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Summary
 Higher form symmetry   1-form symmetry   center symmetry 

 this talk  

Gauging center symmetry (nondynamical background fields) leads to 
new ’t Hooft consistency conditions, due to new mixed anomalies 
involving center symmetry - missed in the 1980’s!

These consistency conditions constrain IR phases of gauge theories 
to be “nontrivial.”

They also imply that, whenever domain walls exist, their worldvolume 
physics is quite nontrivial: discrete version of “anomaly inflow.”

1.

2.

3.

Features very generic! I focus on theories with massless fermions, but also exhibited in 
purely bosonic ones (will mention).

Gaiotto, Kapustin, Seiberg, Komargodski, Willett, 2014-… 
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REMINDER: ’t Hooft consistency conditions
SU(3)-color  QCD with 2 massless fundamental flavors 

imagine, e.g. gauging SU(2)L L-quarks = 3 SU(2)   fundamentalsL 

UV: 

not a triangle, Witten anomaly, Z   valued ’t Hooft:
anomaly

IR: 
massless baryons  1 SU(2)   fundamentalL 

massless pions chiral broken 

 MORAL: ’t Hooft anomaly matching constrains any fantasy IR phase!

remarkably, discrete 0-form/1-form analogue, missed earlier 
Gaiotto, Kapustin, Seiberg, 
Komargodski, Willett, 2014-… :   Ex. - “Dashen phenomenon”=mixed CP-center anomaly

2
 RG invariant

or
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 Higher form symmetry   1-form symmetry   center symmetry 

2D compact U(1) with (integer) charge-N
massless Dirac
“charge N Schwinger model”

4D SU(N) with 

massless Weyl adjoints
= SYM

“       QCD(adj)”

remarkably alike

and

axial anomaly
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 Higher form symmetry   1-form symmetry   center symmetry 

massless Dirac
“charge N Schwinger model”

4D SU(N) with 

massless Weyl adjoints
= SYM

“       QCD(adj)”

remarkably alike

Q top.

axial anomaly

is unity when anomaly free
discrete chiral phase

  (likewise, 4D QCD(adj) has   global chiral symmetry)

and

2D compact U(1) with (integer) charge-N
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 We want to know what 
charge-N Schwinger model or QCD(adj) “do” in the IR? 

assisted by claim that:
there is a mixed anomaly between 

discrete “0-form” chiral, present in both models 

discrete “1-form” center, present in both models

This is especially easy to see on the lattice.
 (N.B.: lattice is not required; i.e. entire story is not a lattice  artifact! 

Continuum version requires introducing gauge bundles and 
transition functions on general manifolds, e.g. tori)
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Take 2D lattice, charge-N matter, compact U(1): 

well known… new name: “global 1-form            center symmetry”

does not act on local observables (plaquette              clearly invariant)

parameters: mod N integers, x-independent

only acts on (topologically nontrivial) Wilson lines: “1-form” symmetry

(same in 4D QCD(adj), except we have                        ) 
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In the 2D charge-N matter, compact U(1), both discrete chiral and center 
are exact global symmetries, like the chiral symmetry of our QCD ex.

In the spirit of ’t Hooft, let’s now attempt to gauge the center. 

acts on links

make parameter x-dependent
plaquette no longer invariant, need a             gauge field on plaquettes 

an integer (mod N)

“2-form”          gauge field

gauged 1-form center: r.h.s. has 1-form center gauge invariance
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in the theory with 1-form center gauge invariance

consider a simple background  it suffices that:

phase on a single
 plaquette only

nonzero aka “center vortex” or  
“’t Hooft flux” background

this                background explicitly breaks            chiral: anomaly!     

to see, recall: 

by periodicity in continuum limit

in theory with gauged center, use         gauge invariant def. of Q top.

in unit ’t Hooft flux background moral: gauge center -> fractional topological charge
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recall measure transform under anomaly-free chiral:

in theory with gauged center

gauging               explicitly breaks           : : mixed ’t Hooft anomaly!     

likewise, in a theory without fermions but with theta term, the 
fractionalization of topological charge breaks the 2Pi periodicity!

“anomaly in the space of couplings”  
(or, at Theta=Pi there is a mixed anomaly with CP )

[Cordova, Freed, Lam, Seiberg  ’19 ]
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recall measure transform under anomaly-free chiral:

in theory with gauged center

gauging               explicitly breaks           : : mixed ’t Hooft anomaly!     

 phase in chiral transform of partition function IS the anomaly 

 the phase is independent on torus size, it is RG invariant, same in IR!

if the IR theory is gapped and has a trivial (unique) ground state,
nothing to transform under chiral, no way to match anomaly in IR
hence IR theory must have “something” transform under chiral,
so can not be trivial

(phase not a variation of a local 2D (4D) term, but of a 3D (5D) CS term, same at all scales)
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Options for matching the mixed 0-form/1-form anomaly in the IR:

- IR CFT?
- breaking of the 0-form and/or 1-form symmetries

anomaly is matched by a TQFT describing breaking [ex. follows]

- TQFT not related to breaking [Juven Wang…]

In the charge-N Schwinger model, one can show that:

broken to Z   fermion parity, so there are N vacua  2

operators 
center/chiral symmetry center/chiral symmetry algebra:

shows anomaly: if center gauged, chiral operator not invariant!

Anber, EP 1807…
Armoni, Sugimoto 1812…
Misumi, Tanizaki, Unsal 1905..
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Summary: in 2D charge-N Schwinger model, one can show that:

broken to Z   fermion parity, so there are N vacua  2
In each vacuum, the spectrum is gapped - a massive boson, as in 
in charge-1 massless Schwinger model. So, what matches anomaly?

An IR TQFT, a “chiral lagrangian” describing the N vacua. This is usually not
trivial to get from the UV theory, but here it is [will not go through, just give flavor].

fermion bilinear  ̄
+

 � in this theory is given by

 ̄a
+

 �b = µhab e
�i

q
4⇡

N�1� , (4.1)

where µ is a normalization scale and h and e
�i

q
4⇡

N�1� are bosonic fields, SU(N �1) and U(1)

group elements, respectively. In the gauged U(1)⇥SU(N�1) theory, if the fermions are very

light or massless (as is the case in our worldvolume theory), the h and � sectors of the theory

become strongly coupled and acquire a mass gap. The correlators he�i
q

4⇡
N�1�(x)e

i
q

4⇡
N�1�(y)i

and
⌦
trh†(x) trh(y)

↵
approach constants, determined by the strongly coupled dynamics [54]21,

in the limit |x � y| ! 1. This, in turn, implies that
⌦
tr ̄

+

(x) �(x) tr ̄�(y) +

(y)
↵ ⇠

constant.22 Therefore, from cluster decomposition, we conclude that

htr  ̄
+

 �i 6= 0 : Zd�
2N ! Z

2

, (4.2)

breaking the Zd�
2N discrete chiral symmetry (2.20) to fermion number Z

2

. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [40, 41] and we

simply assume (4.2) holds. We note that tr  ̄
+

 � is the only fermion bilinear which is gauge

and Euclidean invariant (it equals tr 
+

 � in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k=1-walls exist [15].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of the

3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S
3�D = i

2⇡

N

Z
M3 (@M3=M2)

2NA(1)

2⇡
^ NB(2)

2⇡
, (4.3)

under �Z2NA
(1) = d�(0), with �(0)|M2 = 2⇡

2N in a background
R
M2

NB(2)

2⇡ = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [48]

S
2�D = i

N

2⇡

Z
M2

'(0)da(1) . (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar '(0) by 2⇡Z (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a(1). The gauge field a(1) is compact,H
da(1) 2 2⇡Z. The gauge invariant observables are ei' and ei

H
a(1) and powers thereof, with

21For a calculation of the condensate in the large-N limit, see [55].
22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [56].
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chiral center 

- compact scalar and compact U(1) 

correlation function (on R2) hei'(x)ei
H
C

a(1)i = ei
2⇡
N

l
x,C , with lx,C the linking number of x and

C (the N -th powers eiN', eiN
H
a(1) have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The '(0) compact scalar

(
H
d'(0) 2 2⇡Z) shifts under the 0-form global ZN as '0 ! '(0) + 2⇡

N ; the action remains

invariant due to a(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a(1) gauge field shifts under 1-form global Z(1)

N

as a(1) ! a(1) + 1

N ✏(1), where ✏(1) is a closed form with
H
✏(1) 2 2⇡Z. The gauge invariant

observables ei' and ei
H
a(1) transform by ZN phases under the global 0-form and 1-form ZN

symmetries, respectively: ei' ! ei
2⇡
N ei', ei

H
a(1) ! ei

1
N

H
✏(1)ei

H
a(1) = ei

2⇡Z
N ei

H
a(1) .

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In

the temporal gauge, a(1)
0

= 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ⌘ H
S1

a(1) and '(t):

SR
t

⇥S1 =
N

2⇡

Z
dt '

da

dt
, (4.5)

leading to the canonical commutation relations ['̂, â] = �i2⇡N , a vanishing Hamiltonian, and

the centrally extended algebra24 ei'̂eiâ = ei
2⇡
N eiâei'̂; as already noted, eiN '̂ and eiNâ are

trivial operators. The Hilbert space, treating '̂ as coordinate, is that of N states |P i such

that ei'̂|P i = |P iei 2⇡P

N and eiâ|P i = |P + 1(modN)i.
The |P i states are the N finite volume ground states due to the breaking Zd�

2N ! Z
2

(4.2), described by the expectation value of '. On the other hand, a, the spatial Wilson loop

of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As in the case

of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part of the gauge

theory dynamics) DW in the k-wall theory. The role of DW on the k-wall worldvolume is

played by insertions of static Wilson loops ei
R
R
t

a(1) , which are now defects localized in x, in

the path integral. The correlation function hei'(x)ei
H
C

a(1)i = ei
2⇡
N

l
x,C discussed earlier, taking

a loop C consisting of two infinite lines some distance apart (or, consider a compact time

direction and have C consist of two Wilson loops winding in opposite directions around Rt),

implies that one finds neigboring vacua of the DW theory on the two sides of the static unit

N -ality defect.

We pause to note that essentially the same picture—di↵erent vacua on the DW world-

volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.
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volume are separated by probe quarks—was found, by an explicit semiclassical analysis, to

23The spatial Wilson loop of the compact U(1) field a(1) is a compact variable, due to large gauge trans-

formations around the S1. Gauss’ law in the temporal gauge implies that ' ⌘ '(0) is independent of x. Note

also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [15], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of the

operators implementing discrete chiral and center symmetry transformations. One can thus view this map as

an explicit derivation of the IR TQFT from the microscopic physics.
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- gauge invariant operators (same algebra)

TQFT:  N-dim Hilbert space,  the N vacua 

Claim (not shown): 
upon gauging 
center, chiral transform 
shows anomaly; explicit…

Anber, EP 1811.10642

““
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let’s go back to 4D;  see what effect gauging the center has now

discrete chiral

center

to detect mixed anomaly, take                   on shown plaquettes 
center v-x localized in x1,x2, along x3,x4

center v-x localized in x3,x4, along x1,x2

gauging center symmetry leads to fractionalization of topological charge
 as we show on the next slide, the one calculation I’ll ask you to follow:

stress: story below applies
to bosonic YM with theta term,
or to YM with flavor backgrd…

So in 2D all seems nice and explicit (solvable model!)
15/25

( )

‘‘P-plaquettes,’’ and together they identify the position of thin center vortices
known as ‘‘P-vortices.’’ The claim is that this procedure locates center vortices on
the unprojected lattice; P-vortices lie somewhere in the middle of the thick vortices
of the original lattice configuration.

P-vortices, strictly speaking, are not located on the original lattice, but rather on
the corresponding ‘‘dual’’ lattice, whose sites are shifted away from the sites of the
original lattice by half a lattice spacing in the l = 1, … , D directions. In D = 2
dimensions, a plaquette is said to ‘‘dual to’’ (intersected in the middle by) a site of
the dual lattice, located at the center of the plaquette. In three dimensions, a
plaquette is dual to a link on the dual lattice, orthogonal to the plaquette, which
runs through the center of the plaquette. In four dimensions a plaquette is dual to a
plaquette on the dual lattice, which is oriented in a plane orthogonal to original
plaquette; the areas of the two plaquettes intersect at a common midpoint. Sup-
pose, for example, that at a fixed time we have a set of P-plaquettes oriented
orthogonal to the x-axis, as shown in Fig. 6.1. A P-vortex in this timeslice is a line
which pierces the center of each P-plaquette, and carries magnetic flux in the
center of the gauge group. As the vortex line propagates in time, it traces out an
area on the dual lattice, formed by plaquettes which are dual to the P-plaquettes.

The center-projected lattice is a configuration of ZN lattice gauge theory, which
of course is an abelian gauge theory, and has a simple Stokes Law

ZðCÞ ¼
Y

p2SðCÞ
ZðpÞ; ð6:20Þ

where S(C) is any surface bounded by C, and the product is over the plaquettes p
which make up that surface. Let C be a planar loop, and S(C) be the minimal
surface. If there are no P-plaquettes in the minimal surface, then Z(C) = 1. If there

x

y

z t

Fig. 6.1 A set of P-plaquettes, oriented parallel to the y–z plane. A thin vortex in D = 3
dimensions is a line running through the middle of the P-plaquettes, carrying a unit of center flux.
The vortex line is dual to the P-plaquettes and runs along links of the dual lattice. In D = 4
dimensions the thin vortex is a surface on the dual lattice, indicated the dashed lines, formed by
plaquettes which are dual to the P-plaquettes. Note that the sites of the dual lattice are displaced
by half a lattice spacing in time, as well as in the space directions
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continuum topological charge, tr(t^a t^b)=1/2 

lattice definition leading to it 

gauging center: 

lattice:

intersecting center vortex background: 
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fractional topological charge upon gauging center->breaks chiral=anomaly

discrete chiral

center

 before we continue, a note on center symmetry vs SU(N) matter representation: 

 adjoint, center symmetry 

 fundamental, no center symmetry 
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fractional topological charge upon gauging center->breaks chiral=anomaly

discrete chiral

center

 before we continue, a note on center symmetry vs SU(N) matter representation: 

 adjoint, center symmetry 

 fundamental, no center symmetry … but: 
Z    center-flavor symmetry

 L= gcd(N, F)
L
(1)
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fractional topological charge upon gauging center->breaks chiral=anomaly

discrete chiral

center

 before we continue, a note on center symmetry vs SU(N) matter representation: 

 adjoint, center symmetry 

 fundamental, no center symmetry … but: 
Z    center-flavor symmetry

 L= gcd(N, F)

lead to new anomaly matching conditions in QCD-like    [Shimizu,Yonekura ’17; Tanizaki ’18…]

L
(1)

B
or even Z   x Z    center/flavor/baryon…N F

(1) (1)
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discrete chiral

center

thus, upon gauging the center symmetry 

phase
is

’t Hooft anomalies for QCD(adj) to match

 discrete chiral lost:

(+ center-gravity subtlety for nf=2 - Cordova-Dumitrescu 2018)
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various recent solutions + important studies with subtleties clarified

Anber-EP; Cordova-Dumitrescu; Bi-Senthil; Wan-Wang, Ryttov-EP   

the new features, for nf=2 and nf=3
“confinement without continuous chiral 
symmetry breaking, but with discrete chiral breaking”

- center unbroken (confinement) 
-               unbroken  
-              broken to - N vacua

 … are these phases realized? are they “likely”? …. we don’t know - lattice simulations!

in a theory with no gauge fields in IR,
discrete chiral breaking needed
to match chiral/center anomaly

important new message re. anomalies

6

n
f

IR Phase Intact c� sym. Intact d� sym. Intact center sym.

� 6 Free Yes Yes No

5 Fixed point Yes Yes No

4 Fixed point Yes Yes No

3 Confinement, massless composite fermions Yes No Yes

2 Confinement No No Yes

1 N =1 SYM — No Yes

0 Pure YM — — Yes

TABLE II. The IR phases of adjoint QCD with n
f

Weyl flavors.

Summary of proposed (nf ,nc) phase structure of

adjoint QCD: Having now filled the gap for the nf = 3
theory with a candidate phase we cannot help but briefly
discuss some important characteristics of the emerging
possible phase diagram in the (nc, nf ) plane (we ignore
any possible issues regarding large nc in what follows).

Consider keeping nc fixed and vary nf . For nf > 5 the
theory is IR free and all 0-form global symmetries are
unbroken. The 1-form center symmetry is broken, due to
the perimeter law for the fundamental Wilson loop. As
we lower nf to nf = 5 and nf = 4 the theory is an inter-
acting conformal field theory (CFT) in the IR, again with
all 0-form (1-form) global symmetries unbroken (broken).
Then at nf = 3 massless composite fermions are formed
and discrete chiral symmetry is broken, while continuous
chiral symmetry is still unbroken. The theory confines
fundamental charges and the 1-form center symmetry is
restored. In addition there is a TQFT, originating in the
discrete symmetry breaking, to match the mixed Z2nfnc -

Z(1)
nc anomaly. Then at nf = 2 the likely [2] (but see

also the alternatives enumerated in [4]) scenario is that a
fermion bilinear condensate is formed, breaking both con-
tinuous and discrete chiral symmetry. Finally, the nf = 1
theory is supersymmetric pure Yang-Mills theory with
confinement and discrete chiral symmetry breaking.

Loosely speaking, we see that as we lower nf the the-
ory prefers to break more and more of its global 0-form
symmetries. This is somewhat reminiscent of the (nf , nc)
phase diagram of N = 1 supersymmetric QCD with fun-
damental chiral supermultiplets and may be, heuristi-
cally, what one expects. In Table II we provide a sum-
mary of the di↵erent IR phases.

n
c

. So as we depart from n
c

= 3 in theory B (n
f

= 5) we enter
a new phase (the conformal window) at some finite n

c

before we
arrive at infinite n

c

. The details of what specific value of n
c

we
enter the conformal window is inessential; it happens somewhere
along the way in theory B as we move n

c

from three towards
infinity. The same picture should also be valid for the n

f

= 4
case since there theory A is also believed to be at a non-trivial
IR fixed point without a bilinear condensate and that feature is
also expected to hold at any n

c

.
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Notice, discrete chiral breaking also in “vanilla” phases with                  broken to SO(n )  

Thus domain walls (DW) are a generic feature, no matter fate of SU(nf).

rich, due to “discrete anomaly inflow.”Turns out DW “worldvolume physics” is quite 

In particular, in confining theories, DW between chiral broken vacua 
deconfine probe quarks & confining strings end on DWs.

First seen on R   x S  Anber-Sulejmanpasic-EP 2015 explicit semiclassics,3 1
 then, without relation to “anomaly inflow”.

after Unsal 2007-

[“anomaly inflow”:  losely!  on DW chiral restored, so center broken = deconfinement]

microscopic mechanism understood at small S  (= flatland); also at theta=pi!

BPS/BPS* walls carry electric flux

1

w/  Cox & Wong ’19xx 
details: all reps and 
all vacua, role of 

N
k(   ) same tension!BPS walls
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>P   vacuum-th P+1   vacuum-th

W

Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As explained
in Section 3, W can be viewed as the end of a confining string worldsheet extending into the R3 bulk.
The picture holds in the high-T DW on R3 ⇥ S1

� , associated with center symmetry breaking. It also
applies in the zero-T R3 ⇥ S1L, in the semiclassically calculable ⇤NL ⌧ 1 regime, where the DW is
associated with chiral symmetry breaking. In both the small-� and small-L case, the DW worldvolume
is 2-D. In the small-L case, the N P -vacua are represented by distinct semiclassical DW solutions (N
such solutions are known to exist for k = 1), each carrying one-half the fundamental quark flux, see
[17, 57–59] for details. The resemblance between the small-� and small-L cases is because the relevant
’t Hooft anomalies on the DW are saturated in a similar mode. Note that on R3 ⇥ S1L, confinement in
the R3 bulk is abelian [60], in contrast to the small-� case.

hold on DW between chirally broken vacua of super-YM in the calculable regime on R3 ⇥ S1.
While a TQFT description was not given in [17], here we note that (4.4) can also be used

there, with the 0-form ZN of the TQFT being the 0-form center symmetry along the compact

S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is the same bulk-R3 center

symmetry as in the present high-T discussion, see Figure 1 for an illustration.

Continuing with the high-T theory, in order to see that the topological “chiral lagrangian”

(4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry via the 2-

form ZN gauge field B(2) (reverting back to Euclidean space and rearranging factors of N

and 2⇡ in (4.4) for convenience):

S
2�D = i

2⇡

N

Z
M2

N'(0)

2⇡
^ N(da(1) �B(2))

2⇡
, (4.6)

consistent with the gauged 1-form invariance a(1) ! a(1)+�(1) and B(2) ! B(2)+d�(1). As per

our earlier discussion (see Footnote 15) the 1-form transformation parameter has quantized

flux
H
d�(1) 2 2⇡Z and

H
B(2) = 2⇡Z

N .25 Under a chiral transformation �'(0) = 2⇡
N , in the

25Now the a(1) Wilson loop observable ei
H
C a

(1)
requires a surface ⌃ bounding C (C = @⌃) in order to

preserve the 1-form gauge invariance ei(
H
C a

(1)�
R
⌃ B

(2)). Its N -th power, on the other hand, is a genuine local

operator, ei(N
H
C a

(1)�
H
C B

(1)), see footnote 15.
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Problem 5 (14 marks) The partition function of a simple harmonic oscillator in equilibrium with

a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

’t Hooft anomaly on worldvolume
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a thermal bath of temperature T is Z(1, T ) ⌘
1P
n=0

e

�nhf

kT =
⇣
1� e

� hf

kT

⌘�1

. Here, f is the frequency

of the oscillator, h is Planck’s constant, and k—the Boltzmann constant. Use this result to find
the partition function Z(N, T ) , and then the entropy S(N, T ) of an Einstein solid of N oscillators,
all of frequency f . For simplicity, consider only the high-temperature limit. Then, express the
entropy as a function of the average energy E of the solid, i.e. find S(N,E). Compare with the
entropy obtained as a logarithm of the multiplicity function of the Einstein solid known from class

(log⌦(N, p) = (N�1+p)!
(N�1)! p! ), evaluated in the p � N limit, where p is the total number of quanta of the

Einstein solid. Are you surprised by the result? Explain!

Problem 6 (12 marks) Consider a paramagnet made ofN spin-1/2 magnetic moments in thermal
equilibrium at temperature T . Let the energy of a single magnetic moment be E = �2BµBs, where
s = ±1

2 denotes the value of the spin, µB is the Bohr magneton, and B is the strength of the applied
magnetic field. Determine the average energy hEi and the average of the square of the energy hE2i.
Compute the standard deviation �

2
E ⌘ hE2i� (hEi)2 and use it to determine the ratio

p
�2
E

hEi . Discuss

the physical meaning of this ratio, its behaviour in the large-N limit, and explain the significance of
your finding.

Problem 7 (14 marks) An ideal gas of N particles of mass µ at temperature T is constrained
to move in the x � y plane, making the gas e↵ectively two-dimensional. Use a heuristic argument
to determine the Maxwell speed distribution of this two dimensional gas. In other words, find
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R  bulk3

quarks deconfined on k-wall

[Aharony, Witten 1999;…]

here, QFT: 2d YM with  
massless fermions screens

[Schwinger model - many; nonabelian - 
Gross, Klebanov, Matytsin, Smilga 1995;  
Armoni, Frishman, Sonnenschein 1997;… ]

fermion condensate on k-wall
k-wall

1
2

z
x

first via holography: F1 on D1 

so we find “D-branes” and “strings”, once again, in QFT

y

and in high-T “DW” (semiclassical incarnation of center vortices!) between 
center broken vacua, similar story: “deconfine” probe quarks & confining 
strings end on DWs, Anber--EP 2018
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Summary
 Higher form symmetry   1-form symmetry   center symmetry 

 this talk  
Gauging center symmetry (nondynamical background fields) leads to 
new ’t Hooft consistency conditions, due to new mixed anomalies 
involving center symmetry - missed in the 1980’s!

These consistency conditions constrain IR phases of gauge theories 
to be “nontrivial.” 

They also imply that, whenever domain walls exist, their worldvolume 
physics is quite nontrivial: discrete version of “anomaly inflow.”

1.

2.

3.
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Future? “theory” - better understanding e.g. two-group structure [Benini et al]
“expt.” - more applications

 in particular: have all backgrounds leading to UV-IR consistency conditions been found? 
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