a
t
b
�
=

�a,b
2 such that t

a = ⌧a

2 and

⌧
a are the color-space Pauli matrices. S1� is the thermal circle, which is taken along the

x4-direction and has circumference � = 1/T . The covariant derivative is given by Dµ� =

@µ� � i[Aµ,�] and �̄ = (�i,�), where � are the spacetime Pauli matrices. In addition, the

fermion field � carries an implicit flavor index; we set nf = 1 for the rest of this Section.12

At temperatures much smaller than the strong coupling scale ⇤QCD, the theory preserves

its ZC
2 symmetry, the trace of the Polyakov loop vanishes TrF exp

h
i
H
S1�

A4

i
= 0, static

charges are confined, and a Wilson loop wrapped in the time direction obeys the area law. At

temperatures larger than ⇤QCD, many aspects of the theory become amenable to semiclassical

treatment owing to asymptotic freedom. In this regime, we can dimensionally reduce the

action (3.1) to 3d after integrating out a tower of heavy Matsubara excitations of the gauge

and fermion fields along S�1 . To one-loop order, the resulting bosonic part of the action reads

S
boson
3D =

�

g2

Z

R3

✓
1

2
tr (FijFij) + tr (DiA4)

2 + g
2
V (A4) +O

�
g
4
�◆

, (3.2)

where i, j = 1, 2, 3, g is the gauge coupling at the scale T , and V (A4) is the one-loop e↵ective

potential for the Matsubara zero mode of the x4-component of the gauge field. The potential,

written below in terms of the Cartan subalgebra component A3
4 and for nf = 1, is given (see

e.g. [28]), up to a constant, by

V (A4) = �
1

12⇡�4

h
�6⇡

�
�A

3
4

�2
+ 4

�
�A

3
4

�3i
, for �A3

4 2 [0,⇡] , (3.3)

where the extension to the interval [⇡, 2⇡] is given by replacing �A
3
4 ! 2⇡ � �A

3
4 in (3.3).

The two minima of the potential are at �A
3
4 = 0, 2⇡, so that at T � ⇤QCD the ZC

2 center

symmetry along the x
4 direction is broken and the theory admits DWs [21, 22]. The two

center-symmetry breaking vacua are characterized by nonvanishing expectation values of the

trace of the Polyakov loop, 1
2hTrF exp

h
i
H
S1�

A4

i
i = ±1.

The DW is a solution of the equations of motion of (3.2). A DW perpendicular to

x
3 is parameterized as A

DW
µ (x3) = �µ4T�(x3)

⌧3

2 , where ⌧3

2 is SU(2) Cartan generator and

12The analysis of the zero modes in this Section goes verbatim for any nf , simply increasing the number of

zero modes. The analysis of the DW world-volume theory, however, di↵ers for nf > 1, see Sec. 4.

– 10 –
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(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
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can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
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1 Form notation and conventions; action and topological term

Notation is influenced by Eguchi, Gilkey, Hanson (Phys. Rept.). Gauge field 1-form:

A(x) = Aa
µ(x)T

adxµ , (T a
)
†
= T a , (1.1)

normalization of the fundamental generators T a
being, for now, trT aT b

= k�ab. Also,

we define [T a, T b
] = ifabc

(k) T
c
, where the subscript k in the structure constants reminds

us that this is taken with the assumed normalization of the trace. The gauge transfor-

mations are Aµ ! UAµU�1 � iU@µU�1
or in form notation A ! UAU�1 � iUdU�1

.

The field strength is the 2-form:

F = dA+ iA^A = (@µA⌫ + iAµA⌫)dx
µ ^ dx⌫

=
1

2
(@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ])dx

µ ^ dx⌫ .

(1.2)

In the last step, we recognize the conventional definition Fµ⌫ = @µA⌫�@⌫Aµ+i[Aµ, A⌫ ],

or F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ � fabc

(k)A
b
µA

c
⌫ .

Thus, F =
1
2Fµ⌫dxµ ^ dx⌫

. The dual of F is ⇤F =
1
2 F̃µ⌫dxµ ^ dx⌫

, where F̃µ⌫ =

1
2✏µ⌫��F

��
. Also, dxµ ^ dx⌫ ^ dx� ^ dx�

= ✏µ⌫��d4x.1

With the above definitions, consider what is to become the action of the gauge

field:

trF ^ ⇤F =
k

4
F a
µ⌫F̃

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F

µ⌫ ad4x , (1.3)

and what is to become the topological charge:

trF ^ F =
k

4
F a
µ⌫F

a
��✏

µ⌫��d4x =
k

2
F a
µ⌫F̃

µ⌫ ad4x . (1.4)

1Until absolutely necessary to do otherwise, we shall assume that we are in flat Euclidean space
with unit metric; topology, when needed, will be taken that of a torus.
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- and even richer in SYM and QCD(adj)!
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient
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mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

- at T<T    , Z  chiral broken to Z_2, matching the anomaly 
- at T>T    , Z  center broken, matching the anomaly 

(assume Tchi= Tc)
(…> or =)

2 4

4

2

c 
c 
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their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales

- at T<T    , Z  chiral broken to Z_2, matching the anomaly 
- at T>T    , Z  center broken, matching the anomaly 
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laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
domain walls, in either phase, are “nontrivial”: anomaly inflow! 

- high-T center vortices have mixed Z  chiral/Z  center anomaly on 2d worldvolume

Gaiotto et al 2014-17

- this follows from “anomaly inflow” but can be seen in the high-T theory quite explicitly:
4 2
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upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled
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the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
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upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 

Contents

1 Introduction 1

2 Discrete ’t Hooft anomalies in the charge-q Schwinger model 3

2.1 Symmetries and mixed ’t Hooft anomaly 4

2.2 The realization of the symmetries and their algebra 6

3 The high-T domain wall in SU(2) super-Yang-Mills: the axial Schwinger

model and symmetry realizations 9

4 Outlook: generalizations and lattice studies 14

1 Introduction

D� ! e
i↵2Nnf

R
FF̃

D� = e
i↵2NnfQtop.D�

��
↵= 2⇡

2Nnf

= e
i2⇡Qtop.D�

Qtop. = 1

↵ =
2⇡

2Nnf

Qtop. =
k

N

D� ! e
i 2⇡k

N D�

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
domain walls, in either phase, are “nontrivial”: anomaly inflow! 

- high-T center vortices have mixed Z  chiral/Z  center anomaly on 2d worldvolume

Gaiotto et al 2014-17

- this follows from “anomaly inflow” but can be seen in the high-T theory quite explicitly:
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
adjoint fermions at high-T have zero modes on the wall
 for nf=1, two are normalizable, leading to worldvolume L:

equation of motion of �±
p reads

�
±
p, 1(x3) = exp

✓
�2⇡p0x3 ±

Z x3

dz�(z)

◆
T

�
�
±
p, 1(0) ,

�
±
p, 2(x3) = exp

✓
2⇡p0x3 ⌥

Z x3

dz�(z)

◆
T

�
�
±
p, 2(0) . (3.6)

It is easy to check that only two of these solutions, �+
p=0, 2(x3) and �

�
p=�1, 1(x3), are normal-

izable. It is crucial for our purposes to note that these two zero modes have opposite charges

under the U(1) field ai and also have opposite 2d chirality, as can be seen from (3.5).

In what follows, when writing the DW-volume theory of the zero modes, we drop the

Matsubara and 4d spinor indices, and denote the two dimensional fields corresponding to the

above zero modes by �+ and ��, respectively. Also, to emphasize the fact that � are adjoint

fermions, and therefore, carry twice the fundamental charge, we make the change of variables

A1,2 =
a1,2
2 . Then, the e↵ective 2d Lagrangian on the DW worldvolume is given by

L
axial
DW =

1

4e2
FklFkl + i�̄+ [@1 + i@2 � i2(A1 + iA2)]�+

+ i�̄� [@1 � i@2 + i2(A1 � iA2)]�� . (3.7)

where Fkl = @kAl � @lAk, k, l = 1, 2, and e
2 is the two dimensional gauge coupling.13 The

Lagrangian (3.7) describes the Euclidean axial Schwinger model of charge 2 and, from a 4d

perspective, the high-T DW worldvolume theory in SU(2) super-Yang-Mills (SYM) theory

(QCD(adj) with nf = 1).

It is interesting to note that the DW worldvolume theory (3.7) inherits the symmetries

and anomalies of the bulk SYM theory. The U(1)A, under which �± transform with opposite

charges, is gauged in the axial charge-2 model.14 The U(1)V , under which �± have the same

charge is anomalous, instead. There is a Zd�
4 discrete “chiral” (from the bulk point of view)

symmetry remaining anomaly free. In addition there is a ZC
2 center symmetry due to the fact

that the adjoint fermions carry twice the fundamental charge (this worldvolume ZC
2 symmetry

originates from the 1-form center symmetry in the R3 bulk and should not be confused with

the zero-form center symmetry along x
4). There is also a Zd�

4 -ZC
2 mixed ’t Hooft anomaly

on the DW worldvolume, as predicted by anomaly inflow [5, 8], and as follows directly by

repeating the arguments of Section 2.1 for the axial model (3.7).

13The localization of the abelian fields on the DW is due to nonperturbative e↵ects in the bulk that generate

a mass gap for the gauge fluctuations (in the absence of a bulk gap, the abelian gauge field in the DW

background would propagate in the R3 bulk). Thus, we can only estimate the value of the 2d coupling e2:

we take e2 = g2T/�, where � ⇠ 1/g2T is the bulk confining scale, much larger than the DW width, leading

to e2 ⇠ g4T 2. This estimate may raise the issue of scale separation between DW and bulk dynamics: from

the above estimate, nonperturbative e↵ects in the 2d Schwinger model occur at scales e ⇠ g2T which is

parametrically the same as the nonperturbative bulk gap. These estimates equally apply to the ✓ = ⇡ YM

case of [5, 8]. In what follows, we assume that the results from Sec. 2 apply to the DW theory and o↵er

the heuristic justification that the only light charged states near the DW are the �± zero modes, charged

W±-bosons and fermions have mass of order T on the DW, while the bulk confined states are uncharged.
14We remind the reader that gauging U(1)A is possible in 2d, due to the vector-axial duality (✏µ⌫�⌫ = �µ�5).
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axial Schwinger model of 
charge-2! 
L and R have opposite charge 

In 2d axial and vector easily mapped to each other: Z  chiral symmetry and Z  center. 
From q=2 Schwinger model results, chiral and center broken, so: 
nonzero fermion condensate -on DW in chirally restored phase + 
Wilson loop perimeter law on the high-T “center vortex” [for lattice!]
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2.) domain walls in 4d SYM/QCD(adj) & anomaly inflow…
- re-obtaining some stringy results

>P   vacuum-th P+1   vacuum-th

W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e�
nhf
kT =

⇣
1� e�

hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find

the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,

all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the

entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the

entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

’t Hooft anomaly on worldvolume
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(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal

equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied

magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �2

E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of

your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained

to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument

to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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quarks deconfined on k-wall

broken (not in bulk)

[Aharony, Witten 1999;…]

here, QFT: 2d YM with  
massless fermions screens

[Schwinger model - many; nonabelian - 
Gross, Klebanov, Matytsin, Smilga 1995;  
Armoni, Frishman, Sonnenschein 1997;… ]

fermion condensate on k-wallk-wall 1
2

z
x first via holography: F1 on D1 

k-wall
(story also generalizes to k-walls in high-T SU(N), so picture borrowed)

so we find “D-branes” and “strings”, once again, in QFT

y



2.) domain walls in 4d SYM/QCD(adj) & anomaly inflow…
- re-obtaining some stringy results

when first saw…experienced a flashback: low-T small-S1 SYM

here: center 
unbroken

 chiral 
broken

Novel ’Exotic’ Coulomb Gases from toroidially compactified
Gauge theories and Duality

Brett Teeple

December 4, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain
other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on
a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by
large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in
4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their
minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson
lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the
compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
The case of supersymmetry will be looked into in more detail being the one previous researchers
have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar
charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which
are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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 + �N�k
⌘

q
N

k(N�k) ⇤ ⇤ 1

 � ��N�k ⇤ ⇤ 1

(1)

Z(0)
2N ! Z(0)

2

I

Mzx4

B(2)N

2⇡
= k

A
DW (k)
4 (z) = T�DW (k)(z)

�
DW (k)(⌥1)

0

1
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W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
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, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
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(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
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(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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DW1 P(DW1*)

further, as seen in MQCD [Witten, 1998] confining strings end on DW  
1I. confining strings in QCD(adj) and dYM:

the picture or strings “made out” of DWs also implies that confining strings 
can end on DWs
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ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

nt
ra

st
to

S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f
>

1
th

e
C

ar
ta

n
co

m
p
on

en
ts

of
th

e
n

f
W

ey
l

ad
-

jo
in

ts
ar

e
m

as
sl

es
s,

d
u
e

to
th

e
u
nb

ro
ke

n
S

U
(n

f
)

ch
ir

al
sy

m
m

et
ry

.
T

hu
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d.
T

h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

oc
-

cu
rs

at
2n

f
�

1
lo

op
or

d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m
2
� m M

� 4
n

f
(m

d)
�

4
n

f
+

4
,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e�

m
d

at
la

rg
e

d.
T

h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

od
el

,w
it

h
fe

rm
io

n
at

tr
ac

ti
on

in
cl

u
d
ed

,

is
S

=
R

(T
+

d)
M

m
+

R
T

M
m

e�
m

d
�

R
T

m
2
� m M

� 4
n

f
/

(m
d)

4
n

f
�

4
.

T
h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
oe

s
n
ot

co
nt

ri
b
u
te

fo
r

la
rg

e
T

)
is

n
ow

e�
m

d
⇠

e�
4
⇡

2
(4

n
f
+

1
)/

g
2

/(
m

d)
4
n

f
�

3
.

A
t

sm
al

l
g2

,
w

e
th

u
s

h
av

e
m

d ⇤
⇡

4⇡
2
(4

n
f

+
1)

/g
2
,

a
st

ab
le

w
al

l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d ⇤

of
th

e
st

ri
n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

qu
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f
>

1
Q

C
D

(a
d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
od

e,
th

e
“b

re
at

h
er

”
m

od
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
od

e,
m

br
,

ca
n

b
e

es
ti

m
at

ed
by

ta
ki

n
g

th
e

se
c-

on
d

d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d ⇤
,

m
br

⇠
m

e�
4
⇡

2
2
n

f
/
g
2

.
T

h
e

b
re

at
h
er

m
od

e
m

as
s

m
br

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
qu

ar
ks

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2
,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
xe

s
w

h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
I
G
.
3
:

A
s
k
e
t
c
h

o
f
h
o
w

a
qq̄

p
a
ir

c
a
n

fu
s
e
in
t
o

t
h
e
D
W

(
fr
o
m

le
ft

t
o
r
ig
h
t
)
.
T
h
e
s
h
a
d
e
d
a
n
d
w
h
it
e
r
e
g
io
n
s
r
e
p
r
e
s
e
n
t

d
is
t
in
c
t
v
a
c
u
a
o
f
t
h
e
t
h
e
o
r
y
.
T
h
e
s
o
li
d
b
la
c
k
li
n
e
r
e
p
r
e
s
e
n
t
s

t
h
e
B
P
S
1
D
W

,
w
h
il
e
t
h
e
d
a
s
h
e
d
li
n
e
r
e
p
r
e
s
e
n
t
s
t
h
e
a
n
t
i-
B
P
S
2

D
W

,
w
h
il
e
t
h
e
a
r
r
o
w
s
r
e
p
r
e
s
e
n
t
t
h
e
ir

e
le
c
t
r
ic

fl
u
x
e
s
.

T
h
e

b
la
c
k
d
o
t
s
a
r
e
t
h
e
q
u
a
r
k
a
n
d

t
h
e
a
n
t
i-
q
u
a
r
k
.

T
h
e
in
la
y
in

t
h
e
u
p
p
e
r
le
ft

c
o
r
n
e
r
s
h
o
w
s
a
fu
n
d
a
m
e
n
t
a
l
s
t
r
in
g
e
n
d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2
,

w
h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x.

If
a

qu
ar

k
an

ti
-q

u
ar

k
(q

q̄)
p
ai

r
is

in
th

e
vi

ci
n
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

qq̄
p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

qq̄
p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

nt
of

th
e

D
W

lo
ca

li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

qu
ar

ks
ar

e
li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
qu

ar
ks

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

by
S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

qu
en

tl
y

ex
p
lo

re
d

fr
om

m
o
d
el

in
g

th
e

e↵
ec

ti
ve

ac
ti

on
s

of
th

e
P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

kn
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry

se
tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
yn

am
ic

s
is

u
n
d
er

st
oo

d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly

on
a

fe
w

sa
li
en

t
p
oi

nt
s.

A
ll

fi
el

d
s

in
(1

)
b
ec

om
e

N
c
�

1
d
im

en
-

si
on

al
ve

ct
or

s,
d
es

cr
ib

in
g

th
e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c
)!

U
(1

)N
c
�

1
b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,�
)

=
ei

~ �
·H C

~ A
(
3
)

,w
it

h
~ �
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1
el

ec
tr

ic
ch

ar
ge

s)
,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

by
su

m
m

in
g

ov
er

al
l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,�

)i
⇠

e�
S

c
la

s
s
[�̄

(C
)]
,

w
it

h
th

e
m

ag
n
et

ic
b
io

n
p
ot

en
ti

al

L
bi

o
n

=
�

m
2
M

N
c

X i=
1

co
s
h (~↵

⇤ i
�

~↵
⇤ i+

1
(m

o
d

N
c
))

·~�
i

,
(3

)

3

b
ac

k
gr

ou
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m
2
e�

cm
d
,

c�
1

(a
ca

lc
u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el

in
g

ev
en

fo
r

p
ar

al
le

l
w

al
ls

,
y
ie

ld
s

at
tr

ac
ti

on
w

it
h

c>
1)

.
T

h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
“~

”⇠
m M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e�

m
d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y

th
e

fe
rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
h
y
si

cs
is

d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

n
tr

as
t

to
S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f
>

1
th

e
C

ar
ta

n
co

m
p
on

en
ts

of
th

e
n

f
W

ey
l

ad
-

jo
in

ts
ar

e
m

as
sl

es
s,

d
u
e

to
th

e
u
n
b
ro

ke
n

S
U

(n
f
)

ch
ir

al
sy

m
m

et
ry

.
T

h
u
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d.
T

h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

o
c-

cu
rs

at
2n

f
�

1
lo

op
or

d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m
2
� m M

� 4
n

f
(m

d)
�

4
n

f
+

4
,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e�

m
d

at
la

rg
e

d.
T

h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

o
d
el

,
w

it
h

fe
rm

io
n

at
tr

ac
ti

on
in

cl
u
d
ed

,

is
S

=
R

(T
+

d)
M

m
+

R
T

M
m

e�
m

d
�

R
T

m
2
� m M

� 4
n

f
/

(m
d)

4
n

f
�

4
.

T
h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
o
es

n
ot

co
n
tr

ib
u
te

fo
r

la
rg

e
T

)
is

n
ow

e�
m

d
⇠

e�
4
⇡

2
(4

n
f
+

1
)/

g
2

/(
m

d)
4
n

f
�

3
.

A
t

sm
al

l
g2

,
w

e
th

u
s

h
av

e
m

d ⇤
⇡

4⇡
2
(4

n
f

+
1)

/g
2
,

a
st

ab
le

w
al

l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d ⇤

of
th

e
st

ri
n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

q
u
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f
>

1
Q

C
D

(a
d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
re

at
h
er

”
m

o
d
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
o
d
e,

m
br

,
ca

n
b
e

es
ti

m
at

ed
b
y

ta
k
in

g
th

e
se

c-
on

d
d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d ⇤
,

m
br

⇠
m

e�
4
⇡

2
2
n

f
/
g
2

.
T

h
e

b
re

at
h
er

m
o
d
e

m
as

s
m

br

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
q
u
ar

k
s

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2
,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
x
es

w
h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
I
G
.
3
:

A
s
k
e
t
c
h

o
f
h
o
w

a
qq̄

p
a
ir

c
a
n

fu
s
e
in
t
o

t
h
e
D
W

(
fr
o
m

le
ft

t
o
r
ig
h
t
)
.
T
h
e
s
h
a
d
e
d
a
n
d
w
h
it
e
r
e
g
io
n
s
r
e
p
r
e
s
e
n
t

d
is
t
in
c
t
v
a
c
u
a
o
f
t
h
e
t
h
e
o
r
y
.
T
h
e
s
o
li
d
b
la
c
k
li
n
e
r
e
p
r
e
s
e
n
t
s

t
h
e
B
P
S
1
D
W

,
w
h
il
e
t
h
e
d
a
s
h
e
d
li
n
e
r
e
p
r
e
s
e
n
t
s
t
h
e
a
n
t
i-
B
P
S
2

D
W

,
w
h
il
e
t
h
e
a
r
r
o
w
s
r
e
p
r
e
s
e
n
t
t
h
e
ir

e
le
c
t
r
ic

fl
u
x
e
s
.

T
h
e

b
la
c
k
d
o
t
s
a
r
e
t
h
e
q
u
a
r
k
a
n
d

t
h
e
a
n
t
i-
q
u
a
r
k
.

T
h
e
in
la
y
in

t
h
e
u
p
p
e
r
le
ft

c
o
r
n
e
r
s
h
o
w
s
a
fu
n
d
a
m
e
n
t
a
l
s
t
r
in
g
e
n
d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2
,

w
h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x
.

If
a

q
u
ar

k
an

ti
-q

u
ar

k
(q

q̄)
p
ai

r
is

in
th

e
v
ic

in
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

qq̄
p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

qq̄
p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

n
t

of
th

e
D

W
lo

ca
li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

q
u
ar

k
s

ar
e

li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
q
u
ar

k
s

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

b
y

S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

q
u
en

tl
y

ex
p
lo

re
d

fr
om

m
o
d
el

in
g

th
e

e↵
ec

ti
ve

ac
ti

on
s

of
th

e
P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

k
n
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry

se
tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
y
n
am

ic
s

is
u
n
d
er

st
o
o
d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly

on
a

fe
w

sa
li
en

t
p
oi

n
ts

.
A

ll
fi
el

d
s

in
(1

)
b
ec

om
e

N
c
�

1
d
im

en
-

si
on

al
ve

ct
or

s,
d
es

cr
ib

in
g

th
e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c
)!

U
(1

)N
c
�

1
b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,�
)

=
ei

~ �
·H C

~ A
(
3
)

,
w

it
h

~ �
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1
el

ec
tr

ic
ch

ar
ge

s)
,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

b
y

su
m

m
in

g
ov

er
al

l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,�

)i
⇠

e�
S

c
la

s
s
[�̄

(C
)]
,

w
it

h
th

e
m

ag
n
et

ic
b
io

n
p
ot

en
ti

al

L
bi

o
n

=
�

m
2
M

N
c

X i=
1

co
s
h (~↵

⇤ i
�

~↵
⇤ i+

1
(m

o
d

N
c
))

·~�
i

,
(3

)

<

3

b
ac

k
gr

ou
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m
2
e�

cm
d
,

c�
1

(a
ca

lc
u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el

in
g

ev
en

fo
r

p
ar

al
le

l
w

al
ls

,
y
ie

ld
s

at
tr

ac
ti

on
w

it
h

c>
1)

.
T

h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
“~

”⇠
m M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e�

m
d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y

th
e

fe
rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
h
y
si

cs
is

d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

n
tr

as
t

to
S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f
>

1
th

e
C

ar
ta

n
co

m
p
on

en
ts

of
th

e
n

f
W

ey
l

ad
-

jo
in

ts
ar

e
m

as
sl

es
s,

d
u
e

to
th

e
u
n
b
ro

ke
n

S
U

(n
f
)

ch
ir

al
sy

m
m

et
ry

.
T

h
u
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d.
T

h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

o
c-

cu
rs

at
2n

f
�

1
lo

op
or

d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m
2
� m M

� 4
n

f
(m

d)
�

4
n

f
+

4
,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e�

m
d

at
la

rg
e

d.
T

h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

o
d
el

,
w

it
h

fe
rm

io
n

at
tr

ac
ti

on
in

cl
u
d
ed

,

is
S

=
R

(T
+

d)
M

m
+

R
T

M
m

e�
m

d
�

R
T

m
2
� m M

� 4
n

f
/

(m
d)

4
n

f
�

4
.

T
h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
o
es

n
ot

co
n
tr

ib
u
te

fo
r

la
rg

e
T

)
is

n
ow

e�
m

d
⇠

e�
4
⇡

2
(4

n
f
+

1
)/

g
2

/(
m

d)
4
n

f
�

3
.

A
t

sm
al

l
g2

,
w

e
th

u
s

h
av

e
m

d ⇤
⇡

4⇡
2
(4

n
f

+
1)

/g
2
,

a
st

ab
le

w
al

l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d ⇤

of
th

e
st

ri
n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

q
u
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f
>

1
Q

C
D

(a
d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
re

at
h
er

”
m

o
d
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
o
d
e,

m
br

,
ca

n
b
e

es
ti

m
at

ed
b
y

ta
k
in

g
th

e
se

c-
on

d
d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d ⇤
,

m
br

⇠
m

e�
4
⇡

2
2
n

f
/
g
2

.
T

h
e

b
re

at
h
er

m
o
d
e

m
as

s
m

br

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
q
u
ar

k
s

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2
,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
x
es

w
h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
I
G
.
3
:

A
s
k
e
t
c
h

o
f
h
o
w

a
qq̄

p
a
ir

c
a
n

fu
s
e
in
t
o

t
h
e
D
W

(
fr
o
m

le
ft

t
o
r
ig
h
t
)
.
T
h
e
s
h
a
d
e
d
a
n
d
w
h
it
e
r
e
g
io
n
s
r
e
p
r
e
s
e
n
t

d
is
t
in
c
t
v
a
c
u
a
o
f
t
h
e
t
h
e
o
r
y
.
T
h
e
s
o
li
d
b
la
c
k
li
n
e
r
e
p
r
e
s
e
n
t
s

t
h
e
B
P
S
1
D
W

,
w
h
il
e
t
h
e
d
a
s
h
e
d
li
n
e
r
e
p
r
e
s
e
n
t
s
t
h
e
a
n
t
i-
B
P
S
2

D
W

,
w
h
il
e
t
h
e
a
r
r
o
w
s
r
e
p
r
e
s
e
n
t
t
h
e
ir

e
le
c
t
r
ic

fl
u
x
e
s
.

T
h
e

b
la
c
k
d
o
t
s
a
r
e
t
h
e
q
u
a
r
k
a
n
d

t
h
e
a
n
t
i-
q
u
a
r
k
.

T
h
e
in
la
y
in

t
h
e
u
p
p
e
r
le
ft

c
o
r
n
e
r
s
h
o
w
s
a
fu
n
d
a
m
e
n
t
a
l
s
t
r
in
g
e
n
d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2
,

w
h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x
.

If
a

q
u
ar

k
an

ti
-q

u
ar

k
(q

q̄)
p
ai

r
is

in
th

e
v
ic

in
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

qq̄
p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

qq̄
p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

n
t

of
th

e
D

W
lo

ca
li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

q
u
ar

k
s

ar
e

li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
q
u
ar

k
s

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

b
y

S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

q
u
en

tl
y

ex
p
lo

re
d

fr
om

m
o
d
el

in
g

th
e

e↵
ec

ti
ve

ac
ti

on
s

of
th

e
P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

k
n
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry

se
tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
y
n
am

ic
s

is
u
n
d
er

st
o
o
d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly

on
a

fe
w

sa
li
en

t
p
oi

n
ts

.
A

ll
fi
el

d
s

in
(1

)
b
ec

om
e

N
c
�

1
d
im

en
-

si
on

al
ve

ct
or

s,
d
es

cr
ib

in
g

th
e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c
)!

U
(1

)N
c
�

1
b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,�
)

=
ei

~ �
·H C

~ A
(
3
)

,
w

it
h

~ �
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1
el

ec
tr

ic
ch

ar
ge

s)
,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

b
y

su
m

m
in

g
ov

er
al

l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,�

)i
⇠

e�
S

c
la

s
s
[�̄

(C
)]
,

w
it

h
th

e
m

ag
n
et

ic
b
io

n
p
ot

en
ti

al

L
bi

o
n

=
�

m
2
M

N
c

X i=
1

co
s
h (~↵

⇤ i
�

~↵
⇤ i+

1
(m

o
d

N
c
))

·~�
i

,
(3

)

3

b
ac

kg
ro

u
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m
2
e�

cm
d
,

c�
1

(a
ca

lc
u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

qu
ir

in
g

so
m

e
m

il
d

b
ac

kg
ro

u
n
d

m
od

el
in

g
ev

en
fo

r
p
ar

al
le

l
w

al
ls

,
yi

el
d
s

at
tr

ac
ti

on
w

it
h

c>
1)

.
T

h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

by
an

“~
”⇠

m M
lo

op
su

p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e�

m
d

d
om

in
at

es
.

T
hu

s,
in

S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

by
th

e
fe

rm
io

n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
nt

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
hy

si
cs

is
d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

nt
ra

st
to

S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f
>

1
th

e
C

ar
ta

n
co

m
p
on

en
ts

of
th

e
n

f
W

ey
l

ad
-

jo
in

ts
ar

e
m

as
sl

es
s,

d
u
e

to
th

e
u
nb

ro
ke

n
S

U
(n

f
)

ch
ir

al
sy

m
m

et
ry

.
T

hu
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d.
T

h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

oc
-

cu
rs

at
2n

f
�

1
lo

op
or

d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m
2
� m M

� 4
n

f
(m

d)
�

4
n

f
+

4
,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e�

m
d

at
la

rg
e

d.
T

h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

od
el

,w
it

h
fe

rm
io

n
at

tr
ac

ti
on

in
cl

u
d
ed

,

is
S

=
R

(T
+

d)
M

m
+

R
T

M
m

e�
m

d
�

R
T

m
2
� m M

� 4
n

f
/

(m
d)

4
n

f
�

4
.

T
h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
oe

s
n
ot

co
nt

ri
b
u
te

fo
r

la
rg

e
T

)
is

n
ow

e�
m

d
⇠

e�
4
⇡

2
(4

n
f
+

1
)/

g
2

/(
m

d)
4
n

f
�

3
.

A
t

sm
al

l
g2

,
w

e
th

u
s

h
av

e
m

d ⇤
⇡

4⇡
2
(4

n
f

+
1)

/g
2
,

a
st

ab
le

w
al

l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d ⇤

of
th

e
st

ri
n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

qu
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f
>

1
Q

C
D

(a
d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
od

e,
th

e
“b

re
at

h
er

”
m

od
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
od

e,
m

br
,

ca
n

b
e

es
ti

m
at

ed
by

ta
ki

n
g

th
e

se
c-

on
d

d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d ⇤
,

m
br

⇠
m

e�
4
⇡

2
2
n

f
/
g
2

.
T

h
e

b
re

at
h
er

m
od

e
m

as
s

m
br

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
qu

ar
ks

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2
,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
xe

s
w

h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
I
G
.
3
:

A
s
k
e
t
c
h

o
f
h
o
w

a
qq̄

p
a
ir

c
a
n

fu
s
e
in
t
o

t
h
e
D
W

(
fr
o
m

le
ft

t
o
r
ig
h
t
)
.
T
h
e
s
h
a
d
e
d
a
n
d
w
h
it
e
r
e
g
io
n
s
r
e
p
r
e
s
e
n
t

d
is
t
in
c
t
v
a
c
u
a
o
f
t
h
e
t
h
e
o
r
y
.
T
h
e
s
o
li
d
b
la
c
k
li
n
e
r
e
p
r
e
s
e
n
t
s

t
h
e
B
P
S
1
D
W

,
w
h
il
e
t
h
e
d
a
s
h
e
d
li
n
e
r
e
p
r
e
s
e
n
t
s
t
h
e
a
n
t
i-
B
P
S
2

D
W

,
w
h
il
e
t
h
e
a
r
r
o
w
s
r
e
p
r
e
s
e
n
t
t
h
e
ir

e
le
c
t
r
ic

fl
u
x
e
s
.

T
h
e

b
la
c
k
d
o
t
s
a
r
e
t
h
e
q
u
a
r
k
a
n
d

t
h
e
a
n
t
i-
q
u
a
r
k
.

T
h
e
in
la
y
in

t
h
e
u
p
p
e
r
le
ft

c
o
r
n
e
r
s
h
o
w
s
a
fu
n
d
a
m
e
n
t
a
l
s
t
r
in
g
e
n
d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2
,

w
h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x.

If
a

qu
ar

k
an

ti
-q

u
ar

k
(q

q̄)
p
ai

r
is

in
th

e
vi

ci
n
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

qq̄
p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

qq̄
p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

nt
of

th
e

D
W

lo
ca

li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

qu
ar

ks
ar

e
li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
qu

ar
ks

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

by
S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

qu
en

tl
y

ex
p
lo

re
d

fr
om

m
od

el
in

g
th

e
e↵

ec
ti

ve
ac

ti
on

s
of

th
e

P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

kn
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry

se
tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
yn

am
ic

s
is

u
n
d
er

st
oo

d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly

on
a

fe
w

sa
li
en

t
p
oi

nt
s.

A
ll

fi
el

d
s

in
(1

)
b
ec

om
e

N
c
�

1
d
im

en
-

si
on

al
ve

ct
or

s,
d
es

cr
ib

in
g

th
e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c
)!

U
(1

)N
c
�

1
b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,�
)

=
ei

~ �
·H C

~ A
(
3
)

,w
it

h
~ �
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1
el

ec
tr

ic
ch

ar
ge

s)
,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

by
su

m
m

in
g

ov
er

al
l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,�

)i
⇠

e�
S

c
la

s
s
[�̄

(C
)]
,

w
it

h
th

e
m

ag
n
et

ic
b
io

n
p
ot

en
ti

al

L b
io

n
=

�
m

2
M

N
c

X i=
1

co
s
h (~↵

⇤ i
�

~↵
⇤ i+

1
(m

o
d

N
c
))

·~�
i

,
(3

)

3

b
ac

k
gr

ou
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m
2
e�

cm
d
,

c�
1

(a
ca

lc
u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el

in
g

ev
en

fo
r

p
ar

al
le

l
w

al
ls

,
y
ie

ld
s

at
tr

ac
ti

on
w

it
h

c>
1)

.
T

h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
“~

”⇠
m M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e�

m
d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y

th
e

fe
rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
h
y
si

cs
is

d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

n
tr

as
t

to
S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f
>

1
th

e
C

ar
ta

n
co

m
p
on

en
ts

of
th

e
n

f
W

ey
l

ad
-

jo
in

ts
ar

e
m

as
sl

es
s,

d
u
e

to
th

e
u
n
b
ro

ke
n

S
U

(n
f
)

ch
ir

al
sy

m
m

et
ry

.
T

h
u
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d.
T

h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

o
c-

cu
rs

at
2n

f
�

1
lo

op
or

d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m
2
� m M

� 4
n

f
(m

d)
�

4
n

f
+

4
,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e�

m
d

at
la

rg
e

d.
T

h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

o
d
el

,
w

it
h

fe
rm

io
n

at
tr

ac
ti

on
in

cl
u
d
ed

,

is
S

=
R

(T
+

d)
M

m
+

R
T

M
m

e�
m

d
�

R
T

m
2
� m M

� 4
n

f
/

(m
d)

4
n

f
�

4
.

T
h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
o
es

n
ot

co
n
tr

ib
u
te

fo
r

la
rg

e
T

)
is

n
ow

e�
m

d
⇠

e�
4
⇡

2
(4

n
f
+

1
)/

g
2

/(
m

d)
4
n

f
�

3
.

A
t

sm
al

l
g2

,
w

e
th

u
s

h
av

e
m

d ⇤
⇡

4⇡
2
(4

n
f

+
1)

/g
2
,

a
st

ab
le

w
al

l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d ⇤

of
th

e
st

ri
n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

q
u
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f
>

1
Q

C
D

(a
d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
re

at
h
er

”
m

o
d
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
o
d
e,

m
br

,
ca

n
b
e

es
ti

m
at

ed
b
y

ta
k
in

g
th

e
se

c-
on

d
d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d ⇤
,

m
br

⇠
m

e�
4
⇡

2
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QQ* pair
fuses with 
wall 

Q’s deconfined 
on DWs

DW

string ends 
on DW

Q

an electric example of strings and branes “from flesh and blood” (Shifman-Yung all magnetic) 

pull Q* to 
infinity

2 large-N SYM:  BPS wall tension ~ N, not N , so “D-brane like” (think g_string ~1/N)

here: pure QFT, no large-N, no SUSY/BPS (small-L instead), explicit, not heuristic, picture

S.-J. Rey/Witten 1997/  

3 oblique confinement (heuristic!): wall supports free quarks so confining strings can end on it 

1 MQCD: string (M2) ends on DW (some wrapped M5)
2
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain
other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on
a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by
large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in
4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their
minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson
lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the
compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
The case of supersymmetry will be looked into in more detail being the one previous researchers
have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar
charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which
are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
of the compact manifold.
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The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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2.) domain walls in 4d SYM/QCD(adj) & anomaly inflow…
- re-obtaining some stringy results

here: center 
unbroken

 chiral 
broken
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order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.
Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along
with other toy models as a way to better understand our new plasma. Generalizations to higher rank
and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
where some exact trace formulae can be calculated in some specific cases (at least numerically to a
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’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):
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, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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reason for this similarity is that the 2d worldvolume IR 
TQFTs matching the relevant anomalies are identical in the 
high-T/large-L and low-T/small-L DWs [back in ’15 wasn’t aware that 
studying TQFTs…]
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when first saw…experienced a flashback: low-T small-S1 SYM



Time to wrap up…

- new higher-symmetry ’t Hooft anomalies imply a rich structure

- in some cases, they can be understood from different points of view

- lattice is the natural habitat for discrete higher symmetries
- however, lattice makes other ‘things’ harder, such as CS theory and anomalies
- good to understand using variety of approaches - operator in SYM/adj?

- mostly concentrated on DW physics, where “inflow” implications very strong

 - it should be possible to study our predictions on the lattice and follow to lower-T



Time to wrap up…

phases and symmetry realization of ‘bulk’ 4d (or <4d) theories can also 
be affected by discrete anomalies

witness two-flavour QCD(adj) 1805.12290 Anber, EP + subsequent activity on non-spin 
backgrounds, TQFTs etc. Cordova, Dumitrescu; Bi, Senthil; Wan, Wang -

—

-

- didn’t dwell upon, but used, ordering of thermal phase transitions, also constrained by matching 

can’t help but wonder how above anomalies, seen using complicated backgrounds, are 
reflected in the operator structure/representation; I don’t think level of understanding 
similar to that of usual 0-form continuum anomalies is reached yet!

finally, other theories with such mixed anomalies can also be studied-

- in some cases, they can be understood from different points of view

- good to understand using variety of approaches - operator in SYM/adj?

- mostly concentrated on DW physics, where “inflow” implications very strong

- new higher-symmetry ’t Hooft anomalies imply a rich structure

- lattice is the natural habitat for discrete higher symmetries
- however, lattice makes other ‘things’ harder, such as CS theory and anomalies

 - it should be possible to study our predictions on the lattice and follow to lower-T


