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UV

IR

quarks, gluons

hadrons

complicated 
RG flow 

QCD other gauge
theories

what is the IR?

few general constraints:

- inequalities (“a theorem”)

- a rare equality: ’t Hooft 
anomalies, UV = IR!

- ca. 1980, all done? 
- NOT!

  missed anomalies involving  higher-form symmetries

Gaiotto, Kapustin, Komargodski, Seiberg, Willett… 2014-2017

hence, new anomaly matching conditions! 



new anomaly matching conditions! 
e.g. implications for phases of 4D adjoint QCD

0-form/1-form ’t Hooft anomalies are shown/believed to imply:

crucial subtleties clarified; ultimately, need lattice to figure out IR phases… won’t discuss here.

Anber-EP; Cordova-Dumitrescu; Bi-Senthil; Wan-Wang, Ryttov-EP (2018-2019)   

- IR phases can’t be “trivial”
- domain walls “nontrivial” due to ‘discrete anomaly inflow’

this talk: 
- examples of nontrivial DWs, where mechanism of            

- walls in high-T phase exhibit features of low-T phase and v.v.

- related [for sure or perhaps…] to confinement mechanism

anomaly inflow can be described semiclassically



 Higher form symmetry   1-form symmetry   center symmetry 

2D compact U(1) with (integer) charge-N
massless Dirac
“charge N Schwinger model”

4D SU(N) with 

massless Weyl adjoints
= SYM

“       QCD(adj)”“       QCD(adj)”



 Higher form symmetry   1-form symmetry   center symmetry 

2D compact U(1) with (integer) charge-N
massless Dirac
“charge N Schwinger model”

4D SU(N) with 

massless Weyl adjoints
= SYM

“       QCD(adj)”

remarkably alike

“       QCD(adj)”both have similar mixed
 0-form/1-form anomalies

1

2 high-T domain walls in SU(2) SYM (high-T “center vortices”) 
world-volume theory “=“ charge-2 Schwinger model
(realization of anomaly inflow)

3 simplest interacting QFT (solvable) with new anomaly 

interesting generalizations/applications: Armoni, Sugimoto ‘18; Misumi, Tanizaki, Unsal ‘19



 Higher form symmetry   1-form symmetry   center symmetry 

2D compact U(1) with (integer) charge-N
massless Dirac
“charge N Schwinger model”

Qtop.

axial anomaly

is unity when
discrete chiral

 phase

  (likewise, 4D QCD(adj) has   global chiral symmetry)

Z(0)
2N

=



 We want to know what 
charge-N Schwinger model or QCD(adj) “do” in the IR? 

assisted by claim that: there is a mixed anomaly between 

discrete “0-form” chiral, present in both models 

discrete “1-form” center, present in both models

gauging the center (turning on nondynamical background) explicitly breaks the chiral!

- “’t Hooft flux” (twisted b.c.) or “thin center vortex,”
results in topological charge ~ 1/N, not integer

mixed chiral/center ’t Hooft anomaly in three lines:



gauging the center (turning on nondynamical background) explicitly breaks the chiral!

results in topological charge ~ 1/N, not integer

’t Hooft fluxes in 1-2 and 3-4 planes
intersecting center vortices =  
2 codimension two objects  
(here: two

 2-planes of plaquettes w/ empty coboundary)

topological (no flux thru cubes)  
background for �  -  
2-form  �  gauge field, 
introduced to gauge 
1-form �  center symmetry

B(2)
μν dxμ ∧ dxν

ZN

ZN

=

=

=

SU(N )/ZN bundle
gauge background
∈

- “’t Hooft flux” (twisted b.c.) or “thin center vortex,”

mixed chiral/center ’t Hooft anomaly in three lines:



given that, simply recall measure transform under anomaly-free chiral:

in theory with gauged center

gauging               explicitly breaks           :     

likewise, in a theory without fermions but with   term, fractionalization of         θ

“anomaly in the space of couplings”  
(or, at   there is a mixed anomaly with CP )θ = π

[Cordova, Freed, Lam, Seiberg  ’19 ]

- phase IS the mixed ’t Hooft anomaly!
- RG invariant, same at all scales (eg torus size-independent)

2πtopological charge breaks the       periodicity



now, to mixed ’t Hooft anomaly in charge-N Schwinger model:     

operator language - Hamiltonian,    gauge, on   space:A0 = 0 S1

discrete chiral generator
conserved charge involves 1D CS term



nonperiodic “gauge transformation”

center symmetry generator: 

codimension-2
 operator; links w/lines

=0 on physical states 
   (needed to commute with H) 

now, to mixed ’t Hooft anomaly in charge-N Schwinger model:     

discrete chiral generator:



now, to mixed ’t Hooft anomaly in charge-N Schwinger model:     

commute



’t Hooft loop/Wilson loop algebra)

’t Hooft
anomaly

(recall

now, to mixed ’t Hooft anomaly in charge-N Schwinger model:     

do not commute



N vacua; 

’t Hooft
anomaly

- discrete E-field

- “DW” = ‘fundamental’ unit charge Wilson loop

>P   vacuum-th P+1   vacuum-th

W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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discrete chiral broken by fermion bilinear ; massive boson in each vacuum

now, to mixed ’t Hooft anomaly in charge-N Schwinger model:     



- an IR TQFT, a “chiral lagrangian” describing the N vacua. 

this is usually not trivial to derive from the UV theory, but here it is

fermion bilinear  ̄+ � in this theory is given by

 ̄
a

+ �b = µh
a

b
e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he
�i

q
4⇡

N�1�(x)e
i

q
4⇡

N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄+(x) �(x) tr ̄�(y) +(y)

↵
⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄+ �i 6= 0 : Zd�

2N ! Z2 , (4.2)

breaking the Zd�

2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄+ � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr + � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3�D = i
2⇡

N

Z

M3 (@M3=M2)

2NA
(1)

2⇡
^
NB

(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�

(0), with �(0)|M2 = 2⇡
2N in a background

R
M2

NB
(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S2�D = i
N

2⇡

Z

M2

'
(0)

da
(1)

. (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a
(1). The gauge field a

(1) is compact,H
da

(1)
2 2⇡Z. The gauge invariant observables are e

i' and e
i
H
a
(1)

and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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�(0) ! �(0)
+

2⇡

N

a(1) ! a(1) +
1

N
✏(1)

Yq = ei
2⇡
q ⇧̂a

eia ! ei
2⇡
q eia

Wq1(x2) ! ei
2⇡
N pWq1(x2)

Z(1)
N

✓ = ⇡

mW ⇠

Z(0)
N 2 Z(1)

N

1

g2NT

T � ⇤

Z(0)
2N

J = ei!2NQtop.

Qtop =
n12n34

N
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1
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2⇡
q ⇧̂a
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2⇡
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N
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chiral center 

- compact scalar and compact U(1) TQFT:  N-dim Hilbert space (the N vacua) 

as spectrum is gapped, what matches the anomaly below mass gap? 

…upon gauging center in TQFT, the phase of partition function under chiral transform
matches anomaly, so all is consistent and as explicit as can be! 

The charge-N Schwinger model is the simplest solvable interacting QFT with a 
mixed 0-form/1-form anomaly, so has at least pedagogical value… 

…now, to promised relation to 4D SYM:

now, to mixed ’t Hooft anomaly in charge-N Schwinger model:     



high-T domain walls in SU(2) SYM, or high-T “center vortices” 
worldvolume theory “=“ charge-2 Schwinger model
(realization of anomaly inflow)

… promised relation to 4D SYM (in words/pictures):

(for SU(N), see
1811.10642 Anber, EP)



… promised relation to 4D SYM (in words/pictures):

First, what are high-T “center vortices”? 

confinement, low-T

deep in deconfined high-T phase

twisted boundary conditions    (say, unit ’t Hooft flux): k=1 wallB(2)
zβ ≠ 0

width

these “DW”s are the high-T “center vortices” (semiclassical!) 

Bhattacharya, Gocksch, Korthals-Altes, Pisarski,…~’92
lattice, down to Tc: Bursa, Teper ’05;…

Polyakov loop

DWs: 

high-T phase breaks “0-form” center (in modern parlance; preserves 1-form, or    center)R3

-  codimension-2 objects, link with Wilson loops

SU(2)!



… promised relation to 4D SYM (in words/pictures):

First, what are high-T “center vortices”? 

confinement, low-T

deep in deconfined high-T phase

high-T phase breaks “0-form” center (in modern parlance; preserves 1-form, or    center)R3

twisted boundary conditions    (say, unit ’t Hooft flux): k=1 wallB(2)
zβ ≠ 0

width

these “DW”s are the high-T “center vortices” (semiclassical!) 

 pure YM:

Bhattacharya, Gocksch, Korthals-Altes, Pisarski…~’91
lattice, down to Tc: Bursa, Teper ’05;…

Polyakov loop

- “light” at low-T: condense, disorder nonzero N-ality Wilson loops:
- “heavy” at high-T: semiclassical and unlikely to appear;

    area law, confinement, N-ality dependence of string tensions…

Greensite et al, ’97; D’ Elia, de Forcrand ’99,…lattice evidence:
DWs:  of course, not theoretically controlled confinement but

-  codimension-2 objects, link with Wilson loops

SU(2)!



high-T domain walls in SU(2) SYM, or high-T “center vortices” 
worldvolume theory “=“ charge-2 Schwinger model
(realization of anomaly inflow)

(for SU(N), see
1811.10642 Anber, EP)

Next, what about high-T “center vortices” in SYM? 

- high-T “center vortices” also exist in SYM  

- SYM has a   chiral center anomaly

- has to be matched at any size/shape of torus, hence at any T
- recall that anomaly requires turning on perpendicular ’t Hooft fluxes

(2)- turning on                    produces a k=1 wall (SU(2)) in high-T phase

Ω(z) = ei A0(z)
T

τ3
2

A0(z → − ∞) = 0 A0(z → + ∞) = 2πT
Ω(−∞) = 1 Ω(+∞) = − 1

Ω(0) = diag(i, − i) SU(2) → U(1) , massless photon, W-boson mass ~ T- at center of wall 

- localized fermion zero modes: ψ+ charge 2, ψ−  -2: “axial charge-2 Schwinger model”

Z(0)
4 − Z(1)

2

⟨B(2)
12 ⟩ ≠ 0Z(1)

2
Z(0)

4- we saw it has        vector and       center with mixed anomaly, turning on                 on worldvolume:

matches the bulk SYM anomaly (= “anomaly inflow”) 

… promised relation to 4D SYM (in words/pictures):



formally, anomaly (bulk) from 5D CS: 

theory is the variation of a 5d Chern-Simons term:

S5�D = i
2⇡

N

Z

M5 (@M5=M4)

2NA
(1)

2⇡
^
NB

(2)

2⇡
^
NB

(2)

2⇡
, (2.31)

such that the 4-D spacetime M4 is the boundary of M5. Here A
(1) and B

(2) are 1-form and

2-form gauge fields, respectively, gauging the Zd�

2N 0-form chiral and Z(1)
N

center symmetries

of the 4-D theory. As in [59], they are defined as pairs: for the discrete chiral Zd�

2N , we have

(A(1)
, A

(0)): 2NA
(1) = dA

(0) (
H
A

(0)
2 2⇡Z, so that e

i
H
A

(1)
= e

i
2⇡
2N Z), while for the Z(1)

N

center symmetry (B(2)
, B

(1)) obey NB
(2) = dB

(1) (
H
B

(1)
2 2⇡Z, so that e

i
H
B

(2)
= e

i
2⇡
N Z),

where the integrals are over closed 1- and 2-cycles as appropriate. Under chiral symmetry

�Z2NA
(1) = d�

(0),
H
d�

(0)
2 2⇡Z, so the closed A

(1) Wilson loop is invariant.15

Then, under a Z2N chiral symmetry transformation with parameter �
(0)

|M4 = 2⇡
2N , the

variation of the Chern-Simons action (2.31) localizes to the physical boundary M4

��S5�D = i
2⇡

N

2N�
(0)

|M4

2⇡

Z

M4

NB
(2)

2⇡
^
NB

(2)

2⇡
= i

2⇡

N
m, (2.32)

and is equal to the variation of the phase of the 4-D partition function under a discrete chiral

symmetry in a nontrivial ’t Hooft flux background, where
R

M4

NB
(2)

2⇡ ^
NB

(2)

2⇡ = m 2 Z is

nonzero.

Turning on a B
(2) background

H
Mx3x4

B
(2)

N

2⇡ = k corresponds to k units of ’t Hooft flux

in the x3-x4 plane denoted by Mx3x4 (x4 is the compact time direction). In the center broken

high-T phase, this induces a k-wall configuration with worldvolume perpendicular to x
3 and

separating two center-breaking vacua.16 In this background, the 5d CS term reduces to a 3-D

one, with @M3 = M2, the k-wall world volume:

S3�D = i
2⇡k

N

Z

M3 (@M3=M2)

2NA
(1)

2⇡
^
NB

(2)

2⇡
. (2.33)

The Zd�

2N variation of S3�D localizes to the k-wall worldvolume and is given by

��S3�D = i
2⇡k

N

2N�
(0)

|M2

2⇡

Z

M2

NB
(2)

2⇡
= i

2⇡kp

N
, (2.34)

where, in the last equality, we turned on p units of ’t Hooft flux in the 12 plane of the k-

wall
R
M2

NB
(2)

2⇡ = p, as in obtaining (2.30). The variation (2.34) of the 3-D Chern-Simons

“anomaly inflow” term (2.33) is equal to the one obtained from the k-wall theory.

15For use below, under center symmetry we have B
(1) ! N�

(1), B(2) ! d�
(1) with

H
d�

(1) 2 2⇡Z, so that

e
i
H
B(2)

is gauge invariant (and, as already mentioned, valued in e
i 2⇡N Z) [59].

16This procedure is equivalent to imposing twisted boundary conditions and has been used in lattice simula-

tions [14]. The k-wall is the minimum action configuration in the background with k units of ’t Hooft flux. A

stack of k 1-walls also obeys the boundary conditions but has higher action (recall the Casimir scaling (2.11)).
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R
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NB
(2)
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NB
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2⇡ = m 2 Z is

nonzero.

Turning on a B
(2) background

H
Mx3x4

B
(2)

N

2⇡ = k corresponds to k units of ’t Hooft flux

in the x3-x4 plane denoted by Mx3x4 (x4 is the compact time direction). In the center broken

high-T phase, this induces a k-wall configuration with worldvolume perpendicular to x
3 and

separating two center-breaking vacua.16 In this background, the 5d CS term reduces to a 3-D

one, with @M3 = M2, the k-wall world volume:

S3�D = i
2⇡k

N
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M3 (@M3=M2)

2NA
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The Zd�

2N variation of S3�D localizes to the k-wall worldvolume and is given by
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N
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where, in the last equality, we turned on p units of ’t Hooft flux in the 12 plane of the k-

wall
R
M2

NB
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2⇡ = p, as in obtaining (2.30). The variation (2.34) of the 3-D Chern-Simons

“anomaly inflow” term (2.33) is equal to the one obtained from the k-wall theory.

15For use below, under center symmetry we have B
(1) ! N�

(1), B(2) ! d�
(1) with

H
d�

(1) 2 2⇡Z, so that

e
i
H
B(2)

is gauge invariant (and, as already mentioned, valued in e
i 2⇡N Z) [59].

16This procedure is equivalent to imposing twisted boundary conditions and has been used in lattice simula-

tions [14]. The k-wall is the minimum action configuration in the background with k units of ’t Hooft flux. A

stack of k 1-walls also obeys the boundary conditions but has higher action (recall the Casimir scaling (2.11)).
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anomaly inflow (wall) from 3D CS :
(2)

(*)

we just argued wall theory matches (*) in the regime of perturbative wall theory

What does the wall worldvolume do at large distances?

-anomaly has to be matched at any scale
-bulk is gapped (confinement in 3D pure YM)
-either fermions on wall remain massless (unlikely, as flow to strong coupling), or as in 
charge-2 Schwinger ⟨ψ+ψ−⟩P ≠ 0 breaking  Z(0)

4 → Z(0)
2

-above is more likely, but not proven, as bulk and DW expected to become strongly coupled 
at about the same scale, the bulk confinement scale ~  g2T
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e�
nhf
kT =

⇣
1� e�

hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find

the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,

all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the

entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the

entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

’t Hooft anomaly matched by

1
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e�
nhf
kT =

⇣
1� e�

hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find

the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,

all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the

entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the

entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal

equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied

magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �2

E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of

your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained

to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument

to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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- nonvanishing fermion condensate on k-wall: at high-T, in chirally restored and 
deconfined phase wall shows  features of low-T phase - perhaps testable on lattice? 

-quarks “deconfined” on k-wall,            also broken, as per the    IR TQFT… ZN
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… promised relation to 4D SYM (in words/pictures):

we take this to predict that, at 



>P   vacuum-th P+1   vacuum-th

W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3

⇥ S
1
� , associated with center symmetry breaking. It also

applies in the zero-T R3
⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is

associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3

⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3
⇥ S1.

While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B
(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S2�D = i
2⇡

N

Z

M2

N'
(0)

2⇡
^
N(da(1) �B

(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a
(1)+�

(1) and B
(2)

! B
(2)+d�

(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�

(1)
2 2⇡Z and

H
B

(2) = 2⇡Z
N

.25 Under a chiral transformation �'
(0) = 2⇡

N
, in the

25Now the a
(1) Wilson loop observable e

i
H
C a(1)

requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance e
i(
H
C a(1)�

R
⌃ B(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a(1)�

H
C B(1)), see footnote 15.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e�
nhf
kT =

⇣
1� e�

hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find

the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,

all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the

entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the

entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

’t Hooft anomaly:

1

PHY294 deferred exam May 2017 Thermal part

Z(0)
2N

J = ei!2NQtop.

�a
↵ ! e

i2⇡
2N �a

↵

�a
↵ ! ei!�a

↵

U(x, µ̂) ! ei
2⇡
N nµ U(x, µ̂)

U(1)R ⇥ Z(1)
N

F (p)
µ⌫ ⇠ TrFµ⌫⌃

p

Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e�
nhf
kT =

⇣
1� e�

hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find

the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,

all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the

entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the

entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal

equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied

magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �2

E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of

your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained

to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument

to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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R  bulk3
quarks “deconfined” on k-wall, 
so bulk confining strings end

[Aharony, Witten 1999;…]

fermion condensate on k-wallk-wall
1

2
z
x

first via holography: F1 on D1 

y

(in high-T phase! “testable” - lattice?)

(one can’t help but wonder whether different worldvolume of high-T center vortex 
reflected in different confinement mechanism in SYM/YM?)

⟨ψ+ψ−⟩P ∼ ei 2πP
N

… promised relation to 4D SYM (in words/pictures):



… finally, some pictures about cold DWs in 4D SYM on small    :R3 × S1

 cold DWs [lines!] between   chirally broken vacuaZ(0)
2N → Z(0)

N

- consider k=1 DWs between neighbouring chirally broken vacua

- 0-form center   and 1-form center    broken on the DWZ(1),S1

N Z(1),R3

N

k=1 DWs have N “vacua” quarks are deconfined on k=1 DWs 

- there are N different BPS walls between neighbouring vacua 
- these walls each carry a fraction of a flux of a quark
- each quark has its flux split between two walls of equal tension
- hence, quarks deconfined on walls

(there are (    ) BPS k walls)k
N



… finally, some pictures about cold DWs in 4D SYM on small    :R3 × S1

for the above k=1 ‘cold’ walls the 2D TQFT is the same as
for the ‘hot’ k=1 walls described above (replace 0-form center with 0-form chiral)

 ‘cold’ wall story under complete control 
= magnetic bion confinement 

R3 × S1

 ‘hot’ wall story needs further (lattice) studies, as strong coupling…



 anomaly matching  implies deconfinement of quarks 
on walls between chirally broken vacua 

magnetic bion mechanism realizes deconfinement using the DW’ 
properties, namely the electric flux carried by them

… finally, some pictures about cold DWs in 4D SYM on small    :R3 × S1
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it also implies that heavy baryons in SYM shaped like       (lattice anyone?)Δ
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this talk: 
- examples of nontrivial DWs, where mechanism of            

- walls in high-T phase exhibit features of low-T phase and v.v.

- related [for sure or perhaps…] to confinement mechanism

anomaly inflow can be described semiclassically

conclusion: 
there is more to these anomalies than we have found out so far


