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QFTs, nonperturbatively,  are hard to deal with. 

Exact results:   SUSY, often extended  
                      …but real world: SM, BSM? 

Lattice:  global chiral symmetries-hard
            gauged chiral symmetries-confusion reigns! 

… any new analytic (trustable!) 
approach should be met with 
excitement and studied! 



combine two new (-ish) approaches

Aitken Anber Argyres Bergner Cherman Li Kanazawa Misumi  
Piemonte EP Simic Schaefer Shifman Shuryak Sulejmanpasic 
Tanizaki Thomas Vairhinos Voloshin Unsal Yaffe Zhitnitsky …

many studies over the past 10 years
incomplete alphabetical list

Around 2007, Unsal realized that a 
large class of 4d theories can be 
analytically studied using 
nonperturbative semiclassical means if 
compactified on a small circle:

Summary of “confinement on R x S ”, size of circle- L: 

dYM: pure YM with particular double-trace “deformation”
         or adjoint fermions of mass ~ O(1)/(NL)

We study SU(N) in the regime
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QCD(adj): YM with n  adjoint Weyl fermions; n  =1 is SYMf f
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1 dynamical abelianization

2 at distances >> NL weak coupling 

3 relevant d.o.f. are N-1 dual photons

key features: 

4 mass gap for dual photons due to 
proliferation, or “condensation”, of 

- magnetic bions - QCD(adj)/SYM 
- monopole-instantons - dYM 

3 1

number of colors

main message of this talk - 
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1 dynamical abelianization

2 at distances >> NL weak coupling 

3 relevant d.o.f. are N-1 dual photons

key features: 

4 mass gap for dual photons due to 
proliferation, or “condensation”, of 

- magnetic bions - QCD(adj)/SYM 
- monopole-instantons - dYM 

3 1

number of colors

main message of this talk - 

Mechanism of confinement: abelian, locally 4d
generalization of Polyakov’s ’77… but inherits
much of 4d! [eg the anomalies I’ll talk about!]
Much closer to real world YM than 
Seiberg-Witten confinement, the other theory
with calculable Abelian confinement!
  - alas not this talk - 
Anber, Sulejmanpasic, EP 2015
Shalchian, EP 2017
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Many other results interesting on their own 
(raise many new properties and issues in 
QFTs), but when do (and which of) the 
results extend to R^4? 

number of colors

main message of this talk - 

Mechanism of confinement: abelian, locally 4d
generalization of Polyakov’s ’77… but inherits
much of 4d! [eg the anomalies I’ll talk about!]
Much closer to real world YM than 
Seiberg-Witten confinement, the other theory
with calculable Abelian confinement!
  - alas not this talk - 
Anber, Sulejmanpasic, EP 2015
Shalchian, EP 2017



combine two new (-ish) approaches

Aitken Anber Argyres Bergner Cherman Li Kanazawa Misumi  
Piemonte EP Simic Schaefer Shifman Shuryak Sulejmanpasic 
Tanizaki Thomas Vairhinos Voloshin Unsal Yaffe Zhitnitsky …

many studies over the past 10 years
incomplete alphabetical list

Around 2007, Unsal realized that a 
large class of 4d theories can be 
analytically studied using 
nonperturbative semiclassical means if 
compactified on a small circle:

Summary of “confinement on R x S ”, size of circle- L: 

dYM: pure YM with particular double-trace “deformation”
         or adjoint fermions of mass ~ O(1)/(NL)

We study SU(N) in the regime

Brief Article

The Author

April 27, 2015

NL⇤ ⌧ 1

SU(N) ! U(1)N�1

1

NL

Z =
X

n+,n�

dx1...dxn
⇣n++n�

n+!n�!
e
�

n++n�P
a,b

1
e2

qaqb
|xa�xb|

qa, qb = ±1

1

e2

e
1
e2

1
|r1�r2| ⇠

Z
D� e�e2

R
dx (@i�(x))2 ei�(r1)�i�(r2) , etc.

Z ⇠
Z

D� e�e2
R
dx (@i�)2

X

n+,n�

dx1...dxn
⇣n++n�

n+!n�!
e

n++n�P
a

iqa�(xa)

e

n++n�P
a

iqa�(xa)
= e i

R
dx�(x)⇢m(x)

⇢m(x) =

n++n�X

a

qa�(x� xa)

1

QCD(adj): YM with n  adjoint Weyl fermions; n  =1 is SYMf f

Brief Article

The Author

April 27, 2015

NL⇤ ⌧ 1

SU(N) ! U(1)N�1

1

NL

Z =
X

n+,n�

dx1...dxn
⇣n++n�

n+!n�!
e
�

n++n�P
a,b

1
e2

qaqb
|xa�xb|

qa, qb = ±1

1

e2

e
1
e2

1
|r1�r2| ⇠

Z
D� e�e2

R
dx (@i�(x))2 ei�(r1)�i�(r2) , etc.

Z ⇠
Z

D� e�e2
R
dx (@i�)2

X

n+,n�

dx1...dxn
⇣n++n�

n+!n�!
e

n++n�P
a

iqa�(xa)

e

n++n�P
a

iqa�(xa)
= e i

R
dx�(x)⇢m(x)

⇢m(x) =

n++n�X

a

qa�(x� xa)

1

1 dynamical abelianization

2 at distances >> NL weak coupling 

3 relevant d.o.f. are N-1 dual photons

key features: 
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Around 2014-2017, Gaiotto, Kapustin, 
Komargodski & Seiberg realized that 
gauging discrete symmetries, including ones 
not visible in the perturbative continuum 
formulation of gauge theories, can lead to 
new constraints on IR behaviour:
discrete ’t Hooft anomaly matching

number of colors

main message of this talk - 

Many other results interesting on their own 
(raise many new properties and issues in 
QFTs), but when do (and which of) the 
results extend to R^4? 
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Around 2014-2017, Gaiotto, Kapustin, 
Komargodski & Seiberg realized that 
gauging discrete symmetries, including ones 
not visible in the perturbative continuum 
formulation of gauge theories, can lead to 
new constraints on IR behaviour:
discrete ’t Hooft anomaly matching

number of colors

main message of this talk - 

Upshot of talk: 
discrete anomalies + small L results = 
suggest new interesting phases on R^4. 
Can be studied on the lattice.

More general moral: 
 - pay attention to new consistency
conditions
- may mention some results on “hot”
 domain walls 

Many other results interesting on their own 
(raise many new properties and issues in 
QFTs), but when do (and which of) the 
results extend to R^4? 



Consider QCD(adj): SU(N) with n_f adjoint Weyl fermions (each one like a gaugino)
n_f < 6 for asymptotic freedom 

n_f =1 is SUSY: one case where continuity for all L is guaranteed (Witten index)  

can be solved nonperturbatively at small-L!   - confinement and chiral symmetry breaking 

n_f =2 is the one I will focus on mostly, for SU(2) gauge group

n_f =3,4,5… somewhere transition to conformal window? (unknown: 4?)

 n_f=2 and 4 related to N=2 SUSY and N=4 SUSY, respectively

for those firmly rooted in real world, motivation is, for me, more of theoretical interest 
than applications - a rare example of nonperturbatively solvable QFTs! … never mind “MWT”

So, what is known from small-L?  

QCD(adj) has SU(n_f) x U(1) classical chiral symmetry (U(n_f) rotates gauginos) 

instanton has 2 N n_f gaugino zero modes: hence U(1)    Z_{2 N n_f}
anomaly free discrete chiral symmetry
(new feature as opposed to theories with fundamentals)

from small-L: SU(n_f) unbroken, Z_{2 N n_f}     Z_{2 n_f}, so N vacua Unsal, 2007 

for n_f = 1 (SUSY) this is exactly what is known on R^4 (guaranteed)

for n_f > 1 … well? seems like SU(n_f) to SO(n_f) is more “QCD like” and expected



So, what is known from small-L?  

instanton has 2 N n_f gaugino zero modes: hence U(1)    Z_{2 N n_f}
anomaly free discrete chiral symmetry
(new feature as opposed to theories with fundamentals)

from small-L: SU(n_f) unbroken, Z_{2 N n_f}     Z_{2 n_f}, so N vacua Unsal, 2007 

for n_f = 1 (SUSY) this is exactly what is known on R^4 (guaranteed)

for n_f > 1 … well? seems like SU(n_f) to SO(n_f) is more “QCD like” and expected

thus,  we have believed that for n_f>1, there is a phase transition as L->infinity

QCD(adj) has SU(n_f) x U(1) classical chiral symmetry (U(n_f) rotates gauginos) 

in fact, QCD(adj) has SU(n_f) x Z_{2 N n_f} exact chiral symmetry
and a Z_N “1-form” center symmetry  - not visible to the naked eye, 

well known to the lattice folks, but thought - apart from some theoretical studies -
largely irrelevant: 

mod N integer, one per spacetime direction
“1-form”!



in fact, QCD(adj) has SU(n_f) x Z_{2 N n_f} exact chiral symmetry
and a Z_N “1-form” center symmetry  - not visible to the naked eye, 

well known to the lattice folks, but thought - apart from some theoretical studies -
largely irrelevant   (- but is not!)

mod N integer, one per spacetime direction
“1-form”!

Z_N “1-form” global center symmetry: 

- only acts on fundamental representation Wilson line operators, infinite or wrapping around T^4 

- only preserved in theories with zero N-ality representations: pure YM, QCD(adj)
- explicitly broken in theories with massless or light fundamentals (emergent if heavy)
- in theories with two-index tensors only (AS, S) a Z_2 1-form center is exact, etc. 

moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Contents
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model and symmetry realizations 9
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1 Introduction

Pe
i
H
dx1A1 ! e

i
2⇡n1
N Pe

i
H
dx1A1

Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

G2 have no ’t Hooft anomalies, but the product G1 ⇥G2 is anomalous. In this case, we say

that the theory has a mixed ’t Hooft anomaly.

A global symmetry G is said to be a 0-form symmetry if it acts on local operators. If

G acts on operators of spacetime dimension q, then G is a q-form symmetry [? ]. A famous

example is SU(N) Yang-Mills theory, which enjoys a 1-form ZC
N center symmetry that acts

on Wilson line operators. Recently, it has been realized that gauging the 1-form discrete

symmetries can also be obstructed due to the existence of ’t Hooft anomalies, which can

provide more handles to study the phases of gauge theories [? ? ]. In particular, non trivial

constraints can be imposed on the vacua of gauge theories (including their number) that enjoy

both 0- and 1-form discrete symmetries upon gauging the latter.

– 1 –



moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

whenever we have global symmetries, we can imagine gauging them
if we fail to maintain gauge invariance, we say there’s a ’t Hooft anomaly 

this is because the ’t Hooft anomaly is an RG invariant - is the same at all scales - so we 
can compute it in the UV of an asymptotically free theory (using quark and gluon d.o.f.) 
and demand that it be the same in the IR (using whatever the IR d.o.f. are)

SU(n_f)_L x SU(n_f)_R in chiral limit of QCD
has ’t Hooft anomaly; can be matched, in unbroken mode, by massless baryons, both L and R
or in Goldstone mode by pions (nature’s choice)

classic example:

’t Hooft anomaly is an RG invariantreiterate crucial point: 

for our purposes best formulation: 

not = to the variation of a 4d local CT (wouldn’t be an anomaly)

but = to the 4d boundary variation of a 5d local term depending only on 
         background fields (the ones that gauge the global symmetry, nondynamical)

this term does not care about the scale and the gauge theory dynamics 
(represents formally ’t Hooft’s weakly coupled anomaly cancelling sector)

’t Hooft anomaly is an anomaly w.r.t background gauge transforms 
it does not represent an inconsistency of the theory, but gives strong constraints on the 
possible IR dynamics:



moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”
whenever we have global symmetries, we can imagine gauging them
if we fail to maintain gauge invariance, we say there’s a ’t Hooft anomaly 

the non vanishing ’t Hoof anomalies in QCD(adj) are

[SU(n_f)]^3

 Z_{2 N n_f} [SU(n_f)]^2

 [Z_{2 N n_f}]^3

Z_{2 N n_f} [Z_N]^2

 classic ’t Hooft (gauginos = N^2-1 fundamentals) 

Csaki-Murayama ’97
think of Z_{2 N n_f} as a U(1) chiral subgroup 

Gaiotto et al ’14-17

 Z_{2 N n_f} [grav.]^2

“0-form” “1-form”

AND the new stuff: 



moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”

Z_{2 N n_f} [Z_N]^2 Gaiotto et al ’14-17
“0-form” “1-form”

 under chiral U(1):
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}
hence, Z_{2 N n_f} is a symmetry (as Q_top=integer)

but gauging Z_N center means                                           Q_top=k/N: 

Z_{2 N n_f}:

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)
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their nonperturbative behavior becomes a daunting task. One of the powerful tools that
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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1 The DW zero modes and the axial Schwinger model

Euclidean SU(2) adjoint fermion action taken from earlier deconfinement papers:

S = 2 tr
�
�̄(@0�+ i[a0,�])� i�̄�

j
(@j�+ i[aj ,�])

�
. (1.1)

A unit 2x2 matrix is not shown in the Euclidean time direction; j = 1, 2, 3 labels space

components and 0 labels the Euclidean time. The fermions are two-component, and � and �̄

are independent variables in Euclidean space; � = �
a ⌧a

2 where ⌧
a
are SU(2) generators, the

Pauli matrices. Similarly, a0,...3 = a
a
0,...3

⌧a

2 .

The fundamental Polyakov loop (keeping the constant mode only) is

P = e
i�a30

⌧
3

2 = diag(e
i
�a

3
0

2 , e
�i

�a
3
0

2 ) (1.2)

The center symmetric point is ha30ic.c. = ⇡
� where hP i = diag(i,�i). The two center breaking

vacua are ha30ic.b.1 = 0, where hP i = 1, and ha30ic.b.2 =
2⇡
� , where hP i = �1. A DW inter-

polating between the two along the x
3
= z direction, denoted as a

3,DW
0 (z), would approach

ha30ic.b.1 as z ! �1 and ha30ic.b.2 as z ! +1. Clearly, it has to pass through the center

symmetric point, the center of the DW. At the center symmetric point, the a
3
1,2 components

of the gauge field along the DW are massless, due to the breaking of SU(2) to U(1).

Varying the action w.r.t. �̄ we obtain the equations of motion for � (and similar for �̄):

@0�+ i[a0,�]� i�
j
@j�+ �

j
[aj ,�] = 0 (1.3)

�@0�̄� i[a0, �̄] + i@j �̄�
j � [aj , �̄]�

j
= 0.

– 1 –
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2d U(1) Q_top!

(for 4d SU(N)… need 2 orthogonal planes…)
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Quantum field theory (QFT) is a universal paradigm for writing down the fundamental

laws of nature. In many situations, however, QFTs are strongly coupled and learning about

their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and

– 1 –

Z_{2 N n_f}
Z_{2 N n_f} is a symmetry if Q_top=1

but gauging Z_N center means                                           Q_top=k/N: 
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especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

AND the new stuff: 

(you have to “buy” this; can give 
  lattice/continuum story, 2dU(1)…)

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; dep. only on  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

phase independent on volume of T^4 (used to compute Q_top), so same at all scales
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their nonperturbative behavior becomes a daunting task. One of the powerful tools that

sheds light on the nonperturbative structure of QFT is ’t Hooft’s anomaly matching [? ].

Given a QFT with a continuous or discrete global symmetry G, one may try to introduce

a background gauge field of G. If the theory doesn’t maintain its gauge invariance, we say

that it has a ’t Hooft anomaly. The anomaly is renormalization group invariant and must

be matched between the infrared (IR) and ultraviolet (UV) dynamics. This matching is

especially powerful in asymptotically free theories: one computes the anomaly coe�cient

upon gauging G in the UV, where the theory is amenable to perturbative analysis. Then,

this coe�cient has to be matched in the IR, which puts constraints on the strongly coupled

IR spectrum of the theory, see [? ? ? ]. If G = G1 ⇥G2, then it might happen that G1 and
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Z_{2 N n_f}:

mixed discrete chiral-center ’t Hooft anomaly = discrete Z_N phase in chiral transform

the phase = the boundary variation of a 5d bulk local term [not a 4d one!]; only with  
background discrete chiral and discrete center gauge fields [best on lattice/triangulation!] 
can be written; has to be matched in the IR along with the other ’t Hooft anomalies

Z_{2 N n_f} or Z_N-center can be broken in the IR, or matched by a CFT, or some TFT 

for small-L: SU(2_f) unbroken, Z_{8}     Z_{4}, so 2 vacua,  Z_N - center unbroken

back to the IR spectrum of QCD(adj) - take N=2, n_f = 2: 

we found a solution of all above ’t Hooft matching condition on R^4 Anber EP 

for infinite-L: SU(2_f) unbroken, Z_{8}     Z_{4}, so 2 vacua,  Z_N - center unbroken

2

invariant and must be matched by the infrared (IR) dy-
namics of the theory. This “anomaly matching” can be
a powerful tool to put constraints on the theory in its
strongly coupled regime.

In the following, we study the ’t Hooft anomalies of the
two-flavor QCD(adj). We examine the matching in the
zero-temperature phase of the theory on R4 and find a
novel solution to the anomaly matching conditions. This
solution realizes the symmetries on R4 in the same way
that they are known to be realized upon compactification
on R3

⇥S1L at L⇤QCD ⌧ 1 (⇤QCD is the strong-coupling
scale of the theory), where the theory was solved using
semiclassical methods [1].

It has been usually thought that in the non-
supersymmetric case of nf > 1 massless adjoint fermions
there is a phase transition, upon increasing L past
1/⇤QCD, associated either with the breaking of SU(nf )
flavor symmetry, for small nf , or with the restoration of
the discrete chiral symmetry, for values of nf such that
the theory becomes conformal on R4. However, as our
anomaly matching example shows, continuity between
the small S1L and the R4 limits may be a feature more gen-
eral than the known cases of supersymmetric Yang-Mills
theory or deformed Yang-Mills theory—where either for-
mal arguments or a large body of evidence in favor of
continuity exist.

The zero temperature phase of the theory on R4:
We propose that the theory is in a confined phase with
unbroken SUf (2) and broken discrete chiral symmetry

Zd�
8 ! Zd�

4 . Therefore, the theory admits two vacua

which transform into each other under Zd�
8 . In the follow-

ing we support our claim by showing that the proposed
IR spectrum of the theory saturates the UV ’t Hooft
anomalies.

In order to examine the breaking of the discrete chiral
symmetry, consider the four-fermi operator, which is a
singlet under the flavor SUf (2) and the gauge symmetry,

and transforms non-trivially under Zd�
8 :

O
(1)

⌘

⇣
✏↵��

↵a
i �

�a
j

⌘⇣
✏↵0�0�

↵0a0

i0 �
�0a0

j0

⌘
✏
ii0
✏
jj0

, (1)

where repeated indices are summed over (↵,� = 1, 2 de-
note SL(2, C) Lorentz indices, i, j = 1, 2 are flavor in-
dices, while a, b = 1, 2, 3 are reserved for color). It is triv-
ial to see that O(1) acquires a phase e

i⇡ under Zd�
8 , and

hence, this operator can be used to probe the breaking
of this symmetry, e.g., in a lattice setup.

Our proposal for an IR behavior of the R4 theory is
that at a scale of order ⇤QCD the four-fermi operator
(1) acquires an expectation value breaking the discrete
chiral symmetry, Zd�

8 ! Zd�
4 , but preserving SUf (2). The

fermion bilinear, ✏↵��↵a
i �

�a
j , usually thought responsible

for the breaking of SUf (2) ! SOf (2), is assumed to
vanish—as it does in the semiclassical small-circle limit.

SUc(2) SUf (2) Zd�
8 Zd�

4

�↵
i adj 2 1 1

O
(1)

1 1 4 4 ⌘ 0

O
(2) �
[ij]k 1 2 3 3

TABLE I. The charges of the elementary and composite fields

under the symmetries of the theory.

The second part of our proposal concerns the massless
spectrum of the theory. It consists of a single massless
hadron, composed of three adjoint fields, with an inter-
polating gauge invariant local operator

O
(2) �
[ij]k ⌘ ✏↵��

↵ a
[i �

� b
j] �

�c
k ✏

abc
. (2)

As indicated above, the operator is antisymmetric in the
indices i, j, hence the massless hadron (2) transforms as a
fundamental under SUf (2) and a Weyl spinor under the

Lorentz group. It also carries charge 3 under Zd�
8 . The

charges of our order parameter O(1) and massless hadron
O

(2) are summarized in Table I, where we also list the
charges of the UV adjoint fields �i. We next argue that
the massless hadron (2) saturates the ’t Hooft anomalies
for all global symmetries.
We start with the only continuous ’t Hooft anomaly,

[SUf (2)]
3. There is an odd number of SUf (2) fundamen-

tals (N2
c �1=3) in the UV, and thus, SUf (2) has a Witten

anomaly. To saturate the anomaly in the IR the theory
should have an odd number of massless fermions charged
under SUf (2). Clearly the assumed single massless color-
singlet fermion (2) will do the trick.
The remaining non vanishing ’t Hooft anomalies all in-

volve discrete 0-form and 1-form symmetries. We begin
with the anomalies involving 0-form discrete symmetries
discussed some time ago in [7]. Following their classifi-
cation, we consider first the more constraining “type-I”
discrete anomalies Zd�

4 [SUf (2)]
2 and Zd�

4 [G]2, where G

denotes a background gravitational field. Notice that it
su�ces to consider the unbroken part of the discrete chi-
ral symmetry (although, from Table I, this makes no dif-
ference as the charge assignments are identical, see also
footnote 3).

To compute the Zd�
4 [SUf (2)]

2 anomaly, consider an
SUf (2) BPST instanton background and note that the
number of fermionic zero modes isN2

c�1 = 3, the number
of SUf (2) fundamentals in the UV (we remind the reader
that we are counting the zero modes of Weyl fermions). In
the IR, the single color-singlet SUf (2)-fundamental com-

posite O
(2) �
[ij]k has a a single zero mode in the background

of an SUf (2) instanton, which carries triple the charge of

an elementary adjoint Weyl fermion under Zd�
4 . In e↵ect,

the IR Zd�
4 [SUf (2)]

2 anomaly gives 3, matching the UV
anomaly.
To compute the gravitational anomaly Zd�

4 [G]2, we add

by nonzero vev of 4-fermi operator

2

invariant and must be matched by the infrared (IR) dy-
namics of the theory. This “anomaly matching” can be
a powerful tool to put constraints on the theory in its
strongly coupled regime.

In the following, we study the ’t Hooft anomalies of the
two-flavor QCD(adj). We examine the matching in the
zero-temperature phase of the theory on R4 and find a
novel solution to the anomaly matching conditions. This
solution realizes the symmetries on R4 in the same way
that they are known to be realized upon compactification
on R3

⇥S1L at L⇤QCD ⌧ 1 (⇤QCD is the strong-coupling
scale of the theory), where the theory was solved using
semiclassical methods [1].

It has been usually thought that in the non-
supersymmetric case of nf > 1 massless adjoint fermions
there is a phase transition, upon increasing L past
1/⇤QCD, associated either with the breaking of SU(nf )
flavor symmetry, for small nf , or with the restoration of
the discrete chiral symmetry, for values of nf such that
the theory becomes conformal on R4. However, as our
anomaly matching example shows, continuity between
the small S1L and the R4 limits may be a feature more gen-
eral than the known cases of supersymmetric Yang-Mills
theory or deformed Yang-Mills theory—where either for-
mal arguments or a large body of evidence in favor of
continuity exist.

The zero temperature phase of the theory on R4:
We propose that the theory is in a confined phase with
unbroken SUf (2) and broken discrete chiral symmetry

Zd�
8 ! Zd�

4 . Therefore, the theory admits two vacua

which transform into each other under Zd�
8 . In the follow-

ing we support our claim by showing that the proposed
IR spectrum of the theory saturates the UV ’t Hooft
anomalies.

In order to examine the breaking of the discrete chiral
symmetry, consider the four-fermi operator, which is a
singlet under the flavor SUf (2) and the gauge symmetry,

and transforms non-trivially under Zd�
8 :

O
(1)

⌘

⇣
✏↵��

↵a
i �

�a
j

⌘⇣
✏↵0�0�

↵0a0

i0 �
�0a0

j0

⌘
✏
ii0
✏
jj0

, (1)

where repeated indices are summed over (↵,� = 1, 2 de-
note SL(2, C) Lorentz indices, i, j = 1, 2 are flavor in-
dices, while a, b = 1, 2, 3 are reserved for color). It is triv-
ial to see that O(1) acquires a phase e

i⇡ under Zd�
8 , and

hence, this operator can be used to probe the breaking
of this symmetry, e.g., in a lattice setup.

Our proposal for an IR behavior of the R4 theory is
that at a scale of order ⇤QCD the four-fermi operator
(1) acquires an expectation value breaking the discrete
chiral symmetry, Zd�

8 ! Zd�
4 , but preserving SUf (2). The

fermion bilinear, ✏↵��↵a
i �

�a
j , usually thought responsible

for the breaking of SUf (2) ! SOf (2), is assumed to
vanish—as it does in the semiclassical small-circle limit.

SUc(2) SUf (2) Zd�
8 Zd�

4

�↵
i adj 2 1 1

O
(1)

1 1 4 4 ⌘ 0

O
(2) �
[ij]k 1 2 3 3

TABLE I. The charges of the elementary and composite fields

under the symmetries of the theory.

The second part of our proposal concerns the massless
spectrum of the theory. It consists of a single massless
hadron, composed of three adjoint fields, with an inter-
polating gauge invariant local operator
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↵ a
[i �

� b
j] �

�c
k ✏

abc
. (2)

As indicated above, the operator is antisymmetric in the
indices i, j, hence the massless hadron (2) transforms as a
fundamental under SUf (2) and a Weyl spinor under the

Lorentz group. It also carries charge 3 under Zd�
8 . The

charges of our order parameter O(1) and massless hadron
O

(2) are summarized in Table I, where we also list the
charges of the UV adjoint fields �i. We next argue that
the massless hadron (2) saturates the ’t Hooft anomalies
for all global symmetries.
We start with the only continuous ’t Hooft anomaly,

[SUf (2)]
3. There is an odd number of SUf (2) fundamen-

tals (N2
c �1=3) in the UV, and thus, SUf (2) has a Witten

anomaly. To saturate the anomaly in the IR the theory
should have an odd number of massless fermions charged
under SUf (2). Clearly the assumed single massless color-
singlet fermion (2) will do the trick.
The remaining non vanishing ’t Hooft anomalies all in-

volve discrete 0-form and 1-form symmetries. We begin
with the anomalies involving 0-form discrete symmetries
discussed some time ago in [7]. Following their classifi-
cation, we consider first the more constraining “type-I”
discrete anomalies Zd�

4 [SUf (2)]
2 and Zd�

4 [G]2, where G

denotes a background gravitational field. Notice that it
su�ces to consider the unbroken part of the discrete chi-
ral symmetry (although, from Table I, this makes no dif-
ference as the charge assignments are identical, see also
footnote 3).

To compute the Zd�
4 [SUf (2)]

2 anomaly, consider an
SUf (2) BPST instanton background and note that the
number of fermionic zero modes isN2

c�1 = 3, the number
of SUf (2) fundamentals in the UV (we remind the reader
that we are counting the zero modes of Weyl fermions). In
the IR, the single color-singlet SUf (2)-fundamental com-

posite O
(2) �
[ij]k has a a single zero mode in the background

of an SUf (2) instanton, which carries triple the charge of

an elementary adjoint Weyl fermion under Zd�
4 . In e↵ect,

the IR Zd�
4 [SUf (2)]

2 anomaly gives 3, matching the UV
anomaly.
To compute the gravitational anomaly Zd�

4 [G]2, we add

  IR: single massless SU(2_f) Weyl doublet

for N=2, n_f = 2 the lattice has been seeing strange things, inconsistent with SU(2)   SO(2)
they say will check above for “baryon”… Athenodorou, Bennett, Bergner, Lucini, 2015

1805.12290

“adiabatic continuity” from title  
 = same symmetry realization at small and large L ? ? ?



moral: QCD(adj) has SU(n_f) x Z_{2 N n_f} x Z_N exact global symmetry

“1-form”“0-form”
whenever we have global symmetries, we can imagine gauging them
if we fail to maintain gauge invariance, we say there’s a ’t Hooft anomaly 
the non vanishing ’t Hoof anomalies in QCD(adj) are

[SU(n_f)]^3

[SU(n_f)]^2

 [Z_{2 N n_f}]^3

[Z_N]^2

 classic ’t Hooft (gauginos = N fundamentals) 

Csaki-Murayama ’97
think of Z_{2 N n_f} as a U(1) chiral subgroup 

Gaiotto et al ’14-17

 Z_{2 N n_f} [grav.]^2

“1-form”

AND the new stuff: 

AND more new stuff: -  

- last week! 

Z_{2 N n_f}
“0-form”

 Z_2  X; Z_4 X; 
“1-form”

“non-spin manifold X” for N=2 n_f = 2 only  (twisted N=2 SYM) 

Dumitrescu-Cordoba  1806.09592

“adiabatic continuity” from title  
 = same symmetry realization at small and large L ? ? ?

 claim our proposal 1805.12290 modified by adding an “emergent Z_2 gauge theory” in IR
 not clear yet (to me!) how to probe for it (say on lattice… ’t Hooft loop?) stay tuned!



Upshot of talk: 
discrete anomalies + small L results = 
suggest new interesting phases on R^4. 
Can be studied on the lattice.

More general moral: 
 - pay attention to new consistency
conditions
- may mention some results on “hot”
 domain walls 

no time to

(domain walls in one phase mimic bulk behavior in another:   
high-T DW  low-T bulk and v.v.)


