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Recent exciting development in QFT: new ’t Hooft anomaly 
matching conditions - Gaiotto, Kapustin, Komargodski, Seiberg,… 2014- 

Motivation

We all thought anomaly matching was ‘set in stone’ since ca. 
1980. Played major role in, say, Seiberg dualities in the 1990’s…

Turns out things have been missed; anomaly matching back to 
being an area of active research. 

- 1. “Dashen phenomenon” [~1960s!] in QCD  at   due to 
anomaly matching - CP breaking and domain walls (DWs); 
worldvolume “nontrivial” due to “discrete anomaly inflow”

- 2. constraints on possible IR phases of various 4d gauge 
theories… see  Anber’s talk

θ = π

Some striking consequences, e.g. 

-  3. focus on deconfinement of quarks on DWs
this talk:  
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picture applies to a variety of theories with broken discrete symmetries:  

QCD with broken CP, SYM with broken discrete chiral…
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-  focus on deconfinement of quarks on DWs

- 3d CS theory (TQFT!) ‘lives’ on DW [e.g. Acharya-Vafa late 1990’s] 
Wilson loops in CS known to obey perimeter law (and to have 
nontrivial braiding); associating CS Wilson loops with 
fundamental Wilson loop in gauge theory then implies 
deconfinement

- MQCD picture of confining (F-) strings ending on (D-/M-) walls  
[Soo-Jong Rey, 1997; Witten, 1997]

- connection to mixed “CP/or other discrete/-center � ” anomaly  
new

(ZN)2

“explanation” of deconfinement on DW somewhat formal 

[Gaiotto et al…]



-  focus on deconfinement of quarks on DWs
predicted by formal anomaly inflow arguments in a variety of 
gauge theories with mixed discrete 0-form/1-form anomalies 

prediction of deconfinement on DW somewhat indirect

 - it is nice to have a more physical picture

 - difficult on  , where theory strongly coupledR4

 - possible on  , where a weak coupling realization of     R3 × S1

based on DW worldvolume CS theories matching relevant anomaly

In fact, deconfinement on DWs was found in 2015 (Anber, Sulejmanpasic, 

EP) based on honest semiclassical analysis… before relation to 
anomaly inflow understood - which we explain and extend now: 

confinement and a nonperturbative semiclassical study of the 
vacuum is trustable! [Unsal et al, 2007-]

 entails having a theory of confinement…



-  focus on deconfinement of quarks on DWs
Here, consider SYM with discrete chiral symmetry  
this story applies to nonSUSY YM (e.g. QCD at � ) as well…θ = π
To achieve semiclassical calculability, rather than only rely on SUSY, 
compactly theory on � : control parameterS1
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1 dynamical abelianization

2 at distances >> NL weak coupling 

3 relevant d.o.f. are N-1 dual photons

key features: 

4 mass gap for dual photons due to 
proliferation, or “condensation”, of 

- magnetic bions - QCD(adj)/SYM 
- monopole-instantons - dYM 

3 1

key features:
1. dynamical abelianization

2. weak coupling

3. relevant d.o.f. at distances >> NL: “dual Cartan gluons”

4. mass gap & confinement due to the proliferation of 
nonperturbative semiclassical objects

-monopole-instantons - (d)YM
-magnetic bions - SYM/QCD(adj)
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We begin in section 2, with a review of SYM in the semiclassical limit, its relevant

symmetries, and vacua. In section 3, borrowing the results for DW fluxes — found in the

second half of the paper and already stated above — we discuss the action of symmetries

on these fluxes. We use the results for k-wall fluxes to arrive at the conclusion that all

N -ality quarks are deconfined on k-walls. An alternative description of the worldvolume

of DWs and anomaly inflow is via a TQFT, which we write explicitly for the case of k = 1

BPS walls.

The second part of the paper is devoted to the details of the numerical methods

used, and presents the numerical and analytical results regarding the DW properties. In

section 4, we discuss the methods used, present a few of the profiles of k-walls and point out

examples of profiles exhibiting various interesting properties. In particular, we summarize

the results regarding the “magnetless” DWs (the ones that do not have magnetic fields),

whose derivation is given in appendix A.

In section 5, we describe the numerical procedures used to calculate the energy of

static fundamental quarks as a function of their distance along a DW, giving an explicit

numerical confirmation of the picture of deconfinement advocated earlier and shown on

figure 1b. We also describe how baryon configurations, recall figure 2a, are studied. In

sections 4, 5, we describe the methods used in some detail, because they could be useful in

future studies of baryons, deconfinement, and k-wall junctions in a variety of semiclassical

theories, e.g. SYM, dYM, QCD(adj) on R3 × S1.

2 Brief review of SYM on RRR3 × SSS1

We shall not dwell into the details of the microscopic dynamics leading to the long-distance

theory10 described below. Our starting point here is the result that the infrared dynamics

of SYM on R3 × S1 is described by a theory of chiral superfields. Their lowest components

are the Cartan-subalgebra valued bosonic fields, the dual photons and holonomy scalars

combined into complex scalar fields:

xa = φa + iσa , a = 1, . . . N − 1, with σa ≃ σa + 2πwa
k , k = 1, . . . N − 1 . (2.1)

Here φa are real scalar fields describing the deviation of the S1 holonomy eigenvalues from

its center-symmetric value and σa are the duals of the Cartan-subalgebra photons; both

fields are taken to be dimensionless. The more precise relation to 4d fields is:

g2

4πL
∂µφ

a = F a
µ4, µ, ν = 0, 1, 2,

g2

4πL
ϵµνλ∂

λσa = F a
µν . (2.2)

Here F a
µ4 denotes the mixed R3–S1 component of the Cartan field strength tensor of the 4d

theory and F a
µν is the field strength along R3, all taken independent of the S1-coordinate

x4, and g2 is the 4d SYM gauge coupling at a scale of order 1
L (see [61] for more detail,

10In historical order, see [1, 2] and the instanton calculation of [3, 4] (completed recently in [8, 61]).
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including renormalization). Thus, eq. (2.2) implies that spatial derivatives of φa are 2d

duals of the 4d magnetic field’s components along R2; likewise, spatial derivatives of σa

are 2d duals of the 4d electric field’s components along R2.

As indicated in (2.1), the target space of the dual photons fields is the unit cell of the

SU(N) weight lattice spanned by wk = (w1
k, . . . , w

N−1
k ), k = 1 . . . N − 1, the fundamental

weights.11 A simple way to understand the σ-field periodicity is that it allows for non

vanishing monodromies corresponding to the insertion of probe electric charges (quarks)

of any nonzero N -ality, as appropriate in an SU(N) theory.

At small LNΛ ≪ 1, the bosonic part of the long distance theory is described by the

weakly-coupled R3 lagrangian:

L = M ∂µx
agab ∂

µx̄b −M
m2

4

∂W (x)

∂xa
gab

∂W̄ (x̄)

∂x̄b
. (2.3)

The spacetime metric is (+,−,−) and W (x) is the holomorphic superpotential:

W (x) =
N∑

a=1

eαa·x . (2.4)

Here α1, . . . ,αN−1 are the simple roots and αN = −
N−1∑
a=1

αa is the affine, or lowest, root

of the SU(N) algebra.12 The Kähler metric appearing in (2.3) is

gab = δab + . . . , (2.5)

and gab ≈ δab is its inverse. We stress that the above minimal form of the Kähler metric

is not an assumption: the form of gab is justified in the semiclassical LNΛ ≪ 1 limit. The

dots in (2.5) indicate corrections computed in [8, 61, 62]. We shall ignore them, as they

are negligible in the semiclassical limit (when taken at finite N [63]).

The scales appearing in the long-distance theory (2.3) are determined by the dynamics

of the underlying 4d SYM theory. We do not need the precise values but only note that

M ∼ g2

L , where g2 is the SYM coupling at the scale L, stressing again that g is small

in the semiclassical LNΛ ≪ 1 limit. The scale m ∼ Me
− 8π2

Ng2 is a nonpertubative scale

generated by various semiclassical monopole-instantons. As is clear from (2.3), (2.4), m

sets the mass scale of the φ and σ fields and their superpartners. In what follows, we shall

often call the scale m the “dual photon mass”. We should, however, keep in mind that m

is really the mass of the heaviest of the N − 1 dual photons, whose mass spectrum is given

by mk ∼ m sin2 πk
N , k = 1, . . . , N − 1.13 We find that the widths of DWs are generally

11Vectors in the Cartan subalgebra will be denoted by bold face: σ = (σ1, . . . ,σN−1), φ = (φ1, . . . ,φN−1)

and the complex field x = (x1, . . . , xN−1) and similar for their complex conjugates x̄. The dot product

used throughout is the usual Euclidean one.
12Roots are normalized to have length 2; roots and coroots are identified, and αa · wb = δab, a, b =

1, . . . N − 1.
13See [63] for a discussion of the large-N limit, [64] for the study of bound states of dual photons, the 3d

remnant of 4d glueballs [65] bound by doubly-exponential nonperturbative effects.
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All vacua have ⟨φ⟩ = 0. The dual photon field σ has nontrivial expectation value:

⟨σ⟩k =
2πk

N
ρ , (2.9)

⟨Xa⟩k = ⟨eαa·x⟩k = ei
2πk
N , a = 1, . . . N,

⟨W ⟩k ≡ Wk = Nei
2πk
N .

We introduced the notation Xa ≡ eαa·x (such that X1X2 . . . XN = 1, to be used in some

discussions below, following [40, 41]), a set of N fields which are single-valued on the Cartan

torus and do not allow for describing nonvanishing monodromies. We also denoted the

expectation value of the superpotential in the k-th ground state by Wk. The N vacua (2.9)

are interchanged by the action of the spontaneously broken Z(0)
2N → Z(0)

2 symmetry (2.6),

while the Z(1),S1L
N symmetry is unbroken.14 The 1-form Z(1),R3

N symmetry is also unbroken

in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form

discrete chiral and center symmetries, and the vacuum structure. We show this in the

simple case of SU(3) SYM on figure 3.

As usual, there are domain walls (DW) connecting the various discrete vacua. A DW is

a static configuration on R3 connecting two vacua. While a more appropriate name would

be a “domain line” (as their worldvolume is two-dimensional), we continue to call them

DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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including renormalization). Thus, eq. (2.2) implies that spatial derivatives of φa are 2d

duals of the 4d magnetic field’s components along R2; likewise, spatial derivatives of σa

are 2d duals of the 4d electric field’s components along R2.

As indicated in (2.1), the target space of the dual photons fields is the unit cell of the

SU(N) weight lattice spanned by wk = (w1
k, . . . , w

N−1
k ), k = 1 . . . N − 1, the fundamental

weights.11 A simple way to understand the σ-field periodicity is that it allows for non

vanishing monodromies corresponding to the insertion of probe electric charges (quarks)

of any nonzero N -ality, as appropriate in an SU(N) theory.

At small LNΛ ≪ 1, the bosonic part of the long distance theory is described by the

weakly-coupled R3 lagrangian:

L = M ∂µx
agab ∂

µx̄b −M
m2

4

∂W (x)

∂xa
gab

∂W̄ (x̄)

∂x̄b
. (2.3)

The spacetime metric is (+,−,−) and W (x) is the holomorphic superpotential:

W (x) =
N∑

a=1

eαa·x . (2.4)

Here α1, . . . ,αN−1 are the simple roots and αN = −
N−1∑
a=1

αa is the affine, or lowest, root

of the SU(N) algebra.12 The Kähler metric appearing in (2.3) is

gab = δab + . . . , (2.5)

and gab ≈ δab is its inverse. We stress that the above minimal form of the Kähler metric

is not an assumption: the form of gab is justified in the semiclassical LNΛ ≪ 1 limit. The

dots in (2.5) indicate corrections computed in [8, 61, 62]. We shall ignore them, as they

are negligible in the semiclassical limit (when taken at finite N [63]).

The scales appearing in the long-distance theory (2.3) are determined by the dynamics

of the underlying 4d SYM theory. We do not need the precise values but only note that

M ∼ g2

L , where g2 is the SYM coupling at the scale L, stressing again that g is small

in the semiclassical LNΛ ≪ 1 limit. The scale m ∼ Me
− 8π2

Ng2 is a nonpertubative scale

generated by various semiclassical monopole-instantons. As is clear from (2.3), (2.4), m

sets the mass scale of the φ and σ fields and their superpartners. In what follows, we shall

often call the scale m the “dual photon mass”. We should, however, keep in mind that m

is really the mass of the heaviest of the N − 1 dual photons, whose mass spectrum is given

by mk ∼ m sin2 πk
N , k = 1, . . . , N − 1.13 We find that the widths of DWs are generally

11Vectors in the Cartan subalgebra will be denoted by bold face: σ = (σ1, . . . ,σN−1), φ = (φ1, . . . ,φN−1)

and the complex field x = (x1, . . . , xN−1) and similar for their complex conjugates x̄. The dot product

used throughout is the usual Euclidean one.
12Roots are normalized to have length 2; roots and coroots are identified, and αa · wb = δab, a, b =

1, . . . N − 1.
13See [63] for a discussion of the large-N limit, [64] for the study of bound states of dual photons, the 3d

remnant of 4d glueballs [65] bound by doubly-exponential nonperturbative effects.
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We begin in section 2, with a review of SYM in the semiclassical limit, its relevant

symmetries, and vacua. In section 3, borrowing the results for DW fluxes — found in the

second half of the paper and already stated above — we discuss the action of symmetries

on these fluxes. We use the results for k-wall fluxes to arrive at the conclusion that all

N -ality quarks are deconfined on k-walls. An alternative description of the worldvolume

of DWs and anomaly inflow is via a TQFT, which we write explicitly for the case of k = 1

BPS walls.

The second part of the paper is devoted to the details of the numerical methods

used, and presents the numerical and analytical results regarding the DW properties. In

section 4, we discuss the methods used, present a few of the profiles of k-walls and point out

examples of profiles exhibiting various interesting properties. In particular, we summarize

the results regarding the “magnetless” DWs (the ones that do not have magnetic fields),

whose derivation is given in appendix A.

In section 5, we describe the numerical procedures used to calculate the energy of

static fundamental quarks as a function of their distance along a DW, giving an explicit

numerical confirmation of the picture of deconfinement advocated earlier and shown on

figure 1b. We also describe how baryon configurations, recall figure 2a, are studied. In

sections 4, 5, we describe the methods used in some detail, because they could be useful in

future studies of baryons, deconfinement, and k-wall junctions in a variety of semiclassical

theories, e.g. SYM, dYM, QCD(adj) on R3 × S1.

2 Brief review of SYM on RRR3 × SSS1

We shall not dwell into the details of the microscopic dynamics leading to the long-distance

theory10 described below. Our starting point here is the result that the infrared dynamics

of SYM on R3 × S1 is described by a theory of chiral superfields. Their lowest components

are the Cartan-subalgebra valued bosonic fields, the dual photons and holonomy scalars

combined into complex scalar fields:

xa = φa + iσa , a = 1, . . . N − 1, with σa ≃ σa + 2πwa
k , k = 1, . . . N − 1 . (2.1)

Here φa are real scalar fields describing the deviation of the S1 holonomy eigenvalues from

its center-symmetric value and σa are the duals of the Cartan-subalgebra photons; both

fields are taken to be dimensionless. The more precise relation to 4d fields is:

g2

4πL
∂µφ

a = F a
µ4, µ, ν = 0, 1, 2,

g2

4πL
ϵµνλ∂

λσa = F a
µν . (2.2)

Here F a
µ4 denotes the mixed R3–S1 component of the Cartan field strength tensor of the 4d

theory and F a
µν is the field strength along R3, all taken independent of the S1-coordinate

x4, and g2 is the 4d SYM gauge coupling at a scale of order 1
L (see [61] for more detail,

10In historical order, see [1, 2] and the instanton calculation of [3, 4] (completed recently in [8, 61]).
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Figure 7: The distribution of the eigenvalues of the Polyakov loop around S1
L for Nc = 5 for di↵erent

values of cm, shown for g2Nc = 0.1.
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Figure 8: The distribution of the eigenvalues of the Polyakov loop around S1
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values of cm, shown for g2Nc = 0.1.

We note that in the abelian confinement regime the size of the dual circle eS1 on which the
eigenvalues reside is equal to 1/L, which grows linearly with Nc, while the separation of the
eigenvalues remains fixed, 2⇡/(LNc) ⇠ O(N0

c ). This is in sharp contrast with the non-abelian
confinement regime and the ordinary large-Nc limit. In the latter, 1/L = O(N0

c ) and the
separation between eigenvalues is 2⇡/(LNc) ⇠ O(N�1

c ), forming a dense set in perturbation
theory. In the latter case, since 2⇡/(LNc) ⌧ ⇤, all the low momentum modes are strongly
coupled, and the eigenvalues are uniformly distributed over the unit circle. At the critical
point in the weakly coupled regime, the uniform separation between eigenvalues exhibits a
jump into a non-uniform one, by opening a “gap” on top of the usual one. As one increases
cm the gap continues to grow, as shown in Figures 6,7, and 8 for SU(4), SU(5), and SU(10),
respectively. In particular, we did not observe, in the semi-classical regime, an instability
towards partial center-symmetry breaking phases, similar to those found in deformed Yang-
Mills theory and massive QCD(adj), [7, 28], see Ref. [29] for a review.

There is one more interesting issue that appears in the large-Nc limit. The density
of states of large-Nc gauge theories is expected to exhibit an exponential growth, ⇢(E) ⇠

e�
⇤
E = eE/TH , where �⇤

⌘ TH is the Hagedorn temperature. This idea is related to the

– 16 –

Figure 1: Wen’s “IQH” spatial lattice

1 The Hamiltonian setup and “edge” modes

e
iA4L = e

i 2⇡N

Wen [1] proposes the following spatial lattice construction. Fermions represented

by creation  
†
x,w and annihilation  x,w operators obeying the usual anticommutation

relations have the Hamiltonian given below. See Fig. 1 for a picture.

The w-direction has Lw sites labeled w = 0, ...Lw � 1. We slightly generalize and

include arbitrary hopping amplitudes, tx̂, tŵ, td̂ on the x, w, and d (diagonal) links. We

assume that these are real and write the hopping phases explicitly, according to Wen’s

figure. The Hamiltonian is:

H =
X

x

Lw�1X

w=0

h⇣
tx̂ e

�i⇡2+i⇡w
 

†
x+1,w x,w + h.c.

⌘
� t 

†
x,w x,w

i

+
X

x

Lw�2X

w=0

⇣
tŵ  

†
x,w+1

 x,w + td̂ e
i⇡w
 

†
x,w x+1,w+1 + h.c.

⌘
. (1.1)

A “chemical potential” t has been included for later use. The x-direction is assumed

to be periodic and will be taken infinite, allowing us to Fourier transform

 x,w =

⇡Z

�⇡

dk

2⇡
e
ikx

 ̃k,w , (1.2)
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All vacua have ⟨φ⟩ = 0. The dual photon field σ has nontrivial expectation value:

⟨σ⟩k =
2πk

N
ρ , (2.9)

⟨Xa⟩k = ⟨eαa·x⟩k = ei
2πk
N , a = 1, . . . N,

⟨W ⟩k ≡ Wk = Nei
2πk
N .

We introduced the notation Xa ≡ eαa·x (such that X1X2 . . . XN = 1, to be used in some

discussions below, following [40, 41]), a set of N fields which are single-valued on the Cartan

torus and do not allow for describing nonvanishing monodromies. We also denoted the

expectation value of the superpotential in the k-th ground state by Wk. The N vacua (2.9)

are interchanged by the action of the spontaneously broken Z(0)
2N → Z(0)

2 symmetry (2.6),

while the Z(1),S1L
N symmetry is unbroken.14 The 1-form Z(1),R3

N symmetry is also unbroken

in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form

discrete chiral and center symmetries, and the vacuum structure. We show this in the

simple case of SU(3) SYM on figure 3.

As usual, there are domain walls (DW) connecting the various discrete vacua. A DW is

a static configuration on R3 connecting two vacua. While a more appropriate name would

be a “domain line” (as their worldvolume is two-dimensional), we continue to call them

DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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2 symmetry (2.6),

while the Z(1),S1L
N symmetry is unbroken.14 The 1-form Z(1),R3

N symmetry is also unbroken

in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form
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simple case of SU(3) SYM on figure 3.
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DWs in SYM theory is quite rich and has been the subject of many investigations over the
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We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:
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C A⟩

∣∣
NLΛ≪1

→
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⟨ei λb·
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A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
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We note that in the abelian confinement regime the size of the dual circle eS1 on which the
eigenvalues reside is equal to 1/L, which grows linearly with Nc, while the separation of the
eigenvalues remains fixed, 2⇡/(LNc) ⇠ O(N0

c ). This is in sharp contrast with the non-abelian
confinement regime and the ordinary large-Nc limit. In the latter, 1/L = O(N0

c ) and the
separation between eigenvalues is 2⇡/(LNc) ⇠ O(N�1

c ), forming a dense set in perturbation
theory. In the latter case, since 2⇡/(LNc) ⌧ ⇤, all the low momentum modes are strongly
coupled, and the eigenvalues are uniformly distributed over the unit circle. At the critical
point in the weakly coupled regime, the uniform separation between eigenvalues exhibits a
jump into a non-uniform one, by opening a “gap” on top of the usual one. As one increases
cm the gap continues to grow, as shown in Figures 6,7, and 8 for SU(4), SU(5), and SU(10),
respectively. In particular, we did not observe, in the semi-classical regime, an instability
towards partial center-symmetry breaking phases, similar to those found in deformed Yang-
Mills theory and massive QCD(adj), [7, 28], see Ref. [29] for a review.

There is one more interesting issue that appears in the large-Nc limit. The density
of states of large-Nc gauge theories is expected to exhibit an exponential growth, ⇢(E) ⇠

e�
⇤
E = eE/TH , where �⇤

⌘ TH is the Hagedorn temperature. This idea is related to the
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Figure 1: Wen’s “IQH” spatial lattice

1 The Hamiltonian setup and “edge” modes

e
iA4L = e

i 2⇡N

Wen [1] proposes the following spatial lattice construction. Fermions represented

by creation  
†
x,w and annihilation  x,w operators obeying the usual anticommutation

relations have the Hamiltonian given below. See Fig. 1 for a picture.

The w-direction has Lw sites labeled w = 0, ...Lw � 1. We slightly generalize and

include arbitrary hopping amplitudes, tx̂, tŵ, td̂ on the x, w, and d (diagonal) links. We

assume that these are real and write the hopping phases explicitly, according to Wen’s

figure. The Hamiltonian is:

H =
X

x

Lw�1X

w=0

h⇣
tx̂ e

�i⇡2+i⇡w
 

†
x+1,w x,w + h.c.

⌘
� t 

†
x,w x,w

i

+
X

x

Lw�2X

w=0

⇣
tŵ  

†
x,w+1

 x,w + td̂ e
i⇡w
 

†
x,w x+1,w+1 + h.c.

⌘
. (1.1)

A “chemical potential” t has been included for later use. The x-direction is assumed

to be periodic and will be taken infinite, allowing us to Fourier transform

 x,w =

⇡Z

�⇡

dk

2⇡
e
ikx

 ̃k,w , (1.2)

– 2 –

Figure 1: Wen’s “IQH” spatial lattice

1 The Hamiltonian setup and “edge” modes

e
iA4L = e

ik 2⇡
N

Wen [1] proposes the following spatial lattice construction. Fermions represented

by creation  
†
x,w and annihilation  x,w operators obeying the usual anticommutation

relations have the Hamiltonian given below. See Fig. 1 for a picture.

The w-direction has Lw sites labeled w = 0, ...Lw � 1. We slightly generalize and

include arbitrary hopping amplitudes, tx̂, tŵ, td̂ on the x, w, and d (diagonal) links. We
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All vacua have ⟨φ⟩ = 0. The dual photon field σ has nontrivial expectation value:

⟨σ⟩k =
2πk

N
ρ , (2.9)

⟨Xa⟩k = ⟨eαa·x⟩k = ei
2πk
N , a = 1, . . . N,

⟨W ⟩k ≡ Wk = Nei
2πk
N .

We introduced the notation Xa ≡ eαa·x (such that X1X2 . . . XN = 1, to be used in some

discussions below, following [40, 41]), a set of N fields which are single-valued on the Cartan

torus and do not allow for describing nonvanishing monodromies. We also denoted the

expectation value of the superpotential in the k-th ground state by Wk. The N vacua (2.9)

are interchanged by the action of the spontaneously broken Z(0)
2N → Z(0)

2 symmetry (2.6),

while the Z(1),S1L
N symmetry is unbroken.14 The 1-form Z(1),R3

N symmetry is also unbroken

in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form

discrete chiral and center symmetries, and the vacuum structure. We show this in the

simple case of SU(3) SYM on figure 3.

As usual, there are domain walls (DW) connecting the various discrete vacua. A DW is

a static configuration on R3 connecting two vacua. While a more appropriate name would

be a “domain line” (as their worldvolume is two-dimensional), we continue to call them

DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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charge given by one of the weights of R. The expectation value of the Wilson loop for each
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∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
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dim(R)∑
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∮
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where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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Figure 7: The distribution of the eigenvalues of the Polyakov loop around S1
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We note that in the abelian confinement regime the size of the dual circle eS1 on which the
eigenvalues reside is equal to 1/L, which grows linearly with Nc, while the separation of the
eigenvalues remains fixed, 2⇡/(LNc) ⇠ O(N0

c ). This is in sharp contrast with the non-abelian
confinement regime and the ordinary large-Nc limit. In the latter, 1/L = O(N0

c ) and the
separation between eigenvalues is 2⇡/(LNc) ⇠ O(N�1

c ), forming a dense set in perturbation
theory. In the latter case, since 2⇡/(LNc) ⌧ ⇤, all the low momentum modes are strongly
coupled, and the eigenvalues are uniformly distributed over the unit circle. At the critical
point in the weakly coupled regime, the uniform separation between eigenvalues exhibits a
jump into a non-uniform one, by opening a “gap” on top of the usual one. As one increases
cm the gap continues to grow, as shown in Figures 6,7, and 8 for SU(4), SU(5), and SU(10),
respectively. In particular, we did not observe, in the semi-classical regime, an instability
towards partial center-symmetry breaking phases, similar to those found in deformed Yang-
Mills theory and massive QCD(adj), [7, 28], see Ref. [29] for a review.

There is one more interesting issue that appears in the large-Nc limit. The density
of states of large-Nc gauge theories is expected to exhibit an exponential growth, ⇢(E) ⇠

e�
⇤
E = eE/TH , where �⇤

⌘ TH is the Hagedorn temperature. This idea is related to the
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Figure 1: Wen’s “IQH” spatial lattice

1 The Hamiltonian setup and “edge” modes

e
iA4L = e

i 2⇡N

Wen [1] proposes the following spatial lattice construction. Fermions represented

by creation  
†
x,w and annihilation  x,w operators obeying the usual anticommutation

relations have the Hamiltonian given below. See Fig. 1 for a picture.

The w-direction has Lw sites labeled w = 0, ...Lw � 1. We slightly generalize and

include arbitrary hopping amplitudes, tx̂, tŵ, td̂ on the x, w, and d (diagonal) links. We

assume that these are real and write the hopping phases explicitly, according to Wen’s

figure. The Hamiltonian is:

H =
X

x

Lw�1X

w=0

h⇣
tx̂ e
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⇣
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†
x,w x+1,w+1 + h.c.

⌘
. (1.1)

A “chemical potential” t has been included for later use. The x-direction is assumed

to be periodic and will be taken infinite, allowing us to Fourier transform

 x,w =

⇡Z

�⇡

dk

2⇡
e
ikx

 ̃k,w , (1.2)
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All vacua have ⟨φ⟩ = 0. The dual photon field σ has nontrivial expectation value:

⟨σ⟩k =
2πk

N
ρ , (2.9)

⟨Xa⟩k = ⟨eαa·x⟩k = ei
2πk
N , a = 1, . . . N,

⟨W ⟩k ≡ Wk = Nei
2πk
N .

We introduced the notation Xa ≡ eαa·x (such that X1X2 . . . XN = 1, to be used in some

discussions below, following [40, 41]), a set of N fields which are single-valued on the Cartan

torus and do not allow for describing nonvanishing monodromies. We also denoted the

expectation value of the superpotential in the k-th ground state by Wk. The N vacua (2.9)

are interchanged by the action of the spontaneously broken Z(0)
2N → Z(0)

2 symmetry (2.6),

while the Z(1),S1L
N symmetry is unbroken.14 The 1-form Z(1),R3

N symmetry is also unbroken

in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form

discrete chiral and center symmetries, and the vacuum structure. We show this in the

simple case of SU(3) SYM on figure 3.

As usual, there are domain walls (DW) connecting the various discrete vacua. A DW is

a static configuration on R3 connecting two vacua. While a more appropriate name would

be a “domain line” (as their worldvolume is two-dimensional), we continue to call them

DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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in the bulk of SYM, corresponding to the confinement of quarks.

It may be helpful to visualize the fundamental domain of σ, the action of the 0-form
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simple case of SU(3) SYM on figure 3.
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a static configuration on R3 connecting two vacua. While a more appropriate name would

be a “domain line” (as their worldvolume is two-dimensional), we continue to call them

DW. The tension of the DW is its energy per unit length. A DW connecting vacua k units

apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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apart, i.e. stretching between Wp and Wp+k(modN), is called a “k-wall”. The physics of the

DWs in SYM theory is quite rich and has been the subject of many investigations over the

past 20 years, for example [29, 30, 37, 39–45].

3 k-Wall fluxes and deconfinement of quarks on DWs

We begin with some remarks regarding confinement in SYM on R3×S1. Most importantly,

the theory abelianizes in the semiclassical regime. Consider then the Wilson loop operator,

in a representation R, taken around some loop C ∈ R3. At scales ≫ L, abelianization

reduces this operator to the unbroken Cartan-subalgebra Wilson loop. The expectation

value of its trace can thus be expressed as a sum over the weights λb of the representationR:

⟨WR(C)⟩ = ⟨trR ei
∮
C A⟩

∣∣
NLΛ≪1

→
dim(R)∑

b=1

⟨ei λb·
∮
A⟩ , (3.1)

where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then

solves for the field configuration of minimal action that has the right monodromy. In the

14This follows from P 2πρ
N = 2πρ

N − 2πw1, see (3.3). In words, the action of the 0-form center Z(1),S1L
N on

the vacua (2.9) is a weight-lattice shift of ⟨σ⟩k, which is an identification, as per (2.1); see also figure 3.
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where each term corresponds to the insertion of a quark with worldline along C and electric

charge given by one of the weights of R. The expectation value of the Wilson loop for each

weight, ⟨ei λb·
∮
A⟩, is computed semiclassically. One begins by realizing that the insertion

of this operator imposes a monodromy of the dual photons σ around the loop C and then
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14This follows from P 2πρ
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1.2 Summary of results

1. We numerically study the classical k-wall solutions for 2 ≤ N ≤ 9. We find that k-

wall solutions are smooth, with the variations of the fields within the validity of the

effective theory at ΛNL ≪ 1. Details of our numerical studies of DWs are given in

section 4. Further, we find that, generally, their worldvolumes carry both electric and

magnetic fields, whose profiles we determine.3 The occurrence of magnetic fields on

the DW worldvolume is due to the nature of magnetic bions — the nonperturbative

objects responsible for confinement and the expulsion of electric flux from the vacuum.

In effect, magnetic bions create a nonlinear coupling between electric and magnetic

fields. This coupling is absent only for an SU(2) gauge group.

We find that, for SU(N) with N > 2, magnetic fields are absent only on a finite

number of k = N
2 BPS walls. We argue that six of these, if N is divisible by 4 (two

solutions, for N even but not divisible by 4) carry no magnetic fields, and determine

the electric fluxes they can carry. Furthermore, see appendix A, these “magnetless”

solutions can always be expressed in terms of one function, essentially the analytic

SU(2) DW solution.

2. Focusing on the lowest-tension BPS DWs, we find numerical confirmation, see sec-

tion 4, of the known result [37, 40] that there are
(N
k

)
BPS walls between SYM vacua

k units apart.4 Our new result is a determination of the electric fluxes carried by the

different BPS k-walls. The
(N
k

)
BPS k-walls carry Cartan subalgebra electric fluxes

whose values fall in one of two groups:5

2π

(
wi1 + . . .+wik −

k

N
ρ

)
, there are

(
N − 1

k

)
such walls, (1.1)

2π

(
wj1 + . . .+wjk−1 −

k

N
ρ

)
, there are

(
N − 1

k − 1

)
such walls. (1.2)

Here the numbers (i1, . . . , ik) are to be taken all different, ranging from 1 to N − 1;

likewise all (j1, . . . , jk−1) are different.6 The above spectrum of BPS k-wall fluxes is

invariant under k → N − k up to reversal of the overall sign of the electric flux (a

parity transformation, as in [45]).

3. We use the results (1.1), (1.2) for the BPS k-wall fluxes to give a microscopic picture

of the deconfinement of quarks on DWs. General discrete anomaly inflow arguments

and the properties of the worldvolume TQFT lead to the conclusion that the 1-form

Z(1)
N center symmetry is broken on the DW worldvolume, hence quarks should be

3To avoid confusion, we stress that the total magnetic flux carried along a DW is zero.
4There is a vast literature on various aspects of DWs in SYM; an incomplete list is [29, 30, 39, 41–45].
5See the main text for a detailed explanation. Here we note that ρ is the Weyl vector and wj , j =

1, . . . , N − 1, are the fundamental weights of SU(N).
6For k = 1, the set (1.2) consists of a single wall carrying flux − 2πρ

N , hence the number of k = 1 walls

is N .
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Let’s call any BPS soliton that connects two vacua k units apart in the σ-space a

k-wall. It is easy to show that any k-wall in SU(N) is equivalent, up to a sign and the

addition of a constant vector, to one that starts from a vacuum of the unit cell that is

equivalent to the origin. Among these, we found that the boundary conditions that admit

BPS solutions are given by

⎧
⎪⎨

⎪⎩

i2πw⃗i1 + · · ·+ i2πw⃗ik−1 → ik
2π

N
ρ⃗

i2πw⃗ii + · · ·+ i2πw⃗ik → ik
2π

N
ρ⃗

(4.12)

where w⃗j are the fundamental weights and the sets ij in each case are different num-

bers taken from 1, . . . , N − 1. Since there are only N − 1 different fundamental weights,

equation (4.12) implies that the total number of k-walls in SU(N) is

(
N − 1

k − 1

)
+

(
N − 1

k

)
=

(
N

k

)
. (4.13)

This counting of BPS solutions agrees with the previously known result [40].

Although this pattern was originally noticed using the method detailed in section 4.2,

where we manually check whether the theoretical and numerical first derivatives match

for each case, in order to determine the BPS-ness of a solution, we later develop a more

efficient method to test this formula for a large number of cases. For each N and each k,

we first compute all the solutions to the second order equations with boundary conditions

k units apart. Then we compute their numerical energy, using the method described in

section 4.2.2. We plot all of their energy together, along with the theoretical minimal energy

of a BPS solutions, given by equation (4.10). Since all non-BPS solutions have energy that

are larger than the BPS energy, it is easy to tell from such plot which boundaries give rise

to BPS solutions. We check this for all N and k up to N = 8. So far, all results conform

to our hypothesis. We show an example for SU(6) and k = 3 in figure 7.

Furthermore, as described in section 3, we found that the group of the sum of k or

k− 1 number of fundamental weights has a special property with respect to the zero-form

ZN center symmetry, lending further support to the argument that this equation gives all

possible boundaries for BPS solitons.

4.3.2 Reversed direction of electric fields

For N < 5, the qualitative behaviour of the BPS dual photons in the DWs are the same:

every dual photon starts at a vacuum at negative infinity, increases abruptly at a kink,

reaches an inflection point and quickly starts decreasing, and then plateaus to a second

vacuum (or the other way around: starts from a higher vacuum and decreases through a

kink to a lower vacuum). A good example of this is the SU(3) case shown in figure 5. In

particular, every dual photon has one inflection point, for N < 5.

However, there appears to be a change starting at N = 5. Here, with seemingly no

discernible patterns on the associated boundary conditions, some of the BPS solutions

have some components of its dual photon possessing three inflection points. This means
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1.2 Summary of results

1. We numerically study the classical k-wall solutions for 2 ≤ N ≤ 9. We find that k-

wall solutions are smooth, with the variations of the fields within the validity of the

effective theory at ΛNL ≪ 1. Details of our numerical studies of DWs are given in

section 4. Further, we find that, generally, their worldvolumes carry both electric and

magnetic fields, whose profiles we determine.3 The occurrence of magnetic fields on

the DW worldvolume is due to the nature of magnetic bions — the nonperturbative

objects responsible for confinement and the expulsion of electric flux from the vacuum.

In effect, magnetic bions create a nonlinear coupling between electric and magnetic

fields. This coupling is absent only for an SU(2) gauge group.

We find that, for SU(N) with N > 2, magnetic fields are absent only on a finite

number of k = N
2 BPS walls. We argue that six of these, if N is divisible by 4 (two

solutions, for N even but not divisible by 4) carry no magnetic fields, and determine

the electric fluxes they can carry. Furthermore, see appendix A, these “magnetless”

solutions can always be expressed in terms of one function, essentially the analytic

SU(2) DW solution.

2. Focusing on the lowest-tension BPS DWs, we find numerical confirmation, see sec-

tion 4, of the known result [37, 40] that there are
(N
k

)
BPS walls between SYM vacua

k units apart.4 Our new result is a determination of the electric fluxes carried by the

different BPS k-walls. The
(N
k

)
BPS k-walls carry Cartan subalgebra electric fluxes

whose values fall in one of two groups:5

2π

(
wi1 + . . .+wik −

k

N
ρ

)
, there are

(
N − 1

k

)
such walls, (1.1)

2π

(
wj1 + . . .+wjk−1 −

k

N
ρ

)
, there are

(
N − 1

k − 1

)
such walls. (1.2)

Here the numbers (i1, . . . , ik) are to be taken all different, ranging from 1 to N − 1;

likewise all (j1, . . . , jk−1) are different.6 The above spectrum of BPS k-wall fluxes is

invariant under k → N − k up to reversal of the overall sign of the electric flux (a

parity transformation, as in [45]).

3. We use the results (1.1), (1.2) for the BPS k-wall fluxes to give a microscopic picture

of the deconfinement of quarks on DWs. General discrete anomaly inflow arguments

and the properties of the worldvolume TQFT lead to the conclusion that the 1-form

Z(1)
N center symmetry is broken on the DW worldvolume, hence quarks should be

3To avoid confusion, we stress that the total magnetic flux carried along a DW is zero.
4There is a vast literature on various aspects of DWs in SYM; an incomplete list is [29, 30, 39, 41–45].
5See the main text for a detailed explanation. Here we note that ρ is the Weyl vector and wj , j =

1, . . . , N − 1, are the fundamental weights of SU(N).
6For k = 1, the set (1.2) consists of a single wall carrying flux − 2πρ

N , hence the number of k = 1 walls

is N .

– 3 –

J
H
E
P
1
2
(
2
0
1
9
)
0
1
1

1.2 Summary of results

1. We numerically study the classical k-wall solutions for 2 ≤ N ≤ 9. We find that k-

wall solutions are smooth, with the variations of the fields within the validity of the

effective theory at ΛNL ≪ 1. Details of our numerical studies of DWs are given in

section 4. Further, we find that, generally, their worldvolumes carry both electric and

magnetic fields, whose profiles we determine.3 The occurrence of magnetic fields on

the DW worldvolume is due to the nature of magnetic bions — the nonperturbative

objects responsible for confinement and the expulsion of electric flux from the vacuum.

In effect, magnetic bions create a nonlinear coupling between electric and magnetic

fields. This coupling is absent only for an SU(2) gauge group.

We find that, for SU(N) with N > 2, magnetic fields are absent only on a finite

number of k = N
2 BPS walls. We argue that six of these, if N is divisible by 4 (two

solutions, for N even but not divisible by 4) carry no magnetic fields, and determine

the electric fluxes they can carry. Furthermore, see appendix A, these “magnetless”

solutions can always be expressed in terms of one function, essentially the analytic

SU(2) DW solution.

2. Focusing on the lowest-tension BPS DWs, we find numerical confirmation, see sec-

tion 4, of the known result [37, 40] that there are
(N
k

)
BPS walls between SYM vacua

k units apart.4 Our new result is a determination of the electric fluxes carried by the

different BPS k-walls. The
(N
k

)
BPS k-walls carry Cartan subalgebra electric fluxes

whose values fall in one of two groups:5

2π

(
wi1 + . . .+wik −

k

N
ρ

)
, there are

(
N − 1

k

)
such walls, (1.1)

2π

(
wj1 + . . .+wjk−1 −

k

N
ρ

)
, there are

(
N − 1

k − 1

)
such walls. (1.2)

Here the numbers (i1, . . . , ik) are to be taken all different, ranging from 1 to N − 1;

likewise all (j1, . . . , jk−1) are different.6 The above spectrum of BPS k-wall fluxes is

invariant under k → N − k up to reversal of the overall sign of the electric flux (a

parity transformation, as in [45]).

3. We use the results (1.1), (1.2) for the BPS k-wall fluxes to give a microscopic picture

of the deconfinement of quarks on DWs. General discrete anomaly inflow arguments

and the properties of the worldvolume TQFT lead to the conclusion that the 1-form

Z(1)
N center symmetry is broken on the DW worldvolume, hence quarks should be

3To avoid confusion, we stress that the total magnetic flux carried along a DW is zero.
4There is a vast literature on various aspects of DWs in SYM; an incomplete list is [29, 30, 39, 41–45].
5See the main text for a detailed explanation. Here we note that ρ is the Weyl vector and wj , j =

1, . . . , N − 1, are the fundamental weights of SU(N).
6For k = 1, the set (1.2) consists of a single wall carrying flux − 2πρ

N , hence the number of k = 1 walls

is N .

– 3 –

to be all taken  
different 
from 1…N-1

What are the electric fluxes on the lowest tension (BPS) 
k-walls? 

ANSWER 1909.10979 with Cox and Wong 

distinct BPS k-walls

and



new story: the electric fluxes DWs carry, confinement in the bulk 
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(a) The energy density of a “double-string”
confining configuration composed of two de-
generate BPS DWs in SU(3) SYM. The quark
and antiquark have weights ±w1 of the fun-
damental representation. The string is embed-
ded in vacuum 1, see (2.9), while inside the
double-string the fields have the values of vac-
uum 0. Distances are measured in units of the
Compton wavelength of the heaviest dual pho-
ton. Similar double string configurations con-
fine fundamental quarks for any number of col-
ors.

(b) Deconfinement of a quark/antiquark pair
on the DW, shown here for SU(2) SYM. This
configuration can be thought of as the double
string configuration on the left “opened up”.
Vacuum 0 is on the top and vacuum 1 — on the
bottom. As the tensions of the BPS DWs ab-
sorbing a quark’s electric flux are equal, there is
no distance dependence of the quark-antiquark
pair’s energy, as shown on figure 14. As in the
figure on the left, the plot here shows the en-
ergy density.

Figure 1. Confinement in the bulk and deconfinement on the wall. Section 5 explains how these
pictures are obtained.

A recent parallel development is the realization that deconfinement of quarks on the

DWs in SYM is a manifestation of “discrete anomaly inflow”, due to the newly discov-

ered mixed 0-form/1-form symmetry discrete ’t Hooft anomalies [24–26]. The mixed 0-

form/1-form anomalies imply that in theories with such anomalies, DWs occurring due

to 0-form discrete symmetry breaking have a nontrivial structure on their worldvolume.

Such DWs have recently received some attention [27–36]. The nontrivial DW physics is

usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on

R3 × S1 at small LNΛ using semiclassical tools. Our hope is that the results obtained in

the calculable regime, generalizing [19] to arbitrary N and k will help elucidate various still

ill understood properties of the domain walls, of their junctions, and of confining strings.
2A k-wall connects vacua k units apart, see (2.9). Ref. [19] considered in some detail only k = 1 DWs.
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the combinatorics of fluxes given above is important for the 
general statements, but I won’t bore you with that… but some 
pictures are due: 

new story: the electric fluxes DWs carry, confinement in the bulk 
and deconfinement on the wall…

J
H
E
P
1
2
(
2
0
1
9
)
0
1
1

(a) The energy density of a “double-string”
confining configuration composed of two de-
generate BPS DWs in SU(3) SYM. The quark
and antiquark have weights ±w1 of the fun-
damental representation. The string is embed-
ded in vacuum 1, see (2.9), while inside the
double-string the fields have the values of vac-
uum 0. Distances are measured in units of the
Compton wavelength of the heaviest dual pho-
ton. Similar double string configurations con-
fine fundamental quarks for any number of col-
ors.

(b) Deconfinement of a quark/antiquark pair
on the DW, shown here for SU(2) SYM. This
configuration can be thought of as the double
string configuration on the left “opened up”.
Vacuum 0 is on the top and vacuum 1 — on the
bottom. As the tensions of the BPS DWs ab-
sorbing a quark’s electric flux are equal, there is
no distance dependence of the quark-antiquark
pair’s energy, as shown on figure 14. As in the
figure on the left, the plot here shows the en-
ergy density.

Figure 1. Confinement in the bulk and deconfinement on the wall. Section 5 explains how these
pictures are obtained.

A recent parallel development is the realization that deconfinement of quarks on the

DWs in SYM is a manifestation of “discrete anomaly inflow”, due to the newly discov-

ered mixed 0-form/1-form symmetry discrete ’t Hooft anomalies [24–26]. The mixed 0-

form/1-form anomalies imply that in theories with such anomalies, DWs occurring due

to 0-form discrete symmetry breaking have a nontrivial structure on their worldvolume.

Such DWs have recently received some attention [27–36]. The nontrivial DW physics is

usually described in terms of a topological quantum field theory (TQFT) living on the

DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult

to uniquely determine the worldvolume TQFT, due to the strong coupling nature of the

dynamics [35, 36].

The goal of this paper is to investigate the structure of general k-walls2 in SYM on
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Thus, in the confining bulk, the 
quark’s flux splits between two 
BPS DWs; inside the confining 
“double string”, there is 
another vacuum.

 vacuum 1; different vacuum 
 inside

Area law holds for all nonzero 
N-ality quarks due to vacuum 
degeneracy of inside and 
outside vacua.
“Double-string” confinement also for nonSUSY YM at theta=pi, QCD(adjoint)….
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DW, e.g. [37–39] and section 3.4. Absent strong symmetry constraints, it is often difficult
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Figure 14. Energy of two-quark configurations in SU(2), relative to the energy at the farthest
separation, as a function of the relative separation. We can see that for separations greater than
about 10% of the grid width the energy is constant and thus the quarks are deconfined (this
separation corresponds to 2.5 inverse dual photon masses). The dashed line at E/Eref = 1 is for
reference.

L×H, the boundaries are specified as

σ⃗(−L/2, y) = 2πw⃗1 (5.22)

σ⃗(z,H/2) =

⎧
⎨

⎩
2πw⃗1 z < 0

0⃗ z ≥ 0
(5.23)

σ⃗(L/2, y) = 0⃗ (5.24)

σ⃗(z,−H/2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0⃗ z >
R

2

2πw⃗2 −R

2
≤ z ≤ R

2

2πw⃗1 z <
R

2

, (5.25)

with φ⃗ = 0⃗ everywhere.

5.4.1 Supersymmetric Yang-Mills theory

The superpotential here is the same as used everywhere else in the paper, the inclusion

of supersymmetric in the title is simply to distinguish this from the deformed Yang-Mills

baryon discussed later.
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deconfinement on the wall also in 1501.06773

Due to the BPS degeneracy of DWs, there is no tension difference 
and no force between the quark/antiquark: 

energy as a function of 
separation of quark and 
antiquark along DW
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(a) The energy density in a ∆-shape baryon
in SU(3) SYM theory. The three fundamen-
tal quarks of weights ν1,ν2,ν3 are connected
by the three k = 1 BPS DWs. The vac-
uum outside of the baryon is k = 0 and the
k = 1 vacuum is inside. N -sided polygon
configurations occur for SU(N > 3), in con-
trast with the static linear baryons in Seiberg-
Witten (SW) theory. This difference arises be-
cause there are N magnetic bions in SYM vs.
N − 1 monopole/dyons in SW.

(b) A Y-shape baryon obtains, instead, in
SU(3) deformed Yang-Mills theory at θ = 0.
The fundamental quarks are now connected
not by DWs (θ = 0 dYM has a unique vac-
uum) but by confining flux tubes whose total
flux adds to zero, allowing for the “baryon ver-
tex” in the middle. At θ = π, the correspond-
ing picture is the same as in SYM — a ∆ shape
composed of DWs, with one of the two vacua
inside the baryon and the other outside.

Figure 2. Difference between baryons in SYM and dYM on R3 × S1; see section 5.

junctions (in R4, they have a two-dimensional worldvolume) required by consistency with

the conjectured TQFTs on the DW worldvolume [38, 43]. To the best of our knowledge

this question is not settled conclusively. These DW junctions would be straightforward to

produce numerically and the question of existence of massless modes on the junction could

be addressed.

The most interesting question is about the fate of the DWs and quark deconfinement

as the size of the circle is increased. It is believed that in SYM this continuation is smooth,

at least in the bulk. It would be especially interesting to obtain a better physical under-

standing of the braiding of nonzero N -ality Wilson loops predicted by the worldvolume

TQFT for k-walls on R4, a phenomenon that our study of DWs with two dimensional

worldvolume does not shed light upon.

1.4 Organization of this paper

This paper is roughly divided in two parts. The first half of the paper (sections 2 and 3)

uses the conclusions supported by numerics to discuss deconfinement and anomaly inflow.

The second half (sections 4 and 5) presents details of the numerical methods used and

discusses many of the results.
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if time permits one more picture… a static heavy baryon 
in SU(3) SYM is 

(an N-polygon in SU(N))

notice marked contrast with Seiberg-Witten theory, where 
baryons are linear only [reason: unbroken 0-form center…]

new story: the electric fluxes DWs carry, confinement in the bulk 
and deconfinement on the wall…



Time to conclude: 
Anomalies, vacuum structure, confinement and deconfinement on DWs 
quite intertwined, in nontrivial ways.
Studied a weakly-coupled semiclassically tractable example of the 
implications of anomaly inflow for the 0-form/1-form anomalies. 


Physical picture appealing, based on our detailed understanding of the 
“double-string” confinement mechanism on � . 


Applies also to various non-SUSY YM (� ), QCD(adj).

 

Notice that symmetry/anomaly often not enough to fix the DW 
“worldvolume TQFT” [Cordova, Freed, Lam, Seiberg 2019]. 


Even in the case at hand, we only understand the TQFT on the k=1 walls 
(Anber, EP 1811.10642). For k>1 DWs on �  open…

R3 × S1

θ = π

R3 × S1

For other theories on �  (e.g. ones with BCF anomaly, Anber’s talk) DW  
inflow also still open …

R4


