Domain walls and deconfinement: a semiclassical picture of discrete anomaly inflow

with Andrew Cox, Samuel Wong

1909.10979, JHEP

based on earlier "pre-anomaly" work

with Mohamed Anber, Tin Sulejmanpasic

Lewis&Clark

Durham

1501.06773, PRD

[related to talks by Anber and by Bandos]

Motivation

Recent exciting development in QFT: new 't Hooft anomaly matching conditions - Gaiotto, Kapustin, Komargodski, Seiberg,... 2014-

We all thought anomaly matching was 'set in stone' since ca. 1980. Played major role in, say, Seiberg dualities in the 1990's...

Turns out things have been missed; anomaly matching back to being an area of active research. Some striking consequences, e.g.

- I. "Dashen phenomenon" [~1960s!] in QCD at $\theta = \pi$ due to anomaly matching CP breaking and domain walls (DWs); worldvolume "nontrivial" due to "discrete anomaly inflow"
- 2. constraints on possible IR phases of various 4d gauge theories... see Anber's talk
- this talk:

- 3. focus on deconfinement of quarks on DWs

picture applies to a variety of theories with broken discrete symmetries:

QCD with broken CP, SYM with broken discrete chiral...

DW

bulk, vacuum 2

quark

confining string linearly rising potential

antiquark

bulk, vacuum 1

quark

on the DW: string "melts" no energy cost to separating quark and antiquark = perimeter law for fundamental Wilson loop antiquark

"explanation" of deconfinement on DW somewhat formal

- 3d CS theory (TQFT!) 'lives' on DW [e.g. Acharya-Vafa late 1990's] Wilson loops in CS known to obey perimeter law (and to have nontrivial braiding); associating CS Wilson loops with fundamental Wilson loop in gauge theory then implies deconfinement

- MQCD picture of confining (F-) strings ending on (D-/M-) walls [Soo-Jong Rey, 1997; Witten, 1997]

- connection to mixed "CP/or other discrete/-center $(Z_N)^2$ " anomaly

[Gaiotto et al...]

predicted by formal anomaly inflow arguments in a variety of gauge theories with mixed discrete 0-form/1-form anomalies

<u>prediction of deconfinement on DW somewhat indirect</u> based on DW worldvolume CS theories matching relevant anomaly

- it is nice to have a more physical picture
- difficult on R^4 , where theory strongly coupled entails having a theory of confinement...
- possible on $R^3 \times S^1$, where a weak coupling realization of confinement and a nonperturbative semiclassical study of the vacuum is trustable! [Unsal et al, 2007-]

In fact, deconfinement on DWs was found in 2015 (Anber, Sulejmanpasic, EP) based on honest semiclassical analysis... before relation to anomaly inflow understood - which we explain and extend now:

- focus on deconfinement of quarks on DWs Brief Article

Here, consider SYM with discrete chiral symmetry

this story applies to nonSUSY YM (e.g. QCD at $\theta = \pi$) as well uthor YM with n adjoint Weyl fermions; n = 1 is SYM To achieve semiclassical calculability, rather than only rely on SUSY, compactly theory on S¹: control parameter $NL\Lambda \ll 1$

key features:QCD(adj): YM with nf adjoint Weyl fermions; nf = I is SYMI. dynamical abelianization $SU(N) \rightarrow U(1)^{N-1}$ $ML^{1 \ll 1}_{NL}$ NLNL $SU(N) \rightarrow U(1)^{N-1}$ $SU(N) \rightarrow U(1)^{N-1}$ 2. weak coupling $SU(N) \rightarrow U(1)^{N-1}$ $SU(N) \rightarrow U(1)^{N-1}$

3. relevant d.o.f. at distances >>-NL $\sum_{a,b}^{n_++n_-}$ dual Cartan gluons" $Z = \sum_{\substack{n_+,n_- \\ n_+,n_- \\ nonperturbative semiclassical objects}^{n_++n_-} e^{-\sum_{\substack{n_+,n_- \\ n_+,n_- \\ n_+,n_-$

The Author
April 27, 2015
"dual Cartan gluons"
$$NL\Lambda \ll 1$$

 $QCD(adj) \not\otimes M$ with, n_{q} adjoint Weyl fermions; $\overline{n_{q}^{a}=\pm i\sigma} \otimes YM\pi w_{k}^{a}$, $k = 1, \dots N - 1$.
 $\overline{NL\Lambda} \ll 1$
 $\overline{ML\Lambda} \ll 1$
 $\overline{ML} \propto 1$
 $\overline{ML} \propto$

N vacua

$$\mathbb{Z}_{2N}^{(0)} \to \mathbb{Z}_{2}^{(0)}$$

$$\langle W \rangle_k \equiv W_k = N e^{i \frac{2\pi k}{N}}$$

$$k=1,...,N$$

k-walls: interpolate between vacua k units apart

 $\frac{2\pi}{N}$

W-plane

 $e^{ik\frac{2\pi}{N}}$

0.5

-0.5

-0.5

N vacua

$$\mathbb{Z}_{2N}^{(0)} \to \mathbb{Z}_{2}^{(0)}$$

$$\langle W \rangle_k \equiv W_k = N e^{i \frac{2\pi k}{N}}$$

k=1,...,N

$$\langle \pmb{\phi}
angle = 0 \quad \langle \pmb{\sigma}
angle_k = rac{2\pi k}{N} \pmb{
ho}$$
 —Weyl vector

k-walls: interpolate between vacua k units apart

 $\frac{2\pi}{N}$

k-walls carry electric flux: gradient of dual photon ~ electric field $\partial_i \sigma \sim \frac{L}{g^2} \epsilon_{ij} E_j$, j = 1, 2

W-plane

space is 2 dimensional and DW are "domain lines" with flux:

N vacua

$$\mathbb{Z}_{2N}^{(0)} \to \mathbb{Z}_{2}^{(0)}$$

$$\langle W \rangle_k \equiv W_k = N e^{i \frac{2\pi k}{N}}$$

k=1,...,N

$$\langle \pmb{\phi}
angle = 0 \quad \langle \pmb{\sigma}
angle_k = rac{2\pi k}{N} \pmb{
ho}$$
 —Weyl vector

 $\frac{2\pi}{N}$

W-plane

-0.5

What are the electric fluxes on the lowest tension (BPS) k-walls?

Question is nontrivial, since "dual photons" are compact scalars, can have extra monodromies across walls, in addition to that required by vacua they connect.

What are the electric fluxes on the lowest tension (BPS) k-walls?

ANSWER 1909.10979 with Cox and Wong

there is a number of distinct BPS k-walls whose electric fluxes are given by:

$$2\pi \left(\boldsymbol{w}_{i_1} + \ldots + \boldsymbol{w}_{i_k} - \frac{k}{N} \boldsymbol{\rho} \right), \quad \text{there are} \begin{pmatrix} N-1\\k \end{pmatrix} \text{ such walls,} \qquad \begin{pmatrix} i_1, \ldots, i_k \end{pmatrix} \\ \text{and} \\ (j_1, \ldots, j_{k-1}) \\ (j_1, \ldots, j_{k-1}) \\ \text{to be all taken} \\ \begin{pmatrix} N-1\\k-1 \end{pmatrix} + \begin{pmatrix} N-1\\k \end{pmatrix} = \begin{pmatrix} N\\k \end{pmatrix} \text{ distinct BPS k-walls} \qquad \begin{pmatrix} i_1, \ldots, i_k \end{pmatrix} \\ \text{and} \\ (j_1, \ldots, j_{k-1}) \\ \text{to be all taken} \\ \text{different} \\ \text{from 1...N-1} \end{pmatrix}$$

old story: total number of distinct BPS k-walls is $\frac{N!}{k!(N-k)!}$ per Ceccoti-Vafa; Acharya-Vafa; Hori-Iqbal-Vafa...1990s-2000 <u>new story: the electric fluxes DWs carry, confinement in the bulk</u> and deconfinement on the wall...

the combinatorics of fluxes given above is important for the general statements, but I won't bore you with that... but some pictures are due:

confinement in the bulk also in 1501.06773 DWs carry <u>half</u> the chromoelectric flux of 10 quarks of weights w_k , $5 \cdot$ highest weight of k-index 0 antisymmetric (and all -5 weights of fundamental -10^{-10} rep)

the combinatorics of fluxes given above is important for the general statements, but I won't bore you with that... but some pictures are due:

confinement in the bulk also in 1501.06773

Thus, in the confining bulk, the quark's flux splits between two BPS DWs; inside the confining "double string", there is another vacuum.

Area law holds for all nonzero N-ality quarks due to vacuum degeneracy of inside and outside vacua.

"Double-string" confinement also for nonSUSY YM at theta=pi, QCD(adjoint)....

deconfinement on the wall also in 1501.06773

Due to the DW multiplicity, the electric flux of a quark, w_k can be split to the left and the right.

Due to the BPS degeneracy of DWs, there is no tension difference and no force between the quark/antiquark.

deconfinement on the wall also in 1501.06773

Due to the BPS degeneracy of DWs, there is no tension difference and no force between the quark/antiquark:

if time permits one more picture... a static heavy baryon in SU(3) SYM is

(an N-polygon in SU(N))

notice marked contrast with Seiberg-Witten theory, where baryons are linear only [reason: unbroken 0-form center...]

Time to conclude:

Anomalies, vacuum structure, confinement and deconfinement on DWs quite intertwined, in nontrivial ways.

Studied a weakly-coupled semiclassically tractable example of the implications of anomaly inflow for the 0-form/1-form anomalies.

Physical picture appealing, based on our detailed understanding of the "double-string" confinement mechanism on $R^3 \times S^1$.

Applies also to various non-SUSY YM ($\theta = \pi$), QCD(adj).

Notice that symmetry/anomaly often not enough to fix the DW "worldvolume TQFT" [Cordova, Freed, Lam, Seiberg 2019].

Even in the case at hand, we only understand the TQFT on the k=1 walls (Anber, EP 1811.10642). For k>1 DWs on $R^3 \times S^1$ open...

For other theories on R^4 (e.g. ones with BCF anomaly, Anber's talk) DW inflow also still open ...