't Hooft anomalies, high-T, and low-T domain walls in adjoint-fermion theories with (or without) supersymmetry

Erich Poppitz

with Mohamed Anber

Lewis & Clark College, Portland, OR

1807.00093, 1811.10642 (high-T) + many earlier related works, by us and by others

+ revisit past work
1501.06773 (low-T) M. Anber, Tin Sulejmanpasic, EP)

Motivation:

general - improved understanding of nonperturbative dynamics of 4d gauge theories

immediate - new 't Hooft anomaly matching conditions [Gaiotto, Kapustin, Komargodski, Seiberg, Willett; 2014-]

class of theories - SU(N) QCD(adj) nf massless Weyl nf=0 pure YM (add mass to nf>0)

nf=1 super YM

nf=2, 3, 4, 5: asymptotic freedom, conformal, confining? [Anber, EP; Cordova, Dumitrescu; Bi, Senthil;... 2018] [lattice preliminary: Anthenodorou, Bennett, Bergner, Lucini 2014]

Motivation:

general - improved understanding of nonperturbative dynamics of 4d gauge theories

immediate - new 't Hooft anomaly matching conditions [Gaiotto, Kapustin, Komargodski, Seiberg, Willett; 2014-]

class of theories - SU(N) QCD(adj) nf massless Weyl nf=0 pure YM (add mass to nf>0)

nf=1 super YM

nf=2, 3, 4, 5: asymptotic freedom, conformal, confining? [Anber, EP; Cordova, Dumitrescu; Bi, Senthil;... 2018] [lattice preliminary: Anthenodorou, Bennett, Bergner, Lucini 2014]

all semiclassical at small spatial circle [R³x S¹: Unsal+... 2008-]

Outline of talk: mostly nf=1 super YM

0. discrete 0-form/1-form 't Hooft anomalies imply rich domain wall dynamics

two semiclassical regimes both $R^3 x S^1$ small S^1 size:

1. high-T domain walls k-wall 2d QCD, depends on k,N chiral and center breaking strings ending on walls

2. low-T domain walls semiclassical picture of worldvolume center breaking and strings ending on walls

Outline of talk: mostly nf=1 super YM

lines

0. discrete 0-form/1-form 't Hooft anomalies imply rich domain wall dynamics

two semiclassical regimes both $R^3 x S^1$ small S^1 size:

- **1.** high-T domain walls k-wall 2d QCD, depends on k,N chiral and center breaking
 - 1 and 2 are similar

strings ending on walls

2. low-T domain walls semiclassical picture of worldvolume center breaking and strings ending on walls

obtain QFT picture of phenomena first seen in MQCD or holography

Some further motivation to study domain wall (DW) worldvolume theories:

- some of these DW worldvolume theories are themselves the simplest study cases of QFTs with mixed 0-form/1-form 't Hooft anomalies - <u>solvable 2d ex. here</u>
- physics on the high-T DW (2d) shares features of the low-T theory, both bulk (4d) and DW (2d/3d)
- high-T DW are a semiclassical counterpart to "center vortices," field configurations thought to be responsible for area law of Wilson loop at low-T in pure YM (not theoretically controllable; seen in lattice simulations)
 [Greensite+...; 'D Elia, de Forcrand;... 1998-]

0. discrete 0-form/1-form 't Hooft anomalies

$$\begin{array}{ccc} U(1)_R \times Z_N^{(1)} & \longrightarrow & U(x,\hat{\mu}) \to e^{i\frac{2\pi}{N}n_{\mu}} U(x,\hat{\mu}) \\ & \downarrow & & - \text{closed loops invariant} \\ \lambda^a_{\alpha} \to e^{i\omega}\lambda^a_{\alpha} & & - \text{winding (F) loops transform} \end{array}$$

- nontrivial Jacobian

$$J = e^{i\omega 2NQ_{top}}$$

$$\begin{split} \lambda^a_\alpha &\to e^{i\frac{2\pi}{2N}}\lambda^a_\alpha \\ \text{only} \ Z^{(0)}_{2N} \ \text{survives} \end{split}$$

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

[Witten; Acharya, Vafa; late '90s...]

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

high-T SYM:
$$T \gg \Lambda$$
 [Gross, Pisarski, Yaffe 1980s]
 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\beta^+} \sum_{n=1} \frac{-1 + \frac{p}{f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

high-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

SU(3) T**A₄** -plane:

"Weyl chamber" $Z_N^{(0)C}$ "O-form center" broken SU(N) unbroken

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

nigh-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

Polyakov loop vev: $\operatorname{tr}_{F}\left[e^{i \Phi_{0} \cdot H}\right]\Big|_{\Phi_{0}=2\pi d}$

$$=Ne^{-irac{2\pi a}{N}}$$

"Weyl chamber" $Z_N^{(0)C}$ "O-form center" broken

SU(N) unbroken

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

nigh-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

nigh-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

nigh-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

nigh-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

Iow-T SYM: discrete chiral broken, center unbroken; anomaly saturated in "Goldstone" mode, DWs...

nigh-T SYM:
$$T \gg \Lambda$$

 $V(\mathbf{A}_4) = \frac{4T^4}{\pi^2} \sum_{\boldsymbol{\beta}^+} \sum_{n=1}^{\infty} \frac{-1 + \frac{1}{p_f}(-1)^n}{n^4} \cos\left[\frac{n\mathbf{A}_4 \cdot \boldsymbol{\beta}}{T}\right]$

k-wall (line!) connects 0-th and k-th vacuum:

 $\mathbf{A}_{4}^{DW(k)}(z) = T \mathbf{\Phi}^{DW(k)}(z) \qquad \mathbf{\Phi}^{DW(k)}(\mp \infty) = \begin{cases} 0\\ 2\pi\omega_{\mathbf{k}} \end{cases}$ minimum action along sides of Weyl chamber SU(3)->SU(2)xU(1)

high-T SYM: $T \gg \Lambda$ $\operatorname{tr}_{F}\left[e^{i\Phi_{0}\cdot\boldsymbol{H}}\right]\Big|_{\Phi_{0}=2\pi\omega_{a}} = Ne^{-i\frac{2\pi a}{N}}$

k-wall (line!) connects 0-th and k-th vacuum:

$$\mathbf{A}_{4}^{DW(k)}(z) = T\mathbf{\Phi}^{DW(k)}(z) \qquad \mathbf{\Phi}^{DW(k)}(\mp\infty) = \begin{cases} 0\\ 2\pi\omega_{\mathbf{k}} \end{cases}$$
$$A_{4}^{DW(k)}(z) = TQ^{(k)}(z)\tilde{H}^{N-k} \qquad \tilde{H}^{N-k} \sim \operatorname{diag}\left[\underbrace{k,k,\dots,k}_{N-k \text{ times}},\underbrace{k-N,k-N,\dots,k-N}_{k \text{ times}}\right]$$

[Bhattacharya, Gocksch, Korthals-Altes, Pisarski;+... 1992-]

high-T SYM: $T \gg \Lambda$ $\operatorname{tr}_{F}\left[e^{i\Phi_{0}\cdot\boldsymbol{H}}\right]\Big|_{\Phi_{0}=2\pi\omega_{a}} = Ne^{-i\frac{2\pi a}{N}}$

k-wall (line!) connects 0-th and k-th vacuum

k-wall tensionk-wall widthbulk "confining"
$$T^2 \frac{(N-k)k}{\sqrt{g^2N}}$$
 $\frac{1}{T\sqrt{g^2N}} << \frac{1}{g^2NT}$ $\frac{1}{g^2NT}$ Casimir scaling down to $\sim T_C$ - lattice [... Bursa, Teper 2005]

high-T SYM: $T \gg \Lambda$

 $\sum_{N=1}^{(0)} by \text{Polyakov loop vev:}$ $= Ne^{-i\frac{2\pi a}{N}}$

$$\operatorname{Tr}_{F}\left[e^{i\boldsymbol{\Phi}_{0}\cdot\boldsymbol{H}}\right]\Big|_{\boldsymbol{\Phi}_{0}=2\pi\boldsymbol{\omega}_{a}}=Ne^{-i\frac{2\pi\boldsymbol{\omega}_{a}}{N}}$$

$$A_4^{DW(k)}(z) = TQ^{(k)}(z)\tilde{H}^{N-k} \qquad \tilde{H}^{N-k} \sim \operatorname{diag}\left[\underbrace{k,k,\dots,k}_{N-k \text{ times}},\underbrace{k-N,k-N,\dots,k-N}_{k \text{ times}}\right]$$

on k-wall: $SU(N) \longrightarrow U(1) \times SU(N-k) \times SU(k)$

$$m_W \sim T \sqrt{\frac{N}{k(N-k)}}$$

high-T SYM: $T \gg \Lambda$

 $Z_N^{(0)C}$ by Polyakov loop vev:

$$\operatorname{tr}_{F}\left[e^{i\boldsymbol{\Phi}_{0}\cdot\boldsymbol{H}}\right]\Big|_{\boldsymbol{\Phi}_{0}=2\pi\boldsymbol{\omega}_{a}}=Ne^{-i\frac{2\pi a}{N}}$$

on k-wall: $SU(N) \longrightarrow U(1) \times SU(N-k) \times SU(k)$

 $m_W \sim T \sqrt{\frac{N}{k(N-k)}}$ massless gauge bosons localized by bulk confinement, like [Dvali, Shifman 1996]

in purely bosonic theory, not much 'fun': 2d confinement, mass gap on wall unless $\theta = \pi$

— or adjoint fermions, this talk

[Gaiotto, Kapustin, Komargodski, Seiberg; 2017]

high-T SYM: $T \gg \Lambda$

by Polyakov loop vev:

$$\operatorname{tr}_{F}\left[e^{i\boldsymbol{\Phi}_{0}\cdot\boldsymbol{H}}\right]\Big|_{\boldsymbol{\Phi}_{0}=2\pi\boldsymbol{\omega}_{a}}=Ne^{-i\frac{2\pi a}{N}}$$

on k-wall: $SU(N) \longrightarrow U(1) \times SU(N-k) \times SU(k)$

 $m_W \sim T \sqrt{\frac{N}{k(N-k)}}$

massless gauge bosons localized by bulk confinement, like [Dvali, Shifman 1996]

adjoint fermions: Matsubara mass, except some not commuting with wall profile

diag
$$\left[\underbrace{k,k,...,k}_{N-k \text{ times}},\underbrace{k-N,k-N,...,k-N}_{k \text{ times}}\right]$$
 - Work out details:

٦

high-T SYM: $T \gg \Lambda$ $\operatorname{tr}_{F}\left[e^{i\Phi_{0}\cdot\boldsymbol{H}}\right]\Big|_{\Phi_{0}=2\pi\omega_{a}} = Ne^{-i\frac{2\pi a}{N}}$

k-wall worldvolume theory 2d QCD gauge group $U(1) \times SU(N-k) \times SU(k) U(1)_R$ $\psi_+ \gamma^{(N-k)} \equiv \sqrt{\frac{N}{k(N-k)}} \square \square 1$ $\psi_- -\gamma^{(N-k)} \square \square 1$

high-T SYM: $T \gg \Lambda$ k-wall

$$U(1)_R$$

 $\psi_{\pm} \rightarrow e^{i\chi} \psi_{\pm}$ Jacobian

$$\mathcal{J} \equiv \exp\left[i \ 2\chi(N-k)k \ \gamma^{(N-k)} \oint \frac{F_{12}^{N-k} dx^1 dx^2}{2\pi}\right]$$

 ψ

 ψ

high-T SYM: $T \gg \Lambda$ k-wall

2d QCD gauge group

$$U(1) \mathsf{X} \qquad SU(N-k) \mathsf{X} SU(k) \qquad U(1)_R$$

$$+ \gamma^{(N-k)} \equiv \sqrt{\frac{N}{k(N-k)}} \qquad \Box \qquad \overline{\Box} \qquad 1$$

$$-\gamma^{(N-k)} \qquad \overline{\Box} \qquad \Box \qquad 1$$

$$U(1)_{R}$$

 $\psi_{\pm} \rightarrow e^{i\chi}\psi_{\pm}$ Jacobian

$$\mathcal{J} \equiv \exp\left[i\,2\chi(N-k)k\,\gamma^{(N-k)}\oint \frac{F_{12}^{N-k}dx^{1}dx^{2}}{2\pi}\right]$$

 $\oint \frac{F_{12}^{N-k} dx^1 dx^2}{2\pi} = \gamma^{(N-k)} n, \ n \in \mathbb{Z}$

study b.c. on T^2, or constant flux backgrd

high-T SYM: $T \gg \Lambda$ k-wall

 $\begin{array}{cccc} 2d \ \mathsf{QCD} \ \mathsf{gauge} \ \mathsf{group} & U(1) \mathsf{X} & SU(N-k) \mathsf{X}SU(k) & U(1)_R \\ \\ \psi_+ & \gamma^{(N-k)} \equiv \sqrt{\frac{N}{k(N-k)}} & \Box & \overline{\Box} & 1 \\ \psi_- & -\gamma^{(N-k)} & \overline{\Box} & \Box & 1 \end{array}$

$$\begin{split} U(1)_R \\ \psi_{\pm} &\to e^{i\chi} \psi_{\pm} \quad \text{Jacobian} \\ \mathcal{J} &\equiv \exp\left[i \, 2\chi(N-k)k \, \gamma^{(N-k)} \oint \frac{F_{12}^{N-k} dx^1 dx^2}{2\pi}\right] \\ &= e^{2i\chi Nn} \end{split}$$

only $Z_{2N}^{(0)}$ survives, as in the 4d theory

U(1) flux quantization?

 $\oint \frac{F_{12}^{N-k} dx^1 dx^2}{2\pi} = \gamma^{(N-k)} \ n, \ n \in \mathbb{Z}$

high-T SYM: $T \gg \Lambda$ k-wall

2d QCD gauge group U(1) x SU(N-k) x SU(k)

 $Z_{2N}^{(0)}$ discrete chiral already seen

center symmetry? e.g. $q_1 \sim (\frac{k}{N}\gamma^{(N-k)}, \Box, 1)$ part of SU(N) \Box

$$Z_N^{(1)} \quad W_{q_1} \to e^{i\frac{2\pi}{N}p}W_{q_1}$$

high-T SYM: $T \gg \Lambda$ k-wall

2d QCD gauge group U(1) x SU(N-k) x SU(k)

 $Z_{2N}^{(0)}$ discrete chiral already seen

center symmetry? e.g. $q_1 \sim (\frac{k}{N}\gamma^{(N-k)}, \Box, 1)$ part of SU(N) \Box

$$Z_N^{(1)} \quad W_{q_1} \to e^{i\frac{2\pi}{N}p} W_{q_1}$$

gauging - unit 't Hooft flux in k-wall worldvolume = k units of fractional U(1) flux $\oint \frac{F_{12}^{N-k}dx^1dx^2}{2\pi} = k \frac{\gamma^{(N-k)}}{N}$

$$J_{Z_{2N}^{(0)}} = \exp\left[i\frac{2\pi}{2N}2(N-k)k\gamma^{(N-k)}\oint\frac{F_{12}^{N-k}dx^{1}dx^{2}}{2\pi}\right] = e^{i\frac{2\pi}{N}k} \quad \begin{array}{l} \text{mixed} \\ \text{anomaly!} \end{array}$$

high-T SYM: $T \gg \Lambda$ k-wall

 $\begin{array}{cccc} 2d \ \mathsf{QCD} \ \mathsf{gauge} \ \mathsf{group} & U(1)\mathsf{X} & SU(N-k)\mathsf{X}SU(k) & U(1)_R \\ \\ \psi_+ & \gamma^{(N-k)} \equiv \sqrt{\frac{N}{k(N-k)}} & \Box & \overline{\Box} & 1 \\ \psi_- & -\gamma^{(N-k)} & \overline{\Box} & \Box & 1 \end{array}$

 $Z_{2N}^{(0)} Z_N^{(1)}$ 't Hooft anomaly on worldvolume as implied by anomaly inflow

$$\left(S_{5-D} = i \frac{2\pi}{N} \int_{M_5 (\partial M_5 = M_4)} \frac{2NA^{(1)}}{2\pi} \wedge \frac{NB^{(2)}}{2\pi} \wedge \frac{NB^{(2)}}{2\pi} \longrightarrow \oint_{M_{zx^4}} \frac{B^{(2)}N}{2\pi} = k$$

$$\rightarrow S_{3-D} = i \frac{2\pi k}{N} \int_{M_3 (\partial M_3 = M_2)} \frac{2NA^{(1)}}{2\pi} \wedge \frac{NB^{(2)}}{2\pi} \longrightarrow Z_{2N}^{(0)} Z_N^{(1)} \text{ on worldvolume}$$

high-T SYM: $T \gg \Lambda$ k-wall

2d QCD gauge group $U(1) X \qquad SU(N-k) XSU(k) \qquad U(1)_R$ $\psi_+ \quad \gamma^{(N-k)} \equiv \sqrt{\frac{N}{k(N-k)}} \qquad \Box \qquad \Box \qquad 1$ $\psi_- \qquad -\gamma^{(N-k)} \qquad \Box \qquad \Box \qquad 1$

 $Z_{2N}^{(0)} Z_N^{(1)}$ 't Hooft anomaly on worldvolume IR of worldvolume? matching?

N=2, k=1 = axial "charge-2" Schwinger model Anber, EP 1807.00093 on its own, simplest study case of QFTs with mixed 0-form/1-form 't Hooft anomaly

charge-q vector Schwinger model on spatial S¹ Anber, EP 1807.00093

1-form center + 0-form chiral; Hamiltonian [Manton '86; Iso, Murayama '89]

$$\oint A_x dx \equiv a \quad Z_q^C : a \to a + \frac{2\pi}{q} \quad (Z_q^C)^q = G \quad \text{large gauge trf.}$$
Dirac sea states $|n\rangle \longrightarrow = i = i = Q_5 |n\rangle = |n\rangle \left(2n - \frac{qa}{\pi}\right)$
left right $G|n\rangle = |n + q\rangle$
anomaly free Q_5
 $\tilde{Q}_5 \equiv Q_5 + \frac{qa}{\pi}$ not G invariant $G : \tilde{Q}_5 \to \tilde{Q}_5 + 2q$
 $X_{2q} \equiv e^{i\frac{2\pi}{2q}\tilde{Q}_5}$ G invariant, generates chiral $Z_{2q}^{(0)}$

$$\begin{split} X_{2q} &\equiv e^{i\frac{2\pi}{2q}\dot{Q}_{5}} \text{ G invariant, generates chiral } Z_{2q}^{(0)} \\ X_{2q}|n\rangle &= |n\rangle \, \omega_{q}^{n} \qquad (\omega_{q} \equiv e^{i\frac{2\pi}{q}}) \\ Y_{q} \text{ generates 1-form center } \quad (Y_{q})^{q} = G \\ Y_{q}|n\rangle &= |n+1\rangle \qquad \text{because } G|n\rangle = |n+q\rangle \\ \text{q "theta vacua" } |\theta,k\rangle &\equiv \sum_{n \in \mathbb{Z}} e^{i(k+qn)\theta}|k+qn\rangle, \ k = 0, 1, \dots, q-1 \\ \text{and their } Z_{q} \text{Fourier transfs:} \\ |P,\theta\rangle &\equiv \frac{1}{\sqrt{q}} \sum_{k=0}^{q-1} \omega_{q}^{kP}|\theta,k\rangle, \ P = 0, \dots, q-1 \text{(need, clustering)} \end{split}$$

$$\langle P', \theta | \bar{\psi}_+(x) \psi_-(x) | P, \theta \rangle = e^{-i\theta} \omega_q^{-P} \delta_{P,P'} C$$

from above formulae find action of symmetries

$$X_{2q} | P, \theta \rangle = | P + 1 \pmod{q}, \theta$$
$$Y_q | P, \theta \rangle = | P, \theta \rangle \omega_q^{-P} e^{-i\theta}$$
$$X_{2q} Y_q = \omega_q Y_q X_{2q} \quad (\omega_q = e^{i\frac{2\pi}{q}})$$

"central extension" manifestation of mixed discrete 't Hooft anomaly

$$X_{2q} Y_q = \omega_q Y_q X_{2q} \quad (\omega_q = e^{i\frac{2\pi}{q}}) \qquad \begin{array}{l} \text{manifestation of} \\ \text{mixed discrete} \\ \text{'t Hooft anomaly} \end{array}$$

"central extension"

relabel q->N
$$Z_{2N}^{(0)} \rightarrow Z_{2}^{(0)}$$
 IR TQFT on N=2, k=1 DW:
 $S_{2-D} = i \frac{N}{2\pi} \int_{M_2} \varphi^{(0)} da^{(1)}$ $e^{i\hat{\varphi}} e^{i\hat{a}} = e^{i\frac{2\pi}{N}} e^{i\hat{a}} e^{i\hat{\varphi}}$
N=2, k=1, derivation from UV: $Z_{2N}^{(0)}$ $Z_N^{(1)}$ operators

high-T SYM: $T \gg \Lambda$ k-wall

2d QCD gauge group $U(1) X \qquad SU(N-k) XSU(k) \qquad U(1)_R$ $\psi_+ \quad \gamma^{(N-k)} \equiv \sqrt{\frac{N}{k(N-k)}} \qquad \Box \qquad \Box \qquad 1$ $\psi_- \qquad -\gamma^{(N-k)} \qquad \Box \qquad \Box \qquad 1$

 $Z_{2N}^{(0)} Z_N^{(1)}$ 't Hooft anomaly on worldvolume IR of worldvolume? matching?

N=2, k=1 = axial "charge-2" Schwinger model Anber, EP 1807.00093 $Z_{2N}^{(0)} \rightarrow Z_{2}^{(0)}$ $Z_{N}^{(1)}$ broken (perimeter law) screening of all charges in 2d massless-fermion theories

high-T SYM: $T\gg\Lambda$ k-wall $Z_{2N}^{(0)}\,Z_N^{(1)}$ 't Hooft anomaly on worldvolume

likely persists for all N, k=1 (perhaps all k):

$$Z_{2N}^{(0)} \to Z_2^{(0)}$$
: $\langle \operatorname{tr} \psi_+ \psi_- \rangle \neq 0$

all-N, k=1, gauged WZW Affleck, '86 $\begin{aligned} & \text{Iarge-N, k=1 Zhitnitsky, '85; Burkardt '94} \\ & \text{Glozman, Shifman..., '12} \end{aligned}$

gapped, IR TQFT

$$S_{2-D} = i \frac{N}{2\pi} \int_{M_2} \varphi^{(0)} da^{(1)} \qquad e^{i\hat{\varphi}} e^{i\hat{a}} = e^{i\frac{2\pi}{N}} e^{i\hat{a}} e^{i\hat{\varphi}}$$

high-T SYM: $T\gg\Lambda$ k-wall $Z_{2N}^{(0)}\,Z_N^{(1)}$ 't Hooft anomaly on worldvolume

1 fermion condensate on k-wall

2 quarks deconfined on k-wall $Z_N^{(1)}$ broken (not in bulk)

high-T SYM: $T\gg\Lambda$ k-wall $Z_{2N}^{(0)}\,Z_N^{(1)}$ 't Hooft anomaly on worldvolume

here, QFT: 2d YM with massless fermions screens 1 fermion condensate on k-wall

2 quarks deconfined on k-wall

 $Z_N^{(1)}$ broken (not in bulk)

first via holography: F1 on D1 [Aharony, Witten 1999;...]

[Schwinger model...; Gross, Klebanov, Matytsin, Smilga 1995; Armoni, Frishman, Sonnenschein 1997;...]

high-T SYM: $T \gg \Lambda$ k-wall $Z_{2N}^{(0)} Z_N^{(1)}$ 't Hooft anomaly on worldvolume

here, QFT: 2d YM with massless fermions screens

1 fermion condensate on k-wall

2 quarks deconfined on k-wall

 $Z_N^{(1)}$ broken (not in bulk)

first via holography: F1 on D1 [Aharony, Witten 1999;...]

[Schwinger model...; Gross, Klebanov, Matytsin, Smilga 1995; Armoni, Frishman, Sonnenschein 1997;...]

... similar to **2. small-S^1 domain walls...**

 $[R^3 x S^1: Unsal+... 2008-]$

QCD(adj) semiclassical at small spatial circle $\Lambda NL \ll 1$ periodic fermions

here: SYM monopole + twisted ("KK") monopole superpotential [Seiberg, Witten 1996;...]

[R³x S¹: Unsal+... 2008-]

QCD(adj) semiclassical at small spatial circle $\Lambda NL \ll 1$ periodic fermions

here: SYM monopole + twisted ("KK") monopole superpotential [Seiberg, Witten 1996;...]

$\Lambda NL \ll 1$

now **minimum** at unbroken $Z_N^{(0)C}$ point - SU(N) abelianization

SU(3) L**A₄** -plane:

but we also have N-1 "dual photons" and a *"dual photon plane"*—>

[1501.06773 Anber, Sulejmanpasic, EP]

[1501.06773 Anber, Sulejmanpasic, EP]

[1501.06773 Anber, Sulejmanpasic, EP]

here: SYM unbroken $Z_N^{(0)C}$

[1501.06773 Anber, Sulejmanpasic, EP] broken $Z_{2N}^{(0)} \to Z_2^{(0)}$

here: SYM unbroken $Z_N^{(0)C}$

[1501.06773 Anber, Sulejmanpasic, EP] broken $Z_{2N}^{(0)} \to Z_2^{(0)}$

for, e.g., a weight of the fundamental, say w l

(pictured the "wl"-confining string in vacuum 2)

here: SYM unbroken $Z_N^{(0)C}$

[1501.06773 Anber, Sulejmanpasic, EP] broken $Z_{2N}^{(0)} \rightarrow Z_2^{(0)}$

New 't Hooft anomalies, missed before, have interesting implications; here: discrete chiral/center mixed anomaly

Example 1: k-walls between high-T center-broken vacua, rich worldvolume dynamics (SYM)

- 2d QCD (non-susy) on the k-wall
- screening (one-from center breaking) on wall
- confining strings ending on wall (~ F1/D1)
- high-T chirally restored phase, but $\langle {\rm tr} \psi_+ \psi_- \rangle
 eq 0$ on wall

high-T walls share properties of zero-T bulk and zero-T walls

New 't Hooft anomalies, missed before, have interesting implications; here: discrete chiral/center mixed anomaly

Example 1: k-walls between high-T center-broken vacua, rich worldvolume dynamics (SYM)

Example 2: k=1-walls between zero-T chiral-broken vacua, similar phenomena seen semiclassically (same TQFT)

New 't Hooft anomalies, missed before, have interesting implications; here: discrete chiral/center mixed anomaly

Example 1: k-walls between high-T center-broken vacua, rich worldvolume dynamics (SYM)

Example 2: k=1-walls between zero-T chiral-broken vacua, similar phenomena seen semiclassically (same TQFT)

Future:

- nf>1 high-T k-walls detail
- zero-T k>1 semiclassical (?) walls vs. Acharya-Vafa
- Iattice and high-T k-walls

& low-T "center vortices" and confinement; k-wall condense?

New 't Hooft anomalies, missed before, have interesting implications; here: discrete chiral/center mixed anomaly

Example 1: k-walls between high-T center-broken vacua, rich worldvolume dynamics (SYM)

Example 2: k=1-walls between zero-T chiral-broken vacua, similar phenomena seen semiclassically (same TQFT)

Future:

- nf>1 high-T k-walls detail
- zero-T k>1 semiclassical (?) walls vs. Acharya-Vafa
- Iattice and high-T k-walls

& low-T "center vortices" and confinement; k-wall condense?

what other consistency conditions have been missed?