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Motivation:

class of theories - SU(N)  QCD(adj) nf massless Weyl
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nf=1 super YM
nf=2, 3, 4, 5: asymptotic freedom, conformal, confining?
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nf=2, 3, 4, 5: asymptotic freedom, conformal, confining?

[R  x S : Unsal+… 2008-]all semiclassical at small spatial circle
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Outline of talk: mostly nf=1 super YM

high-T domain walls

low-T domain walls

discrete 0-form/1-form ’t Hooft anomalies imply  
rich domain wall dynamics

k-wall 2d QCD, depends on k,N  
chiral and center breaking  
strings ending on walls 

semiclassical picture of worldvolume 
center breaking and strings ending 
on walls

1.

2.

0.

two semiclassical regimes both R  x S  small S  size: 3 1 1



Outline of talk: mostly nf=1 super YM

high-T domain walls

low-T domain walls

lines

lines

  1 and 2  
are similar

obtain QFT picture of phenomena  
first seen in MQCD or holography              

semiclassical picture of worldvolume 
center breaking and strings ending 
on walls

1.

2.

0. discrete 0-form/1-form ’t Hooft anomalies imply  
rich domain wall dynamics

two semiclassical regimes both R  x S  small S  size: 3 1 1

k-wall 2d QCD, depends on k,N  
chiral and center breaking  
strings ending on walls 



Some further motivation to study domain wall (DW) 
worldvolume theories:

some of these DW worldvolume theories are  
themselves the simplest study cases of QFTs with mixed  
0-form/1-form ’t Hooft anomalies - solvable 2d ex. here

physics on the high-T DW (2d) shares features of  the  
low-T theory, both bulk (4d) and DW (2d/3d)

high-T DW are a semiclassical counterpart to  
“center vortices,” field configurations thought to be 
responsible for area law of Wilson loop at low-T in pure YM 

[Greensite+…; ‘D Elia, de Forcrand;… 1998-] 

(not theoretically controllable; seen in lattice simulations) 
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf
kT =

⇣
1� e

� hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
the probability density p(v), such that p(v)dv determines the probability that a particle has speed
between v and v + dv or, equivalently, the fraction of particles in the gas that have speed between
v and v + dv. Normalize the distribution and determine the most likely speed as well as the r.m.s
speed. Do your findings agree with your intuition from the equipartition theorem?

You may find these integrals useful:
1R
0

dy e

�y = 1,
1R
0

dy y e

�y = 1.
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- closed loops invariant
- winding (F) loops transform

- nontrivial Jacobian
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all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
the probability density p(v), such that p(v)dv determines the probability that a particle has speed
between v and v + dv or, equivalently, the fraction of particles in the gas that have speed between
v and v + dv. Normalize the distribution and determine the most likely speed as well as the r.m.s
speed. Do your findings agree with your intuition from the equipartition theorem?

You may find these integrals useful:
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dy y e
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2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
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(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the
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Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �
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E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
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hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find

0. discrete 0-form/1-form ’t Hooft anomalies

local 1-form Z_N center:

couple plaquette Z_N “two form” gauge field to cancel variation

to study ’t Hooft anomalies, only need topological (flat) background b_p 

‘‘P-plaquettes,’’ and together they identify the position of thin center vortices
known as ‘‘P-vortices.’’ The claim is that this procedure locates center vortices on
the unprojected lattice; P-vortices lie somewhere in the middle of the thick vortices
of the original lattice configuration.

P-vortices, strictly speaking, are not located on the original lattice, but rather on
the corresponding ‘‘dual’’ lattice, whose sites are shifted away from the sites of the
original lattice by half a lattice spacing in the l = 1, … , D directions. In D = 2
dimensions, a plaquette is said to ‘‘dual to’’ (intersected in the middle by) a site of
the dual lattice, located at the center of the plaquette. In three dimensions, a
plaquette is dual to a link on the dual lattice, orthogonal to the plaquette, which
runs through the center of the plaquette. In four dimensions a plaquette is dual to a
plaquette on the dual lattice, which is oriented in a plane orthogonal to original
plaquette; the areas of the two plaquettes intersect at a common midpoint. Sup-
pose, for example, that at a fixed time we have a set of P-plaquettes oriented
orthogonal to the x-axis, as shown in Fig. 6.1. A P-vortex in this timeslice is a line
which pierces the center of each P-plaquette, and carries magnetic flux in the
center of the gauge group. As the vortex line propagates in time, it traces out an
area on the dual lattice, formed by plaquettes which are dual to the P-plaquettes.

The center-projected lattice is a configuration of ZN lattice gauge theory, which
of course is an abelian gauge theory, and has a simple Stokes Law

ZðCÞ ¼
Y

p2SðCÞ
ZðpÞ; ð6:20Þ

where S(C) is any surface bounded by C, and the product is over the plaquettes p
which make up that surface. Let C be a planar loop, and S(C) be the minimal
surface. If there are no P-plaquettes in the minimal surface, then Z(C) = 1. If there

x

y

z t

Fig. 6.1 A set of P-plaquettes, oriented parallel to the y–z plane. A thin vortex in D = 3
dimensions is a line running through the middle of the P-plaquettes, carrying a unit of center flux.
The vortex line is dual to the P-plaquettes and runs along links of the dual lattice. In D = 4
dimensions the thin vortex is a surface on the dual lattice, indicated the dashed lines, formed by
plaquettes which are dual to the P-plaquettes. Note that the sites of the dual lattice are displaced
by half a lattice spacing in time, as well as in the space directions
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2Bµ

B

s, where
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
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1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2Bµ

B

s, where

[’t Hooft; van Baal 1980s]
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf
kT =

⇣
1� e

� hf
kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
the probability density p(v), such that p(v)dv determines the probability that a particle has speed
between v and v + dv or, equivalently, the fraction of particles in the gas that have speed between
v and v + dv. Normalize the distribution and determine the most likely speed as well as the r.m.s
speed. Do your findings agree with your intuition from the equipartition theorem?

You may find these integrals useful:
1R
0

dy e

�y = 1,
1R
0

dy y e

�y = 1.
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Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �
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to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
the probability density p(v), such that p(v)dv determines the probability that a particle has speed
between v and v + dv or, equivalently, the fraction of particles in the gas that have speed between
v and v + dv. Normalize the distribution and determine the most likely speed as well as the r.m.s
speed. Do your findings agree with your intuition from the equipartition theorem?
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of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class
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(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio
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hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
the probability density p(v), such that p(v)dv determines the probability that a particle has speed
between v and v + dv or, equivalently, the fraction of particles in the gas that have speed between
v and v + dv. Normalize the distribution and determine the most likely speed as well as the r.m.s
speed. Do your findings agree with your intuition from the equipartition theorem?
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of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
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Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �
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E ⌘ hE2i� (hEi)2 and use it to determine the ratio
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the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
the probability density p(v), such that p(v)dv determines the probability that a particle has speed
between v and v + dv or, equivalently, the fraction of particles in the gas that have speed between
v and v + dv. Normalize the distribution and determine the most likely speed as well as the r.m.s
speed. Do your findings agree with your intuition from the equipartition theorem?
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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0. discrete 0-form/1-form ’t Hooft anomalies

local 1-form Z_N center:

couple plaquette Z_N “two form” gauge field to cancel variation

to study ’t Hooft anomalies, only need topological (flat) background b_p 

‘‘P-plaquettes,’’ and together they identify the position of thin center vortices
known as ‘‘P-vortices.’’ The claim is that this procedure locates center vortices on
the unprojected lattice; P-vortices lie somewhere in the middle of the thick vortices
of the original lattice configuration.

P-vortices, strictly speaking, are not located on the original lattice, but rather on
the corresponding ‘‘dual’’ lattice, whose sites are shifted away from the sites of the
original lattice by half a lattice spacing in the l = 1, … , D directions. In D = 2
dimensions, a plaquette is said to ‘‘dual to’’ (intersected in the middle by) a site of
the dual lattice, located at the center of the plaquette. In three dimensions, a
plaquette is dual to a link on the dual lattice, orthogonal to the plaquette, which
runs through the center of the plaquette. In four dimensions a plaquette is dual to a
plaquette on the dual lattice, which is oriented in a plane orthogonal to original
plaquette; the areas of the two plaquettes intersect at a common midpoint. Sup-
pose, for example, that at a fixed time we have a set of P-plaquettes oriented
orthogonal to the x-axis, as shown in Fig. 6.1. A P-vortex in this timeslice is a line
which pierces the center of each P-plaquette, and carries magnetic flux in the
center of the gauge group. As the vortex line propagates in time, it traces out an
area on the dual lattice, formed by plaquettes which are dual to the P-plaquettes.

The center-projected lattice is a configuration of ZN lattice gauge theory, which
of course is an abelian gauge theory, and has a simple Stokes Law

ZðCÞ ¼
Y

p2SðCÞ
ZðpÞ; ð6:20Þ

where S(C) is any surface bounded by C, and the product is over the plaquettes p
which make up that surface. Let C be a planar loop, and S(C) be the minimal
surface. If there are no P-plaquettes in the minimal surface, then Z(C) = 1. If there

x

y

z t

Fig. 6.1 A set of P-plaquettes, oriented parallel to the y–z plane. A thin vortex in D = 3
dimensions is a line running through the middle of the P-plaquettes, carrying a unit of center flux.
The vortex line is dual to the P-plaquettes and runs along links of the dual lattice. In D = 4
dimensions the thin vortex is a surface on the dual lattice, indicated the dashed lines, formed by
plaquettes which are dual to the P-plaquettes. Note that the sites of the dual lattice are displaced
by half a lattice spacing in time, as well as in the space directions
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“center vortex” w/ worldvolume in 3,4

on the discrete chiral-(one-form center)  anomaly (II)2

= -

gauging 1-form center:

topological background 
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2Bµ

B

s, where
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the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
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Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
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B

s, where

gauge center = break discrete chiral

’t Hooft anomaly: must match… S_5d… nontrivial IR!

(’t Hooft flux/thin “center vortex”)
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2Bµ

B

s, where

[’t Hooft; van Baal 1980s]



high-T domain walls/inflow, center…1.
low-T SYM: discrete chiral broken, center unbroken; anomaly

saturated in “Goldstone” mode, DWs…
[Witten; Acharya, Vafa; late ‘90s…]



high-T domain walls/inflow, center…1.

high-T SYM: 
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of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
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where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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1
[Gross, Pisarski, Yaffe 1980s]

low-T SYM: discrete chiral broken, center unbroken; anomaly
saturated in “Goldstone” mode, DWs…

Out[!]=
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.

– 5 –
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lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
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a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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1 Introduction and Methods
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
and establishing whatever dualities to spin models and integrable field theories may exist and teach
us more about phase transitions. I further mention some possible future work generalizing to non-flat

2

k-wall (line!) connects 0-th and k-th vacuum:
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component
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and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:
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are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find
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N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.

– 5 –
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
and establishing whatever dualities to spin models and integrable field theories may exist and teach
us more about phase transitions. I further mention some possible future work generalizing to non-flat

2

k-wall (line!) connects 0-th and k-th vacuum:
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component
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4
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and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
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= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)
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are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find
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N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
and establishing whatever dualities to spin models and integrable field theories may exist and teach
us more about phase transitions. I further mention some possible future work generalizing to non-flat

2
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class
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and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:
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the expectation value of the fundamental Polyakov loop at these vacua to find
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where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.

– 5 –

1

low-T SYM: discrete chiral broken, center unbroken; anomaly
saturated in “Goldstone” mode, DWs…

Out[!]=

Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.
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The case of supersymmetry will be looked into in more detail being the one previous researchers
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charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading
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4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
and establishing whatever dualities to spin models and integrable field theories may exist and teach
us more about phase transitions. I further mention some possible future work generalizing to non-flat

2

k-wall (line!) connects 0-th and k-th vacuum:



high-T domain walls/inflow, center…1.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class
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and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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low-T SYM: discrete chiral broken, center unbroken; anomaly
saturated in “Goldstone” mode, DWs…
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
and establishing whatever dualities to spin models and integrable field theories may exist and teach
us more about phase transitions. I further mention some possible future work generalizing to non-flat
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component
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4
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and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:
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are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find
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where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.

– 5 –

by Polyakov loop vev:

To us, the fact of crucial importance is that in the high-T limit, the stable9 k-wall profile
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where A is the wall area, and the boundary conditions (2.9) translate into q(z0 ! �1) = 0

and q(z0 ! 1) = 1. From (2.11, 2.10) it is easily seen that the k-wall tension follows the

Casimir scaling S
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S1�wall
= k(N�k)

N�1

, while its width ⇠ 1
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is independent of k.

Two comments are now in order. First, the k-wall (2.7) interpolates between the two
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It is then easily seen that as one crosses the k-wall, the trace of the Polyakov loop interpolates
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DW (k)
4 (�1) = N and tr ei�A

DW (k)
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N , as in (2.5), hence the k-wall

obeys the desired boundary conditions.

9There exists a number of metastable DWs which can be numerically found for specific values of N .
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
and establishing whatever dualities to spin models and integrable field theories may exist and teach
us more about phase transitions. I further mention some possible future work generalizing to non-flat
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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by Polyakov loop vev:

To us, the fact of crucial importance is that in the high-T limit, the stable9 k-wall profile

takes the form

A
DW (k)
4

(z) = TQ(k)(z)H̃N�k , (2.7)

where H̃N�k denotes the Cartan generator

H̃N�k =
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kN(N � k)
diag

264k, k, ..., k| {z }
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, k �N, k �N, ..., k �N| {z }
k times

375 , (2.8)

see also (A.8) in Appendix A. The wall profile function Q(k)(z) obeys the boundary conditions

Q(k)(z ! �1) = 0, Q(k)(z ! +1) = �2⇡

r
k(N � k)

N
. (2.9)

To obtain the solution of the k-wall profile, we substitute the ansatz (2.7) into (2.2), taking

nf = 1, and use the change of variables

q(z) ⌘ � 1

2⇡

s
N

k(N � k)
Q(k)(z) , z0 ⌘ T

p
g2N

⇡2

z , (2.10)

along with the fact that the (N -k)-th component of the roots that contribute to the potential

V (A
4

) is given by �(N�k) =
q

N
k(N�k) . Then, the k-wall action (nf = 1) reads

Sk�wall

= 4AT 2
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,(2.11)

where A is the wall area, and the boundary conditions (2.9) translate into q(z0 ! �1) = 0

and q(z0 ! 1) = 1. From (2.11, 2.10) it is easily seen that the k-wall tension follows the

Casimir scaling S
k�wall

S1�wall
= k(N�k)

N�1

, while its width ⇠ 1

T
p

g2N
is independent of k.

Two comments are now in order. First, the k-wall (2.7) interpolates between the two

vacua

A
DW (k)
4

(�1) = diag [0, 0, ..., 0] , (2.12)

A
DW (k)
4

(+1) = 2⇡Tdiag

2664� k

N
,� k

N
, ...,� k

N| {z }
N�k times

, 1� k

N
, 1� k

N
, ..., 1� k

N| {z }
k times

3775 .

It is then easily seen that as one crosses the k-wall, the trace of the Polyakov loop interpolates

between tr ei�A
DW (k)
4 (�1) = N and tr ei�A

DW (k)
4 (1) = Ne�i 2⇡k

N , as in (2.5), hence the k-wall

obeys the desired boundary conditions.

9There exists a number of metastable DWs which can be numerically found for specific values of N .
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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by Polyakov loop vev:

To us, the fact of crucial importance is that in the high-T limit, the stable9 k-wall profile

takes the form

A
DW (k)
4

(z) = TQ(k)(z)H̃N�k , (2.7)

where H̃N�k denotes the Cartan generator

H̃N�k =
1p

kN(N � k)
diag

264k, k, ..., k| {z }
N�k times

, k �N, k �N, ..., k �N| {z }
k times

375 , (2.8)

see also (A.8) in Appendix A. The wall profile function Q(k)(z) obeys the boundary conditions

Q(k)(z ! �1) = 0, Q(k)(z ! +1) = �2⇡

r
k(N � k)

N
. (2.9)

To obtain the solution of the k-wall profile, we substitute the ansatz (2.7) into (2.2), taking

nf = 1, and use the change of variables

q(z) ⌘ � 1

2⇡

s
N

k(N � k)
Q(k)(z) , z0 ⌘ T

p
g2N

⇡2

z , (2.10)

along with the fact that the (N -k)-th component of the roots that contribute to the potential

V (A
4

) is given by �(N�k) =
q

N
k(N�k) . Then, the k-wall action (nf = 1) reads

Sk�wall

= 4AT 2

(N � k)kp
g2N

Z 1

�1
dz0

(✓
@q(z0)

@z0

◆
2

+
X
n=1

�1 + (�1)n

n4

cos
�
2⇡nq(z0)

�)
,(2.11)

where A is the wall area, and the boundary conditions (2.9) translate into q(z0 ! �1) = 0

and q(z0 ! 1) = 1. From (2.11, 2.10) it is easily seen that the k-wall tension follows the

Casimir scaling S
k�wall

S1�wall
= k(N�k)

N�1

, while its width ⇠ 1

T
p

g2N
is independent of k.

Two comments are now in order. First, the k-wall (2.7) interpolates between the two

vacua

A
DW (k)
4

(�1) = diag [0, 0, ..., 0] , (2.12)

A
DW (k)
4

(+1) = 2⇡Tdiag

2664� k

N
,� k

N
, ...,� k

N| {z }
N�k times

, 1� k

N
, 1� k

N
, ..., 1� k

N| {z }
k times

3775 .

It is then easily seen that as one crosses the k-wall, the trace of the Polyakov loop interpolates

between tr ei�A
DW (k)
4 (�1) = N and tr ei�A

DW (k)
4 (1) = Ne�i 2⇡k

N , as in (2.5), hence the k-wall

obeys the desired boundary conditions.

9There exists a number of metastable DWs which can be numerically found for specific values of N .
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Second, as the form of the DW profile (2.7) shows, the SU(N) group breaks to U(1) ⇥
SU(k)⇥ SU(N � k) on the k-wall. The mass of the o↵-diagonal gauge bosons on the k-wall

will be seen, see the following Section 2.3 and Appendix B, to be of order T
q

N
k(N�k) . The

massless gauge bosons are localized near the DW due to the fact that the bulk gauge theory

has a mass gap ⇠ g2NT due to 3-D confinement in the bulk. Thus, there is an unbroken

U(1)⇥ SU(k)⇥ SU(N � k) 2-D gauge theory on the k-wall worldvolume. Its gauge coupling

is not precisely calculable since the mechanism responsible for the localization of the massless

gauge bosons on the wall is nonperturbative, due to bulk confinement, similar to [44], see [15]

for discussion. Note that as the bulk confinement scale (g2NT )�1 is much larger than the

DW width (T
p
g2N)�1 the semiclassical treatment of the DW is still valid.

2.3 Fermions and the k-wall worldvolume theory

The k-wall worldvolume theory, apart form the massless U(1) ⇥ SU(N � k) ⇥ SU(k) gauge

fields, also involves the normalizable fermion zero modes in the k-wall background. Thus, we

now turn to fermions on the k-th DW.

We begin with introducing some necessary notation; more details are given in Appendix

A. The unbroken U(1) generator was already given in (2.8) and satisfies tr
h
H̃N�kH̃N�k

i
= 1

(we use the tilde to stress that this is not one of the SU(N) generators given in (A.1)).

Further, we break the Lie-algebra generators of SU(N) as follows10

T =

"
T a
(N�k)⇥(N�k) E� (N�k)⇥k

E�� k⇥(N�k) T A
k⇥k

#
, (2.13)

where the subscript indicates the matrix dimensionality. We expand the fermions and gauge

fields using the basis of U(1)⇥ SU(N � k)⇥ SU(k) generators:

� = �N�kH̃N�k + �aT a + �AT A +
X
CC0

��
CC

0E�
CC

0 + ���
CC

0E��
C

0
C

, (2.14)

Aµ = AN�k
µ H̃N�k +Aa

µT a +AA
µT A +

X
CC

0

A
�
CC

0
µ E�

CC

0 +A
��

CC

0
µ E��

CC

0 , (2.15)

where the sums over C and C 0 run over 1, ..., N � k and 1, ..., k, respectively; for brevity, the

ranges of these sum as well as those over a (the SU(N � k) generators) and A (the SU(k)

generators) are not explicitly shown.

We now note that AN�k
µ includes the k-wall background (2.7). The first commutation

relation in (A.13) then implies that the “W -bosons” A
��

CC

0
µ (the gauge field component along

the broken generators E±�
CC

0 ) obtain mass of order T�(N�k) = T
q

N
k(N�k) on the k-wall, as

already noted. Thus, we ignore the W -boson fields in what follows. Further, the behavior of

the fermions is determined by their covariant derivative Dµ� = @µ� � i[Aµ,�]. From (2.14)

10For brevity, omitting H̃N�k of (2.8), which commutes with the SU(N�k) and SU(k) hermitean generators

T a and T A.
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on k-wall: SU(N) —> U(1) x SU(N-k) x SU(k)

Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find
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a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
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= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:
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ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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will be seen, see the following Section 2.3 and Appendix B, to be of order T
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massless gauge bosons are localized near the DW due to the fact that the bulk gauge theory

has a mass gap ⇠ g2NT due to 3-D confinement in the bulk. Thus, there is an unbroken

U(1)⇥ SU(k)⇥ SU(N � k) 2-D gauge theory on the k-wall worldvolume. Its gauge coupling

is not precisely calculable since the mechanism responsible for the localization of the massless

gauge bosons on the wall is nonperturbative, due to bulk confinement, similar to [44], see [15]

for discussion. Note that as the bulk confinement scale (g2NT )�1 is much larger than the

DW width (T
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g2N)�1 the semiclassical treatment of the DW is still valid.

2.3 Fermions and the k-wall worldvolume theory

The k-wall worldvolume theory, apart form the massless U(1) ⇥ SU(N � k) ⇥ SU(k) gauge

fields, also involves the normalizable fermion zero modes in the k-wall background. Thus, we

now turn to fermions on the k-th DW.

We begin with introducing some necessary notation; more details are given in Appendix

A. The unbroken U(1) generator was already given in (2.8) and satisfies tr
h
H̃N�kH̃N�k

i
= 1

(we use the tilde to stress that this is not one of the SU(N) generators given in (A.1)).

Further, we break the Lie-algebra generators of SU(N) as follows10

T =

"
T a
(N�k)⇥(N�k) E� (N�k)⇥k

E�� k⇥(N�k) T A
k⇥k

#
, (2.13)

where the subscript indicates the matrix dimensionality. We expand the fermions and gauge

fields using the basis of U(1)⇥ SU(N � k)⇥ SU(k) generators:

� = �N�kH̃N�k + �aT a + �AT A +
X
CC0

��
CC

0E�
CC

0 + ���
CC

0E��
C

0
C

, (2.14)

Aµ = AN�k
µ H̃N�k +Aa

µT a +AA
µT A +

X
CC

0

A
�
CC

0
µ E�

CC

0 +A
��

CC

0
µ E��

CC

0 , (2.15)

where the sums over C and C 0 run over 1, ..., N � k and 1, ..., k, respectively; for brevity, the

ranges of these sum as well as those over a (the SU(N � k) generators) and A (the SU(k)

generators) are not explicitly shown.

We now note that AN�k
µ includes the k-wall background (2.7). The first commutation

relation in (A.13) then implies that the “W -bosons” A
��

CC

0
µ (the gauge field component along

the broken generators E±�
CC

0 ) obtain mass of order T�(N�k) = T
q

N
k(N�k) on the k-wall, as

already noted. Thus, we ignore the W -boson fields in what follows. Further, the behavior of

the fermions is determined by their covariant derivative Dµ� = @µ� � i[Aµ,�]. From (2.14)

10For brevity, omitting H̃N�k of (2.8), which commutes with the SU(N�k) and SU(k) hermitean generators

T a and T A.
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Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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by Polyakov loop vev:

on k-wall: SU(N) —> U(1) x SU(N-k) x SU(k)Second, as the form of the DW profile (2.7) shows, the SU(N) group breaks to U(1) ⇥
SU(k)⇥ SU(N � k) on the k-wall. The mass of the o↵-diagonal gauge bosons on the k-wall

will be seen, see the following Section 2.3 and Appendix B, to be of order T
q

N
k(N�k) . The

massless gauge bosons are localized near the DW due to the fact that the bulk gauge theory

has a mass gap ⇠ g2NT due to 3-D confinement in the bulk. Thus, there is an unbroken

U(1)⇥ SU(k)⇥ SU(N � k) 2-D gauge theory on the k-wall worldvolume. Its gauge coupling

is not precisely calculable since the mechanism responsible for the localization of the massless

gauge bosons on the wall is nonperturbative, due to bulk confinement, similar to [44], see [15]

for discussion. Note that as the bulk confinement scale (g2NT )�1 is much larger than the

DW width (T
p
g2N)�1 the semiclassical treatment of the DW is still valid.

2.3 Fermions and the k-wall worldvolume theory

The k-wall worldvolume theory, apart form the massless U(1) ⇥ SU(N � k) ⇥ SU(k) gauge

fields, also involves the normalizable fermion zero modes in the k-wall background. Thus, we

now turn to fermions on the k-th DW.

We begin with introducing some necessary notation; more details are given in Appendix

A. The unbroken U(1) generator was already given in (2.8) and satisfies tr
h
H̃N�kH̃N�k

i
= 1

(we use the tilde to stress that this is not one of the SU(N) generators given in (A.1)).

Further, we break the Lie-algebra generators of SU(N) as follows10

T =

"
T a
(N�k)⇥(N�k) E� (N�k)⇥k

E�� k⇥(N�k) T A
k⇥k

#
, (2.13)

where the subscript indicates the matrix dimensionality. We expand the fermions and gauge

fields using the basis of U(1)⇥ SU(N � k)⇥ SU(k) generators:

� = �N�kH̃N�k + �aT a + �AT A +
X
CC0

��
CC

0E�
CC

0 + ���
CC

0E��
C

0
C

, (2.14)

Aµ = AN�k
µ H̃N�k +Aa

µT a +AA
µT A +

X
CC

0

A
�
CC

0
µ E�

CC

0 +A
��

CC

0
µ E��

CC

0 , (2.15)

where the sums over C and C 0 run over 1, ..., N � k and 1, ..., k, respectively; for brevity, the

ranges of these sum as well as those over a (the SU(N � k) generators) and A (the SU(k)

generators) are not explicitly shown.

We now note that AN�k
µ includes the k-wall background (2.7). The first commutation

relation in (A.13) then implies that the “W -bosons” A
��

CC

0
µ (the gauge field component along

the broken generators E±�
CC

0 ) obtain mass of order T�(N�k) = T
q

N
k(N�k) on the k-wall, as

already noted. Thus, we ignore the W -boson fields in what follows. Further, the behavior of

the fermions is determined by their covariant derivative Dµ� = @µ� � i[Aµ,�]. From (2.14)

10For brevity, omitting H̃N�k of (2.8), which commutes with the SU(N�k) and SU(k) hermitean generators

T a and T A.
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adjoint fermions: Matsubara mass, except some not 
commuting with wall profile

To us, the fact of crucial importance is that in the high-T limit, the stable9 k-wall profile

takes the form

A
DW (k)
4

(z) = TQ(k)(z)H̃N�k , (2.7)

where H̃N�k denotes the Cartan generator

H̃N�k =
1p

kN(N � k)
diag

264k, k, ..., k| {z }
N�k times

, k �N, k �N, ..., k �N| {z }
k times

375 , (2.8)

see also (A.8) in Appendix A. The wall profile function Q(k)(z) obeys the boundary conditions

Q(k)(z ! �1) = 0, Q(k)(z ! +1) = �2⇡

r
k(N � k)

N
. (2.9)

To obtain the solution of the k-wall profile, we substitute the ansatz (2.7) into (2.2), taking

nf = 1, and use the change of variables

q(z) ⌘ � 1

2⇡

s
N

k(N � k)
Q(k)(z) , z0 ⌘ T

p
g2N

⇡2

z , (2.10)

along with the fact that the (N -k)-th component of the roots that contribute to the potential

V (A
4

) is given by �(N�k) =
q

N
k(N�k) . Then, the k-wall action (nf = 1) reads

Sk�wall

= 4AT 2

(N � k)kp
g2N

Z 1

�1
dz0

(✓
@q(z0)

@z0

◆
2

+
X
n=1

�1 + (�1)n

n4

cos
�
2⇡nq(z0)

�)
,(2.11)

where A is the wall area, and the boundary conditions (2.9) translate into q(z0 ! �1) = 0

and q(z0 ! 1) = 1. From (2.11, 2.10) it is easily seen that the k-wall tension follows the

Casimir scaling S
k�wall

S1�wall
= k(N�k)

N�1

, while its width ⇠ 1

T
p

g2N
is independent of k.

Two comments are now in order. First, the k-wall (2.7) interpolates between the two

vacua

A
DW (k)
4

(�1) = diag [0, 0, ..., 0] , (2.12)

A
DW (k)
4

(+1) = 2⇡Tdiag

2664� k

N
,� k

N
, ...,� k

N| {z }
N�k times

, 1� k

N
, 1� k

N
, ..., 1� k

N| {z }
k times

3775 .

It is then easily seen that as one crosses the k-wall, the trace of the Polyakov loop interpolates

between tr ei�A
DW (k)
4 (�1) = N and tr ei�A

DW (k)
4 (1) = Ne�i 2⇡k

N , as in (2.5), hence the k-wall

obeys the desired boundary conditions.

9There exists a number of metastable DWs which can be numerically found for specific values of N .
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

where i, j = 1, 2, 3 and V (A
4

) is the one-loop e↵ective potential for the Matsubara zero mode

of the x4-component of the gauge field written in terms of its Cartan subalgebra component

A
4

:

V (A
4

) =
4T 4

⇡2

X
�+

X
n=1

�1 + nf (�1)n

n4

cos


nA

4

· �
T

�
, (2.3)

and the sum is over all positive roots �
+

(to not be confused with the inverse temperature

� = 1/T ). Our group theory conventions are detailed in Appendix A. In the rest of this paper

we consider SYM (i.e., nf = 1), while we discuss nf > 1 in Section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

hA
4

i
(a)� ⌘ �

0

= 2⇡!a, a = 0, 1, 2, ..., N � 1 , (2.4)

where !
0

⌘ 0 and !
1

, ...,!N�1

are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
⇥
ei�0·H⇤ ����

�0=2⇡!
a

= Ne�i 2⇡a

N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation ⌫b, using the formulae given in Section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry is

broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua �
0

= 0 and �
0

= 2⇡!k, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4

(z) = T�DW (z), �DW (z ! �1) = 0, �DW (z ! +1) = 2⇡!k, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile �DW (z), while it gets restored at the wall boundaries |z| ! 1. A fundamental DW

separates two distinct vacua, and hence, there are CN
2

= N(N�1)

2

fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high temper-

ature limit �⇤QCD ⌧ 1, where higher loop e↵ects have been also included [3–10], and on the

lattice at lower temperatures [11]. In particular, the k-wall profiles and the k-wall tensions

have been studied in theories with massless adjoint fermions and scalars, such as N = 4

super-Yang-Mills [8], and two-index fermions [10].

8These vacua lie at the vertices of the a�ne Weyl chamber, which is defined via the inequalities ↵
a

·� > 0

for a = 1, 2, ..., N�1 and �↵0 ·� < 2⇡, where ↵0 is the lowest, or a�ne, root. The SU(N) gauge symmetry is

unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3) and a tetrahedron

for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the Weyl chamber.
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

2d QCD gauge group 

high-T domain walls/inflow, center…

anomalous. There is no 2-D mixed U(1)R-SU(N � k) or U(1)R-SU(k) anomaly, but only a

U(1)R-U(1) anomaly. Under a U(1)R transformation,  ± ! ei� ±, the 2-D fermion measure,

denoted by D , changes as11

D ! J D , where J ⌘ exp

"
i 2�(N � k)k �(N�k)

I
FN�k
12

dx1dx2

2⇡

#
, (2.17)

where
H FN�k

12 dx1dx2

2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
1

] and x2 2 (0, L
2

]).

In order to determine the anomaly-free chiral symmetry, we need to understand the U(1)

flux quantization. This entails understanding the boundary conditions for the U(1)⇥SU(N�
k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,

we show that in the SU(N) theory the U(1) flux is quantized in units of �(N�k)I
FN�k
12

dx1dx2

2⇡
= �(N�k) n, n 2 Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
1

⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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– W.B. Yeats (The Second Coming)
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anomalous. There is no 2-D mixed U(1)R-SU(N � k) or U(1)R-SU(k) anomaly, but only a

U(1)R-U(1) anomaly. Under a U(1)R transformation,  ± ! ei� ±, the 2-D fermion measure,

denoted by D , changes as11

D ! J D , where J ⌘ exp

"
i 2�(N � k)k �(N�k)

I
FN�k
12

dx1dx2

2⇡

#
, (2.17)

where
H FN�k

12 dx1dx2

2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
1

] and x2 2 (0, L
2

]).

In order to determine the anomaly-free chiral symmetry, we need to understand the U(1)

flux quantization. This entails understanding the boundary conditions for the U(1)⇥SU(N�
k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,

we show that in the SU(N) theory the U(1) flux is quantized in units of �(N�k)I
FN�k
12

dx1dx2

2⇡
= �(N�k) n, n 2 Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
1

⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

2d QCD gauge group 
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anomalous. There is no 2-D mixed U(1)R-SU(N � k) or U(1)R-SU(k) anomaly, but only a

U(1)R-U(1) anomaly. Under a U(1)R transformation,  ± ! ei� ±, the 2-D fermion measure,

denoted by D , changes as11

D ! J D , where J ⌘ exp

"
i 2�(N � k)k �(N�k)

I
FN�k
12

dx1dx2

2⇡

#
, (2.17)

where
H FN�k

12 dx1dx2

2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
1

] and x2 2 (0, L
2

]).

In order to determine the anomaly-free chiral symmetry, we need to understand the U(1)

flux quantization. This entails understanding the boundary conditions for the U(1)⇥SU(N�
k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,

we show that in the SU(N) theory the U(1) flux is quantized in units of �(N�k)I
FN�k
12

dx1dx2

2⇡
= �(N�k) n, n 2 Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
1

⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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U(1) flux quantization?

study b.c. on T^2, or 
constant flux backgrd

anomalous. There is no 2-D mixed U(1)R-SU(N � k) or U(1)R-SU(k) anomaly, but only a

U(1)R-U(1) anomaly. Under a U(1)R transformation,  ± ! ei� ±, the 2-D fermion measure,

denoted by D , changes as11

D ! J D , where J ⌘ exp

"
i 2�(N � k)k �(N�k)

I
FN�k
12

dx1dx2

2⇡

#
, (2.17)

where
H FN�k

12 dx1dx2

2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
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k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,
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The SU(N � k)–singlet “baryons” (q
1
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Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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where
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2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
1

] and x2 2 (0, L
2

]).

In order to determine the anomaly-free chiral symmetry, we need to understand the U(1)

flux quantization. This entails understanding the boundary conditions for the U(1)⇥SU(N�
k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,

we show that in the SU(N) theory the U(1) flux is quantized in units of �(N�k)I
FN�k
12

dx1dx2

2⇡
= �(N�k) n, n 2 Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
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⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
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SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
1

⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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2⇡
= k
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N
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N

pWq1

htr 
+

 �i ⇠ N
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�

htr 
+

 �i 6= 0

J
Z

(0)
2N

= exp

"
i
2⇡

2N
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I
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dx1dx2

2⇡

#
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N

k

{ ABC}

Z(0)

2N ! Z(0)

2

Contents

1 Introduction and Methods 3

2 Torus Compactifications and 2D-4D gauge duality 4
2.1 Torus compactificatied theories: Perturbative aspects . . . . . . . . . . . . . . . . . . . . . 5
2.2 Torus compactified theories: Non-perturbative aspects . . . . . . . . . . . . . . . . . . . . 6

3 The Case of SUSY (nf = 1) and our new exotic Coulomb Gas 6
3.1 The e↵ective potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The partition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2



high-T domain walls/inflow, center…1.

high-T SYM: 

1

PHY294 deferred exam May 2017 Thermal part

T � ⇤

Z

(0)
2N

J = e

i!2NQ

top.

Q
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J
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n12n34
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�

a
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�
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! e

i!

�

a
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i
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N

n

µ

U(x, µ̂)

U(1)
R

⇥ Z

(1)
N

F

(p)
µ⌫

⇠ TrF
µ⌫

⌃p

Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

1
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Z

(0)
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J = e

i!2NQ
top.

�

a
↵ ! e

i2⇡
2N
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a
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�

a
↵ ! e
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�

a
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U(x, µ̂) ! e

i 2⇡
N

n
µ

U(x, µ̂)

U(1)R ⇥ Z

(1)
N

F

(p)
µ⌫ ⇠ TrFµ⌫⌃

p

Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find

discrete chiral already seen

2d QCD gauge group  U(1) x SU(N-k) x SU(k)

anomalous. There is no 2-D mixed U(1)R-SU(N � k) or U(1)R-SU(k) anomaly, but only a

U(1)R-U(1) anomaly. Under a U(1)R transformation,  ± ! ei� ±, the 2-D fermion measure,

denoted by D , changes as11

D ! J D , where J ⌘ exp

"
i 2�(N � k)k �(N�k)

I
FN�k
12

dx1dx2

2⇡

#
, (2.17)

where
H FN�k

12 dx1dx2

2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
1

] and x2 2 (0, L
2

]).

In order to determine the anomaly-free chiral symmetry, we need to understand the U(1)

flux quantization. This entails understanding the boundary conditions for the U(1)⇥SU(N�
k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,

we show that in the SU(N) theory the U(1) flux is quantized in units of �(N�k)I
FN�k
12

dx1dx2

2⇡
= �(N�k) n, n 2 Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
1

⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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e.g.

and the fact that the DW background commutes with H̃N�k, T a, and T A, it follows that the

fields �N�k, �a, and �A do not couple to the DW. These fields would remain massless, were

it not for the antiperiodic boundary conditions associated with the compact Euclidean time

direction, which give them a 3-D mass of order T . Since they do not couple to the DW, they

remain massive in the k-wall background and we also ignore them in what follows.

fermion field  
+

 �
2-D chirality left mover right mover

gauge U(1) �(N�k) ⌘
q

N
k(N�k) ��(N�k)

gauge SU(k) ⇤ ⇤
gauge SU(N � k) ⇤ ⇤

global U(1)R 1 1

Table 1. The massless fermions of the k-wall worldvolume theory and their charges under the
U(1) ⇥ SU(N � k) ⇥ SU(k) gauge group and the bulk global U(1)R chiral symmetry. Opposite
chirality fermions are in conjugate representations, thus the 2-D k-wall theory is axial, while the bulk
U(1)R chiral symmetry is vectorlike on the 2-D worldolume. A Z2N subgroup of U(1)R is anomaly
free on the k-wall worldvolume, as in the 4-D bulk, see (2.19, 2.20).

Since, as explained above, all other fermions are massive, the object of our interest is the

coupling of the zero modes of the ��CC

0 fermions to the massless gauge fields on the wall.

The detailed derivation is given in Appendix B. Here we just summarize the resulting k-wall

worldvolume theory: it has massless U(1) ⇥ SU(N � k) ⇥ SU(k) gauge fields and fermions

 
+

and  � with quantum numbers given in Table 1. The matter part of the Lagrangian of

the k-wall theory can be written as:

Lk�wall

= i tr  ̄
+

(@� +

� i�(N�k)AN�k
�  

+

� iAa
�T a  

+

+ i 
+

AA
�T A)

+ i tr  ̄�(@+ � + i�(N�k)AN�k
+

 � � iAA
+

T A  � + i � Aa
+

T a) , (2.16)

where  
+

is represented as a (N � k) ⇥ k matrix and  � as a k ⇥ (N � k) matrix. The

SU(N � k) and SU(k) generators T a, T A are the ones from (2.13) and @± = @
1

± i@
2

.

In addition to the zero-form symmetries discussed above and shown in Table 1, the k-wall

theory inherits the reduction of the Z(1)

N 1-form global symmetry of the underlying SU(N)

bulk theory to the 2-D worldvolume. Its action on the transition functions for the gauge fields

on the torus is given in Appendix C.

2.4 Anomalies on the k-wall and anomaly inflow

The two-dimensional anomaly-free axial theory (2.16) has a classical global (vectorlike) U(1)R
symmetry, where  ± have the same charge, as per Table 1. This symmetry is inherited from

the classical bulk chiral U(1)R symmetry. Recall that in the 4-D bulk SU(N) theory the

chiral anomaly breaks U(1)R ! Zd�
2N . Similarly, the 2-D vectorlike global U(1)R of Table 1 is
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Gauge theories and Duality
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

discrete chiral already seen

anomalous. There is no 2-D mixed U(1)R-SU(N � k) or U(1)R-SU(k) anomaly, but only a

U(1)R-U(1) anomaly. Under a U(1)R transformation,  ± ! ei� ±, the 2-D fermion measure,

denoted by D , changes as11

D ! J D , where J ⌘ exp

"
i 2�(N � k)k �(N�k)

I
FN�k
12

dx1dx2

2⇡

#
, (2.17)

where
H FN�k

12 dx1dx2

2⇡ is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 2 (0, L
1

] and x2 2 (0, L
2

]).

In order to determine the anomaly-free chiral symmetry, we need to understand the U(1)

flux quantization. This entails understanding the boundary conditions for the U(1)⇥SU(N�
k)⇥SU(k) 2 SU(N) gauge bundle on the torus, a question addressed in Appendix C. There,

we show that in the SU(N) theory the U(1) flux is quantized in units of �(N�k)I
FN�k
12

dx1dx2

2⇡
= �(N�k) n, n 2 Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)⇥SU(N � k)⇥SU(k)

gauge group: q
1

⇠ ( k
N �

(N�k),⇤,1) and q
2

⇠ ((k�N
N )�(N�k),1,⇤), as seen from (2.8, 2.13).

The SU(N � k)–singlet “baryons” (q
1

)N�k and their SU(k) counterparts (q
2

)k both have

the same absolute value of U(1) charge 1/�(N�k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/�(N�k). The condition (2.18) is also

discussed in Section 2.4.1 using constant flux backgrounds and derived from considering the

boundary conditions on the 2-D torus in Appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian of

a U(1)R transformation is

J = e2i�Nn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all

n, hence � = 2⇡
2N gives a unit Jacobian and there is an anomaly free Zd�

2N 2 U(1)R discrete

symmetry on the k-wall worldvolume—inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zd�
2N :  ± ! ei

⇡

N  ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following Section

2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular constant

flux background; a more formal derivation is in Appendix C. The reader interested in the

mixed zero-form/one-form anomaly can proceed to Section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers  + and  � have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N � k)k factor counts the number of

charged fermion components.
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part of SU(N)center symmetry? e.g.

gauging - unit ’t Hooft flux in k-wall worldvolume 
= k units of fractional U(1) flux

and the fact that the DW background commutes with H̃N�k, T a, and T A, it follows that the

fields �N�k, �a, and �A do not couple to the DW. These fields would remain massless, were

it not for the antiperiodic boundary conditions associated with the compact Euclidean time

direction, which give them a 3-D mass of order T . Since they do not couple to the DW, they

remain massive in the k-wall background and we also ignore them in what follows.

fermion field  
+

 �
2-D chirality left mover right mover

gauge U(1) �(N�k) ⌘
q

N
k(N�k) ��(N�k)

gauge SU(k) ⇤ ⇤
gauge SU(N � k) ⇤ ⇤

global U(1)R 1 1

Table 1. The massless fermions of the k-wall worldvolume theory and their charges under the
U(1) ⇥ SU(N � k) ⇥ SU(k) gauge group and the bulk global U(1)R chiral symmetry. Opposite
chirality fermions are in conjugate representations, thus the 2-D k-wall theory is axial, while the bulk
U(1)R chiral symmetry is vectorlike on the 2-D worldolume. A Z2N subgroup of U(1)R is anomaly
free on the k-wall worldvolume, as in the 4-D bulk, see (2.19, 2.20).

Since, as explained above, all other fermions are massive, the object of our interest is the

coupling of the zero modes of the ��CC

0 fermions to the massless gauge fields on the wall.

The detailed derivation is given in Appendix B. Here we just summarize the resulting k-wall

worldvolume theory: it has massless U(1) ⇥ SU(N � k) ⇥ SU(k) gauge fields and fermions

 
+

and  � with quantum numbers given in Table 1. The matter part of the Lagrangian of

the k-wall theory can be written as:

Lk�wall

= i tr  ̄
+

(@� +

� i�(N�k)AN�k
�  

+

� iAa
�T a  

+

+ i 
+

AA
�T A)

+ i tr  ̄�(@+ � + i�(N�k)AN�k
+

 � � iAA
+

T A  � + i � Aa
+

T a) , (2.16)

where  
+

is represented as a (N � k) ⇥ k matrix and  � as a k ⇥ (N � k) matrix. The

SU(N � k) and SU(k) generators T a, T A are the ones from (2.13) and @± = @
1

± i@
2

.

In addition to the zero-form symmetries discussed above and shown in Table 1, the k-wall

theory inherits the reduction of the Z(1)

N 1-form global symmetry of the underlying SU(N)

bulk theory to the 2-D worldvolume. Its action on the transition functions for the gauge fields

on the torus is given in Appendix C.

2.4 Anomalies on the k-wall and anomaly inflow

The two-dimensional anomaly-free axial theory (2.16) has a classical global (vectorlike) U(1)R
symmetry, where  ± have the same charge, as per Table 1. This symmetry is inherited from

the classical bulk chiral U(1)R symmetry. Recall that in the 4-D bulk SU(N) theory the

chiral anomaly breaks U(1)R ! Zd�
2N . Similarly, the 2-D vectorlike global U(1)R of Table 1 is
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
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n=0
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�nhf

kT =
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� hf
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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The proposed thesis project outlined here is on general toroidal compactified QCD-like gauge theories,
the dualities they have to physical systems or models like generalized Coulomb gases, multi-frequency
sine Gordon models, pertrubed XY spin models, and other lattice models, and the interesting physics
and confining/deconfining phase transitions that may occur. The motivation is in studying the problem
of confinement in 4D by studying easier 2D theories arising after compactification, however the moti-
vation is specifically in understanding the underlying dynamics of particles and how they bring on the
mechanism responsible for confinement. Work has been done by simple circle-compactified theories on
R3 ⇥ S1 and it seems very interesting to consider more compactifications and how the dual Coulomb
gas is a↵ected. In the case of thermalized R3 ⇥ S1 we are adding a small temperature and so a second
cycle of length � = 1/T . Work done thus far by colleagues and myself has indeed shown a very exotic
Coulomb gas of scalar, magnetic and electric charges, with W bosons of both scalar and electric charges,
where scalar charges attract like charges! These types of exotic gases are the subject of my PhD thesis
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

2d QCD gauge group 

high-T domain walls/inflow, center…1.
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(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �
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E ⌘ hE2i� (hEi)2 and use it to determine the ratio
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the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.
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’t Hooft anomaly on worldvolume
as implied by anomaly inflow 

Consider now the fate of an anomaly-free Z
2N chiral symmetry transformation (2.20).

The measure transforms with a Jacobian (2.17)

J = ei
2⇡
N

k(N�k)�(N�k)↵ , (2.29)

where ↵ denotes the U(1) flux, ↵ =
H FN�k

12 dx1dx2

2⇡ , see eqn. (C.17). The solution for ↵ for

a general nonzero ’t Hooft flux14 p ⌘ pN , from (C.13), is given by ↵�(N�k)k(N � k) =

p(N � k)�NpN�k �N(N � k)m
4

. Substituting into (2.29), we obtain a nontrivial Jacobian

of the Zd�
2N transformation in the ’t Hooft flux background

J = ei
2⇡
N

p(N�k) = e�i 2⇡
N

kp . (2.30)

We conclude that the k-wall theory has a ’t Hooft anomaly between the Z
2N discrete chiral

symmetry and the 1-form ZN center symmetry of the 4-D theory projected on the DW plane.

Also, for further use (Section 4), note that the e↵ect of turning on a single unit of ’t

Hooft flux in the x1-x2 plane has the e↵ect of turning on k units of fractional (recall the U(1)

quantization condition (2.18)) U(1) flux ��(N�k)

N in the k-wall worldvolume theory: eq. (2.30)

follows from (2.29) with ↵ = kp(��(N�k)

N ). One way to physically understand this is that the

k-wall can be thought of as the result of the merging of k 1-walls into the minimal action

configuration, with each of the k 1-walls contributing equally to the total anomaly, thus

multiplying the result by k.

The appearance of the extra factor of k in the phase of the Jacobian for the k-wall is also

naturally expected from the anomaly inflow argument. The Zd�
2N -(Z(1)

N )2 anomaly in the 4-D

theory is the variation of a 5d Chern-Simons term:

S
5�D = i

2⇡

N

Z
M5 (@M5=M4)

2NA(1)

2⇡
^ NB(2)

2⇡
^ NB(2)

2⇡
, (2.31)

such that the 4-D spacetime M
4

is the boundary of M
5

. Here A(1) and B(2) are 1-form and

2-form gauge fields, respectively, gauging the Zd�
2N 0-form chiral and Z(1)

N center symmetries

of the 4-D theory. As in [48], they are defined as pairs: for the discrete chiral Zd�
2N , we have

(A(1), A(0)): 2NA(1) = dA(0) (
H
A(0) 2 2⇡Z, so that ei

H
A(1)

= ei
2⇡
2N Z), while for the Z(1)

N

center symmetry (B(2), B(1)) obey NB(2) = dB(1) (
H
B(1) 2 2⇡Z, so that ei

H
B(2)

= ei
2⇡
N

Z),

where the integrals are over closed 1- and 2-cycles as appropriate. Under chiral symmetry

�Z2NA
(1) = d�(0),

H
d�(0) 2 2⇡Z, so the closed A(1) Wilson loop is invariant.15

Then, under a Z
2N chiral symmetry transformation with parameter �(0)|M4 = 2⇡

2N , the

variation of the Chern-Simons action (2.31) localizes to the physical boundary M
4

��S
5�D = i

2⇡

N

2N�(0)|M4

2⇡

Z
M4

NB(2)

2⇡
^ NB(2)

2⇡
= i

2⇡

N
m, (2.32)

14In Appendix C, the Z
N

twist corresponding to nontrivial ’t Hooft flux is denoted by p
N

= 1, ..., N � 1.
15For use below, under center symmetry we have B(1) ! N�(1), B(2) ! d�(1) with

H
d�(1) 2 2⇡Z, so that

ei
H
B

(2)
is gauge invariant (and, as already mentioned, valued in ei

2⇡
N Z) [48].
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and is equal to the variation of the phase of the 4-D partition function under a discrete chiral

symmetry in a nontrivial ’t Hooft flux background, where
R
M4

NB(2)

2⇡ ^ NB(2)

2⇡ = m 2 Z is

nonzero.

Turning on a B(2) background
H
M

x

3
x

4

B(2)N
2⇡ = k corresponds to k units of ’t Hooft flux

in the x3-x4 plane denoted by Mx3x4 (x4 is the compact time direction). In the center broken

high-T phase, this induces a k-wall configuration with worldvolume perpendicular to x3 and

separating two center-breaking vacua.16 In this background, the 5d CS term reduces to a 3-D

one, with @M
3

= M
2

, the k-wall world volume:

S
3�D = i

2⇡k

N

Z
M3 (@M3=M2)

2NA(1)

2⇡
^ NB(2)

2⇡
. (2.33)

The Zd�
2N variation of S

3�D localizes to the k-wall worldvolume and is given by

��S
3�D = i

2⇡k

N

2N�(0)|M2

2⇡

Z
M2

NB(2)

2⇡
= i

2⇡kp

N
, (2.34)

where, in the last equality, we turned on p units of ’t Hooft flux in the 12 plane of the k-

wall
R
M2

NB(2)

2⇡ = p, as in obtaining (2.30). The variation (2.34) of the 3-D Chern-Simons

“anomaly inflow” term (2.33) is equal to the one obtained from the k-wall theory.

3 Screening and strings ending on walls

To probe the confinement properties of the k-wall theory (2.16), we turn to the behavior of

Wilson loops. As already noted, a fundamental of SU(N) decomposes into two representations

under the unbroken U(1)⇥ SU(N � k)⇥ SU(k) gauge group:

q
1

⇠ (
k

N
�(N�k),⇤,1), q

2

⇠ ((
k �N

N
)�(N�k),1,⇤). (3.1)

Further, the trace of an SU(N)-fundamental Wilson loop, WSU(N)

, when reduced to the

massless sector of the k-wall theory,17 becomes

WSU(N)

' Wq1 +Wq2 . (3.2)

16This procedure is equivalent to imposing twisted boundary conditions and has been used in lattice simula-

tions [11]. The k-wall is the minimum action configuration in the background with k units of ’t Hooft flux. A

stack of k 1-walls also obeys the boundary conditions but has higher action (recall the Casimir scaling (2.11)).
17When considering the worldvolume theory in isolation, one could also introduce separate Wilson loops for

the three k-wall gauge groups; however, these loops do not probe the center symmetry of the bulk SU(N)

theory.
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Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 4, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

2d QCD gauge group 
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Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio
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hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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charge-q vector Schwinger model on spatial S 

; Hamiltonian [Manton ‘86; Iso, Murayama ’89]
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Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
A

x

dx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC

q

: cL ! cL+
2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta

 2⇡(n�1)

L

are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta � 2⇡n

L

are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �
mn

.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian HF in the A
x

background and their energies are
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant
but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC

q

, a 2⇡

q

shift of cL (2.4), acts on the |ni states as
Y
q

|ni = |n+ 1i , (2.12)

where we introduced the Y
q

operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘
X
n2Z

ei(k+qn)✓|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e�iq✓. We note

also that h✓0, k0|✓, ki = �
k,k

0
(mod q)

�(✓ � ✓0(mod2⇡

q

)), with �(✓ � ✓0(mod2⇡

q

)) =
P
m2Z

eiqm(✓�✓

0
).

For further use (cluster decomposition, see below), we also define the Z
q

Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘ 1p
q

q�1X
k=0

!kP

q

|✓, ki, P = 0, . . . , q � 1,

hP 0, ✓0|P, ✓i = �
P,P

0
(mod q)

�(✓ � ✓0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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G|ni = |n+ qi . (2.11)

6. The center symmetry ZC

q

, a 2⇡

q

shift of cL (2.4), acts on the |ni states as
Y
q

|ni = |n+ 1i , (2.12)

where we introduced the Y
q

operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘
X
n2Z

ei(k+qn)✓|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e�iq✓. We note

also that h✓0, k0|✓, ki = �
k,k

0
(mod q)

�(✓ � ✓0(mod2⇡

q

)), with �(✓ � ✓0(mod2⇡

q

)) =
P
m2Z

eiqm(✓�✓

0
).

For further use (cluster decomposition, see below), we also define the Z
q

Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘ 1p
q

q�1X
k=0

!kP

q

|✓, ki, P = 0, . . . , q � 1,

hP 0, ✓0|P, ✓i = �
P,P

0
(mod q)

�(✓ � ✓0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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high-T domain walls/inflow, center…1.

To introduce some of the notation of [11], the holonomy of the gauge field around the

spatial circle is
H
A

x

dx ⌘ cL, with cL shifted by 2⇡ under large gauge transformations G.

The action of the center symmetry (2.3) on the holonomy cL is

ZC

q

: cL ! cL+
2⇡

q
. (2.4)

The Dirac sea states obeying Gauss’ law can be found as was briefly outlined above. The

end result is that the states are labeled by an integer n and we shall simply denote them by

|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta

 2⇡(n�1)

L

are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta � 2⇡n

L

are occupied. This left vs. right moving “Fermi level”

matching ensures validity of the Gauss’ law [10, 11].

We now list the properties of the Dirac sea states |ni that matter to us. See [11] for precise

definitions and derivations. We notice that q > 1 is easily incorporated and is seen to lead to

important new points, see items 3, 5, and 6 below:

1. The di↵erent |ni states are orthogonal; their norm can be defined as unity, hn|mi = �
mn

.

2. Their U(1)
V

charge vanishes, but the chiral (or axial U(1)
A

, recall (2.2)) charge Q
5

, is

nonzero and depends on the holonomy of the gauge field

Q
5

|ni = |ni
✓
2n� qcL

⇡

◆
. (2.5)

The gauge field-dependence of the axial charge Q
5

is a reflection of the chiral anomaly.

One can define a gauge-field independent Q̃
5

with integer eigenvalues

Q̃
5

⌘ Q
5

+
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃
5

! Q̃
5

+ 2q . (2.7)

3. It is clear, however, that the operator

X
2q

⌘ e
i

2⇡
2q

˜

Q5 (2.8)

is invariant under large gauge transformations. It generates the Zd�

2q

anomaly free sub-

group of the chiral transformations (2.2) and acts on the |ni states as

X
2q

|ni = |ni !n

q

(!
q

⌘ e
i

2⇡
q ). (2.9)
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q

: cL ! cL+
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q
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|ni, not displaying their dependence on cL; the explicit form is in [11]. The Dirac sea state

|ni is the one where the states of all left moving particles of (gauge non-invariant) momenta

 2⇡(n�1)

L

are occupied and the rest are empty, and, simultaneously, all states of the right

moving particles of momenta � 2⇡n

L
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, is
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One can define a gauge-field independent Q̃
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with integer eigenvalues
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+
qcL

⇡
, (2.6)

but this operator shifts under large gauge transformations

G : Q̃
5
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5
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3. It is clear, however, that the operator

X
2q

⌘ e
i
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2q

˜

Q5 (2.8)

is invariant under large gauge transformations. It generates the Zd�
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anomaly free sub-
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4. The Dirac sea states |ni are eigenstates of the fermion Hamiltonian HF in the A
x

background and their energies are

EF

n

=
2⇡

L


Q2

5

4
� 1

12

�
=

2⇡

L

"
1

4

✓
2n� qcL

⇡

◆
2

� 1

12

#
. (2.10)

(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant
but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC

q

, a 2⇡

q

shift of cL (2.4), acts on the |ni states as
Y
q

|ni = |n+ 1i , (2.12)

where we introduced the Y
q

operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘
X
n2Z

ei(k+qn)✓|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e�iq✓. We note

also that h✓0, k0|✓, ki = �
k,k

0
(mod q)

�(✓ � ✓0(mod2⇡

q

)), with �(✓ � ✓0(mod2⇡

q

)) =
P
m2Z

eiqm(✓�✓

0
).

For further use (cluster decomposition, see below), we also define the Z
q

Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘ 1p
q

q�1X
k=0

!kP

q

|✓, ki, P = 0, . . . , q � 1,

hP 0, ✓0|P, ✓i = �
P,P

0
(mod q)

�(✓ � ✓0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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(Here and elsewhere we take the liberty to denote operators and eigenvalues with the

same letter, hoping that this does not cause undue confusion.)

As eigenstates of the total Hamiltonian, however, the |ni states, supplemented by a

holonomy wave function [10, 11], are degenerate; one way to see this is by noting that

the holonomy fluctuations cL obtain the same “mass” from the fermion vacuum energy

(2.10) in all |ni Dirac sea states.8

5. Under large gauge transformations G, shifting cL by 2⇡, the |ni states are not invariant
but transform into each other as

G|ni = |n+ qi . (2.11)

6. The center symmetry ZC

q

, a 2⇡

q

shift of cL (2.4), acts on the |ni states as
Y
q

|ni = |n+ 1i , (2.12)

where we introduced the Y
q

operator, representing the center-symmetry action on the

gauge field holonomy.

We are now ready, as in [10, 11], to construct states that are eigenstates of the large gauge

transformations G. Since the |ni states transform as (2.11), in the q > 1 theory we can define

q di↵erent linear combinations of the |ni states that are eigenstates of G. For convenience,

we introduce a ✓ parameter (it is unobservable in the massless theory [10]) and define the

linear combinations |✓, ki of the Dirac sea states as

|✓, ki ⌘
X
n2Z

ei(k+qn)✓|k + qni, k = 0, 1, . . . , q � 1 . (2.13)

As follows from (2.11), all |✓, ki states are eigenstates of G with eigenvalue e�iq✓. We note

also that h✓0, k0|✓, ki = �
k,k

0
(mod q)

�(✓ � ✓0(mod2⇡

q

)), with �(✓ � ✓0(mod2⇡

q

)) =
P
m2Z

eiqm(✓�✓

0
).

For further use (cluster decomposition, see below), we also define the Z
q

Fourier transform

of the basis (2.13). We denote the states of this basis by |P, ✓i (to not confuse them with the

|✓, ki states):

|P, ✓i ⌘ 1p
q

q�1X
k=0

!kP

q

|✓, ki, P = 0, . . . , q � 1,

hP 0, ✓0|P, ✓i = �
P,P

0
(mod q)

�(✓ � ✓0(mod
2⇡

q
)). (2.14)

8Diagonalizing the full Hamiltonian, including fermion excitations above the Dirac sea, in the language

used here involves a Bogolyubov transformation [11], but the details will not be relevant for us.
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high-T domain walls/inflow, center…1.Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�

2q

the |P i states

transform cyclically into each other

X
2q

|P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC

q

center symmetry

Y
q

|P, ✓i = |P, ✓i !�P

q

e�i✓ . (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X
2q

and Y
q

found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,9 they

do not commute but obey the algebra

X
2q

Y
q

= !
q

Y
q

X
2q

(!
q

= e
i

2⇡
q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [25] (the q-dimensional representation on the |P, ✓i
states, (2.15), (2.16), was also found there). Here, however, one of the operators Y

q

, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X
2q

, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X
2q

and Y
q

commute classically, the discrete chiral and center symmetries Zd�

2q

and ZC

q

do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki
ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄
+

(x) �(x). The fermion bilinear has charge �2 under the Zd�

2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn0|�(x)|ni = �
n

0
,n+1

C 0 e�i

2⇡x

L , where �(x) ⌘  ̄
+

(x) �(x). (2.18)

The constant C 0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C 0 ⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP 0, ✓|�(x)|P, ✓i = e�i✓ !�P

q

�
P,P

0C 0, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !

q

in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !
q

commutes with X2q and Y
q

.
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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fermion bilinear  ̄
+

 � in this theory is given by

 ̄a
+

 �b = µhab e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he�i
q

4⇡
N�1�(x)e

i
q

4⇡
N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
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(x) �(x) tr ̄�(y) +
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↵ ⇠

constant.22 Therefore, from cluster decomposition, we conclude that
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2

, (4.2)

breaking the Zd�
2N discrete chiral symmetry (2.20) to fermion number Z

2

. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄
+

 � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr 
+

 � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S
3�D = i

2⇡

N

Z
M3 (@M3=M2)

2NA(1)

2⇡
^ NB(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�(0), with �(0)|M2 = 2⇡

2N in a background
R
M2

NB(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S
2�D = i

N

2⇡

Z
M2

'(0)da(1) . (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a(1). The gauge field a(1) is compact,H
da(1) 2 2⇡Z. The gauge invariant observables are ei' and ei

H
a(1) and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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correlation function (on R2) hei'(x)ei
H
C

a(1)i = ei
2⇡
N

l
x,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a(1) have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '(0) compact scalar

(
H
d'(0) 2 2⇡Z) shifts under the 0-form global ZN as '0 ! '(0) + 2⇡

N ; the action remains

invariant due to a(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a(1) gauge field shifts under 1-form global Z(1)

N

as a(1) ! a(1) + 1

N ✏(1), where ✏(1) is a closed form with
H
✏(1) 2 2⇡Z. The gauge invariant

observables ei' and ei
H
a(1) transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! ei
2⇡
N ei', ei

H
a(1) ! ei

1
N

H
✏(1)ei

H
a(1) = ei

2⇡Z
N ei

H
a(1) .

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)
0

= 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘ H
S1

a(1) and '(t):

SR
t

⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i2⇡N , a vanishing Hamiltonian, and

the centrally extended algebra24 ei'̂eiâ = ei
2⇡
N eiâei'̂; as already noted, eiN '̂ and eiNâ are

trivial operators. The Hilbert space, treating '̂ as coordinate, is that of N states |P i such

that ei'̂|P i = |P iei 2⇡P

N and eiâ|P i = |P + 1(modN)i.
The |P i states are the N finite volume ground states due to the breaking Zd�

2N ! Z
2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
R
t

a(1) , which are now defects localized in x, in

the path integral. The correlation function hei'(x)ei
H
C

a(1)i = ei
2⇡
N

l
x,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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relabel q->N IR TQFT on N=2, k=1 DW:

Clearly, the |P, ✓i states are also eigenstates of G with the same eigenvalue e�iq✓. Further,

(2.14), (2.13) and (2.9) imply that under the discrete chiral symmetry Zd�

2q

the |P i states

transform cyclically into each other

X
2q

|P, ✓i = |P + 1(mod q), ✓i , (2.15)

while (2.12) implies that they are eigenstates of the ZC

q

center symmetry

Y
q

|P, ✓i = |P, ✓i !�P

q

e�i✓ . (2.16)

Further, following the discussion after (2.10), the |P, ✓i states are degenerate. The action of

X
2q

and Y
q

found above, (2.15), (2.16), implies that, when acting on the |P, ✓i states,9 they

do not commute but obey the algebra

X
2q

Y
q

= !
q

Y
q

X
2q

(!
q

= e
i

2⇡
q ). (2.17)

This algebra is familiar from the ’t Hooft commutation relation between Wilson and ’t Hooft

loop operators in SU(q) gauge theories [25] (the q-dimensional representation on the |P, ✓i
states, (2.15), (2.16), was also found there). Here, however, one of the operators Y

q

, being a

center-symmetry generator, is indeed a (lower dimensional version of a) ’t Hooft loop operator,

but the other, X
2q

, is not a Wilson loop but a generator of discrete chiral transformations.

The ’t Hooft algebra (2.17) implies that even though the symmetries generated by X
2q

and Y
q

commute classically, the discrete chiral and center symmetries Zd�

2q

and ZC

q

do not

commute in the quantum theory but instead obey (2.17). Their noncommutativity in the

quantum theory signals the presence of the mixed ’t Hooft anomaly.10

Finally, let us argue that (2.17) implies that both symmetries are spontaneously broken.

The |P, ✓i ground states obey the cluster decomposition principle, as opposed to the |✓, ki
ground states. This is because the latter are mixed by local operators, the gauge invariant

fermion bilinear �(x) ⌘  ̄
+

(x) �(x). The fermion bilinear has charge �2 under the Zd�

2q

discrete chiral symmetry (2.2) and nonzero matrix elements between the |ni states:

hn0|�(x)|ni = �
n

0
,n+1

C 0 e�i

2⇡x

L , where �(x) ⌘  ̄
+

(x) �(x). (2.18)

The constant C 0 was computed in [11] in the Hamiltonian formalism for any L and was

shown to not vanish, including as L ! 1, where C 0 ⇠ e. It is also clear that (2.18) is

consistent with the nature of the |ni states explained earlier. Using the matrix elements

(2.18) it is straightforward to show that �(x) has nonzero matrix elements between di↵erent

|✓, ki states, h✓, k + 1|�|✓, ki 6= 0, but is diagonal in the |P, ✓i basis

hP 0, ✓|�(x)|P, ✓i = e�i✓ !�P

q

�
P,P

0C 0, (2.19)

9A slightly more careful study of the definitions of the operators from [11] shows that the algebra (2.17)

holds in the entire Hilbert space.
10Following [5], we call the appearance of !

q

in (2.17) a “central extension” of the algebra of symmetry

operators, as the new element !
q

commutes with X2q and Y
q

.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

2d QCD gauge group 

high-T domain walls/inflow, center…1.

’t Hooft anomaly on worldvolume

Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 4, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find

1

PHY294 deferred exam May 2017 Thermal part

W

q1(x2) ! e

i

2⇡
N

p

W

q1(x2)

Z

(1)
N

✓ = ⇡

m

W

⇠

Z

(0)
N

2 Z

(1)
N

1

g

2
NT

T � ⇤

Z

(0)
2N

J = e

i!2NQ

top.

Q

top

=
n12n34

N

n12 = 1

J

Z

(0)
2N

= e

i2⇡Q
top. = e

i

2⇡
N

n12n34

�

a

↵

! e

i

2⇡
2N
�

a

↵

�

a

↵

! e

i!

�

a

↵

IR of worldvolume? matching? 
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Brett Teeple Exotic Gases from Torus Compactification
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likely persists for all N, k=1 (perhaps all k):
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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  gapped, IR TQFT

fermion bilinear  ̄
+

 � in this theory is given by

 ̄a
+

 �b = µhab e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he�i
q

4⇡
N�1�(x)e

i
q

4⇡
N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄

+

(x) �(x) tr ̄�(y) +

(y)
↵ ⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄
+

 �i 6= 0 : Zd�
2N ! Z

2

, (4.2)

breaking the Zd�
2N discrete chiral symmetry (2.20) to fermion number Z

2

. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄
+

 � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr 
+

 � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S
3�D = i

2⇡

N

Z
M3 (@M3=M2)

2NA(1)

2⇡
^ NB(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�(0), with �(0)|M2 = 2⇡

2N in a background
R
M2

NB(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S
2�D = i

N

2⇡

Z
M2

'(0)da(1) . (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a(1). The gauge field a(1) is compact,H
da(1) 2 2⇡Z. The gauge invariant observables are ei' and ei

H
a(1) and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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correlation function (on R2) hei'(x)ei
H
C

a(1)i = ei
2⇡
N

l
x,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a(1) have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '(0) compact scalar

(
H
d'(0) 2 2⇡Z) shifts under the 0-form global ZN as '0 ! '(0) + 2⇡

N ; the action remains

invariant due to a(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a(1) gauge field shifts under 1-form global Z(1)

N

as a(1) ! a(1) + 1

N ✏(1), where ✏(1) is a closed form with
H
✏(1) 2 2⇡Z. The gauge invariant

observables ei' and ei
H
a(1) transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! ei
2⇡
N ei', ei

H
a(1) ! ei

1
N

H
✏(1)ei

H
a(1) = ei

2⇡Z
N ei

H
a(1) .

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)
0

= 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘ H
S1

a(1) and '(t):

SR
t

⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i2⇡N , a vanishing Hamiltonian, and

the centrally extended algebra24 ei'̂eiâ = ei
2⇡
N eiâei'̂; as already noted, eiN '̂ and eiNâ are

trivial operators. The Hilbert space, treating '̂ as coordinate, is that of N states |P i such

that ei'̂|P i = |P iei 2⇡P

N and eiâ|P i = |P + 1(modN)i.
The |P i states are the N finite volume ground states due to the breaking Zd�

2N ! Z
2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
R
t

a(1) , which are now defects localized in x, in

the path integral. The correlation function hei'(x)ei
H
C

a(1)i = ei
2⇡
N

l
x,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.
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W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class
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Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
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2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
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your finding.
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Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class
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all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
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hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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here, QFT: 2d YM with  
massless fermions screens

[Schwinger model…;  
Gross, Klebanov, Matytsin, Smilga 1995;  
Armoni, Frishman, Sonnenschein 1997;… ]

fermion condensate on k-wallk-wall 1
2

small-S^1 domain walls…2.… similar to  

broken (not in bulk)
first via holography: F1 on D1 

>P   vacuum-th P+1   vacuum-th

W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)

↵
1

↵
2

!
0

!
1

!
2

⇤NL ⌧ 1

U(1) SU(N � k) SU(k) U(1)R

 
+

�N�k ⌘
q

N
k(N�k) ⇤ ⇤ 1

 � ��N�k ⇤ ⇤ 1

(1)

1

Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract
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a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their
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compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
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a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by
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minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
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compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.
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have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution
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minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles
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3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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The case of supersymmetry will be looked into in more detail being the one previous researchers
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charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into
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where some exact trace formulae can be calculated in some specific cases (at least numerically to a
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.

– 18 –

2
1

3

- magnetic bions - QCD(adj)/SYM with SU(3) gauge group:

inside,
H
C d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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inside,
H
C d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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in semiclassical regime extremize classical 
action with monodromy around Wilson loop:

2

Kink 

e

i
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C A

(3)

� winds by 2⇡

R

FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M

h
i�̄�̄

µ

@
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� +
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2M
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a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]
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correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
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(3) is the (electric) gauge field in the Cartan di-
rection, B
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(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
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tional to the domain wall tension (for a recent review see
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The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]
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I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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inside,
H
C d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i
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A). For an SU(2) funda-
mental representation, we need to compute the expecta-
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Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2
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�⌃strRT , with string tension ⌃
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propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]
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flavor
indices in the kinetic term and a product over the flavor
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M

h
i�̄�̄

µ

@
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� +
m cos �

2M
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[(��)nf + h.c.]
i

. (2)

We omitted, for brevity, a summation over the n
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flavor
indices in the kinetic term and a product over the flavor
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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semiclassical picture of confinement at small-L has some corollaries

1. baryons
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k=1 walls, at least, same “BF” 2d TQFT as high-T walls
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Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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- magnetic bions - QCD(adj)/SYM with SU(3) gauge group:

inside,
H
C d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M

h
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@
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� +
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2M

nf �1

[(��)nf + h.c.]
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We omitted, for brevity, a summation over the n

f
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indices in the kinetic term and a product over the flavor
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M

h
i�̄�̄

µ

@

µ

� +
m cos �

2M

nf �1

[(��)nf + h.c.]
i

. (2)

We omitted, for brevity, a summation over the n

f

flavor
indices in the kinetic term and a product over the flavor
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Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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- magnetic bions - QCD(adj)/SYM with SU(3) gauge group:

inside,
H
C d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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in semiclassical regime extremize classical 
action with monodromy around Wilson loop:
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(3)

� winds by 2⇡

R

FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,
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) ⇠ e

�⌃strRT , with string tension ⌃
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propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]
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Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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Figure 3. QCD(adj): The ���
2⇡ plane for su(3) and the minima of the potential—the extrema of

(3.26)—indicated by dark (red) circles. There are three minima, at ��� = 2⇡k⇢⇢⇢
3 , k = 0, 1, 2, within the

SU(3) fundamental domain, the weight lattice. As on Fig. 2, there are three times as many minima
within the root lattice (used later in finding the [SU(3)/Z3]p theory ground states).

a short review of these operators in our setup. We shall give a canonical (Hilbert space)

definition of line operators in the low-energy e↵ective theory on R1,2.

To motivate the expressions that follow, we note that our long-distance theory is abelian,

without light charged particles. Wilson (’t Hooft) loop operators create infinitely thin electric

(magnetic) fluxes along their respective loops. Using Gauß’ law, Wilson (’t Hooft) loops can

be rewritten as operators measuring the magnetic (electric) flux through a surface ⌃ bounded

by the loop C. A generic dyonic operator depends on both electric and magnetic fluxes

D(⌫⌫⌫e,⌫⌫⌫m, ⌃) = ei 2⇡⌫⌫⌫
m

·ˆ���
e

(⌃)+i ⌫⌫⌫
e

·ˆ���
m

(⌃) . (3.28)

Here, ⌫⌫⌫e,m are electric and magnetic weights (see below) and �̂��e,m are the operators of the

electric or magnetic flux through the corresponding surface ⌃. Explicitly, �̂��m(⌃) =
R
⌃

d2�iB̂BB
i

and �̂��e(⌃) =
R
⌃

d2�i⇧̂⇧⇧
i
. Here, i = 1, 2, 3 denotes spatial directions, B̂BB

i
is the magnetic field

operator, and ⇧̂⇧⇧
i
—the momentum operator conjugate to the gauge field v̂vvi (for ✓ = 0 this

is essentially the electric field operator).20 We also note that no ordering issues arise in the

long-distance abelian theory, as evident from the final expressions (3.29,3.30) below.

We already discussed that the electric weights ⌫⌫⌫e for a given choice of the gauge group G

take values in the group lattice �G. Magnetic weights ⌫⌫⌫m can, a priori, take values in the co-

weight lattice, but are restricted by the condition that operators in faithful representations of

G are single valued around ei2⇡⌫⌫⌫
m

·ˆ���
e

(⌃). This leads to the condition that ⌫⌫⌫m ·ggg 2 Z, 8g 2 �G,

20See Appendix B for normalizations and a short review of the Hilbert space definition of ’t Hooft operators.
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2
1

3

- magnetic bions - QCD(adj)/SYM with SU(3) gauge group:

inside,
H
C d��� = 4⇡L

g2 QQQ where QQQ is the flux of vvv0i through C. In the normalization of (3.7),

Gauß’ law for a static charge (weight) ��� at the origin is @ivvv0i(x) = g2

2L����(2)(x), hence QQQ = g2

2L���

and so the monodromy becomes
H
C d��� = 2⇡���. The condition that the dual photon be single

valued around all allowed charges, dynamical or probes, in a gauge theory with gauge group

G, i.e. for all ��� 2 �G, implies the identification (3.22).

In particular, for G = G̃ = SU(Nc) (we denote by G̃ the covering group), the fundamental

domain of ��� is the unit cell of the weight lattice �w (the finest lattice for su(Nc)), while

for SU(Nc)/ZN
c

it is the unit cell of the root lattice �r, with the group lattices �G for

the intermediate cases. Thus, for gauge group SU(Nc)/Zk, weight-lattice shifts of ��� are

meaningful. They represent global symmetries rather identifications under (3.22)—provided

�G is coarser than �w. Recall that �w/�G = ⇡
1

(G) and that the centers of G, Z(G), and

of G̃, Z(G̃), obey Z(G) n ⇡
1

(G) = Z(G̃). For G = SU(Nc)/Zk, with kk0 = Nc, we have

Z(G) = Z(G̃)/Zk = Zk0 . Thus, for G = SU(Nc)/Zk, ⇡
1

(G) is also a Zk discrete symmetry,

called the magnetic or dual center symmetry. This symmetry, being generated by shifts of ���

by weights in �w/�G, naturally acts on ’t Hooft operators (see Eq. (3.30) below).

Figure 2. dYM: The ���
2⇡ plane for su(3). The SU(3) fundamental domain is �w, spanned by

www1,2. A contour plot of the potential (3.23) is overlaid with the minima (3.24) of the potential for
dYM indicated by the dark (red) circles. There is a single ground state for dYM at ��� = 0 within the
SU(3) fundamental domain—but not within the larger domain, the root lattice �r spanned by ↵↵↵1,2,
for SU(3)/Z3.

To summarize, in a theory with gauge group G, nontrivial weight lattice shifts of ���, by

vectors that belong to �w/�G, act as global symmetries on the magnetic degrees of freedom.

We shall see below, when studying the action of the gauged center symmetry on the vacua

and on the Wilson, ’t Hooft and dyonic operators, that for G = SU(Nc)/Zk there are k

inequivalent gaugings of the Zk center. They di↵er by the choice of �w/�G shifts in the
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in semiclassical regime extremize classical 
action with monodromy around Wilson loop:

2

Kink 

e

i
2

H
C A

(3)

� winds by 2⇡

R

FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).

0.2

0.4

0.6

0.8

1.0

FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M

h
i�̄�̄

µ

@

µ

� +
m cos �

2M

nf �1

[(��)nf + h.c.]
i

. (2)

We omitted, for brevity, a summation over the n

f

flavor
indices in the kinetic term and a product over the flavor
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

two in the argument of the cosine reflects their composite
nature: they have magnetic charge two while fundamen-
tal monopole-instantons have unit charge. This term is
responsible for the generation of mass gap for gauge fluc-
tuations (mass m for the dual photon �) and for the
confinement of electric charges. The theory (1) has two
vacua �=0, ⇡, both with �=0, corresponding to the spon-
taneous breaking of the anomaly-free discrete chiral sym-
metry (the R-symmetry in SYM).

Confinement is detected by the area law for the Wilson
loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,
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(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1
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) ⇠ e

�⌃strRT , with string tension ⌃
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propor-
tional to the domain wall tension (for a recent review see
[24]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
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action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [25],
where, for ✓=⇡ [26] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M
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i�̄�̄

µ
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� +
m cos �
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Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 4, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)

⇤NL ⌧ 1

U(1) SU(N � k) SU(k) U(1)R

 
+

�N�k ⌘
q

N
k(N�k) ⇤ ⇤ 1

 � ��N�k ⇤ ⇤ 1

(1)

Z(0)

2N ! Z(0)

2I
M

zx

4

B(2)N

2⇡
= k

A
DW (k)
4

(z) = T�DW (k)(z)

�DW (k)(⌥1)

0

1

>P   vacuum-th P+1   vacuum-th

W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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DW1 P(DW1*)

further, as seen in MQCD [Witten, 1998] confining strings end on DW  
1I. confining strings in QCD(adj) and dYM:

the picture or strings “made out” of DWs also implies that confining strings 
can end on DWs
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on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d
.

T
h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

oc
-

cu
rs

at
2n

f

�
1

lo
op

or
d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d
.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m

2

� m M

� 4n f
(m

d
)�

4
n

f
+

4

,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e

�
m

d

at
la

rg
e

d
.

T
h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

od
el

,w
it

h
fe

rm
io

n
at

tr
ac

ti
on

in
cl

u
d
ed

,

is
S

=
R

(T
+

d
)M

m
+

R
T

M
m

e

�
m

d

�
R

T
m

2

� m M

� 4n f
/

(m
d
)4

n

f
�

4

.
T

h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
oe

s
n
ot

co
nt

ri
b
u
te

fo
r

la
rg

e
T

)
is

n
ow

e

�
m

d

⇠
e

�
4
⇡

2
(
4
n

f
+

1
)
/
g

2

/
(m

d
)4

n

f
�

3

.
A

t
sm

al
l

g

2

,
w

e
th

u
s

h
av

e
m

d

⇤
⇡

4⇡
2

(4
n

f

+
1)

/
g

2

,
a

st
ab

le
w

al
l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d

⇤
of

th
e

st
ri

n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

qu
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f

>
1

Q
C

D
(a

d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
od

e,
th

e
“b

re
at

h
er

”
m

od
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
od

e,
m

b
r

,
ca

n
b
e

es
ti

m
at

ed
by

ta
ki

n
g

th
e

se
c-

on
d

d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d

⇤,
m

b
r

⇠
m

e

�
4
⇡

2
2
n

f
/
g

2

.
T

h
e

b
re

at
h
er

m
od

e
m

as
s

m

b
r

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
qu

ar
ks

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
xe

s
w

h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
re
g
io
n
s
re
p
re
se
n
t

d
is
ti
n
ct

va
cu

a
o
f
th
e
th
eo
ry
.
T
h
e
so
li
d
b
la
ck

li
n
e
re
p
re
se
n
ts

th
e
B
P
S
1
D
W

,
w
h
il
e
th
e
d
a
sh
ed

li
n
e
re
p
re
se
n
ts

th
e
a
n
ti
-B

P
S
2

D
W

,
w
h
il
e
th
e
a
rr
ow

s
re
p
re
se
n
t
th
ei
r
el
ec
tr
ic

fl
u
x
es
.

T
h
e

b
la
ck

d
o
ts

a
re

th
e
q
u
a
rk

a
n
d

th
e
a
n
ti
-q
u
a
rk
.

T
h
e
in
la
y
in

th
e
u
p
p
er

le
ft

co
rn
er

sh
ow

s
a
fu
n
d
a
m
en
ta
l
st
ri
n
g
en

d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2

,
w

h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x.

If
a

qu
ar

k
an

ti
-q

u
ar

k
(q

q̄
)

p
ai

r
is

in
th

e
vi

ci
n
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

q
q̄

p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

q
q̄

p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

nt
of

th
e

D
W

lo
ca

li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

qu
ar

ks
ar

e
li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
qu

ar
ks

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

by
S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

qu
en

tl
y

ex
p
lo

re
d

fr
om

m
o
d
el

in
g

th
e

e↵
ec

ti
ve

ac
ti

on
s

of
th

e
P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

kn
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry
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tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
yn
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ic

s
is

u
n
d
er
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oo

d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly
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a

fe
w

sa
li
en

t
p
oi

nt
s.

A
ll

fi
el

d
s

in
(1

)
b
ec

om
e

N

c

�
1

d
im

en
-

si
on

al
ve
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or

s,
d
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in
g

th
e
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gh

t
d
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re
es
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ee
d
om
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ft
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te

r
S

U
(N

c

)!
U

(1
)N

c
�

1

b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,
�
)

=
e

i

~

�
·H C

~

A

(
3
)

,w
it

h
~

�
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1

el
ec

tr
ic

ch
ar

ge
s)

,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

by
su

m
m

in
g

ov
er

al
l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,
�
)i

⇠
e

�
S

c
la

s
s
[
�̄
(
C

)
]

,
w

it
h

th
e

m
ag

n
et

ic
b
io

n
p
ot

en
ti

al

L
b
i
o
n

=
�

m

2

M

N

c X i
=

1

co
s
h (~↵

⇤ i

�
~
↵

⇤ i
+

1
(
m

o
d

N

c
)

)
·~�

i ,
(3

)

3

b
ac

k
gr

ou
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m

2

e

�
c
m

d

,
c
�

1
(a

ca
lc

u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el

in
g

ev
en

fo
r

p
ar

al
le

l
w

al
ls

,
y
ie

ld
s

at
tr

ac
ti

on
w

it
h

c
>

1)
.

T
h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
“~

”⇠
m

M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e

�
m

d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y

th
e

fe
rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
h
y
si

cs
is

d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

n
tr

as
t

to
S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f

>
1

th
e

C
ar

ta
n

co
m

p
on

en
ts

of
th

e
n

f

W
ey

l
ad

-
jo

in
ts

ar
e

m
as

sl
es

s,
d
u
e

to
th

e
u
n
b
ro

ke
n

S
U

(n
f

)
ch

ir
al

sy
m

m
et

ry
.

T
h
u
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d
.

T
h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

o
c-

cu
rs

at
2n

f

�
1

lo
op

or
d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d
.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m

2

� m M

� 4n f
(m

d
)�

4
n

f
+

4

,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e

�
m

d

at
la

rg
e

d
.

T
h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

o
d
el

,
w

it
h

fe
rm

io
n

at
tr

ac
ti

on
in
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u
d
ed
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is
S

=
R

(T
+

d
)M

m
+

R
T

M
m

e

�
m

d

�
R

T
m

2

� m M

� 4n f
/

(m
d
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n

f
�

4

.
T

h
e

ex
tr

em
u
m
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n
d
it

io
n
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o

w
h
ic

h
th

e
ar

ea
te

rm
d
o
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n
ot

co
n
tr
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u
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fo
r

la
rg

e
T

)
is

n
ow

e

�
m

d

⇠
e

�
4
⇡

2
(
4
n

f
+

1
)
/
g

2

/
(m

d
)4

n

f
�

3

.
A

t
sm

al
l

g

2

,
w

e
th

u
s

h
av

e
m

d

⇤
⇡

4⇡
2

(4
n

f

+
1)

/
g

2

,
a

st
ab

le
w

al
l-
w

al
l

se
p
ar

at
io

n
p
ar
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et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w
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.
N

u
m

er
ic

al
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n
fi
rm

at
io

n
of

th
e

st
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il
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ed
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an
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ve
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e
si

ze
d

⇤
of

th
e

st
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n
g
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n
g,

b
u
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r
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m
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e
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at
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n
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al

l
g
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d
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R
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A
s
a

co
n
se

q
u
en
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of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g
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>
1

Q
C

D
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d
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,
th

e
se

co
n
d

tr
an

sl
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ti
on
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G
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d
st
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e

m
o
d
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th
e

“b
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h
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”
m

o
d
e
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e
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o
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,
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p
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n
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T

h
e
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is

m
o
d
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m

b
r

,
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n
b
e
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m
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b
y
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in
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th
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d
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iv
e

of
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w
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w
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ra
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d

⇤,
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⇠
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�
4
⇡

2
2
n

f
/
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2

.
T

h
e

b
re

at
h
er

m
o
d
e

m
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s
m

b
r
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a

n
ew
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e
on

th
e

st
ri

n
g

w
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ee
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w
el

l
b
el

ow
th

e
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eb
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—
th

e
b
u
lk

m
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s
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p
m
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r
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u
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u
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u
at

io
n
s.

T
h
e
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ct

th
at

th
e

st
ri

n
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e
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m

p
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ed
ou

t
of

d
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ai
n

w
al
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W
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–
a

si
tu

at
io

n
op

p
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e

to
w

h
at

w
as
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gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
q
u
ar

k
s

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1
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d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
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tr
ic

fl
u
x
es

w
h
ic

h
th

ey
ca

rr
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b
u
t
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b
ot

h
sa

ti
sf

y
th

e
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m
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B
P

S
eq

u
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,
e.

g.
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6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
re
g
io
n
s
re
p
re
se
n
t

d
is
ti
n
ct
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o
f
th
e
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eo
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.
T
h
e
so
li
d
b
la
ck

li
n
e
re
p
re
se
n
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e
B
P
S
1
D
W

,
w
h
il
e
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e
d
a
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ed
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n
e
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p
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n
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e
a
n
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P
S
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D
W

,
w
h
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e
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e
a
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s
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p
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n
t
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r
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u
x
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T
h
e

b
la
ck

d
o
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a
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e
q
u
a
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a
n
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e
a
n
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u
a
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T
h
e
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y
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e
u
p
p
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er
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s
a
fu
n
d
a
m
en
ta
l
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n
g
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d
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g
o
n
a

D
W

.

th
e

B
P

S
1
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d

an
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-B

P
S

2

,
w

h
er

e
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ch
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rr
ie
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1/

2
of
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e

fu
n
d
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en
ta

l
el
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tr
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fl
u
x
.
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a

q
u
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u
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k
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p
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r
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e
v
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e
D

W
,
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ev
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,
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e
D

W
fl
u
x
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n
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n
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l
p
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t
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e
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u
x
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a

q
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p
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an

d
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so
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w
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e
F
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.
3.

T
h
e

q
q̄

p
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r
on
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e

D
W

w
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b
e
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b
er
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,
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l
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e
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n
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p
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r
h
as

b
ee

n
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e
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W
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n
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T
h
is
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s
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d
e-
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n
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n
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e
D

W
w
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ee
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T

h
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m
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is
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n
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e
D

W
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li
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,
w

h
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a
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D
W
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lo

m
b

p
h
as

e,
so

th
at

q
u
ar

k
s

ar
e

li
b
er

at
ed

[2
7]

.
W

e
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n
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e
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in

a
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n
H

ig
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va
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u
m
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4d

th
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,
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e
p
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h
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e
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p
p
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t
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b
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n
gs

[2
8,

29
].

D
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n
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q
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e
D

W
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p
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at

st
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n
gs
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n

en
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F
ig

.
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.
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M
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D

,
S
Y

M
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ri
n
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h
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e
b
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n
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D
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d
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h
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p
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n
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n

b
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,
u
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n
g
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e
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u
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u
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s
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n
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T
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b
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b
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d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
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h
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e
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t
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R
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c
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,
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ac

e
of

th
e

W
il
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b
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A
s
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m
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,
�
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⇠
e

�
S

c
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s
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[
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,
w
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n
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b
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n
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L
b
i
o
n

=
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s
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�
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⇤ i
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1
(
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b
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k
gr

ou
n
d
,

w
it

h
ex

p
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en
ti

al
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ay

fr
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th
e

w
al

l.
B
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se
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th
e
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p

m
in

th
e

b
u
lk

,
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e
fe
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n
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d
u
ce

d
w

al
l-
w

al
l
in
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n
is

ex
p
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te
d
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b
e
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p
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en
-

ti
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p
p
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,
⇠

m

2

e

�
c
m

d

,
c
�

1
(a
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lc

u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el
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g

ev
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r

p
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l
w
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,
y
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s

at
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w
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h

c
>
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.

T
h
e

fe
rm

io
n
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n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
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”⇠
m

M
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op

su
p
p
re
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n
fa

ct
or

,
h
en

ce
th

e
cl
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si

ca
l

b
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on
ic

re
p
u
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n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e

�
m

d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y
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e

fe
rm
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n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an
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er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
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io

r
of

m
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n
et

ic
st

ri
n
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N

O
vo
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ic
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)
w

h
ic

h
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n
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n
e

m
on
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on

th
e

H
ig
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b
ra

n
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=
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S
Q

C
D
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4]
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H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
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ss

ic
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p
h
y
si
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is

d
i↵

er
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t;
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p
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4]

,
ou

r
st

ri
n
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ey

th
e

u
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al
ar
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w
w

it
h
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n
si

on
⇠

M
m

.

In
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n
tr
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t

to
S
Y

M
,
in

n
on

-s
u
p
er
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m

m
et

ri
c

Q
C

D
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d
j)

w
it

h
n
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>
1

th
e

C
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ta
n
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m

p
on

en
ts

of
th

e
n

f

W
ey

l
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-
jo

in
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e

m
as
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d
u
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e
u
n
b
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)
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T
h
u
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p
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e
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e
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r
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ra
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n

w
it

h
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l
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)

is
h
ig

h
ly
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p
p
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ed

,
th
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in

d
u
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a
p
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e
co

m
p
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in
g

w
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h
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e
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p
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p
u
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e
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T
h
e

le
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g

e↵
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t
of
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e

fe
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n
s

o
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�
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d
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s
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u
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,
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w
h
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h
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e
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,
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m
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C
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u
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F
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n
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e
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u
n
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n
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at
e

a
w
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at
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⇠
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⇠
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�
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T
h
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n
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r
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e
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r
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o
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at
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ti

on
in

cl
u
d
ed

,

is
S

=
R

(T
+
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�
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/
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d
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⇡
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at
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p
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p
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at
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e
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il
iz

ed
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an
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ve
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e
si

ze
d

⇤
of

th
e

st
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n
g
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le

n
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n
g,

b
u
t
ou

r
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ti
m
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e
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e
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at
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n
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al

l
g
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d
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e
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.

A
s
a

co
n
se

q
u
en
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of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g
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>
1

Q
C

D
(a

d
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,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
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h
er

”
m

o
d
e
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th

e
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o
w
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,
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n
ow
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p
p
ed
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n
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R
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T

h
e
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p
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is
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o
d
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m

b
r

,
ca

n
b
e
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ti

m
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b
y
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k
in

g
th
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d
d
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th
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w
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w
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te

ra
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n
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ti
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at
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⇠
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�
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⇡
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2
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f
/
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T

h
e

b
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h
er

m
o
d
e

m
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s
m

b
r
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n
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e
on

th
e

st
ri

n
g

w
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ee
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w
el

l
b
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ow
th

e
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al
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—
th

e
b
u
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m
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s
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p
m
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r
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u
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u
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u
at
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n
s.

T
h
e
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ct

th
at
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e
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n
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e
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m

p
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ou

t
of

d
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ai
n

w
al
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W
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–
a
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tu

at
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n
op

p
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it
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w

h
at

w
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gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
q
u
ar

k
s

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1
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d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
x
es

w
h
ic

h
th
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ca

rr
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b
u
t
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b
ot

h
sa

ti
sf

y
th

e
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m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
re
g
io
n
s
re
p
re
se
n
t

d
is
ti
n
ct

va
cu

a
o
f
th
e
th
eo
ry
.
T
h
e
so
li
d
b
la
ck

li
n
e
re
p
re
se
n
ts

th
e
B
P
S
1
D
W

,
w
h
il
e
th
e
d
a
sh
ed
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n
e
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p
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se
n
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th
e
a
n
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-B

P
S
2

D
W

,
w
h
il
e
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e
a
rr
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s
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p
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n
t
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r
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tr
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u
x
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T
h
e

b
la
ck

d
o
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a
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e
q
u
a
rk

a
n
d
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e
a
n
ti
-q
u
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T
h
e
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la
y
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th
e
u
p
p
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er

sh
ow

s
a
fu
n
d
a
m
en
ta
l
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n
g
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d
in
g
o
n
a

D
W

.

th
e

B
P

S
1
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d

an
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-B

P
S

2

,
w

h
er

e
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ch
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rr
ie
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1/

2
of
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e

fu
n
d
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en
ta

l
el
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fl
u
x
.

If
a

q
u
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u
ar

k
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p
ai

r
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e
v
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e
D

W
,
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,
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e
D

W
fl
u
x
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n
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n
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l
p
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t
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e
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u
x
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a

q
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p
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an

d
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w
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e
F
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3.

T
h
e

q
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p
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on
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e

D
W
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b
e

li
b
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,
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l
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e
te

n
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e

p
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r
h
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b
ee

n
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W
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T
h
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s
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d
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n
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n
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e
D

W
w
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ee
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T

h
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n
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e
D

W
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w

h
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a
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D
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.
W

e
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so
n
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e
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in

a
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n
H
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u
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4d
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e
p
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h
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e
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p
p
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b
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n
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8,

29
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fi
n
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q
u
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e
D

W
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p
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at

st
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n
gs
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n

en
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(s
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y
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F
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.
3)

.
In
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D

,
S
Y

M
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ri
n
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h
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e
b
ee
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D
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d
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h
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p
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n
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b
y

S
.-
J.

R
ey

[3
0]

,
u
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n
g
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e
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u
m

st
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u
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s
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n
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b
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d
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b
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d
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h
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e
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a
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R
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c
�
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ic

ch
ar
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th
e

tr
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b
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A
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m
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,
�
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⇠
e

�
S

c
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s
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[
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,
w
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h
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m
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n
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b
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n
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L
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m
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M
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s
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�
~
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⇤ i
+

1
(
m

o
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N
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)
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3

b
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u
n
d
,

w
it

h
ex

p
on

en
ti

al
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o↵

aw
ay

fr
om

th
e

w
al

l.
B
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se
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th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe
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n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
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io

n
is

ex
p
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te
d

to
b
e

ex
p
on
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-
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al
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su

p
p
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ss
ed

,
⇠

m

2

e

�
c
m

d

,
c
�

1
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u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

qu
ir

in
g

so
m

e
m

il
d

b
ac

kg
ro

u
n
d

m
od

el
in

g
ev

en
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r
p
ar

al
le

l
w
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,
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el
d
s

at
tr
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w
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h

c
>

1)
.

T
h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
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n
at

la
rg

e
d

is
fu

r-
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er
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co
m

p
an

ie
d
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an
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”⇠

m

M

lo
op

su
p
p
re
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n
fa

ct
or

,
h
en

ce
th

e
cl
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si

ca
l

b
os

on
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re
p
u
ls
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n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e

�
m

d

d
om

in
at

es
.

T
hu

s,
in

S
Y

M
th

e
lo
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ri

th
m

ic
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ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d
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th

e
fe

rm
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n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
nt

of
th

e
b
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r
of

m
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n
et

ic
st

ri
n
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(A
N

O
vo

rt
ic

es
)
w

h
ic

h
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n
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n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
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N

=
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S
Q

C
D
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4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
hy

si
cs

is
d
i↵

er
en

t;
in

p
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la
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p
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ed
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4]

,
ou

r
st

ri
n
gs
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ey

th
e

u
su

al
ar
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w
w

it
h
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n
si

on
⇠

M
m

.

In
co

nt
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st
to

S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
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d
j)

w
it

h
n
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>
1
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e

C
ar

ta
n

co
m

p
on

en
ts

of
th

e
n

f

W
ey

l
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-
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in
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e

m
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d
u
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to
th

e
u
nb
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U
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f

)
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s,
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p
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e
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e
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ct
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r
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te

ra
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n

w
it

h
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e
w
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l
in
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)

is
h
ig

h
ly

su
p
p
re
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ed

,
th
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in

d
u
ce

a
p
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er
-l
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e
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m
p
et
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g

w
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h
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e
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p
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ti
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p
u
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at
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e
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T
h
e

le
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g

e↵
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t
of
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e
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n
s
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-
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�
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d
er

;
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s
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u
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on

,
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w
h
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h
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e
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,
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u
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F
er

m
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n
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s
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e
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u
n
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n
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at
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w
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l-
w

al
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⇠
�

m

2

� m

M

� 4n f
(m

d
)�

4
n

f
+

4

,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
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T
h
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ex
p
re
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n
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e
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io

n
at

tr
ac

ti
on

in
cl

u
d
ed

,

is
S

=
R
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+
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�
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/

(m
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d
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at
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n
p
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p
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at
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⇤
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b
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at
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g
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p
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l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d

⇤,
m

b
r

⇠
m

e

�
4
⇡

2
2
n

f
/
g

2

.
T

h
e

b
re

at
h
er

m
od

e
m

as
s

m

b
r

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
qu

ar
ks

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
xe

s
w

h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
re
g
io
n
s
re
p
re
se
n
t

d
is
ti
n
ct

va
cu

a
o
f
th
e
th
eo
ry
.
T
h
e
so
li
d
b
la
ck

li
n
e
re
p
re
se
n
ts

th
e
B
P
S
1
D
W

,
w
h
il
e
th
e
d
a
sh
ed

li
n
e
re
p
re
se
n
ts

th
e
a
n
ti
-B

P
S
2

D
W

,
w
h
il
e
th
e
a
rr
ow

s
re
p
re
se
n
t
th
ei
r
el
ec
tr
ic

fl
u
x
es
.

T
h
e

b
la
ck

d
o
ts

a
re

th
e
q
u
a
rk

a
n
d

th
e
a
n
ti
-q
u
a
rk
.

T
h
e
in
la
y
in

th
e
u
p
p
er

le
ft

co
rn
er

sh
ow

s
a
fu
n
d
a
m
en
ta
l
st
ri
n
g
en

d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2

,
w

h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x.

If
a

qu
ar

k
an

ti
-q

u
ar

k
(q

q̄
)

p
ai

r
is

in
th

e
vi

ci
n
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

q
q̄

p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

q
q̄

p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

nt
of

th
e

D
W

lo
ca

li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

qu
ar

ks
ar

e
li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
qu

ar
ks

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

by
S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

qu
en

tl
y

ex
p
lo

re
d

fr
om

m
od

el
in

g
th

e
e↵

ec
ti

ve
ac

ti
on

s
of

th
e

P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

kn
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry

se
tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
yn
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ic

s
is

u
n
d
er

st
oo

d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly
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a

fe
w

sa
li
en

t
p
oi

nt
s.

A
ll

fi
el

d
s

in
(1

)
b
ec

om
e

N

c

�
1

d
im

en
-

si
on

al
ve

ct
or

s,
d
es
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ib

in
g

th
e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c

)!
U

(1
)N

c
�

1

b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,
�
)

=
e

i

~

�
·H C

~

A

(
3
)

,w
it

h
~

�
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1

el
ec

tr
ic

ch
ar

ge
s)

,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

by
su

m
m

in
g

ov
er

al
l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,
�
)i

⇠
e

�
S

c
la

s
s
[
�̄
(
C

)
]

,
w

it
h

th
e

m
ag

n
et

ic
b
io

n
p
ot

en
ti

al

L b
i
o
n

=
�

m

2

M

N

c X i
=

1

co
s
h (~↵

⇤ i

�
~
↵

⇤ i
+

1
(
m

o
d

N

c
)

)
·~�

i ,
(3

)

3

b
ac

k
gr

ou
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m

2

e

�
c
m

d

,
c
�

1
(a

ca
lc

u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el

in
g

ev
en

fo
r

p
ar

al
le

l
w

al
ls

,
y
ie

ld
s

at
tr

ac
ti

on
w

it
h

c
>

1)
.

T
h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
“~

”⇠
m

M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e

�
m

d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y

th
e

fe
rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
h
y
si

cs
is

d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

n
tr

as
t

to
S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f

>
1

th
e

C
ar

ta
n

co
m

p
on

en
ts

of
th

e
n

f

W
ey

l
ad

-
jo

in
ts

ar
e

m
as

sl
es

s,
d
u
e

to
th

e
u
n
b
ro

ke
n

S
U

(n
f

)
ch

ir
al

sy
m

m
et

ry
.

T
h
u
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d
.

T
h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

o
c-

cu
rs

at
2n

f

�
1

lo
op

or
d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d
.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m

2

� m M

� 4n f
(m

d
)�

4
n

f
+

4

,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e

�
m

d

at
la

rg
e

d
.

T
h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

o
d
el

,
w

it
h

fe
rm

io
n

at
tr

ac
ti

on
in

cl
u
d
ed

,

is
S

=
R

(T
+

d
)M

m
+

R
T

M
m

e

�
m

d

�
R

T
m

2

� m M

� 4n f
/

(m
d
)4

n

f
�

4

.
T

h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
o
es

n
ot

co
n
tr
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u
te

fo
r

la
rg

e
T

)
is

n
ow

e

�
m

d

⇠
e

�
4
⇡

2
(
4
n

f
+

1
)
/
g

2

/
(m

d
)4

n

f
�

3

.
A

t
sm

al
l

g

2

,
w

e
th

u
s

h
av

e
m

d

⇤
⇡

4⇡
2

(4
n

f

+
1)

/
g

2

,
a

st
ab

le
w

al
l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d

⇤
of

th
e

st
ri

n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st
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il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

q
u
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f

>
1

Q
C

D
(a

d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
re

at
h
er

”
m

o
d
e

of
th

e
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o
w

al
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,
is

n
ow
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p
p
ed

ev
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n
it

e
R

.
T

h
e

ga
p
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r
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is

m
o
d
e,

m

b
r

,
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n
b
e

es
ti

m
at

ed
b
y
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k
in

g
th

e
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d
d
er
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e

of
th

e
w
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l-
w
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l
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ra
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n

p
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ti
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d
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b
r

⇠
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�
4
⇡

2
2
n

f
/
g

2

.
T

h
e

b
re

at
h
er

m
o
d
e

m
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s
m

b
r
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a

n
ew
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al

e
on
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e

st
ri

n
g

w
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w
el

l
b
el
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th

e
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—
th

e
b
u
lk

m
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s
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p
m
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r
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u
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u
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u
at
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n
s.

T
h
e
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ct

th
at

th
e

st
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n
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e
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m

p
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t
of

d
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n

w
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W
)

–
a
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at
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n
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p
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it
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w

h
at

w
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es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
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en
-

ta
l
q
u
ar

k
s
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te

ra
ct

w
it

h
D

W
s.

F
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S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es
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D

W
s,

w
h
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h
w
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QQ* pair
fuses with 
wall 

Q’s deconfined 
on DWs

DW

string ends 
on DW

Q

an electric example of strings and branes “from flesh and blood” (Shifman-Yung all magnetic) 

pull Q* to 
infinity

2 large-N SYM:  BPS wall tension ~ N, not N , so “D-brane like” (think g_string ~1/N)

here: pure QFT, no large-N, no SUSY/BPS (small-L instead), explicit, not heuristic, picture

S.-J. Rey/Witten 1997/  

3 oblique confinement (heuristic!): wall supports free quarks so confining strings can end on it 

1 MQCD: string (M2) ends on DW (some wrapped M5)
2
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Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 6, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Summary/conclusions/…:
New ’t Hooft anomalies, missed before, have interesting 
implications; here: discrete chiral/center mixed anomaly

Example 1: k-walls between high-T center-broken vacua,  
rich worldvolume dynamics (SYM)

2d QCD (non-susy) on the k-wall
screening (one-from center breaking) on wall
confining strings ending on wall (~ F1/D1)

high-T walls share properties of zero-T bulk and zero-T walls 

high-T chirally restored phase, but                        on wall

Novel ’Exotic’ Coulomb Gases from toroidially compactified

Gauge theories and Duality

Brett Teeple

December 4, 2018

Abstract

I investigate e↵ective potentials of QCD-like gauge theories in d dimensions on tori, and certain

other compact Riemannian manifolds in di↵erent geometries. In particular, the case of d = 4 on

a 2D torus has proved useful not only in studying phase transitions in such gauge theories, but by

large-N gauge - volume correspondence can tell of confinement phase transitions in QCD gases in

4 dimensions. I calculate the (perturbative) e↵ective potentials in general for tori, compute their

minima in the case of the two dimensional torus in arbitrary dimensional space-time with Wilson

lines and also for arbitrary complex structure parameter ⌧ . Next, the non-perturbative aspects of the

compactified theory are studied and the e↵ect of neutral and magnetic bions is taken into account.

These e↵ects are necessary for generating a mass gap for the dual photon and leading to confinement.

The case of supersymmetry will be looked into in more detail being the one previous researchers

have not yet understood. Computing low-temperature expansions of these e↵ective potentials leads

to an interesting Coulomb gas where there are two types of W bosons with both electric and scalar

charges, the scalar charges attracting like charges (!) and 4 types of magnetic bions, two of which

are magnetically neutral but carry scalar charge ±2. I will derive this Coulomb gas and its leading

order RGEs and discuss the results in the case of SUSY which is interesting, and somewhat simpler.

Future areas of study will be mentioned and also a dual lattice/spin model will be proposed, along

with other toy models as a way to better understand our new plasma. Generalizations to higher rank

and arbitrary Lie groups will be briefly mentioned. Finally, I will hint at how one can venture into

non-flat compactification geometries, starting with the non-flat torus and other surfaces of revolution

where some exact trace formulae can be calculated in some specific cases (at least numerically to a

certain precision) and lead to formulae of e↵ective potentials with Wilsonian fields threading cycles

of the compact manifold.

’Things fall apart.
The centre cannot hold.¨
– W.B. Yeats (The Second Coming)
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Summary/conclusions/…:
New ’t Hooft anomalies, missed before, have interesting 
implications; here: discrete chiral/center mixed anomaly

Example 2: k=1-walls between zero-T chiral-broken vacua,  
similar phenomena seen semiclassically (same TQFT)

Example 1: k-walls between high-T center-broken vacua,  
rich worldvolume dynamics (SYM)



Summary/conclusions/…:
New ’t Hooft anomalies, missed before, have interesting 
implications; here: discrete chiral/center mixed anomaly

Example 2: k=1-walls between zero-T chiral-broken vacua,  
similar phenomena seen semiclassically (same TQFT)

Example 1: k-walls between high-T center-broken vacua,  
rich worldvolume dynamics (SYM)

lattice and high-T k-walls  
zero-T k>1 semiclassical (?) walls vs. Acharya-Vafa  

Future:
nf>1 high-T k-walls detail

& low-T “center vortices” and confinement; k-wall condense? 



Summary/conclusions/…:
New ’t Hooft anomalies, missed before, have interesting 
implications; here: discrete chiral/center mixed anomaly

Example 2: k=1-walls between zero-T chiral-broken vacua,  
similar phenomena seen semiclassically (same TQFT)

Example 1: k-walls between high-T center-broken vacua,  
rich worldvolume dynamics (SYM)

lattice and high-T k-walls  
zero-T k>1 semiclassical (?) walls vs. Acharya-Vafa  

what other consistency conditions have been missed? 
& low-T “center vortices” and confinement; k-wall condense? 

Future:
nf>1 high-T k-walls detail


